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Abstract. The next generation of Geographic Information Systems (GIS) is anticipated to automate some of the reasoning
required for spatial analysis. An important step in the development of such systems is to gain a better understanding and
corresponding modeling practice of when to apply arithmetic operations to quantities. The concept of extensivity plays an
essential role in determining when quantities can be aggregated by summing them, and when this is not possible. This is of
particular importance to geographic information systems, which serve to quantify phenomena across space and time. However,
currently, multiple contrasting definitions of extensivity exist, and none of these suffice for handling the different practical cases
occurring in geographic information. As a result, analysts predominantly rely on intuition and ad hoc reasoning to determine
whether two quantities are additive. In this paper, we present a novel approach to formalizing the concept of extensivity. Though
our notion as such is not restricted to quantifications occurring within geographic information, it is particularly useful for this
purpose. Following the idea of spatio-temporal controls by Sinton, we define extensivity as a property of measurements of
quantities with respect to a controlling quantity, such that a sum of the latter implies a sum of the former. In our algebraic
definition of amounts and other quantities, we do away with some of the constraints that limit the usability of older approaches.
By treating extensivity as a relation between amounts and other types of quantities, our definition offers the flexibility to relate a
quantity to many domains of interest. We show how this new notion of extensivity can be used to classify the kinds of amounts
in various examples of geographic information.

Keywords: Extensive quantities, Definition, Geocomputation, Semantic labeling of geodata

1. Introduction

An important distinction in geographic analysis is between those quantities that can and those that
cannot be summed during spatial aggregation. These are known as, respectively, extensive and intensive
quantities. Human analysts can intuitively tell how a quantity should be processed when two regions are
merged. Two temperature values of two spatial regions, for example, should not be summed, although
they may be treated as a weighted sum when the regions are aggregated. In geographic information
systems (GIS), however, the values may be represented by the same concrete data types, and thus cannot
be systematically distinguished. Current GIS lack a method for automating aggregations because we lack
a theory of extensivity that can tell us under which circumstances we can sum up quantities in space,
time, and other kinds of domains.

One fruitful way to capture extensivity is in terms of a relation between different domains of measure-
ment (Scheider and Huisjes, 2019). This notion of extensivity entails that quantities can be aggregated
if they share domains of measurement by which they can be controlled and measured in a coordinated
manner. Controlling quantities need to be separated from each other, and both controlling and controlled
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quantities need to be additive in a way that preserves sums. For example, the population of Europe can
be aggregated with the population of Africa, as both populations are part of the world population, but not
with the summed GDP of Africa, which does not share the same measurement domain. Here, the spatial
administrative units are controlling and population counts are measured. However, Europe’s population
should also not be aggregated with the population of Utrecht, because even though they share the same
measurement domains, Utrecht is already a part of Europe. While such observations may seem intuitive,
the sciences still lack a formalization of these kinds of considerations. Most existing definitions of ex-
tensivity that reached prominence are either too restrictive or too vague, leaving room for inadequate
interpretation (See section 2.1). Moreover, existing definitions of extensivity seem to misconceptualize
its relational character. For over a century, the prevalent idea was that extensivity is a fixed property of
scales originating from the existence of a sum operator or the way they were derived from fundamental
measurement units. However, as our examples about population and temperature illustrate, though the
underlying measurement scales come with sum operations in all cases, it is not always meaningful to
sum up quantities when merging regions. Furthermore, in this article, we make the case for the view
that all quantities can be extensive with respect to some and intensive with respect to other quantities.
For example, temperature, which is regularly used as an example of an intensive quantity, turns out to
be extensive with respect to thermal energy. A measurement value of temperature can be obtained by
dividing a value of thermal energy by the product of mass and heat capacity. Imagine the temperature of
a heating system is measured before and after an amount of energy is added, and assume that all other
quantities are held constant'. When the mass and heat capacity are held constant, increases in thermal
energy translate into homomorphic increases in temperature.

A concise yet flexible definition of extensivity would enable determining whether spatial arithmetic
is applicable or not based on classifying quantities accordingly. In previous work, we (Scheider and
Huisjes, 2019) have illustrated the merit of spatial extensivity in the context of geographic information
and mapping and managed to automatically distinguish extensive from intensive quantities with high
accuracy. However, though this work forms a basis for the current article, it was never formalized and
does not account for quantities that are additive in domains other than space, such as e.g. time. Also, if
we recognize there are multiple dimensions of extensivity, new ways to categorize quantities emerge.
A water flow accumulation is extensive in space and time, the cost of a stay at a hotel is extensive in
time and some monetary currency, and the cost of rental cars is extensive in time (i.e. the duration of
renting), space (i.e. the amount of kilometers driven) and the amount of cars (i.e. renting two cars is more
expensive than one). Extensivity offers a new semantic dimension by which data can be discovered and
processed. A definition of extensivity would therefore also contribute to a data-driven science (Hey et al.,
2009; Gahegan, 2020) by determining which arithmetic operations can be applied to available quantities.

In this article, we suggest a first-order formalization of quantity domains as a basis for a higher-
order, relational definition of extensivity using quantities as controls and measures. We then demonstrate
how this definition allows us to define various subclasses of extensive measurement across geographic
information examples in terms of an OWL? pattern with subsumption reasoning. Though our theory as
such is not restricted to geographic quantities, the concepts of control and measure on which it is based
are central for geographic information, as explained below. Our contribution is therefore threefold and
provides answers to the following questions:

"For convenience, also assume the heating system perfectly retains all energy (i.e. there is no loss of energy over time).
2Web Ontology Language, see e.g. Hitzler et al. (2009)
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In which way can extensivity be formalized in terms of measurement, control and summation of

quantities? Which classes of quantity domains need to be distinguished for this purpose? 2
How can extensive quantities be measured across time, space and content, within the context of
geographic information? 4

How can extensive geographic measurements be systematically categorized according to diffesent
kinds of controls and measures, and how can this be used to automatically classify map exampkes?

Our answers contribute important formal distinctions to measurement ontology which are currently
lacking. While measurement theory formalizes levels of measurement scales in terms of the operatfons
they preserve on particular quantity domains (Suppes and Zinnes, 1962), ontologies like DOLCE (l\ﬂa—
solo et al., 2003), or, more recently, the FOUnt ontologies (Aameri et al., 2020), relate the underlyiJrPg
guantity domains to each other and ontological "background” phenomena like endurants, perdurajrfts,
and their properties. However, so far, we do not know of any attempt at formalizing the notion of eX¢
tensivity as a relational concept, and in the context of geographic information. Furthermore, while the
current ontological accounts provide useful insights and models about concepts of measurement, fﬁey
also come with certain restrictions that make it dif cult to account for the notion of extensivity.

First of all, most existing measurement ontologies lack the formal depth to specify the distinctioh%
needed for capturing the notion of extensivity. For example, lightweight ontologies such as the OM-
ontology (Rijgersberg et al., 2013) lack a rigorous formalization of the underlying concepts and afe
instead primarily focused on terminological conventions (Balazs, 2008) in speci c application ared®
(Steinberg et al., 2016). Furthermore, foundational ontologies that would provide the formal depth coffle
with certain problematic assumptions and ontological commitments. For one, even though there Fre
notions that resemble our notion afountin both DOLCE and the FOUnt ontologies, they are largely
centered around the idea of “physical matter' or “stuff' constituting endurants. Examples would be tfe
amount of clay constituting a statue or the amount of wine in a bottle, which are modeled as phenom&ha
that can be considered snapshots in time. However, for geographic information, we need to consfder
the possibility of forming amounts across time as well as space. For example, quanti cations of watér
running through a waterfall (Galton and Mizoguchi, 2009) or of traf c owing into a city presuppose?’
amounts in time as well as spac®econd, even if including both endurants and perdurants as bearef&
of amounts, the notion of extensivity requires also a degreghifrarinessof forming amounts, which ~ 2°
stands in apparent contrast to the simphéty criteria for wholes within the boundaries of objects and 0
events that are underlying DOLCE (Guarino et al., 2000). Consider the amount of population liviiig
close to a border or between two cities, the amount of water owing through the waterfall in betweén
two events, or the amount of space covered by an arbitrary circle around some point. These are rele¥ant
geographic examples that illustrate that the unity criteria for amounts go beyond the constitution8f
particular objects or events within the limits of their boundaries. Of course, we can always create objetts
with unity for arbitrary portions of amounts (cf. Guizzardi (2010)), however, this appears redundant {h
light of a theory of extensive amounts. 37

The extensivity concept suggested in this article accounts for some of this exibility in terms of &
generalized notion of amounts that is used to control other measurable quantities, following earlier id&s
of Sinton (1978). With this approach, arbitrary divisions of amount portions can control arbitrary quaff
tities, not only by way of objects. This closely corresponds to the way how quanti cation is done in ‘&
GIS (cf. Chrisman (2002)). To this end, we formalize two classes of quantity domains (amounts aftd
magnitudes) which are used to de ne extensivity on a higher level and then introduce a simple desfgn
pattern that can be used to classify various examples of extensive measurement across time and épace

within geographic information. 45
46
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The rest of the paper is organized as follows. First, we review what is known about extensivity, quanti-
ties and measurement. Second, we reinterpret Sinton (1978)'s three roles of measurement (i.e. measure,
control, constant) and show in an informal manner how they can be used to specify extensivity relatians.
Third, we present a formalized algebraic theory of extensivity as a relation between a measure andone
or more controls, including automatic proofs of theorems. Fourth, we translate this basic theory inte a
lightweight OWL pattern adding classes speci ¢ for geographic information. We then propose twelee
categories of measurement of extensive quantities in the context of geographic information and stiow
how extensivity classes can be automatically inferred. Finally, we shortly discuss the implications of aur

ndings and conclude by answering the posed research questions. 9
10
11
2. Extensivity, quantities, and measurement 12
13

We start with reviewing existing literature on extensivity and quantities and scrutinize the underlying
approaches for our purpose. Furthermore, we critically examine Sinton's notion of controlled measure-
ment, and discuss how it can be exploited for our purpose. 16

17
2.1. Extensivity and intensivity 18
19

The concept of extensivity originates from the elds of Physics and Chemistry where it is used to
describe the mathematical nature of properties. Its introduction and axiomatization can be accreditezi to
scholars in the rst half of the twentieth century (H6lder, 1901; Tolman, 1917; Campbell, 1920). Tolmaaz
(1917) envisions extensivity as a way to describe phenomena whose measuiasilty additive Of 23
all phenomena he identi es only ve as extensive in this sense, namely length, time interval, mass,
electric charge, and entropy. For a contemporary de nition of extensivity, scholars often refer to the
green book of the International Union of Pure and Applied Chemistry (IUPAC), which describes aa
extensive quantity a% quantity that is additive for independent, non-interacting subsysté@aien 27
etal., 2007). In practice, there seems to be an informal consensus that only properties like volume or ra&ss
are considered extensive. Even within this consensus, disagreement exists about what physical propétties
extensivity depends on. A number of papers from Physics and Chemistry try to address the confusion
surrounding the concept (Redlich, 1970; Canagaratna, 1992; Mannaerts, 2014). Mannaerts (2014) 3ds
that the expressions 'extensive quantity' and 'extensive property' are used interchangeably — He favoi#s
the use of the term 'extensive quantity’' — and that some use additivity to de ne extensivity (i.e. th#
sizes of two quantities can be added up during aggregation) while others use proportionality (i.e34a
guantity inextricably changes relative to changes of another quantity). Some scholars limit extensiAty
to a relation of properties with respect to mass, while others relate them to the amount of substatfce
or volume (Mannaerts, 2014). Restricting extensivity to a speci ¢ kind of physical substance deviat&s
considerably from the original theory (Tolman, 1917), which holds that properties may be extensit®e
also with respect to time or entropy. Not only do scholars consider different properties as the sourcé%f
extensivity, they also disagree on the mechanisms of extensivity itself. 40

The concept of an extensive quantity is opposed to that of an intensive quantity, which has been de A&d
as"a quantity that is independent of the extent of the sys{€uhen et al., 2007). Tolman (1917) argues 42
that, except for his ve fundamental quantities, all quantities are intensive, because they are in some iy
derived from the ve fundamental quantities. A speed, for example, is found by dividing a length (i.e. tHé

distance) by a time interval. Some scholars hold that not all quantities are either extensive or intenstve.
46
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They argue that some quantities are expressed as conjugates (Alberty, 1997) or composites, which have
characteristics of both. 2

3
2.2. Quantities 4

5
Quantities are described asthat by which a thing is said to be large or small, or to have part outsideg

of part, or to be divisible into partKocourek, 2018). Speci cations of quantities are frequently present,
in spoken language (Talmy, 1978). For example, the sentence 'The ock of birds ew over the widg
river' not only speci es two different entities (i.e. 'birds' and 'river’), but also details their quantities g
(i.e. " ock' and 'wide") and their interrelation (i.e. ‘over"). 10

From a semantic viewpoint, quantities should be distinguished from numbers, which are mathematigal
objects for representing measurement results, and measurement units, which indicate the measurgment
system a quantity is measuredinn measurement theory, it is common to classify measurement sysr;
tems using measurement levels, which range from nominal through ordinal and interval to ratio (Stevens
et al., 1946). These levels encode increasing amounts of information of a quantity, by preserving opgsa-
tions for class membership, order, relative position and absolute effect of a quantity (Suppes and Zinggs,
1962). Chrisman (1998) proposed to extend these levels with counts, degrees of class membership, gycli-
cal ratio, derived ratio, and immutable absolute measures, like probability. 18

Quantities can be negative and can be on a linear scale of measurement. For example, walking back-
wards for twenty meters can be seen as a negative quantity of forward movement associated with,ghe
number -20 and the unit 'meters'. The term magnitude, also called impact or size, is used to measusg a
quantity on a linear scale. Scholars sometimes distinguish multitudes from magnitudes (Lachmair et3l.,
2018). Shortly put, multitudes refer to collections of discrete entities (e.g. a collection of cars), whijg
magnitudes capture linearly order-able phenomena (e.g. the length of a road). Plewe (2019) in addiipn
refers to continuously divisible quantities as 'geographic masses' and illustrates the relevance of this
concept for Geography. Our approach (see below) can be used to make these notions more precisg, by
formalizing what extensive quantities are in general, and how they are controlled in geographic ianf—
mation.

Information about the extensivity of a quantity is closely related to its part-whole relations. Sucj@
relations are commonly consideredmeomerousvith respect to its parts, meaning that all parts are 5,
of the same kind of quantity as the whole (Gerstl and Pribbenow, 1993). For instance, sectioning,a
portion of water results in sub-portions of water. According to Guizzardi (2010), homeomerous pagt-
whole relations can be modelled as maximally self-contained mereological sums (i.e. aggregationgzof
the subquantities) or by means of containment (e.g. a bottle of water). This approach implies that paits
of a quantity, also referred to as pieces (Lowe, 1998), are only instantiated if there is a need. For examgle,
a body of water may be subdivided into its parts to identify sweet water and salt water if necessary, gyt
this is not required for capturing the water concept. Guizzardi's mereological approach also works feor
universal properties and classes. For example, a car is a member of the collection of all cars (i.e.gthe
class of 'cars’), and the mass of said car is a part of the set of all mass in the universe (i.e. the 'mags’
property). The DOLCE ontology makes use of this principle of extensionality (Masolo et al., 2003;
Gangemi et al., 2001). Recently, work in the context of the FOUnNt ontologies (Aameri et al., 2020) hgs
shown that formally adequate models of physical quantities need to incorparatd relationsbetween 4,
property bearers, mereologies in different quantity dimensions (Ru and Gruninger, 2017), and quantigies

44
3Different measurement systems (or reference systems) (Chrisman, 2002) can represent the same kind of quantity. For ex-

ample, the meter scale and the feet scale both represent the same quantity of lengths.
46



© 0 N O b~ WN PP

A A DN DN D DD WWWWWWWWWWwNNNNDMNNNNNNDRERRRERRRRR
o 0 M WN R O OG®NO® O »WNPO O© 0N ARN®OWNRO O ®~NOO U M WNPRP O

6 E.J. Top et al. / The Semantics of Extensive Quantities

represented by measurement scales. Going beyond existing ontologies of units of measure (Rijgersberg
et al., 2013), the de nition of formal properties of quantities thus requires further concepts. 2
For extensivity, mereological relations are essential because they specify whether two quantitieszare
distinct, whether and how much they overlap and whether one quantity contains another. For example, a
university may host multiple lectures at once, meaning they share the same quantity of time. Sumntng
the total time of the lectures may indicate how long it would hypothetically take to attend all lectures
(e.g. 400 hours), but this does not correspond to the extent of time that is actually occupied by these
lectures (e.g. 3 hours). If two lectures with a duration of 2 hours each overlap for 1 hour, they togetlaer
occupy 3 hours in time. Claramunt and Jiang (2001) show that such relations are not limited to space or
time, but also exist between conjunctions of both. 10
11
2.3. Measurement of quantities 12
13
Sinton (1978) is well-known for his idea that the measurement of spatial information requires attribute
information about the space, time and theme components of the recording. Sinton argues that duringLany
measurement each one of these three components lIs the role of the constant, the control or the measeére:

The constantcomponent, also referred to as the support or the xed component, does not chan%e
at any point in the measurement process.
Thecontrol component is allowed to vary over its measurement scale at the observer's dlscretlo

Themeasurecomponent is observed and its variation with respect to the control is recorded. 1

Take the example of a precipitation measurement. Precipitation is commonly measured with a rzin
gauge. This rain gauge xes the spatial extent of the precipitation measure, e.g., to 1 dm2. The amaant
of water falling into the rain gauge is then measured in mm and converted to kg or liters over a variale
amount of time, e.g. an hour or a day (Chrisman, 2002). With an established constant (i.e. space)2and
control (i.e. time), it is possible to measure an amount of rainfall in mm. Sinton's work contains twes
important messages: 1) a measurement of a phenomenon always requires other variables to be contrdiled,
and 2) geographic information always contains a combination of spatial information, obtained through
the measurement of locations and regions, temporal information, obtained through the measureme®? of
the progress of time, and thematic information, obtained through measuring some content of spatiaiOor
temporal regions. 31

Chrisman (2002) argues that apart from space, time and theme, there is another kind of control, nardely
control by relationship. For example, the measurement of a ow of export products from countries ¥
one another rst requires establishing a relation between the countries (in the sense of a spatial netwk,
cf. (Kuhn, 2012)). Although this is a relevant case of extensivity (Scheider and de Jong, 2022), we led¥e
the study of network-controlled extensive quantities for future work. 36

The roles of measure, control and constant are essential for our purpose, because they aptly capture
how guantities can play different roles in de ning extensivity. Measured quantities are extensive if théy
are controlled in garticular way by other quantities. However, Sinton's idea requires some scrutiny?®
before it can be applied to quantities. For one, the llers of roles are by no means restricted to the thfee
components of geographic information. Many measurements ignore one or more of the components *For
example, when measuring the duration of a given lecture, there is no need to take the size of the lecttire
room or the didactic ability of the lecturer into account. In fact, only the time interval at which the lectur&®
happens is required as a control to measure duration. Note also that in this example, the time compotfent

appears as both measure and control at once. It is clear therefore that the comppaestsime and ~ 4°
46
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theme are much too coarse distinguish the relevant quantities, and thus for capturing extensivity. We
therefore adopt three alterations of Sinton's idea. Firstly, we interpret Sinton's components as classes of
quantities which might play a role or not in a given measurement. We thus allow for arbitrary combina-
tions of quantities lling the roles in a single measurement. Secondly, we assume that quantities exer#no
in uence on measurement (i.e. are kept constant) unless speci ed otherwise. This prevents the need for
explicitly lling the constant role. And third, we formally distinguish subclasses of quantity domains t®

account for extensive measurements that can be made on a single one of Sinton's dimensions. 7
8

9
10
11

3. Aformal theory of extensive quantities

In the following, when we talk about quantities, we deviate from certain terminological habits in mea-
surement theory and ontology of measurement, simply because we believe our usage is closer to the
common understanding of a term. First, when we speak abquaatity, we mean an individual value
of measurement, such as the value represented by 15 kg. This is close to everyday usage, such /s in
"the quantity of our used to make this bread”. Correspondingly, we use the ¢grantity domairto
talk about all elements of a domain of measurement, such as the kilogram scale (Probst, 2008). Secgnd,
we do not assume quantities are necessariljirmar measurement scales the example above, the |4
quantity of our is not the same a#s value in kilograms, though it can be measured on the kilogram,,
scale. This requires us to distinguish different kinds of quantity domains. In the following, we introducg
a formal theory in First Order Logic (FOL) about quantity domains, medsurement functioms map-
pings between these. FOL is suf cient to reason about a single quantity domain, but strictly speaking,
we go beyond FOL when quantifying over different domains. Free variables in propositions are impligr
itly all-quanti ed over a quantity domain. Axiom sets of all (sub)theories are provably consistent, ang
all theorems were automatically proven based on resolution using Pfold® scripts are available 26
online®®. To get an overview of the following de nitions, Table 1 provides a preliminary summary anc7
exempli cation of the main formal concepts that we introduce below. Each of the concepts in the tabie
is also explained in the text. 29

30

3.1. Quantities, amounts and magnitudes 31
32
Certain kinds of quantities can be added up to or removed from each other, resulting in a new quan?t?ty
of which original quantities are parts. For example, a quantity of people can be added up to another
guantity of people to form a total sum of people, and the original quantities are parts of the Whof’e.
We call quantities that can be added up in this w@ayounts In our theory, this means that amounts
can besummegdbe subtracted fromand bepart of each other. In the following, we will motivate and
illustrate the axioms with examples of amounts of space (E.g., spatial regions), amounts of time (E.g.
time intervals), as well as amounts of matter and amounts of objects.

40
41
“https://www.cs.unm.edu/~mccune/prover9/ 42
5Amount theory: http://geographicknowledge.de/vocab/quantity_amount.txt 43
6Magnltude theory: http://geographicknowledge.de/vocab/quantity _magnitude.txt

44
"Inthe following, we use the terms amounts of space and (spatial) regions and the terms amounts of time and (time) |ntervals
interchangeably.

46
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Table 1
Preliminary summary of the main concepts
Concept Description Examples
Quantity An individual value of a measurement that can pé spatial region or its size or its proportion with re-
used to form sums. spect to another region’'s size.
Amount An extensional mereological quantity whose domair spatial region (=amount of space).
forms a lattice.
Magnitude | A linearly, monotonically ordered quantity. The size of a spatial region or its proportion with
respect to another region's size.
Archimedean A magnitude whose domain forms a vector spac&he size of a spatial region.
magnitude | (can be summed and subtracted, but not multipligd)
Proportional | A magnitude whose domain forms a mathematicalhe proportion of a region's size with respect to an-
magnitude eld (allowing for products and ratios) other region's size.
Quantity A set of quantities together with operations on thenThe set of all regions and the set of all region sizes
domain (forming an algebra) are domains of quantities of space.
Control The role of a quantity domain as a domain of meawhen measuring the amount of population within a
surement, i.e., a domain of a measurement functiomegion, the amount of space of that region is a con-
trol.
Measure The role of a quantity domain as a range of measyr&¥hen measuring the amount of space occupied by
ment, i.e., a co-domain of a measurement function.an amount of people, the amount of space is a mea-
sure.

3.1.1. Theory of amounts (extensional mereological quantities forming a Boolean lattice)
The parthood relations of amounts are captured by mereological axioms. We assameuart do-
mairf is a set with algebraic operations that satisfy the followpagtially ordered algebra

Axiom 1. Partial order of parthood

X X
(x y»
(x y»

Re exivity
X y) =) x=y Antisymmetry

y 2=) X z Transitivity

© 0 N O b~ WDN PP

WRNNNNNNMNNNNRNERERRRR B B B B
O © ® N O OB WNPO®©®®NOOAO_WNEPRP O

31

For example, if two amounts of sand are part of each other, they are identical, and parts of parts%of
an amount of sand are also parts of the former amount of sand. Based on this, we de ne the foIIowﬁ"ng

predicates:

De nition 1. Strict order and overlap
X vy (x y*:(y Xx) Strict order
oxy) 09 zZ0 z~z x"z vy Overlap
y x| Xy Strictly greater than
y x| Xy Greater than or equal

35
36
37
38
39
40
41
42
43

8Many authors speak of dimensions of measurement rather than domains. We use the term ‘domain’, because we want to
prevent the assumption of linearly ordered elements.

46



© 0 N O b~ WN PP

A A DN DN D DD WWWWWWWWWWwNNNNDMNNNNNNDRERRRERRRRR
o 0 M WN R O OG®NO® O »WNPO O© 0N ARN®OWNRO O ®~NOO U M WNPRP O

E.J. Top et al. / The Semantics of Extensive Quantities 9

Strictly ordered amounts are not identical, meaning one is a proper part of the other, and overlapping

amounts have a common part that is not empty (Casati et al., 1999). 2
3
Axiom 2. Sums and differences 4
5
X+y=y+ X Commutativity 6
(x+y)+ z=x+(y+ 2  Associativity ;
X+0= X Identity + 9
xnx=0 Inverse 10
11
yn0=y Identity Minus 12

13
Axiom 2 introduces operations for adding and subtracting amounts. Note the identity (empty) element

0 which can be added without changing anything and which results from subtractions of amounts frem
themselves. To give some motivation for these axioms, it is apparently irrelevant in which order we sygn
up amounts of sand. Furthermore, if we add/subtract no sand to/from an amount of sand, the amoupt is
left unchanged. Furthermore, if we remove the entire amount of sand, nothing is left over. This apparengly
applies also in the case of spatial regions as well as time intervals. 19

In addition, we introduce a product operation for amounts, which is interpreted in termabéesec- 20
tion of two amounts. Intersection distributes over sums of amounts, and 1 is an identity element whigh

corresponds to thiargest (supremum) amount 22
23

Axiom 3. Products 24
25

X y=y X Product Commutativity 2
(x'y) z=x (y 2 Product Associativity 27

28

X 1=xX Product Identity 29

x 0=0 Product Neutrality 30

X (Y+2=(X Y)+(x 2 Distributivity "

Intersection means that, for instance, the intervals of 25 to 29 minutes and 28 to 31 minutes interé%ct
in the range of 28 to 29 minutes. It apparently does not matter in which order we perform this intersgg-
tion. Furthermore, while intersecting a time interval with the zero interval results in the zero interv%l
intersecting it with the largest interval leaves it unchanged. Finally, intersecting intervals with intervgj
sums is like intersecting with each summand rst and then summing up the result.

The algebra so far forms ground mereologwith sums, differences and produtts is so far not
in any way different from ordinary algebra. However, the mereology of amounts comes with further
characteristics that differ substantially from ordinary algebra and are more similar to the algebra of
sets. First, théargest(supremum) andmallest(in mum) amounts and theicomplementmteract with

. . L . 42
addition and intersection in speci ¢ ways: 43
9 . . . . . . . .44
More precisely, the partial order axioms form a ground mereology. The following lattice axioms establish extensionali
and introduce a closure principle, see Casati et al. (1999). 4
46
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Axiom 4. Supremum, In mum, additive distributivity and complements 1
2
xnl=0 In mum 3
Xx+1=1 Supremum :
x+(y 2=(x+y) (x+ 2 Additive distributivity 6
X+ x=1 Additive complement ;
x x=0 Product complement 9
( X)=x Involution 1(1)
(x+y)= x vy deMorgan 1 12
(x yy= x+ vy deMorgan 2 13

14

. , , 15

The zero (in mum) amount can be obtained by subtracting the largest (supremum) amount from any
other amount, and adding the largest amount to any other amount returns the largest amount. Also, agdi-
tion apparently distributes over products. For example, adding an amount of space to an intersectioy), of
two regions is the same as adding it to each region separately and then intersecting the result. Furtger-
more, adding an amount of space to its complement generates the largest region, and intersecting Jyoth
produces the empty region. For example, the complement of the region where it rains is the region whgre
it does not rain. Involution means that it should be the case that the complement of the latter region,is
the region where it rains, i.e., double complements lead back to the same region. The deMorgan axiggns
do the same for sums and products. 24

In addition, amounts are néhearly orderedand instead form 8oolean lattican the mathematical 25
sense, similar to the one depicted in the Hasse diagram in Fig. 1. To express this, we require the existegice

of joins and meet8, as well as a non-total partonomy: 27
28

Axiom 5. Lattice axioms 29
30

X X+y Existence of joins 31

32

X z"y z=) x+y z Existence ofjoins 2 33
Xy X Existence of meets 34

. 35

z x"z y=) z x y Existence of meets2 36
XY (x y_y X)) Non totality 37

38

To illustrate the existence of joins, it is apparent that a spatial region is always part of its sum with
another spatial region, and the sum of any parts of a spatial region is always part of that spatial regf@n.
The existence of meets implies analogously that intersections of regions are always parts of thosée-
gions, and a part of two regions is also part of their intersection. Note that these lattice properties rﬂgay

44

OThe following lattice and relative complement axioms are analogous tal¢iedra of sets (inclusion axioms and relative 45
complements).
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Fig. 1. Hasse diagram of the power set of a set of three elements. Set {x} is independent of the set {y,z}.

=
w

14
not apply to other spatial concepts that are not amothrfEnally, there always exist amounts that are 15
autonomous in the sense thiey are not a part of each otheFhe last part of the axiom gives rise to 16
amount hierarchies that are independent from each other. For example, in a map there are always!two
spatial regions that are not part of each other. 18
Axioms 1-5 are logically equivalent toBoolean latticgwith at least two non-ordered elements), and *°
thus our theory bears similarity to the mereology of the FOUnNt ontologies (Aameri et al., 2020). This cah
be seen by the fact that idempotence and absorption laws become provable theorems, which, togé%her
with axioms 1,2,3,4, constitute a standard axiomatization (Padmanabhan and Rudeanu, 2008):

23
24

Theorem 1. 25
26

X+(Xx 2= X Absorption 1 27

X (Xx+2) =X Absorption 2 ;2

X+ X=X Additive idempotence 30

X X=X Product idempotence :;

It can now be proven that if you sum up two amounts, where one is part of the other, this will alwagg
generate the greater one of the two as a result of the operation. From thiesettieity of sumgollows, 35
which is in apparent contrast to the number Yfyend similarly for products. It follows also that the 36
empty amoun@ is part of every other amount, and that a non-zero product of two amounts makes these
amounts overlap. Furthermore, a well known fact of algebra is provable, naraegjation invariance 38
i.e. adding an amount to two amounts that are part of each other preserves parthood: 39

40
41

42
Yoy example, the pair of two islands of Japan is not itself an island, but the pair of two amounts of islands is an amoung of
islands. Furthermore, when we talk about spatial regions we do not make any assumptions about the connectedness of s‘p‘@tial
regions, and thus two unconnected regions can form a region.
12This would mean e.g. that 4+4 = 4

45
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Theorem 2.

(x y)=) x+y=y Re exivity of sums

X y=) X y=X

0 x Empty amount
(x y=z2r0<2 =) 0O(xy) Product overlaps

(x y)=) (x+z y+2 Translation invariance

Re exivity of products

© 0 N O b~ WDN PP

10

Finally, subtractions of amountsan be de ned simply as the intersection of an amount with the11

complement of its intersection with the amount that is to be subtracted:

Axiom 6. Amount differences

xny=x ( (y X)) Defsubtraction

Based on this de nition, many theorems abaoetative complementsan be provelt. For example,

12
13
14
15
16
17
18
19

subtracting an amount from any of its parts generates the empty amount. In particular, based on Axiams
1-6 we can prove that amounts can always be composed and decomposed into non-overlapping paus:

Theorem 3.

Xx+y=z" O(xy) =) znx=y Decomposability 1
X y=) (ynx=2z=) ynz=xX) Decomposability 2

Amounts therefore satisfy thetrong supplementatioprinciple of extensional mereology, i.e., if two

22
23
24
25
26
27
28
29

amounts are not part of one another, then there exists some non-overlapping part. A known loggoal

consequence is that non-zero amounts with the same proper parts are equal (Casati et al., 1999, cf1ch.

3.3). This makes the mereology of amouexsensional

Theorem 4.

(y X)) =) (9v(v  y”": O(v; X)) Strong supplementation

32
33
34
35
36
37
38

The amount theory speci ed above contains the most important elements for characterizing setgdn

terms of set intersection and union. Note, however, that set theory is q@alstiaular interpretation of
amounts. There are also other important interpretations, such as amounts of matter, or else in terms of

40

intervals in time or portions of space. We do not want to make any further ontological commitmentsaat

this stage (e.g. about discreteness or atomicity), as our goal is to de ne extensivity in general.

B\\e leave away the details for lack of space. See our documentation of proofs.

43
44
45
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3.1.2. Magnitudes as linearly ordered monotonic quantities 1
Each amount can bmeasuredand thus compared to others ofireear scaleof measurement. For 2
example, two amounts of water can be measured on a common scale for liters. The elements of such a
scale are also called quantities, although they are quantities of a different kind. To distinguish the two,
we call the lattemagnitudesintuitively, magnitudesllow us to measure amounts and to put them in s
relation even if they are not part of each other: we can order them, compute differences, and we €an
measure their proportions. To make this notion precise, we hold that magnitudes are also quantities,
thus having an order operatio6 ), which, like the parthood relation of amounts, also satis es Axioms s
1 (partial order), and basic axioms for sums (+) and differencegAxiom 2). Furthermore, just like o
amounts, magnitudes dranslation invariant or monotonigso that adding the same magnitude on each 1o
side of a balance preserves the order). We illustrate magnitude axioms with examples about lengths, sizes
and weights. 12
13
Axiom 7. 14
15
16
17
18
19

Axiom 8. 20
21

X6 y_y6 x Totality 22

23

We furthermore need to distinguish two subclasses of magnitude domains, based they serve 24
to compare amounts: Either in terms of measuring sizes (Archimedean magnitude domains, deneted

by the clasArchimedeanMagnitudeDor in terms of measuring proportions (proportional magnitude 26

domains, denoted by the claBsportionalMagnitudel). 27

(x6y) =) (x+ z6 y+ 2 Translation invariance (monotonicity)

However, in contrast to amounts, magnitudes do not have lattice properties, but instéiadaahg
ordered(no two magnitudes of the same magnitude domain are not ordered in some way):

Archimedean magnitudes (totally ordered vectorshhe rst kind of magnitude can be used to compare 28
the sizes of amounts, but not proportions. We call thessdiimedearmagnitudes. Examples are the 29
kilogram scale for measuring weight or the meter scale for measuring length. 30
An important but rather subtle issue is that the quantities of an Archimedean magnitude domain ¢an
onlybe used to build orders, sums and differences among themseliemt products or ratiosAs was 32
argued by Simons (2013), it is nonsense to multiply or divide two weights and expect another weidht
as an outcome. The latter "divisions” should therefore not be regarded as algebraic operations withitt a
domain, but really relations among different domains of measurement (cf. Aameri et al. (2020)). Thds,
while it is possible to compute proportion of two Archimedean magnitudes coming from the same 3¢
domain, such proportiorare not inthis domain anymore. For example, a proportion of 10 kg and 5 kg®’
weights is not itself a kg weight, yet it is possible to say that 10 kg is double the amount of 5 kg. Noté
how this is equivalent to the impossibility of multiplying two vectors in a vector space with each othe?
to obtain another vector, and yet there is the possibility of comparing two vectors by some scalar valtfe.
We agree with Aameri et al. (2020) that this is more than just a super cial similarity. Correspondingl§
we specify a domain of Archimedean magnitudeshimedeanMagnitude@arch), With X;y 2 March, 42
in terms of atotally ordered vector spaceising elements of a separate domaipwiportional magni- 43
tudesa;b 2 Mp,q, ProportionalMagnitude@Mp,op) (de ned below) as scalars, which can form scalar 44

products with these vectors: 45
46
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Axiom 9. 1
2

(a+hb) x=(a X)+(b X Scalar distributivity 3

a (x+y)=(a x)+(a vy Vector distributivity 4

5

a (b xx=(a b) x Scalar associativity 6

5

(x6 y*06 a) =) a x6 a y Scalartranslation invariance
8

To illustrate distributivity of scalars, it is enough to realize that the way how scalars extend vectdrs
is also the way how we can increase lengths or weights: It does not matter whether we double t&o
weights separately and then sum them up or whether we rst sum them up and then double the reglt.

Scalar products have furthermore Archimedearproperty, which requires that we can always nd a 12
positive proportional magnitude that makes some positive Archimedean magnitude as big as anotBer

given positive Archimedean magnitude. This uniquely identi es a proportional magnitude, which ca

also be expressed as a "rafity” 15
16

Axiom 10. 17
18

(O<x"0<y) =) 9 aa2Pr0<a”a x=vy) Archimedean axiom 19
(0<x"0<y) =) a x=y$ a=(yx) Def Archimedean Ratio 20

21

For example, it is always possible to nd a unique multiple that describes how far we need to exteff
a given length to match another given length. This multiple can be regarded as the proportion of the
two lengths. Based on these axioms, it can be proven that doubling of a positive magnitude restfits
in a magnitude always greater than the original one (positivity), which stands in direct contradictiéh
to the principle of re exivity of sums for amounts, and which can be used to in nitely extend any?®
domain of magnitudes. Furthermore, building a proportion of one and the same Archimedean magnittide
yields 1 (the neutral element of proportional magnitudes), and multiplying a proportion of Archimedeah

magnitudes with its denominator retrieves its numerator magnitude: 29
30

Theorem 5. 31
32

0<x =) Xx+x>X Positivity 33
0<x =) xx=1 34

35

(0<x?0<y) =) (xy) y=x 36

37

These axioms make our magnitude theory similar to Luce and Suppes' (Luce and Suppes, 2082;
Suppes and Zinnes, 1962) theory of "extensive measurefigaxcept that we dismiss the solvability 39
axiom'8, and that we treat proportions as a domain separate from an Archimedean magnitude domain.
Luce and Suppes (2002) use their theory to formalize mass or weight measurements on a pan balance.

42
YNote that the ratio symbol used in Axiom 10 does not mean that a division operation exists on Archimedean magnityde
domains. It is rather a rewriting of the scalar product.

15Note: this notion is not to be confused with our notion of extensivity. a4
18The latter would enforce in nitely dense magnitudes, which would exclude (discrete) count scales. 45
46
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We use our theory to talk more generally about quantities such as size, duration, or the count af a
collection. These can be compared on a linear scale, yet are not proportions, and we also do not asgume
their domains aré nitely dense(which would exclude the possibility of discrete scales sucboamt 3
scales). 4

Proportional magnitudes. Proportional magnitudes can be used to express proportions of Archimededn
magnitudes. We assume there is such a magnitude scale at least for every Archimedean magnﬁude
scalé’. For example, we can say that if the birth weight of a baby is 3 kg and now is 6 kg, then tHe
baby's weight has doubled, i.e., the weights stand in the weight proportion 2. To axiomatize proportioﬁal
magnitude domains, we amend the general magnitude Axioms 1, 2, 7 and 8 with the product Axiorfjo?s

and the following product ordering axiom:
11

Axiom 11. 12
13

(0O<xM0<y) =) 0<x y productorder 14

15

Together, these axioms specifyadally ordered mathematical eldn distinction to an Archimedean 16
magnitude, we can now form products and ratios in the usual (unrestricted) manner to form new proper-

tions. For example, if the birth weight of another baby is 2 kg and now is 3 kg, then its weight gain raie

(proportion of its two weights) ii%. In a proportional domain, we can always compare the two pro-ig9

portions2 andl% with each other by forming another proportiénThis new proportion is meaningful 20

because it tells us that the growth rate of the second ba%y)fshe growth rate of the rst one. 21

3.1.3. Quantities 22
: _ . " 23

As we explained at the beginning of Sect. 3, our theory of extensive measurement of quantities re ezcts
a kind of usage of the term quantity which is very common, yet has not been adopted by measurerr%ent
theory. It can be illustrated by "the quantity of sand in this box” vs. "a quantity of 4 kg of sand”. These
two sentences stand for two different meanings of quantity that are captured by our distinction of amo%nt
and magnitude. Although this usage of the term is different from its technical use in measurement thegry,
it precisely allows us to measure extensivity along a single one of Sinton's dimensions, as in "this region
has a size of Okn?”. Here, both the region and the size can be considered spatial quantities, yet quantities
of a different kind. In consequencgyantitycannot be an independent notion anymore. It rather needs
to be regarded as a super-category of both the notions of amounts and madhiuvhes we talk about 2
guantities, we therefore either talk about quanti able amounts or results of quantifying those amountsgon
alinear scale. The notion of quantity preserves only a core algebra common to both theories, namely the
Axioms 1 (partial order), basic axioms for sums (+), differenagqAxiom 2), as well agranslation
invariance In the following, for quantities we simply reuse symbeisn etc. If we generalize over

amount partonomies and magnitude orderings, we use a generalized order 4ymbol a7

38
39

How are quantities related to each other? Sinton's roles (Sinton, 1978) illustrate how quantities @an
control measurements. In our theory, we assumettietole of control is always played by amount 41
42

o capture proportions among different Archimedean scales (e.g. spatial density of counts with respect to areas)swe
need a proportional scale for every possible pair of Archimedean scales, as well as an isomorphic mapping between the4£}No
Archimedean scales that allows comparing them. We leave this to future work.

18N hether there are further sub-theories for guantities is a question we leave open to future work.

3.2. Measure and control

45
46
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quantitieswhereas theole of measure can be played by any kind of quattityurthermore, measuring 1
a quantity means that the partonomy of controls is preserved in the measures. For example, bakers
may want to measure how much our they use per day in kg. Here, we measure a magnitude of aur
controlled by an amount of our, which in turn is controlled by an amount of time. This measuremenat
can be done by dividing the day into different baking periods, and this implies that for every part of the
day, the amount of our must be smaller than or equal to the amount of the full day. 6
Using our basic theory of quantities, we can specify this idea by introducing a measurement function
which maps controlled amount quantities to measured quantities such that the ordering is preserveck
9
De nition 2. Measurement of quantities 10
Let X be a domain of amounts, anflbe any domain of quantities. Letbe a functionX ! Y. Thenm 11
is called a measurement function iff for adl; xo 2 X, X1 4 X2 =) m(xy) 4 m(xp). All x 2 X are 12
called controls and aliy 2 Y withy = m(x) for somex are called measures. 13
14
3.3. De ning extensivity 15
16
In this section, we de ne extensivity as a property of a measurement function between two quantities.
In our example of the baker, regular recordings of the used our give the baker the ability to calculaig
the total amount of our during a day or a week by adding up partial recordings. This can only bg
done becauséme intervals as well as amounts of our both can be added up and subtracted in g
coordinated mannein particular, time intervals of the partial recordings should not overlap, otherwisg;

the calculation will be wrong. 29
We say that a domain of quantities is additive/subtractive with respect to a measurement fomctiony
iff the following holds: 2
25

De nition 3. Additivity and subtractivity of m measurements in quantity domain X 2
27

8x,x°2 X(: O(x; X% =) m(x)+ m(x9 = m(x+ x3) Additivity 08
8x;,x°2 X(x4 y =) m(y)nm(x) = m(ynx) Subtractivity 29

30

Additivity in Def. 3 requires that the measurement of the sum of any pair of quantities of a contré!
domain should be the same as the sum of their measures, given that control quantities do not oveBkap.
To illustrate, consider the weight of the contents of two buckets of ice. Piling up the contents of the t&®
buckets results in a quantity of ice that has the same weight as the sum of the individual weights of e¥ch
of the buckets of ice (minus the buckets themselves). However, this is only the case if the amounts office
do not overlap. 36

Subtractivity in Def. 3 likewise requires that if we remove an amouinbm another one y of which 37
x is a part, then the measure of the resulting amount will be the same as when subtracting the mea3ure
of x from the measure of. If we remove e.g. one third of the pile and measure the rest, then the resti®
should be the same as when subtracting the measure of this third from the measure of the entire pil&0

Whether a quantity domain extensivalepends on the additivity and subtractivity of all its elements 41

in the context of a measurement function: 42
43
%When we measure some magnitude, for example 5 kg, we can only identify that measurement using an amount,for
example an amount of our. Reversely, magnitudes cannot uniquely identify amounts. We suspect extensive measurements
between magnitudes are just a shorthand for an underlying controlling amount. 45

46
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De nition 4. Extensivity of quantity domain Y w.r.t. domain X under m: 1
A quantity domain Y is extensive with respect to a control domain X under a measurement function m iff
mis on X and its range is in Y and m is additive and subtractive in the control domain X. 3

4

Note that extensive measurements are alvieyaeomeroui the sense that every mereological part s
of a controlling amount can be measured within the same quantity dovhdira quantity domainY 6
is extensive with respect to an amount domAininder measurememy, additional theorems can be 7
proven. For example, if there is an amoanhbat is not part ok, then this implies there must be a non- s
zero supplement that is part ofz and which joins withx in an additive manner (follows from strong o
supplementation and additivity): 10

Theorem 6. 12

(z X =)9 ww zA0 w”h: O(xw) M m(x)+ m(w) = m(X+ w))

Additive supplementation 15
16
This formalized notion of extensivity applies to many examples of quantities. For example, in the
speci ed sense, an amount of sand is extensive with respect to a given volumetric space. In additien,
a weight of sand (in kg) is extensive with respect to the corresponding amount of sand. Note that ex-
tensivity can also apply in the opposite direction: the volumetric space that sand occupies is extensive
with respect to the amount of sand. And a volume of sand is extensive with respect to the corresponding
volumetric space it occupies. While it happens to be the case that volumetric space and mass of sanegkare
both extensive with respect to each other, it should be stressed that extensive relations are not necessarily
bi-directional. This depends on whethmris bijective or not (and thus whether there exists an inversez4
function). In our theory, it can e.g. be proven tmaneeds to be non-injective in cagemaps into a 25
magnitude, under the additional assumption of domain closure (such that there always exist amou#its
with equal magnitude). 27
There is also the possibility that a single measure is extensive with respect to multiple controls. Bar
example, a measure of total precipitation is controlled by spacer8)cgand time (e.g. days). At this 29
point only a theory of relations between a measure and a single control has been established. Howewer,
the de nition can be easily adapted. In the case of multiple controls of a measumnepbketa function 31

XA B;:::! Y,whereX; A; B;::: are all domains of controls. We de ne additivity with respect to one 32
of these controls keeping the others xed: 33
34

De nition 5. Partial additivity of measurement m with respect to domain X 35
36

8a2 A;8b2 B;::::8x; X2 X: 37
COxxy =) mxab;::)+ moCahb; )= mx+ x%ab;:::)) 38

39

For example, precipitation can be considered extensive with respect to its spatial control when“fts
temporal control is xed. If a measure is partially additive with respect to a single control, we caft
also say the measure is partially extensive. For example, the measure of total precipitation is partidly
extensive with respect to its spatial control. If and only if the de nition holds for all inputs we carf
speak of a fully extensive measure. For example, total precipitation is partially extensive with respétt

to all spatial and temporal controls, thus is fully extensive. However, partial extensivity does not alwais
46
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imply full extensivity. For example, imagine two three-dimensional cubes and two two-dimensional,
horizontal areas which the cubes occupy. If the cubes are placed side-by-side horizontally, then the areas
are extensive with respect to the volumes of the cubes. However, if they are stacked on top of one anogher,
the increase of volume is not accompanied by an increase of area. 4

5
3.4. Non-extensive quantities 6

5

Quantities are not necessarily extensive in the sense de ned above, even though, as quantities, ghey
can always be used in sum operations. For example, if we measure the temperature of body mass%n a
ratio scale (in Kelvin), then it is clear we can build meaningful sums (e.g., in order to compute aveg
ages) and even ratios of the temperatures of two bodies. However it is not necessarily the case thatithe
temperature of the merger mass of these bodies will correspond to the sum of their temperatures. Thus
the temperature quantity cannot be considered extensive with respect to mass. There seems to be &cor-
responding fundamental misunderstanding in past theories about extensivity: authors have been calting
measurement scales "extensive” whenever a suitable sum operator was available on that scale (su&h as
in the case of "extensive measurement" in Luce and Suppes (2002)), but apparently without fully real&-
ing that the concept of extensivity cannot be de ned as a property of a scale alone. Instead, it need¥' to
be de ned as a relation between domains of measurement. For the same reason, extensivity musti§e a
concept different from a particuldevel of measuremeifsuch as Ratio, Interval or Ordinal). The latter 19
is nothing but a class of automorphisms on a single domain of measurement (Suppes and Zinnes, 1962),
cf. Scheider and Huisjes (2019). 21

Cohen et al. (2007) de ned intensivity based on "independence” of a measure from an extent.2%
we understand the latter in terms of a spatial control quantity, we can de ne intensivity as the lack Of
extensivity of a controlling function: Iff extensivity does not hold for this function, the measured domaiff
is intensively-related to the control domain. For example, population density is intensive with respéet
to the controlling amount of space, and so are many other derived quantities (e.g., average mco?r?\e
proportion of green space).

Note however that intensivity as a conceptdhative to a control and thus not the same thing as the
concept ofquantities derived from otherdo see this, consider again the same example. The measure
of population density is derived from a measure of population size and an area size. And in fact, iths
intensive with respect to both space and time as control. However, population density is also controﬁéd
by migration ow balance i.e., the sum of migration in ow minus out ow. If we keep areas and time >
intervals constant, population density becomegnsive with respect to ow balancg@nce adding some
ow surplus corresponds to a density increase which satis es the additivity and subtractivity condltlons.

28

33

36
37

4. Extensive measurement in a lightweight ontology for classifying data examples we

To make the logical theory developed in Sect. 3 usable for automated classi cation of data exampf’é’s
we have translated it into a lightweight ontology, which we call the Amounts and Magnitudes Measure-
ment Ontology (AMMO$°, and which is speci ed in the Web Ontology Language (OWLEXxtensivity
of measurements cannot be de ned in OWL due to the inherent expressivity limitations of descrlptlon

44
45
46

2Ohttp://geographicknowledge.de/vocab/AMMO. ttl
21https://www.w:%.org/OWL/
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logic (DL). However, though axiomatizations in FOL or of higher order do not carry over, it is still posi
sible to model extensive measurements by class subsumption in OWL. Fig. 2 presents a schematic view
of our ontology pattern. In this ontology classes are de ned for quantities, their domains (characterized
by the suf x -D), as well as measurement functions (with sufMF) and measurements (with sufx 4
-M). The latter simply denote results of measurement, i.e., tuples of controls and associated measéres.
Additionally, we use the classéslditive Subtractiveand Extensivefor corresponding notions of our 6
theory. TheQuantityclass has subclasses for amounts and magnitudes, the latter of which has in tdrn
two subclasses for archimedean- and proportional magnitudesQaetityDomairclass has the cor- 8
responding kinds of domains as subclasses. NleasurementFunctiodlass has four subclasses. Two 9
of these are thdmountOfAmountMFelass, which has amounts as both the control and measure, and
MagnitudeOfAmountMFwhich has an amount control and a magnitude measure MEasurement-
Funtion class also has thextensiveMFand IntensiveMFsubclasses, which represent respectively ex-
tensive and intensive measurements, where the latter is de ned as the logical complement of the former.
Though all measurement functions can have speci c measurements as elements, the formal propeyties
of quantities are de ned on the domain level and not the elemental level. The class membership, of
guantities and measurements may be thus be inferred from their relations to quantity domains and mgea-
surement functions. For example, an entity i€xtensiveMf it is an element of afextensiveMEFandan 13
entity is anExtensiveMHFff it is a measurement function, and additive as well as subtractive. Two OWLyg
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
properties llasMeasureDhasControlD link from measurement functions to quantity domains and al- 41
low to specify which domain contains the control quantity and which contains the measure quantiy.
Two similar properties are de ned between single quantities and measurements. Two more properties
hasElemenandisElementOfink between quantities and their domains and between measurements afftd

measurement functions. 45
46

Fig. 2. Extensivity measurement concepts
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4.1. Classi cation of geographic measurements by means of extensivity 1
2
Extensive measurement functions between quantity domains are central for tasks in geographigin-
formation. We introduce quantity domain classes based on the categories of time, space and content
introduced by Sinton (1978) and Chrisman (2002), who refer to them as space, time and theme, og by
Wright (1955) who uses the terms space, time and substanceG&ba&MMG? ontology is speci ¢ 6
for geographic quantities and inherits from the AMMO ontology. In GeoAMMO, we introduce a set
of subclasses for spatial, temporal and content quantities. This includépéiteAmountlass of re- g
gion domains and th8izeMagnitudelZlass of spatial magnitude domains. For example, the domaing
of 'country areas' and 'country area sizes' are both spatial, while the former is an amount domain and
the latter is a magnitude domain. Similarly, we consider two classes of domains of temporal quantitigs,
where theTimeAmountxlass denotes domains of amounts of time, and their durations correspond {9

the DurationMagnitudelxlass. Finally, we consid€2ontentAmount@ndValueMagnitudeOor quan- 13
tity domains not represented by temporal or spatial reference systems. Again, all these domain clagses
have equivalents on the level of elements whereEhsuf x is dropped. 15

Different classes of extensive geographic measurement functions are obtained by distinguishigg
the categories of the quantity domairtbat act as controls and measures. Using the two triads ofi7
SpaceAmountDrimeAmountiandContentAmountPandSizeMagnitude PDurationMagnitudeD and 18
ValueMagnitudeDa total of twelve measurement function classes can be distinguished, where eagh
measurement function class is represented as an arrow between domain categories in Fig. 3. Three mea-
surement function classes map from amount domains to magnitude domains within the category tipae,
space, or content, six map between amount domains of different categories and three functions are apito-
morphisms on three types of amount domains. 23

24
25
26
27
28
29
30
31
32
33
34
35

Fig. 3. Extensivity triangle, showing possibilities of extensive measurement functions between three categories of quardéty
domains. 37

In the following, we discuss each of the measurement function classes using examples of geogra‘EJZwic
maps, nine of which are assembled in Fig. 4 and Fig. 5. These maps are all univariate, but since4gx-
tensivity is induced at the measurement function level, the same principles apply to multivariate maps
if for each variable a different function is assumed. We do not provide separate examples for the al‘Jl?
morphisms since these can be explained by means of the examples for the other measurement func2t|on
classes. Table 2 gives a preliminary overview of the twelve measurement function classes.

44
45
46

2http://geographicknowledge.de/vocab/GeoAMMO. ttl
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Table 2 1
Overview of geographic measurement function classes 2
Superclass Class Control Measure Example 3
4
. SizeMF SpaceAmount SizeMagnitude Europe are&urope area size
MagnitudeOf- . - . . L 5
AmountME DurationMF TimeAmount DurationMagnitude Length of a day in minutes 5
ValueMF ContentAmount ValueMagnitude Temperature in Celsius
2
CapacityMF SpaceAmount ContentAmount People in Europe 8
OccupancyMF ContentAmount SpaceAmount Area owned by local farmers 9
ﬁg}gﬂg:ﬁ‘; AccumulationMF TimeAmount ContentAmount Total precipitation in an hour 10
(different cat.) DynamicMF ContentAmount TimeAmount Years with olympic games 1
SpacetimeMF SpaceAmount TimeAmount Time of a train trip
TimespaceMF TimeAmount SpaceAmount Space traversed during a ight 12
13
AmountOf- SpaceMF SpaceAmount SpaceAmount Deforested area in a natural reserve 14
AmountMF TimeMF TimeAmount TimeAmount Time of the day spent awake 15
(same cat.) ContentMF ContentAmount ContentAmount Amount of our in a stack of pancakes 16
17
4.2. Magnitude-of-amount measurements 18
19

A MagnitudeOfAmountMF is a function that retrieves a magnitude from some anvgeiatistinguish 20
three of these, namelgizeMFwhich measures from regions (amounts of space) to sizes (spatial mag:
nitudes),DurationMF which measures from amounts of time to durations (temporal magnitudes), arid
ValueMF which measures from some other content amounts to other magnitudes, such as a court3of
objects, a monetary value, or a weight. 24

Functions in theSizeMFclass yield spatial magnitudes from amounts of space. Figure 4a provides ah
example of size measurements. The map depicts the spatial sizes of the provinces of the Netherla&4ds.
Clearly the regions of the provinces do not overlap and are partially ordered. They form a lattice wih
an extensive mereology (regions can be part of one another). The amounts are related to their Zize
magnitudes, which in turn are totally ordered. According to our de nition of additivity, the sizes of th&®
regions can be directly summed to infer the sizes of mergers, because the regions do not overlap. 30

Functions in thdurationMF class yield temporal magnitudes from amounts of time. Figure 4b show§!
the age of churches in the Netherlands that exist for at least 500 years. In this example, the period® of
existence of each church overlap for at least the last 500 years, meaning for some time the churches &xist
at the same time. Just like with sizes, durations can be compared and be added up to derive the durétion
of existence of all churches. However, when summing up, overlaps need to be taken into account. 35

Functions in thevalueMF class yield magnitudes from amounts of content. For example, in Figuré®
4c, each bubble represents a magnitude of energy of an amount (a discrete collection) of wind turbidés.
Note that each bubble may contain multiple wind turbines which are implicit here. Another possibié

value measure would be the number of wind turbines in each cluster. 39
40
4.3. Amount-of-amount measurements 41
42

An AmountOfAmountMFneasures an amount by using another amount as a control. For examplet&
population can be measured by controlling space and counting the individuals within this space. Al%b,

the space they occupy can be found by measuring the spatial extents of the individuals. Note that*the
46
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Fig. 4. Examples of magnitude-of-amount measurements
18
former and latter measurements are opposed to each?otiée distinguish nine amount-of-amount 19
measurement functions. Six of these are mappings between different amount categories, while thre® of
these, namelgpaceMETimeMF, andContentMF, are functions from amount domains to other domains 21
in the same category (e.g. from hours to minutes). 22
Based on this, we de ne six subclasses of measurement functions, n@apécityMF, Occupan- 23
cyMF, AccumulationMF, DynamicMF, SpacetimeMF, and Timespaceidtiere an amount domain is 24
extensive with respect to an amount domain of a different category. 25
A CapacityMF maps from a spatial amount to a content amount. Figure 5a shows the populatiéh
amounts of each province (e.g. the 'population of Utrecht’) which has a certain magnitude (e.g. 500,0060).
The population amounts themselves are measured with the regions as controls. For example, the ppu-
lation of Utrecht is measured with the region of the province of Utrecht as controDdsupancyMF ~ 2°
is the converse in the sense that it maps from a domain of content amounts to a domain of amount® of
space that these contents 'occupy'. Figure 5b shows e.g. the living areas of European pine martens ifthe
Netherlands, which is the the space these animals occupy. 32
An AccumulationMFmaps from a domain of time amounts to a content amount domain. Resultingf
measurements are accumulations of content within an amount of time. Figure 5¢ shows the net gaiff of
long-wave radiation over one day. For each point in the Netherlands, a magnitude is given of the #ret
radiation gain or loss accumulation over a day. These magnitudes are understood as mappings from #adi-
ation content, which is controlled by some time period. The converse of the accumulation measurentént
is theDynamicMF, which maps from content amounts to temporal amounts. The example in Figure 58
shows the amounts of days per region that have exceeded a threshold of >14 mm precipitation in a y&ar.
A SpacetimeMHRnaps, as the name suggests, from a domain of amounts of space to some domaifi®of
amounts of time. Figure 5e shows the route from Utrecht University to Groningen University, along wiffi
an indication of how long traveling this route takes by car. Note that this indication is not just a duratidh
magnitude, but also implies a nite interval in time in which someone actually traveled. A longer patﬁ

45
46

23They correspond to the opposing arrows "capacity” and "occupancy” in Fig. 3.
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