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Abstract. The next generation of Geographic Information Systems (GIS) is anticipated to automate some of the reasoning
required for spatial analysis. An important step in the development of such systems is to gain a better understanding and
corresponding modeling practice of when to apply arithmetic operations to quantities. The concept of extensivity plays an
essential role in determining when quantities can be aggregated by summing them, and when this is not possible. This is of
particular importance to geographic information systems, which serve to quantify phenomena across space and time. However,
currently, multiple contrasting definitions of extensivity exist, and none of these suffice for handling the different practical cases
occurring in geographic information. As a result, analysts predominantly rely on intuition and ad hoc reasoning to determine
whether two quantities are additive. In this paper, we present a novel approach to formalizing the concept of extensivity. Though
our notion as such is not restricted to quantifications occurring within geographic information, it is particularly useful for this
purpose. Following the idea of spatio-temporal controls by Sinton, we define extensivity as a property of measurements of
quantities with respect to a controlling quantity, such that a sum of the latter implies a sum of the former. In our algebraic
definition of amounts and other quantities, we do away with some of the constraints that limit the usability of older approaches.
By treating extensivity as a relation between amounts and other types of quantities, our definition offers the flexibility to relate a
quantity to many domains of interest. We show how this new notion of extensivity can be used to classify the kinds of amounts
in various examples of geographic information.
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1. Introduction

An important distinction in geographic analysis is between those quantities that can and those that
cannot be summed during spatial aggregation. These are known as, respectively, extensive and intensive
quantities. Human analysts can intuitively tell how a quantity should be processed when two regions are
merged. Two temperature values of two spatial regions, for example, should not be summed, although
they may be treated as a weighted sum when the regions are aggregated. In geographic information
systems (GIS), however, the values may be represented by the same concrete data types, and thus cannot
be systematically distinguished. Current GIS lack a method for automating aggregations because we lack
a theory of extensivity that can tell us under which circumstances we can sum up quantities in space,
time, and other kinds of domains.

One fruitful way to capture extensivity is in terms of a relation between different domains of measure-
ment (Scheider and Huisjes, 2019). This notion of extensivity entails that quantities can be aggregated
if they share domains of measurement by which they can be controlled and measured in a coordinated
manner. Controlling quantities need to be separated from each other, and both controlling and controlled
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quantities need to be additive in a way that preserves sums. For example, the population of Europe can
be aggregated with the population of Africa, as both populations are part of the world population, but not
with the summed GDP of Africa, which does not share the same measurement domain. Here, the spatial
administrative units are controlling and population counts are measured. However, Europe’s population
should also not be aggregated with the population of Utrecht, because even though they share the same
measurement domains, Utrecht is already a part of Europe. While such observations may seem intuitive,
the sciences still lack a formalization of these kinds of considerations. Most existing definitions of ex-
tensivity that reached prominence are either too restrictive or too vague, leaving room for inadequate
interpretation (See section 2.1). Moreover, existing definitions of extensivity seem to misconceptualize
its relational character. For over a century, the prevalent idea was that extensivity is a fixed property of
scales originating from the existence of a sum operator or the way they were derived from fundamental
measurement units. However, as our examples about population and temperature illustrate, though the
underlying measurement scales come with sum operations in all cases, it is not always meaningful to
sum up quantities when merging regions. Furthermore, in this article, we make the case for the view
that all quantities can be extensive with respect to some and intensive with respect to other quantities.
For example, temperature, which is regularly used as an example of an intensive quantity, turns out to
be extensive with respect to thermal energy. A measurement value of temperature can be obtained by
dividing a value of thermal energy by the product of mass and heat capacity. Imagine the temperature of
a heating system is measured before and after an amount of energy is added, and assume that all other
quantities are held constant1. When the mass and heat capacity are held constant, increases in thermal
energy translate into homomorphic increases in temperature.

A concise yet flexible definition of extensivity would enable determining whether spatial arithmetic
is applicable or not based on classifying quantities accordingly. In previous work, we (Scheider and
Huisjes, 2019) have illustrated the merit of spatial extensivity in the context of geographic information
and mapping and managed to automatically distinguish extensive from intensive quantities with high
accuracy. However, though this work forms a basis for the current article, it was never formalized and
does not account for quantities that are additive in domains other than space, such as e.g. time. Also, if
we recognize there are multiple dimensions of extensivity, new ways to categorize quantities emerge.
A water flow accumulation is extensive in space and time, the cost of a stay at a hotel is extensive in
time and some monetary currency, and the cost of rental cars is extensive in time (i.e. the duration of
renting), space (i.e. the amount of kilometers driven) and the amount of cars (i.e. renting two cars is more
expensive than one). Extensivity offers a new semantic dimension by which data can be discovered and
processed. A definition of extensivity would therefore also contribute to a data-driven science (Hey et al.,
2009; Gahegan, 2020) by determining which arithmetic operations can be applied to available quantities.

In this article, we suggest a first-order formalization of quantity domains as a basis for a higher-
order, relational definition of extensivity using quantities as controls and measures. We then demonstrate
how this definition allows us to define various subclasses of extensive measurement across geographic
information examples in terms of an OWL2 pattern with subsumption reasoning. Though our theory as
such is not restricted to geographic quantities, the concepts of control and measure on which it is based
are central for geographic information, as explained below. Our contribution is therefore threefold and
provides answers to the following questions:

1For convenience, also assume the heating system perfectly retains all energy (i.e. there is no loss of energy over time).
2Web Ontology Language, see e.g. Hitzler et al. (2009)
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� In which way can extensivity be formalized in terms of measurement, control and summation of
quantities? Which classes of quantity domains need to be distinguished for this purpose?

� How can extensive quantities be measured across time, space and content, within the context of
geographic information?

� How can extensive geographic measurements be systematically categorized according to different
kinds of controls and measures, and how can this be used to automatically classify map examples?

Our answers contribute important formal distinctions to measurement ontology which are currently
lacking. While measurement theory formalizes levels of measurement scales in terms of the operations
they preserve on particular quantity domains (Suppes and Zinnes, 1962), ontologies like DOLCE (Ma-
solo et al., 2003), or, more recently, the FOUnt ontologies (Aameri et al., 2020), relate the underlying
quantity domains to each other and ontological ”background” phenomena like endurants, perdurants,
and their properties. However, so far, we do not know of any attempt at formalizing the notion of ex-
tensivity as a relational concept, and in the context of geographic information. Furthermore, while the
current ontological accounts provide useful insights and models about concepts of measurement, they
also come with certain restrictions that make it dif�cult to account for the notion of extensivity.

First of all, most existing measurement ontologies lack the formal depth to specify the distinctions
needed for capturing the notion of extensivity. For example, lightweight ontologies such as the OM-
ontology (Rijgersberg et al., 2013) lack a rigorous formalization of the underlying concepts and are
instead primarily focused on terminological conventions (Balazs, 2008) in speci�c application areas
(Steinberg et al., 2016). Furthermore, foundational ontologies that would provide the formal depth come
with certain problematic assumptions and ontological commitments. For one, even though there are
notions that resemble our notion ofamountin both DOLCE and the FOUnt ontologies, they are largely
centered around the idea of `physical matter' or `stuff' constituting endurants. Examples would be the
amount of clay constituting a statue or the amount of wine in a bottle, which are modeled as phenomena
that can be considered snapshots in time. However, for geographic information, we need to consider
the possibility of forming amounts across time as well as space. For example, quanti�cations of water
running through a waterfall (Galton and Mizoguchi, 2009) or of traf�c �owing into a city presuppose
amounts in time as well as space. Second, even if including both endurants and perdurants as bearers
of amounts, the notion of extensivity requires also a degree ofarbitrarinessof forming amounts, which
stands in apparent contrast to the simpleunity criteria for wholes within the boundaries of objects and
events that are underlying DOLCE (Guarino et al., 2000). Consider the amount of population living
close to a border or between two cities, the amount of water �owing through the waterfall in between
two events, or the amount of space covered by an arbitrary circle around some point. These are relevant
geographic examples that illustrate that the unity criteria for amounts go beyond the constitution of
particular objects or events within the limits of their boundaries. Of course, we can always create objects
with unity for arbitrary portions of amounts (cf. Guizzardi (2010)), however, this appears redundant in
light of a theory of extensive amounts.

The extensivity concept suggested in this article accounts for some of this �exibility in terms of a
generalized notion of amounts that is used to control other measurable quantities, following earlier ideas
of Sinton (1978). With this approach, arbitrary divisions of amount portions can control arbitrary quan-
tities, not only by way of objects. This closely corresponds to the way how quanti�cation is done in a
GIS (cf. Chrisman (2002)). To this end, we formalize two classes of quantity domains (amounts and
magnitudes) which are used to de�ne extensivity on a higher level and then introduce a simple design
pattern that can be used to classify various examples of extensive measurement across time and space
within geographic information.



4 E.J. Top et al. / The Semantics of Extensive Quantities

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

The rest of the paper is organized as follows. First, we review what is known about extensivity, quanti-
ties and measurement. Second, we reinterpret Sinton (1978)'s three roles of measurement (i.e. measure,
control, constant) and show in an informal manner how they can be used to specify extensivity relations.
Third, we present a formalized algebraic theory of extensivity as a relation between a measure and one
or more controls, including automatic proofs of theorems. Fourth, we translate this basic theory into a
lightweight OWL pattern adding classes speci�c for geographic information. We then propose twelve
categories of measurement of extensive quantities in the context of geographic information and show
how extensivity classes can be automatically inferred. Finally, we shortly discuss the implications of our
�ndings and conclude by answering the posed research questions.

2. Extensivity, quantities, and measurement

We start with reviewing existing literature on extensivity and quantities and scrutinize the underlying
approaches for our purpose. Furthermore, we critically examine Sinton's notion of controlled measure-
ment, and discuss how it can be exploited for our purpose.

2.1. Extensivity and intensivity

The concept of extensivity originates from the �elds of Physics and Chemistry where it is used to
describe the mathematical nature of properties. Its introduction and axiomatization can be accredited to
scholars in the �rst half of the twentieth century (Hölder, 1901; Tolman, 1917; Campbell, 1920). Tolman
(1917) envisions extensivity as a way to describe phenomena whose measures arenaturally additive. Of
all phenomena he identi�es only �ve as extensive in this sense, namely length, time interval, mass,
electric charge, and entropy. For a contemporary de�nition of extensivity, scholars often refer to the
green book of the International Union of Pure and Applied Chemistry (IUPAC), which describes an
extensive quantity as"a quantity that is additive for independent, non-interacting subsystems"(Cohen
et al., 2007). In practice, there seems to be an informal consensus that only properties like volume or mass
are considered extensive. Even within this consensus, disagreement exists about what physical properties
extensivity depends on. A number of papers from Physics and Chemistry try to address the confusion
surrounding the concept (Redlich, 1970; Canagaratna, 1992; Mannaerts, 2014). Mannaerts (2014) �nds
that the expressions 'extensive quantity' and 'extensive property' are used interchangeably — He favours
the use of the term 'extensive quantity' — and that some use additivity to de�ne extensivity (i.e. the
sizes of two quantities can be added up during aggregation) while others use proportionality (i.e. a
quantity inextricably changes relative to changes of another quantity). Some scholars limit extensivity
to a relation of properties with respect to mass, while others relate them to the amount of substance
or volume (Mannaerts, 2014). Restricting extensivity to a speci�c kind of physical substance deviates
considerably from the original theory (Tolman, 1917), which holds that properties may be extensive
also with respect to time or entropy. Not only do scholars consider different properties as the source of
extensivity, they also disagree on the mechanisms of extensivity itself.

The concept of an extensive quantity is opposed to that of an intensive quantity, which has been de�ned
as"a quantity that is independent of the extent of the system"(Cohen et al., 2007). Tolman (1917) argues
that, except for his �ve fundamental quantities, all quantities are intensive, because they are in some way
derived from the �ve fundamental quantities. A speed, for example, is found by dividing a length (i.e. the
distance) by a time interval. Some scholars hold that not all quantities are either extensive or intensive.
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They argue that some quantities are expressed as conjugates (Alberty, 1997) or composites, which have
characteristics of both.

2.2. Quantities

Quantities are described as "...that by which a thing is said to be large or small, or to have part outside
of part, or to be divisible into parts" (Kocourek, 2018). Speci�cations of quantities are frequently present
in spoken language (Talmy, 1978). For example, the sentence 'The �ock of birds �ew over the wide
river' not only speci�es two different entities (i.e. 'birds' and 'river'), but also details their quantities
(i.e. '�ock' and 'wide') and their interrelation (i.e. 'over').

From a semantic viewpoint, quantities should be distinguished from numbers, which are mathematical
objects for representing measurement results, and measurement units, which indicate the measurement
system a quantity is measured in3. In measurement theory, it is common to classify measurement sys-
tems using measurement levels, which range from nominal through ordinal and interval to ratio (Stevens
et al., 1946). These levels encode increasing amounts of information of a quantity, by preserving opera-
tions for class membership, order, relative position and absolute effect of a quantity (Suppes and Zinnes,
1962). Chrisman (1998) proposed to extend these levels with counts, degrees of class membership, cycli-
cal ratio, derived ratio, and immutable absolute measures, like probability.

Quantities can be negative and can be on a linear scale of measurement. For example, walking back-
wards for twenty meters can be seen as a negative quantity of forward movement associated with the
number -20 and the unit 'meters'. The term magnitude, also called impact or size, is used to measure a
quantity on a linear scale. Scholars sometimes distinguish multitudes from magnitudes (Lachmair et al.,
2018). Shortly put, multitudes refer to collections of discrete entities (e.g. a collection of cars), while
magnitudes capture linearly order-able phenomena (e.g. the length of a road). Plewe (2019) in addition
refers to continuously divisible quantities as 'geographic masses' and illustrates the relevance of this
concept for Geography. Our approach (see below) can be used to make these notions more precise, by
formalizing what extensive quantities are in general, and how they are controlled in geographic infor-
mation.

Information about the extensivity of a quantity is closely related to its part-whole relations. Such
relations are commonly consideredhomeomerouswith respect to its parts, meaning that all parts are
of the same kind of quantity as the whole (Gerstl and Pribbenow, 1993). For instance, sectioning a
portion of water results in sub-portions of water. According to Guizzardi (2010), homeomerous part-
whole relations can be modelled as maximally self-contained mereological sums (i.e. aggregations of
the subquantities) or by means of containment (e.g. a bottle of water). This approach implies that parts
of a quantity, also referred to as pieces (Lowe, 1998), are only instantiated if there is a need. For example,
a body of water may be subdivided into its parts to identify sweet water and salt water if necessary, but
this is not required for capturing the water concept. Guizzardi's mereological approach also works for
universal properties and classes. For example, a car is a member of the collection of all cars (i.e. the
class of 'cars'), and the mass of said car is a part of the set of all mass in the universe (i.e. the 'mass'
property). The DOLCE ontology makes use of this principle of extensionality (Masolo et al., 2003;
Gangemi et al., 2001). Recently, work in the context of the FOUnt ontologies (Aameri et al., 2020) has
shown that formally adequate models of physical quantities need to incorporateformal relationsbetween
property bearers, mereologies in different quantity dimensions (Ru and Gruninger, 2017), and quantities

3Different measurement systems (or reference systems) (Chrisman, 2002) can represent the same kind of quantity. For ex-
ample, the meter scale and the feet scale both represent the same quantity of lengths.



6 E.J. Top et al. / The Semantics of Extensive Quantities

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

represented by measurement scales. Going beyond existing ontologies of units of measure (Rijgersberg
et al., 2013), the de�nition of formal properties of quantities thus requires further concepts.

For extensivity, mereological relations are essential because they specify whether two quantities are
distinct, whether and how much they overlap and whether one quantity contains another. For example, a
university may host multiple lectures at once, meaning they share the same quantity of time. Summing
the total time of the lectures may indicate how long it would hypothetically take to attend all lectures
(e.g. 400 hours), but this does not correspond to the extent of time that is actually occupied by these
lectures (e.g. 3 hours). If two lectures with a duration of 2 hours each overlap for 1 hour, they together
occupy 3 hours in time. Claramunt and Jiang (2001) show that such relations are not limited to space or
time, but also exist between conjunctions of both.

2.3. Measurement of quantities

Sinton (1978) is well-known for his idea that the measurement of spatial information requires attribute
information about the space, time and theme components of the recording. Sinton argues that during any
measurement each one of these three components �lls the role of the constant, the control or the measure:

� Theconstantcomponent, also referred to as the support or the �xed component, does not change
at any point in the measurement process.

� Thecontrol component is allowed to vary over its measurement scale at the observer's discretion.
� Themeasurecomponent is observed and its variation with respect to the control is recorded.

Take the example of a precipitation measurement. Precipitation is commonly measured with a rain
gauge. This rain gauge �xes the spatial extent of the precipitation measure, e.g., to 1 dm². The amount
of water falling into the rain gauge is then measured in mm and converted to kg or liters over a variable
amount of time, e.g. an hour or a day (Chrisman, 2002). With an established constant (i.e. space) and
control (i.e. time), it is possible to measure an amount of rainfall in mm. Sinton's work contains two
important messages: 1) a measurement of a phenomenon always requires other variables to be controlled,
and 2) geographic information always contains a combination of spatial information, obtained through
the measurement of locations and regions, temporal information, obtained through the measurement of
the progress of time, and thematic information, obtained through measuring some content of spatial or
temporal regions.

Chrisman (2002) argues that apart from space, time and theme, there is another kind of control, namely
control by relationship. For example, the measurement of a �ow of export products from countries to
one another �rst requires establishing a relation between the countries (in the sense of a spatial network,
cf. (Kuhn, 2012)). Although this is a relevant case of extensivity (Scheider and de Jong, 2022), we leave
the study of network-controlled extensive quantities for future work.

The roles of measure, control and constant are essential for our purpose, because they aptly capture
how quantities can play different roles in de�ning extensivity. Measured quantities are extensive if they
are controlled in aparticular wayby other quantities. However, Sinton's idea requires some scrutiny
before it can be applied to quantities. For one, the �llers of roles are by no means restricted to the three
components of geographic information. Many measurements ignore one or more of the components. For
example, when measuring the duration of a given lecture, there is no need to take the size of the lecture
room or the didactic ability of the lecturer into account. In fact, only the time interval at which the lecture
happens is required as a control to measure duration. Note also that in this example, the time component
appears as both measure and control at once. It is clear therefore that the componentsspace, time and
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theme are much too coarseto distinguish the relevant quantities, and thus for capturing extensivity. We
therefore adopt three alterations of Sinton's idea. Firstly, we interpret Sinton's components as classes of
quantities which might play a role or not in a given measurement. We thus allow for arbitrary combina-
tions of quantities �lling the roles in a single measurement. Secondly, we assume that quantities exert no
in�uence on measurement (i.e. are kept constant) unless speci�ed otherwise. This prevents the need for
explicitly �lling the constant role. And third, we formally distinguish subclasses of quantity domains to
account for extensive measurements that can be made on a single one of Sinton's dimensions.

3. A formal theory of extensive quantities

In the following, when we talk about quantities, we deviate from certain terminological habits in mea-
surement theory and ontology of measurement, simply because we believe our usage is closer to the
common understanding of a term. First, when we speak about aquantity, we mean an individual value
of measurement, such as the value represented by 15 kg. This is close to everyday usage, such as in
”the quantity of �our used to make this bread”. Correspondingly, we use the termquantity domainto
talk about all elements of a domain of measurement, such as the kilogram scale (Probst, 2008). Second,
we do not assume quantities are necessarily onlinear measurement scales. In the example above, the
quantity of �our is not the same asits value in kilograms, though it can be measured on the kilogram
scale. This requires us to distinguish different kinds of quantity domains. In the following, we introduce
a formal theory in First Order Logic (FOL) about quantity domains, andmeasurement functionsas map-
pings between these. FOL is suf�cient to reason about a single quantity domain, but strictly speaking,
we go beyond FOL when quantifying over different domains. Free variables in propositions are implic-
itly all-quanti�ed over a quantity domain. Axiom sets of all (sub)theories are provably consistent, and
all theorems were automatically proven based on resolution using Prover94. The scripts are available
online56. To get an overview of the following de�nitions, Table 1 provides a preliminary summary and
exempli�cation of the main formal concepts that we introduce below. Each of the concepts in the table
is also explained in the text.

3.1. Quantities, amounts and magnitudes

Certain kinds of quantities can be added up to or removed from each other, resulting in a new quantity
of which original quantities are parts. For example, a quantity of people can be added up to another
quantity of people to form a total sum of people, and the original quantities are parts of the whole.
We call quantities that can be added up in this wayamounts. In our theory, this means that amounts
can besummed, besubtracted fromand bepart of each other. In the following, we will motivate and
illustrate the axioms with examples of amounts of space (E.g., spatial regions), amounts of time (E.g.,
time intervals), as well as amounts of matter and amounts of objects.7

4https://www.cs.unm.edu/~mccune/prover9/
5Amount theory: http://geographicknowledge.de/vocab/quantity_amount.txt
6Magnitude theory: http://geographicknowledge.de/vocab/quantity_magnitude.txt
7In the following, we use the terms amounts of space and (spatial) regions and the terms amounts of time and (time) intervals

interchangeably.
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Table 1
Preliminary summary of the main concepts

Concept Description Examples

Quantity An individual value of a measurement that can be
used to form sums.

A spatial region or its size or its proportion with re-
spect to another region's size.

Amount An extensional mereological quantity whose domain
forms a lattice.

A spatial region (=amount of space).

Magnitude A linearly, monotonically ordered quantity. The size of a spatial region or its proportion with
respect to another region's size.

Archimedean
magnitude

A magnitude whose domain forms a vector space
(can be summed and subtracted, but not multiplied)

The size of a spatial region.

Proportional
magnitude

A magnitude whose domain forms a mathematical
�eld (allowing for products and ratios)

The proportion of a region's size with respect to an-
other region's size.

Quantity
domain

A set of quantities together with operations on them
(forming an algebra)

The set of all regions and the set of all region sizes
are domains of quantities of space.

Control The role of a quantity domain as a domain of mea-
surement, i.e., a domain of a measurement function.

When measuring the amount of population within a
region, the amount of space of that region is a con-
trol.

Measure The role of a quantity domain as a range of measure-
ment, i.e., a co-domain of a measurement function.

When measuring the amount of space occupied by
an amount of people, the amount of space is a mea-
sure.

3.1.1. Theory of amounts (extensional mereological quantities forming a Boolean lattice)
The parthood relations of amounts are captured by mereological axioms. We assume anamount do-

main8 is a set with algebraic operations that satisfy the followingpartially ordered algebra:

Axiom 1. Partial order of parthood

x � x Re�exivity

(x � y ^ x � y) =) x = y Antisymmetry

(x � y ^ y � z) =) x � z Transitivity

For example, if two amounts of sand are part of each other, they are identical, and parts of parts of
an amount of sand are also parts of the former amount of sand. Based on this, we de�ne the following
predicates:

De�nition 1. Strict order and overlap

x � y () (x � y ^ : (y � x)) Strict order

O(x; y) () 9 z(0 � z^ z � x ^ z � y) Overlap

y � x () x � y Strictly greater than

y � x () x � y Greater than or equal

8Many authors speak of dimensions of measurement rather than domains. We use the term 'domain', because we want to
prevent the assumption of linearly ordered elements.
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Strictly ordered amounts are not identical, meaning one is a proper part of the other, and overlapping
amounts have a common part that is not empty (Casati et al., 1999).

Axiom 2. Sums and differences

x + y = y + x Commutativity

(x + y) + z = x + ( y + z) Associativity

x + 0 = x Identity +

x n x = 0 Inverse

y n 0 = y Identity Minus

Axiom 2 introduces operations for adding and subtracting amounts. Note the identity (empty) element
0 which can be added without changing anything and which results from subtractions of amounts from
themselves. To give some motivation for these axioms, it is apparently irrelevant in which order we sum
up amounts of sand. Furthermore, if we add/subtract no sand to/from an amount of sand, the amount is
left unchanged. Furthermore, if we remove the entire amount of sand, nothing is left over. This apparently
applies also in the case of spatial regions as well as time intervals.

In addition, we introduce a product operation for amounts, which is interpreted in terms of anintersec-
tion of two amounts. Intersection distributes over sums of amounts, and 1 is an identity element which
corresponds to thelargest (supremum) amount:

Axiom 3. Products

x � y = y � x Product Commutativity

(x � y) � z = x � (y � z) Product Associativity

x � 1 = x Product Identity

x � 0 = 0 Product Neutrality

x � (y + z) = ( x � y) + ( x � z) Distributivity

Intersection means that, for instance, the intervals of 25 to 29 minutes and 28 to 31 minutes intersect
in the range of 28 to 29 minutes. It apparently does not matter in which order we perform this intersec-
tion. Furthermore, while intersecting a time interval with the zero interval results in the zero interval,
intersecting it with the largest interval leaves it unchanged. Finally, intersecting intervals with interval
sums is like intersecting with each summand �rst and then summing up the result.

The algebra so far forms aground mereologywith sums, differences and products9. It is so far not
in any way different from ordinary algebra. However, the mereology of amounts comes with further
characteristics that differ substantially from ordinary algebra and are more similar to the algebra of
sets. First, thelargest(supremum) andsmallest(in�mum) amounts and theircomplementsinteract with
addition and intersection in speci�c ways:

9More precisely, the partial order axioms form a ground mereology. The following lattice axioms establish extensionality
and introduce a closure principle, see Casati et al. (1999).
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Axiom 4. Supremum, In�mum, additive distributivity and complements

x n 1 = 0 In�mum

x + 1 = 1 Supremum

x + ( y � z) = ( x + y) � (x + z) Additive distributivity

x + � x = 1 Additive complement

x � � x = 0 Product complement

� (� x) = x Involution

� (x + y) = � x � � y deMorgan 1

� (x � y) = � x + � y deMorgan 2

The zero (in�mum) amount can be obtained by subtracting the largest (supremum) amount from any
other amount, and adding the largest amount to any other amount returns the largest amount. Also, addi-
tion apparently distributes over products. For example, adding an amount of space to an intersection of
two regions is the same as adding it to each region separately and then intersecting the result. Further-
more, adding an amount of space to its complement generates the largest region, and intersecting both
produces the empty region. For example, the complement of the region where it rains is the region where
it does not rain. Involution means that it should be the case that the complement of the latter region is
the region where it rains, i.e., double complements lead back to the same region. The deMorgan axioms
do the same for sums and products.

In addition, amounts are notlinearly orderedand instead form aBoolean latticein the mathematical
sense, similar to the one depicted in the Hasse diagram in Fig. 1. To express this, we require the existence
of joins and meets10, as well as a non-total partonomy:

Axiom 5. Lattice axioms

x � x + y Existence of joins

x � z^ y � z =) x + y � z Existence of joins 2

x � y � x Existence of meets

z � x ^ z � y =) z � x � y Existence of meets 2

9x; y(: (x � y _ y � x)) Non totality

To illustrate the existence of joins, it is apparent that a spatial region is always part of its sum with
another spatial region, and the sum of any parts of a spatial region is always part of that spatial region.
The existence of meets implies analogously that intersections of regions are always parts of those re-
gions, and a part of two regions is also part of their intersection. Note that these lattice properties may

10The following lattice and relative complement axioms are analogous to thealgebra of sets (inclusion axioms and relative
complements).
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Fig. 1. Hasse diagram of the power set of a set of three elements. Set {x} is independent of the set {y,z}.

not apply to other spatial concepts that are not amounts.11 Finally, there always exist amounts that are
autonomous in the sense thatthey are not a part of each other. The last part of the axiom gives rise to
amount hierarchies that are independent from each other. For example, in a map there are always two
spatial regions that are not part of each other.

Axioms 1-5 are logically equivalent to aBoolean lattice(with at least two non-ordered elements), and
thus our theory bears similarity to the mereology of the FOUnt ontologies (Aameri et al., 2020). This can
be seen by the fact that idempotence and absorption laws become provable theorems, which, together
with axioms 1,2,3,4, constitute a standard axiomatization (Padmanabhan and Rudeanu, 2008):

Theorem 1.

x + ( x � z) = x Absorption 1

x � (x + z) = x Absorption 2

x + x = x Additive idempotence

x � x = x Product idempotence

It can now be proven that if you sum up two amounts, where one is part of the other, this will always
generate the greater one of the two as a result of the operation. From this, there�exivity of sumsfollows,
which is in apparent contrast to the number line12, and similarly for products. It follows also that the
empty amount0 is part of every other amount, and that a non-zero product of two amounts makes these
amounts overlap. Furthermore, a well known fact of algebra is provable, namelytranslation invariance:
i.e. adding an amount to two amounts that are part of each other preserves parthood:

11For example, the pair of two islands of Japan is not itself an island, but the pair of two amounts of islands is an amount of
islands. Furthermore, when we talk about spatial regions we do not make any assumptions about the connectedness of spatial
regions, and thus two unconnected regions can form a region.

12This would mean e.g. that 4+4 = 4



12 E.J. Top et al. / The Semantics of Extensive Quantities

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Theorem 2.

(x � y) =) x + y = y Re�exivity of sums

x � y =) x � y = x Re�exivity of products

0 � x Empty amount

(x � y = z^ 0 < z) =) O(x; y) Product overlaps

(x � y) =) (x + z � y + z) Translation invariance

Finally, subtractions of amountscan be de�ned simply as the intersection of an amount with the
complement of its intersection with the amount that is to be subtracted:

Axiom 6. Amount differences

x n y = x � (� (y � x)) Def subtraction

Based on this de�nition, many theorems aboutrelative complementscan be proven13. For example,
subtracting an amount from any of its parts generates the empty amount. In particular, based on Axioms
1-6 we can prove that amounts can always be composed and decomposed into non-overlapping parts:

Theorem 3.

x + y = z^ � O(x; y) =) zn x = y Decomposability 1

x � y =) (y n x = z =) y n z = x) Decomposability 2

Amounts therefore satisfy thestrong supplementationprinciple of extensional mereology, i.e., if two
amounts are not part of one another, then there exists some non-overlapping part. A known logical
consequence is that non-zero amounts with the same proper parts are equal (Casati et al., 1999, cf. ch.
3.3). This makes the mereology of amountsextensional:

Theorem 4.

: (y � x) =) (9v(v � y ^ : O(v; x))) Strong supplementation

The amount theory speci�ed above contains the most important elements for characterizing sets in
terms of set intersection and union. Note, however, that set theory is only aparticular interpretation of
amounts. There are also other important interpretations, such as amounts of matter, or else in terms of
intervals in time or portions of space. We do not want to make any further ontological commitments at
this stage (e.g. about discreteness or atomicity), as our goal is to de�ne extensivity in general.

13We leave away the details for lack of space. See our documentation of proofs.
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3.1.2. Magnitudes as linearly ordered monotonic quantities
Each amount can bemeasuredand thus compared to others on alinear scaleof measurement. For

example, two amounts of water can be measured on a common scale for liters. The elements of such a
scale are also called quantities, although they are quantities of a different kind. To distinguish the two,
we call the lattermagnitudes. Intuitively, magnitudesallow us to measure amounts and to put them in
relation even if they are not part of each other: we can order them, compute differences, and we can
measure their proportions. To make this notion precise, we hold that magnitudes are also quantities,
thus having an order operation (6 ), which, like the parthood relation of amounts, also satis�es Axioms
1 (partial order), and basic axioms for sums (+) and differences (n) (Axiom 2). Furthermore, just like
amounts, magnitudes aretranslation invariant, ormonotonic(so that adding the same magnitude on each
side of a balance preserves the order). We illustrate magnitude axioms with examples about lengths, sizes
and weights.

Axiom 7.

(x 6 y) =) (x + z 6 y + z) Translation invariance (monotonicity)

However, in contrast to amounts, magnitudes do not have lattice properties, but instead arelinearly
ordered(no two magnitudes of the same magnitude domain are not ordered in some way):

Axiom 8.

x 6 y _ y 6 x Totality

We furthermore need to distinguish two subclasses of magnitude domains, based onhowthey serve
to compare amounts: Either in terms of measuring sizes (Archimedean magnitude domains, denoted
by the classArchimedeanMagnitudeD), or in terms of measuring proportions (proportional magnitude
domains, denoted by the classProportionalMagnitudeD):

Archimedean magnitudes (totally ordered vectors).The �rst kind of magnitude can be used to compare
the sizes of amounts, but not proportions. We call theseArchimedeanmagnitudes. Examples are the
kilogram scale for measuring weight or the meter scale for measuring length.

An important but rather subtle issue is that the quantities of an Archimedean magnitude domain can
onlybe used to build orders, sums and differences among themselves,but not products or ratios. As was
argued by Simons (2013), it is nonsense to multiply or divide two weights and expect another weight
as an outcome. The latter ”divisions” should therefore not be regarded as algebraic operations within a
domain, but really relations among different domains of measurement (cf. Aameri et al. (2020)). Thus,
while it is possible to compute aproportion of two Archimedean magnitudes coming from the same
domain, such proportionsare not inthis domain anymore. For example, a proportion of 10 kg and 5 kg
weights is not itself a kg weight, yet it is possible to say that 10 kg is double the amount of 5 kg. Note
how this is equivalent to the impossibility of multiplying two vectors in a vector space with each other
to obtain another vector, and yet there is the possibility of comparing two vectors by some scalar value.

We agree with Aameri et al. (2020) that this is more than just a super�cial similarity. Correspondingly,
we specify a domain of Archimedean magnitudesArchimedeanMagnitudeD(MArch), with x; y 2 MArch,
in terms of atotally ordered vector space, using elements of a separate domain ofproportional magni-
tudesa;b 2 MProp, ProportionalMagnitudeD(MProp) (de�ned below) as scalars, which can form scalar
products with these vectors:
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Axiom 9.

(a + b) � x = ( a � x) + ( b � x) Scalar distributivity

a � (x + y) = ( a � x) + ( a � y) Vector distributivity

a � (b � x) = ( a � b) � x Scalar associativity

(x 6 y ^ 0 6 a) =) a � x 6 a � y Scalar translation invariance

To illustrate distributivity of scalars, it is enough to realize that the way how scalars extend vectors
is also the way how we can increase lengths or weights: It does not matter whether we double two
weights separately and then sum them up or whether we �rst sum them up and then double the result.
Scalar products have furthermore anArchimedeanproperty, which requires that we can always �nd a
positive proportional magnitude that makes some positive Archimedean magnitude as big as another
given positive Archimedean magnitude. This uniquely identi�es a proportional magnitude, which can
also be expressed as a ”ratio”14:

Axiom 10.

(0 < x ^ 0 < y) =) 9 a(a 2 P ^ 0 < a ^ a � x = y) Archimedean axiom

(0 < x ^ 0 < y) =) a � x = y $ a = ( y=x) Def Archimedean Ratio

For example, it is always possible to �nd a unique multiple that describes how far we need to extend
a given length to match another given length. This multiple can be regarded as the proportion of the
two lengths. Based on these axioms, it can be proven that doubling of a positive magnitude results
in a magnitude always greater than the original one (positivity), which stands in direct contradiction
to the principle of re�exivity of sums for amounts, and which can be used to in�nitely extend any
domain of magnitudes. Furthermore, building a proportion of one and the same Archimedean magnitude
yields 1 (the neutral element of proportional magnitudes), and multiplying a proportion of Archimedean
magnitudes with its denominator retrieves its numerator magnitude:

Theorem 5.

0 < x =) x + x > x Positivity

0 < x =) x=x = 1

(0 < x ^ 0 < y) =) (x=y) � y = x

These axioms make our magnitude theory similar to Luce and Suppes' (Luce and Suppes, 2002;
Suppes and Zinnes, 1962) theory of ”extensive measurement”15, except that we dismiss the solvability
axiom16, and that we treat proportions as a domain separate from an Archimedean magnitude domain.
Luce and Suppes (2002) use their theory to formalize mass or weight measurements on a pan balance.

14Note that the ratio symbol used in Axiom 10 does not mean that a division operation exists on Archimedean magnitude
domains. It is rather a rewriting of the scalar product.

15Note: this notion is not to be confused with our notion of extensivity.
16The latter would enforce in�nitely dense magnitudes, which would exclude (discrete) count scales.
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We use our theory to talk more generally about quantities such as size, duration, or the count of a
collection. These can be compared on a linear scale, yet are not proportions, and we also do not assume
their domains arein�nitely dense(which would exclude the possibility of discrete scales such ascount
scales).

Proportional magnitudes. Proportional magnitudes can be used to express proportions of Archimedean
magnitudes. We assume there is such a magnitude scale at least for every Archimedean magnitude
scale17. For example, we can say that if the birth weight of a baby is 3 kg and now is 6 kg, then the
baby's weight has doubled, i.e., the weights stand in the weight proportion 2. To axiomatize proportional
magnitude domains, we amend the general magnitude Axioms 1, 2, 7 and 8 with the product Axiom 3
and the following product ordering axiom:

Axiom 11.

(0 < x ^ 0 < y) =) 0 < x � y product order

Together, these axioms specify atotally ordered mathematical �eld. In distinction to an Archimedean
magnitude, we can now form products and ratios in the usual (unrestricted) manner to form new propor-
tions. For example, if the birth weight of another baby is 2 kg and now is 3 kg, then its weight gain rate
(proportion of its two weights) is11

2 . In a proportional domain, we can always compare the two pro-
portions2 and11

2 with each other by forming another proportion3
4 . This new proportion is meaningful

because it tells us that the growth rate of the second baby is3
4 of the growth rate of the �rst one.

3.1.3. Quantities
As we explained at the beginning of Sect. 3, our theory of extensive measurement of quantities re�ects

a kind of usage of the term quantity which is very common, yet has not been adopted by measurement
theory. It can be illustrated by ”the quantity of sand in this box” vs. ”a quantity of 4 kg of sand”. These
two sentences stand for two different meanings of quantity that are captured by our distinction of amount
and magnitude. Although this usage of the term is different from its technical use in measurement theory,
it precisely allows us to measure extensivity along a single one of Sinton's dimensions, as in ”this region
has a size of10km2”. Here, both the region and the size can be considered spatial quantities, yet quantities
of a different kind. In consequence,quantitycannot be an independent notion anymore. It rather needs
to be regarded as a super-category of both the notions of amounts and magnitudes18. When we talk about
quantities, we therefore either talk about quanti�able amounts or results of quantifying those amounts on
a linear scale. The notion of quantity preserves only a core algebra common to both theories, namely the
Axioms 1 (partial order), basic axioms for sums (+), differences (n) (Axiom 2), as well astranslation
invariance. In the following, for quantities we simply reuse symbols+ ;n etc. If we generalize over
amount partonomies and magnitude orderings, we use a generalized order symbol4 .

3.2. Measure and control

How are quantities related to each other? Sinton's roles (Sinton, 1978) illustrate how quantities can
control measurements. In our theory, we assume thatthe role of control is always played by amount

17To capture proportions among different Archimedean scales (e.g. spatial density of counts with respect to areas), we
need a proportional scale for every possible pair of Archimedean scales, as well as an isomorphic mapping between the two
Archimedean scales that allows comparing them. We leave this to future work.

18Whether there are further sub-theories for quantities is a question we leave open to future work.
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quantitieswhereas therole of measure can be played by any kind of quantity19. Furthermore, measuring
a quantity means that the partonomy of controls is preserved in the measures. For example, bakers
may want to measure how much �our they use per day in kg. Here, we measure a magnitude of �our
controlled by an amount of �our, which in turn is controlled by an amount of time. This measurement
can be done by dividing the day into different baking periods, and this implies that for every part of the
day, the amount of �our must be smaller than or equal to the amount of the full day.

Using our basic theory of quantities, we can specify this idea by introducing a measurement function
which maps controlled amount quantities to measured quantities such that the ordering is preserved:

De�nition 2. Measurement of quantities
Let X be a domain of amounts, andY be any domain of quantities. Letm be a functionX ! Y. Thenm
is called a measurement function iff for allx1; x2 2 X, x1 4 x2 =) m(x1) 4 m(x2). All x 2 X are
called controls and ally 2 Y with y = m(x) for somex are called measures.

3.3. De�ning extensivity

In this section, we de�ne extensivity as a property of a measurement function between two quantities.
In our example of the baker, regular recordings of the used �our give the baker the ability to calculate
the total amount of �our during a day or a week by adding up partial recordings. This can only be
done becausetime intervals as well as amounts of �our both can be added up and subtracted in a
coordinated manner. In particular, time intervals of the partial recordings should not overlap, otherwise
the calculation will be wrong.

We say that a domain of quantities is additive/subtractive with respect to a measurement functionm,
iff the following holds:

De�nition 3. Additivity and subtractivity of m measurements in quantity domain X

8x; x0 2 X(: O(x; x0) =) m(x) + m(x0) = m(x + x0)) Additivity

8x; x0 2 X(x 4 y =) m(y) n m(x) = m(y n x) Subtractivity

Additivity in Def. 3 requires that the measurement of the sum of any pair of quantities of a control
domain should be the same as the sum of their measures, given that control quantities do not overlap.
To illustrate, consider the weight of the contents of two buckets of ice. Piling up the contents of the two
buckets results in a quantity of ice that has the same weight as the sum of the individual weights of each
of the buckets of ice (minus the buckets themselves). However, this is only the case if the amounts of ice
do not overlap.

Subtractivity in Def. 3 likewise requires that if we remove an amountx from another one y of which
x is a part, then the measure of the resulting amount will be the same as when subtracting the measure
of x from the measure ofy. If we remove e.g. one third of the pile and measure the rest, then the result
should be the same as when subtracting the measure of this third from the measure of the entire pile.

Whether a quantity domain isextensivedepends on the additivity and subtractivity of all its elements
in the context of a measurement function:

19When we measure some magnitude, for example 5 kg, we can only identify that measurement using an amount, for
example an amount of �our. Reversely, magnitudes cannot uniquely identify amounts. We suspect extensive measurements
between magnitudes are just a shorthand for an underlying controlling amount.
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De�nition 4. Extensivity of quantity domain Y w.r.t. domain X under m:
A quantity domain Y is extensive with respect to a control domain X under a measurement function m iff
m is on X and its range is in Y and m is additive and subtractive in the control domain X.

Note that extensive measurements are alwayshomeomerousin the sense that every mereological part
of a controlling amount can be measured within the same quantity domainY. If a quantity domainY
is extensive with respect to an amount domainX under measurementm, additional theorems can be
proven. For example, if there is an amountz that is not part ofx, then this implies there must be a non-
zero supplementw that is part ofz and which joins withx in an additive manner (follows from strong
supplementation and additivity):

Theorem 6.

: (z � x) =) 9 w(w � z^ 0 � w ^ : O(x;w) ^ m(x) + m(w) = m(x + w))

Additive supplementation

This formalized notion of extensivity applies to many examples of quantities. For example, in the
speci�ed sense, an amount of sand is extensive with respect to a given volumetric space. In addition,
a weight of sand (in kg) is extensive with respect to the corresponding amount of sand. Note that ex-
tensivity can also apply in the opposite direction: the volumetric space that sand occupies is extensive
with respect to the amount of sand. And a volume of sand is extensive with respect to the corresponding
volumetric space it occupies. While it happens to be the case that volumetric space and mass of sand are
both extensive with respect to each other, it should be stressed that extensive relations are not necessarily
bi-directional. This depends on whetherm is bijective or not (and thus whether there exists an inverse
function). In our theory, it can e.g. be proven thatm needs to be non-injective in casem maps into a
magnitude, under the additional assumption of domain closure (such that there always exist amounts
with equal magnitude).

There is also the possibility that a single measure is extensive with respect to multiple controls. For
example, a measure of total precipitation is controlled by space (e.g.m2) and time (e.g. days). At this
point only a theory of relations between a measure and a single control has been established. However,
the de�nition can be easily adapted. In the case of multiple controls of a measure, letm be a function
X; A; B; : : : ! Y, whereX; A; B; : : : are all domains of controls. We de�ne additivity with respect to one
of these controls keeping the others �xed:

De�nition 5. Partial additivity of measurement m with respect to domain X

8a 2 A;8b 2 B; : : : ;8x; x0 2 X:

(: O(x; x0) =) m(x;a;b; : : :) + m(x0; a; b; : : :) = m(x + x0; a; b; : : :))

For example, precipitation can be considered extensive with respect to its spatial control when its
temporal control is �xed. If a measure is partially additive with respect to a single control, we can
also say the measure is partially extensive. For example, the measure of total precipitation is partially
extensive with respect to its spatial control. If and only if the de�nition holds for all inputs we can
speak of a fully extensive measure. For example, total precipitation is partially extensive with respect
to all spatial and temporal controls, thus is fully extensive. However, partial extensivity does not always
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imply full extensivity. For example, imagine two three-dimensional cubes and two two-dimensional,
horizontal areas which the cubes occupy. If the cubes are placed side-by-side horizontally, then the areas
are extensive with respect to the volumes of the cubes. However, if they are stacked on top of one another,
the increase of volume is not accompanied by an increase of area.

3.4. Non-extensive quantities

Quantities are not necessarily extensive in the sense de�ned above, even though, as quantities, they
can always be used in sum operations. For example, if we measure the temperature of body mass on a
ratio scale (in Kelvin), then it is clear we can build meaningful sums (e.g., in order to compute aver-
ages) and even ratios of the temperatures of two bodies. However it is not necessarily the case that the
temperature of the merger mass of these bodies will correspond to the sum of their temperatures. Thus
the temperature quantity cannot be considered extensive with respect to mass. There seems to be a cor-
responding fundamental misunderstanding in past theories about extensivity: authors have been calling
measurement scales ”extensive” whenever a suitable sum operator was available on that scale (such as
in the case of "extensive measurement" in Luce and Suppes (2002)), but apparently without fully realiz-
ing that the concept of extensivity cannot be de�ned as a property of a scale alone. Instead, it needs to
be de�ned as a relation between domains of measurement. For the same reason, extensivity must be a
concept different from a particularlevel of measurement(such as Ratio, Interval or Ordinal). The latter
is nothing but a class of automorphisms on a single domain of measurement (Suppes and Zinnes, 1962),
cf. Scheider and Huisjes (2019).

Cohen et al. (2007) de�ned intensivity based on ”independence” of a measure from an extent. If
we understand the latter in terms of a spatial control quantity, we can de�ne intensivity as the lack of
extensivity of a controlling function: Iff extensivity does not hold for this function, the measured domain
is intensively-related to the control domain. For example, population density is intensive with respect
to the controlling amount of space, and so are many other derived quantities (e.g., average income,
proportion of green space).

Note however that intensivity as a concept isrelative to a control, and thus not the same thing as the
concept ofquantities derived from others. To see this, consider again the same example. The measure
of population density is derived from a measure of population size and an area size. And in fact, it is
intensive with respect to both space and time as control. However, population density is also controlled
by migration �ow balance, i.e., the sum of migration in�ow minus out�ow. If we keep areas and time
intervals constant, population density becomesextensive with respect to �ow balance, since adding some
�ow surplus corresponds to a density increase which satis�es the additivity and subtractivity conditions.

4. Extensive measurement in a lightweight ontology for classifying data examples

To make the logical theory developed in Sect. 3 usable for automated classi�cation of data examples,
we have translated it into a lightweight ontology, which we call the Amounts and Magnitudes Measure-
ment Ontology (AMMO)20, and which is speci�ed in the Web Ontology Language (OWL)21. Extensivity
of measurements cannot be de�ned in OWL due to the inherent expressivity limitations of description

20http://geographicknowledge.de/vocab/AMMO.ttl
21https://www.w3.org/OWL/
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logic (DL). However, though axiomatizations in FOL or of higher order do not carry over, it is still pos-
sible to model extensive measurements by class subsumption in OWL. Fig. 2 presents a schematic view
of our ontology pattern. In this ontology classes are de�ned for quantities, their domains (characterized
by the suf�x -D), as well as measurement functions (with suf�x-MF) and measurements (with suf�x
-M). The latter simply denote results of measurement, i.e., tuples of controls and associated measures.
Additionally, we use the classesAdditive, SubtractiveandExtensivefor corresponding notions of our
theory. TheQuantityclass has subclasses for amounts and magnitudes, the latter of which has in turn
two subclasses for archimedean- and proportional magnitudes. TheQuantityDomainclass has the cor-
responding kinds of domains as subclasses. TheMeasurementFunctionclass has four subclasses. Two
of these are theAmountOfAmountMFclass, which has amounts as both the control and measure, and
MagnitudeOfAmountMF, which has an amount control and a magnitude measure. TheMeasurement-
Funtion class also has theExtensiveMFandIntensiveMFsubclasses, which represent respectively ex-
tensive and intensive measurements, where the latter is de�ned as the logical complement of the former.
Though all measurement functions can have speci�c measurements as elements, the formal properties
of quantities are de�ned on the domain level and not the elemental level. The class membership of
quantities and measurements may be thus be inferred from their relations to quantity domains and mea-
surement functions. For example, an entity is anExtensiveMif it is an element of anExtensiveMF, and an
entity is anExtensiveMFiff it is a measurement function, and additive as well as subtractive. Two OWL

Fig. 2. Extensivity measurement concepts

properties (hasMeasureD, hasControlD) link from measurement functions to quantity domains and al-
low to specify which domain contains the control quantity and which contains the measure quantity.
Two similar properties are de�ned between single quantities and measurements. Two more properties
hasElementandisElementOflink between quantities and their domains and between measurements and
measurement functions.
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4.1. Classi�cation of geographic measurements by means of extensivity

Extensive measurement functions between quantity domains are central for tasks in geographic in-
formation. We introduce quantity domain classes based on the categories of time, space and content
introduced by Sinton (1978) and Chrisman (2002), who refer to them as space, time and theme, or by
Wright (1955) who uses the terms space, time and substance. TheGeoAMMO22 ontology is speci�c
for geographic quantities and inherits from the AMMO ontology. In GeoAMMO, we introduce a set
of subclasses for spatial, temporal and content quantities. This includes theSpaceAmountDclass of re-
gion domains and theSizeMagnitudeDclass of spatial magnitude domains. For example, the domains
of 'country areas' and 'country area sizes' are both spatial, while the former is an amount domain and
the latter is a magnitude domain. Similarly, we consider two classes of domains of temporal quantities,
where theTimeAmountDclass denotes domains of amounts of time, and their durations correspond to
theDurationMagnitudeDclass. Finally, we considerContentAmountDandValueMagnitudeDfor quan-
tity domains not represented by temporal or spatial reference systems. Again, all these domain classes
have equivalents on the level of elements where the-D suf�x is dropped.

Different classes of extensive geographic measurement functions are obtained by distinguishing
the categories of the quantity domainsthat act as controls and measures. Using the two triads of
SpaceAmountD, TimeAmountDandContentAmountD, andSizeMagnitudeD, DurationMagnitudeD, and
ValueMagnitudeD, a total of twelve measurement function classes can be distinguished, where each
measurement function class is represented as an arrow between domain categories in Fig. 3. Three mea-
surement function classes map from amount domains to magnitude domains within the category time,
space, or content, six map between amount domains of different categories and three functions are auto-
morphisms on three types of amount domains.

Fig. 3. Extensivity triangle, showing possibilities of extensive measurement functions between three categories of quantity
domains.

In the following, we discuss each of the measurement function classes using examples of geographic
maps, nine of which are assembled in Fig. 4 and Fig. 5. These maps are all univariate, but since ex-
tensivity is induced at the measurement function level, the same principles apply to multivariate maps
if for each variable a different function is assumed. We do not provide separate examples for the auto-
morphisms since these can be explained by means of the examples for the other measurement function
classes. Table 2 gives a preliminary overview of the twelve measurement function classes.

22http://geographicknowledge.de/vocab/GeoAMMO.ttl
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Table 2
Overview of geographic measurement function classes

Superclass Class Control Measure Example

MagnitudeOf-
AmountMF

SizeMF SpaceAmount SizeMagnitude Europe area! Europe area size
DurationMF TimeAmount DurationMagnitude Length of a day in minutes

ValueMF ContentAmount ValueMagnitude Temperature in Celsius

AmountOf-
AmountMF

(different cat.)

CapacityMF SpaceAmount ContentAmount People in Europe
OccupancyMF ContentAmount SpaceAmount Area owned by local farmers

AccumulationMF TimeAmount ContentAmount Total precipitation in an hour
DynamicMF ContentAmount TimeAmount Years with olympic games
SpacetimeMF SpaceAmount TimeAmount Time of a train trip
TimespaceMF TimeAmount SpaceAmount Space traversed during a �ight

AmountOf-
AmountMF
(same cat.)

SpaceMF SpaceAmount SpaceAmount Deforested area in a natural reserve
TimeMF TimeAmount TimeAmount Time of the day spent awake

ContentMF ContentAmount ContentAmount Amount of �our in a stack of pancakes

4.2. Magnitude-of-amount measurements

A MagnitudeOfAmountMF is a function that retrieves a magnitude from some amount. We distinguish
three of these, namelySizeMFwhich measures from regions (amounts of space) to sizes (spatial mag-
nitudes),DurationMF which measures from amounts of time to durations (temporal magnitudes), and
ValueMF which measures from some other content amounts to other magnitudes, such as a count of
objects, a monetary value, or a weight.

Functions in theSizeMFclass yield spatial magnitudes from amounts of space. Figure 4a provides an
example of size measurements. The map depicts the spatial sizes of the provinces of the Netherlands.
Clearly the regions of the provinces do not overlap and are partially ordered. They form a lattice with
an extensive mereology (regions can be part of one another). The amounts are related to their size
magnitudes, which in turn are totally ordered. According to our de�nition of additivity, the sizes of the
regions can be directly summed to infer the sizes of mergers, because the regions do not overlap.

Functions in theDurationMFclass yield temporal magnitudes from amounts of time. Figure 4b shows
the age of churches in the Netherlands that exist for at least 500 years. In this example, the periods of
existence of each church overlap for at least the last 500 years, meaning for some time the churches exist
at the same time. Just like with sizes, durations can be compared and be added up to derive the duration
of existence of all churches. However, when summing up, overlaps need to be taken into account.

Functions in theValueMFclass yield magnitudes from amounts of content. For example, in Figure
4c, each bubble represents a magnitude of energy of an amount (a discrete collection) of wind turbines.
Note that each bubble may contain multiple wind turbines which are implicit here. Another possible
value measure would be the number of wind turbines in each cluster.

4.3. Amount-of-amount measurements

An AmountOfAmountMFmeasures an amount by using another amount as a control. For example, a
population can be measured by controlling space and counting the individuals within this space. Also,
the space they occupy can be found by measuring the spatial extents of the individuals. Note that the
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(a) Size measurements (b) Duration measurements (c) Value measurements

Fig. 4. Examples of magnitude-of-amount measurements

former and latter measurements are opposed to each other23. We distinguish nine amount-of-amount
measurement functions. Six of these are mappings between different amount categories, while three of
these, namelySpaceMF, TimeMF, andContentMF, are functions from amount domains to other domains
in the same category (e.g. from hours to minutes).

Based on this, we de�ne six subclasses of measurement functions, namelyCapacityMF, Occupan-
cyMF, AccumulationMF, DynamicMF, SpacetimeMF, and TimespaceMF, where an amount domain is
extensive with respect to an amount domain of a different category.

A CapacityMFmaps from a spatial amount to a content amount. Figure 5a shows the population
amounts of each province (e.g. the 'population of Utrecht') which has a certain magnitude (e.g. 500,000).
The population amounts themselves are measured with the regions as controls. For example, the popu-
lation of Utrecht is measured with the region of the province of Utrecht as control. AnOccupancyMF
is the converse in the sense that it maps from a domain of content amounts to a domain of amounts of
space that these contents 'occupy'. Figure 5b shows e.g. the living areas of European pine martens in the
Netherlands, which is the the space these animals occupy.

An AccumulationMFmaps from a domain of time amounts to a content amount domain. Resulting
measurements are accumulations of content within an amount of time. Figure 5c shows the net gain of
long-wave radiation over one day. For each point in the Netherlands, a magnitude is given of the net
radiation gain or loss accumulation over a day. These magnitudes are understood as mappings from radi-
ation content, which is controlled by some time period. The converse of the accumulation measurement
is theDynamicMF, which maps from content amounts to temporal amounts. The example in Figure 5d
shows the amounts of days per region that have exceeded a threshold of >14 mm precipitation in a year.

A SpacetimeMFmaps, as the name suggests, from a domain of amounts of space to some domain of
amounts of time. Figure 5e shows the route from Utrecht University to Groningen University, along with
an indication of how long traveling this route takes by car. Note that this indication is not just a duration
magnitude, but also implies a �nite interval in time in which someone actually traveled. A longer path

23They correspond to the opposing arrows ”capacity” and ”occupancy” in Fig. 3.
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