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Most marine plastic pollution originates on land. However, once plastic is at sea, it is 
difficult to determine its origin. Here we present a Bayesian inference framework to 
compute the probability that a piece of plastic found at sea came from a particular source. 
This framework combines information about plastic emitted by rivers with a Lagrangian 
simulation, and yields maps indicating the probability that a particle sampled somewhere 
in the ocean originates from a particular river source. We showcase the framework for 
floating river-sourced plastic released into the South Atlantic Ocean. We computed the 
probability as a function of the particle age at three locations, showing how probabilities 
vary according to the location and age. We computed the source probability of beached 
particles, showing that plastic found at a given latitude is most likely to come from the 
closest river source. This framework lays the basis for source attribution of marine plastic.
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INTRODUCTION

Floating plastic items have been found in all of the world’s oceans (Eriksen et al., 2014; Van Sebille 
et  al., 2015), but the origins (i.e. where and when the plastic entered the ocean) of these plastic 
items are often not obvious. For some of the larger macroplastics, the origin can be attributed by 
careful analysis of labels [e.g. Lebreton et al. (2018); Schofield et al. (2020); Turner et al. (2021)], 
but most (micro)plastic particles are too small and nondescript for their origin to be identified this 
way. Nevertheless, it is important to assess and possibly attribute the likely source for these smaller 
particles too, as they represent a threat for marine ecosystems (Koelmans et al., 2019).

Here, we use numerical simulations to compute the pathways of virtual plastic particles that float 
on the surface of the ocean (Hardesty et al., 2017; van Sebille et al., 2018). By tracking particles, 
it is in principle possible to connect any source with any location. However, the multitude of 
possible sources very quickly makes this a computationally unwieldy approach. To overcome this 
computational challenge, here we propose using a Bayesian inference approach to attribute sources 
in a probabilistic sense.

Such a probabilistic approach has been used before to locate objects lost at sea, like the submarine 
Scorpio (Richardson et al., 1971) and the (yet to be found) Malaysian Airlines flight MH370 (Davey 
et al., 2016). The main difference between these search & rescue applications of Bayesian inference 
and our application in the source attribution of floating plastic is that the sources of plastic are spatially 
very heterogeneous, and so is their distribution at sea. With regards to plastic source attribution, 
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van Duinen et al. (2021) took a similar approach in which they 
implemented a Bayesian framework to estimate the most likely 
sources that contribute to the plastic litter found on a beach 
in the North Sea. They performed a backtracking Lagrangian 
simulation from the beach towards the possible sources and 
combined this with estimates of plastic emitted at river mouths, 
fishing grounds, and coastlines. The main limitation with their 
implementation is that it focuses on one location rather than a 
whole domain.

As an illustration of this probabilistic framework for attribution 
of likely plastic sources, we apply it to plastic emitted by rivers 
around the South Atlantic Ocean, as rivers are considered the 
principal pathway for mismanaged plastic waste (MPW) into 
the ocean (Lebreton and Andrady, 2019). For clarity, we don’t 
consider other plastic sources such as plastic from fisheries or 
plastic from land (Jambeck et al., 2015). We selected the South 
Atlantic Ocean as the study location because the South Atlantic 
Subtropical Gyre is an accumulation zone for plastic (Morris, 
1980; Cózar et  al., 2014; Ryan, 2014), but also because of the 
presence of large urban centers along the American and African 
coast that contribute to the plastic found at sea (do Sul and Costa, 
2007; Jambeck et al., 2018), and because this region was sampled 
during a 2019 expedition (Weckhuysen et al., 2021).

DATA AND METHODS

Method
Bayesian inference uses Bayes’ Theorem to estimate the 
conditional probability of an event happening under certain 
conditions by combining prior knowledge about the problem 
with data obtained through an experiment. In particular, our 
objective is to estimate the probability that a particle sampled at 
sea would come from a certain source. This can be written as 
the conditional probability p(Ri|Sloc) : the probability of sampling 
a particle at a location Sloc from a specific source Ri . Bayes’ 
theorem offers a way of estimating p(Ri|Sloc) , by combining prior 
knowledge with new observations. In our case, Bayes’ theorem is
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where p(Ri|Sloc) is the conditional probability that we aim to 
estimate, p(Sloc|Ri) is the opposite conditional probability that 
can be estimated by performing a numerical simulation (see 
below), p(Ri) is the probability of a particle being released at the 
Ri source and p(Sloc) is the probability of sampling a plastic particle 
at a specific location, regardless of the source. It is important to 
note that p(Ri|Sloc)≠p(Sloc|Ri). The latter term namely indicates 
the probability of a plastic particle found at a location to come 
from the source Ri , and the former indicates the probability of a 
particle coming from the source Ri being at a location. Each term 
is commonly referred to by its interpretation. For instance, p(Ri) 
is denoted as ‘the prior’ because it represents the prior knowledge 
of the problem, p(Sloc|Ri) is ‘the likelihood’, which updates our 

prior knowledge from the problem, p(Sloc) is the ‘normalizing 
constant’, and p(Ri|Sloc) is ‘the posterior’.

In eq. (1), computing the normalizing constant p(Sloc) requires 
observations for all plastics in the ocean regardless of their 
source, which means that p(Sloc) also considers plastic that comes 
from sources that are not taken into account in the numerator of 
eq. (1). Therefore, the posterior probabilities at each Sloc would not 
add to one in each location but instead will add to a fraction that 
corresponds only to the sources of plastic considered in the study. 
For the present study, this is inconvenient because our analysis 
is limited to plastic emitted by rivers and it does not consider 
plastic from other sources. To overcome this inconvenience, we 
can constrain the sum of all posterior probabilities to be equal 
to one
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where the sum is defined for the N number of sources. Then, 
substituting p(Ri|Sloc) for eq. (1)
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and by factorizing and solving for p(Sloc)
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we obtain a normalizing constant that only considers the sum 
of all our hypotheses (i.e. products of prior and likelihoods). 
Finally, by substituting p(Sloc) in eq. (1) we get
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which is an alternative form of Bayes’ theorem (Carlin and Louis, 
2008) that ensures that the sum of all posterior probabilities is 
one in each location. This last equation is used in this study.

Prior Data and Selecting the Sources
Our prior is based on the annual amount of riverine plastic 
estimated by Meijer et  al. (2021), who used a probability 
framework combined with geographical data of MPW to estimate 
the plastic mass emissions of the world rivers into the ocean, at 
the location of the river mouths. From their global data set, we 
selected the locations and annual emissions for all 1,010 rivers 
that emit plastic into the South Atlantic. To avoid immediate 
beaching, we moved the river mouth locations to the center of 
the closest ocean grid-cell of the model’s flow field, and when 
various rivers shared the same closest grid-cell, we summed their 
emissions. This condensed the number of river mouths to 535 
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(without affecting the total amount of plastic released by the 
rivers in the South Atlantic).

We then clustered the rivers in 10 groups that contained the 
top polluting rivers and their neighboring rivers. These clusters 
are 2° by 2° square regions centered around ten locations that 
coincide with important cities or river estuaries. They contain 
the river mouth locations of the rivers within their limits and 
we used these locations as release locations. The 10 clusters 
(Figure 1) account for 80.9% of the riverine plastic emissions in 
the South Atlantic. There are two clusters on the African coast: 
around the city of Cape Town and on the Congo River estuary. 
The other eight clusters are on the South American coast: five 
near the cities of Rio de Janeiro, Porto Alegre, Santos, Salvador, 
and Recife; and three on the river estuaries of Rio de la Plata, 
Itajaí and Paraibá. We also considered the 19.1% remaining rivers 
excluded from the 10 clusters by creating two new river clusters: 
one for the rivers not already clustered on the American coast 
and one for the rivers not already clustered on the African coast.

We defined the prior distribution p(Ri) to be the fraction 
of plastic emitted at each cluster, normalised by the total 
amount of plastic emitted at the 12 clusters. Our prior thus is 
a 12-dimensional categorical or discrete distribution, in which 
each source has an associated probability defined between 0 to 1, 
and the sum of the 12 probabilities is 1. The probability associated 
with each source is shown in Table 1.

Numerical Simulation and Computing  
the Likelihood
To compute the likelihood p(Sloc|Ri) , we performed a forward 
in time Lagrangian simulation in which we released virtual 
particles from each of the clusters Ri and tracked them through 
the South Atlantic surface flow. We performed the simulation 
using the Parcels framework (Delandmeter and van Sebille, 
2019) in combination with the Surface and Merged Ocean 
Currents (SMOC) hydrodynamic data from the Copernicus 
Marine Environmental Service (CMEMS). In particular, The 
SMOC data set is a 2D surface flow field, with a 1/12° resolution, 

of the sum of the velocity contributions from the Navier-Stokes 
currents from the 1/12° Nucleus for European Modeling of the 
Ocean [NEMO, Madec et al. (2017)], the tidal component from 
the FES2014 tidal model (Carrere et  al., 2015), and the Stokes 
Drift component from the MétéoFrance Wave Action Model 
[MFWAM, Ardhuin et al. (2010)], each of these models by itself 
are extensively validated. Additionally, the SMOC have been 
used in similar studies such as Van Sebille et  al. (2021) where 
they compared trajectories advected with SMOC and compared 
them to drifter data in the Tropical Atlantic. In this study we used 
the sum of three components of the SMOC and we assumed that 
the particles were at the surface at all times.

We performed one simulation per cluster, with 100,000 
particles each, using a fourth-order Runge-Kutta integration time 
step of 1 h. For each simulation, we released the particles from the 
river mouth locations within the cluster. The number of particles 
released at each river mouth was proportional to the emission 
of each of the rivers within the cluster. In the simulations for the 
unclustered rivers, we released the particles from the river mouth 
locations outside the clusters. The number of particles released 
was proportional to the plastic emissions of each unclustered 
river. We released the particles continuously. The date of release of 
the particles was randomly selected from a uniform distribution 
over a time interval of one year. On average, the particles were 
released 10 km from the coast, or at the centers of the closest cell 
next to the river. We stored the particles’ positions every 24 h, for 
a total of 1,234 points per trajectory (3.4 years).

The domain of the simulation was the South Atlantic Ocean, 
from 70°W to 25°E and between 50°S to the Equator. We stopped 
tracking the particles if they exited the domain. In total, 16.2% 
of the particles exited the domain: 12.8% across the Equator 
and 3.4% into the Indian Ocean. We used hydrodynamic data 
from 1 April 2016 to 31 August 2020, releasing particles in the 
first year only and then tracking them for another 3.4 years. We 
selected these periods because the main objective of this study is 
to demonstrate the method with computationally feasible time 
scales, although they are small compared to plastic degradation 
time scales.

FIGURE 1 | Map of the top plastic-emitting rivers (red dots) in the South Atlantic from Meijer et al. (2021) and the clusters (black squares) used as sources in this 
study. The size of the red circles is proportional to the rivers’ plastic emission. The size of the black squares exaggerates the true size of the clusters, which is 2° by 
2°. The dots that fall outside the clusters represent the position for the river mouths of unclustered rivers on the American and African coast.
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In the simulations, we implemented a stochastic 
parametrization for beaching of buoyant particles as described in 
Onink et al. (2021), using a characteristic beaching timescale of 
λb=10 days and a characteristic re-suspension timescale of λb=69 
days. The λb is the beaching e-folding timescale, i.e. the amount of 
days that a particle has spent in the beaching zone to have a 63.2% 
chance of beaching. Similarly, λr is the resuspension e-folding 
timescale, the amount of days that a particle has to spend beached 
to have a chance of 63.2% to resuspend. We selected λr=69 days, 
within the validity range reported by Onink et al. (2021). We also 
performed another simulation using a λr=171 days. We found 
that the result and conclusion were consistent for both cases. 
The comparison from both results can be found in Text S1 and 
the results from the simulations with λr=171 days are shown in 
Figures S1–S4, in the Supplementary Information.

To parametrise unresolved turbulence that acts on the floating 
plastic (Van Sebille et  al., 2020), we implemented uniform 
diffusion defined in the whole domain with a value of 10 m2s–1, 
similar to Onink et al. (2021) and Lacerda et al. (2019).

We computed the likelihood p(Sloc|Ri) by binning the particle 
positions in 1 °× 1° bins. For this, we counted the particles inside 
each bin at every time step, and then we averaged the number 
of particles during a time window. Then, we divided the average 
number of particles at each bin by the sum of all the averaged 
counts in all bins, resulting in time-averaged likelihood. By 
using this time-averaged likelihood and eq. 5, we can obtain the 
time-averaged posterior probability, which describes the mean 
behavior of the posterior probabilities by removing temporal 
fluctuations. The resulting p(Sloc|Ri) in each bin has a value 
between 0 and 1 and the sum of the probabilities of all bins is 1. 
This yielded twelve p(Sloc|Ri) maps, one per source Ri .

The likelihood was computed based on the positions of the 
particles according to their age. The particle age represents the 
transit time of particles between the source Ri and a sampling 
location Sloc (i.e., their drifting time), with each particle following 
a different pathway until reaching Sloc (van Sebille et al., 2018).

Oceanic Particles Posterior Probability
We computed the posterior probability p(Ri|Sloc) using eq.  (5) 
independently for each 1° by 1° bin, using the corresponding 

likelihood and the normalizing constant in each particular 
bin. Doing this for all the clusters, we get the local posterior 
distribution in each bin, as a probability between 0 and 1 for 
each source. This results in 12 posterior probability maps (one 
per cluster) which add up to 1 for each bin. Additionally, we 
computed the standard deviation of the posterior probability 
by performing a bootstrapping as explained in Text S2 in the 
Supplementary Information.

Beached Particles Posterior Probability
Since we use a stochastic parametrization for simulating 
the beaching of particles near the coast, we can also map 
the probability of a beached particle coming from a specific 
cluster. To compute this, we built two cumulative latitudinal 
histograms of the particles that were beached at a specific time 
step: one for the American coast and the other for the African 
coast. The cumulative latitudinal histogram is formed by 
counting the particles that are beached in latitudinal bins of 1°, 
disregarding the longitude of those particles, and by classifying 
them into particles that beached either at the American or the 
African coast. With the counts per latitude, we computed the 
average at each bin for the duration of the whole simulation and 
normalized by the sum of all average counts per bin. As for the 
posterior probability maps, we computed the beached posterior 
probability p(Ri|Slat) using eq.  (5), where Slat is the latitudinal 
bin.

RESULTS

Likelihood Maps
Figure 2 shows the likelihood maps for particles released at each 
cluster Ri , averaged over a period of 3.4 years. The values for the 
likelihood in the bins are between 0 to 10–4, as they represent 
the proportion of particles (in relation to the total number of 
particles from a cluster in the domain) that cross a grid cell. 
Each cluster has 100,000 particles, minus the particles that exited 
the domain at a certain time step, so if in one bin there are 100 
particles, the likelihood would be in the order of 10–4.

In general, the dark blue areas represent regions where almost 
no particles were found from a specific cluster, while the yellow 
regions represent locations where it was more likely to find 
particles from that cluster. Specifically, for the South American 
clusters, the likelihood of finding particles from Recife, Santos, 
and Salvador is almost zero in the open ocean between 20°S to 
40°S, that is, where the subtropical gyre is located. The particles 
released from those clusters tend to stay close to shore and beach 
because of the effect of Stokes drift that pushes them towards the 
coast.

The major contributors to the subtropical gyre plastic content 
(between 20°S to 40°S) are Itajaí, Paraíba, Porto Alegre, Rio de 
Janeiro, Rio de la Plata, and Unclustered-America, with likelihoods 
ranging from 1 x 10–4 to 10–4. From these clusters, Porto Alegre 
is the largest contributor. Closer to the South American coast, 
the likelihood is above 3 x 10–4 for all these clusters. North of 

TABLE 1 | Prior probability p(Ri) of floating plastic being released in a specific 
cluster Ri. 

Sources (Ri) p(Ri)

Congo 0.016
Cape Town 0.042
Rio de la Plata 0.098
Porto Alegre 0.080
Santos 0.039
Paraibá 0.025
Itajaí 0.070
Rio de Janeiro 0.270
Salvador 0.063
Recife 0.107
Unclustered America 0.181
Unclustered Africa 0.010

The prior represents the proportion of the total annual plastic released to the South 
Atlantic by each of the clusters.
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the gyre, from 20°S and further north, the likelihood of finding 
particles from the American coast is near-zero.

For the African clusters, shown on Figure  2, we see that 
the likelihood of finding particles released in Cape Town is the 
highest in the Benguela Current (refer to Bower et al. (2019) for 
a schematic of the Atlantic features and currents). These particles 
are likely to reach the South American coast near the Cape of 
Saõ Roque, and will less likely get carried by the Brazil Current 
towards the coast of Argentina. The particles released at the 
Congo get carried away northward to the Equator, outside of the 
domain of our simulation, and are unlikely to be found in other 
parts of the domain. For Unclustered-Africa, we can see that the 
likelihood is high along the Benguela current and on the Angolan 
coast.

Oceanic Particles Posterior Probability
Figure 3 shows the posterior probability p(Ri|Sloc) maps for each 
cluster, averaged over 3.4 years. In particular, the particles in 
our simulation do not reach latitudes south of 50°S, leading to 
no defined posterior probability in the Antarctic Circumpolar 
Current (ACC). This is due to the generally northward Ekman 
drift in the ACC (Onink et al., 2019), and because we assumed 
that the particles only originate from twelve clusters placed north 
of 50°S.

Regarding the individual panels in Figure 3, the three clusters 
that dominate in the region of the subtropical gyre, between 20°S to 
50°S, are Porto Alegre, Rio de Janeiro, and Unclustered-America, 
with probabilities around 30%. The posterior probabilities for 
Recife and Santos are near-zero because only very few particles 
were transported into the open ocean. The probability that 
particles end up between 50°W to 40°W and close to Brazil 
originated from Salvador is up to 30%. The posterior probabilities 
of Itajaí and Paraíba are below 10% everywhere. At the boundary 
with the ACC, the source with the largest probability is the 
Unclustered-American rivers, followed by Rio de Janeiro and Rio 
de la Plata. South of South Africa, particles released from Rio 
de Janeiro and the Unclustered-American rivers are dominant, 

with 40% and 30% respectively. The remaining 30% are mainly 
contributed by Porto Alegre and Rio de la Plata. In the Benguela 
Current region until the northern coast of Brazil, the probability 
is dominated by the Cape Town cluster (close to 100%). The 
Unclustered-African cluster has the largest probabilities from 
20°S towards the equator, with probabilities close to 100% near 
the coast. Finally, the posterior probability of the Congo cluster is 
almost only appreciable near the source and farther north.

Local Posterior Age Distributions
The posterior age distributions yield the probable sources of a 
particle of a certain age, sampled at a certain location. Figure 4 
shows the posterior age distributions for three sampling 
locations, averaged over a time window of 30  days, to smooth 
variations at sub-monthly time-scales. The color shading 
represent the standard deviation associated with the probability 
of each cluster. The dashed line represents the number (N ) of 
particles that reach the location as a function of age. The posterior 
probability distributions were only computed when N>10. 
Location B matches the location where samples were collected 
in a 2019 expedition (Weckhuysen et al., 2021) and we selected 
the sampling locations A and C as representative of the rest of the 
gyre circulation.

The panel for sampling location A in Figure 4, located in the 
western part of the subtropical gyre (32.37°S, 37.64°W), shows for 
example that a particle sampled at that location with age younger 
than 0.4 years is very unlikely to come from any of the considered 
river clusters. For particles between 0.4 years to 1.0 years, the 
most probable sources are Unclustered-America, Salvador and 
Porto Alegre. For ages older than 1.0 years, the probability from 
Unclustered-America drops below 40%, Salvador drops below 
10% while Porto Alegre remains stable. For particles older than 
1.5 years, the probabilities asymptote towards approximately 
time-constant values: Porto Alegre, Rio de Janeiro, and 
Unclustered-America have the largest probabilities, with values 
fluctuating between 20% and 40%. The rest of the clusters have 
values below 20%.

FIGURE 2 | Likelihood maps of the spatially binned p(Sloc|Ri)  for each cluster. The color scale indicates the probability of finding a plastic particle coming from the 
cluster, indicated as a red point.
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The posterior age distributions for location B (32.37°S, 5.80°E) 
in Figure  4, show that it is unlikely to find particles younger 
than 1.2 years coming from any of the considered clusters: only 
particles older than 1.4 years can reach this point. Similar to 
point A, the clusters with the largest probability, throughout all 
ages, are Rio de Janeiro, Porto Alegre and Unclustered-America. 
For the younger particles, these probabilities oscillate around 

30%, while for older particles, the three clusters decrease down to 
20% for 3.4-year-old particles. The remaining clusters stay below 
20% for all ages. The plot corresponding to point C located north 
of the gyre (19.19°S, 13.39°W), shows that particles reach this 
location two years after release. Fewer particles were present on 
average compared to A and B, reaching a peak N at 2.7 years. 
The largest probability corresponds to Rio de Janeiro, followed 

FIGURE 3 | Posterior probability maps, averaged over 3.4 years, showing p(Ri|Sloc), the probability of finding a particle from a specific cluster at any point in the 
South Atlantic. Each map displays the probability for a specific cluster in all the bins of the domain. The red dots indicate the locations of the clusters from which the 
particles entered the ocean. At each location, the sum of posterior probability of the twelve clusters is 1.

A

B

C

FIGURE 4 | Local posterior age distributions at three different locations for the posterior probability. The map on the top right marks the locations (A−C), that 
correspond to the time series shown in the plots (A−C). Each color in (A−C), represents the probability p(Ri|Sloc) for a particular cluster. The color shading shows the 
standard deviation associated with the probabilities. The black dashed line represents the number of particles (N ) at the respective location.
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by Unclustered-America, and Porto Alegre. The other clusters 
remain below 10% for all ages recorded.

Beached Particles Posterior Probability
Figure 5 shows the posterior probabilities for a particle to beach 
at certain latitude, p(Ri|Slat) , based on its origin. The p(Ri|Slat) 
for the American coast are displayed in the left panel and the 
ones for the African coast are shown in the right panel. On the 
American coast, the nearest cluster to the bin Slat has the highest 
probability, which peaks at the same latitude as the cluster or in its 
vicinity. This suggests that the plastic found on beaches close to a 
source is most likely to come from that source. Santos is the only 
exception to this trend because its probability is overshadowed 
by its proximity to Rio de Janeiro which emissions are six times 
larger. The Unclustered-American rivers dominate the latitudes 
where there are no clusters present such as between 15°S to 21°S 
and South of 38°S.

In the right panel of Figure 5, the beached probabilities for 
latitudes between 25°S to 35°S on the African coastline show 
a dominance of particles coming from the American coast, 
accounting for more than 90% of the beached particles. The 
probability of the beached particles coming from Cape Town is 
less than 10% in this region. This is because the particles from the 
American clusters have higher prior probability than the plastic 
from the African clusters. Between 23°S to 25°S, Cape town is 
dominant for beached particles. In the region between 7°S to 

19°S, the Unclustered-Africa cluster dominates, mainly due to 
the absence of other river clusters. Finally, at 5°S latitude, the 
most probable cluster was Congo.

DISCUSSION AND CONCLUSIONS

We introduced a Bayesian probabilistic framework that 
estimates p(Ri|Sloc) , the probability that a plastic particle, 
sampled at the surface of the South Atlantic Ocean, came from 
a particular river cluster, as a use case example. The novelty of 
this framework is that it performs a forward in time Lagrangian 
simulation from the defined sources. This approach has the 
advantage of using only one Lagrangian simulation, while in 
a backward in time Lagrangian simulation we would have to 
perform a simulation per sampling location.

The framework supports different types of analyses and 
can be used, for example, to compute spatial probabilities, 
compute the local probability as a function of particle age, 
or analyse the probabilities once a physical process (e.g. 
beaching) alters the particles’ state. We applied this method 
to the use case of plastic emitted at river mouths in the South 
Atlantic. This application ignores other types of sources that 
also contribute to marine plastic pollution, such as fisheries, 
cities, or plastic from outside the domain; and thus make it 
difficult to validate these results with direct observations. 
Nevertheless, the framework could in principle be extended 
to other types of sources.

The time average window used for computing the likelihood 
p(Sloc|Ri) can be adjusted according to the aim of the study. 
Usually, computing the likelihood for small time windows 
leads to greater variability in the likelihood and for instance 
in the posterior probability. For these reasons, we computed 
the average likelihood for the whole simulation (3.4 years), 
and from there we computed the posterior probability.

As we showed in Figure 3, visualizing the posterior p(Ri|Sloc) 
in maps allows us to identify the most important clusters that 
pollute ocean regions that provide high ecosystem services 
and that are vulnerable to plastic, such as subtropical gyres 
(Helm, 2021) and marine protected areas (Krüger et  al., 
2017). This can be used to prioritize the reduction of MPW 
in the principal sources to mitigate the problem. For example, 
our use case showed that Porto Alegre, Rio de Janeiro and 
Unclustered-America are the most probable sources of local 
riverine plastic in the South Atlantic Subtropical Gyre.

The local posterior age distributions, shown in Figure  4 
further illustrate the analysis that can be done by selecting a 
location and by computing the probability distributions as a 
function of the particle’s age. This can point to the most likely 
source if we estimate the time the plastic has been drifting in 
the ocean, by assessing its degradation (Gewert et  al., 2015; 
Chamas et al., 2020). Moreover, we observed that after 3 years 
the posterior age probability asymptote towards constant 
values, which suggests that for longer simulation times, the 
probabilities will remain relatively constant in time.

The latitudinal beached posterior probabilities, shown in 
Figure  5, demonstrate how this framework can be used to 

FIGURE 5 | Horizontal bar plot for the posterior probabilities of beached 
particles (x -axis) at a specific latitude (y -axis). The panel on the left shows 
the probabilities at the American Coast and the panel on the right the 
probabilities at the African coasts. Each color is associated with a cluster, 
shown in the legend at the bottom. Each latitude has a corresponding 
horizontal bar summing the probabilities from the clusters at that latitude 
to 1. The round markers on the left of each plot represent the latitudes of 
the clusters. If the marker is on the left panel, the cluster is at the American 
coast, and if the marker is in the right panel, the cluster is located at the 
African coast.
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analyse the contribution of different sources to particle sinks 
(e.g. beaches) when considering certain physical processes that 
alter particle pathways (e.g. the process of beaching). This can 
be expanded by including other additional physical processes 
that can alter the dynamical state of the virtual particles, such 
as sinking (Lobelle et  al., 2021; Fischer et  al., 2022), directly 
in the simulations. The framework is independent of the 
physical processes that affect plastic. Adding to the limitations 
of this framework, it does not allow us to identify the physical 
processes responsible for the transport of plastic in the ocean.

In our use case on floating plastic emitted from rivers in the 
South Atlantic, we ignore plastic entering the domain from the 
Indian Ocean leakage (Van der Mheen et al., 2019) and from  
the North Atlantic (Speich et  al., 2007). To consider it, these 
leakages could for example be assumed as sources, by knowing 
how much plastic enters the domain through the boundaries, or 
the domain could be extended to consider other basins.

One major advantage of the Bayesian nature of our 
framework is that it allows updating the results when better 
estimates of plastic emissions are available without having to 
redo the (computationally expensive) Lagrangian simulations. 
For instance, it can be expanded by including a prior that 
accounts for seasonal variations in river-borne plastic inputs, 
or by taking into account different types of land-based or sea-
based sources. Also, the forward simulation releases the same 
amount of particles per cluster or source, which makes small 
emitting sources have equal spatial representation compared to 
larger and more dominant sources.
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