
1. Introduction
Debris flows are water-laden masses of soil and rock, which are common geological hazards in mountainous 
regions worldwide (Iverson, 1997). Over the past decades the occurrence and hazardous effects of debris flows 
have increased as a result of population expansion in mountainous regions, climate change, severe wildfires, and 
earthquakes (Cannon & DeGraff, 2009; Stoffel et al., 2014). The magnitude of debris flows can increase substan-
tially by basal and bank erosion while it traverses from initiation zone to valley floor (Frank et al., 2015) resulting 
in an increase in casualties and property loss (Dowling & Santi, 2014). In addition, debris flows are increasingly 
recognised as one of the fundamental physical processes that transport sediment and erode bedrock in mountain-
ous topography (McCoy, 2015; Stock and Dietrich, 2003). However, limited understanding of the processes that 
control debris-flow erosion currently hampers (a) accurate estimation of debris-flow magnitude and effective 
hazard mitigation (De Haas et al., 2020; Dietrich & Krautblatter, 2019) and (b) understanding and modeling of 
landscape evolution (Penserini et al., 2017; Tucker & Hancock, 2010).

Observations show that erosion volumes may strongly vary between debris-flow events: some flows increase 
>50 times their initial volume (Hungr et al., 2005), while others barely increase in size (Santi et al., 2008), and 
we currently lack the means to explain these contrasting pathways of development. Understanding debris-flow 
erosion is notoriously complicated for a number of reasons: (a) debris flows are complex hybrids between a fluid 
flow and a moving mass of colliding particles that may vary greatly in composition, such that both shear and 
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impact forces may contribute to erosion, but how these forces interact remains partly unclear (De Haas & van 
Woerkom, 2016; Hsu et al., 2008; Roelofs et al., 2022; Schürch et al., 2011); (b) bed erodibility may strongly 
vary, as it depends on a combination of grain-size distribution, moisture content, and hardness (e.g., soft sediment 
vs. bedrock) (Iverson et al., 2011; Stock & Dietrich, 2003; Zheng et al., 2021); (c) in-situ flow measurements are 
cost- and time-demanding because of the destructive and infrequent nature of debris flows and the rough terrain 
in which they occur.

Field data on debris-flow erosion are scarce, often limited to single debris-flow events (Dietrich & Krautblat-
ter, 2019), based on local point or cross-section measurements (Berger et al., 2011; McCoy et al., 2012), and 
its analysis limited by unknown or irreproducible boundary conditions (Iverson et al., 2010). There has been 
a recent increase in the number of numerical models incorporating erosion (Frank et al., 2015; McDougall & 
Hungr, 2005; Pudasaini & Krautblatter, 2021), but the inconsistency in erosion rate equations as a result of a lack 
of a unified theory still results in a disparity of model outcomes. At the same time, erosion is still neglected in 
many other models actively used for hazard assessment and mitigation (Castelli et al., 2017; Luna et al., 2014), 
which leads to systematic underestimation of debris-flow propagation, runout, and impact (Dietrich & Kraut-
blatter, 2019; Gregoretti et al., 2019). To (a) further our understanding of debris-flow erosion, (b) extrapolate 
findings from theoretical considerations (Iverson & Ouyang,  2015) and physical-scale experiments (Lanzoni 
et al., 2017) to complex field environments, and (c) to validate and calibrate theoretical and numerical models, 
there is thus a need for comprehensive field datasets and analyses that combine joint measurements of flow and 
bed conditions with measurements of bed and bank erosion.

In this study we combine detailed in-situ measurements of debris-flow conditions, antecedent rainfall, and 
high-resolution measurements of topographic channel change for 13 debris flows in the Illgraben torrent in the 
southwestern Swiss Alps. With this data we identify the processes that govern debris-flow erosion and deposi-
tion, and demonstrate that flow and bed conditions jointly control debris-flow erosion, shear and impact forces 
are strongly related and together cause debris-flow erosion, and although erosion at the flow front may be most 
intense the work done by the body and tail of the flow cannot be neglected.

2. The Illgraben Torrent and Measurement Station
The Illgraben torrent has a long history of debris flows and debris floods with multiple events each year (Bennett 
et al., 2014; Hirschberg et al., 2021). Debris flows are generally triggered by intense rainfall during summer 
storms between May and October. The flows originate from a catchment that extends from the top of the Illhorn 
mountain (elevation 2,716 m a.s.l.) to the Rhône River on the valley floor (610 m a.s.l.), and which consists of 
dolomites, quartzite, conglomerates, and calcareous sedimentary rocks (McArdell and Sartori, 2021).

This study focusses on the lowest 800 m of the channel (Figure 1), which has an average gradient of ∼4°, an 
average width of ∼25 m, steep banks, is incised into unconsolidated alluvial fan sediments, and contains three 
check dams. Previous work has shown that debris flows may substantially erode this channel while erosion by 
floods is negligible (Berger, 2010). Debris-flow erosion is typically more pronounced on the steeper slopes of 
watersheds (e.g., Imaizumi et al., 2019), and a number of other debris flows have been observed to be net depo-
sitional on relatively gentle slopes such as that of our study reach (Berti et al., 1999; Rengers et al., 2021; Simoni 
et al., 2020)—it is likely that this variability results from differences in flow rheology. The check dams in the 
study reach affect bed erosion, leading to a general pattern of relatively large amounts of erosion or deposition 
downstream of check dams moving to a (nearly) fixed bed level at check dams (De Haas et al., 2020).

About 120 m upstream of the confluence with the Rhône River an automated observation station is operated by 
the Swiss Federal Institute for Forest Snow and Landscape Research (WSL), which records flow-front velocity, 
flow depth, bulk density, normal and shear forces, and seismic ground velocity, and collects imagery (Hürli-
mann et al., 2003; McArdell et al., 2007). From these observations, it is possible to calculate the front discharge 
of a debris flow and to estimate its volume (Schlunegger et  al.,  2009). Combined with drone-based struc-
ture-from-motion to generate high-resolution and high-accuracy Digital Elevation Models (DEMs) (De Haas 
et al., 2020, 2021), this presents an opportunity to identify the factors controlling debris-flow erosion in vivo.
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3. Materials and Methods
3.1. Digital Elevation Models

Digital elevation models (DEMs) of the study reach were made through structure-from-motion with Agisoft 
Metashape Pro. The 2019 imagery was captured with a DJI Mavic 2 Pro. These surveys were co-aligned and 
include 29 ground control points (GCPs) to optimize absolute and relative accuracies (data set and further details 
are published in De Haas et al., 2021). For the 2020 and 2021 surveys a DJI Phantom 4 real-time kinematic (RTK) 
was used. The RTK technology in this drone ensured much higher accuracies (Nota et al., 2022). Therefore, these 
surveys were processed individually including ∼10 GCPs. The absolute and relative accuracies of the DEMs are 
<10 cm in xy and z directions, and in the order of 5 cm for most surveys. To filter erroneous points and over-
hanging vegetation from the dense point clouds we adopted the approach of De Haas et al. (2020) using LAStools 
(rapidlasso GmbH). This procedure removes low noise (i.e., noise below the actual ground surface) and filters 
overhanging vegetation, while retaining natural detail in the channel, and mostly avoids clipping at steep sections 
at the channel banks and check dams.

3.2. Quantification of Erosion and Deposition

We quantified net channel-bed elevation change following the method by De Haas et al. (2020). DEMs of differ-
ence were generated by subtracting the pre-flow DEM from the post-flow DEM. We manually digitized the flow 
extent using mudlines and levees left behind by the debris flows. We used this extent to clip out the DEMs of 
difference, such that we only consider topographic changes in the area affected by a debris flow. For the quan-
tification of channel-bed elevation change volumes, we excluded areas within 2 m of check dams, because tiny 
offsets in check dam location could otherwise yield very large, and incorrect, local elevation changes.

3.3. Debris-Flow Characteristics

Debris-flow characteristics are measured by the Swiss Institute for Forest, Snow and Landscape Research (WSL) 
at a station at check dam 29 in the Illgraben channel, located approximately 120 m upstream of the confluence 
with the Rhône River on the valley floor (Figure 1). The measurement station includes (a) a laser sensor that 
measures the top of the flow (flow depth); (b) a 8 m 2 force plate installed flush with the bottom of the check dam, 
with normal force sensors under each corner registering normal stress and normal-stress fluctuations, and hori-
zontal force sensors at the two upstream corners of the plate registering shear stress and shear-stress fluctuations; 
(c) and a geophone connected to the force plate which measures the velocity of the force plate in vertical direc-
tion. The laser and radar devices measuring flow depth are mounted above the force plate in the check dam, where 
there is no erosion and little tendency for deposition. The combined flow depth and normal force measurements 

Figure 1. (a) Overview of the Illgraben catchment, fan, channel, and location of the study reach and measurement station. (b) Example of channel-bed elevation change 
as a result of debris-flow 12 (07 August 2021), which was net erosional. (c) Example of channel-bed elevation change as a result of debris-flow 11 (16 July 2021), 
which was net depositional.
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allow for calculation of the bulk density of the flows. Flow front and surge velocities are estimated from the travel 
time along the 120 m channel stretch between CD28 and CD29 at the measurement station (McArdell, 2016; 
McArdell et al., 2007). From these observations, it is possible to calculate the frontal discharge of a debris flow 
and to estimate total flow volume. The volume of each debris flow (Table 1) was calculated as the product of the 
flow velocity and the cross-sectional area, integrated over the duration of the flow (Schlunegger et al., 2009).

3.4. Antecedent Rainfall

Antecedent rainfall is measured at the Swiss Federal Office of Meteorology and Climatology (MeteoSwiss) 
station located near Crans-Montana at an elevation of 1,423 m above sea level, approximately 11 km from the 
Illgraben torrent (lat/lon 46.298806°/7.460814°). The antecedent rainfall is defined as the cumulative amount of 
rainfall in a given period preceding debris-flow arrival at the measurement station.

4. Factors Controlling Debris-Flow Erosion
We have measured the pre-flow and post-flow topography of 13 debris flows over the period 2019–2021. These 
flows ranged in size from 600 to 87,000 m 3, had frontal flow velocities between 0.5 and 9 m s −1, frontal flow 
depths ranging from 0.25 to 3 m, and mean bulk densities between 1,600 and 2,300 kg m −3 (Table 1). There 
is a wide variety in the hydrographs and flow regimes, ranging from (a) single-surge flows with a steep front 
followed by a tapering tail to (b) flows with indistinct fronts and (c) to multi-surge events. Moreover, flows range 
from having well-developed to poorly-developed coarse-grained fronts, and flows can have hyperconcentrated or 
muddy-viscous bodies and tails (Table S4; Figures S1, S3–S15 in Supporting Information S1).

To determine the factors controlling debris-flow erosion and deposition, we compare the net channel-bed eleva-
tion change over a reach of 800  m upstream of the measurement station with measured flow properties and 
antecedent rainfall (Figure 1). We express channel-bed elevation change in m 3 per m of channel length in the 
downstream direction. We assume that the flow properties, as measured at the station, were approximately steady 
over the study reach, because it is relatively straight, channel slope and width are relatively constant, and the 
volume of eroded or deposited sediment over this reach was limited to a few percent of the total volume of the 
flows.

Date
Hfront

 a 
(m)

vfront
 b 

(m s −1)
Qpeak

 c 
(m 3 s −1)

τfront
 d 

(kPa)
ρ e 

(kg m −3) V f (m 3)
cum.τ g 
(kPa s)

SE h 
(m 2 s −2)

AR i 
(mm)

Erosion j 
(m 3 m −1)

1 2019-06-21 2.59 6.62 147.61 4.39 1,870 83,123 4,240 1.6 × 10 −3 17.1 −1.75

2 2019-07-15 0.54 3.39 16.54 0.98 2,191 9,869 584 4.6 × 0 −5 6.5 0.33

3 2019-07-26 1.05 8.69 93.26 2.15 2,223 29,077 3,561 2.0 × 10 −4 18.8 −1.65

4 2019-08-11 1.8 6.95 95.63 4.12 2,323 70,705 7,185 5.2 × 10 −4 17.6 −0.69

5 2019-08-20 0.44 0.89 8.06 0.75 2,031 21,031 1,881 1.4 × 10 −4 4.4 −0.28

6 2020-06-29 1.23 1.23 8.74 2.18 2,066 3,816 3,703 3.0 × 10 −4 9.4 0.06

7 2020-08-17 0.27 0.49 3.31 0.63 2,240 14,042 1,826 7.2 × 10 −5 2.6 2.66

8 2020-08-30 0.98 0.73 13.05 1.56 1,777 109,840 11,531 1.1 × 10 −3 10.4 −6.66

9 2021-06-05 0.24 1.96 6.83 0.37 1,602 625 737 - 8.7 −0.71

10 2021-07-06 2.5 8.69 186.61 3.57 1,605 58,498 2,368 4.2 × 10 −4 9.4 −1.40

11 2021-07-16 1.61 2.78 60.7 2.65 1,916 86,989 12,900 8.2 × 10 −4 7.3 2.70

12 2021-08-07 1.51 2.32 41.19 2.48 1,884 39,738 7,428 6.7 × 10 −4 12.2 −0.78

13 2021-09-19 0.86 1.25 10.67 1.38 1,697 9,084 3,101 3.7 × 10 −4 12.0 −0.38

 aFrontal flow depth.  bFront velocity.  cPeak discharge.  dFrontal shear stress .  eMean bulk density.  fFlow volume.  gCumulative 
shear stress.  hSeismic energy.  i3 hr antecedent rainfall.  jNet channel-bed elevation change.

Table 1 
Summary of Flow Characteristics, Antecedent Rainfall, and Channel-Bed Elevation Change
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Multiple flow properties have statistically significant correlations with channel-bed elevation change when 
excluding one or two common outliers (Figure 2; Table S1 in Supporting Information S1). These outliers, events 
8 and 11, are the result of a very long flow duration and limited antecedent rainfall, respectively, as  explained 
at the end of this section. The strongest correlations in our data set (excluding event 11) are those between 
channel-bed elevation change and flow properties that consider debris-flow activity over time, such as flow 
volume (R 2 = 0.58), cumulative shear stress (R 2 = 0.55), and seismic energy (SE) (squared integrated ground 
velocity amplitude (Schimmel et  al.,  2021)) (R 2  =  0.41) (Figures  2f–2h, Table S1 in Supporting Informa-
tion S1). Statistically significant relations are also found for frontal flow properties when we exclude events 8 
and 11 (Figures 2a–2d): Frontal flow depth (R 2 = 0.39), frontal flow velocity (R 2 = 0.46), and frontal discharge 
(R 2 = 0.42). The correlation between frontal shear stress, calculated as τ = rgHS, wherein r =  flow density, 
g = gravitational acceleration, H = frontal flow depth, S = channel inclination, and channel-bed elevation change 
is marginally significant with a p-value of 0.06 and R 2 of 0.35. We find no significant trend between mean 
bulk density and channel-bed elevation change (Figure 2e), although some high-density flows seem to have a 
higher tendency toward deposition which would agree with previous studies which have suggested that erosion is 
higher in more dilute flows where sediment concentrations are below an equilibrium value (Egashira et al., 2001; 
Fagents & Baloga, 2006; Pudasaini & Krautblatter, 2021; Takahashi, 1981).

Figure 2. Flow properties (a–h) and antecedent rainfall (i) versus and channel-bed elevation change. See Table S1 in Supporting Information S1 for correlation 
coefficients.
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We further find significant positive correlations between antecedent rainfall over a period of 2–3 hr, when exclud-
ing event 8 (R 2 ≈ 0.47; p ≈ 0.01) (Figure 2i; Figure S2; Table S1 in Supporting Information S1). For a period 
of 4–12 hr, the trend decreases in strength and becomes marginally significant, while beyond a period of 12 hr 
there is no significant trend. Similarly, we find no significant trend for 1 hr antecedent rainfall. We attribute the 
strong correlation between short-term antecedent rainfall and channel-bed elevation change to an increase in bed 
moisture with increasing antecedent moisture. Short-term antecedent rainfall induces runoff in the torrent which 
wets the bed, and thereby increases its erodibility (Iverson et al., 2011).

We find that events 8 and 11 act as outliers when frontal flow properties are considered, event 11 acts as an outlier 
when flow properties that consider debris-flow activity over time are considered, and that event 8 acts as an 
outlier when antecedent rainfall is considered. These outliers can be physically explained. Event 8, while having 
a relatively modest flow front, was of very long duration with a larger and faster moving second main surge, with 
a velocity of ∼6 m s −1 and a frontal flow depth of ∼2 m (Table 1; Figure S10 in Supporting Information S1). 
As  a result, channel-bed elevation change is strongly underestimated when frontal flow properties are considered, 
while it fits the trend when flow properties are integrated over time. During event 11, on the other hand, anteced-
ent rainfall was limited, especially 3–9 hr prior to the event (Figure S2 in Supporting Information S1). Therefore, 
the bed moisture content was likely very low resulting in deposition where erosion would have been expected 
based on flow properties alone.

5. Discussion
5.1. Shear Forces Versus Impact Forces

Because debris flows are high-density mixtures, erosion has been attributed to both basal shear forces (Frank 
et al., 2015; Hungr et al., 2005; Schürch et al., 2011) and impact forces (Berger et al., 2011; Hsu et al., 2008; 
Stock and Dietrich, 2006), but how these forces interact in the bed-erosion process remains largely unknown 
(De Haas & van Woerkom, 2016; Kavinkumar et al., 2021; Roelofs et al., 2022). The composition of debris 
flows can vary substantially ranging from mudflows and lahars with a high fraction of fine particles (clay, silt, 
sand) to granular flows with a high fraction of coarse particles with diameters that may exceed a meter (e.g., 
Kaitna et al., 2016). Moreover, their composition may also strongly differ within an event—typically a coarse-
grained flow front or surges with a low water content are followed by a finer-grained and more fluidal flow body 
(e.g., Iverson, 1997; McArdell et al., 2007). Therefore, the relative importance of shear and impact forces for 
debris-flow erosion may differ between and within flows. The forces measured at the base of a debris flow can 
be partitioned into mean forces and fluctuations around the mean. These distinct types of forces are associated 
with distinct mechanisms. Hsu et al. (2008, 2014) show that wear by sliding varies with the mean normal and 
shear forces and wear by particle impacts varies with the fluctuating force components (Bagnold, 1954; Stock 
and Dietrich, 2006).

To shed light on how shear and impact forces interact and control erosion we compare measured shear forces with 
measured fluctuating forces, expressed as normal-force fluctuations captured by the force plate and as ground 
velocity captured by a geophone connected to the force plate (Figure 3). We find that mean shear forces and 
force fluctuations are strongly correlated for the flows in our data set, similar to small-scale experimental debris 
flows (Roelofs et al., 2022). An increase in shear forces leads to an increase in force fluctuations. Moreover, for 
most flows the ratio between shear forces and fluctuating forces is similar, although we do observe that relatively 
muddy and viscous events (e.g., events 11–12) have relatively small force fluctuations, while the force fluctua-
tions in the relatively granular and coarse-grained event 1 are relatively large (Figure 3).

We find no increase in erosiveness for event 1, despite having large force fluctuations and large total SE 
(Figure 2h). In contrast, the amount of erosion in event 1 predominantly scales with the cumulative shear exerted 
on the bed by the debris flow (Figure 2g), which suggests that shear forces dominate the erosion process, at least 
on the unconsolidated bed of the lower parts of the Illgraben torrent. The overall strong correspondence between 
shear forces and fluctuations further explain the statistically significant trends found for both cumulative shear 
force and SE with bed erosion. A major implication of this finding is that erosion may be effectively predicted 
from either shear forces or impact forces. Moreover, it may open up a wealth of data for studying debris-flow 
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erosion by exploiting the large number of geophone measurements which are currently predominantly used for 
early warning (e.g., Hürlimann et al., 2019; Zhang et al., 2021).

5.2. Front, Body, or Tail?

There is no consensus in previous studies on whether erosion predominantly takes place during passage of the 
flow front which generally has a high flow depth and a large concentration of large particles (Berger et al., 2011; 
Schürch et al., 2011), or whether erosion is substantial during both the passage of the flow front, body, and tail 
(McCoy et al., 2012; Rickenmann et al., 2003). Although we acknowledge that this may differ between flows and 
sites, our results show that overall the cumulative work of the debris flows exerted at the bed best explains the 
observed channel-bed elevation change (Figure 2; Table 1 in Supporting Information S1). While we find statis-
tically significant relations for frontal flow properties with erosion (Figures 1a–1d) and cumulative forces with 
erosion (Figures 1f–1h), the correlations for the latter are stronger. It is important to note that both are related in 
that the largest flows generally also have the largest flow fronts (Tables S2 and S3 in Supporting Information S1). 
It is therefore likely that erosion at the flow front is most intense (cf., Berger et al., 2011), but our data shows that 
erosion in the body and tail of the flow cannot be neglected.

5.3. Implications for Erosion Prediction and Modeling

Our observations highlight the complexity of debris-flow erosion. We show that both flow and bed conditions 
significantly affect erosion and thereby flow-volume growth, but that none of the variables has a very high 
predictive capacity on its own. Both flow and bed conditions should therefore be considered in prediction and 
modeling of debris-flow erosion, in contrast to previous work which predominantly attributes erosion to either 
flow properties (Schürch et al., 2011) or bed wetness (McCoy et al., 2012). The material eroded by a debris 
flow depends most strongly on the cumulative forces exerted on the bed during the entire event in our data set. 
Accurate predictions should therefore account for the forces exerted on the channel bed during the entire event, 
which many modern debris-flow models do (e.g., Baggio et al., 2021; Frank et al., 2015; Pudasaini & Kraut-
blatter, 2021), and bed-erodibility conditions which are less commonly included in modern debris-flow models. 
Our finding that shear forces and impact forces are strongly correlated does increase the feasibility of modeling 
erosion in debris flows because it shows that a shear stress approach accounting for bed erodibility may suffice 
to model debris-flow erosion—at least in unconsolidated channels. Our work further provides key guidelines and 
data against which to validate and calibrate debris-flow erosion models.

Figure 3. Comparison of shear forces versus fluctuating forces. (a) Shear force versus normal force fluctuations. (b) Shear force versus ground velocity. The solid lines 
indicate the median and the colored bands denote the 25th–75th percentile range in 0.2 kPa shear force bins. The numbers correspond to the debris-flow events listed in 
Table 1.
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6. Conclusions
We have combined detailed flow measurements, rainfall data, and high-resolution measurements of channel-bed 
erosion and deposition for 13 debris flows in the Illgraben (CH), to identify the key controls on debris-flow 
erosion and deposition.

The data show that both flow conditions and bed wetness control erosion and deposition occurrence and quan-
tities. Flow conditions that describe the cumulative forces exerted at the bed over the full event (flow volume, 
cumulative shear stress, and SE) have the strongest correlations with measured erosion and deposition. However, 
we also find statistically significant correlations between erosion and deposition and frontal flow properties, 
including frontal velocity, flow depth, shear stress, and peak discharge. Antecedent rainfall over a period of 2–3 hr 
prior to the debris-flow events strongly correlates to erosion and deposition, while the correlation decreases in 
strength and diminishes toward shorter and longer time periods of antecedent moisture.

Shear forces and particle-impact forces are strongly correlated and jointly erode the bed, that is, flows with higher 
shear forces also have higher impact forces. This suggests that applying a shear-stress approach accounting for 
bed erodibility may therefore be applicable for modeling and predicting debris-flow erosion, as it will also largely 
incorporate the impact forces. The work and data presented here provides key input for model development by 
identifying key correlations of flow and bed conditions with erosion that models should oblige.

Data Availability Statement
Topographic and debris-flow data can be accessed at https://doi.org/10.24416/UU01-XXASOM.
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