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Summary

Estuaries host channel networks that can range from meandering single-thread

channels to complex channel networks comprising looping, branching, and offshoot

structures through which water, sediment, and nutrients are transported in both

the flood and ebb directions. In this article, we use graph theory to quantify the

structural and dynamical connectivity of multidirectional estuarine channel net-

works using network analysis techniques rooted in graph theory that have proven

useful for quantifying connectivity in river deltas. Networks from several estuaries

around the world are extracted from satellite imagery and compared to a set of

schematized networks that represent the end-member of the channel network

structure and dynamics found in estuaries. Higher levels of structural connectivity

are found for larger networks, which points to increased predilection for looping

structures in networks with large numbers of channels. The real-world network

structures contain signatures of both mutually evasive flood and ebb channels that

typify alluvial estuaries, but also contain branching structures as either bifurcating

delta-like structures or converging tidal patterns. The level of dynamical connectiv-

ity is modulated by flow direction through the network, with flood direction fluxes

more broadly distributed throughout the network and fluxes in the ebb direction

tending to be more localized. Analysis of dynamical connectivity also reveals a tidal

asymmetry indicative of fluxes in flood–ebb dominant channels in estuaries. This

study provides implications for understanding the self-organization of estuarine

channel networks on which fluxes are partitioned through estuaries in the flood

and ebb directions, and establishes a benchmark for analyzing multidirectional

channel networks using graph theory.
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1 | INTRODUCTION

Estuaries are semi-enclosed coastal water bodies that are located

where river and sea waters meet. Estuaries often host networks of

channels and bars that are shaped by the interplay of fluvial and

marine processes (Brown & Davies, 2010; de Haas et al., 2018;

Jeuken & Wang, 2010; Leuven et al., 2016; Robinson, 1960; Van der

Wegen & Roelvink, 2012; van Veen, 1950), forming environments

that are among the most productive in the world, provide a range of

ecosystem services, and support economic activities (Kennish, 2002;

Boerema & Meire, 2017). Channel networks in estuaries range

significantly in complexity, from single-thread straight channels to

multi-channel systems that bifurcate and recombine (Figure 1).

Analyzing estuarine channel connectivity may provide insight into

system processes, as has been done for tributary networks

(Rodriguez-Iturbe & Rinaldo, 1997; Wohl et al., 2017), tidal networks

(Fagherazzi et al., 1999; Rinaldo et al., 1999a, 1999b), deltas

(Passalacqua, 2017; Tejedor et al., 2015a, 2015b, 2016), and braided

rivers (Marra et al., 2014), but there exists no formal analysis of con-

nectivity in estuaries.

Patterns of hydrological connectivity—the transfer of matter,

energy, or organisms among various landscape elements via water-

mediated transport (Bracken et al., 2013; Pringle, 2003; Tetzlaff et al.,

2007)—provide information about the structure and function of
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geomorphological systems (Wohl et al., 2017), with implications for

sediment transport (Fryirs, 2013), biodiversity (Carrara et al., 2012),

vulnerability (Tejedor et al., 2015a, 2015b), and nutrient cycling

(Stieglitz et al., 2003). Structural connectivity, which refers to the

pattern of physical connections among landscape components

(Bracken et al., 2013), can be characterized by a network topology

(i.e., topological connectivity), an important constraint on how fluxes

are distributed through a channel network (Tejedor et al., 2015a).

Dynamic connectivity (sometimes referred to as functional

connectivity Wainwright et al., 2011) describes processes controlling

the magnitude and directions of fluxes (Bracken et al., 2013), and can

be quantified by calculating steady-state fluxes in channel networks

(Tejedor et al., 2015a). Connectivity analyses can help quantify the

linkages between landscape structure and processes (e.g., Jencso

et al., 2009). While the topology and self-organization of river and

tidal networks (structural connectivity) are established topics

(e.g., Fagherazzi et al., 1999; Horton, 1945; Rinaldo et al.,

1999a, 1999b; Rodriguez-Iturbe & Rinaldo, 1997; Shreve, 1966;

Strahler, 1957), recent work using techniques borrowed from graph

theory for the analysis of geomorphic networks (Heckmann et al.,

2015; Phillips et al., 2015) has, for example, catalyzed progress on

understanding how the dynamics operating on river network topology

can be interpreted to identify hotspots of geomorphological change

(dynamic connectivity) (e.g., Czuba & Foufoula-Georgiou, 2014, 2015;

Marra et al., 2014; Zaliapin et al., 2010).

The pioneering work of Smart and Moruzzi (1972) introduced

directed channel networks and the so-called connectivity matrix to

coastal deltaic environments. Recently, the structural and dynamical

connectivity of channel networks in coastal systems has been

reconsidered (Edmonds et al., 2011; Passalacqua, 2017; Tejedor et al.,

2015a, 2015b, 2016). A recent advance introduced a delta network

analysis framework based on spectral graph theory and developed a

suite of metrics that characterize the structural and dynamical connec-

tivity of river delta channel networks (Tejedor et al., 2015a, 2015b).

These tools have led to important discoveries about river deltas; the

evolution of channel network patterns and flux partitioning in river

deltas is strongly influenced by sediment composition (Tejedor

et al., 2016) and channel connectivity can influence how vulnerable a

delta is to anthropogenic disturbances (Tejedor et al., 2015a, 2015b).

While field, numerical, and theoretical analyses of connectivity in river

deltas have led to a number of insights about structure, evolution, and

transport processes (Christensen et al., 2020; Hiatt et al., 2018; Olliver

et al., 2020; Passalacqua, 2017; Sendrowski & Passalacqua, 2017;

Tejedor et al., 2015a, 2015b, 2016), such analyses have yet to be per-

formed in estuaries. In this study, we extend the spectral graph analyses

and metrics introduced by Tejedor et al. (2015a, 2015b) to estuarine

channel networks and develop characterizations of estuaries based on

the structural and dynamical connectivities.

A distinctive feature of estuaries is the change in flow direction

due to tidal motion. Network analyses of river and deltaic systems

often assume flow is unidirectional (e.g., Marra et al., 2014; Smart &

Moruzzi, 1972; Tejedor et al., 2015a, 2015b, 2016; Zaliapin et al.,

2010), but this assumption cannot be applied to estuarine environ-

ments, where flow direction changes cause temporal and spatial

variation in transport processes with feedbacks influencing system

geometry (Brown & Davies, 2010; Dronkers, 1986; Hoitink et al.,

2003; Prandle, 2004). Additionally, estuaries may have multiple inlets

and outlets, whereas previous network analyses have only considered

systems with a single inlet (deltas) or outlet (rivers). Formal

F I GU R E 1 Examples of a single-thread channel network and a
multi-channel network. (a) South Alligator River Estuary in Australia.
(b) Betsiboka River Estuary in Madagascar [Color figure can be viewed
at wileyonlinelibrary.com]
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frameworks exist for the analysis of tributary river network networks

(originating from several upstream nodes that converge to a single

outlet node) (Horton, 1945; Rodriguez-Iturbe & Rinaldo, 1997;

Shreve, 1966; Strahler, 1957) and distributary networks (distributing

fluxes from a single upstream node to several downstream nodes)

(Smart & Moruzzi, 1972; Tejedor et al., 2015a, 2015b, 2016), but

directional channel networks with the potential for both multiple

inlets and outlets have not been addressed in the geosciences

literature. Thus, a detailed analysis of the effects of flow direction on

the channel network connectivity remains unexplored and is needed

to establish a benchmark for network analysis in estuarine

environments.

There are several gaps in the current state of knowledge of

estuarine systems that network analyses may help address. Fluvial

inflows, geomorphology and lithology, marine influences, and

anthropogenic impacts differ considerably among the estuaries

around the world (Kennish, 2002), and the interplay of these forces

influences the structure and dynamics of estuarine channel networks.

A wealth of literature exists regarding the convergent estuary shape

as a function of allogenic forces (e.g., Prandle, 2004; Savenije, 2015;

Townend, 2012), but our understanding of internal patterns in estuary

morphology, especially the channel network, is less established.

Progress has been made in quantifying the tidal bar dimensions in

alluvial estuaries (Leuven et al., 2016, 2017) as a function of total

estuary width, tidal prism, and hydraulic geometry; the geometry of

the bar can be related to the braiding index of the channel network.

However, measures like the braiding index do not quantify connection

among channels. Additionally, physics-based numerical models that

qualitatively reproduce channel and shoal patterns in estuaries

(Lanzoni & Seminara, 2002; Townend, 2012; Van der Wegen &

Roelvink, 2012) have improved our understanding of processes and

emergent patterns in estuarine morphodynamics. Recent studies

(e.g., Hiatt et al., 2020; Sonke et al., 2021, this issue; van Dijk et al.,

2019) have used algorithmic channel detection to develop networks

for geomorphological analysis in estuaries using networks, but using

formal graph theory on estuarine networks remains unexplored.

Accordingly, we still lack quantitative measures to properly compare

and quantify patterns in real-world estuarine channel networks that

could be used to validate numerical and physical experiments of estu-

arine morphodynamics.

In this paper, we aim to deepen the understanding of large-scale

estuarine structure and dynamics by characterizing channel network

connectivity in several estuaries around the world and through com-

parisons with schematized network structures. We do so by extending

the work of Tejedor et al. (2015a, 2015b) to estuarine systems and

examine the robustness of their measures describing structural and

dynamical connectivity in a multidirectional environment. This work

helps establish a benchmark for the structure of and dynamics operat-

ing on estuarine channel networks.

2 | BACKGROUND

2.1 | Overview of network analysis

Networks (or graphs) are mathematical representations of groups of

items (like people, airports, or animals) and the relationships among

those items (like friendships, flight paths, or predator–prey

interactions). The network structure comprises nodes, which repre-

sent the items, and links, which represent pairwise relationships

between the items. Systems that can be modeled as networks are

seemingly limitless and the application of network theory is abundant

across scientific disciplines (Watts, 2004). The study of networks is

referred to as network analysis (or graph theory in the mathematical

community). This paper is concerned with the analysis of channel

networks in estuarine systems, so we limit our overview of networks

as they specifically relate to geomorphology and hydrology. Readers

interested in a more general discussion of networks are directed to

general review articles and textbooks (Albert & Barabási, 2002;

Newman, 2003, 2010; Wohl et al., 2017).

Broadly speaking, networks in the geosciences can be placed in

one of two categories (Dale & Fortin, 2010; Heckmann et al., 2015):

spatial networks, in which items have some type of spatial relationship

often characterized by the flux of mass or energy; or non-spatial

networks, in which items and their relationship have no intrinsic spatial

characteristics and are generally linked by functional or process-based

relationships. Analyses of non-spatial networks may include, for

example, the processes involved in weathering susceptibility,

ecohydrological process networks (Ruddell & Kumar, 2009a, 2009b),

and sediment cascades (Heckmann & Schwanghart, 2013). Examples

of spatial networks include rivers (Hiatt et al., 2020; Horton, 1945;

Rodriguez-Iturbe & Rinaldo, 1997; Shreve, 1966; Strahler, 1957) and

delta channels (Passalacqua, 2017; Tejedor et al., 2015a, 2015b),

earthquake locations (Abe & Suzuki, 2004), and hydrological

connectivity (Pringle, 2003). Networks can be either undirected or

directed; directed networks have directions assigned to each link,

whereas the links in undirected networks do not. Channel networks

are generally analyzed as directed systems, since there is a direction

associated with the transport of material. Our study is focused on

the directed spatial networks (i.e., the channel networks) found in

estuaries.

2.2 | Spectral graph theory

We apply the graph theoretic approach of Tejedor et al.

(2015a, 2015b) to analyze estuarine channel networks. In this section,

we detail the mathematical manipulation of the adjacency matrix

using a slight modification of the methods developed by Tejedor

et al. (2015a, 2015b). These operations were performed to generate

the results in the main body of the paper.

Spectral graph theory relies on the manipulation of the adjacency

matrix A and the so-called directed Laplacian matrix L (Tejedor et al.,

2015a, 2015b). The topology of a network can be conveniently repre-

sented by the adjacency matrix A, which is a binary matrix in which

rows and columns represent nodes, and the matrix entries indicate

the presence of links connecting nodes (Figure 2a,b). In a directed

network, the adjacency matrix is asymmetric and a matrix entry auv

represents the link directed from node v to node u. The channel

topology may also be weighted; weights could represent channel

geometry or the strength of the relationship between nodes.

A weighted adjacency matrix has weights wuv to represent the

strength of the connection directed from node v to node u, replacing

the one entry in the unweighted adjacency matrix.

ESTUARINE CONNECTIVITY 809



The adjacency matrix succinctly summarizes information about

the hierarchy of the network (the links between upstream and down-

stream nodes) from which the in- and out-degree matrices (Din and

Dout, respectively) can be constructed, where the in or out degree is

defined as the number of links directed to or from a node,

respectively. Thus, in matrix form, the degree matrices have non-zero

entries only on the matrix diagonal. The in- and out-Laplacian matrices

are defined as follows:

LinðoutÞ ¼DinðoutÞ �A, ð1Þ

where L stands for the Laplacian matrix and the superscript indicates

whether the in or out degree matrix is considered. The Laplacian is

useful because the properties of its null space can be used to

describe the structural and functional connectivity of a directed graph

(Tejedor et al., 2015a).

The eigenvector x of the matrix L is related to the eigenvalue λ as

follows:

Lx¼ λx, ð2Þ

where x¼ ½x1,…,xN� and λ is a scaling constant. The unweighted

steady-state flux is the eigenvector that spans the null space of

L (or, in other words, when λ¼0) (Tejedor et al., 2015a). Weighted

steady-state fluxes can then be determined as follows:

Fi ¼
X

j

wijFj, ð3Þ

where Fi is the steady-state flux in node i, wij is the weight along the

link connecting node j to node i (in that direction), and Fj is the flux at

node j. The fluxes at link vu are then assigned as Fuv ¼ Fvwuv

(e.g., Figure 2c). In this paper, fluxes in both the ebb and flood

directions are independently considered. In other words, a unique

adjacency matrix is developed for each direction (Aflood and Aebb) and

the steady-state fluxes are calculated for each of these adjacency

matrices. Steady-state fluxes represent mathematical properties of

the network structure and geometry. Flow partitioning at a bifurcation

(i.e., a node) through downstream channels is proportional to channel

widths (Bolla Pittaluga et al., 2003; Kleinhans et al., 2013; Wang et al.,

1995; Zolezzi et al., 2006), and thus the calculation of width-weighted

F I GU R E 2 Summary of an idealized network depicting subnetworks, topology, and the steady-state flux in both the flood and ebb directions.
(a) Network topology of the idealized network. The arrows along each network edge represent the direction of flow in the flood (blue arrows) and
ebb (red arrows) directions. The dashed lines represent the links belonging to two different subnetworks: S1, 7, which contains all links through
which material can flow between nodes 1 and 7 (orange dashed line), and S3, 8, which similarly contains all links between nodes 3 and 8 (green
dashed lines). Subnetwork S3, 8 has two alternative paths between nodes 3 and 8 due to the presence of a looped section of the network
between nodes 4 and 6. Subnetworks are unchanged by the direction of the flow. (b) Adjacency matrices for the network in (a). The matrix shown
here represents two adjacency matrices: one in the ebb direction (Aebb), with the red squares representing links that have flux present in the ebb
direction, and one in the flood direction (Aflood), with blue squares representing the same for the flood direction. For each adjacency matrix, only
one direction is considered and the fluxes in the other direction are not included (i.e., the entries for the flood direction depicted here are actually
zeroes for Aebb and vice versa). (c) Fraction of the unweighted steady-state flux in each link for the ebb (red) and flood (blue) directions following
the same syntax as in (b) [Color figure can be viewed at wileyonlinelibrary.com]
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steady-state fluxes herein can provide an insight into flux allocation in

remotely sensed networks.

A contributing subnetwork is the set of nodes that drain to node

u. Subnetworks are identified in the network topology so that metrics

can be calculated on each subnetwork (Tejedor et al., 2015a, 2015b).

In deltaic systems studied by Tejedor et al. (2015a, 2015b), there is

only one inlet (i.e., the delta apex), so subnetworks are uniquely

identified by the outlets (e.g., Figure 2a). However, in the estuarine

systems studied here, there can be multiple inlets and outlets, so each

subnetwork is uniquely defined by the inlet–outlet pairing and not

simply by the outlet. Therefore, the estuarine networks studied here

potentially have a large number of subnetworks relative to the

number of links/nodes as compared to deltaic systems.

3 | METHODS

We apply a series of metrics developed by Tejedor et al. (2015b) to

estuary channel networks and compare the results from real-world

estuaries to the those from schematic estuary networks that are

intended to represent end-member cases of multi-channel estuarine

networks observed on Earth. Most of the metrics are applicable to

estuaries with multiple outlets, but not to estuaries with a single

outlet channel, because most metrics rely on comparing measures in

one subnetwork to another. In this section, we provide an overview

of the network metrics followed by a description of the schematic

estuaries and the channel network extraction from satellite imagery

for real-world estuaries.

3.1 | Network metrics

A suite of descriptive metrics are considered: the number of alterna-

tive paths (NAP), the resistance distance (RD), the link sharing index

(LSI), the flux sharing index (FSI), and the leakage index (LI). The first

three metrics (NAP, RD, and LSI) are measures of structural

connectivity and attempt to quantify the structure of the network.

The remaining metrics (FSI and LI) are measures of dynamic connec-

tivity that characterize the behavior of fluxes (Fuv) as they are

partitioned throughout the network. Because estuarine fluxes are

bidirectional due to tides, we apply the network metrics in both the

flood and ebb directions by changing the designations of inlet and

outlet nodes based on the perceived flow direction determined from

satellite imagery.

Detailed descriptions and mathematical formulations for each

metric are described thoroughly in the Supporting Information and in

Tejedor et al. (2015b). Here we summarize the important aspects of

each metric required for understanding the results presented in

Section 3. Each metric is computed for all subnetworks within the

network, and the results are presented as a distribution.

Structural connectivity measures include number of alternative

paths, resistance distance, and link sharing index. The number of alter-

native paths (NAP) counts how many different paths a unit of flux can

travel along from source to sink in a given subnetwork. The resistance

distance (RD) is a measure of structural connectivity that quantifies

how connected an inlet and outlet node are within a subnetwork. RD

accounts for the “loopiness” of the subnetwork and the presence of

significantly different alternative paths through the subnetwork. High

values of RD indicate a relatively loopless path through the

subnetwork, while lower values indicate numerous alternative routes

through the subnetwork. The link sharing index (LSI) is a more

complicated metric that attempts to quantify the level of structural

overlapping among subnetworks. The LSI for a given subnetwork will

be high if it shares many of its links with other subnetworks, and low

if the links within the subnetwork are relatively isolated from other

subnetworks. To provide a quantification of these metrics on a

relatively simple network, the above structural connectivity measures

are summarized in Table 1 for sample subnetworks within the net-

work topology shown in Figure 2. Note that the structural connectiv-

ity measures do not depend on direction.

The metrics quantifying dynamical connectivity are flux sharing

index (FSI) and the leakage index (LI). The FSI is the average propor-

tion of steady-state flux of nodes within the subnetwork that arrives

at the outlet. The FSI is challenging to intuit, but can be viewed as a

measure indicating how much flux interaction there is between one

subnetwork and the others, and the degree to which LSI influences

that sharing. The LI is more straightforward and is the proportion of

flux entering a node that is lost to other subnetworks. Both dynamical

connectivity metrics are tabulated in Table 1 for the selected subnet-

works in Figure 2.

A new metric is introduced called the directional flux ratio (DFR).

The DFR is simply computed as the ratio in steady-state flux in a given

network link in the flood direction to the steady-state flux in the ebb

direction. Links with greater flood flux have DFR values greater

than 1, while links with flood flux less than the ebb flux will have DFR

values less than 1. If the steady-state fluxes in the link are completely

symmetrical, DFR will equal 1.

3.2 | Schematic estuary networks

The earth sciences often rely on comparing field/laboratory results,

numerical modeling, and/or remotely sensed data to theory to assess

the validity of results. Unfortunately, there is no theory regarding the

structure of estuarine channel networks, so we have created four

schematic estuarine networks intended to represent idealized

end-members of multi-thread estuarine network structure and flux

partitioning. The schematic networks will serve as a benchmark for

understanding the structure of estuary networks found in the field or

generated in laboratory or numerical experiments. The four schematic

networks with self-similar structure were created for a range of

network sizes quantified by number of nodes. They include a binary

T AB L E 1 Network metrics for the subnetworks delineated in
Figure 2

S1, 7 S3, 8

Flood Ebb Flood Ebb

NAP 1 1 2 2

RD 1 1 0.89 0.89

LSI 0.56 0.56 0.55 0.55

FSI 0.38 0.75 0.58 0.25

LI 0.16 0.38 0.23 0.08
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tree (Figure 3a), symmetric and antisymmetric meshes (Figure 3b,c),

and a stick network (Figure 3d). Network metrics were computed on

each schematic network for a range of network sizes determined by

the range of network sizes for the networks extracted from satellite

imagery (see next subsection).

The binary tree network (Figure 3a) is representative of an

idealized branching system that resembles a river delta and is

included to represent an end-member for delta-like estuaries that

have branching systems. In the flood direction, material is fluxed

from multiple inlets to a single outlet, and the opposite is true in

the ebb direction. The number of subnetworks is dependent on

network size. The idealized mutually evasive flood and ebb channel

system that is indicative of estuaries, first conceptualized by van

Veen (1950), is represented by the symmetric mesh network

(Figure 3b). In the symmetric mesh, fluxes are permitted to flow

along either branch at bifurcations and is structurally symmetric

about its longitudinal axis. It contains four subnetworks (two inlets

and two outlets) regardless of network size. This network is

intended to represent a relatively wide alluvial estuary with bars

(Leuven et al., 2017), as opposed to a narrow converging estuary

without bars. In the channels around bars, a major fraction of the

sediment in motion may tend to circulate rather than transport

mainly in one direction (Jeuken & Wang, 2010). The antisymmetric

mesh network is structurally similar to the symmetric mesh, but the

direction of the internal links (Figure 3c) preferentially allocates flux

to one side of the network (compare the direction of the vertical

links in (c) and (d)). Thus, it contains only three subnetworks (two

inlets and two outlets) regardless of network size. Thus it is not

symmetric about its longitudinal axis and it differs in flux

partitioning between the ebb and flood phase, as often found in

bar-dominated estuaries. Finally, the stick network (Figure 3d)

represents a simple estuary with a main branch and offshoot chan-

nels that could represent barb channels found in many estuaries or

multiple tributaries entering the estuary. The structure of the stick

network is similar to the binary tree, but without the tree-like

branching. It idealizes a relatively simple estuary, narrower than the

mesh networks, with one main channel and several dead-end

branches or embayments. In the flood direction, material is fluxed

from a single inlet to multiple outlets, while the opposite is true in

the ebb direction. The number of subnetworks is dependent on

network size.

Structural and dynamical connectivity metrics were calculated

in the flood and ebb direction for each unweighted schematic

network. Network sizes for each schematic network ranged

from �10 to �600 links with the exception of the stick network.

The stick network was capped at 300 links due to computing

limitations.

3.3 | Real-world networks extracted from satellite
imagery

Networks for 13 multi-channel estuaries and deltas were created

using LANDSAT 8 satellite imagery (Figure 4). The selected estuaries

span a range of latitudes, climates, river and marine influences,

and anthropogenic control, and include some deltas for comparison.

The acquisition date of image(s) for each system is presented

in Table 2 and information including geographical coordinates,

hydrography and tidal characteristics (if available), and other

environmental conditions for each system is included in the

Supporting Information. We utilized RivaMap (Isikdogan et al., 2015;

2017), an open source channel centerline extraction tool that utilizes

a multi-scale singularity analysis (Muralidhar et al., 2012), to identify

channel features from satellite imagery without the need for spectral

thresholding. Networks and associated topologies were generated as

follows:

1. Images were transformed using the Modified Normalized

Difference Water Index (MNDWI) (Xu, 2006) to enhance the

contrast between water and land pixels. The contrast in the

resulting image was rescaled by applying a contrast stretch. Images

containing clouds that obscured the channel network were not

included in the analysis.

2. River channel centerlines were extracted using the MATLAB

version of RivaMap from the transformed images.

3. Connectivity at bifurcations and confluences among channels is

not maintained by RivaMap (Isikdogan et al., 2017), so connections

were drawn manually using the satellite image as reference.

4. For each channel, the width was determined from the singularity

index generated by RivaMap (see Isikdogan et al., 2015, for details)

using the geoprocessing tools presented in Marra et al. (2014).

Width was assigned as an attribute to each channel. The length

F I GU R E 3 Schematic networks where circles represent nodes and lines represent links. The dashed lines represent potential links depending
on network size [Color figure can be viewed at wileyonlinelibrary.com]
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of the channel was also determined using GIS (geographic

information system).

5. After generating the networks, flow directions were assigned to

the width-weighted adjacency matrix based on the perceived flow

direction from satellite imagery.

Steady-state fluxes were calculated in both the flood and ebb

directions and were weighted by the link widths determined from

satellite imagery. Fluvial inputs and tidal ranges were not considered

when determining the steady-state fluxes. Thus, the results represent

a most basic case of the network considering only topology and

geometry.

4 | RESULTS

The results section is divided into results for the schematic estuaries

and those from the real-world networks extracted from satellite

imagery. In each subsection, the results from the network metrics

calculated in both the flood and ebb directions are presented.

4.1 | Schematic networks

Distributions of network metrics were calculated for the binary tree,

symmetric mesh, antisymmetric mesh, and stick networks (Figure 5).

F I GU R E 4 Satellite images with extracted channel networks for 13 estuarine and deltaic systems. Note that each image has its own scale
bar. Images were compiled using LANDSAT 8 images from the USGS Earth Explorer [Color figure can be viewed at wileyonlinelibrary.com]
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Structural connectivity measures include RD, LSI, and NAP. Resistance

distance generally decreases with increasing network size, which is

quantified by the number of links within the network (Figure 5a).

Structural connectivity measures are not affected by network

direction, so the results are presented independent of direction. The

median value for RD for all schematic networks except for the sym-

metric mesh is 1 regardless of network size. For the symmetric mesh,

RD decreases with network size until asymptotically approaching a

value of 0.4. Though the median value of the antisymmetric mesh (red

diamonds in Figure 5a) is 1, the lower range of values exactly matches

that of the symmetric mesh. Both the binary tree and stick networks

have RD values of 1 for every subnetwork because there are no alter-

native paths in these networks.

The median NAP in the binary tree, antisymmetric mesh, and stick

networks all have median values of 1, and the range in NAP increases

with network size for the antisymmetric mesh (Figure 5b). Conversely,

the NAP for the symmetric network exponentially increases with net-

work size due to birfurcating and rejoining structure of the network.

The absence of alternative paths is expected for binary tree and stick

networks, because there are no loops present. The two mesh

networks have numerous loops, but the median value of 1 for the

antisymmetric mesh is due to the preferential connection to one side

of the network.

The LSI has a positive relationship with network size, and each

network type tends to asymptotically approach a maximum value

(Figure 5c). All metrics approach an asymptotic value as the number of

links increases. The binary tree network does not begin to level off

within network sizes tested, but should approach 1 as the number of

links goes to infinity (Tejedor et al., 2015b). The binary tree subnet-

works all have the same LSI value at a given network size, due to the

fractal structure of the network. The LSI for symmetric mesh

approaches a maximum value of about 0.75 from a minimum value of

0.6 calculated at small network sizes. The range in values about the

median LSI is small for the symmetric mesh, and it decreases with net-

work size. The LSI for the antisymmetric mesh has a smaller median

and larger range than the symmetric mesh. The stick network has an

LSI that rapidly approaches 1 at a network size of 300. For the range,

the stick network also has very low values of LSI, which are due to

very small subnetworks that begin very close to the network outlet,

and thus share very few links with other subnetworks.

The dynamical connectivity measures calculated for the

schematic networks are the LI, FSI, and DFR (Figure 5d-f). The median

LI ranged from zero to 0.5 for each of the schematic networks

(Figure 5d). Each subnetwork in the binary tree (ebb direction) has a

leakage index of 0.5, because fluxes are split evenly at every bifurca-

tion in the unweighted network. The stick network in the flood direc-

tion also has a median value of 0.5 for the same reason. In the flood

direction, values of LI are zero for the binary tree. In the ebb direction,

LI in the stick network has a median of zero because each subnetwork

shares a common outlet node. The median LI values of both mesh net-

works quickly approach zero, and the range about the median

decreases with increasing network size for both. The LI distribution is

unaffected by network direction for both mesh networks because the

adjacency matrices are functionally equivalent in each direction.

The FSI exhibits wide-ranging behavior across the network types

and directionality (Figure 5e). The binary tree network has high values

of FSI in the ebb direction because the flux is split evenly at each

successive bifurcation. Thus, there is increasing overlap of fluxes

among subnetworks in the upstream portions of the network as the

number of edges increases. In the flood direction, FSI is expectedly

zero at all network sizes because no material is fluxed from one sub-

network to another. The symmetric mesh has a median FSI of 0.5 for

all network sizes, while the antisymmetric mesh has progressively

lower median values of FSI with network size. The variability in FSI

across subnetworks is very high in the antisymmetric network, with

some subnetworks reaching an FSI value of about 1 at larger network

sizes. The stick network shows significant disparity in FSI depending

on direction, with the ebb direction yielding FSI values of zero and

and approaching 1 in the ebb and flood directions, respectively.

Each idealized network has a DFR median that does not change

with network size since the networks are generally symmetric, except

for the stick network. The antisymmetric mesh network DFR distribu-

tion does exhibit significant variability as the size of the network

increases, since the location of flux concentration changes with flow

direction. Because of the mirrored nature of the antisymmetric

network structure, the DFR rapidly approaches very large numbers,

because of the preferential flux of material to one side of the network.

The stick network fluxes are biased toward ebb fluxes, because the

system acts as a tributary in the ebb direction, greatly increasing flux

values along the main stem relative to the flood direction.

4.2 | Real-world networks

We calculate the resistance distance (RD), link sharing index (LSI), flux

sharing index (FSI), leakage index (LI), number of alternative paths

(NAP), and the directional flux index (DFI) for each estuary network.

For the metrics related to the structure of the network (i.e., RD, NAP,

and LSI), there is a correlation with the number of links in the network

(Figure 6a,b,c). Larger networks tend to have lower median values and

higher variability in RD than do smaller networks. There is appreciable

scatter about the overall trend of decreasing RD with increasing

network size. This result is intuitive, as networks with more links tend

T AB L E 2 List of LANDSAT 8 scenes

Location Acquisition date Abbreviation

Bannow 08/29/2016 Ba

Betsiboka 08/11/2016 Be

Columbia 08/19/2016 Cb

Congo 03/03/2015 Cg

Colorado 04/14/2016 Co

Corentyne 10/06/2015 Cr

Fly (East) 10/12/2016 Fl

Fly (West) 09/28/2014 Fl

Humber 02/23/2016 Hu

Northern Dvina 08/21/2015 Nd

Pungwe 07/09/2015 Pu

Western Schedlt 10/31/2016 We

Yangtze (East) 08/03/2016 Ya

Yangtze (West) 01/01/2016 Ya

Yukon 05/31/2016 Yu
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to contain more loops, which causes a decrease in RD. However,

there is considerable variability in the presence of loops among the

networks. Network size and NAP appear to be correlated (Figure 6b)

but there are notable deviations from this trend (e.g., the Congo

system). Larger networks also tend to have greater variability in NAP

than do smaller networks. The opposite behavior is true for the LSI,

which tends to increase as the network gets larger. The Colorado

(Co) network LSI distribution is higher than similarly sized networks,

which is probably due to the presence of many tidal channels that

connect to the main estuarine channel, which facilitates a high degree

of link sharing among the subnetworks. Considerable variability in the

value of LSI exists for the Yukon network (Yk), which is likely due to

its very large number of subnetworks.

Dynamical connectivity metrics (LI, FSI, and DFR) do not appear

to have a positive correlation with network size (Figure 6d–f). Median

values of LI are typically below 0.2, and no subnetworks had LI values

F I GU R E 5 Structural (a–c) and dynamical (d–f) connectivity metric results for schematic networks over a range of network sizes. The
distributions for each metric are summarized by a median value and the 5th and 95th percentiles (indicated by vertical lines). Open symbols
represent flood direction and filled symbols represent ebb direction. Each network is represented by a unique symbol and color (corresponding to
Figure 3): binary tree (blue circles); symmetric mesh (purple x symbols), antisymmetric mesh (red diamonds), stick (black squares) [Color figure can
be viewed at wileyonlinelibrary.com]
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greater than 0.5 (Figure 6d). However, there is significant variability in

the LI distributions in both the flood and ebb directions and no

correlation with network size or directionality.

Median FSI tends to increase with network size, but there is

significant variability (Figure 6e). For many of the networks, the

median FSI is greater in the flood direction than in the ebb direction.

The null hypothesis of equivalent medians between the flood and ebb

FSI distributions for a Wilcoxon rank-sum test at the 5% significance

level was run and rejected for half of the networks analyzed (Bannow,

Yangtze, Western Scheldt, Columbia, Northern Dvina, Congo, Yukon).

The null hypothesis was not rejected for the other networks (Humber,

Pungwe, Colorado, Corentyne, Betsiboka, and Fly). Thus, larger

networks seem to have a more significant disparity in median FSI.

The Corentyne network has values of zero for RD, LSI, LI, and FSI

because the network only contains one subnetwork. All of these

metrics rely on interactions with other subnetworks and are thus zero.

The NAP depends on the presence of loops in the system, which are

present in the Corentyne.

F I GU R E 6 Summary of the network metrics evaluated for the networks shown in Figure 4 using a box and whisker plot arranged in order of
increasing network size. Median values are indicated with a red line plotted inside the box delineating the 25th and 75th percentiles. The
whiskers extend to the 5th and 95th percentiles. Red crosses thus indicated outliers. The x-axis in all panels is organized by increasing network
size. The metrics show are: (a) resistance distance (RD); (b) number of alternative paths (NAP); (c) link sharing index (LSI); (d) leakage index (LI);
(e) flux sharing index (FSI); and directional flux ratio (DFR). Structural connectivity metrics (RD, LSI, and NAP) are calculated independent of
direction, and dynamical connectivity metrics (LI, FSI, and DFR) depend on direction. For LI and FSI, white indicates the flood direction and black
indicates the ebb [Color figure can be viewed at wileyonlinelibrary.com]
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All of the real-world networks studied have median DFR values

very close to 1 (Figure 6f). Variability about the median tends to

increase with increasing network size, and there are many more links

that have DFR values that lie outside the 25th and 75th percentiles.

5 | DISCUSSION

5.1 | Comparison of real-world and schematic
networks

The results from the real-world networks are compared to the distri-

butions of results from the schematic networks to contextualize the

structural and dynamical connectivity of estuaries in this study

(Figure 7). The placement of the distributions for each natural network

is indicative of the structural and dynamical elements of the network,

and the proximity to the distributions of schematic networks is

interpreted by how similar the real-world networks are to the

end-members represented by the schematic networks. For discussion

clarity, the region between the 25th and 75th percentiles for each

real-world network is referred to as the inter-quartile distribution

(IQD) and the region bounded by the 5th and 95th percentiles is

called the P5–P95 envelope.

For the real-world networks, the IQDs of all metrics are bound by

the medians of each schematic network and fall within the the

P5–P95 envelope for the range of network sizes tested (Figure 7).

This implies that the schematic networks generated for this analysis

are reasonable representations of end-members of estuarine struc-

tural and dynamical connectivity. The IQDs of RD all lie within the

P5–P95 envelope for the antisymmetric mesh and plot well outside

the P5–P95 envelope of the symmetric mesh (Figure 7a), indicating

that the idealized mutually evasive flood and ebb channel structure of

the symmetric mesh may not be reflected in the structure of real-

world estuarine systems. Supporting this argument is the significant

deviation in the IQDs for NAP compared to the P5–P95 envelope for

the symmetric mesh (Figure 7b). The NAP median in real networks is

always smaller than that of the idealized symmetric mesh, indicating

that real estuaries contain fewer looping structures than a mesh.

Some NAP medians are equal to zero, indicating that highly asymmet-

ric structures or tree-like structures (stick or binary tree) can comprise

a significant portion of estuarine networks. The LSI for natural

networks generally plots between the binary tree and stick medians

(Figure 7c). At larger network sizes, the influence of stick-like network

structures, such as the presence of barb channels (Dalrymple &

Choi, 2007; Leuven et al., 2016, 2018; Robinson, 1960), leads to very

high values of LSI. In general, the IQDs for the real-world networks do

not plot near the LSI distribution for the antisymmetric mesh, which

suggests that the structural connectivity of the studied estuaries is

fairly balanced across subnetworks. However, it is clear from the vari-

ability place of the real-world IQDs, relative to the distributions of the

schematic networks, that no one metric can completely capture

sweeping trends in structural connectivity across the systems studied

(Figure 7a–c).

The IQDs for the LI all have values less than 0.4 (Figure 7d),

indicating that the flux distribution in the networks is somewhere in

between the behavior for tree-like networks (binary tree and stick

medians plot at 0.5) and mesh-type networks (symmetric and

antisymmetric mesh medians approach zero). The IQDs for the FSI

span a wide range of values for both the real-world and schematic

networks but the IQDs fall within the P5–P95 envelope of most of

the schematic networks (Figure 7e). Some networks have very high

values in the IQD of FSI that are similar to the flood-direction FSI

median for the stick network, which suggests tidal structures may play

a large role in the partitioning of fluxes in these systems. Indeed, the

anomalously high LSI IQD values for the Bannow and Western

Scheldt (Figure 6c) systems is likely due to stick-like tidal subnetworks

nested within the overall network (Figure4), which is also manifested

through stick-like behavior in the partitioning of fluxes in the flood

direction (Figures 6e and 7e).

Because no one measure of either structural or dynamical

connectivity appears to fully capture the structure or dynamics of the

analyzed networks, we view the data from Figure 7 in three parameter

spaces defined by selected metrics (Figure 8). Doing so should provide

further insight into how real-world networks relate to the end-

member schematic networks. We compare two measures of structural

connectivity: RD and LSI (Figure 8a). In the RD-LSI parameter space,

the medians for most networks lie outside the P5–P95 envelope of

the schematic networks. Most networks occupy the parameter space

between the symmetric mesh and binary tree or stick medians,

indicating that the systems studied likely exhibit a combination of the

characteristic structural of an idealized flood–ebb channel configura-

tion (e.g., van Veen, 1950) and branching channel structures that may

be indicative of deltaic (binary tree) or tidal (stick) structures. Note the

structural connectivity measures do not depend on flux direction.

The real-world networks mostly occupy the same space when

comparing dynamical connectivity measures (LI and FSI; Figure 8b)

but the directionality of the stick and binary tree networks factor in

the interpretation. In this parameter space, the real-world medians lie

largely between the medians for the symmetric mesh and binary tree

ebb direction and the stick flood direction. Due to their branching

nature in the direction of the flux, the dynamical connectivity of the

binary tree ebb and stick flood are indicative of fluxes being broadly

distributed across subnetworks. In this comparison, many networks

have values of zero in the ebb direction (Congo, Humber, Corentyne,

and Bannow), because the system converges to a single outlet in the

landward portion of the network. The opposite is true for the delta-

like Yangtze.

In the parameter space of structural to dynamical connectivity,

the median FSI and LSI values for each real-world network lies within

a region between the medians of the flood/ebb symmetric mesh and

the stick (flood) and binary tree (ebb) distributions (Figure 8c, compare

open and closed symbols with shaded areas). In all three parameter

spaces tested, the real-world networks exhibit branching structures

likely nested within the classical symmetric mesh structure. Thus, the

majority of networks tend to partition fluxes with characteristics both

of the symmetric mesh, indicating mutually evasive flood and ebb

channels as in van Veen (1950) and Leuven et al. (2016), and a

branching network that more broadly distributes flux across subnet-

works than the symmetric mesh, which points towards either tidal or

delta-like channel network structures as in Tejedor et al. (2015b).

Visual inspection shows that most of the networks indeed have

multiple outlets (Figure 4) and, as such, a tendency towards the binary

tree is obvious. On the other hand, the network analysis also points

at flood/ebb asymmetry, which is a strong indication that the
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mechanisms causing mutually evasive flood and ebb channels operate

also in systems of multiple outlets, which would not easily be detected

by simpler and visual inspection.

Dynamical connectivity measures, particularly the FSI, tend to

have higher median values than the ebb direction (Figure 8b,c), which

indicates that fluxes are more broadly partitioned across the network

F I GU R E 7 Summary of real-world network metric distributions compared to idealized networks. The median and 25th and 75th percentiles are
presented as a box plot for each real-world network in both flood (white) and ebb (black) directions, if applicable. For the schematic networks, the
median is drawn as a solid line and shaded areas are bounded by the 5th and 95th percentiles. Each metric is plotted against the number of links in
the network, which is a proxy for network size (provided in the Supporting Information) and is of the same order as Figure 6. For figure clarity, the
whiskers and outliers of the real-world networks shown in Figure 6 are not shown [Color figure can be viewed at wileyonlinelibrary.com]
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structure in the flood direction than in the ebb direction. The interpre-

tation is supported by the proximity of flood direction medians to the

binary tree (ebb) and stick (flood) medians in the LSI–FSI parameter

space, but there is significant scatter. Nevertheless, this appears to

support the concept of circulating sand currents in estuaries with pre-

dominant sediment transport onto shoals and into barb-like channels

in the flood direction and sediment transport in downstream concen-

trated in ebb-dominated main channels (Brown & Davies, 2010;

Dronkers, 1986; Leuven et al., 2016; van Veen, 1950). The tendency

of one, or a few, ebb-dominant channels and flood dominance of the

shoals and bars stems from the phase difference between tidal

water-level fluctuation and tidal currents and is common in many

tidal systems (e.g., Braat et al., 2017; Brown & Davies, 2010;

Wang et al., 2002).

Qualitative zonations were developed based on interpretations of

the LSI and FSI and applied to the LSI–FSI parameter space to provide

context for values of real-world networks (Figure 9). Networks with

high medians of LSI and FSI contain many structural elements (links)

that are shared among subnetworks and thus have broad flux distribu-

tion among those subnetworks. Most of the networks studied lie

within this region of the LSI–FSI parameter space. This is also true of

a data set of only river deltas as analyzed by (Tejedor et al., 2015b)

and is unsurprising because many of the systems studied here have

branching delta-like structures, but also carry the signature of flood–

ebb asymmetry and mutually evasive channels, which create many

opportunities for flux sharing to the presence of loops. Several

networks also exhibit high medians of LSI and low medians of FSI

(Figure 9), which is generally indicative of a structure with limited

outlets in one direction, causing flux localization with limited capacity

for transfer among subnetworks. This is found in the ebb direction for

the Congo, Western Scheldt, and Bannow, which all carry some

characteristics of the tidal structure of the ebb direction stick net-

work, and the flood direction for the binary tree-like network of the

Yangtzhe. Networks with low LSI and FSI medians are the Humber,

F I GU R E 8 Comparisons among structural and dynamical connectivity measures for the schematic and real-world networks plotted in several
parameter spaces: (a) RD and LSI; (b) LI and FSI; and (c) LSI and FSI. For each real-world network, the median is plotted and the size of the dot
indicates the relative size of the network (number of links). For the idealized networks, the lines represent median values, while the arrow indicates
the direction of increasing network size. The shaded region is bounded by the 5th and 95th percentiles for each idealized network distribution. In
several cases, there is no shading for the binary tree or stick networks, because there is no variability in the metric value among subnetworks for a
given direction (e.g., FSI and LI for binary tree ebb and stick flood). Open symbols indicate the flood direction, while closed symbols represent the ebb
direction (arrows for idealized networks and dots for real networks) [Color figure can be viewed at wileyonlinelibrary.com]
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Pungwe, and Corentyne. These networks have very few connections

among subnetworks because they have very few channels overall, and

there is limited opportunity for flux to be partitioned among

subnetworks. Finally, no networks studied lie within a region of high

FSI and low LSI (Figure 9). This is expected, because it is highly

unlikely that a network would form in such a way to facilitate

significant flux partitioning among subnetworks when limited

structural connections are available.

The results in this study indicate that larger estuary networks

tend to have larger median values of LSI (Figure 6c), though there is

significant scatter in LSI across subnetworks at large network sizes. In

general, networks with greater numbers of links (i.e., larger) tend to

have more loops and interconnectedness among the various subnet-

works, which leads to large values of LSI. This was also found by

Tejedor et al. (2015b) for deltaic networks. The high LSI for large

networks in this study indicates that estuarine networks tend to self-

organize in such a way as to maximize the structural connectivity

within the channel network. Because the networks presented in this

study were extracted from satellite imagery, the self-organization of

channels yielding high LSI values also means that the estuary bars are

developing into predominantly subaerial features that can be distin-

guished from water in a satellite image (Figure 4). This interpretation

is intuitive for larger networks, because the size of the system allows

for appreciable channel–shoal patterns (Leuven et al., 2016; Van der

Wegen & Roelvink, 2012) that are larger than the resolution of

satellite imagery. Two systems tend to deviate from this behavior: the

Corentyne (Cr) and the Congo (Cg). These networks tend to be more

similar to braided systems than the other estuaries in this study

(Figure 4) and have a limited number of inlets/outlets.

5.2 | Limitations and future directions

A significant limitation to the use of spectral graph theory developed

by Tejedor et al. (2015a, 2015b) for estuarine network analysis is the

requirement of the estuarine network to have multiple inlets and

outlets to generate many of the network metrics used in this study.

Under the assumptions of the graph theory used to calculate these

metrics, which were originally intended for deltaic distributary

networks, the system must comprise at least two subnetworks in

order to generate a distribution of RD, LSI, LI and FSI because the

metrics are calculated on a subnetwork to subnetwork basis. This limi-

tation is exemplified by our results for the Corentyne network

(Figure 6), which had trivial values of RD, LSI, LI, and FSI because the

system had only one inlet and one outlet. Many alternative paths

were identified and the flux ratios depending on direction were

quantified (Figure 6b and f, respectively) because those metrics are

independent of the subnetwork requirement. Thus, the selection of

estuaries that could be analyzed was limited to relatively large

estuaries with multi-thread channel networks that were resolved at

the resolution of satellite imagery. The use of network analysis for

estuaries would benefit from the development of targeted metrics

based on graph theory that can handle “chain-like” systems with only

one inlet and one outlet. Such an advancement would likely benefit

our understanding of braided river networks and other “chain-like”
directed Earth system networks that have relatively few available

graph theoretic approaches compared to undirected networks

(Heckmann et al., 2015; Phillips et al., 2015).

Considerable focus in estuarine research has been placed on the

importance of tidal asymmetry and its relations to estuarine geometry

and net sediment transport (Brown & Davies, 2010; Dronkers, 1986;

Friedrichs & Aubrey, 1988; Kang & Jun, 2003; Prandle, 2003). General

conclusions are that ebb–dominance causes a net sediment loss from

the estuary, resulting in an increased channel depth; flood dominance

causes net sediment influx, resulting in sediment accumulation and a

decreased average depth. Estuaries may alternate between these

phases (Brown & Davies, 2010), enlarge, or silt up, depending on

fluvial and coastal sediment supply (de Haas et al., 2018). Since

channels are the primary conveyor of momentum and sediment in

F I GU R E 9 A qualitative categorization based on interpretations of the structural link-sharing index and the dynamical flux-sharing index.
Real-world network medians are plotted over the qualitative categories as circles. Marker size indicates the relative network size, and white and
black circles represent flood and ebb directions, respectively [Color figure can be viewed at wileyonlinelibrary.com]
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estuaries, the channel network connectivity and the dynamics

operating on the network are potentially indicative of the processes

occurring in the channel network and on the shoals and bars flanking

and terminating the channels. Future research on tidal asymmetry in

multi-channel estuaries may benefit from using spectral graph theory

to calculate steady-state fluxes in both the flood and ebb directions,

then by applying metrics such as DFR that directly quantify asymme-

try on individual network links. However, this approach is currently

limited by a lack of network-scale flux measurements in estuaries due

to logistical or instrumentation constraints. Validated numerical

modeling results combined with networks extracted from high-

resolution topography (e.g., Sonke et al., 2021, this issue) are good

candidates to test the efficacy graph theory to produce reasonable

estimates of tidal flux asymmetry in estuaries.

A critical gap in understanding what sets the patterns and dynam-

ics in estuarine channel networks is the role of vegetated bank

strength, which is a major factor in determining whether a river will be

braided or meandering; higher bank strength generally leads to

meandering, while cohesionless banks produce more braided rivers

(Kleinhans, 2010). At the same time, vegetation on bar surfaces is also

a cause of meandering as it reduces or prevents bar cutoff and initia-

tion of braiding (Kleinhans et al., 2018). There are indications in

numerical model studies (Braat et al., 2017; Brückner et al., 2020),

experiments (Braat et al., 2019) and geological studies (de Haas et al.,

2018) that similar mechanisms act in estuaries. This work addresses

the connectivity of estuarine channel networks, but future work may

benefit from coupling information about the density, type, and spatial

extent of cohesive bank and bar surface material and vegetation cover

to channel network analyses. Doing so should highlight expected

controls of bank strength and bar surface resistance against erosion

on channel network patterns along the fluvial–tidal transition.

6 | CONCLUSIONS

This study investigated the structural and dynamical connectivity in

estuarine channel networks. Schematics networks were created and

analyzed to form a benchmark on which to interpret results from real-

world estuarine and delta networks extracted from satellite imagery.

The schematic estuaries used were a binary tree (representing a

bifurcating delta), symmetric and antisymmetric meshes (representing

the mutually evasive flood and ebb channels of estuaries), and a stick

network (representing tidal network structure). Thirteen real-world

networks were extracted from satellite imagery and were selected to

represent a range of estuary network structure types, from nearly tidal

networks to bifurcating delta-like systems. Both sets of networks

were analyzed using spectral graph theory metrics developed by

Tejedor et al. (2015b) for use in deltaic environments in both the flood

and ebb directions. The real-world networks were then subsequently

compared to the schematic networks. This paper represents the first

attempt to use spectral graph theory to analyze estuarine channel

network structure and dynamics in both flood and ebb directions,

and thus furthers our ability to quantify channel networks in

multidirectional environments.

Structural connectivity in estuaries is correlated with network

size. As networks get larger, measures of structural connectivity tend

to indicate the increased presence of looping structures within the

network, resulting in increasing values of link sharing index and

number of alternative paths, and a decreasing resistance distance.

Analyzing the results within the structural connectivity parameter

space indicates that the networks study carries structural characteris-

tics of the mutually evasive flood and ebb channel patterns that typify

alluvial estuaries in addition to branching patterns typical of both

deltas and tidal networks. However, it is not possible to distinguish

between delta-like branching and tidal structures using the structural

connectivity metrics presented in this study.

Direction impacts the dynamical connectivity of estuarine net-

works. Results indicate that networks analyzed in the flood direction

exhibit higher values of flux sharing index than in the ebb direction,

although no such disparity is apparent for the leakage index. Most of

the estuaries networks studied contain many structural connections,

resulting in broad flux distributions throughout subnetworks. Flows in

the flood direction appear to have a more broadly distributed flux

among subnetworks compared to flows in the ebb direction. While

many networks appear tree-like, both visually and in terms of

structural network indices, dynamical network metrics reveal a tidally

caused asymmetry that is mechanistically similar to fluxes in mutually

evasive flood- and ebb-dominated channels. The results suggest that

systems with significant tidal flows may exhibit estuarine behavior

that is not readily apparent from their channel network structure.
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