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What’s in a name?

A rose by any other name would smell as sweet

William Shakespeare
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The genome
The human genome consists of 3.2 billion building blocks called 
nucleotides that are chained together in 23 different  chromosomes. 
Each nucleotide can be one of four molecular units: adenine, 
thymine, cytosine, or guanine (indicated by the letters A, T, C and 
G respectively). Your genotype refers to your individual nucleotide 
sequence, and your genotype at a specific position refers to the 
nucleotide (“letter”) at that position in your genome. Specific regions 
of the genome can be used as a blueprint to make proteins, which 
fulfil most of the functions in our body. These regions, and the regions 
around it that regulate how often the protein is made, are called 
genes.  The majority  of our genome – 99.5 % – is identical to the 
genome of any other person. [1] Because the genome is so large, the 
small proportion that varies still amounts to millions of nucleotides.

Genomic  variation
The most common type of genetic variation is when one 
nucleotide at a specific position varies; this is called a Single 
Nucleotide Polymorphism, or SNP (pronounced “snip”). Other 
genetic variants that are often observed are small insertions and 
deletions - where a part of the genomic sequence is seemingly 
missing or added in some people. Whether this is called an 
insertion or a deletion depends on the reference genome . 

The first reference genome was composed in 2003 and is based 
on the genomes of tens of people. [2] Larger genetic variants are 
mainly observed in cancer, where the genome in the tumor is 
often rearranged, although they can also be seen in the general 
population. An important distinction with for instance cancer 
genetics is that SNPs describe genetic variants that we carry 
with us from conception and do not change throughout our life 
(also called germline variation), while the genome in a tumor 
has often changed drastically from acquired mutations. 
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Different models of SNP-phenotype effects
Each trait that varies among people is a phenotype. Height, for 
example, is a continuous phenotype. Whether you can roll your 
tongue is a binary phenotype; its value is true or false. A very common 
type of binary phenotype are disease phenotypes; if someone has 
the disease, they are a case, otherwise they are a control. Binary 
(disease) phenotypes are thus also called case control phenotypes.

If we want to study the effect of a SNP on a certain trait, we should 
recall that each chromosome and thus each SNP has two copies. 
Each copy can have one of two options: the reference nucleotide 
(also called reference allele, indicated with ref) or the alternative 
nucleotide (alt). This means that there are three options for the 
combination of alleles: ref-ref, ref-alt or alt-alt. Recessive SNPs only 
lead to a phenotype  if the effect allele is present in both copies, 
and dominant SNPs lead to a phenotype if any or both copies 
contain the effect allele. Others affect a phenotype additively; each 
additional copy of the effect allele increases the risk of getting a 
disease, for instance. This thesis describes additive SNP effects.

In the Mendelian inheritance  model, one genetic variant leads to 
one predictable phenotype. [3] However, most common diseases are 
complex traits that are associated with many genetic variants, as well 
as non-genetic factors. Each associated genetic variant is assumed to 
increase disease risk by a very small amount. If an individual has many 
genetic and non-genetic risk factors, the chance that they will get the 
disease (their disease risk) is greater than that of someone with less 
risk factors. [4] The variation of a trait in the population is not always 
associated with genetic variation. Some traits – for example which 
language you speak – are acquired, and not influenced by our genome.  
The relative contribution of genetic variation to phenotypic variation is 
the heritability. It is 0 for acquired traits, and 1 (or 100%) for traits whose 
variation can be explained by genetic variation alone.  Heritability does 
not describe how much of a certain trait is influenced by genetics: if 
environmental variance is very low, the relative contribution of genetic 
variation to the phenotypic variation is high. Still, an environmental 
change can have a large effect on the phenotype. [5], [6]

Thesis.indb   12Thesis.indb   12 06/05/2022   13:1806/05/2022   13:18



The relationship between genetic variation and our individual traits

13

Genome Wide Association Studies 
To find genetic variants that are associated with a phenotype, we 
investigate each SNP for a relationship between the number of 
alternative alleles and the phenotype values. This is called a Genome 
Wide Association Study (GWAS). In figure 1 we see an example of a 
GWAS where we are looking for SNPs that are associated with higher 
risk of ischemic stroke . We describe the genotypes by counting 
the number of alternative alleles someone has; 0, 1 or 2. How much 
the risk increases or decreases with each additional copy of the 
alternative allele can be calculated from the odds ratio: the ratio of 
cases/controls ratio for two consecutive columns. In figure 2 we want 
to find SNPs that are associated with the age at onset of ischemic 
stroke. We have to analyse the data differently, because age at 
onset is a continuous value. The slope of the linear regression line 
tells us how much younger – on average – people get an ischemic 
stroke if they have an additional copy of the alternative allele.

Number of alternative alleles for a SNP
0 21
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ol

#cases / #controls 10 / 40 = 0.25 15 / 15 = 1 20 / 5 = 4

x 4 x 4 effect size (odds ratio)

Figure 1. An example of case-control analysis at a SNP. Each dot is a person: blue 
for cases (top row) and yellow for controls (bottom row). The columns indicate the 
number of alternative alleles each person has (0 = ref-ref, 1 = ref-alt or alt-ref, 2 
= alt-alt). The ratio of cases to controls (the odds of ischemic stroke) is indicated 
above each column. The odds ratio is the ratio of odds at consecutive columns.
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Before 2010 most genetic studies were candidate gene studies. 
One or a few candidate genes are then chosen based on previous 
biological knowledge. When the first reference genome was published 
and computing power was enough to analyse millions of SNPs, the 
first GWAS could be carried out. GWAS provides a ‘hypothesis-free’ 
approach by considering SNPs across the whole genome, which 
contrasts it with the candidate gene studies. The latter are based on 
previous knowledge, but can be biased because the genes have to be 
chosen by the researchers themselves and thus are poorly replicated. 
[7] The first GWAS was published in 2007 and described SNP 
associations with seven common diseases. [8] Since then, thousands 
of new SNP associations have been described. [9] Translating the 
statistical findings from GWAS into actionable results that can be used 
in public health and healthcare has proven difficult for most complex 
diseases. This is not unexpected because most complex diseases are 

Figure 2. An example of linear regression of age at onset at a SNP. Each 
blue dot is a person. The x-axis indicates the number of alternative alleles 
they have (0 = ref-ref, 1 = ref-alt or alt-ref, 2 = alt-alt), the y-axis indicates 
how old they were when they got a stroke. The blue sloping line is the 
regression line; this line describes the observed data the best. The slope 
tells us the effect size of this SNP on age at onset; for each additional copy 
of the alternative allele, how much earlier do we expect to get a stroke?

A
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Number of alternative alleles for a SNP

effect size

0 21
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polygenic; a lot of different SNPs are associated, implying that there are 
many biological pathways involved. Finding a treatment that interacts 
with any one of these pathways will probably not completely treat the 
disease as it does not affect the other pathways. Still, GWAS can  help 
us understand more about the biological mechanisms of complex 
traits and thus bring us a step closer to a future treatment. [10], [11] 

P-value versus effect size 
When we test for association between a SNP and a phenotype, we 
use the effect size and standard error to calculate a p-value. P-values 
tell us how likely it is to observe an effect that is at least as large as 
what we observed by chance, in the situation that there is actually 
no effect. Observing a very large effect size if the true effect is 
zero is still possible, it’s just unlikely. Conversely, a small effect size 
is usually not significantly different from zero (unless we use a very 
big sample). It can however still come from an effect that is different 
from zero. We are always reasoning from the situation of no effect 
(we call this the null hypothesis). A p-value alone should not be used 
to conclude anything about the relevance of a SNP on a phenotype. 
Considering the size of the observed effect together with a p-value 
can help us decide whether a SNP is interesting or not. A GWAS in 
a large group of people might find a SNP with a significant effect on 
height that is very small. Maybe people with that SNP are 0,001 cm 
taller, on average, than people without that SNP. Even though the 
effect is very significant, an effect this small is not very interesting.

Statistical power
As explained above, a p-value tells us the probability of observing 
an effect that is as large or larger than what we observed if the null 
hypothesis is true. [12] If we test one SNP, we set the p-value threshold 
α to 0,05; if the p-value is lower than α we reject the null hypothesis 
because there is enough evidence for association. Because of the 
definition of a p-value, the probability of incorrectly rejecting the 
null hypothesis if it were actually true is equal to α. Statistical power 
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tells us the probability of correctly rejecting the null hypothesis if 
the alternative hypothesis is actually true. [13] This depends on the 
alternative hypothesis and thus on the effect size and variance that 
we observed. If the effect size is very large and variance is small, 
statistical power is greater. If the effect size is small or variance is large, 
statistical power is lower. Statistical power is determined by a number 
of factors. Some can not be influenced, like allele frequency. Sample 
size is often considered because it can (relatively) easy be influenced. 
[14]–[16] Increasing the sample size – while keeping all other factors 
constant – will increase the statistical power to discover smaller effect 
sizes, so we generally want the sample to be as large as possible. More 
precise phenotype measurements – while keeping all other factors 
constant – also increase statistical power. [17] In reality these factors 
are often not independent. In chapter 1 we describe a situation where 
increased phenotype precision leads to a lower sample size, and 
discuss the implications for ischemic stroke GWAS. A bigger sample 
size does not necessarily lead to less precise phenotypes. However, 
in the context of limited funding it is often a question of measuring a 
select number of phenotypes on a bigger sample or measuring a large 
number of phenotypes on a smaller sample. [17] In most cases, the 
former option will be chosen, resulting in less phenotype precision.

Association does not equal causation 
This thesis rests on observational data, which have been collected 
and used afterwards to infer associations between genetic variation 
at a certain locus and a phenotype. Using only observational data we 
cannot say anything about causality; an association between a SNP 
and lung cancer for instance might be due to a direct effect on a 
lung cancer pathway. It might also be influenced by a confounder – a 
factor that is associated with both the SNP and the phenotype – like 
smoking. Some SNPs are more common in one genetic ancestry than 
in others. If the case group consists mainly of people with ancestry A 
and the control group consists of people with ancestry B, the SNPs 
that are more common in ancestry A will be associated with being a 
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case in this GWAS whether they’re actually associated with the disease 
or not. These two situations can be prevented to a certain extent, 
by correction of known confounders and by careful study design.

Another complicating factor is that SNPs are not inherited 
independently of each other. When an egg or sperm cell (a germ cell) 
is created during meiosis, it gets approximately half of the parent’s 
DNA. Which half is determined by recombination, a process in which 
the genome breaks at certain places, and recombines to create 
a new combination of genetic material. This new chromosome is 
transferred to a germ cell. Genome breaks do not occur uniformly 
across the genome, and therefore certain SNPs are more often 
inherited together. This correlation structure of SNPs is called linkage 
disequilibrium (LD);  a number ranging from 0 to 1 that tells us how 
often we see a pair of SNPs together. Because of the non-random 
breaking of the genome during meiosis, there are LD blocks with 
groups of SNPs that are often seen together. If we find an association 
with a SNP, we know that any of the SNPs in its LD block could be 
responsible for the association. The fact that some SNPs in the 
LD block do show significant associations and others do not can 
usually be explained by differences in frequency; if a SNP is more 
common it is easier for a real association to become significant. 

To narrow down the set of SNPs that are causal for the association, 
we can use the exact LD values for each pair of SNPs in the LD block 
and the exact association strengths for each SNP (this is called fine 
mapping). Fine mapping results in a set of SNPs that is 95 % likely 
to contain the causal SNP, under the assumption that there is only 
one causal SNP in the genomic region of interest. Note that I do 
not mean causal in the traditional sense of the word as that is not 
possible with observational data. Fine mapping is helpful if we want 
to follow-up each associated SNP with lab experiments. We can for 
instance change a SNP in a model organism or cell culture and see 
if there is indeed an effect of the phenotype. These experiments are 
expensive and labor intensive, and a reduction from tens or hundreds 
of SNPs to a few likely ‘causal’ SNPs can make a big difference.
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Functional interpretation of GWAS hits
Wet lab experiments, as described in the previous paragraph, are 
labor intensive and time consuming but are able to show whether a 
genetic variant causes a phenotype. Computational analyses can not 
distinguish causality from mere association but they can give insight 
into their function. If a SNP is located in a gene, previous knowledge 
on that gene can be used to gain some insight into a potential function 
for the genetic variant. Especially if a SNP is located in an exon – the 
part of a gene that is translated into protein – and changes the amino 
acid composition of the protein (a non-synonymous variant), we can 
predict what that might do to the function of the protein. Once we 
have mapped a SNP to a gene, we can also use the pathways that 
the protein is involved in to learn more about the SNP’s function. 
However, most SNPs are not located in a gene (intergenic variants), 
which makes functional interpretation difficult. Fortunately we can 
use acquired knowledge about genomic domains to get an idea of 
a SNP’s mechanism of action. For instance, an intergenic region that 
is very well conserved across species likely has an important gene 
regulatory function. SNPs in this region can thus be expected to have 
an effect on expression of the genes controlled by this region. [18]

Ischemic stroke
In the first two chapters of this thesis, we present the results of GWAS 
of ischemic stroke. If  blood flow to the brain is blocked, there is loss of 
oxygen (ischemia). If the blockage was very temporary, this is called a 
Transient Ischemic Attack (TIA). If it lasts longer, it is  an ischemic stroke 
(IS, also called cerebrovascular infarction or cerebrovascular accident). 
Another type of stroke occurs when the loss of oxygen in the brain is 
caused by rupture of an artery; a hemorrhagic stroke. Ischemic strokes 
occur four times as often as hemorrhagic strokes. The loss of oxygen 
during a stroke can lead to severe disability or death. Ischemic stroke 
is a complex trait with heritability estimated at 38%. There are three IS 
subtypes that are commonly distinguished by physicians. Cardioembolic 
stroke is assumed to be caused by a blood clot (thrombus) that forms 
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in the heart and travels to the brain. Large artery stroke is assumed to 
be caused by build-up of an atherosclerotic plaque that obstructs the 
carotid arteries. Finally, small vessel stroke is the least well understood 
subtype, where the small vessels in the brain itself are blocked. 

To date, tens of SNPs have been associated with increased risk 
to get an IS, or any of the specific subtypes.[19]–[23] Identifying 
new SNP associations can help pinpoint biological processes that 
play a role in the origin of an ischemic stroke. It ¬could also help 
identify people with higher genetic risk, so they and their physician 
can manage modifiable risk factors earlier. [24] In chapters 1 and 
2 we present the GWAS results of different phenotype definitions 
for ischemic stroke and identify new SNP associations.

Contributions of this thesis
Different ways of defining the phenotype lead to different 
results
A phenotype can be defined using different measurements. 
Height can be described as a continuous phenotype - 
someone’s height in centimetres - and it can be described 
as a binary phenotype - someone can be short or tall.

In chapter 1, we consider different methods that can diagnose the 
subtype of an ischemic stroke case. These methods do not  always 
agree with each other. For each ischemic stroke subtype, we asked 
each method which of the individuals have the subtype in question 
and used those as cases. We also used two new phenotype 
definitions: the group of people that are diagnosed with the subtype 
in question by at least one of the methods; the union, and the group 
of people that are diagnosed with the subtype in question by all 
methods; the intersect. By definition the union is bigger than the 
intersection, which theoretically increases statistical power.  However, 
the intersection is stricter. If there are some people that do not 
actually have a certain subtype, they might be diagnosed by some 
but probably not by all methods. The intersect will then contain 
people with a higher theoretical confidence in the phenotype.
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Previously, we used the example of the binary phenotype ‘ability to 
roll your tongue’. We can determine whether you can roll your tongue 
during childhood and we know that this will not change later. This is not 
always true for binary disease phenotypes. Young people who do not 
have a disease – and thus are a control – can be diagnosed with that 
disease when they are older and become a case. On the other hand, 
someone who has a disease will never become a control. This means 
that we are more confident about the cases than we are about the 
controls. Ischemic strokes generally happen at older age, and they are 
common; the chance that someone will get an ischemic stroke during 
their life is 18%. [25] That means that there are relatively many people 
in the control group who will get an ischemic stroke later in their life. 
These ‘future cases’ also carry some risk SNPs, and because we are 
analysing them as controls this can make it more difficult to pick up the 
difference in allele frequency at those risk SNPs. Because we do not 
know which controls will get a stroke later, it is difficult to correct for this 
problem in a case-control study. Instead, we use a different phenotype 
that is related to ischemic stroke risk: the age at onset. We usually 
assume that people with a lower age at onset had a bigger genetic risk, 
because they had less time to acquire other risk factors (like high blood 
pressure). In chapter 2 we describe the results of a GWAS of age at 
onset of ischemic stroke. We analysed only cases, as only they had an 
ischemic stroke and thus an age at onset. We hypothesized that there 
might be SNPs that make you more likely to get an ischemic stroke 
earlier. These SNPs should also be associated with increased risk of 
getting an ischemic stroke. We found one SNP that was not previously 
described in case-control GWAS of ischemic stroke. This can mean that 
this SNP is also related to increased risk, but the previous case-control 
GWAS did not have enough statistical power to identify it. It can also 
mean that the association that we found is biased by something that 
we did not correct for. We know that this SNP is associated with earlier 
age at death. [26] If it leads to earlier death through a mechanism 
that is independent from ischemic stroke, this could lead to a bias; 
older people are less likely to have this SNP, because people with the 
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risk allele die earlier. However, it is not clear whether the association 
with earlier death is independent from ischemic stroke risk. The SNP 
changes an amino acid in a protein that is involved in lipid metabolism 
and has previously been associated with increased risk for a number 
of cardiovascular phenotypes. This biological knowledge makes it 
plausible that the SNP is associated with increased risk for ischemic 
stroke, which subsequently leads to an association with earlier death 
because having a stroke increases the risk of dying earlier. Currently, 
we cannot distinguish these two possible scenarios. Future studies 
of age at onset phenotypes should be aware of this potential bias.

The association of a phenotype with a specific SNP can be different 
in different groups of people. For instance, researchers have 
found three genetic variants that are associated with migraine risk 
in women but not in men. [27] We have also stratified our case 
group in women and men and did a GWAS of age at onset in 
both groups. We see that the SNP we identified has the largest 
effect in women: each additional copy of the alternative allele is 
associated with 1.6 years earlier onset of ischemic stroke. In men 
the effect of this SNP is not significantly different from zero. That 
could also explain why this association has not been described in 
previous case-control GWAS; they did not do sex-stratified analyses 
and thus would not have found a sex-specific association.

Genetic variants with an effect on more than one phenotype: 
pleiotropy
Many researchers have shared GWAS results in large databases 
that are publicly accessible. Not only does this mean that we do 
not have to redo the same analysis, but it also enables us to use 
these results for further research. We know that some SNPs have 
an effect on multiple phenotypes: they are pleiotropic. Pleiotropic 
SNPs can give insight into the biological processes that are involved 
in a phenotype; if we already understand the mechanism by which 
a SNP affects one phenotype and find out that that SNP also has 
an effect on another phenotype, the same mechanism might be 
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involved in the other phenotype as well. Identifying pleiotropic SNPs 
can help us understand which traits share underlying mechanisms. 
For example, SNPs with an effect on multiple auto-immune diseases 
might point at specific biological processes that can be assumed 
to play a role in the immune system. On the other hand, SNPs with 
an effect on multiple traits that are not phenotypically similar could 
indicate biological processes that have a more general function.

In chapter 3 we give an overview of existing methods that use GWAS 
results to find pleiotropic SNPs. We describe four methods and show 
that two methods do not  identify SNPs with an effect on two or 
more traits but on one or more traits. This means that these methods 
will also call a SNP pleiotropic if it has an effect on only one trait.

In chapter 4 we introduce a new method - PolarMorphism - that 
can be used to find SNPs with a shared effect on any number of 
traits, based on their GWAS results. PolarMorphism is based on 
the notion that the effect of a SNP can be described with Cartesian 
coordinates but also with polar coordinates. In Cartesian coordinates, 
the x-coordinate is the effect on the first trait and the y-coordinate 
is the effect on another trait. In polar coordinates, each SNP is 
described by its distance from the origin and its angle with the 
x-axis. The distance gives its overall effect, which can be trait-specific 
or shared by the traits. The angle indicates how trait-specific or 
shared it is. After all, if a SNP is very specific for trait x, it has a large 
x-coordinate and a small y-coordinate. The angle is then zero. A SNP 
that is very specific for trait y has an angle of 90 degrees (or 0.5 * 
pi, which is the same angle given in radians instead of degrees). If a 
SNP has a shared effect, the angle is close to 45 degrees or 0.25 * 
pi. This gives us a way to measure ‘sharedness’ of SNPs; first we use 
the distance to determine which SNPs have a large enough overall 
effect, then we use the angle to determine which SNPs are shared.
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Introduction
Stroke is one of the primary causes of death worldwide and 
causes ~1 in every 20 deaths in the United States [1]. Eighty-
seven percent of all strokes are ischemic, caused by a blockage 
of blood flow to the brain [1]. Ischemic stroke (IS) tends to affect 
those older than 65 years old and has several known risk factors, 
including type 2 diabetes, hypertension, and smoking. However, 
the affected population is extremely heterogeneous in terms of 
age, sex, ancestral background, and socioeconomic status.

Ischemic strokes themselves are also heterogeneous in terms of clinical 
features and presumed mechanism. The majority of IS are typically 
grouped into three subtypes: cardioembolic stroke (CES), typically 
occurring in people with atrial fibrillation; large artery stroke (LAS), 
caused by eroded or ruptured atherosclerotic plaques in arteries; 
and small vessel stroke (SVS), caused by a blockage of one of the 
small vessels in the brain. These subtypes also seem to be genetically 
distinct: genome-wide association studies (GWAS) in ischemic stroke 
have identified single-nucleotide polymorphisms (SNPs) that primarily 
associate with a specific IS subtype [2]. To date, GWAS have identified 
20 loci associated with ischemic stroke, of which 9 appear to be specific 
to an IS subtype [2]. Furthermore, the subtypes also have varying 
SNP-based heritabilities (estimated at 16%, 12% and 18% for CES, 
LAS and SVS respectively [3]), indicating that the phenotypic variation 
captured by genetic factors varies across the subtypes. Improved 
genetic discovery can help further elucidate the underlying biology of 
ischemic stroke as well as potentially help identify genetically high-risk 
patients who could be candidates for earlier clinical interventions.

While neurologists and researchers agree on the delineation of 
ischemic stroke into these three primary categories (CES, LAS and 
SVS), several subtyping systems are currently used to assign a subtype 
to an ischemic stroke patient. The most commonly used approach 
is a questionnaire based on clinical knowledge that was originally 
developed for the Trial of Org 10172 in Acute Stroke Treatment 
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(TOAST) [4]. TOAST was designed for implementation in the clinic 
and has also been used as subtyping system in the majority of stroke 
GWAS. More recently, researchers have developed a second subtyping 
system: the Causative Classification System for Stroke (CCS) [5], a 
decision model based on clinical knowledge that also incorporates 
imaging data. There are two outputs of CCS: CCS Causative (CCSc), 
which assigns one subtype to each patient based on the presumed 
cause of the stroke; and CCS  phenotypic (CCSp), which allows for 
multiple subtype assignments and incorporates the confidence of 
the assignment. Previous work indicates that TOAST and CCS have 
moderate, but not high, concordance in assigning subtypes in patients: 
agreement is lowest in SVS (κ = 0.56) and highest in LAS (κ = 0.71) 
[6]. Notably, both subtyping systems still place more than one third 
of all samples into a heterogeneous ‘undetermined’ category. [6]

Determining a patient’s subtype is difficult and prone to 
misclassification [7], but critical to genetic discovery in ischemic 
stroke, as demonstrated by the prevalence of subtype-specific 
association signals. If a group of cases is comprised of phenotypically 
heterogeneous samples with different underlying genetic risk, power 
to detect a statistically significant association at a truly associated 
SNP is reduced (Fig 1). In contrast, a case definition that captures a 
more phenotypically homogenous group of cases would improve 
the chances of detecting genetic variants that associate with disease. 
Therefore, we used the TOAST, CCSc and CCSp subtype assignments 
to define two new phenotypes per subtype: the intersect, for which 
an individual must be assigned the same subtype across all three 
subtyping systems; and the union, for which an individual must be 
assigned that subtype by at least one of the subtyping systems. 
Analyzing the union potentially improves power for locus discovery 
due to its larger sample size, but at the cost of a more potential 
mis-classification. In contrast, analyzing the intersect may improve 
power for genetic discovery by generating a phenotype that is 
less prone to mis-classification, despite a smaller sample size. 
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Here, we perform GWAS with the union and intersect phenotypes for 
each primary IS subtype to investigate whether these newly-defined 
phenotypes indeed improve our ability to detect genetic risk factors 
for ischemic stroke. We find heritability estimates to be highest in the 
intersect phenotype for all subtypes. We also find stronger effects at 
known associations for the intersect compared to the union, and we 
validate a previously suspected association with the CAMK2D locus 
in small vessel stroke through GWAS of  the intersect phenotype.

Fig 1. Hypothesized benefit of using the intersect, at a SNP associated 
with ischemic stroke. Circles indicate the protective allele, and crosses 
the risk allele. Using a chi-square test (visualized with contingency 
tables), the measured effect is stronger with a group of cases that 
is more homogeneous but smaller (intersect, purple) than with a 
group of cases that is less strictly defined but is larger (union, teal).

Figure 1. Hypothesized benefit of using the intersect, at a SNP associated 
with ischemic stroke. Circles indicate the protective allele, and crosses 
the risk allele. Using a chi-square test (visualized with contingency 
tables), the measured effect is stronger with a group of cases that is 
more homogeneous but smaller (intersect, purple) than with a group 
of cases that is less strictly defined but is larger (union, teal).
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Results
Genome-wide association study data processing
To investigate how redefining stroke phenotypes improves our ability 
to detect SNPs associated with ischemic stroke, we employed the SiGN 
dataset. Data processing of the SiGN dataset, including quality control 
and imputation, has been described in detail elsewhere. [8] Briefly, 
the dataset includes 13,930 IS cases and 28,026 controls of primarily 
European descent. Cases and controls were genotyped separately (with 
the exception of a small number of cohorts) and on various Illumina 
arrays and then merged together into case-control groups matched 
for genotyping array and sample ancestry (via principal component 
analysis). For the cases, phenotype definitions based on one or more of 
the CCSc, CCSp and TOAST subtyping systems are available (Table 1).

We began our analyses by running genome-wide association 
studies for all phenotype definitions in all subtypes, including our 
intersect and union definitions. We ran all GWAS using a linear 
mixed model implemented in BOLT-LMM (Supplemental Figure 
2). [9] To take into account any residual population stratification 
and other batch effects, we included the first 10 principal 
components and sex as covariates in these analyses (Table S2).

Table 1. Case counts for the different phenotype definitions in the three 
subtypes. The control group is always the same group of 28,026 individuals

CES LAS SVS undetermined total

CCSc 3000 1565 2262 4574 11401

CCSp 3608 2449 2419 718 9194

TOAST 3333 2318 2631 3479 11761

Intersect 2219 1328 1548 not tested 5095

Union 4502 3495 3480 not tested 11477

Sym. diff. 2283 2167 1932 not tested 6382
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Figure 2. Intersect is the most heritable phenotype. Heritabilities on the liability 
scale for the six case definitions. int = intersect, symdif = symmetric difference. 
Bars indicate the standard error. Note that intersect has a relatively high standard 
error, due to its lower sample size. (A) In cardioembolic stroke, intersect is 
significantly more heritable than all other phenotype definitions (p-values for 
the difference between intersect and all others 3.6e-03 or lower). (B) In large 
artery stroke and (C) small vessel stroke, intersect is significantly more heritable 
than all other phenotype definitions except CCSc (p-values for the difference 
between intersect and all others except CCSc, 2.7e-03 or lower in LAS, 6.1e-07 
or lower in SVS). P-values for heritability differences determined by t-test (see 
Table S5). See Table S4 for numerical values of heritabilities and standard errors.

Because the intersect by definition is contained in the union, 
one additional GWAS for each subtype was run to enable a 
truly independent comparison of intersect with the symmetric 
difference (the union minus the intersect). This study focuses 
on the balance in statistical power between a high sample 
size and a clean phenotype. Therefore, this sensitivity analysis 
was only done for the comparison between the two most 
extreme case definitions: the union and the intersect. The 
symmetric difference is not suited as a phenotype by itself.

Genetic variance in a strictly defined case group explains a 
higher proportion of phenotypic variance
To estimate how much of the variation in a particular phenotype can 
be explained by genetic variation, we calculated the heritability (h2) 
of each phenotype using BOLT-REML, assuming an additive model 
of effect sizes over all SNPs. We estimated heritability in each of the 
available phenotypes: the subtypes as defined by TOAST, CCSc, 
CCSp, the union, and the intersect. We found that the intersect yields 
a higher h2 estimate than the union in all ischemic stroke subtypes 
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Figure 3. Graphical explanation of overlap analysis. (A) At a certain absolute 
z-score threshold Z, all SNPs that have a z-score lower than -Z or higher 
than +Z in GWAS I are determined (SNPs 1-8 and 9-12). Next, all SNPs that 
have a z-score lower than -Z or higher than +Z in GWAS II are determined 
(SNPs 1-8 and 13-16). The number of shared significant SNPs is divided by 
the union of significant SNPs to calculate the Jaccard index. (B) We also 
calculate the Pearson correlation of the z-scores of the shared SNPs.

(Fig 2, Table S3). For instance, in CES, h2 of union is 0.139 ± 0.009 
and h2 of intersect is 0.275 ± 0.017.  We additionally found that the 
second highest heritability in large artery and small vessel stroke was 
in CCSc (h2-LAS = 0.258 ± 0.023 and h2-SVS = 0.315 ± 0.029), which 
assigns only one subtype to each case. The heritabilities for CCSc, 
CCSp and TOAST were not significantly different from one another in 
cardioembolic stroke (Table S4), indicating that each original subtyping 
system is capturing approximately the same proportion of genetic risk

Different phenotype definitions represent genetically distinct 
phenotypes
While heritability gives an estimation of how much variation in a 
phenotype can be attributed to genetic factors, it does not show how 
different two phenotypes are from one another (i.e., two phenotypes 
can have the same heritability and yet be genetically distinct from 
each other). We therefore evaluated the overlap in significant SNPs 
for all pairwise combinations of phenotypes for which we performed 
a GWAS, where high proportions of shared SNPs between two 
phenotypes indicate genetic similarity. At multiple significance cutoffs, 
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we assessed overlap of significant SNP sets using two complementary 
similarity measures: the Jaccard index, which measures the ratio of 
overlapping SNPs (those are significant in both analyses) in the total 
set of SNPs that are significant in either analysis; and the Pearson 
correlation of the z-scores of the overlapping SNPs in both analyses 
(Fig 3). Significance is defined here as an absolute z-score that is 
higher than the selected z-score threshold (where SNPs can have 
an effect size < -Z or > +Z). A high Jaccard index indicates that two 
phenotypes share many of their associated SNPs, while a low Jaccard 
index means that the phenotypes have distinct genetic architecture. 
Correlation pertains only to the shared SNPs and indicates if they 
have similar directionality and magnitude of effect in both analyses.

In order to assess the results of the overlap analyses and their meaning 
with respect to the ischemic stroke phenotypes, we also performed 
these analyses between the phenotype definitions and an unrelated 
GWAS of educational attainment to obtain a null reference (Fig S3).

In cardioembolic stroke (Fig 4, first panel), the Jaccard index for all 
combinations with intersect decreases with more extreme z-scores 
to J≈0.2-0.3 while the correlation increases quickly to approach r2=1 
at Z≈2.5, indicating that a relatively small group of SNPs is significant 
in both analyses with correlating z-scores, that gets increasingly 
smaller and stronger correlating. These findings indicate that the 
stricter the significance threshold is, the fewer shared SNPs there 
are between any two phenotypes, but that those shared SNPs have 
more concordant effect sizes. In large artery stroke (Fig S4) and 
small vessel stroke (Fig S5) the trend is similar, albeit with lower 
Jaccard indices and correlations, suggesting that there is a set of 
associated SNPs for each subtype that is found by all phenotype 
definitions. In all subtypes, when compared to symmetric difference, 
the intersect is the most genetically distinct phenotype. This confirms 
that if we combine symmetric difference and intersect, as in the 
union, we increase phenotypic heterogeneity and thereby decrease 
the likelihood of detecting a genome-wide significant signal.
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Fig 4 shows pairwise comparisons only; to investigate if there is one 
group of SNPs that is significant in all analyses, we also calculated 
overall Jaccard index: the size of the intersect of SNPs that are 
significant in all 5 phenotypes (excluding symmetric difference, 
which we use for sensitivity testing only), divided by the size of their 
union. The overall Jaccard index (Fig 5) confirms what was suggested 
by the pairwise overlap analyses: there is a small set of SNPs that 
is shared across all phenotype definitions, albeit slightly smaller 
than the pairwise overlapping sets. The Jaccard index is relatively 
low at higher significance thresholds, indicating that there is also a 
substantial set of SNPs that is unique to each phenotype definition. 
Thus, we do find different associated SNPs to ischemic stroke 
subtypes depending on how exactly the subtype status is defined, 
but there are some concordant SNPs that are found by all case 
definitions, regardless of sample size or phenotype homogeneity.

Figure 4. Different phenotype definitions capture different genetic risk 
factors. Overlap analysis in cardioembolic stroke. Similarity on the y-axis 
denotes either correlation (circles) or Jaccard index (triangles). The absolute 
z-score threshold is plotted on the x-axis. Numbers indicate the number of 
shared SNPs at Z = 3. (A) pairwise comparisons with intersect (B) pairwise 
comparisons with union (C) pairwise comparisons with symmetric difference.
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Intersect shows the largest effect at previously known 
associations
A recent GWAS (MEGASTROKE) in 67,162 TOAST-subtyped cases 
and 454,450 controls identified 32 loci (22 novel) associated to 
stroke (either ischemic stroke or intracerebral hemorrhage) and its 
subtypes [2]. Four of the 32 loci associate to CES, five to LAS, and 
none to SVS. We investigated the potential to find stroke-associated 
loci in our redefined phenotypes, with a sample that is 4 to 7 times 
smaller than MEGASTROKE. To this end, we compared the odds 
ratios for the 9 known subtype-specific loci in our five phenotype 
definitions, see Fig 6. In cardioembolic stroke, the intersect 
phenotype consistently shows the strongest effect. In large artery 

Figure 5. Intersect most often shows the strongest effect at previously 
identified subtype-specific associations. Odds ratios for the five LAS-
associated SNPs (in purple) and the four CES-associated SNPs (in teal) 
in the five phenotype definitions. The dotted line indicates an OR of 1 
(no effect). Error bars indicate the 95 % confidence interval. Intersect 
show the strongest effect at 5 of the 9 SNPs (binomial p = 0.0196).
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stroke, intersect shows the strongest effect as well, except at the 
LINC01492 locus. The fact that we find stronger associations at known 
loci by using the intersect indicates that this phenotypically more 
homogeneous phenotype is better suited as a phenotype in GWAS.

Besides comparing the ORs at subtype-specific signals, we also 
compared ORs at all stroke-associated loci (including any stroke, 
any ischemic stroke, cardioembolic stroke and large artery stroke), 
see Fig S1. We found that intersect shows the strongest odds ratio 
30 times out of 96, (binomial p =  0.010), indicating that odds ratios 
derived from the intersect phenotype are indeed stronger than the 
ORs in the other phenotypes more often than expected by chance.

A stricter phenotype definition finds a new associated locus to 
small vessel stroke
Our analyses revealed 5 new loci (2 for SVS and 3 for CES, 
Table 2) which we validated using data from MEGASTROKE 
(based on the summary statistics of MEGASTROKE with 
the SiGN cohort removed, to ensure independence), while 
correcting for multiple testing per stroke subtype. 

For SVS one variant (rs10029218) in the CAMK2D locus (Table 2, Figure 
S5), was found in the intersect analysis, and replicated in the trans-
ancestry analysis of MEGASTROKE. The other SVS associated variant 
(rs11065979) in the SH2B3-BRAP-ALDH2 locus was found in the CCSp 
analysis, and replicated in both the trans-ancestry analysis and the 
European analysis (Table 2, Figure S5). For the 3 CES loci, only one 
variant (rs3790099,  in the GNAO1 gene, found in the CCSp analysis) 
was replicated in the Europeans-only analysis (Table 2, Figure S5). In a 
meta-analysis of a) the MEGASTROKE GWAS without the SiGN cohort 
and b) the SiGN GWAS for these three SNPs, we found consistent 
direction of effect in both studies and a lower p-value (Table S5).

Previously, one other locus was reported to associate solely with 
SVS (16q24 [11]). Here, by applying stricter phenotyping, we identify 
4p12 as a novel SVS locus. In general, despite the low sample size 
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as compared to MEGASTROKE, we find stronger associations 
in the intersect GWAS, likely due to the clearer separation of 
cases and controls. This further supports the claim that, in the 
absence of a ‘gold standard’ phenotype, taking the intersect of all 
subtyping systems yields a better suited phenotype for GWAS.

Discussion
To help uncover genetic associations with ischemic stroke that as yet 
have gone undetected, we defined new ischemic stroke phenotypes 
based on three existing subtyping systems (CCSc, CCSp, and TOAST). 
Specifically, we studied the intersect and union of these subtyping 
systems, for all ischemic stroke subtypes. The intersect results in 
a smaller number of available cases but potentially results in less 
misclassification due to agreement between subtyping systems. 
The union is potentially more heterogeneous, but results in a larger 
available group of cases. We find that the largest proportion of 
phenotypic variance explained by SNPs is in the intersect phenotype. 
Further, our overlap analyses show that, for each subtype, the 
phenotype definitions each have a unique set of significantly 
associated SNPs, but that there is also a small set of SNPs that is 
shared among all definitions, with concordant direction of effect and 
similar trend in magnitude of effect. We also show that the cases 
that are in the union but not in the intersect, are genetically distinct 
from the intersect-cases, implying that the union is a combination of 
phenotypically heterogeneous cases. With an effective sample size 
that is 4 to 7 times as small as in MEGASTROKE, we find stronger 
associations (i.e., higher ORs and lower p-values) at known loci by 
using the intersect (compared to the other phenotype definitions 
studied here). This indicates that the intersect yields more net power 
to detect associations due to its stricter definition, despite its lower 
sample size, and is thus better suited as a phenotype in GWAS.

We identify a previously sub-threshold association with a SNP in 
an intron of the CAMK2D locus in small vessel stroke by using the 
intersect, further demonstrating the utility of this phenotype in GWAS. 
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CAMK2D expresses a calcium/calmodulin-dependent protein kinase 
[12]; out of all tissues tested in gTEX, the two tissues with the highest 
expression are both in brain [13]. The CAMK2D locus was found to 
also associate with the P-wave [14], an electrocardiographic property 
that is implicated in atrial fibrillation, a trait that is associated with 
cardioembolic stroke [3]. Given that the association replicates in an 
independent dataset, and the protein is expressed in brain, functional 
follow-up of this locus might give more insight in disease mechanisms 
of stroke. Additionally, we find the SH2B3 - BRAP - ALDH2 locus 
to be associated with small vessel stroke. rs11065979 is an eQTL of 
ALDH2 (aldehyde dehydrogenase 2) [13]. ALDH2 is involved in ethanol 
metabolism; it converts one of the products, ethanal, into acetic acid. 
The allele that is associated with higher expression of this enzyme, is 
associated with lower incidence of small vessel stroke . ALDH2 is mainly 
expressed in liver, but it’s also expressed in brain. [13] Previous work 
has shown an association between higher expression of ALDH2 and 
lower incidence of stroke in rats. [15] SH2B3 and BRAP are minimally 
expressed in brain, compared to the other tissues. [13] We also show 
an association between the GNAO1 locus and cardioembolic stroke. 
The protein product of this locus constitutes the alpha subunit of 
the Go heterotrimeric G-protein signal-transducing complex. [12] It 
is highly expressed in brain, and while its function is not completely 
clear, defects in the protein are associated with brain abnormalities. 
[16] Although this alternate approach to phenotyping has resulted 
in new associations with two ischemic stroke subtypes, the causality 
of these loci remains uncertain and warrants further studies.

Phenotype definition is an often-encountered issue in complex trait 
genetics, as diagnosing and subtyping methodologies can vary and 
even be contentious within disease areas. Further, phenotype labels 
are often broad definitions for cases that can be highly heterogeneous 
when their underlying genetic risk is examined. For example, 
most psychiatric diseases are also complex and phenotypically 
heterogeneous, lacking clear and robust diagnostic criteria. In an 
editorial, the Cross-Disorder Phenotype Group of the Psychiatric 
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GWAS Consortium states: “We anticipate that genetic findings will 
not map cleanly onto current diagnostic categories and that genetic 
associations may point to more useful and valid nosological entities”. 
Our findings here further support this statement, showing that 
while the original subtyping systems might be useful for diagnosing 
individual patients, stricter criteria are needed for genetic studies.

Methods
The SiGN dataset
The Stroke Genetics Network (SiGN) Consortium composed a dataset 
consisting of 14,549 ischemic stroke cases. [17] The control group 
consists primarily of publicly available controls drawn from three 
large multi-ancestry cohorts. Descriptions of the contributing case 
and control cohorts have been published previously. [18] Cases and 
controls have been genotyped on a variety of Illumina arrays, and 
nearly all cases (~90%) have been subtyped using both TOAST [4] and 
CCS [19]. All  newly-genotyped cases for the latest GWAS are available 
on dbGAP (accession number phs000615.v1.p1). A previous genome-
wide association study has been done on the separate TOAST and 
CCS subtypes. [18] In this work, we use the same 28,026 controls from 
this previous GWAS, as well as the 13,930 ischemic stroke cases of 
European and African ancestry. A third group of cases and controls, 
primarily comprised of individuals who identify as Hispanic and 
residing in the United States, has been excluded due to data sharing 
restrictions. All data processing has been previously described. [18] All 
genotyping data was generated using human genome build hg19.

Genome-wide association studies in BOLT-LMM
We ran all GWAS in BOLT-LMM [9], which implements a linear 
mixed model (LMM). BOLT-LMM implements a Leave-One-
Chromosome-Out (LOCO) scheme, so that the genetic relationship 
matrix (GRM) is built on all chromosomes except the chromosome 
of the variant being tested. Linear mixed models have been 
demonstrated to improve power in GWAS while correcting for 

Thesis.indb   42Thesis.indb   42 06/05/2022   13:1806/05/2022   13:18



Alternate approach to stroke phenotyping

43

structure in the data [20]. In addition to the GRM, we included the 
first 10 principal components as fixed effects. We used the following 
approximation to convert the effect estimates from BOLT-LMM 
(on the observed scale) to effect estimates on the liability scale:   

where μ is the case fraction. [21] For each subtype, the intersect, 
union and symmetric difference of the original subtyping systems 
were used as phenotypes in separate GWAS. The original subtyping 
systems were also used as a phenotype in three additional GWAS per 
subtype to serve as a point of reference. All ischemic stroke cases 
that do not belong to the case definition under study were left out 
of the analysis. The same group of controls is used in all analyses. 
Association testing was done on all imputed SNPs with a minimum 
minor allele frequency of 1%. See Supplementary Table 8 in [22] 
for simulations of type 1 error inflation of BOLT-LMM in datasets 
with unbalanced case-control ratios. In the GWAS discussed here, 
case fractions range from 0.05 to 0.14 which means that at variants 
with MAF >1%, there is no significant inflation of type 1 error rates. 
Those SNPs that show a large frequency difference (>15%) across the 
populations in 1000 Genomes were removed (see the methods in 
[18] for details on how this list of SNPs was compiled).  See Fig S2 for 
QQ-plots (stratified by imputation quality (INFO-score) and by minor 
allele frequency) and Manhattan-plots. The genomic inflation factor 
(lambda) varies between 1.0 and 1.1 for cardioembolic stroke and large 
artery stroke, and between 1.0 and 1.2 for small vessel stroke. We 
observed a relatively high inflation factor of 1.2 in only the imputed 
SNPs with a minor allele frequency lower than 5%. Therefore, summary 
statistics for these SNPs were removed from downstream analyses.

Heritability estimation in BOLT-REML
To estimate the heritability of the six phenotype definitions for each 
subtype, we used BOLT-REML [23]. BOLT-REML calculates heritability 

log(OR) =
β

µ(1 − µ)

Thesis.indb   43Thesis.indb   43 06/05/2022   13:1806/05/2022   13:18



Chapter 1

44

from the SNPs included in the GRM, and these SNPs must be 
genotyped (and not imputation dosages). We therefore based our 
estimates on only genotyped SNPs. Furthermore, we excluded the 
MHC on chromosome 6, and chromosomal inversions on chromosomes 
8 and 17 using PLINK 1.9 [24]. See Table 3 for more information. We 
filtered on various quality control measures, by passing the following 
flags to PLINK: --mind 0.05 --maf 0.10 --geno 0.01 --hwe 0.001. 
Additionally we pruned SNPs at an LD (r2) threshold of 0.2 (--indep-
pairwise 100 50 0.2). We used the first 10 principal components and 
sex (determined by presence of XX or XY chromosomes) as covariates. 
To convert the heritabilities from the observed scale (as if the binary 
data, coded as 0-1, were continuous) to the liability scale (converting 
the heritabilities of the observed binary trait to the heritabilities of the 
underlying, unobserved, continuous liability of the trait), Dempster 
et al derived a formula that takes into account the prevalence of 
the disease in the population [25]. In the case of ascertained case-
control traits, where the population prevalence is not equal to the 
study prevalence, this has to be taken into account as well [26]:

where ĥ2
l  is the heritability on the liability scale, K is the population 

prevalence, P is the study prevalence, t is the liability threshold, and ĥ2
o 

is the heritability on the observed scale. To test for significant 
difference between the estimated heritabilities, we performed an 
independent t-test.

Table 3. Genomic regions removed before heritability estimation

Chromosome Start (Mb) End (Mb) Name

6 25.8 36.0 MHC

8 6.0 16.0 inversion

17 40.0 45.0 inversion

ĥ2l =
K2(1 − K)2

P (1 − P )φ(t)2
ĥ2o
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Overlap analysis
We first calculated z-scores using the following formula: z = beta / se, 
where beta is the effect size of the SNP and se is the standard error of 
the beta estimate. The z-scores thus have unit standard error, but we 
did not standardize them to zero mean (as is the conventional method 
for calculating z-scores) to maintain the original direction of effect. To 
assess overlap between two GWAS, we calculated the Jaccard index 
[27], which is the ratio of a) the number of SNPs significant in both 
analyses, to b) the number of SNPs significant in either analysis (i.e., 
the size of the intersect divided by the size of the union of the sets 
of significant SNPs). The index is a number between 0 and 1: it is 0 
if the two sets of significant SNPs do not have any SNPs in common, 
and it is 1 if the two sets of significant SNPs completely overlap. We 
additionally calculated, within the set of SNPs that are significant in 
both analyses, the Pearson’s correlation of the z-scores in the two 
GWAS to check the concordance of direction and size of effect in the 
two analyses being compared. Significance was defined as a z-score 
that is more extreme than an absolute z-score threshold z (varied from 
0 until 3, in increments of 0.1). At the most extreme z-score threshold 
(z >3 or z < -3), the absolute number of SNPs that are significant in 
both analyses is indicated in the plot. As a null comparator, these 
overlap analyses were also performed with GWAS results from a study 
of educational attainment in 1.1 million individuals [28] downloaded 
from EMBL-EBI’s GWAS catalog. [29] The educational attainment 
study contains 10,098,325 SNPs, the SiGN study contains 10,156,805 
SNPs. The overlap analysis was only done on the SNPs that are 
present in both datasets: the size of this overlapping set is 7,822,831 
SNPs. For the overall comparisons per subtype, we considered all 
five GWAS. At each z-score threshold, we calculated the overall 
Jaccard index: the ratio (range between 0 and 1) of the number of 
SNPs significant in all five analyses to the number of SNPs significant 
in any analysis. See Fig 3 for a graphical explanation of this method.
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Look-up of Megastroke loci in the union and intersect GWAS
Recently, the MEGASTROKE consortium completed the largest 
GWAS in ischemic stroke and its subtypes [2]. From this GWAS, we 
extracted the index SNPs of each genome-wide significant locus in 
each subtype. We then looked up these SNPs in our GWAS to compare 
effect sizes, resulting in 15 ORs per SNP (for each of the phenotype 
definitions in each of the subtypes). See Table S6 for the summary 
statistics of these look-ups. If the reference allele in MEGASTROKE was 
not identical to the reference allele in SiGN, the inverse of the odds 
ratio (1/OR) was taken. We counted how often the intersect showed 
the most extreme odds ratio, out of all 96 ORs (15 ORs per SNP, for 
the 32 SNPs that were reported in MEGASTROKE). To determine the 
probability of the number of times intersect was most extreme, under 
the null hypothesis that all phenotype definitions are just as likely to 
show the most extreme OR, we performed a binomial test in R[30].

Replication of new genome-wide hits in MEGASTROKE
To assess all genome-wide significant loci instead of the individual 
SNPs, we performed clumping in PLINK 1.9 [24] (http://pngu.mgh.
harvard.edu/purcell/plink/). We used all SNPs significant at α = 1x10-5 
as index SNPs. We generated clumps for all other SNPs closer than 250 
kb to the index SNP and in LD with the index SNP (r2 > 0.05). We kept 
clumps if the p-value of the index SNP was lower than 5x10-8. From 
the genome-wide significant clumps, only the unique ones were kept 
(some clumps significantly associated to multiple case definitions). In 
the case of duplicates, the summary statistics for the analysis with the 
lowest p-value were kept. Ambiguous SNPs were removed, and if the 
reference allele in MEGASTROKE was not identical to the reference 
allele in SiGN, we calculated the  inverse of the odds ratio (1/OR). This 
resulted in a list of 14 unique SNPs. We checked for SNPs that are 
not in a locus that had already been reported as an associated locus 
in MEGASTROKE, resulting in a list of 5 new SNPs (2 for SVS and 3 
for CES), which we looked up for replication. To this end, we ran the  
MEGASTROKE GWAS again (European and trans-ancestry analysis per 
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subtype using TOAST [31]) without the SiGN cohort, to ensure summary 
statistics independent from the discovery GWAS. We set Bonferroni 
p-value thresholds to adjust for the number of SNPs looked-up for the 
phenotype in question, and for the number of GWAS it was looked up 
in (2, for the European and trans-ancestry analyses). We did a meta-
analysis of the MEGASTROKE GWAS without SiGN, and the SiGN 
GWAS, for the 3 replicating SNPs only (Table S5). We performed meta-
analysis in METAL [32], with the inverse-variance weighting scheme. 
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Chapter 2
GWAS of age at onset of disease 

can identify novel associations, 
but is potentially biased by 

associations with earlier death
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Introduction
Disease-related genetic variants are often discovered by comparing 
their allele frequencies in cases - who have the disease - and 
controls - who do not have the disease. Case-control genome-wide 
association studies (GWAS) have uncovered innumerable genetic 
associations with risk of disease. For ischemic stroke (IS), which is 
one of the main causes of death[1], around 40 risk-increasing single-
nucleotide polymorphisms (SNPs) have been identified[2,3]. 

Linear regression of the age at onset (AAO) of disease can be 
employed as an alternative to case-control analysis. In case-control 
studies, the effect that is measured is an odds ratio: how much does 
risk increase with each additional copy of the associated allele? We 
generally assume that a lower AAO of a complex disease corresponds 
with a higher genetic risk contribution. Thus a case-control analysis 
restricted to lower ages at onset would find the same risk alleles 
as an unrestricted analysis, with larger effect sizes. If we use age at 
onset itself as the phenotype, the effect that is measured is a linear 
coefficient: how much earlier does a stroke occur with each additional 
copy of the associated allele, given one has had an ischemic stroke?

Age at onset has been employed for genetic association studies 
in stroke before. Traylor et al [4] used LTSOFT [5] to estimate 
liabilities based on age at onset, which they used as a GWAS 
phenotype. They identified an association at the MMP12 locus. 
Liability estimates can increase power for variant discovery because 
they incorporate covariates directly into the phenotype instead of 
correcting for them in logistic regression. [6] However, interpretation 
of SNP effect sizes on liability is difficult; the liability can not be 
observed in real life and it does not directly relate to risk. The 
effect size of AAO-related SNPs is expressed in years, and is 
more interpretable. Yet, to date, only 32 AAO traits are registered 
in the GWAS catalog (EFO_0004847). [7] To our knowledge, no 
GWAS of AAO of ischemic stroke has been published before.
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IS does not occur equally often in women and men. [1] This could 
mean that the same biological mechanisms contribute more to 
IS onset in one sex than in another, which would result in sex-
differential effect sizes for the SNPs related to these mechanisms. 
It is also possible that there are vastly different mechanisms that 
lead to IS in women and men, which would result in sex-specific 
effects. For most complex traits no sex-stratified GWAS have been 
performed, meaning that possible sex-specific effects will remain 
unidentified unless different sexes are analysed separately [8].

In this study we performed a two-stage genome-wide association 
study of ischemic stroke AOO.  Stage 1 consisted of a GWAS of AOO 
in 10,857 stroke cases from SiGN [9], with a look-up of all associated 
SNPs (p-value below a liberal threshold of 5e-6) in FinnGen [10] in 
Stage 2. We perfomed a sex-combined and sex-stratified analysis. In 
a meta-analysis of Stages 1 and 2,  we identified a variant in the ApoE 
locus, encoding the APOE4 allele, that was significantly associated 
(rs429358:T>C, meta p-value = 2.4e-8, beta = -1.63 years) with earlier 
onset in women. As this SNP is not associated with risk of stroke per 
se,  and has previously been associated with stroke AOO [11], we 
hypothesized that the association with earlier AOO may reflect a co-
occuring association of this variant with earlier death. [12] To test this 
hypothesis, we performed a simulation study whereby we simulated 
loci that are associated with overall mortality but not stroke risk 
and show that loci with an approximately two-fold increased risk in 
mortality via mechanisms not related to IS, would display this pattern.
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Results
A missense variant in ApoE is associated with age at ischemic 
stroke in cases of European ancestry
The complete SiGN dataset consists of 14,549 IS cases from several 
cohorts. [9] Inclusion criteria for the cohorts for the current study were: 
complete information on the age at onset of IS, and no restrictions 
on age of cases for inclusion in the cohort. The latter criterion was 
used to prevent spurious associations due to possible differences in 
genetic background between cohorts with different age distributions.

Meta-analysis (in SiGN and FinnGen) of the effect sizes on AAO in 
women of European ancestry resulted in a genome-wide significant 
association at the Apolipoprotein E (ApoE) locus on chromosome 
19 (rs429358:A>B, meta pmeta-value: 2.4x10e-8, beta = -1.63 years 
± 0.29, Table 1, Table S2, Figure S1, Figure S2). This association is 
replicated in the Women’s Health Initiative (p-value = 76.,097x10e-
5) at an alpha of 0.05.  Conditional analysis indicated no secondary 
associated SNPs at this locus. The top hit is a missense variant in 
the ApoE gene that changes the amino acid at the 112th position 
of the protein from a cysteine to an arginine. This changes the 
protein confirmation, and together with another SNP, rs7412:C>T, 
this SNP is used to determine an individual’s ApoE isoform.

A2 freq INFO Beta SE P-value 95% confidence 
interval

N Mean 
age

SiGN 
- XX

0.13 0.96 -1.78 0.40 9.70E-06 -2.56 -1.00 4679 71.6

FinnGen 
- XX

0.17 1 -1.47 0.43 5.70E-04 -2.3 -0.63 3416 67.8

meta-
analysis

0.15 0.96 -1.63 0.29 2.40E-08 -2.11 -1.15

WHI - 
XX

0.13 WGS -1.02 0.26 6.97E-05 -1.52 -0.52 3415 76.6

Table 1. Summary statistics of rs429358 in women, in the SiGN, Finngen 
and WHI cohorts as well as in the meta-analysis results of SiGN and 
FinnGen. Further details of the SNP and of the baseline characteristics 
of each cohort can be found in tables S1 to S4. A2 freq = frequency of 
the alternative allele, INFO = imputation quality, N = sample size. 
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Genetic effect sizes tend to be larger in women
ApoE rs429358 is associated with stroke AOO in both men and women, 
although the magnitude of association is stronger in women than 
men (Figure 1, two-sided unequal variances t-test, p = 4.3x10-4).

Fig 1. The ApoE locus exhibits sex-differential effects. Effect sizes beta (in 
years), for rs429358; 95 % confidence intervals are indicated by error bars.

We looked up previously known risk loci for stroke in our AAO analyses 
(Figure 2, Table S5). Overall, when there is a sex-differential effect, the 
strongest effect seems to be observed in women. The most extreme 
example is the WNT2B locus, which is nominally significant in women.

The ApoE locus is associated with stroke age at onset but not 
with risk of ischemic stroke
ApoE rs429358 is not associated with risk of ischemic stroke in 
MEGASTROKE [2] (OR = 1.00; 95% CI: 0.96-1.03 ; p = 0.77), nor 
is it associated with any stroke subtype (Figure 3, Table S6). The 
APOE locus shows the interesting pattern of being associated with 
AAO but not stroke risk (all 95% CI contain the null, OR = 1.0).

Fig 2 (next page). Some stroke risk loci show a sex-differential effect on 
age at onset. For each SNP in a list of loci that were previously shown to 
associate with binary risk of any stroke phenotype (composed by Malik 
et al [2]), we looked up the summary statistics in the AAO analyses. 
The effect sizes (beta) in years are ordered by their absolute effect 
size in ‘all’; 95 % confidence intervals are indicated by error bars.
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Fig 3. ApoE rs429358 is not associated with risk of all stroke, all ischemic stroke, 
cardioembolic stroke, large artery stroke, or small vessel stroke. Effect sizes for 
rs429358 from  MEGASTROKE analysis of European ancestry [2] (performed 
with all SiGN cases left out); 95 % confidence intervals are indicated by error 
bars. any stroke (AS), any ischemic stroke (IS), cardioembolic stroke (CES), 
large artery stroke (LAS), and small vessel stroke (SVS). Any stroke includes IS 
and hemorrhagic stroke, and IS includes all subtypes (CES, LAS and SVS) and 
cases who could not be subtyped. The effect sizes are shown as odds ratios.

Fig 4. Estimated power curves for the association 
between genotype and case control status. 

0.9 1.0 1.1 1.2

Odds Ratio

AS
IS
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A variant that has an effect on age at death but 
not on ischemic stroke could lead to a confounded 
effect on age at onset of ischemic stroke
An association of ApoE rs429358 with stroke AOO has been 
reported previously [11] and this variant has also been associated 
with longevity [13] and with age of parental death [12]. These 
observations, coupled with the association we observed 
between ApoE rs429358 and stroke AOO , albeit genome-
wide significant in women only, prompted us to investigate 
whether the stroke AOO association could be a manifestation of 
a more general association of ApoE rs429358 with mortality.   

To evaluate this possibility, we performed a simulation study to explore 
the potential for this type of selection bias. Specifically, we simulate a 
population of individuals who were followed from birth until death 
based on age-specific mortality rates obtained from the Social Security 
Administrations Actuarial Life Tables [14].  Birthdates for the simulated 
subjects were randomly drawn between 1 January 1900 and 1 January 
2020. Each individual was assigned a genotype for three SNPs, 
GenoStrokeMult,, , GenoStrokeAdd, and , Genodeath . GenoStrokeMult, and 

, GenoStrokeAdd, increase risk of ischemic stroke only, and , Genodeath  
increases risk of death only, but not through IS. Stroke was assumed to 
increase the risk of death as a function of the time since the event. We 
performed association analyses for each simulated SNP and two 
phenotypes: logistic regression of case-control status, and linear 
regression of age at onset. See Methods for simulation details. 

As expected, both simulated loci influencing risk of stroke were 
identified via a case-control design (1000 cases and 1000 controls) 
(Fig 4). Whether they were associated with AAO depended on 
the functional form of risk. Loci with a relative increase in risk 
were not associated with AAO at all, but those with an additive 
increase in risk saw proportionally more stroke at early ages and 
thus the risk allele was associated with a lower AAO of IS. The 
simulated locus that was associated with mortality via mechanisms 
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unrelated to stroke was not associated with stroke risk. However, 
that locus was associated with AAO. A locus with a two-fold 
increase in mortality would display an association with a ~1.5 year 
decrease in age at onset, an effect size similar to that identified 
for the APOE locus in our GWAS. This means that it is possible 
that this association is biased by an association with earlier death, 
if that association is indeed independent of ischemic stroke.

Discussion
We found that APOE rs429358, encoding the ApoE-E4 haplotype,  
is associated with earlier ischemic stroke in women. In addition to 
having been associated with stroke AOO in a previous candidate 
gene study [11]], this SNP is also associated with increased risk of 
Alzheimer’s disease, numerous cardiovascular traits, as well as with 
earlier mortality and lower AAO of Alzheimer’s disease [15]. APOE 
rs429358 has not been associated with increased risk of ischemic stroke 
or any of its subtypes in previous GWAS. The different haplotypes of 
ApoE, defined by rs429358 and rs7412, have been associated with 
increased risk of ischemic stroke in a number of studies (while a few 
other studies did not find an association) [16,17]. In these studies, 
the different haplotypes were compared with each other, while 
most GWAS employ an additive model. A non-linear relationship 
between ApoE haplotype and risk of ischemic stroke could explain 
the absence of a GWAS association with risk of ischemic stroke.

However, if we assume that the pathway underlying ApoE’s association 
with mortality does not influence ischemic stroke risk, it would also be 
possible to find an association with age at onset that is confounded 
by its effect on longevity. If people are more likely to die earlier with 
a specific genotype, then we are less likely to find that genotype 
in older people. We investigated this scenario in a simulation, and 
conclude that this would lead to effect sizes that are comparable 
to the ones we found in our GWAS. It is therefore possible that the 
association is confounded by an association with earlier death.
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We can however not conclude that the association must be caused by a 
selection bias, even if it were possible. The most important assumption 
that we made in our simulation study, is that the variant does not 
have an effect on ischemic stroke. In reality, this is not known. Rather, 
we know that Apo-lipoprotein E is involved in lipid metabolism and 
atherosclerosis [18], rendering it plausible that it could have an effect 
on risk and/or onset of ischemic stroke. That would mean that genetic 
variation in ApoE is associated with risk of ischemic stroke, but the 
association has not been found yet. This could also be due to a sex-
specific or sex-differential effect on risk. A sex-stratified GWAS on risk 
of ischemic stroke could help answer these questions. Sex differences in 
plasma concentration of ApoE have been described previously. In most 
studies, women are found to have higher ApoE concentrations. [19]

While we have studied only AAO of IS, the AAO of other complex 
diseases might also be associated with genetic variation. A recent 
preprint studied the AAO of a large number of diseases in UK Biobank. 
[20] Overall, they observed a negative genetic correlation between 
susceptibility and AAO of a certain disease; higher genetic risk is 
associated with lower AAO. Concordant with our findings for IS, they 
find that some AAO variants are also associated with increased risk 
while others seem to be solely associated with disease onset. A study 
of 530 complex traits in the UK biobank showed that sexual differences 
in genetic architecture are widespread. [21] Notably, they show that not 
stratifying on sex results in missed associations with genetic variants. 
This was the case in one third of binary traits and almost all continuous 
traits. Information on age at onset and sex is usually available in large 
GWAS datasets; stratifiying on sex as well as also analysing AAO 
should be considered in addition to case-control analysis. However, 
the choice for age at onset analyses - especially for phenotypes that 
are generally diagnosed at older age - should be carefully considered 
given a potential selection bias through associations with earlier death.
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Methods
The SiGN dataset
The cohorts included in this study are: ASGC, BASICMAR, 
BRAINS, EDIN, GASROS, GCNKSS, GOTEBURG, GRAZ, 
ISGS, KRAKOW, LEUVEN, LUND, MALMO, MCISS, MIAMISR, 
MUNICH, NOMAS, OXVASC, STGEORGE, SWISS, WUSTL. 
Human genome build hg19 was used as a reference.

Genome-wide linear regression in BOLT-LMM
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When using BOLT-LMM [22], one needs to specify a subset of - 
genotyped or hard called - SNPs that should be used to build the 
genetic relationship matrix (GRM). PLINK 1.9 was used to hardcall 
and subset imputed SNPs. Only imputed SNPs with an uncertainty 
lower than 0.2 were kept: this means that calls with a highest 
probability lower than 0.8 were removed. Only genotyped SNPs 
with a genotyping rate of 95% or higher were kept (--geno 0.05). The 
minimum minor allele frequency (MAF) for the SNPs that are to be 
analysed was set to 5%, and the maximum percentage missing per 
SNP was set to 5%. We included study group as a covariate. Study 
groups were composed by the authors of [3]similar ancestry and 
genotyping platforms. After consideration of the QQ and Manhattan 
plots (Fig S1 and Fig S2 ) we decided to filter all SNPs on a minimum 
MAF of 5% and a minimum INFO score of 0.8 for further analysis. 
We performed this analysis on the following case groups: all cases, 
all male cases (as determined by XY chromosomes), and all female 
cases (as determined by XX chromosomes). These groups were 
further stratified in European and African ancestry samples. The 
sample sizes for African ancestry were too low to be analyzed.

Validation: meta-analysis and replication in external data
We looked up the SNPs that had a p-value lower than 5e-6 in any of the 
three analyses (all, XX, XY) in FinnGen, and performed meta-analysis in 
METAL (inverse variance weighted approach). We used the traditional 
p-value threshold of 5e-8 to determine if the meta-analysis results were 
significant. We looked-up the SNP with a p-value lower than 5e-8 in 
women in the Women’s Health Initiative [23]. Baseline characteristics for 
the replication datasets can be found in supplemental tables S3 and S4.

Conditional analysis
We used GCTA COJO [24] to investigate whether there were 
additional associated SNPs at the discovered loci. We used 
the stepwise model selection procedure (--cojo-slct) and 
used the imputed genotype data (converted to hardcall, 
same as described for the GWAS) as input (--bfile).
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Simulations
Data Generating Model

The data generating model is presented in Figure S3. Pseudo-
men and women were simulated drawing a date of birth at 
random from 1 January 1900 to 1 January 2020.  Each pseudo-
individual was followed over the course of 120 years or until their 
death, whichever came first. At birth, genotypes were assigned 
at three loci each having a minor allele frequency of 10%.  Two 
genotypes, GenoStrokeMult and GenoStrokeAdd incurred a risk 
on stroke only, and the other, GenoDeath incurred a risk on death 
via an unspecified pathway independent of stroke. The annual 
stroke risk was a function of sex, age and genotypes given by:

The genetic effect of the genotype, �effect, was simulated from 1.0 
to 2.0 in increments of 0.1. An initial stroke event was drawn from 

a Bernoulli distribution with probability  given that the subject had 
not died previously and had not previously experienced a stroke.  If 
the binomial draw indicated a stroke at that age, an exact date of 
stroke was randomly drawn from a uniform distribution of days in 
that year. Baseline annual risk of death was taken from the Social 
Security Administrations Actuarial Life Tables [14]. The mortality effect 
of GenoDeath was simulated using the same range of parameters, 
�effect,  and was a function of age.  The relative increase in risk was 
assumed to be close to null at young ages and then increased over the 
lifetime until a pre-specified risk ratio. Stroke was assumed to increase 
the risk of death as a function of the time since the event, given by 

The resulting annual mortality risk was given by

Annual stroke risk(pstroke | sex, age, GenoStrokeMult, GenoStrokeAdd) =
(0.01/(1 + exp(−0.1 ⇤ (age− 60)))) ⇤ (0.95 ⇤ sex) ⇤ (�effect ⇤GenoStrokeMult)+
(1− �effect) ⇤ 0.003 ⇤GenoStrokeAdd

Stroke Relative Risk(StrokeRR) = 1 + (2/(exp(Y earsSinceStroke)/10))
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The given data generating model resulted in 
observations with 7 features: date of birth, sex,

GenoStrokeMult, GenoStrokeAdd, Genodeath  , date of stroke, and 
date of death.  Random draws of pseudo-individuals were made 
from the data generating model who were (1) alive as of 1 JAN 2020 
and (2) over the age of 18 on that date until 1000 cases (defined 
as having a stroke prior to 1 JAN 2020) and 1000 controls (defined 
as never having a stroke or having a stroke after 1 Jan 2020) were 
drawn. Each simulation scenario was replicated 1000 times to make 
robust estimates of the mean of estimated parameters and standard 
errors.  The simulation study was performed by using SASv9.4. 

Genotypic Models

Two genotypic models were simulated. The first modeled a constant 
relative risk over the lifespan, given by �effect and parameterized as 
a risk ratio. The second modeled a constant additive risk over the 
lifespan given by a function of �effect as shown above. This model 
simulated a larger relative effect at younger ages than at older 
ages. It has been hypothesized that some genetic loci may have a 
disproportionate effect on stroke risk at younger ages versus older 
ages, and thus genetic contributors to stroke risk may be easier to 
find7.  For example, when  �effect = 1.1, the early onset locus had a 
relative risk of 1.6 at age 30, 1.1 at age 50 and 1.04 at age 70. This 
allows for a test of the ability of age at onset analyses to identify 
loci that have a larger relative effect early in life rather than later.

Target Parameter

Given the above data generating model, it is trivial to determine 
the age at stroke for each pseudo-individual (date of stroke – date 
of birth).  The target parameter was defined as the difference 
in the age of stroke between genotypes among cases.

Estimates of this target parameter were made using linear regression 

AnnualMortalityRisk(Pdeath|sex, age,GenoDeath, Y earsSinceStroke) =

Base Risksex,age ⇤ (1 + ((�effect − 1))/(1 + exp(−0.1 ⇤ (age− 60))) ⇤Genodeath) ⇤ StrokeRR
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controlling for sex to approximate a common GWAS strategy.  
Genotypes were coded as 0,1,2 to estimate the additive genetic 

model. Models were run for each of the simulated loci separately. 
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Introduction
Genetic variation is assumed to play a role in nearly all human 
diseases (Lindee, 2000). Genome-Wide Association Studies 
(GWAS) aim to identify associations between common single 
nucleotide polymorphisms (SNPs) and a phenotype, which can give 
insight into the biological mechanisms involved in a phenotype. 
Thousands of significant SNP associations have been accumulated 
from single-trait GWAS. Databases like the GWAS catalog [1] 
can be used to lookup associations of one SNP with multiple 
traits: a phenome-Wide Association Study (pheWAS). A SNP that 
is associated with more than one trait is called pleiotropic. 

Pleiotropy is widespread in the human genome. An association 
analysis between millions of SNPs and hundreds of traits found that 
almost ten percent of SNPs were associated with more than one 
trait [2]. Pleiotropic SNPs have been identified for many phenotype 
combinations. In many cases, the traits are known to be biologically 
related; pleiotropic SNPs have been identified for several psychiatric 
phenotypes [3] and different types of cancers [4]. However, pleiotropic 
SNPs have also been described for seemingly unrelated diseases; for 
prostate cancer and type 2 diabetes [5], schizophrenia and Human 
Immunodeficiency Virus (HIV) infection [6], and Alzheimer’s disease 
and lung cancer [7]. This could mean that those SNPs are involved 
in a biological process with a more general function that happens to 
be involved in both traits. It could also mean that the studied traits 
are more biologically related than was previously known and might 
have a common etiology. Identifying more pleiotropic SNPs can 
thus transform our current classification of diseases [8]. Pleiotropy 
of druggable genetic targets can help predict adverse treatment 
effects [8] as well as identify new diseases that could be treated with 
existing drugs [9]. Pleiotropy can also be leveraged for more accurate 
risk prediction [10]%. Finally, methods like Mendelian Randomization 
(MR) rely on the assumption that there is no direct effect of the 
instrumental variable SNPs on both exposure and outcome. [11] 
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Pleiotropy methods can be used to indicate whether some of the 
instrumental variable SNPs are pleiotropic so they can be removed.

The straightforward approach to identify pleiotropic SNPs is to 
take the intersect of significant SNPs for each trait. This will identify 
some pleiotropic SNPs but not all, as both GWAS needed to be 
sufficiently powered to identify this SNP. Additionally, the identified 
SNPs do not have a measure of pleiotropy indicating how shared 
they are. Several methods for identification of pleiotropic SNPs from 
GWAS summary statistics have been published recently. Summary 
statistics are smaller in size, less privacy-sensitive than individual-
level data, and are often publicly available online. We will discuss 
the four most prominent methods of the last few years: PLACO 
(Pleiotropic Analysis under COmposite null hypothesis) [5], Primo 
(Package in R for Integrative Multi-Omics association analysis) 
[12], PLEIO (Pleiotropic Locus Exploration and Interpretation using 
Optimal test) [13], and HOPS (HOrizontal Pleiotropy Score) [14]. We 
show that PLEIO and HOPS do not identify SNPs that have an effect 
on two or more traits in question, but those that have an effect on 
one or more traits. Trait-specific SNPs - with an effect on only one 
of the traits - will thus also be called pleiotropic. While it might be 
interesting in some cases to identify SNPs with an effect on at least 
one trait, prospective users of these methods should be aware that 
they do not identify pleiotropic SNPs. PLACO uses a frequentist 
approach and tests whether the product of trait-specific effect sizes 
is different from zero. Primo uses a Bayesian approach, estimating 
the posterior probability of a SNP being associated with all traits.

Defining pleiotropy
Different types of pleiotropy
Different types of pleiotropy can be identified (see Figure 1). Horizontal 
(or biological) pleiotropy is when a SNP directly affects multiple traits. 
Vertical (or mediated) pleiotropy is when a SNP directly affects only one 
of the traits, but correlation between the traits leads to an association 
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of the SNP to both traits. There is some disagreement on the 
boundaries between horizontal and vertical pleiotropy. For example, if 
a gene produces a product that has two distinct functions and thereby 
exerts pleiotropy, most would call this horizontal pleiotropy. However, 
when that gene product has only one function and affects two different 
phenotypes, some would call this vertical pleiotropy [15]\ while others 
call this horizontal pleiotropy [16]. Finally, spurious pleiotropy can arise 
from bias in measuring the association between SNPs and traits [17]. 
For example, one marker SNP can be associated with two or more traits 
due to that marker being in Linkage Disequilibrium (LD) with another 
SNP that directly affects one of the traits and yet another SNP that 
directly affects another trait. The marker SNP seems to be pleiotropic, 
while in reality neither the marker SNP nor the nearby linked SNPs 
are pleiotropic. Distinguishing spurious pleiotropy due to LD and real 
pleiotropy from summary statistics is only possible with fine mapping 
approaches, which can be applied after identification of pleiotropic 
SNPs. Another source of spurious pleiotropy is the misclassification of 
traits. If certain symptoms are shared by two diagnoses, someone with 
these overlapping symptoms can be given either diagnosis. As a result, 
the genetic associations for these diagnoses will be highly correlated. 
Finally, shared controls and ascertainment bias (participant recruitment 
in a specific disease field) can also cause spurious pleiotropy [16]. 

Vertical

x

y

Horizontal

x y SNP

Tag SNP

x Trait x

LegendSpurious

Linkage disequilibrium

x y

Misclassification

x y

Figure 1. Visualization of horizontal, vertical and spurious pleiotropy, 
respectively.  A horizontally pleiotropic SNP has an effect on all traits under 
consideration. A vertically pleiotropic SNP has an effect on only one of the 
traits, but because the traits are correlated it is also associated with the other 
trait. A SNP can seem pleiotropic because it is in linkage disequilibrium with 
two SNPs that each individually have an effect on a trait. Misclassification 
of individuals can also give rise to a seemingly pleiotropic effect.
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Generally, the type of pleiotropy you want to consider will depend on 
your research question. If you are interested in SNPs that directly affect 
multiple traits to gain insight in the underlying biological mechanisms, 
you only want to identify horizontal pleiotropy. However, if you want to 
use pleiotropy to improve prediction of a trait, distinguishing between 
horizontal and vertical pleiotropy might not be essential. After all, 
a SNP increases or decreases risk regardless of the mechanism.

Pleiotropy mechanisms
SNPs may exert a pleiotropic effect through a distinct effect in 
various tissues, also called adoptive pleiotropy [18]. This could explain 
how seemingly unrelated traits can be associated with the same 
SNPs. Pleiotropic proteins have a higher number of protein-protein 
interactions [19], and pleiotropic genes are often expressed in more 
tissues. [2] These observations support the omnigenic model, which 
postulates that a SNP with an effect in a specific tissue affects all 
diseases that are modulated through that tissue by a small amount. [20]

Pleiotropy versus genetic correlation
Genetic correlation (r2) is defined as the correlation of SNP effect 
sizes on two traits [17]. Traits can be genetically correlated because 
they often occur together; if someone is taller, they generally weigh 
more as well. GWAS of height and weight would result in very similar 
effect sizes. Non-biological factors like sample overlap between the 
two GWAS can inflate the r2 estimate. LDSC [21] or HDL [22] can be 
used to obtain an r2 estimate that is not biased by sample overlap. 
An important observation is that genetic correlation leads to overall 
correlation of effect sizes, also in those SNPs with no effect on any of 
the traits. SNPs that do have an effect on any of the traits can influence 
r2 estimates; if they are very pleiotropic they can inflate r2, and if they 
are very trait-specific they can deflate r2. Therefore it is generally 
recommended to only use the subset of SNPs with no effect on any of 
the traits for r2 estimation. Also note that pleiotropic effects between 
traits can be present without genetic correlation, as pleiotropy is a SNP-

specific metric and genetic correlation is a genome-wide metric. [21] 
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Overview of the methods
To find pleiotropic SNPs, we could simply count the number of 
traits a SNP is significantly associated with and correct for multiple 
testing. However, stringent multiple testing corrections could conceal 
relevant pleiotropic SNPs [23]. Additionally, this does not correct for 
genetic correlation and sample overlap, and no pleiotropy statistic 
is provided using this approach. Therefore, methods have been 
developed that systematically evaluate pleiotropy in the genome for 
a selected group of traits, using GWAS summary statistics. Summary 
statistics are often publicly available as they do not contain privacy 
sensitive information, in contrast to individual-level data. [24], [25]
We will compare the methods on several topics, describing the 
statistical and practical similarities and differences. Prospective users 
can use the flowchart in figure 4 to guide the choice of method.

Hypotheses
PLACO can only be used to analyse two traits. The method tests 
whether the effect on each trait is significantly different from zero using 
the product of effect sizes. If the product is not different from zero, this 
means that the effect size for either or both traits is zero. Only if the 
product is different from zero is there a significant effect on both traits.

Primo is a Bayesian method that estimates the posterior probability 
of a SNP coming from a certain association pattern. An association 
pattern indicates which traits a SNP is associated with. For two traits, 
the possible association patterns are 00, 01, 10, and 11; indicating 

Alternative hypothesis Max p Decorrelation? LD correction Statistic

PLACO Effect on more 
than one trait

2 Yes - product(z)

Primo Effect on more 
than one trait

- No Conditional analysis -

HOPS Effect on one or 
more than one trait

- Yes LD-score regression Pm = (100/p) * 
sqrt(sum(z^2))

PLEIO Effect on one or 
more than one trait

- No - LRT statistic:

Table 1. Comparison of the methods. p = number of traits.
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association with neither trait, only trait 2, only trait 1, or both traits. 
The posterior probability of the association pattern where the SNP 
associates with all traits can be used for pleiotropy identification (11 
in the two-trait example). The posterior probabilities are estimated 
based on parameters theta_j and pi, denoting the proportion of 
non-null SNPs for each trait and the proportion of SNPs following 
the association pattern of interest. theta_j’s could be estimated from 
the proportion of SNPs that are significantly associated with each 
trait. Pi could be estimated from the proportion of SNPs that are 
significantly associated with both traits (to identify pleiotropic SNPs).

HOPS uses two different metrics: Pm is the square root of the sum 
of squared effect sizes, normalized for the number of traits. Pn is 
the number of traits that a SNP is nominally significant for. They use 
a chi distribution to test Pm and a binomial distribution to test Pn. 
Since Pm is a normalized version of the Euclidean distance, a large 
Pm can arise from a moderate effect on both traits in the same or 
opposite direction, or from a large effect on one trait. These two 
possibilities can not be distinguished with Pm alone and therefore 
HOPS is not able to discriminate pleiotropy from trait-specific effects.

PLEIO tests whether each SNP comes from a multivariate normal 
distribution MVN(0, τi

2Ω) where τi
2 = 0 for SNPs with no effect and τi

2 > 
0 for associated SNPs. PLEIO essentially tests a version of the Euclidean 
distance as well. The difference with HOPS is that they first decorrelate 
the data, while PLEIO models the correlation in the hypothesis 
test. A SNP can be significantly different from a multivariate normal 
distribution with zero mean without being pleiotropic. Therefore, PLEIO 
is also not able to discriminate pleiotropy from trait-specific effects.

 LD correction
Spurious pleiotropy can be caused by LD between causal SNPs and 
the marker SNP. To only consider SNPs that are truly pleiotropic for 
several traits, GWAS summary statistics analysis results need to be 
corrected for LD. HOPS uses LD-score regression to correct for the 
inflation of their statistic due to the total LD of a certain SNP with all 
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other SNPs (the LD-score). While this does correct for inflation, this 
does not take the explicit LD into account. To be able to identify 
which SNPs are truly pleiotropic, fine mapping approaches need 
to be applied on the results of the methods presented here.

Decorrelation
HOPS and PLACO decorrelate z-scores before calculating their 
statistics, while Primo and PLEIO explicitly model the estimated 
covariance matrix in the null distribution. All methods estimate 
the covariance matrix directly from the GWAS effect size 
estimates. This covariance matrix constitutes correlation coming 
from correlated ‘real’ (not estimated) effect sizes, and correlated 
error terms. The former is what we usually think of as genetic 
correlation, the latter arises from sample overlap and cryptic 
relatedness. Using the covariance matrix without distinguishing 
these two components has two consequences: 1) vertical pleiotropy 
will not be observed, and 2) the effect sizes are corrected for 
(potentially unknown) sample overlap and cryptic relatedness.

Inflation of the test statistic by large trait-specific SNP effects
Both PLACO and HOPS are sensitive to strong effect sizes as they use 
a product of z-scores and the sum of squared z-scores, respectively. 
If a SNP is associated with one trait and the other trait is highly 
polygenic, then that SNP is also likely to be associated with the other 
trait. HOPS corrects for polygenicity, yielding a polygenicity corrected  
and  score. PLACO is sensitive to strong effect sizes as well, and will 
interpret a SNP with a strong effect on one trait and a small effect on 
the second trait, as very pleiotropic. PLACO does not correct for this, 
but the authors advise to remove SNPs with a large effect on any of 
the traits before analysis. This unavoidably means that the potentially 
most interesting SNPs - those with a large effect - are not analysed.

Test statistic and association strength
The choice of method may depend on the type of desired output. 
HOPS, for example, outputs a Pn and Pm score for every SNP. 
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For PLACO, a significant pPLACO-value indicates that the SNP is 
pleiotropic to the two traits that PLACO analyzed (PLACO can 
only analyze a maximum of two traits). Primo outputs posterior 
probabilities for each possible trait association pattern, enabling 
the user to test multiple null hypotheses. PLEIO returns three 
different statistics (tau, PLEIO and LS statistic) and one p-value. 
HOPS and PLACO both return a statistic and a p-value per SNP.

Application to real datasets and validation of the 
methods

Not all methods have been applied to real datasets. We 
ran the methods on the same data (ischemic stroke and 
coronary artery disease): intersection, HOPS without 
polygenicity correction (HOPS-noPC), HOPS with polygenicity 
correction (HOPS-PC),  PLACO, PRIMO, and PLEIO.

In figure 2 we plotted the z-scores for ischemic stroke and coronary 
artery disease, and colored the SNPs if they are identified as 
pleiotropic by a certain method (posterior probability > 0.80 for 
PRIMO, and q-value < 0.05 for the other methods). As expected 
from the null hypotheses, we see that Intersection, PLACO and 
PRIMO identify shared SNPs with an effect on both traits, and do 
not identify trait-specific SNPs as pleiotropic. PLEIO and HOPS 

Figure 2. Not all multivariate methods distinguish 
between shared and trait-specific effects.
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on the other hand identify all SNPs with a significant multivariate 
effect as pleiotropic, even if they are not shared. This is clearly 
visible for PLEIO and HOPS-noPC, and less so for HOPS-PC since 
it seems to identify only shared SNPs. However, the polygenicity 
correction of HOPS [14] does not take into account whether the 
larger value is driven by a shared or trait-specific effect.

The three methods that only identify pleiotropic SNPs were further 
analysed; Intersection, PRIMO and PLACO. We compared the individual 
SNPs and loci that were identified as pleiotropic by each method. 7 
loci were found by all methods. Intersection did not find any additional 
SNPs. PLACO found 47 loci, PRIMO found 21 loci. 9 of where were 
identified by both PLACO and PRIMO. We measured the runtime of 
each method. Intersection was the fastest, with 0.1344 seconds needed 
for 1e5 SNPs. After that was Primo, with 1.1680 seconds. PLACO was 
the slowest with 162.7986 seconds (2.71331 minutes). In figure 3 we see 
the number of pleiotropic loci that were found by each method versus 
the speed of generating results (in number of input SNPs per second).

Figure 3. Number of pleiotropic loci found versus the speed of each 
method. PLACO and Intersection are all Pareto optimums: no other method 
is able to identify more pleiotropic SNPs while also being faster. 
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Discussion

The methods reviewed in this paper employ different approaches 
to identify pleiotropic SNPs from GWAS summary statistics. Only 
PLACO and Primo test for an effect on two or more traits; PLEIO 
and HOPS test for an effect on one or more traits, allowing trait-
specific SNPs to be identified as pleiotropic as well. This approach 
can be interesting in certain studies, for instance as an alternative to 
meta-analysis of GWAS of the same phenotype in different samples. 
Nevertheless, SNPs that have an effect on at least one of the traits 
are not pleiotropic according to the definition that we have used. Of 
course, as long as both method developers and users clearly define 
what their goal is, terminology is not as important. We do want to 
warn potential users of these methods, especially if they want to use 
them for Mendelian randomization (MR). One of the assumptions 
for the validity of genetic variants used as instrumental variables in 
MR is that they are not horizontally pleiotropic for the exposure and 
outcome traits. If PLEIO or HOPS are used to answer this question, 
all SNPs that have an association with either exposure or outcome 
will be flagged as pleiotropic and thus invalid, leaving no SNPs for 
the MR analysis. PLACO identified the most pleiotropic SNPs, at the 
expense of a longer runtime than PRIMO. However, PLACO can not 

E�ect on one or 
more traits

No

E�ect on all traits

PLEIOHOPS

PRIMO

Do you want to distinguish 
horizontal from vertical 
pleiotropy, and correct for 
sample overlap?

Yes

How many traits do you 
want to analyze?

2 >2

PLACO

Do you want to �nd 
pleiotropic SNPs, or SNPs 
with an e�ect on at least 
one of the traits?

Figure 4. Flow chart
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be used to find SNPs with a shared effect on more than two traits. If 
the desired number of traits is higher than two, PRIMO is currently 
the only method that truly identifies shared SNPs. Of the pleiotropy 
methods only PLACO corrects for correlation between traits, resulting 
in SNPs that are horizontally and not vertically pleiotropic. PRIMO did 
not implement a decorrelation procedure, but explicitly models the 
correlation in its statistical tests. Note that the user can choose to 
decorrelate summary statistics themselves before applying any method.

In single-trait GWAS population stratification arises from over-
representation of one ancestry in cases or controls, which can lead 
to spurious association of SNPs that have different allele frequencies 
in different ancestries. This cannot be corrected after the GWAS 
is performed, and should therefore be checked before including 
GWAS for pleiotropy analysis. Population stratification can also 
emerge when two GWASs performed on two different ancestries 
are used in pleiotropy analysis. SNP effects can differ between 
ancestries. Pleiotropy analysis of GWAS of different traits performed 
in different ancestries might therefore miss significant associations 
or overestimate them. This could lead to unexpected effects in 
applied medicine. Additionally, pleiotropy analysis of different traits 
analysed in different ancestries raises the question: to whom do the 
results apply? To only one ancestry, both, or none? Therefore, as 
pleiotropy analyses cannot (yet) correct for population stratification, 
it is important to combine GWAS from comparable ancestries.

None of the methods discussed in this paper account for epistasis; 
the phenomenon where the effect of SNP on a trait depends 
on the genetic background of the individual due to interaction 
between genetic elements [26]. GWASs that have tested interaction 
effects for multiple phenotypes could be used as input for the 
methods described here to identify SNP interactions that have a 
shared effect on multiple traits. It has not been shown whether it is 
possible to determine interaction effects from summary statistics, 
without individual-level data. Assessing the feasibility of such an 
approach could be an interesting direction for future research.
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Introduction 
Genetic variation in the genome partly explains phenotypic 
differences between individuals. Genome-wide association studies 
(GWAS) aim to identify the specific genetic variants (usually 
single nucleotide polymorphisms, SNPs) that are associated with 
phenotypic variation. Over the past decades, GWAS have led to 
the discovery of thousands of SNP-trait associations [1], [2].

From these discoveries we know that some SNPs can influence multiple 
traits; i.e. they are pleiotropic [3]. Pleiotropy is widespread in the 
human genome. An association analysis between millions of SNPs 
and hundreds of traits found that almost ten percent of SNPs were 
associated with more than one trait [4]. Moreover, pleiotropic SNPs 
have been identified for many trait combinations. In many cases, the 
traits are known to be biologically related; pleiotropic SNPs have been 
identified for several psychiatric phenotypes [5] and different types 
of cancers [6]. However, pleiotropic SNPs have also been described 
for seemingly unrelated diseases; for instance for prostate cancer 
and type 2 diabetes [7], schizophrenia and Human Immunodeficiency 
Virus (HIV) infection [8], and Alzheimer’s disease and lung cancer [9]. 
This could mean that those SNPs are involved in a biological process 
with a more general function. It could also mean that the studied 
traits are more biologically related than was previously known and 
might have a common etiology. Identifying more pleiotropic SNPs 
can thus transform our current classification of diseases [10]. 

Pleiotropy analysis can also be useful to identify pleiotropic SNPs in 
druggable genetic targets, which can help predict adverse treatment 
effects [10] as well as identify diseases that could be treated with 
existing drugs [11]. Moreover, pleiotropy can be leveraged for 
more accurate risk prediction [12]l. Finally, methods like Mendelian 
Randomization (MR) rely on the assumption that there is no direct 
effect of the SNPs used on both exposure and outcome [13]. 
Since pleiotropy methods can be used to indicate whether some 
SNPs are pleiotropic, they can be used to filter these SNPs.
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It should be noted that analysis of similarity between traits can also be 
done using genetic correlation, but this answers a different question. 
Genetic correlation gives the overall - genome-wide - correlation 
of effect sizes. Pleiotropic SNPs have a shared effect regardless of 
the genetic correlation and may tag a specific biological pathway 
or process rather than describing a general relationship between 
two traits. If traits are correlated and often co-occur in individuals, 
then any SNP that affects trait X will also be associated with trait Y, 
even if it does not directly affect trait Y. These SNPs are not actually 
pleiotropic because they are only directly associated with one trait. 
For this reason, to identify pleiotropic SNPs it is not sufficient to take 
the intersection of SNPs that are associated with both traits. Even if 
the traits are uncorrelated, intersecting SNP-sets is not an optimal 
approach; both GWASs need to be sufficiently powered to discover 
the pleiotropic SNP. Moreover, SNPs that are found with this approach 
lack an important feature: we know that they are shared but we do not 
know how shared they are and if this might be statistically significant. 

Recently, a few methods that aim to identify pleiotropic SNPs 
have been described. HOPS [14] and PLEIO [15] both identify a 
SNP as shared if it is associated with at least one of the traits of 
interest. Problematically, SNPs with an effect on only one trait will 
thus also be identified and cannot readily be differentiated from 
truly pleiotropic SNPs. Two other methods, PLACO [7] and PRIMO 
[16], identify a SNP as shared if it is associated with all traits of 
interest. PLACO can only be used for identification of SNPs that 
are shared by two traits. Moreover, we will show that PLACO has 
a high computational burden. PRIMO, on the other hand, only 
identifies a subset of the pleiotropic SNPs that PLACO finds. 

Here, we present PolarMorphism, a new approach to identify 
pleiotropic SNPs that is more efficient, identifies the same number 
of pleiotropic SNPs as PLACO, but can be applied to more than two 
traits. This enables the identification of SNPs that have an effect on 
numerous traits, and possibly play a role in more general biological 
processes. PolarMorphism is based on a transformation of the trait-
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specific effect sizes x and y to polar coordinates r (radius, the distance 
from the origin) and θ (theta, the angle with the x-axis). As a result, r 
is a measure of overall effect and θ a measure of sharedness, which 
can be used for downstream significance analysis and SNP ranking.

PolarMorphism enables construction of a trait network showing which 
traits share SNPs. From SNP-specific networks we observe that most 
SNPs are associated with traits within one trait domain. We find one 
SNP - rs495828 in the ABO locus - that is associated with traits across 
7 trait domains. We show that analysis of more than two traits is more 
powerful than the intersection of pairwise results of those same traits. 
We provide PolarMorphism as an R package on Github under the 
MIT license: https://github.com/UMCUGenetics/PolarMorphism.

Methods
Overview of PolarMorphism
We aim to identify pleiotropic SNPs from GWAS summary statistics 
using an approach that can be routinely applied to combinations 
of two or more traits. After obtaining summary statistics with 
effect size beta and standard error SE, we calculate z-scores (beta 
/ SE) per SNP. PolarMorphism can be applied on any number of 
traits, but here we explain the application to two traits. Analyzing 
more than two traits requires a slightly different approach (see the 
methods for a full description) but leverages the same principles. 

Our aim is to identify horizontally pleiotropic SNPs. Therefore 
we first perform a decorrelating transform to attenuate vertical 
pleiotropy resulting from genetic correlation. Given summary 
statistics for trait x and y, we calculate a covariance matrix, and use 
this to apply decorrelation or whitening (see methods for details) 
yielding decorrelated summary statistic vectors ~̂x and ~̂y .  Next the 
trait-specific vectors ~̂x and ~̂y  are used to calculate polar coordinates 
ri (the distance from the origin) and θi (the angle with the x-axis, 
ranging from 0 to 2π). For SNPs that are specific to trait X, θi is close 
to 0 or 2π. For SNPs that are specific to trait Y, θi is close to 1/2 π 
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or 1 1/2 π. For SNPs that are shared, θi is approximately 1/4 π for 
concordant direction of effect and 1 1/4 π for opposite direction of 
effect. Each quadrant of the x,y plot only differs in direction of effect 
in the original GWAS. To simplify further analysis we use the fourfold 
transform of  θ (θtrans), which folds the quadrants on top of each other 
(equivalent to using the absolute values of the z-scores) and then 
stretches the angles so they still describe a full circle (Figure 1).

To assess significance of sharedness, we separately test the distance 
r and angle θtrans. Under a null hypothesis of no overall effect, r is 
the square root of a sum of squared normally distributed variables 
with mean 0. We thus use a central χ distribution to calculate 
p-values for r (equivalent to using a χ2 distribution to test r2). The 
alternative hypothesis of this test is that SNP i affects at least one 
of the traits, which is insufficient to determine pleiotropy. Under a 
null hypothesis of trait-specific effect, θtrans is equal to 0. To calculate 
p-values for  θtrans we use a von Mises distribution with concentration 
parameter κ. We show that κ depends on r (see supplemental 
methods). Estimates of κ from simulations under the null hypothesis 
are included in the R package. These are used to establish one 
p-value per SNP. The alternative hypothesis of the second test is 
that SNP i has a pleiotropic rather than a trait-specific effect.

Figure 1. Overview of the method for 2 traits. Orange indicates true pleiotropic 
SNPs, grey indicates SNPs that are either trait-specific or do not have any effect. 
Z-scores for each trait are plotted on each axis and the data is decorrelated. 
Cartesian coordinates are transformed to polar coordinates. The absolute values 
of the z-scores are calculated and the angle is multiplied by 4. After subsetting 
on SNPs with a significant distance, we calculate p-values for the angle.
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PolarMorphism for two traits
PolarMorphism works on uncorrelated, standardized data. zx and 
zy are vectors of length m containing the z-scores of SNPs 1 to m 
for trait x and trait y, respectively. We calculate polar coordinates 
r and θ per SNP i: r is the distance from the origin, and θ is the 
angle of the vector from the origin to the point (zx,i, zy,i).

 and

We first test whether r comes from a central chi distribution with 
degrees of freedom equal to the number of traits p. The chi 
distribution describes the distribution of the square root of the 
sum of squared normally distributed variables. The distribution of 
p-values from this test is used to calculate q-values, which are FDR-
corrected p-values [17]. For all SNPs that have an effect, we want to 
know whether that effect is shared. We perform a four-fold transform 
of θ that ‘folds’ all quadrants of the Cartesian plane on top of each 
other and stretches it to make sure the angles can take any value 
on the circle [18]: ✓trans = 4 ⇤ ✓ mod 2⇡. The von Mises 
distribution describes angular data. It takes into account that θ = 0 
is equal to θ = 2π. It has two parameters: θmu is the mean value, and 
kappa (κ) is a concentration parameter that is similar to the inverse 
of the variance. θmu is zero under the null hypothesis of trait-specific 
effect. See the Supplementary methods for a description of how we 
obtained estimates for κ. Using the distribution of the observed r 
p-values for the distances of all SNPs, and the fact that p-values follow 
a uniform distribution under the null hypothesis, the false discovery 
rate (FDR) for each SNP can be calculated. This q-value gives the 
FDR if this SNP and all SNPs with a lower p-value would be called 
significant. We keep the SNPs that show a significant overall effect 
(r q-value < 0.05) and use the distribution of observed θ p-values 
for these SNPs to calculate θ q-values. We filter on θ q-value < 
0.05 to obtain SNPs that are significantly shared (FDR < 0.05).

ri =
q

(zx,i)2 + (zy,i)2 ✓i = tan�1(zy,i/zx,i)
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PolarMorphism for more than two traits
The distance of a SNP i in more than two dimensions is a 
straightforward extension of the distance in two dimensions:

Where zi,j is the z-score of SNP i for trait j. Describing the orientation of 
a SNP for p traits involves calculating the corresponding p-dimensional 
hyperspherical coordinates. This gives an additional angle for each 
added trait. Fortunately, this problem can be simplified. We define 
~Xi as the vector from the origin of the p-dimensional sphere to an 
observed SNP, and ~µi as the vector from the origin to the expected 
position of the SNP under the null hypothesis of trait-specific 
effect, along one of the axes. The goal is to determine the angular 
difference between ~Xi and ~µi. We choose ~µi such that it lies along 
the axis that is closest to ~Xi. In other words, we construct ~µi as a 
vector with zeros for each coordinate except for the coordinate with 
the highest absolute value for the SNP under consideration. We 
set the length of ~µi equal to the length of ~Xi (the distance r), so 
the only non-zero value of ~µi is set to r. The two vectors of interest 
always lie in a 2-dimensional plane, regardless of the number of 
traits p. The dot product of the vectors is a scalar and is equal to:

, therefore

Which can be rewritten as

ri =

vuut
pX

j=1

z2i,j

~µ · ~Xi = rµrxcos(✓)

✓ = cos�1(~µ · ~Xi/r
2)

✓ = cos�1(

pX

j=1

µjxj/

pX

j=1

x2
j )
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This angle should be normalized so the maximum value 
is always π, regardless of p. The angle is maximal if all 
coordinates of a SNP have the same value (which we will 
call x). Recall that ~µi has zeros for all coordinates but one. 
If θ is maximal, we can rewrite the expression for θ as:

The final correction factor with which the angles should be multiplied 
can then be obtained by dividing 2π by the result of this formula.

To test the significance of r, we use the same procedure as 
for two traits. In this case the degrees of freedom is equal 
to the number of traits p. To assign significance levels to the 
angle θ, we use the von Mises-Fisher distribution, which is an 
extension of the von Mises distribution. The probability density 
function of the von Mises Fisher distribution is given by:

Where C is a normalization constant, κ is the concentration 

parameter, ~µi is the unit vector of the expected direction and ~Xi is 
the observed unit vector (i.e. the vector of the SNP divided by its 
length to get unit length). The inner product  can be rewritten as 
where θ is the angle between the expected and observed vectors:

Functions to obtain the probability density function and the 
normalization constant C are implemented in the vMF package 
in R [19]. To obtain a cumulative density function the probability 
density function needs to be integrated. The definite integral 
for  can not be defined using elementary functions. However, 
the exponent has the following series representation: 

✓(p) = cos�1
Pp

j=1 µjx/
Pp

j=1 x
2
j

= cos�1(((p− 1)(0 · x) + r · x)/px2) = cos�1(
p
p/p)

f = C exp( cos(✓))

f = C · exp(~µ · ~X)
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The integral is then equal to:

The term (as a function of the iterator j) does have an indefinite integral: 

where cot is the cotangent function, hypergeo is the hypergeometric 
function and gamma is the gamma function. We implemented the 
summation so that it stops when the last added term is smaller 
than a user-defined value (called ‘tol’ in our R package). We use 
the hypergeo package for the hypergeometric function [20]. 
The values for κ as a function of p that we derived for p = 2 still 
apply here, because θ still describes a two-dimensional angle.

Simulated data generation
To estimate the false positive rate (FPR) of PolarMorphism we used 
the R package simplePHENOTYPES [21] to simulate GWAS data for 
two traits with horizontally pleiotropic SNPs and SNPs that are specific 
to each of the traits (49317 SNPs for each of the three categories, 
approximately 10% of the total number of SNPs), a genetic correlation 
of 0.8, and heritability of 0.6 for each trait. This was repeated 100 
times. As input to the package we used genetic data from the HD 
genotype chip from phase 3 of the 1000 genomes dataset [22]. We 
included only individuals with non-Finnish European ancestry to 
keep the linkage disequilibrium (LD) as homogeneous as possible 
while maintaining a decent sample size (N = 549 individuals). We 
used bcftools [23] to include these samples and variants with allele 
frequency higher than 0.05 or lower than 0.95. We further filtered 

f = C exp( cos(✓)) = C

1X

j=0

(( cos(✓))j/j!)

F = C

Z 1X

j=0

(( cos(✓))j/j!) = C

1X

j=0

Z
(( cos(✓))j/j!)

R
(( cos(✓))j/j!) =

= � cot(✓) abs(sin(✓)) ( cos(✓))j hypergeo(1/2,(j+1)/2,(j+3)/2,cos2(✓))
gamma(j+2)
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the variants to include only high-confidence SNPs, using the list of 
SNPs with pre-computed LD-scores from the LD-score method [24]. 
The output of simplePHENOTYPES can readily be used as input for 
BOLT-LMM [25], with which we performed a GWAS of each instance of 
simulated data. The resulting summary statistics were used as input for 
PolarMorphism. To determine FPR for the angle  , we considered the 
fraction of ground-truth trait specific SNPs in our simulated data with , 
as these SNPs would (falsely) be considered pleiotropic in our method.

To estimate the FPR of the distance r, we permuted the phenotypes 
as pairs. This ensures that the correlation between the traits remains 
but no association between genotype and phenotype should exist 
beyond what is expected under the null hypothesis of no effect. 
Each of the 100 instances of simulated data was permuted once. 
We again performed GWAS in BOLT-LMM and ran PolarMorphism. 
To determine FPR for the significance threshold on r we determine 
the fraction of all SNPs with , as these SNPs would (falsely) be 
considered SNPs with a – pleiotropic or trait-specific – effect.

The mean estimated  on the non-permuted data is 0.060 (SD = 
0.001). On the permuted data, the mean estimated  is 0.050 (SD = 
0.0003) and the mean estimated  is 0.060 (SD = 0.001). Boxplots 
of the distribution of both FPRs can be found in Figure S1.

Preprocessing the summary statistics
We used publicly available summary statistics for the 41 traits 
shown in Table 1, encompassing a range of mostly cardiovascular 
phenotypes with relatively large sample sizes enabling biological 
interpretation of pleiotropic SNPs within a specific disease context. 
Data were obtained from the sources provided in Supplemental Table 
2, which also contains references to the respective papers they were 
described in. We aligned reference and alternative allele across all 
traits, and filtered using the list of high-confidence SNPs provided 
with the LDSC software.[24] We divide effect sizes by their standard 
error to obtain z-scores. We calculate the covariance matrix on the 
subset of SNPs that do not have a large overall effect. To this end, 
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the covariance is calculated only on SNPs that have a mahalanobis 
distance smaller than 5. We use the ZCA-cor whitening method in the 
‘whitening’ package in R [26], to decorrelate the data while ensuring 
that the x and y components of the transformed z-scores maximally 
correlate with the x and y components of the original z-scores.

Inferring relationships between traits from pleiotropic SNPs
For all trait pairs, we ran PolarMorphism and clumped the significant 
SNPs with Plink, using the q-values instead of p-values (--clump-
kb 5000000, --clump-p1 0.05, --clump-p2 0.05, --clump-r2 0.2) 
[27]. We make an adjacency matrix from the number of shared 
loci per trait combination and use this to construct a graph using 
the igraph package in R [28]. We did the same per SNP to obtain 
SNP-specific networks. To create domain networks from the trait 
networks we draw an edge between domain A and B if an edge 
exists between any trait of domain A and any trait of domain B.

Gene set enrichment analysis in DEPICT
We changed the following settings from the default: association_
pvalue_cutoff: 0.05 to accommodate for the fact that we use 
q-values instead of p-values. We performed gene set enrichment 
using the default gene sets provided by the DEPICT authors, but 
only considered gene sets from gene ontology [29], REACTOME 
[30], KEGG[31] and the PPI networks as defined by the DEPICT 
authors using the InWeb database [32] for further analysis.

Inferring relationships between traits from genetic correlation
To infer relationships between traits from genetic correlation, 
we ran LDSC[24] using the GenomicSEM [33] package in R. We 
calculated p-values from the correlation coefficients and their 
standard errors using the pnorm function in R, and used a Bonferroni 
corrected p-value threshold of 6.4*10-5 to correct for 780 trait 
combinations tested. For this purpose, we made an adjacency 
matrix from the genetic correlation for each trait combination and 
used this to make a graph using the igraph package in R.[28]
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Comparison with other methods
Intersection refers to the straight-forward approach of finding 
shared SNPs: take the intersection of the SNPs that were significant 
for trait X and those that were significant for trait Y. We used the R 
package for HOPS (HOrizontal Pleiotropy Score) [14] We used our 
pre-processed z-scores (whitened). We ran HOPS both with and 
without polygenicity correction and used only the Pm p-values. We 
used the command line tool written in Python for PLEIO (Pleiotropic 
Locus Exploration and Interpretation using Optimal test) [15]. We used 
z-scores (not whitened and not corrected for LD-score) and supplied 
the sample sizes of the original GWAS. We used the R package 
for PRIMO (Package in R for Integrative Multi-Omics association 
analysis) [16]. We used PRIMO based on p-values. For the alt_props 
parameter (the expected proportion of SNPs that follow the alternative 
hypothesis per trait) we supplied the proportion of SNPs that were 
significant for trait 1 (q-value < 0.05) over all SNPs, idem for trait 
2 (q-value < 0.05). We supplied c(2,2) for the dfs parameter. We 
used the R package for PLEIO (pleiotropic analysis under composite 
null hypothesis) [15]. We used whitened z-scores (not corrected for 
LD-score). We used the VarZ function to calculate the covariance 
matrix and supplied that, with the z-scores, to the placo function.

To assess how many loci were found by each method, we LD-pruned 
the significantly shared SNPs. For each method and for each locus, 
we checked if any of the SNPs in that locus were also found by 
another method. If that was the case, we gave that locus the same 
identifier in each method. Afterwards, we determined the loci that 
were found by all methods and those that were found by only one or 
a subset of the methods. We ran Intersection, HOPS (with polyenicity 
correction), PRIMO, PLACO, and PolarMorphism on the same data 
while supplying a dataframe with an increasing number of rows. For the 
Intersection method we added q-value calculation from the original 
GWAS p-values and a filtering step on both q-values to make it a 
fair comparison with the other methods. All five methods are written 
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in R, therefore we timed them in R using the tictoc package [34]. 
Running the software in the terminal could have a different runtime, 
but this does allow us to compare the runtimes among the methods.

Results
Defining pleiotropy
Pleiotropy can be identified in different ways ([3], [35] and Figure 2). 
Horizontal pleiotropic SNPs directly affect multiple traits. Vertical 
(or mediated) pleiotropic SNPs directly affect one of the traits, but 
dependence between the traits leads to an association with both 
traits. The difference between horizontal and vertical pleiotropy is 
particularly important in the context of Mendelian randomization 
(MR). With MR, the causal effect of an exposure (e.g. smoking) on an 
outcome (e.g. lung cancer) can be determined. Genetic variants that 
are associated with the exposure are used as so-called ‘instrumental 
variables’. One important assumption is that these variants only have 
an effect on the outcome through the exposure. In other words, 
that they are vertically pleiotropic and not horizontally. Horizontally 
pleiotropic SNPs - which have a direct effect on both smoking and lung 
cancer - violate this assumption and should therefore not be used as 
instrumental variables in MR [36]. The final pleiotropy type is spurious 

Figure 2. Visualization of horizontal, vertical and spurious pleiotropy, 
respectively.  A horizontally pleiotropic SNP has an effect on all traits under 
consideration. A vertically pleiotropic SNP has an effect on only one of the 
traits, but because the traits are correlated it is also associated with the other 
trait. A SNP can seem pleiotropic because it is in linkage disequilibrium with 
two SNPs that each individually have an effect on a trait. Misclassification 
of individuals can also give rise to a seemingly pleiotropic effect.
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pleiotropy, which can arise from bias in measuring association [37]. For 
example, one marker SNP can be associated with two or more traits 
due to that marker being in linkage disequilibrium (LD) with another 
SNP that directly affects one of the traits and yet another SNP that 
directly affects another trait. The marker SNP seems to be pleiotropic, 
while in reality neither the marker SNP nor the nearby linked SNPs 
are pleiotropic. Determining whether the same SNP is likely causal 
for both traits is only possible with colocalization approaches [38]. 
Another source of spurious pleiotropy is misclassification of traits. If 
certain symptoms are shared by two diagnoses, individuals with these 
overlapping symptoms can be given either diagnosis. As a result, the 
genetic associations for these diagnoses will be highly correlated. 
Finally, shared controls and ascertainment bias (participant recruitment 
in a specific disease field) can also cause spurious pleiotropy [39].

Inferring relationships between traits from pleiotropic SNPs
We applied PolarMorphism to all pairwise combinations of 41 traits 
from different trait domains (Table 1). The resulting pleiotropy network 
is shown in Figure 3. Herein, traits are nodes and the edge weights 
indicate the number of pleiotropic SNPs discovered by PolarMorphism. 
The contribution of each SNP to the edge weights is weighted by the 
inverse of the total number of traits it is associated with, in order to 
account for the effect that SNPs affecting many traits probably tag a 
biological process with a general function. Sharing such a SNP is less 
meaningful than sharing a SNP with an effect on only some traits.

The resulting pleiotropy network is densely connected (512 out of 820 
possible edges), supporting earlier descriptions of widely occurring 
pleiotropy among traits [4], [39]W The lipid domain (HDL, LDL, TG and 
TC) and blood pressure domain (DPB, SBP and PP) each form a fully 
connected subgraph. SBP has the highest number of edges (degree), 
sharing SNPs with 37 of the 41 traits. ALS, which shares SNPs with 5 
traits, has the lowest degree. Global analysis of the pleiotropy network 
thus readily reveals general characteristics of traits and trait domains. 

Table 1 (next Page) . Trait domains and trait abbreviation as used in the figures.
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Domain name trait abbreviation trait name
anthropomorphic BMI body mass index

Height height
cancers PrCa prostate cancer

BC breast cancer
cardiac traits AF atrial fibrillation

HF heart failure
NICM non-ischemic cardiomyopathy

cardiovascular CAC coronary artery calcification
CAD coronary artery disease
cIMT carotid intima-media thickness
Plaque presence of carotid plaque

immune IBD irritable bowel disease
Asthma asthma

lipids HDL high-density lipoprotein
LDL low-density lipoprotein
TC triglycerides
TG total cholesterol

neurodegenerative disease AD Alzheimer's disease
ALS Amyotrophic lateral sclerosis
PD Parkinson's disease

pressures DBP Diastolic blood pressure
SBP Systolic blood pressure
PP Pulse pressure

psychiatric / psychological ASD Autism spectrum disorder
BIP bipolar disorder
DS depressive symptoms
EA educational attainment
IQ intelligence quotient
MDD major depressive disorder
Neuroticism neuroticism
SWB subjective well being
Insomnia insomnia

smoking EvrSmk ever smoker
FrmrSmk former smoker
logOnset log of age at onset of smoking
CpD cigarettes per day

stroke AS any stroke (hemorrhagic or ischemic)
IS ischemic stroke
CES cardio-embolic stroke
LAS large artery stroke
SVS small vessel stroke
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Analyzing the pleiotropy network in more detail, we find that most 
SNPs are associated with traits within one or across two trait domains 
(51% and 43%, respectively). We observe one SNP that is associated 
with traits across 7 trait domains: rs495828, a SNP in the ABO gene, 
which is ubiquitously expressed across many tissues and cell types 
[40]. For each trait domain, we determine how many SNPs only have 
associations within that domain (we call these single domain SNPs), 
and calculate the percentage of the total number of SNPs that were 
identified for that domain. We find that the psychiatric traits have the 
highest percentage of single domain SNPs; one third of all SNPs that 
are shared with a psychiatric trait are only associated with psychiatric 
traits. The smoking traits have the lowest percentage of single domain 
SNPs, suggesting that most smoking-associated variants tag general 
biological processes rather than smoking-specific processes.

A comparison with genetic correlation
Genetic correlation (rg) is the correlation of SNP effect sizes on two 
traits [37]. Non-biological factors like sample overlap between the two 
GWAS can inflate the rg estimate. LDSC [24] or HDL [41] can be used 
to obtain an rg estimate that is not biased by sample overlap. Genetic 
correlation leads to overall correlation of effect sizes, also in those SNPs 
with no effect on any of the traits. SNPs that do have an effect can 
influence  estimates; if they are very pleiotropic they can inflate rg, and 
if they are very trait-specific they can deflate . rg Therefore it is generally 
recommended to only use the subset of SNPs with no effect on any of 
the traits for rg estimation. Also note that pleiotropic effects between 
traits can be present without genetic correlation, as pleiotropy is a SNP-
specific metric and genetic correlation is a genome-wide metric [24].

To assess whether genetic correlation provides the same insight into 
trait relationships as pleiotropy, we built a network based on genetic 
correlation. The resulting network is sparse (138 out of 780 possible 
edges) and only partially overlaps with the pleiotropy network. Figure 
4 shows separate subnetworks for edges that exist in both the genetic 
correlation network and the pleiotropy network or in only one of the 
two. In total, 416 trait pairs share at least one pleiotropic SNP, but are 
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not genetically correlated (Figure 4a). This situation can arise if there are 
only a few SNPs that are shared but the rest of the genetic architecture 
of the traits is independent. It is also possible that some shared SNPs 
have the same direction of effect in both traits while other shared SNPs 
have an opposite direction of effect, thereby averaging out . Seven 
trait pairs are genetically correlated, but do not share any SNPs that 
are horizontally pleiotropic (Figure 4b). Each SNP that is associated 
with one of the traits is more likely to also be associated with the other, 
because of the overall rg [36]. After decorrelation, vertically pleiotropic 
SNPs will not be identified by PolarMorphism. 96 trait pairs are 
genetically correlated and share horizontally pleiotropic SNPs (Figure 
4c). These are traits that share a number of vertically pleiotropic SNPs, 
leading to a higher rg, as well as some horizontally pleiotropic SNPs. 
Our results seem to indicate that two traits are more likely to share at 
least one pleiotropic SNP than they are to be genetically correlated.

The stroke domain
The stroke domain consists of any stroke (AS); its subtype ischemic 
stroke (IS); and its subtypes cardioembolic stroke (CES), large 
artery stroke (LAS) and small vessel stroke (SVS). The three IS 
subtypes are generally believed to have different etiologies 
[42]–[44], and previous efforts have resulted in tens of subtype-
specific associations [45]–[48]. In line with this, our analysis does 
not reveal any shared SNPs. It should be noted that shared SNPs 
have been described before for LAS and SVS and for LAS and 
CES [45]h. However, SNPs at these loci were low-confidence and 
therefore not included in our analysis (see methods for details).

Given the lack of shared SNPs among the IS subtypes, we investigated 
which other traits share SNPs with each of the IS subtypes. To that 
end we looked at the subnetwork composed of the IS subtypes and 
their direct neighbors (Figure 5). Our analysis reveals that six traits 
(CAD, DBP, Plaque, PP, SBP, TC) share SNPs with all IS subtypes. 
This indicates that all ischemic stroke subtypes are associated with 
biological pathways with a possible effect on blood pressure and 
lipids. CES shares most pleiotropic SNPs with atrial fibrillation (AF), 
which is believed to be its main cause [43]. LAS, which is thought to 
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arise from atherosclerotic plaques in the carotid arteries that rupture 
or block blood flow [48], shares most SNPs with cIMT - a proxy for 
the extent of carotid atherosclerosis. SVS, which is thought to have 
a cardiovascular origin like the other IS subtypes [49], shares most 
SNPs with CAD. Notably, it also shares many SNPs with Alzheimer’s 
and Parkinson’s disease. This might indicate that many of the SNPs 
that are associated with risk of small vessel stroke also influence 
risk of neurodegenerative disease. Note that the edges LAS-HDL, 
SVS-AD, SVS-PD and SVS-Plaque were only found in the pleiotropy 
network and not in the genetic correlation network. This indicates 
that pleiotropic SNPs harbor information that is complementary to 
genome-wide correlation measures. Furthermore, zooming in on 
one trait domain shows how PolarMorphism can be employed to 
gain more detailed insight in trait relationships than the general 
patterns that can be gathered from the complete network.

Joint analysis of more than two traits identifies more 
pleiotropic SNPs than pairwise analyses of the same traits
PolarMorphism can be used to find SNPs that are shared by any 
number of traits. A SNP with a small effect on each trait might 
not be identified in univariate or even pairwise analysis, but could 
be if more traits are included. We therefore investigated whether 
analysis of three or more traits is indeed more powerful than the 
combined results from pairwise analyses of those same traits. 
Pairwise analyses of the lipid domain (HDL, LDL, TC, TG) identifies 
186 shared loci. Analysis of all four traits together identifies 
1029 shared loci. 180 loci are found by both approaches.

To explore whether the increased number of loci is biologically 
relevant, we perform gene set enrichment analysis in DEPICT [50] 
on the significant loci from the pairwise analyses and the significant 
loci from the joint analysis. In order to get the relevant genes for 
each locus, we perform clumping using DEPICT’s default settings. 
Hence the number of DEPICT loci differs from the loci that we 
identified (108 pairwise loci, 496 joint loci, see Tables S4 and S6). 
The pairwise results are enriched for 12 gene sets (Table S5) whereas 
the joint results are enriched for 85 gene sets (Table S7). Moreover, 
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the loci revealed by the joint analysis result in enrichments that are 
more significant: 85 of the 95 gene sets that are significant in either 
analysis are more significant in the joint analysis, and 2 of the 2 gene 
sets that are significant in both analyses are more significant in the 
joint analysis. Moreover, considering the 10 genes with the highest 
z-score for membership of these gene sets, we find that the genes 
implied by the joint analysis have a higher likelihood of gene set 
membership (see the DEPICT paper for a detailed explanation [50]), 
thus resulting in more coherent gene sets. For instance, the joint 
analysis identifies the LDLR (LDL receptor) gene, which has a high 
membership likelihood for the REACTOME “metabolism of lipids 
and lipoproteins” gene set. The pairwise analysis does not identify 
LDLR, making this gene set less enriched. These results show that 
joint pleiotropy analysis of multiple traits yields more biologically 
relevant insights compared to pairwise analysis of those same traits.

Runtime increases marginally with the number of traits 
analyzed
To assess how the runtime scales with the number of traits analyzed, 
we picked all traits that were affected by the most pleiotropic SNP, 
rs495828: AS, BC, CAD, CES, DBP, HDL, HF , IS, LDL, T2D, TAGC, and 
TC. In this order, we picked the first p traits and timed PolarMorphism 
(see Figure 6). Runtime increases slightly with larger p, but the 
effect is small. There is a large difference between p = 2 and p > 
2 because we use different approaches if p > 2 (see methods).

Figure 6. Runtime scales with the number of traits p. The number of traits 
p ranges from 3 to 12. The slope of the regression line is 0.75 (se = 0.13). 
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Comparison with other methods
To compare PolarMorphism to existing methods, we ran: 
PolarMorphism, intersection,  PLACO, and PRIMO on a selection 
of traits (IS and myocardial infarction). We compared the individual 
SNPs and loci that were identified as pleiotropic by each method. 
Four loci are found by all methods. Intersection does not identify 
more than those four loci. PLACO and PolarMorphism both find 21 
loci (19 of which are identical), PRIMO finds 13 loci that were also 
identified by PLACO and PolarMorphism. PLACO and PolarMorphism 
use a fundamentally different approach to identify pleiotropy: 
whereas PLACO tests if the effect for both traits is not equal to zero, 
PolarMorphism first tests whether the overall effect (distance) is 
different than expected and then tests the sharedness of a SNP.

We timed each method from cleaned input data (already in 
memory, timing done in R) to results. The number of pleiotropic 
loci that were found by each method and the speed of 
generating results (in number of input SNPs per second) are 
provided in Table 2. These data show that PLACO does not 
identify more loci than PolarMorphism and is slower.

Table 2. Comparison of methods. HOPS and PLEIO were not run 
because they use a pleiotropy definition that includes single-trait SNPs. 
Furthermore, PLACO can only be applied to two traits simultaneously.

Decorrelation? Pleiotropic loci found speed (1k SNPs/second)

PolarMorphism Yes 21 63

PLACO Yes 21 0.61

Primo No 13 86

HOPS Yes - -

PLEIO No - -

Discussion
We have developed a new method that identifies pleiotropic SNPs 
with an effect on multiple traits. PolarMorphism can be used on 
combinations of two or more traits. It uses GWAS summary statistics 
and corrects for correlation in effect sizes arising from genetic 
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correlation or potential sample overlap. The potential applications of 
PolarMorphism include a) identifying SNPs that are shared between 
traits within a trait domain to learn more about the domain-wide 
biological processes, b) identifying SNPs that are shared among a 
diverse set of traits to find general biological processes and c) using 
the identified SNPs to inform new trait ontologies. As an example, 
we apply PolarMorphism to a set of traits from different domains.

The network analyses indicate that there are no trait domains that 
only share SNPs within the domain. We observe that most SNPs 
are associated with traits within one or across two trait domains. 
We zoomed in on the stroke domain, which has very little domain-
specific SNPs. This may mean that the stroke traits are associated with 
general SNPs or that the stroke traits do not share many biological 
pathways. Each ischemic stroke subtype shares more SNPs with non-
stroke traits than with the other ischemic stroke subtypes. Note that 
these networks are heavily influenced by the choice of included traits. 
Conclusions drawn about the networks in this study are therefore not 
necessarily general, as each trait could share SNPs with a number of 
traits that were not included. Future applications of PolarMorphism 
to a diverse set of traits will result in a more complete and precise 
overview of pleiotropy across the genome and across phenotypes.

We compared PolarMorphism with similar methods. PolarMorphism 
identifies more pleiotropic SNPs than the standard intersection 
method and than PRIMO. PLACO identifies the same number 
of pleiotropic loci as PolarMorphism. However, PolarMorphism 
finished analysis of 1 million SNPs in less than 20 seconds 
(compared to >25 minutes for PLACO), making analysis of many 
trait combinations feasible. Furthermore, PLACO can only be used 
to analyze two traits together while PolarMorphism can analyze 
a theoretically unlimited number of traits. A five-fold increase 
in the number of identified pleiotropic loci for the lipid domain 
indicates that analyzing more than two traits is much more powerful 
than combined results from the respective pairwise analyses.
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Contributions of this thesis
In this thesis I have shown that using different phenotype definitions 
and combining phenotypes can lead to discovery of new genetic 
associations in existing data. In chapter 1 we investigate the balance 
between stricter phenotype definitions and sample size. In chapter 2 we 
use the age at onset of ischemic stroke, a continuous phenotype that is 
complementary to the more commonly used case-control phenotype. 
We find an association of genetic variation in the ApoE locus with a 
lower age at onset in women but not in men.  
We simulated a genetic variant that is associated with mortality and 
earlier death, but does not have a direct effect on ischemic stroke 
risk. Such a variant would be found in an analysis of age at onset of 
ischemic stroke, and not in a case-control analysis of risk. However, 
it is possible that this variant has an effect on ischemic stroke risk 
that has not been identified yet, possibly because it is sex-specific. 
The GWAS described in the first two chapters were performed in 
a relatively small sample. Further analysis in more individuals could 
identify more associated variants. Nonetheless, these studies do 
show that it is worthwhile to spend time on precisely defining the 
phenotype before a GWAS is performed. The literature review in 
chapter 3 enables a fair comparison of four previously published 
methods that aim to identify pleiotropic SNPs, as well as a comparison 
with our own method PolarMorphism. Our finding that two of these 
methods do not identify truly pleiotropic SNPs – but rather, SNPs 
with an effect on at least one of the traits under consideration - is 
valuable for prospective users of these methods. PolarMorphism, 
presented in chapter 4, is an efficient alternative for the methods 
described earlier. The code (implemented as a software package in 
R) is freely accessible on Github, enabling others to use it easily.
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Limitations and starting points for future research
Genetic effects do not happen in isolation
We often call all phenotypic variation that cannot be explained 
by genetics ‘environmental effects’. Some factors that are known 
to influence cardiovascular disease risk are commonly known 
health-related factors like high blood pressure, diet choices, 
and presence of other diseases (comorbidity). Socio-economic 
factors like income and educational attainment are also known to 
affect cardiovascular risk. Most of these factors are themselves 
associated with genetic variation. It is likely that many of these 
factors not only have an additional influence on a phenotype, but 
that the exact effect of our genotype changes depending on these 
factors; that there is an interaction between our genotype and 
our circumstances. If you have an auto-immune disease, genetic 
variation in immune-related pathways might have a bigger effect 
then someone who does not have an auto-immune disease. 
Studies of genetic and non-genetic effects should be incorporated 
more often to enable finding interactions between the two.

Large scale biobanks
In 2010 the UK biobank finished collecting data of 500,000 people; 
genetic data as well as numerous phenotypes ranging from blood 
pressure to how many cups of coffee they drink each day. [1] The UK 
biobank has proven to be a wealthy data source for research; almost 
1,500 papers have been published about it. It is accessible to many 
researchers, provided their study proposal is approved by the ethical 
committee. Such a large and relatively homogeneous sample from one 
country makes it easier to study genotype-phenotype associations. 
Even correcting for confounders is possible (this can be difficult in other 
data sets, as we often do not have information on all confounders for all 
people in our data). However, the gain in statistical power from larger 
samples comes at a cost: most phenotypes are not very clearly defined. 
To give an example: we explored whether we could use the UK biobank 
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data to replicate our GWAS of age at onset of ischemic stroke, but the 
closest phenotype that was available was ‘age stroke diagnosed’ which 
included hemorhagic strokes in addition to ischemic strokes. Another 
reason why this phenotype was less useful to us, is that the UK biobank 
population is relatively young, and have not been followed for longer 
than 10 years. Therefore, there are not many stroke cases reported.

Another thing to be wary of is overfitting. Overfitting refers to the 
situation when a (prediction) model has too many parameters to fit 
on a small dataset and ends up fitting some of the parameters on 
noise. If the same model is applied to another dataset, it fails to 
perform because it learned the dataset-specific patterns or noise 
from the first dataset. We know how to deal with this if we are using 
data for one project. In the case of UK biobank however, thousands of 
people have been working with the same dataset for many projects. 
Some might be following up on results that have been generated 
with UK biobank data and using the same data to do additional 
analyses. Especially in those situations overfitting is a realistic 
problem, and researchers should use another dataset if possible.

Sex-specific effects
Sex-specific implies that a pathway that is tagged by a SNP is only 
relevant in one sex. Sex differences mean that the same pathway is 
relevant in multiple sexes, but to a different extent. In some cases, this 
could have a biological origin, hormone differences for instance. But 
in other cases, sociological differences could play a role. In biomedical 
research we usually consider sex, a biological phenotype that exists 
on a spectrum. Most people fall on either side and are male or 
female. Some people exist along the spectrum: intersex individuals.

Gender describes how we see ourselves. It also exists on a spectrum, 
with most people identifying as male or female, and some as non-
binary (neither male or female) or a-gender (not strongly identifying 
with any gender). If someone’s sex and gender align, they are 
cisgender. If someone’s sex is not the same as someone’s gender, they 
are transgender. Historically, most biomedical research has been done 
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in cisgender men. The past decades more attention has been given to 
the inclusion of women in trials and the study of diseases that are more 
common in women than in men. However, sex and gender diversity 
beyond men and women has largely been ignored. Most of the time, 
in genetic studies at least, only cisgender people are included. One 
of the reasons could be, that it is difficult to disentangle sex from 
gender. If we want to look at sex-specific effects, we generally split the 
group based on sex chromosomes (one group for people with XX-
chromosomes and one for people with XY-chromosomes). To ensure 
that each group is as homogeneous as possible, we further narrow 
down to cisgender men and cisgender women. We usually do not 
have enough samples for other sexes or genders, or this information 
is not asked. While there are practical reasons to do this, it might not 
be the only way. In fact, one of the approaches to disentangle sex 
effects from gender effects could be to study transgender individuals 
who receive hormone replacement. However, this is a vulnerable 
community and research like this should be setup carefully.

Studying man-woman differences certainly is not enough to capture 
the full breadth of sex and gender diversity that exists among humans, 
but it is a step up from only studying biology in cisgender men. 
Everyone deserves the same health outcome, but sex- and gender-
sensitive research and healthcare are necessary to ensure this equality.

Genetic ancestry diversity
The human reference genome is based on the genomes of only tens 
of people, and 70% was obtained from one individual who, as was 
found out later, had a high risk of diabetes. [2], [3] This begins to 
illustrate the lack of diversity in the reference genome, which is in 
theory just as useful as a reference as any individual’s genome. The 
genetic ancestries of the individuals who are included in the human 
reference genome are largely unknown, although we know at least one 
person of African American ancestry was included. Thus, the reference 
genome is very biased to the few people who were included, but it is 
not necessarily very biased to European ancestry only. This problem 
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does show up in virtually all other aspects of genetic research: most 
people in GWAS datasets are white and of European ancestry. This 
can lead to less power to discover disease-associated SNPs that are 
common in non-European ancestries and rare in European ancestry, 
which further increases the existing racial healthcare gap. Furthermore, 
this has had and continues to have a trickle-down effect: if the big, 
well-powered GWAS are done in European ancestry individuals and 
we want to follow-up on that research, we should probably also restrict 
our study to European ancestry if we want to compare our outcomes 
with the previous study. The same goes for secondary analyses like 
LD-score regression, whose authors have made the LD-scores for 
European ancestry publicly available for download but not those for 
other ancestries. They did that because they understandably wanted 
to only show one example in their paper and did not calculate the 
LD-scores for other ancestries.[4] Pertaining to the work described in 
chapter 3, with the current methodology we have to restrict to one 
genetic ancestry because the LD-structure can vary considerably across 
ancestries. I chose to include only summary statistics of GWAS done 
in European ancestry because I wanted to be able to use the most 
well-powered GWAS. I do realize that by doing that I am upholding 
the status quo. I can not change the system on my own, but if more 
well-powered GWAS in non-European ancestries are available we 
can at least try to not make it worse. Luckily, more attention has 
been given to this problem recently [5] and biobanks in Taiwan [6], 
Africa [7,8], and many more countries and continents now exist.

The environmental cost of computation
A bioinformatician in a higher-income country has the possibility to 
use computers to analyse data in a fraction of the time they would 
have needed to do the analysis by hand. In contrast to wet lab 
researchers, computational researchers do not see resources being 
used. The hardware components are maintained in a location that 
they do not usually see, and there is a constant influx of the only 
resource needed: electricity. When we send a heavier task to the 
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computing cluster, it might take a longer time to complete but we 
are not aware of the energy requirements of our analysis. There 
are a few concrete steps that any researcher can take to make a 
change: a) Consider if you really need to run this analysis on all the 
data. b) Do you need to request all this memory? The energy cost 
depends on the amount of memory requested, not on the amount 
of memory that is actually used by your algorithm. c) Have you 
finished your analysis? Share the data! Not only does data sharing 
help advance science by enabling other researchers to use your 
results for new research. It also means that others do not have to run 
the same analysis to get the same results again, thereby saving the 
environmental costs of running the software each time someone uses 
your publicly shared data. You can read more about this topic on 
http://green-algorithms.org and read the accompanying paper. [9]

Final remarks
Over the past decades, GWAS methodology has developed to 
a point where large-scale analyses of millions of variants and ten 
thousands of individuals are routinely performed. Technological 
advances will almost certainly improve runtime and memory efficiency 
even more in the future. At present we can already gain a potential 
increase in statistical power by carefully defining our phenotype of 
interest, as we show in chapter one and two. As well as potentially 
improving the likelihood of identifying associated variants, different 
phenotypes can uncover associations with different facets of a 
disease. The discovery of pleiotropic variants from GWAS summary 
statistics (beyond those variants that are genome-wide significant in 
all GWAS of interest) is a relatively recent possibility. The engagement 
with the PolarMorphism preprint – it has been downloaded 346 
times and mentioned by 24 twitter accounts in almost one month 
– shows that there is interest and demand for an efficient method 
for identification of pleiotropic variants from summary statistics. 
PolarMorphism and similar methods have the potential to uncover new 

trait relationships and shared underlying biology in the near future.
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Genetische variatie
Ons genoom bestaat uit 3,2 miljard bouwstenen. Deze bouwstenen, 
nucleotiden, zijn aan elkaar geregen in 23 verschillende chromosomen. 
Elke nucleotide kan vier verschillende moleculaire vormen aannemen: 
adenine, thymine, cytosine, of guanine (afgekort tot A, T, C en G). 
De precieze volgorde van nucleotiden in iemands genoom noemen 
we het genotype. Het genotype van een willekeurig persoon is voor 
99,5 % identiek aan het genotype van een willekeurig ander persoon. 
Toch verschillen mensen onderling in eigenschappen zoals lengte, 
haarkleur en risico op bepaalde ziekten. Deze variatie kan voor een 
deel worden verklaard door variatie in bijvoorbeeld dieet, leeftijd, 
en of iemand rookt of niet. Verschillen in genotype - genetische 
variatie - kunnen vaak ook een deel van de variatie in een eigenschap 
verklaren. Hoeveel van de variatie in een eigenschap verklaard kan 
worden door genetische variatie noemen we de erfelijkheid: een 
percentage tussen 0 en 100 %. Erfelijkheid is een moeilijk begrip, 
wat ik duidelijker zal maken door eeneiige tweelingen als voorbeeld 
te nemen. Eeneiige tweelingen hebben precies hetzelfde genoom, 
maar ervaren verschillende externe factoren tijdens hun leven. Als we 
zien dat de kans op een herseninfarct toeneemt als de tweeling-sibbe 
(de andere helft van de tweeling) een herseninfarct heeft gehad en 
afneemt als die geen herseninfarct heeft gehad, dan weten we dat de 
erfelijkheid van herseninfarct hoger is dan 0. Een plek in het genoom 
waar we veel verschillende nucleotiden zien in de populatie noemen 
we een Single Nucleotide Polymorphism (SNP, uitgesproken als ‘snip’).

Genoom-wijde Associatie Studies (GWAS)
Als we SNPs willen vinden die de variatie in een eigenschap kunnen 
verklaren, hebben we van een groep mensen de volgende informatie 
nodig: het genotype, en de waarde van de eigenschap die we willen 
onderzoeken. Zie figuur 1 en 2 voor twee voorbeelden van zo’n studie 
(een GWAS). In figuur 1 zijn we op zoek naar SNPs die een verband 
hebben met een hoger risico op een herseninfarct. Per SNP doen 
we het volgende: mensen die geen herseninfarct hebben gehad (die 
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noemen we controls) zetten we in de onderste rij, en mensen die wel 
een herseninfarct hebben gehad (de cases) in de bovenste rij. De 
kolommen zijn opgedeeld op basis van het genotype voor de SNP in 
kwestie. Omdat we twee versies hebben van elk chromosoom hebben 
we ook twee versies van elke SNP. Er zijn dus drie opties: beide SNPs 
hebben het referentie allel, een heeft het referentie en de andere het 
alternatieve allel, of beide SNPs hebben het alternatieve allel. Een 
andere manier om dit te beschrijven, is het aantal alternatieve allelen te 
tellen; respectievelijk is dat 0, 1 of 2. Als de verhouding cases/controls 
per kolom groter wordt als er een extra alternatief allel bijkomt, dan 
wil dat zeggen dat deze SNP geassocieerd is met een hoger risico 
op het krijgen van een herseninfarct. Hoeveel groter het risico wordt 
kunnen we zien door de odds ratio te berekenen; we berekenen de 
verhouding cases/controls per kolom (respectievelijk 0.25, 1, en 4). 
De odds ratio geeft aan hoeveel groter de cases/controls verhouding 
wordt als er een extra alternatief allel bijkomt; in dit voorbeeld is 
de odds ratio 4 (want 1/0.25 en 4/1 is 4). De odds ratio geeft de 
effectgroottte van een SNP voor binaire case-control fenotypes.

In figuur 2 zijn we op zoek naar SNPs die een verband hebben met 
een grotere lengte. Deze data moeten we anders analyseren omdat 
lengte een continue eigenschap is; het kan in principe elke waarde 
aannemen die hoger is dan 0 en we kunnen niet oneindig veel groepjes 
mensen maken. Nu maken we voor elke SNP een grafiek; op de 
horizontale as noteren we weer het aantal alternatieve allelen voor de 
SNP, op de verticale as noteren we de lengte in meters. Elk persoon 
krijgt een stipje in de grafiek, op de plek van diens genotype en 
lengte. Hierna tekenen we een lijn die het verband tussen genotype 
en lengte het beste weergeeft. Deze lineaire regressielijn kunnen we 
opschrijven in een formule: lengte = helling*genotype + intercept. 
Wij zijn geïnteresseerd in de waarde van de helling; die geeft aan 
hoeveel de lengte toeneemt voor elk extra alternatieve allel. De helling 
beta geeft de effectgrootte van de SNP voor continue fenotypes.
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Figuur 2. Een voorbeeld van lineaire regressie van age at onset voor een 
SNP. Elke blauwe SNP is een persoon. The x-as geeft het aantal alternatieve 
alleles aan dat ieder persoon heeft (0 = ref-ref, 1 = ref-alt of alt-ref, 2 = 
alt-alt). De y-as geeft aan hoe oud ze waren toen ze een herseninfarct 
kregen. De schuine lijn is de regressielijn; deze lijn beschrijft de trend in 
de data het best. De helling van de lijn geeft de effectgrootte van deze 
SNP op age at onset; hoeveel eerder krijgen mensen gemiddeld eerder 
een herseninfarct met elk bijkomende kopie van het alternatieve allel?
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Figuur 1. Een voorbeeld van case-control analyse voor een SNP. Elke stip is een 
persoon: blauw voor de cases (in de bovenste rij) en geel voor de controls (in 
de onderste rij). De kolommen geven het aantal alternatieve allelen aan dat 
ieder persoon heeft (0 = ref-ref, 1 = ref-alt of alt-ref, 2 = alt-alt). De ratio cases 
tot controls – de odds om herseninfarct te krijgen – is aangegeven boven elke 
kolom. De odds ratio is de ratio van de odds in opeenvolgende kolommen: 
in dit geval is de odds ratio 4, wat betekent dat het risico op herseninarct 
viervoudig toeneemt met elke bijkomende kopie van het alternatieve allel.
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Om te bepalen of we een verband misschien door toeval 
hebben gevonden, doen we een statistische test die ons een 
p-waarde geeft. Als de p-waarde laag genoeg is, kunnen we 
concluderen dat het waarschijnlijk geen toevallige vinding is. 
We kunnen echter nooit zeker weten of dit een oorzakelijk 
verband is zonder andere experimenten te doen.

Herseninfarct
Als de bloedtoevoer naar of in het brein is geblokkeerd, 
ontstaat er een plaatselijk gebrek aan zuurstof (ischemie). Als 
de blokkade maar kort duurde, heet dit een Transient Ischemic 
Attack (TIA). Als het langer duurde, heet het een herseninfarct 
(ook wel cerebrovasculair infarct of cerebrovasculair accident, 
CVA, genoemd). Het gebrek aan zuurstof in het brein kan 
leiden tot ernstige beperkingen of overlijden. Herseninfarct is 
deels erfelijk; ongeveer 38% van de variatie  in voorkomen van 
herseninfarct kan verklaard worden door genetische variatie.

Er zijn drie subtypen van herseninfarct: cardio-embolisch herseninfarct 
wordt veroorzaakt door een bloedprop die in het hart vormt en via 
de bloedbaan naar het brein reist. Grote-vaten herseninfarct wordt 
veroorzaakt door aderverkalking die een van de twee halsslagaders 
blokkeert. Bij een kleine-vaten herseninfarct zijn de kleine vaten in 
het brein zelf geblokkeerd. Op dit moment zijn er tientallen SNPs 
gevonden die een verband hebben met een hoger risico op het 
krijgen van een herseninfarct of een van de subtypes. Als we meer 
SNPs kunnen vinden met een verband met herseninfarct, kunnen 
we meer leren over de biologische processen die een rol spelen in 
het ontstaan van een herseninfarct. Het zou ook kunnen helpen bij 
het identificeren van mensen met een hoger genetisch risico, zodat 
zij samen met hun arts ervoor kunnen zorgen dat hun aanpasbare 
niet-genetische risico zo laag mogelijk blijft. In hoofdstukken 1 en 
2 bespreken we de GWAS resultaten voor verschillende fenotype-
definities voor herseninfarct en vinden daarmee nieuwe SNPs.
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Een andere fenotype-definitie leidt tot een ander 
resultaat
In hoofdstuk 1 gaan we op zoek naar SNPs die geassocieerd zijn met 
het risico op het krijgen van een van de subtypes van herseninfarct. 
Hier lopen we echter tegen een probleem aan; er zijn meerdere 
methodes om een herseninfarct-patiënt te diagnosticeren met een 
subtype. Deze drie methodes zijn het niet altijd met elkaar eens, 
dus we wisten niet zeker hoe we het fenotype moesten definiëren. 
We hebben voor elke subtype vijf verschillende fenotype-definities 
gebruikt en met elkaar vergeleken om te bepalen welke het beste 
werkt: de drie originele methodes, de intersect (doorsnede) en de 
union (vereniging). De intersect diagnosticeert iemand alleen met een 
bepaald subtype als alle originele methodes dat deden. De union 
diagnosticeert iemand met een bepaald subtype als tenminste een van 
de originele methodes dat deed. Dit betekent dat de intersect-cases 
een kleinere groep zijn dan de union-cases. En een kleinere groep 
betekent dat we minder kans hebben om een effect te ontdekken, 
tenzij het een heel groot effect is. Theoretisch is de intersect wel 
een strengere definitie, die twijfelgevallen eruit filtert en alleen die 
mensen diagnosticeert die vrij zeker een bepaald subtype hebben. 
Uit onze resultaten blijkt, dat de theoretisch striktere intersect in veel 
gevallen beter geschikt lijkt om te gebruiken als fenotype in een 
GWAS. Dit geeft aan dat het voor herseninfarct belangrijker lijkt te zijn 
dat we heel zeker weten wat iemands fenotype is en dat het minder 
belangrijk is om een zo groot mogelijke groep mensen te analyseren. 
Met deze nieuwe fenotype-definitie vinden we zelfs een SNP waarvan 
we nog niet wisten dat die een verband had met herseninfarct.

In hoofdstuk 2 gebruiken we een continu fenotype om SNPs te 
vinden die gerelateerd zijn aan herseninfarct. In plaats van het binaire 
case-control fenotype analyseren we de leeftijd waarop iemand een 
herseninfarct kreeg (de age at onset, of leeftijd bij aanvang). We 
splitsen hier de groep ook op in mannen en vrouwen, omdat veel hart- 
en vaatziekten sekse-specifieke risicofactoren hebben en dat wellicht 
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ook geldt voor age at onset. We vinden een SNP die geassocieerd 
is met een 1.6 jaar eerder herseninfarct in vrouwen. Dezelfde SNP 
is niet geassocieerd met een eerder herseninfarct in mannen.

Genetische varianten die geassocieerd zijn met 
meerdere fenotypes: pleiotropie
Tegenwoordig delen veel onderzoekers de resultaten van GWAS in 
online databases die toegankelijk zijn voor iedereen. Dat zorgt er niet 
alleen voor dat anderen geen analyses hoeven te doen die al gedaan 
zijn, maar ook dat de GWAS-resultaten gebruikt kunnen worden 
voor vervolgonderzoek. Moleculair biologen kunnen bijvoorbeeld in 
het lab gaan uitzoeken of de GWAS SNPs een direct effect hebben 
op het fenotype. Door deze databases weten we ook, dat sommige 
SNPs een associatie hebben met meerdere fenotypes; dit noemen 
we pleiotropie. Pleiotrope SNPs kunnen ons meer leren over de 
biologische mechanismen die betrokken zijn bij een fenotype; als we 
al iets weten over het onderliggende proces waarmee een SNP van 
invloed is op een fenotype en die SNP blijkt ook een effect te hebben 
op een ander fenotype, dan is dat datzelfde proces misschien ook 
betrokken bij het andere fenotype. Pleiotrope SNPs kunnen ons ook 
helpen om verbanden te leggen tussen fenotypes die misschien niet 
vaak samen voorkomen maar wel onderliggende processen delen.

In hoofdstuk 3 geef ik een overzicht van vier recent gepubliceerde 
methoden die SNPs kunnen identificeren die gedeeld zijn door 
meerdere fenotypes, door gebruik te maken van openbaar 
beschikbare GWAS-resultaten. Er bleken twee methoden te zijn die 
SNPs identificeren met een associatie met een of meer fenotypes, 
in plaats van alleen SNPs die een associatie hebben met méér 
dan een fenotype. Dat betekent dat deze methoden een SNP met 
een effect op maar een fenotype ook pleiotroop noemen, terwijl 
ze dat niet zijn. De andere twee methoden verschillen in aanpak 
maar geven vergelijkbare resultaten. De ene methode vindt meer 
pleiotrope SNPs dan de andere, maar de andere is sneller.
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In hoofdstuk 4 introduceer ik een nieuwe methode die wij hebben 
ontwikkeld. PolarMorphism gebruikt GWAS-resultaten van meerdere 
fenotypes om pleiotrope SNPs te identificeren. PolarMorphism 
gebruikt een andere aanpak om de data te analyseren dan de eerder 
beschreven methodes. PolarMorphism is vele malen sneller dan de 
methode die in hoofdstuk 3 de meeste pleiotrope SNPs kon vinden, 
zonder daarbij minder SNPs te vinden. Ook kon deze andere methode 
maximaal twee fenotypes tegelijk analyseren, terwijl PolarMorphism 
een theoretisch oneindig aantal fenotypes kan analyseren.

Concluderend, in dit proefschrift heb ik aangetoond dat het anders 
definiëren of combineren van fenotypes kan leiden tot de ontdekking 
van nieuwe genetische associaties in bestaande data. De GWAS uit 
de eerste twee hoofdstukken zijn uitgevoerd in een relatief kleine 
groep mensen, en het is aannemelijk dat een analyse in een grotere 
groep mensen nog meer SNPs zal vinden. Beide studies tonen echter 
wel aan dat het loont om meer aandacht te besteden aan het precies 
definiëren van het fenotype voordat men een GWAS doet. Het 
literatuur-review beschrijft de overeenkomsten en verschillen tussen 
gepubliceerde methoden voor de identificatie van pleiotrope SNPs. 
Dit hoofdstuk maakt het mogelijk om onze methode PolarMorphism 
te vergelijken met bestaande methoden en zo op waarde te schatten. 
Onze bevinding dat twee gepubliceerde methoden niet doen 
wat ze claimen te doen is waardevol voor de wetenschappelijke 
gemeenschap. Ten slotte kan PolarMorphism gebruikt worden 
door andere onderzoekers, omdat we de code hebben gedeeld als 
softwarepakket dat gebruikt kan worden in de programmeertaal R.
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Het is zover: mijn proefschrift is af. Aan het begin van 
mijn PhD kon ik me niet voorstellen dat ik ooit op dit 
punt zou komen. En eerlijk gezegd kon ik me dat ook de 

afgelopen weken nog vaak niet voorstellen. Dat het toch zover 
is gekomen heb ik te danken aan de volgende mensen.

First, I want to thank all people who gave consent for 
their data to be used. Without you I would not have been 
able to do any of the research presented here.

Geachte Gerard Pasterkamp, Hester den Ruijter, Ynte Ruigrok, Daniel 
Oberski en Marcel Reinders, Beste leescommissie: zonder jullie tijd 
en moeite had dit proefschrift niet beoordeeld kunnen worden. Ik wil 
jullie bedanken voor alle energie die jullie hebben besteed aan het 
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Jeroen, het eerste waar ik je voor wil bedanken is je vertrouwen. 
Zonder precies te hoeven begrijpen ‘hoe ik werk’, vertrouwde je erop 
dat mijn idee om een dag per twee weken vrij te nemen goed uit zou 
pakken. Toen ik het absurde idee kreeg om SNP effect sizes uit te 
drukken in polaire coordinaten liet je me mijn gang gaan, ook toen 
ik er steeds dieper in dook en met (in ons veld) zeldzaam gebruikte 
statistiek weer naar boven kwam. Als ik ooit minder motivatie had 
of – wat vaker voorkwam – even totaal het overzicht kwijt was, wist ik 
dat ik na een meeting met jou weer aan de slag zou kunnen met een 
duidelijk doel voor ogen. Na de zoveelste versie van het PolarMorphism 
paper wilde ik vooral mijn thesis zo snel mogelijk afmaken, dat paper 
zou later wel komen. Toch heb je me over kunnen halen om het 
paper te submitten en daarna mijn thesis af te maken. En daar ben ik 
je erg dankbaar voor, ik had het inderdaad echt niet leuk gevonden 
om een ‘oude versie’ van PolarMorphism te moeten verdedigen.
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Sander, ook al waren we het niet altijd direct eens (en had ik altijd 
nog wel wat vragen of opmerkingen voor het zover was), uiteindelijk 
kwamen we toch op dezelfde conclusie uit. Ik heb veel van jou 
geleerd: specifieke (‘een beller is sneller’ ; al dacht ik eerst van niet 
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for the gezellige retreats, BBQ’s and other lab activities. Joep: even 
though it’s been a while since you left our lab, you were an important 
part of it, and you always made time to help others. Thanks to you, 
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what this thesis would have looked like if I had never done that.
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reviews die jullie schreven, het scheelde mij tijd en moeite dat ik de 
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de leuke discussies over je verslag, vooral tijdens het thuiswerken 
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of this team when we were busy organizing something. We 
organised quite a few well-visited events before corona hit, 
and I think even our online BioSB PhD retreat was gezellig.

En dan dat andere bestuur, waarmee ik tien jaar geleden de 
Utrechtse Scheikundige Studentenvereniging “PROTON” (ja dat 
moet met hoofdletters) draaiende hield: Frans, Anne-Eva, Petra, 
Stijn en Leonie. Bedankt dat jullie er toen waren en bedankt 
dat jullie er nog steeds zijn. Onze weekendjes weg zijn net als 
vroeger maar dan nog chiller, omdat we elkaar steeds langer 
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Frans en Stijn maken, samen met Annelies en Robin, ook deel uit van 
mijn D&D-groepje: ik ben blij dat ik jullie daardoor regelmatig zie. Heel 
fijn om na werk even bij te praten en dan lekker met heel andere dingen 
bezig te zijn, zoals “Zullen we hier uitrusten of is dat toch niet zo slim 
in deze donkere grot vol goblins?” of “Zal ik Robin healen of red ie het 
zelf wel nadat hij al een paar rondes voor death saves aan het rollen is?”

Anne-Eva, bij jou kan ik altijd terecht voor wijze raad. Of het nou 
om vriendschappen gaat, of om een nieuwe zonnebril. Dankzij 
jouw kennis van regels en richtlijnen rondom de PhD en werk in 
het algemeen voel ik me zekerder om voor mezelf op te komen 
als dat nodig is. En verder is het gewoon heel erg fijn om met 
je af te spreken. Er gaat vaak net iets te lang voorbij voor we 
elkaar weer zien, maar daarna weet ik weer wat ik miste.

Sarah, thank you for always being so enthusiastic! Maybe it’s the Dutch 
and German words sprinkled in your sentences, but whenever I get 
a message from you I get a smile on my face. Now that the worst of 
the pandemic is (hopefully) over, we can actually experience that we 
both work on de Uithof and can get a coffee or lunch together ;-)

Papa en mama, jullie hebben me niet zoveel gezien de afgelopen 
tijd. Eerst corona, en toen die thesis. Maar die was bijna af! Maar 
toch nog even dit… En nog even dit paper afmaken. En het design 
moet nog. Het duurde allemaal langer dan ik had gedacht, en 
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het kostte vooral veel meer energie, waardoor ik niet zomaar 
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dan beloof ik dat ik geen poster zal maken… op mijn mobiel. En 
Yvo, bedankt voor je feedback op het ontwerp van de cover!

Joske, je gelooft nooit hoe laat ik dit stukje van het dankwoord schrijf. 
Geheel in jouw stijl ben ik tot een uur ‘s nachts opgebleven om dit te 
schrijven. Onze verschillende bedtijden zijn maar een klein voorbeeld 
van hoe verschillend we zijn. Maar het werkt blijkbaar goed: een 
nerveus, snel overprikkeld persoon die door schade en schande heeft 
geleerd heel georganiseerd en gestructureerd te leven, en de social 
butterfly die liever niet teveel plant en oplaadt in grote groepen. Ik 
heb door jou zoveel mensen leren kennen, en ben iets minder bang 
om zomaar op een groep af te stappen. Naast onze vriendschap die 
een goede afleiding was van de PhD-stress, kon ik ook over die PhD-
stress heel goed bij jou uitrazen. Je begreep precies wat ik bedoelde, 
omdat je anderhalf jaar geleden door precies dezelfde fase was 
gegaan. Bedankt voor je steun, en alvast bedankt voor de steun die 
je me als paranimf rondom de verdediging ongetwijfeld zult geven.

Myrthe, toen je net in onze groep begon als postdoc kende ik je 
helemaal niet goed. Het viel me op hoe geinteresseerd je was in 
iedereen. Toen we samen het afscheidsfeest voor Sara en Joep 
organiseerden, leerde ik je kennen als iemand die niet alleen 
goed was in de praktische kanten van organiseren, maar vooral 
ook in de communicatie met mensen. Tegenwoordig spreken 
Joske, jij en ik nog steeds regelmatig af voor een kopje koffie 
en ik vind het dus heel tof dat jullie mijn paranimfen zijn.
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Ruben, ik moest en zou per se vandaag mijn proefschrift afmaken 
en daarom schrijf ik dit in een stil huis terwijl jij al slaapt (voor de 
oplettende lezer, het is nu kwart over een ‘s nachts). De afgelopen 
maanden heb ik vaak mijn thesis op nummer een gezet, soms samen 
met en soms voor jou. Bedankt voor de momenten dat je me de 
ruimte gaf om nog even te programmeren of nog even te schrijven of 
nog even aan mijn thesis te werken. En ook heel erg bedankt voor de 
momenten dat je dat niet deed. Dat je me van achter de computer 
en voor de TV sleepte. Bedankt voor alles wat je in het huishouden 
doet, als ik een goede week heb. En voor alle extra taken die je 
doet in de andere weken. En bedankt dat je er altijd bent, samen 
met jou kan ik volgens mij alles aan. Zoals met een noise-cancelling 
koptelefoon lijkt het allemaal net iets minder hard als jij bij me bent.
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