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ABSTRACT

Marchenko methods can retrieve Green’s functions and focus-
ing functions from single-sided reflection data and a smooth
velocity model, as essential components of a redatuming process.
Recent studies also indicate that a modified Marchenko scheme
can reconstruct primary-only reflection responses directly from
reflection data without requiring a priori model information. To
provide insight into the artifacts that arise when input data are
not ideally sampled, we study the effects of subsampling in both
types of Marchenko methods in 2D earth and data — by ana-
lyzing the behavior of Marchenko-based results on synthetic data
subsampled in sources or receivers. With a layered model, we find
that for Marchenko redatuming, subsampling effects jointly de-
pend on the choice of integration variable and the subsampling
dimension, originated from the integrand gather in the multidi-
mensional convolution process. When reflection data are

subsampled in a single dimension, integrating on the other yields
spatial gaps together with artifacts, whereas integrating on the sub-
sampled dimension produces aliasing artifacts but without spatial
gaps. Our complex subsalt model indicates that the subsampling
may lead to very strong artifacts, which can be further complicated
by having limited apertures. For Marchenko-based primary esti-
mation (MPE), subsampling below a certain fraction of the fully
sampled data can cause MPE iterations to diverge, which can be
mitigated to some extent by using more robust iterative solvers,
such as least-squares QR. Our results, covering redatuming and
primary estimation in a range of subsampling scenarios, provide
insights that can inform acquisition sampling choices as well as
processing parameterization and quality control, e.g., to set up ap-
propriate data filters and scaling to accommodate the effects of
dipole fields, or to help ensuring that the data interpolation
achieves the desired levels of reconstruction quality that minimize
subsampling artifacts in Marchenko-derived fields and images.

INTRODUCTION

By means of Marchenko methods, the full-waveform Green’s
function to a virtual source in the subsurface can be retrieved from
single-sided reflection data. Given a smooth velocity model (Wa-
penaar et al., 2014), this is accomplished by solving a set of coupled
Marchenko equations by direct least-squares (LSQR) inversion (van
der Neut et al., 2015a) or iterative substitution (van der Neut et al.,
2015b). The method, in theory, retrieves internal multiples with cor-
rect amplitudes. One of the challenges of this method is that the
multidimensional convolution operation of the reflection response
with the focusing function requires a regularly sampled, dense data

set with colocated sources and receivers. Similar multidimensional
convolution operations are also used — and fairly well-understood
— in surface-related multiple elimination (SRME) (Verschuur et al.,
1992; Lopez and Verschuur, 2015). Here, we look into the effects of
regular subsampling in the Marchenko method specifically —
showing similarities and differences to the effects seen in SRME
applications. Haindl et al. (2018) formulate the Marchenko equa-
tions with sparse inversion to alleviate the 2D irregular source sub-
sampling effect. This study observed spatial gaps in the output
redatumed Green’s function and the focusing function. Ravasi
(2017) also studies the effect of irregular subsampling in sources
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in the Rayleigh-Marchenko method with LSQR inversion and
observed artifacts, but no spatial gaps in the retrieved signals,
thereby showing the Rayleigh approach’s flexibility in handling
the source subsampling. Sripanich and Vasconcelos (2019) provide
a comprehensive study on the effects of a limited aperture on Mar-
chenko focusing functions and their radiation behavior of focusing.
In synthetic and field data studies, respectively, Jia et al. (2019) and
Staring andWapenaar (2020) present 3DMarchenko redatuming, in
which they apply data interpolation to fill the gaps caused by sub-
sampling. More recently, in a companion study to this paper, regular
and irregular subsampling effects on 3D redatuming are discussed
by Ravasi and Vasconcelos (2020), in the context of high-perfor-
mance computing. To account for the imperfect source sampling,
Wapenaar and van IJsseldijk (2020) develop a new discrete repre-
sentation containing point-spread functions that can be multidimen-
sionally deconvolved to deblur the focusing functions and Green’s
functions. Van IJsseldijk and Wapenaar (2020) then alter the iter-
ative Marchenko scheme to integrate this new representation and
test it on synthetic data. All of the preceding studies alleviate
the subsampling effects using different approaches, including
sparse inversion, LSQR inversion, and/or data interpolation. Yet,
there is still a need to build a basic understanding of these effects’
origin and patterns, which could not only inform acquisition sam-
pling choices in the future but also crucially help in the design and
quality control of preprocessing routines tailored toward Marche-
nko methods.
Although the original form of the Marchenko system is designed

to perform redatuming, i.e., retrieve subsurface wavefields, the
framework can also be used for surface-to-surface internal multiple
prediction — or more specifically — to predict primary-only data.
To that end, an alternative, surface-projected form of the Marchenko
equations presented by van der Neut and Wapenaar (2016) was re-
cently used to eliminate multiples directly from reflection data with-
out requiring model information (Zhang and Staring, 2018). In a
comparative study, Zhang et al. (2019a) illustrate the benefits and
shortcomings of Marchenko-based data-driven scheme for the
internal multiple reflection elimination over the theory of inverse
scattering series. The former method was further improved to com-
pensate the transmission loss (Zhang et al., 2019b). In this context,
i.e., Marchenko-based primary estimation (MPE), the effects of ac-
quisition sampling remain largely unaddressed. Very recently, this
projected scheme was also used in the augmented Marchenko
method to account for short-period internal multiples in media with
a horizontally layered overburden by Elison et al. (2020).
In recent years, Marchenko-based methods have been developed

in two related, yet distinct, contexts: depth-domain redatuming and
data-domain primary estimation. In this paper, we choose to look
into Marchenko approaches in both of these contexts because they
typically pertain to different applications — namely, redatuming is
tied to full-wavefield imaging at depth, whereas primary estimation
is usually a preprocessing step prior to model building and imaging.
To this end, building on the aforementioned studies that look into
acquisition aspects of the Marchenko approaches in specific con-
texts, we intend to provide a basic understanding of acquisition
sampling effects in focusing, redatuming, and primary estimation.
In addition, two types of Marchenko methods are addressed in

this paper because they require different inputs and temporal-win-
dowing approaches. Albeit relying on the same general operations
of multidimensional convolution and correlation, these two types of

Marchenko approaches can behave differently in the presence of
subsampling. There are two main reasons for this: (1) Marchenko
redatuming does not perform time stepping and uses the full wave-
field that has been retrieved by focusing for a given redatuming
level, and primary estimation applies time stepping and just selects
the samples at that time after applying the Marchenko method at a
given time step and (2) the windowing operators themselves in Mar-
chenko redatuming and primary estimation are different, leading to
differences in the physical contributions of the convolution processes
in either of the applications. We observe that subsampled input data
cause artifacts for both methods and may further lead to divergence
for the primary estimation, depending on the degree of subsampling
and the algorithm used to solve the system, i.e., Neumann series
expansion or LSQR inversion. Because we wish to analyze subsam-
pling at varying levels of aliasing, we maintain a fixed bandwidth and
only vary the sampling. In practice, sampling and aliasing are relative
to the actual data bandwidth and, as a general rule, adequately sam-
pling the integrals requires satisfying the general spatial Nyquist cri-
teria for the integrands — similarly to well-known applications such
as SRME or evaluating Kirchhoff-type integrals.
Our study of the subsampling effects is structured in a simple, yet

general, framework that could inform acquisition design or help in
tuning and controlling data processing. With this goal in mind, we
limit ourselves to 2D regular subsampling in just one dimension
(source or receiver). We believe that the insight of this case shares
similarities with the other cases, e.g., irregular subsampling in both
dimensions. Because three dimensions and data interpolation are
related, yet complex, topics, they are left for future research and
therefore are not included in this study. First, we look at subsam-
pling numerical examples in two dimensions to mimic subsampling
caused by realistic acquisition design. Then, we analyze the results
of the aforementioned two Marchenko methods in the context of
subsampling without data interpolation, also by looking at specific
yet simple measures to alleviate the effects of subsampling, such as
invoking spatial reciprocity.
In all of the current forms of Marchenko methods — whether in

the context of redatuming or primary estimation — the theory
clearly outlines that monopole (e.g., pressure-to-pressure) and di-
pole (e.g., particle velocity-to-pressure) fields are not only required
but must be used in specific source and receiver configurations (Wa-
penaar et al., 2014; van der Neut et al., 2015b). When it comes to
field data, e.g., in offshore acquisition settings, although monopole
fields are easily available from streamer and ocean-bottom acquis-
itions, dipole fields are usually only available on the receiver side in
the form of acceleration or velocity measurements from multi-
component sensors. Thus, in this paper, we show the effects of sub-
sampling in the presence of dipole sources — which are generally
not available in practice — as well as dipole receivers. We do this
to provide insights on the importance and effects of dipole integra-
tion choices that may impact choices on how to use multicomponent
sensor data for Marchenko applications or how to preprocess 1C
data to be used in Marchenko schemes.
The layout of this paper is as follows. We begin by presenting the

Marchenko integral representations, while paying particular attention
to the discrete form of the terms within the iterative solution of the
coupled Marchenko system, followed by a brief review of the primary
estimation method (Zhang and Staring, 2018). With a layered bench-
mark model, we then illustrate our observations on the subsampling
effects on Marchenko focusing for multiple scenarios, including
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the joint effects of subsampling versus the dipole source/receiver
integration variable choice and the effects of focusing depth jointly
with subsampling. Then, a complex subsalt model is used to illustrate
subsampling effects together with limited aperture on Marchenko re-
datuming in a more realistic scenario. Subsequently, we show with
numerical examples for both Marchenko systems that integrating
on the monopole dimension instead of the (theoretically correct) di-
pole dimension actually yields negligible errors compared with the
true results for media with mild lateral heterogeneity. Finally, for
the primary estimation, we compare the joint effects of different sub-
sampling schemes versus different approaches to solve the Marche-
nko system with a layered model and provide an operator norm
analysis for the iterative substitution method.

THEORY OF MARCHENKO REDATUMING AND
PRIMARY ESTIMATION

Discrete integration in the Marchenko framework

According to Wapenaar et al. (2014), the coupled Marchenko
representations for the acoustic medium can be defined in the fre-
quency domain by integrating on the dipole-source dimension with
the receiver being monopole:

Ĝ−ðxF;xrÞ¼
Z
ΛR

dxsR̂ðxr;xsÞf̂þ1 ðxs;xFÞ− f̂−1 ðxr;xFÞ; (1)

Ĝþ�ðxF; xrÞ ¼ −
Z
ΛR

dxsR̂
�ðxr; xsÞf̂−1 ðxs; xFÞ þ f̂þ1 ðxr; xFÞ;

(2)

R̂ðxr; xsÞ ¼
2

jωρðxsÞ
∂Ĝðxr; xsÞ

∂zs
; (3)

where xF, xr, and xs are the spatial coordinates of the focal point,
receiver, and source positions, respectively. The circumflex accent
denotes the wavefields in the frequency domain. The terms f̂þ1 and
f̂−1 are the down- and upgoing focusing functions, correspondingly,
Ĝ− and Ĝþ� are the upgoing and the time-reversed downgoing
Green’s functions, respectively, ΛR denotes an open boundary that
corresponds to the surface acquisition level, and ∂zs represents the
spatial derivative along the depth at the source position. As such,
R̂ðxr; xsÞ is twice the pressure recorded at xr due to a vertical dipole
source at xs, Ĝðxr; xsÞ is the pressure response from a monopole
source, j is the imaginary unit, ω is the angular frequency, and
ρðxsÞ is the mass density at the source position.
Given only reflection surface data as a known input, the system in

equations 1 and 2 can only be solved for the unknown focusing
functions after using additional constraints. The more established
version of the Marchenko redatuming scheme (e.g., van der Neut
et al., 2015b) accomplishes this by introducing a known initial fo-
cusing function and a causality windowing operator leading to a
discrete version of the Marchenko system that can be solved for
the focusing functions:

��
I 0
0 I

�
−
�

0 WR
WR⋆ 0

��
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

M

�
f−1
fþm

�
¼
�

0 WR
WR⋆ 0

��
0
fþ1d

�
;

(4)

where the focusing functions are discrete vectors corresponding to a
fixed focal point and all points on the acquisition surface: fþm is the
coda of the downgoing focusing function, f− is its upgoing re-
sponse, and fþ1d is the input initial focusing function. Here, follow-
ing van der Neut et al. (2015b), R and R⋆ are the discrete integral
operators that apply multidimensional convolution and correlation
in the time domain between the reflection response and the focusing
functions, respectively. The term W is the operator enforcing cau-
sality by windowing in the time domain. Note that the Marchenko
system in equation 4 has the same form either in the time or fre-
quency domain — we hereafter refer to equations in the frequency
domain for the sake of convenience. The system in equation 4 can be
solved for fþm and f−, by using a Neumann series expansion of theM
operator (under appropriate conditions, as described in Dukalski and
de Vos, 2018), the so-called Marchenko iterative scheme is obtained.
Once the focusing functions are solved for, the redatumed wavefields
Ĝ− and Ĝþ are then obtained by substituting the estimated focusing
functions into the original system in equations 1 and 2.
For our purposes, to facilitate the analysis of integration-related

effects, we focus on the first operation Rf̂þ1d of the iterative substi-
tution method in the form of matrix-vector multiplication (corre-
sponding to the discrete spatial convolutions):

2
64
f̂−1;K¼0ðxð0Þr ;xFÞ

..

.

f̂−1;K¼0ðxðNrÞ
r ;xFÞ

3
75¼

2
64
PNs

i¼1 R̂ðxð0Þr ;xðiÞs Þf̂þ1dðxðiÞs ;xFÞdxs
..
.PNs

i¼1 R̂ðxðNrÞ
r ;xðiÞs Þf̂þ1dðxðiÞs ;xFÞdxs

3
75;
(5)

whereK ¼ 0 denotes the initial step of the iterative scheme, f̂þ1d is the
initial focusing function, and Ns is the number of sources. An illus-
tration of equation 5 is given in Figure 1a. Note that here we omit the
action of the windowing operator because it does not affect the in-
tegrand within the spatial convolutions. This operation is interpreted
as follows: The jth element on the left side corresponds to the trace at
receiver position xðjÞr , which is calculated by summing the convolu-
tion gather between R̂ðxðjÞr ; xsÞ and f̂þ1dðxs; xFÞ for all the source po-
sitions and scaled by the (possibly subsampled) source interval.
By using source-receiver reciprocity, the Marchenko equations

can also be defined by integrating on the dipole-receiver dimension
with the source being a monopole (van der Neut et al., 2015b):

Ĝ−ðxF;xsÞ¼
Z
Λf

dxrR̂ðxr;xsÞf̂þ1 ðxr;xFÞ− f̂−1 ðxs;xFÞ; (6)

Ĝþ�ðxF; xsÞ ¼ −
Z
Λf

dxrR̂
�ðxr; xsÞf̂−1 ðxr; xFÞ þ f̂þ1 ðxs; xFÞ;

(7)

R̂ðxr; xsÞ ¼
2

jωρðxrÞ
∂Ĝðxr; xsÞ

∂zr
; (8)
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where R̂ðxr; xsÞ is twice the vertical velocity recording at xr due to a
pressure source at xs (compare to equation 3). The term ∂zr repre-
sents the spatial derivative along the depth, and ρðxrÞ is the density,
now both at the receiver position instead. Analogous to equation 5,
the initial-iteration discrete convolution now has the form

2
64
f̂−1;K¼0ðxð0Þs ;xFÞ

..

.

f̂−1;K¼0ðxðNsÞ
s ;xFÞ

3
75¼

2
64
PNr

i¼1 R̂ðxðiÞr ;xð0Þs Þf̂þ1dðxðiÞr ;xFÞdxr
..
.PNr

i¼1 R̂ðxðiÞr ;xðNsÞ
s Þf̂þ1dðxðiÞr ;xFÞdxr

3
75;
(9)

where Nr is the number of receivers. As a consequence, when in-
tegrating over the receiver locations, the jth-element output in the
obtained upgoing focusing function now corresponds to a trace at
source position xðjÞs , which is calculated by integrating the convo-
lution gather R̂ðxr; xðjÞs Þ and f̂þ1dðxr; xFÞ over the receiver positions,
scaled by the (possibly subsampled) receiver interval. Figure 1b il-
lustrates equation 9. Here, we rely on equations 5 and 9 to interpret
the observed effects of subsampling in the source and receiver di-
mensions.
One key point to note, here as well as throughout this paper, is

that we refer to monopole and dipole sources and receivers so as to
relate the numerical results to the fields in the preceding equations.
However, in real life, practical acquisition, dipole fields are not nec-
essarily always available. For example, in an offshore acquisition
setting, sources are generally of the monopole type only — this
means that to obtain dipole sources for calculations one would need
to apply, e.g., local obliquity factor corrections. On the receiver
side, however, dipole observations correspond to either direct par-
ticle velocity or acceleration measurements, which are generally
present in ocean-bottom systems and available in some multi-
component streamer systems.

Marchenko-based primary estimation

With the objective of retrieving primary-only data from internal-
multiple interference, in addition to redatuming, van der Neut and
Wapenaar (2016) propose that the coupled Marchenko equations
could be implicitly projected to the acquisition surface by the direct
wavefield, such that they can be solved without the need of a macro-
velocity model. Based on this approach, they eliminate the primar-
ies and multiples for the preceding medium a chosen depth level by
adaptive subtraction. The projected focusing functions are defined
in the frequency domain as follows:

v̂−ðxr; xPÞ ¼
Z
Λf

d2xFĜ
þ
d ðxF; xPÞf̂−1 ðxr; xFÞ; (10)

v̂þmðxr; xPÞ ¼
Z
Λf

d2xFĜ
þ
d ðxF; xPÞf̂þ1mðxr; xFÞ; (11)

where xP is the projection point at the acquisition surface, xF is the
focusing point, and Λf denotes the focusing level. The term Gþ

d is
the direct wavefield, which does not need to be known a priori, v− is
the projected upgoing focusing function, and vþm is the coda of the
projected downgoing focusing function. Likewise, the projected
Green’s functions are defined as

Û−ðxP; xsÞ ¼
Z
Λf

d2xFĜ
þ
d ðxF; xPÞĜ−ðxF; xsÞ; (12)

ÛþðxP; xsÞ ¼
Z
Λf

d2xFĜ
þ
d ðxF; xPÞĜþðxF; xsÞ; (13)

where Û− and Ûþ are the projected up- and downgoing Green’s
functions, respectively. The coupled Marchenko system after
projection is

Û−ðxP; xsÞ ¼
Z
ΛR

dxrR̂ðxr; xsÞðδðxr − xPÞ

þ v̂þmðxr; xPÞÞ − v̂−ðxs; xPÞ; (14)

Ûþ�ðxP; xsÞ ¼ −
Z
ΛR

dxrR̂
�ðxr; xsÞv̂−ðxr; xPÞ

þ ðδðxr − xPÞ þ v̂þmðxs; xPÞÞ; (15)

where R̂ðxr; xsÞ is defined in equation 8. The band-limited 2D delta
function δðxr − xPÞ in space and frequency appears due to that fþ1d
is defined as the inverse of the direct arrival Gþ

d — even though in
the practical redatuming scheme it is generally approximated by the
time-reversed Gþ

d .
Relying on the same projection in the time domain, Zhang and

Staring (2018) propose to estimate multiple-free primaries directly
from the input reflection data without prior model information or

relying on adaptive subtraction. The discrete pro-
jected Marchenko equations in their theory are

v− ¼ Wt2−ϵ
ϵ RδþWt2−ϵ

ϵ Rvþm; (16)

vþm ¼ Wt2−ϵ
ϵ R⋆v−; (17)

where Wt2−ϵ
ϵ is the windowing operator that re-

moves all of the signals outside the interval
ðϵ; t2 − ϵÞ, where ϵ is, e.g., the half-length of
the source wavelet and t2 is the two-way travel-
time between the acquisition surface and the

Figure 1. (a) Illustration for equation 5, in which the integration is conducted over the
dipole source dimension with the receiver being monopole. (b) The same for equation 9,
in which the integration is conducted over the dipole receiver dimension, but with the
source being monopole. For each frequency slice, R̂ and R̂T are the 2D matrices and
focusing functions f̂þ1d and f̂−1;K¼0 are 1D vectors for a fixed focal point XF.
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fictitious focusing depth. The term δ contains band-limited 2D delta
functions in space and time, R and R⋆ are the same reflection-data-
based convolution and correlation integral operators as in the
coupled Marchenko equations, and Rδ selects a given common-
shot gather to be used for primary estimation. By inserting equa-
tion 16 into 17 and eliminating v−, we get

ðI −Wt2−ϵ
ϵ R⋆Wt2−ϵ

ϵ RÞvþm ¼ Wt2−ϵ
ϵ R⋆Wt2−ϵ

ϵ Rδ: (18)

This equation can be solved by iterative substitution or direct inver-
sion to obtain vþm and v−, which could then be used to calculate the
projected upgoing Green’s function by

U− ¼ Rðδþ vþmÞ − v−: (19)

In an ideal case, when the focusing level coincides with an actual
reflector in the subsurface, the first value in U− would be the pri-
mary reflection generated by that reflector with a two-way travel-
time t2. If not, the value inU− at t2 would be zero. By choosing t2 as
a variable and looping over all the time steps, the primaries can be
retrieved by picking the values of U− at t2. The resulting algorithm
is outlined in the following pseudocode:
It is important to note here that although redatuming requires the

numerical solutions only once per redatuming location, MPE re-
quires equation 18 to be solved for every time sample of the pre-
ceding iteration — for primary prediction for a single chosen shot
gather. Hereafter, we rely on this algorithm to analyze the subsam-
pling effects in MPE.

NUMERICAL ANALYSIS OF ACQUISITION-
RELATED SUBSAMPLING EFFECTS

Joint effects of subsampling versus integration variable
choice

For the purpose of benchmarking, we use the same constant-wave-
speed (2000 m/s), variable-density layered model (Figure 2a) from
van der Neut et al. (2015b), who use it to provide a comprehensive
study of the integral contributions to the Marchenko scheme. We
choose this model such that the reader can refer to individual events
and understand how they are generated — van der Neut et al.
(2015b) provide a detailed analysis of how each event is recon-
structed by redatuming in relation to the events present on the surface
data, via an interferometric interpretation of the Marchenko integrals
acting in the practical iterative scheme. Back to our case, Figure 2b
and 2c shows the regular sampling masks for the source and receiver
dimensions, which are used in all examples of Marchenko
focusing and redatuming in this study. The full reflection data
have 201 colocated sources and receivers with a spacing interval
of 10 m. The acquisition spread lies within the range of
x ¼ ð−1000 m; 1000 mÞ at the acquisition surface with the time
sampling rate dt ¼ 2.5ms. Two focal points are chosen for this
model: one at ðXF ¼ 0 m; ZF ¼ 2670 mÞ and the other
ðXF ¼ 0 m; ZF ¼ 1125 mÞ, as shown in Figure 2a. Our study in this
section will focus on the deeper focal point as discussed by van der
Neut et al. (2015b), with the shallower one used later as a compari-
son. In our examples, all reflection responses are modeled by a
spectral-element (SEM) wave solver from the Salvus package
(Afanasiev et al., 2019) with monopole sources and dipole receivers.

Because of the symmetry of the chosen model, the reflection
responses are the same for colocated shot and receiver gathers,
which allows us to freely integrate over either dimension. Figure 3
shows the focusing functions in the time domain obtained by inte-
grating on different chosen variables, with source- or receiver-do-
main subsampled data. Here, we show results after a fixed number
of iterations (13 in this case) of the Marchenko scheme — the
number of iterations is chosen arbitrarily to be more than sufficient
for the scheme to achieve convergence, which in ideal sampling
conditions occurs in a mere few (e.g., 3–5) iterations. Figure 3a
shows the benchmark focusing function obtained without subsam-
pling. Figure 3b displays the same focusing function obtained by
subsampling in either the source or receiver and integrating on
the same corresponding variable. Because of the subsampling, ali-
asing artifacts appear at far offsets but both focusing solutions in
Figure 3b are fully sampled in space, i.e., the surface-coordinate
dimensions. In comparison, Figure 3c displays clear spatial gaps
obtained by subsampling in the source or receiver but integrating
on the other variable, together with the far-offset artifacts shown
in Figure 3b. A comparison of traces at far offset xr ¼ 910 m in
the three focusing functions of Figure 3a–3c displayed in Figure 3d
shows that artifacts appear in both integration scenarios. From the
trace plot, we can also see that the artifacts in Figure 3b seem more
unstable than those in Figure 3c due to poor sampling near the sta-
tionary-point contributions — these stationary-point regions are
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Figure 2. (a) The density profile of the layered model, the same as
in van der Neut et al. (2015b). The magenta circles represent two
focal point locations (ðXF ¼ 0 m; ZF ¼ 1125 mÞ and
ðXF ¼ 0 m; ZF ¼ 2670 mÞ). (b and c) The sampling masks for
regular subsampling in the source and receiver dimensions, respec-
tively, where the white represents the missing data. Here, subsam-
pling is achieved by zeroing out seven of every eight sources or
receivers. The red stars and white triangles indicate the source
and receiver locations, respectively.
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discussed by van der Neut et al. (2015b). Figure 3e–3g shows the
magnified plots of Figure 3a–3c around the circles, respectively.
When integration is conducted over the subsampled dimensions

(Figure 3b), the summation process in every element of the output
upgoing focusing function f̂−1 in equations 5 and 9 becomes in-
creasingly inaccurate as a result of the increased subsampling in-
terval, but they remain well sampled in space because the row
space of equations 5 and 9 is well sampled. This property carries
over in the subsequent convolution operations needed in the iter-
ative scheme or in any other iterative linear solver (e.g., LSQR),
leading to error propagation at later iterations. As a consequence
of the negligible scaling in the source-receiver reciprocity in terms

of the horizontally independent obliquity factor present in the
monopole-dipole configuration (in this case because the medium
is laterally homogeneous), subsampling and integrating on the source
or receiver dimension are equivalent. When the subsampling and in-
tegration are performed over different dimensions, the summation
process in every nonzero element of the output upgoing focusing
function f̂−1 in equations 5 and 9 will be accurate because the column
space of equations 5 and 9 is well sampled. However, subsampling
will result in spatial gaps in the output focusing function because
equations 5 and 9 are now subsampled in the row space. At later
iterations, the row-space gaps will remain and inaccuracies arise
in the nonzero elements of the output focusing functions because

the input focusing functions gaps carry over into
the summation process, as shown in Figure 3d. A
diagram of all four cases in integration versus sub-
sampling is shown in Figure 4.
The corresponding focusing functions in Fig-

ure 3a–3c are transformed to the frequency-wave-
number (f − k) domain, as shown in Figure 5a,
5b, and 5d, separately. Normalized by the maxi-
mum value of Figure 5a, 5c, and 5e shows the
differences between the benchmark response (Fig-
ure 5a) and those in Figure 5b and 5d, respec-
tively. By comparing all of the panels in
Figure 5, we see that the aliasing effects caused
by subsampling and integrating on the same di-
mension are relatively weaker — compared with
subsampling and integrating on different dimen-
sions in which artifacts are generally stronger.
Figure 6 illustrates how the spatially depen-

dent artifacts at the far offset come into being
in Figure 3b, as a result of the column-space sub-
sampling in equation 5. Figure 6a, 6c, and 6e
shows the convolution gathers (i.e., the inte-
grands) of Rfþ1d at different receiver positions,
where the gaps represent the missing sources.
Their summation (properly scaled by the sub-
sampling interval), corresponding to different el-
ements in the vector of the output f̂−1 ðxr; xFÞ, is
shown by the blue traces in Figure 6b, 6d, and 6f,
respectively. For reference, we overlay the corre-
sponding traces of the focusing function without
source subsampling. As can be seen from Fig-
ure 6, the focusing function traces obtained by
the first convolutional operation with subsam-
pling are very close to the reference ones at the
near offset because the traveltime varies slowly
with respect to xs. Toward larger offsets, the rate
of traveltime variations in the integrand in-
creases, leading to steeper slopes in the integrand
and thus aliasing-induced artifacts.
Figure 7a–7d shows the errors caused by sub-

sampling and integrating on the same dimension
from the first to the fourth iterations. As can be
seen, most of the error comes from the second
iteration and then the error decreases in magni-
tude with increasing iteration numbers — this
is expected assuming that the iterative scheme
is applied within its convergence criteria of

–1000 0 1000
 x

r
 (m)

–1

–0.5

0

a) b) c)

d)

0.5

1

T
im

e 
(s

)

–1000 0 1000
 x

r
 (m)

–1

–0.5

0

0.5

1

T
im

e 
(s

)

–1000 0 1000
 x

s
 (m)

–1

–0.5

0

0.5

1

T
im

e 
(s

)

–0.05 0 0.05
Trace

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

T
im

e 
(s

)

600 800 1000
 x

r
 (m)

–0.8

–0.6

–0.4

–0.2

T
im

e 
(s

)

600 800 1000
 x

r
 (m)

–0.8

–0.6

–0.4

–0.2

T
im

e 
(s

)

600 800 1000
 x

s
 (m)

–0.8

–0.6

–0.4

–0.2

T
im

e 
(s

)

e) f) g)

Figure 3. For the layered model in Figure 2a with the focal position
ðXF ¼ 0 m; ZF ¼ 2670 mÞ: (a) the reference focusing function without subsampling.
Focusing functions are then presented for different sampling and integration scenarios,
(b) subsampling and integration over sources, the same as subsampling and integration
over receivers, and (c) subsampling over sources and integration over receivers, the same
as subsampling over receivers and integration over sources. The magenta circles point
out the major differences. (d) The magnified traces for comparison of focusing functions
in (a-c) at the far offset ðXr ¼ −910 mÞ, location shown by the solid yellow line in the
red, blue, and black, respectively. (e-g) The magnified plots of (a-c) around the circles,
respectively.
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the spectral radius (the maximum magnitude eigenvalue) of the
operator, and as such our observations should hold for any media
that satisfy them (Dukalski and de Vos, 2018). This is the main rea-
son that we focus our analysis here on the artifacts arising at the
leading iteration of the Marchenko redatuming scheme.

Effects of focusing depth in conjunction with subsam-
pling

Because most data sets have fixed source and receiver apertures,
the behavior of focusing functions and resulting redatumed fields
changes with the focal-point depth. Hence, we complement our ob-
servations by studying the effects of focusing depth together with
subsampling. Figure 8a and 8b shows the focusing functions calcu-
lated by integrating on source without and with subsampling at a
shallower focusing depth ðXF ¼ 0 m; ZF ¼ 1125 mÞ. Comparing
Figures 3b and 8b, we see that the artifacts at the far offset brought
by the same subsampling appear to be stronger for the shallow fo-
cusing depth than those for the deep focusing depth. This effect can
be explained by comparing the traveltime slopes of the two input
focusing functions as shown in Figure 8c and 8d because the shal-
lower depth focusing function in Figure 8c has steeper slopes at far
offsets, the integrand events at far offsets will be more aliased than
those from a deeper focal point (Figure 6), given a fixed subsam-
pling rate.

Source-receiver reciprocity for Marchenko methods in
laterally inhomogeneous media

The Marchenko methods have a requirement of monopoles and
dipoles, either on the source or receiver side, as we show in equa-
tion 3. Because of the symmetrical geometry in previous examples,
the source-receiver transpose yields the same reflection record;
therefore, integrating on the dipole or the monopole dimension
yields the same result in the Marchenko method for laterally homo-
geneous media, as shown in Figure 3. However, this may no longer
be true for laterally inhomogeneous media because, e.g., the angles
of rays coming in and out at a fixed source-receiver pair may not be
equal anymore. In practice, real dipoles are typically only available
on the receiver side, for example, through particle velocity or accel-
eration measurements. On the source side, they are generally
unavailable on offshore experiments because the source is monop-
ole in its nature. The common practice in industry when one needs a
dipole on the source side is to apply model-based corrections that
would require knowledge of the local wavenumber and impedance
at the source locations. Here, we show with numerical examples
that, for smoothly laterally varying 2D media, the error caused
by integrating over the monopole dimension is generally negligible
— so long as the near-surface properties in the vicinity of sources
and receivers do not have pronounced variations. In the case in
which the near-surface properties vary rapidly laterally, in addition

–0.01 0 0.01
Wavenumber

–60

–40

–20

0

a) b)

d) e)

c)

20

40

60

F
re

q
u

en
cy

 (
H

z)

–0.01 0 0.01
Wavenumber

–60

–40

–20

0

20

40

60

F
re

q
u

en
cy

 (
H

z)

–0.01 0 0.01
Wavenumber

–60

–40

–20

0

20

40

60

F
re

q
u

en
cy

 (
H

z)

–10

–8

–6

–4

–2

0

2

4

6

10–3

–0.05 0 0.05
Wavenumber

–60

–40

–20

0

20

40

60

F
re

q
u

en
cy

 (
H

z)

–0.05 0 0.05
Wavenumber

–60

–40

–20

0

20

40

60

F
re

q
u

en
cy

 (
H

z)

–0.2

–0.1

0

0.1

0.2

0.3

0.4

0.5

Figure 5. For the layered model in Figure 2a with
the focal position ðXF ¼ 0 m; ZF ¼ 2670 mÞ, fo-
cusing functions in the f-k domain: (a) the refer-
ence focusing function without subsampling
corresponding to Figure 3a. (b) The focusing
function corresponding to Figure 3b. (c) The dif-
ference between (a and b) normalized by the maxi-
mum value of (a). (d) The focusing function
corresponding to Figure 3c. (e) The difference be-
tween (a and d) normalized by the maximum
value of (a). The color bars in (c and e) denote
the corresponding relative errors.

Figure 4. Summary of the four cases of inte-
gration versus subsampling. (a and b) Integrat-
ing and subsampling in the same dimension
(dipole source or receiver) are equivalent
and will result in artifacts without spatial gaps.
(c and d) Integrating and subsampling in dif-
ferent dimensions are equivalent and will
cause spatial gaps together with artifacts.
The squared matrices are interpreted as the
R̂ or R̂T matrices in Figure 1. The yellow ar-
row points to the integrated dimension. The
magenta and gray squares represent the
sampled and missing data, respectively.
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Figure 6. For the layered model in Figure 2a with
the focal position ðXF ¼ 0 m; ZF ¼ 2670 mÞ cor-
responding to Figure 3b, i.e., subsampling and in-
tegrating over the same dimension: (a) the
convolution gather from Rfþ1d for the output
near-offset receiver position Xr ¼ −40 m. (b) Inte-
gration of (a), with scaling by the subsampled
source interval. The blue and red lines represent
the results calculated with and without subsam-
pling, respectively. (c and d) as well as (e and
f) are counterpart to (a and b), but for
Xr ¼ −400 m (mid-offset) and Xr ¼ −960 m
(far-offset), respectively.
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Figure 7. For the layered model in Figure 1a with the focal point at
ðXF ¼ 0 m; ZF ¼ 2670 mÞ: (a-d) the error of focusing function
caused by subsampling and integrating on the same dimension (cor-
responding to Figure 3b) in the first, second, third, and fourth iter-
ations, respectively. All of the amplitudes are clipped at 1% of the
strongest arrival in Figure 3a.
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Figure 8. For the layered model in Figure 2a with a shallower focal
point at ðXF ¼ 0 m; ZF ¼ 1125 mÞ: (a) the reference focusing
function without subsampling. (b) As previously, calculated by sub-
sampling and integrating over sources, using the sampling mask
shown in Figure 2b. (c and d) The initial focusing functions used
for the focusing depths at ZF ¼ 1125 m and ZF ¼ 2670 m, respec-
tively, at a fixed aperture.
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to obliquity factor, differences in local impedance at source and
receiver locations must be taken into account.
The 2D model used in our test is shown in Figure 9. The full

reflection data have 201 colocated sources (monopole) and receiv-
ers (dipole) with spacing intervals of 10 m lying within the range
of x ¼ ð3000 m; 5000 mÞ at the acquisition surface with the time
sampling rate of dt ¼ 2.4ms. The focal point is located at
ðXF ¼ 4000 m; ZF ¼ 1000 mÞ. The coupled Marchenko system
is solved with 13 iterations. Figure 10a–10c shows the Green’s
function obtained from SEM modeling, Marchenko redatuming
by integrating on the dipole dimension and the monopole dimen-
sion, respectively. These Green’s functions correspond to waves
generated from a monopole source sitting at the focal point and re-
corded at receivers at the acquisition surface, or vice versa, due to
the source-receiver reciprocity. The focusing functions calculated
with dipole and monopole integration as well as their difference
are shown in Figure 11a–11c, respectively. For primary estimation,
Figure 12a shows the reference reflection data with the source
position Xs ¼ 4000 m. Figure 12b–12d shows the result from
dipole and monopole integration as well as their difference, respec-
tively. Note that our observations are entirely consistent with well-
established experience in SRME: amplitude effects — those
related to the incidence-angle-dependent obliquity factors — are
second order with respect to kinematic errors that
result from sampling deficiencies.

Effects of acquisition aperture and sub-
sampling in redatuming: Complex
model

To illustrate how acquisition sampling can im-
pact results in a more realistic scenario, we study
the effect of a limited aperture, together with
source integration and subsampling in the reda-
tumed Green’s function with a salt model, which
has a constant density and varying wavespeed
(Figure 13). This model has also been used by
Vargas and Vasconcelos (2020) in the context
of scattering-based focusing. We choose this
model such that the effects of density-related
impedance changes do not play a role, which
allows us to focus on the kinematics and
reconstruction of the events — in any case. Be-
cause sampling-related inaccuracies are controlled
by the event slope (kinematics) and bandwidth,
we expect that tests on a variable-density version
of this model would yield the same conclusions as
those we present later. The full reflection data
have 201 colocated sources and receivers with
spacing intervals of 40 m in the subsalt model.
The acquisition spread lies within the range
of x ¼ ð4000 m; 12;000 mÞ at the acquisition
surface with the time sampling rate of
dt ¼ 4ms. The focal point is located
ðXF ¼ 8130 m; ZF ¼ 4400 mÞ, as shown in Fig-
ure 13. The same subsampling scheme is used as
shown in Figure 2b. Figure 14a shows the Green’s
functions obtained with the full aperture. As ob-
served in Figure 14b, subsampling by a ratio of
eight brings strong artifacts for the complex salt

a)

b)

Figure 9. (a and b) Velocity and density profiles of the 2D model
used in the source-receiver transpose study for the Marchenko fo-
cusing and primary estimation, respectively. The magenta dot de-
notes the location of focal point (x ¼ 4000 m, z ¼ 1000 m). The
red stars and white triangles indicate the source and receiver loca-
tions, respectively.
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Figure 10. For the 2D model shown in Figure 9: (a-c) the Green’s function from forward
modeling, from Marchenko redatuming by integrating on the dipole dimension, and
from Marchenko redatuming by integrating on the monopole dimension, respectively.
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Figure 11. (a and b) Focusing functions calculated by integrating on the dipole and
monopole dimensions, respectively. (c) The difference between (a and b), of which
the amplitude is multiplied by a gain factor of 10.
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model. A comparison between Figure 14a and 14c illustrates that
the acquisition with smaller aperture also increases aperture-
induced artifacts in the Green’s function. Figure 14d shows
that a smaller aperture and subsampling compound into more com-
plicated artifacts. Here, all of the Green’s functions are calculated by
solving the coupled Marchenko equations by inversion with the
LSQR solver (Paige and Saunders, 1982; Ravasi and Vasconce-
los, 2020).

Effects of subsampling in MPE

Completing our analysis of subsampling effects on redatuming,
here we study the receiver subsampling effects on MPE in a four-
layer model with colocated 201 sources and receivers, as shown in
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Figure 12. Results of primary estimation for the 2D model shown
in Figure 9. (a) The reference reflection data with source at
x ¼ 4000 m. (b) Primary estimation from integrating on the dipole
dimension. (c) Idem, from integrating on the monopole dimension.
(d) The difference between (b and c), of which the amplitude is
multiplied by a gain factor of 10.
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Figure 13. The velocity profile of the salt model with constant den-
sity. The magenta circle denotes the focal point
(XF ¼ 8130 m; ZF ¼ 4400 m) located beneath the salt body. The
red stars and white triangles indicate the source and receiver loca-
tions, respectively.
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Figure 14. For the subsalt model with the focal point at
ðXF ¼ 8130 m; ZF ¼ 4400 mÞ: (a) the reference Green’s function
without subsampling. (b) The redatumed Green’s function calcu-
lated by subsampling and integrating over the source and integrat-
ing on the source. The same subsampling scheme is used as shown
in Figure 2b. (c and d) Difference plots between the true and esti-
mated responses use two-third of the original data aperture: (c) is
from fully sampled data, whereas (d) is from subsampled data. In (c
and d), the missing traces indicate the part of the data that was re-
moved for these tests.

Algorithm 1. Algorithm for primary estimation, after Zhang
and Staring (2018).

Initialize Rδ with a chosen common-shot gather;

for t2 ¼ 0 to tmax do

compute the windowing operator Wt2−ϵ
ϵ ;

solve equations 18 and 6 for vþm and v−;

use vþm and v− to compute U− (equation 19);

store the value of U− at t2;
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Figure 15. Figure 16a shows the reference reflection data with the
source location Xs ¼ 0 m, where four strong primaries and the en-
suing relatively weak multiples can be observed. Figure 16b shows
the primary prediction result — using the algorithm presented in
Algorithm 1 — without subsampling, where only four primaries
are visible and the multiples are suppressed significantly. Fig-
ure 16c–16e shows the results of primary estimation with three dif-
ferent subsampling schemes (evenly zeroing out 66%, 75%, and
80%), calculated with 20 iterative substitutions, respectively. Here,
as previously, the choice of 20 iterations is arbitrary, chosen to be
sufficiently higher than our observed number of iterations to achieve
convergence on fully sampled data. Figure 16f shows the result us-
ing the same subsampling scheme as shown in Figure 16e but cal-
culated with LSQR instead of explicit Neumann iterations. As
expected, the strength of the artifacts increases with increasingly
subsampled data. The errors in the first three iterations for the
75% subsampling scheme are given in Figure 17a–17c, which show
that the major error comes from the first iteration and can decrease
in subsequent iterations.
Figure 16e shows that the iterative substitution method fails to

converge for this example when the subsampling degree increases
to 80%. Based on the theory of Neumann series expansion, in Fig-
ure 18, we examine the operator norm of A ¼ Wt2−ϵ

ϵ R⋆Wt2−ϵ
ϵ R in

equation 18 for different subsampling schemes as a function of
time. In general, the operator norm first increases and then plateaus
with time t2. This occurs as more finite-energy arrivals are included
by the windowing operatorWt2−ϵ

ϵ as the time increases, but the con-
tribution of an increasing number of arrivals is
offset by the decreasing energy of high-order
multiples that arrive late (Zhang and Staring,
2018). As shown in Figure 18, the operator norm
with full data for primary estimation with 20 iter-
ations lies below that of the Marchenko redatum-
ing for the chosen focal depth (0.8094), which
satisfy the convergence condition jjAjj < 1. It
is important to note that jjAjj < 1 guarantees con-
vergence, whereas for jjAjj > 1, it may diverge
not guaranteed, but true for our example —
for details on Neumann series convergence, we
refer readers to Dukalski and de Vos (2018). Sub-
sampling evenly by 66% and 75% brings the op-
erator norm to approximately 1.2 and 2.1,
respectively, where the iterations diverge slowly
but lie within an acceptable range (see Figure 16c
and 16d). Subsampling evenly by 80% further
pushes the operator norm to approximately
3.1, resulting in a much faster divergence as
shown in Figure 16e. Here, we point out again
that this operator norm analysis does not carry
the same implications when the problem is
solved without relying on explicitly evaluating
the Neumann-series-based solution.

DISCUSSION

Our study with the four-layer model shows
that for Marchenko redatuming the subsampling
effects jointly depend on (1) the choice of inte-
gration variable and (2) the subsampling dimen-
sion in the multidimensional convolutions within

the Marchenko scheme. Because of source-receiver reciprocity, the
freedom to choose an appropriate integration variable can be advan-
tageous in cases in which only one of the dimensions (source or

a)

b)

Figure 15. (a and b) Velocity and density profiles of the four-layer
model used for primary estimation, respectively. The red stars and
white triangles indicate the source and receiver locations, respec-
tively.
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Figure 16. Comparison of the results of primary estimation with a different subsampling
scheme: (a) the reference reflection data for a shot located at x ¼ 0 m. (b-e) Results of
primary estimation with full data and subsampled data of three different subsampling
schemes (evenly zeroing out 66%, 75%, and 80%), calculated with iterative substitution,
respectively. (f) Results of primary estimation with subsampled data used in (e) calcu-
lated with LSQR inversion.
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receiver) is subsampled. For the same reason, when the sampling of
reflection data is symmetric with respect to the source and receiver
dimensions, integrating on either dimension yields the same result,
regardless of subsampling. When the data are regularly subsampled
on one dimension, integrating on the other dimension yields inac-
curate focusing results, with focusing function gaps at surface lo-
cations corresponding to the missing data. However, in this same
sampling scenario, integrating on the subsampled dimension yields
focusing functions with artifacts but no spatial gaps, with their
strength affected by the chosen focusing depth. The analysis of
the integrand gather shows that the mechanism behind lies at the
integration within the multidimensional convolution between the
reflection response and the focusing function formulated in the form
of a matrix-vector multiplication in the frequency domain. Natu-
rally, we expect that subsampling in sources and receivers will com-
pound and cause stronger artifacts together with gaps, compared
with subsampling in a single dimension. In addition, limiting ac-
quisition aperture will also bring artifacts (Sripanich and Vasconce-
los, 2019), which can be compounded by the subsampling effects,
as we show with our salt model example.

Furthermore, we show with a model of mild lateral heterogeneity
that conducting integration over the monopole dimension instead of
the dipole brings negligible errors to both Marchenko systems in-
vestigated here, which may facilitate our choice of integration var-
iable in combination with the subsampling scheme. This also
reveals that the Marchenko methods are not highly sensitive to rel-
atively small errors contained within the reflection data. Therefore,
it implies that in practice interpolating the gaps of the input reflec-
tion data should be preferred over postprocessing the output focus-
ing functions or Green’s functions, as shown by Jia et al. (2019) and
Staring and Wapenaar (2020) for 3D redatuming.
One important take away from our results with different combi-

nations of dipole and monopole field quantities is that, although
theory strictly requires the use of dipole sources — which are
not practically available — it is entirely feasible to rely on dipole
data instead, e.g., those acquired with multicomponent sensors.
Although replacing dipole sources by receivers may violate spatial
reciprocity in heterogeneous media, we believe that, in most off-
shore conditions, the associated errors are likely negligible. In
the absence of any dipole data, e.g., the case of conventional
streamer data, we recommend that a monopole-to-dipole filter be

applied in the best-sampled domain, likely to
be the receiver domain in streamer-based data.
In the case of ocean-bottom nodes, which are
multicomponent but often highly sparse, it
may be better to apply dipole corrections on
the more densely sampled source domain and
perform convolutions over sources.
In the context of focusing and redatuming, it is

important to point out that the behavior of sub-
sampling-related errors in Marchenko operations
is analogous to those occurring in SRME. In
SRME literature and practice (Dragoset et al.,
2006, 2010; Verschuur, 2013), acquisition-re-
lated subsampling has been studied by many au-
thors in many contexts — 2D, 3D, synthetic,
and field data. Throughout the literature in multi-
ple elimination, subsampling effects have been
extensively investigated, together with several
approaches suggested to condition data for multi-

ple suppression — including interpolation/regularization tech-
niques. For example, in closed-loop SRME (Lopez and
Verschuur, 2015), one may use a focal transformation and a sparse
norm regularization to remove the undersampling noise. Although
our study begins to highlight the connections between these meth-
ods, we expect that more about Marchenko can be learned from
what has been studied in the context of SRME — e.g., by taking
inspiration from data conditioning approaches used in that context.
However, appropriately translating SRME lessons into Marchenko
practice will require further testing and research, particularly in the
context of field data examples.
Although here we base our discussions on 2D examples, the ar-

guments that we build regarding the integration over monopole
fields are general, and as such in principle apply to 3D media,
i.e., having source and receiver integrals each act on a plane of
source/receiver coordinates. We point out that the work of Ravasi
and Vasconcelos (2020) contains examples of subsampling 3DMar-
chenko operators — indeed in agreement with this study. Their
example does further highlight that although aliasing effects in three
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Figure 17. (a-c) Error in the first three iterations of primary estimation caused by sub-
sampling (evenly zeroing out 75% of the 201 sources). All of the amplitudes are clipped
at 2% of the strongest arrival in Figure 16a.
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Figure 18. (a) Comparison of the operator norm of iterative substi-
tution in primary estimation with different subsampling schemes
(100% data, regularly zeroing out 66%, 75%, and 80%, respec-
tively), as well as in the Marchenko redatuming with full data
for the same model. Here, we note that the Marchenko redatuming
operator norm corresponds to a fixed focal point at depth — thus
not being one-to-one comparable with primary estimation on the
acquisition surface — but we choose to show it here merely to
indicate that the operator norm for redatuming is not time-depen-
dent.
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dimensions follows the same patterns as we present here, they can
be lower in magnitude when either source or receiver integration is
subsampled in only one of the two spatial coordinates. This obser-
vation is likely to depend on the degree of subsampling and on the
degree of complexity — due to the subsurface heterogeneity —
present in the 3D wavefields that make up the reflection operator.
A study of subsampling effects on the primary estimation based

on the projected Marchenko system shows a similar pattern of ar-
tifacts that appear in the original coupled Marchenko system, which
can be explained by the common multidimensional convolution and
correlation between reflection data and focusing functions. As
expected, the artifacts increase with the degree of subsampling
and may cause divergence issue with iterative substitution when
subsampling to a certain extent, which is illustrated by the analysis
of the time-dependent operator norm lying in the core of the iter-
ation. This problem can be mitigated using more robust iterative
linear solvers, such as LSQR — but this would likely come at
a greater computational cost because such solvers tend to conver-
gence more slowly than the Neumann series, thus requiring a larger
number of iterations (i.e., of operator evaluations; Dukalski and de
Vos, 2018). In our case, LSQR yields consistent results, as opposed
to Neumann-series-based iterative substitution, when presented
with data with high degrees of subsampling. When the data are well
sampled, the Neumann-series iterative scheme and the LSQR solver
perform equally well. As in using the coupled Marchenko system
for redatuming, the errors caused by subsampling decrease rapidly
with the number of iterations — provided that the Neumann series
remains stable.

CONCLUSION

By relying on representative numerical cases to mimic acquisi-
tion scenarios over varying subsurface complexity, we provide a
study of the acquisition-related subsampling effects on the 2D Mar-
chenko focusing, redatuming (original coupled Marchenko system),
and primary estimation (projected Marchenko system) to shed light
on the underlying physical and numerical mechanisms. For Marche-
nko focusing and redatuming, we show that the artifacts brought by
subsampling are rooted in the integration within the multidimen-
sional convolution between the reflection response and the focusing
function, which also applies to primary estimation because of how
similar the underlying operations are. These subsampling effects
depend jointly on the integration variable choice and the sub-
sampled dimension (the dipole source or receiver). Artifacts appear
without spatial gaps when these two are identical, and spatial gaps
are present with artifacts for different dimensions. Our study also
shows that integrating on the monopole dimension also gives very
close approximation to the results of both Marchenko systems for
smoothly laterally varying media. In this regard, future studies are
expected regarding the sampling requirement for convergence, the
interpolation accuracy, etc. The artifacts in redatumed Greens’ func-
tions depend on the reflection data sampling and focusing depths. In
imaging, these artifacts will very likely cause small errors, but for
full-waveform inversion, time lapse, and reservoir characterization,
these could lead to larger errors.
Our study focuses only on regularly subsampling in one dimen-

sion of the input reflection data, i.e., source or receiver dimension.
Meanwhile, the conclusions drawn from our study are limited to the
2D case. For three dimensions, the irregular subsampling effects are
likely more complicated, due to the 2D integration over the source

and receiver dimension, particularly in the case of highly complex
media. Our results can inform acquisition design, but more impor-
tantly they tell us how to handle single and multicomponent data for
Marchenko applications, while providing insight that can help in
ensuring the quality of data conditioning approaches for Marchenko
applications.
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