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Surface movement can be induced by many human subsurface activities: production of
natural gas, geothermal heat extraction, ground water extraction, phreatic groundwater
level lowering, storage of natural gas and CO2. In this manuscript, we focus on subsidence
caused by gas production. While geological interpretations, seismic campaigns and flow
modeling often provide a relatively rich pre-existing knowledge, understanding of the
drivingmechanisms for production-induced subsidence is still poor and forecasts are often
very uncertain. This is related to the multiple poorly constrained models that translate gas
production to ground surface displacements. Currently, a biased constraint of these
models is inferred by arbitrarily pre-selecting a subset of those. Here, we have devised and
deployed an integrated approach of the entire chain of models from the flow simulations to
the ground surface displacements which, for the first time, accounts for all our pre-existing
knowledge in terms of processes and uncertainties attached to them. More specifically for
the transfer between reservoir depletion to compacting volume at depth, four reservoir-
rock compaction models are a-priori considered, ranging from linear elastic model to
nonlinear time-dependent viscous-type model. After assimilation of the geodetic
observations (i.e., the ground-surface displacements) with ensemble-smoother
algorithms, we demonstrate that even when all the a-priori known complexities were
present in all steps of the modelling chain, the model parameter uncertainties of each
model could be reduced. Interestingly we demonstrate that one can discriminate which
reservoir-rock compaction model driving subsidence is activated at depth. This
identification of the activated compaction model at depth is crucial to build confidence
in our subsidence forecasts. The predictive power of the integrated approach is
demonstrated with an ensemble of synthetic but complex reservoir flow simulations
mimicking all the characteristics and uncertainties representative for real gas fields in
the north of the Netherlands.
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INTRODUCTION

Various types of energy-related anthropogenic subsurface
activities, such as reservoir gas production, geothermal heat
extraction, ground water extraction, storage of natural gas or
CO2, can lead to surface movement (Zoback 2007). The relatively
rich pre-existing knowledge of the underground around
anthropogenic subsurface activities (e.g., through geological
interpretations of seismic campaigns, borehole analysis, and
reservoir flow modelling, e.g., see NAM 2016 for the
Groningen gas field, the Netherlands) could make one think
that the driving physical processes of anthropogenically-induced
subsidence are well constrained. This is unfortunately not the case
and the contribution of multiple driving physical processes is still
highly debated (e.g., Mossop and Segall 1999; van Thienen-Visser
et al., 2015a; Fokker et al., 2016).

In this contribution we focus on one instance of anthropogenic
subsurface activities which can potentially lead to subsidence:
reservoir gas production. During the extraction of natural gas
from a gas field, the reservoir pressure decreases, leading to
compaction. This reduction in volume at reservoir depth may
induce surface subsidence (Doornhof 1992), with consequences
for the environment and for human activities (e.g., van Thienen-
Visser et al., 2015b; Simeoni et al., 2017). The consequences of
reservoir production and its changes call for subsidence
forecasting approaches. However, the link between reservoir
production and subsidence is non-trivial. Some gas fields in
the Netherlands and elsewhere in the world have shown a
non-linearity between pressure depletion and subsidence, or
even a delay between the start of production and the onset of
subsidence and a continuation of subsidence even after
production had stopped (Hettema et al., 2002; van Thienen-
Visser et al., 2015a). This non-linear relationship between
reservoir production and subsidence has been explained by the
potential delay between reservoir depletion and compaction and
multiple reservoir-compaction models have been already
developed (e.g., Mossop 2012; De Waal 1986; NAM 2015;
Pijnenburg et al., 2018, 2019). An efficient procedure to
discriminate which compaction model is the most likely to
explain the subsidence observations is a crucial step to gain
confidence in our subsidence predictions. Defining and
describing this procedure is the objective of the current
contribution.

Subsidence caused by gas extraction is the result of multiple
inter-connected physical processes: from the flow of fluids within
the reservoir to the ground surface lowering and in between the
reservoir rock compaction. As in many scientific realms, like
weather forecasting and hydrology, each of these processes is
attached to uncertainties which must be honored. In this regard a
probabilistic ensemble-based approach (e.g., Reggiani andWeerts
2008; Jaynes 2003, Evensen 2003; Emerick and Reynolds 2013a;
Emerick and Reynolds 2013b) can be appropriate and fruitful. An
“ensemble” here implies that we build multiple subsidence
realizations, based on the possible choices of processes and
subsurface parameters. Later, deploying an ensemble-smoother
algorithm, this prior ensemble is confronted with the subsidence
observations to refine the predictions and to identify the most

likely driving processes; and more specifically in our case to
discriminate which compaction model is the most likely to
explain the subsidence observations.

Ensemble-based inversion procedures of surface subsidence
have already been developed in the past (see e.g., Fokker et al.,
2012; Baù et al., 2015; Fokker et al., 2016; Gazzola et al., 2021).
However, these pioneering works were designed for specific
applications, where the full spectrum of uncertainties from the
reservoir flow to the modelling of subsidence was not accounted
for. A-priori omitting additional complexities of potentially
activated processes, the “apparent” constraint of the subset of
uncertain models was thus biased. For example (Fokker et al.,
2016) assumed a linear compaction model and only varied the
reservoir compaction coefficient and the subsurface elastic
moduli. Instead in the present contribution our objective is to
introduce an integrated approach, coined Ensemble-based
Subsidence Interpretation and Prediction (ESIP), which honors
all the pre-existing known complexities in terms of processes and
subsurface parameters.

For evaluation purposes, our integrated approach is applied on
numerical flow simulations aiming to mimic the characteristics of
real gas fields in the north of Netherlands. First, we describe our
fit-for-purpose exercise and the challenges attached to it. Second,
we describe the integrated approach from each forward model to
the inversion procedure. Third, the results of the integrated
approach applied on our tailored exercise are presented and
discussed. We demonstrate that while accounting for all the
pre-existing known complexities, our integrated approach
enables to identify the correct compaction process activated
at depth.

DESCRIPTION OF THE EXERCISE AND
CHALLENGES

In the exercise we designed we use the reservoir flow model of a
typical gas field in the north of the Netherlands. The complexities
of such a field are reproduced with a synthetic reservoir model,
and multiple reservoir simulations are performed to mimic the
prevalent uncertainty. One of the realizations is selected as the
synthetic truth model and used for creating synthetic subsidence
data, while the others are employed to show how the knowledge
about the reservoir compaction and the subsidence forecasting
can be improved with these data.

It is often the case that over-simplified synthetic reservoir
models are used for testing purposes. This is the case of the
simplified disk-shaped reservoir with spatially uniform pressure
drop presented by Baù et al. (2015). Instead here our synthetic
reservoir model preserves all the complexities of a real gas field
(see Section 3.1) in terms of geometry and spatio-temporal
pressure drop history.

Making use of model-based synthetic subsidence data presents
pros and cons. The main inconvenient is that synthetic data can
be missing additional complexities that are unmapped in our
model-based simplified version of the reality. However, it is
important to stress that for our exercise these additional
complexities were accounted for by an appropriate evaluation
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of the uncertainties of the observations formalized with the full
data covariance matrix (see Section 3.6). The main advantage of
using synthetic data is that in our model-based realm, one can
virtually control everything and thus it makes it ideal for testing
purposes. More specifically in contrast to real data, we know
upfront which processes and parameters are at the origin of the
synthetic data. One can thus test if our integrated approach can
effectively recover these processes and parameters.

Our exercise aims to estimate and forecast ground-surface
displacements from 2008 to 2015 based on synthetic data from
1986 to 2007. We ran reservoir simulations for multiple scenarios
from 1986 to 2015. Because the synthetic data correspond to one
member of the prior ensemble, we have data and models from
1986 to 2015. Our predictions from 1986 to 2015, based on model
conditioning from 1986 to 2007, can therefore be directly checked
against our synthetic measurements from 1986 to 2015.

Besides testing the predictive and forecasting capabilities of
our integrated approach, the prime scientific challenge that we are
tackling with our exercise is: does our integrated approach
combining forward models (and their uncertainties) with
ensemble-smoother algorithms help to discriminate which type
of compaction model best explains the synthetic data? Four types
of compactions models, ranging from linear elastic model to
nonlinear time-dependent viscous-type model, were considered:
the linear, the bilinear, the time decay, and the rate type model
(see Section 3.3). We selected the bilinear compaction model to
generate the synthetic data and thus the goal of the exercise is to
test if our integrated approach enables to retrieve this
information.

DESCRIPTION OF THE INTEGRATED
APPROACH

This section details the integrated approach that we designed to
constrain the compaction process at depth and consequently to
improve forecasting capability of subsidence. The goal of our
ensemble-based integrated approach is first to perform a global
uncertainty analysis where all the uncertain parameters of each
process of the entire chain of models are vary simultaneously.
The succession of processes to be modelled is: 1) flow of fluids
within the reservoir, 2) compaction at depth of the reservoir
caused by pressure depletion, 3) ground surface displacement
caused by the reservoir compaction and mechanical response of
the surrounding medium around it. For each of these processes,
multiple parameters can be involved. The a-priori range and
distribution of each of these model parameters is pre-defined by
our expert knowledge and the pre-existing literature for our
case-study: typical gas fields in the north of the Netherlands.
The distribution of each model parameter is uniform, and we
use the Latin hypercube sampling method to randomly select
parameter values from the overall multidimensional
distribution.

Ensemble of Pressure-Depletion Scenarios
A synthetic gas field was built with Shell’s propriety reservoir
simulator MoReS, mimicking the complexities of a typical

real field in the north of the Netherlands. These complexities
(see Figure 1) are: 1) a fault potentially compartmentalizing
the reservoir with an uncertain sealing capacity (that is an
uncertain fault transmissibility mapped into a fault
permeability multiplier with an uniform a-priori
distribution between 10−4 and 1), 2) an uncertain reservoir
permeability including the possibility of a flow barrier
(with an uniform a-priori distribution between 10−4 mD
and 1mD) and a high permeability streak (with an
uniform a-priori distribution between 15mD and
1000mD), 3) an uncertain amount of residual gas in the
aquifer (with an uniform a-priori distribution between 0 and
0.2), and 4) irregular reservoir boundaries and grid size. The
variability in the permeability of the flow barrier results in
the variability of the aquifer activity. We built an ensemble of
pressure-depletion scenarios to map our a-priori belief in
terms of reservoir geometry, geology, flow properties, and
their uncertainty. Figures 2, 3 display the first and the last of
the 76 members of the prior ensemble of flow simulations.
Each member is simulating 30 years of field production; the
total volumes of gas and water produced are representative of
real fields in the north of the Netherlands. The depletion level
of a reservoir-connected aquifer is regularly uncertain in real
scenarios. This is also the case for our synthetic scenario,
where the prior ensemble is intentionally mapping
uncertain pre-existing knowledge on the degree of aquifer
depletion. The pressure depletion of the aquifer is clearly
variable between members of the prior ensemble (see
Figures 2, 3).

Upscaling
The 3-D pressure fields (Figures 1–3) are upscaled to 2-D maps
in two steps: the vertical averaging of the pressure in the reservoir
layers and the horizontal averaging over a coarser grid. This
averaging process reduces the computational runtime and is
justified by the fact that a distribution of compaction over an
upscaled cell in a thin and deep reservoir has a limited effect on
the surface subsidence (Geertsma, 1973).

The upscaling needs to be performed such that the amount of
compaction for the upscaled 2-D grid and the initial layered 3-D
grid is identical. Therefore, the vertical and horizontal averaging
of the 3-D pressure field need to be weighted, to take into account
the variability in compaction between each individual grid block
of the reservoir model. This variability in compaction is
controlled by differences in pressures, volumes, and porosities
between each grid block. The vertically averaged pressures Pav,
volumes Vtot, porosities ∅av and grid block center positions Xav

and Yav for one vertical column of the 3-D grid can be
expressed as:

Pav � ∑n
k�1Cmk(∅k).Pk.Vk

Cm(∅av).Vtot
(1)

Vtot � ∑n

k�1Vk (2)
∅av � ∑n

k�1∅k.
Vk

Vtot
(3)
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Xav � ∑n

k�1Xk.
Vk

Vtot
(4)

Yav � ∑n

k�1Yk.
Vk

Vtot
(5)

In Equation 1 Cmk(∅k) corresponds to the compaction
coefficient of one grid block as a function of its porosity,
pressure, and time. This specific relationship is constrained by
uniaxial experiments (see Section 3.3). The volume Cmk(∅k)
considered for each individual grid block is the net volume, that

is only including reservoir parts. After this first step of vertical
upscaling we have a 2-D irregular fine grid of Pav, ∅av, Vtot at
upscaled positions (Xav, Yav).

The second step of the upscaling consists in the horizontal
averaging of pressures, volumes, and porosities of the 2-D fine
grid (Xav, Yav) falling within the limits of a 2-D regular coarse
grid covering the area of the reservoir model. The regular coarse
grid size can be flexible and is typically between 500 and 1000 m.
In order to maintain the same amount of compaction before and
after upscaling, the same averaging procedure needs to be

FIGURE 1 | Cross-sections of the reservoir and connected aquifer for one member of the ensemble of flow simulations. Top: initial water saturation (fraction of the
pore space occupied by water) of the model indicating the progressive interface between reservoir (west side) and aquifer (east side). Middle/Bottom: horizontal/vertical
permeability-structures (in mD).
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FIGURE 2 |Cross-sections of the pore pressure distribution in the reservoir and connected aquifer for two members of the ensemble of flow simulations. Top: pore
pressure pre-production [1986]. Bottom: pore pressure at the end of production [2015].

FIGURE 3 | Top-views of the pore pressure distribution in the reservoir and connected aquifer for two members of the ensemble of flow simulations. Top: pore
pressure pre-production [1986]. Bottom: pore pressure at the end of production [2015]. The blue rectangle of zero pore pressure, on the south-side of the model,
corresponds to an intentionally cropped-volume (non-active zone) intended to mimic the complex geometry of real field cases. Still for the sake of capturing structural
complexities of real field cases, east-west and north-south corridors of relatively smaller grid-block volumes are also visible.
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followed as for the vertical averaging in Equations 1–5. After this
second step of horizontal upscaling we end-up with a 2-D coarse
irregular grid with new (xav, yav) positions, pressures, volumes,
and porosities. Figure 4 presents the upscaled 2-D pressure fields
for the first and last member of the prior ensemble of reservoir
flow simulations.

From Pressure Depletion to Compaction
Translating the pressure depletion between two epochs to volume
compaction is non-trivial. Models for rock compaction based on
laboratory measurements and/or field measurements are still
highly debated (De Waal, 1986; Hettema et al., 2002; van
Thienen-Visser et al., 2015a; NAM, 2015; Pruiksma et al.,
2015; Spiers et al., 2017; van Eijs and van der Wal, 2017;
Pijnenburg et al., 2018, 2019; Smith et al., 2019). For our
exercise, four types of compaction models, ranging from linear
elastic model to nonlinear time-dependent viscous-type model,
were considered: the linear, the bilinear, the time decay, and the
rate type model.

The linear elastic compaction model assumes a linear
relationship between pressure depletion dP and
compaction Vcomp:

Vcomp(x, y, t) � Cm(x, y)V(x, y) dP(x, y, t) (6)
where V is the grid block net volume. Only one material
parameter, the compaction coefficient of the reservoir rock Cm

is needed for the linear compaction model. This last model
parameter can be chosen as a single value or as a function of
porosity φ. A polynomial regression derived from uniaxial
laboratory experiments on rock samples representative of the
gas reservoirs of the north of the Netherlands (NAM, 2017)
yielded a third-order polynomial:

Cm[10−5bar−1] � 267.3 φ3 − 68.72 φ2 + 9.85 φ + 0.21 (7)
The three other compaction models (bilinear, time-decay, rate

type) intend to capture non-linear time-dependent viscous-type
and/or pressure-dependent behavior. They have been formulated
in response to geomechanical and geodetic measurements
pointing out nonlinearities and delays in compaction and
subsidence relative to the production of gas fields (De Waal,
1986; Hettema et al., 2002; van Thienen-Visser et al., 2015a;
NAM, 2015; Pruiksma et al., 2015; Spiers et al., 2017; van Eijs and
van der Wal, 2017). Recent observations also indicate continuing
subsidence even when production has stopped.

In the bilinear compaction model (NAM 2017), the
compaction coefficient is assumed to be pressure-dependent. It
combines two linear relationships between pressure depletion
and reservoir rock compaction as:

Vcomppre(x, y, t) � Cmpre(x, y)V(x, y) (P0(x, y) − P(x, y, t))
(8)

Vcomppost(x, y, t) � Cmpre(x, y)V(x, y) (P0(x, y) − Ptrans)
+ Cmpost(x, y)V(x, y) ( Ptrans − P(x, y, t))

(9)
where P0 and Ptrans respectively define the initial pressure before
the start of production and the transition pressure. The first
relationship, Equation 8, should fit the stiff behavior at early
stages using a lowCmpre value from the onset of pressure depletion
up to the transition pressure Ptrans. The second relationship,
Equation 9 addresses the later, weaker behavior using a high
value for Cmpost for higher pressures. Two material parameters
Cmpre, Cmpost and the pressure Ptrans are required to compute the
bilinear compaction.

The time-decaymodel was inspired by the ubiquitous diffusive
behavior of many physical systems pushed into non-equilibrium
high-energy states, which slowly decay to their low-energy
equilibrium states again (Mossop 2012). Such a diffusion-type
process can be modeled using a convolution of a linear
relationship between pressure depletion and reservoir rock
compaction with an exponential time decay function:

Vcomp(x, y, t) � Cm(x, y, t)V(x, y, t) dP(x, y, t)pt1
τ
exp[− t

τ
]

(10)

FIGURE 4 | Upscaled pore pressure distributions for two members of
the ensemble of flow simulations. The dark rectangles indicate the surface
locations of the geodetic benchmarks; their uneven spatial distribution is
mimicking real scenarios of the north of the Netherlands.
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where pt is the convolution operator with respect to time. To
compute the time decay compaction, the material parameter Cm

and the characteristic time decay constant τ are required.
The rate type compaction model was derived from laboratory

measurements designed for capturing the loading-rate
dependency in sandstones (De Waal 1986). The onset and
arrest of production can be seen as changes in loading rate of
the reservoir rocks. At the change in loading rate, a first direct
elastic strain response εd is modeled, followed by a more gradual
creep strain response εs. We followed (Pruiksma et al., 2015) with
a formulation based on the linear isotach compaction. The rate
type isotach compaction was implemented as an explicit Euler
finite-difference scheme keeping a constant time step Δt
(Pruiksma et al., 2015). To calculate the compaction of one
grid block grid (x, y) the applied numerical scheme can be
divided into five steps:

1) From the current effective vertical stress σ(t) and strain ε(t),
calculate the creep strain rate as:

_εs(t) � (ε(t) − ε0
σ(t) − Cmd) _σr( ε(t) − ε0

σ(t) Cmref

)
−1/b

(11)

The vertical stress is derived from the reservoir depth and the
mean density ρmean of the subsurface up to the reservoir top zr,
and the effective stress is its difference with the pressure:

σ(t) � ρmean g zr − P(t) (12)
At the onset of pressure depletion/production t0, the direct

elastic strain εd(t0) and creep strain εs (t0) are both taken zero,
and thus the total strain ε(t0) is set to zero.

The reference total strain is expressed as:

ε0 � −Cmref
σr (13)

with the reference vertical effective stress σr � σ(t0).
Three material parameters (Cmref, Cmd, and b) and one state

parameter ( _σr) are needed to compute the rate type compaction.
The parameter b is an empirical laboratory-derived constant. The
material parameters Cmref and Cmd are respectively the reference
and direct compaction coefficients, where Cmref is the compaction
coefficient corresponding to the pre-depletion loading rate, and
thus by definition relatively high. Parameter Cmd is dedicated to
map out the direct effect at the change of loading rate. In the
scenario of the change of loading rate due to the onset of pressure
depletion, Cmd is expected to be relatively low in order to mimic
the stiff response of the reservoir rocks. The state parameter _σr
represents the reference vertical effective stress rate at the start of
the reservoir depletion.

2) The second step of the Euler scheme consists in calculating the
increase in creep strain as:

Δεs � _εs(t) Δt (14)
and update the creep strain as:

εs(t+1) → εs(t) + Δεs (15)

3) The time is updated as t+1 → t + Δt
4) Following a linear stress-strain relationship one can calculate

the direct elastic strain as:

εd(t + Δt) � Cmd (σ(t + Δt) − σr) (16)

5) Finally One can Calculate the Total Cumulative Strain as

ε(t + Δt) � εs(t + Δt) + εd(t + Δt) (17)
And the total cumulative compaction as:

Vcomp(t + Δt) � −V0 ε(t + Δt) (18)
with V0 the grid block net volume, assumed constant over time.
After this last fifth step the workflow returns to the first step for
the next time step.

From Compaction to Ground-Surface
Displacements
In order to propagate the 2-D compaction fields to surface
subsidence we employ influence functions, also called Green
functions. They are rotationally symmetric surface
displacement profiles for a unit volume of compaction (a
nucleus of volumetric strain) and they are used in
conjunction with the 2-D compaction fields, in order to
calculate the total surface displacements at the desired
geodetic benchmarks locations. We used the semi-analytical
approach developed by (Fokker & Orlic 2006), which is based
on the nucleus of strain concept (Mindlin & Cheng 1950) and
which extends Geertsma’s analytical solutions (Geertsma
1973; Van Opstal 1974) in the sense that it can handle a
layered elastic subsurface. The influence functions give the
vertical and horizontal surface displacements for a single
“nucleus” (a unit center of compression) located at reservoir
depth, and for given elastic parameters. The required input
parameters are the reservoir depth, the depths of the layer
interfaces, Young’s modulus and Poisson’s ratio of each layer.
For the present study, an elastic two-layer subsurface model
has been considered. The interface between the layers was put
at −3800 m depth, 80 m below the reservoir (−3720 m).
Uncertainties of the model parameters (Young’s modulus
and Poisson’s) of both layers have been mapped out in the
prior ensembles (see Section 3.5) to cover the broad range of
possibilities from a homogeneous elastic subsurface (no elastic
differences between both layers) to a subsurface with a stiff
basement (that is with a strong contrast of elasticity between
the top and bottom layer).

Prior Predictions
For each type of compaction model and based on the prior
information, a prior model vector ensemble of Ne vectors M0 �
(m1, m2, . . .mNe) is created. Following the Latin hypercube
sampling procedure, these vectors are generated by
stochastically selecting values in the prior distributions of the
driving input parameters. In this sense the available prior
knowledge is mapped to the ensuing ground-surface
displacement, by means of the geomechanical forward models

Frontiers in Earth Science | www.frontiersin.org March 2022 | Volume 10 | Article 7132737

Candela et al. Disentanglement of Rock-Compaction Processes

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


for both the compaction and the influence functions to translate
compaction at depth to ground-surface displacements. For each
member of the 76 prior flow simulations, 10 sets of parameters
for the geomechanical forward models (compaction model +
influence function) are selected with the Latin hypercube
sampling approach. 760 members of prior ground surface
displacements are thus initially computed for each
compaction model. For each prior ensemble, the length Ne of
the prior model vector ensemble M0 is thus initially 760. Note
here that the prior model parameters used to generate the
ensemble of reservoir flow simulations are not included in
M0 and thus will not be updated during the data assimilation
procedure (detailed in Section 3.7).

The prior distributions of all the model parameters used for
the compaction models and influence function are presented
respectively inTables 1, 2. For somemodel parameters, stochastic
factors are employed to generate the prior ensembles. The prior
ensembles of some compaction coefficients (Cm, Cmpre, and Cmd)
are generated by multiplying the initial compaction coefficient
value Cm (as defined by Equation 7) with their respective
stochastic factors (Cm fac, Cmpre fac, and Cmd fac). The early
stage low compaction coefficient Cmpre of the bilinear compaction
model, is then multiplied by the stochastic factor Cmpost fac to
obtain the prior ensemble of relatively higher later stage
compaction coefficient Cmpost. The prior ensemble of pre-
depletion relatively higher compaction coefficient Cmref of the
rate type compactionmodel, is generated by dividingCmd with the
stochastic factor Cmref fac.

From our a-priori knowledge one can generate an ensemble of
surface displacements predictions for each component of surface
displacements (horizontal displacement in West-East direction
u1 an North-South direction u2, and vertical displacement u3) at
the specific measurement locations, that is the geodetic
benchmarks locations. From these ensembles of surface
displacements one can generate a prior ensemble of 90 double
differences for the training period [1986–2007]. A double

difference indicates a difference in time of a level difference in
space (van Leijen et al., 2017), which circumvents the effect of the
choice of references in time and space. In other words, one double
difference is the difference of ground surface displacements
(either vertical or horizontal displacements) between two
benchmarks locations and between two epochs/times of
geodetic campaigns. The combinations of modeled 90 double
differences (in terms of benchmark locations and time of the
geodetic campaigns) correspond to those of the measured
(synthetic in our case) 90 double differences (see Section 3.6).
These 90 double differences include all the benchmark locations
presented in Figure 4.

The geomechanical forward model (compaction model +
influence function) is indicated by the function G working on
each vector of prior model parameters. For the sake of clarity, the
ensembles GM0 for each type of compaction model, will from
now on only refer to the ensemble of Ne prior double difference
dd predictions:

GM0 � ddprior � (ddprior
1 , ddprior

2 , . . . ddprior
Ne ) (19)

For each type of compaction model one can define a mean and
a covariance matrix of the prior double differences predictions.
The mean over the Ne members is defined as:

<GM0 > � μ[ddprior] � 1
Ne

∑Ne

i�1 dd
prior
i (20)

The covariance over theNe members between the jth location
and the kth location is defined by

cpriorjk � 1
Ne − 1

∑Ne

i�1(ddprior
ij − μ[ddprior

j ]) · (ddprior
ik − μ[ddprior

k ])
(21)

which can be written in matrix notation as:

Cprior � (GM0
′GM′T

0 )/(Ne − 1) (22)
And where

GM0
′ � GM0 − <GM0 > (23)

The mean of the priors <GM0 > can be seen as the best prior
estimates for the various model types. The ensembles can be
regarded as the implementation of the prior knowledge, and,
assuming a production scenario from time T1 to T2 (that is from
2008 to 2015), they can be used to generate the best prior
estimates for the various types of compaction model from T0

to T2 (from 1986 to 2015). For a real scenario, the times T1 and T2

correspond respectively to the present day and a future geodetic
campaign, that is the forecasting period.

TABLE 1 | Bounded uniform prior distributions for each model parameters used to build each type of compaction models.

Compaction models

Linear Bilinear Time decay Rate type

Cmfac Cmpre fac Cmpost fac Ptrans Cm fac log10(τ) Cmdfac Cmref fac log10( _σr) log10(b)
[0.1.3] [0.1.3] [1,4] [100,350] [0.1.3] [-2.1] [0.1.3] [0.2.0.8] [-8,-2] [-3,-1]

TABLE 2 |Bounded uniform prior distributions for eachmodel parameters used to
build the semi-analytical influence functions for an elastic two-layers cake
subsurfacemodel. The subscript “r” indicates the elastic properties of the top layer
(from the ground surface to depth −3800 m). The subscript “b” indicates the
elastic properties of the bottom layer (from −3800 m to an infinite depth).

Influence functions

Young’s modulus Poisson’s ratio

log10(Er) log10(Eb) νr νb

[0.7.1.5] [1.2.5] [0.15.0.3] [0.15.0.3]
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Geodetic Observations
Two types of ground-surface displacement measurements are
considered for our exercise: optical levelling and GPS. Their
spatial distribution with regard to the reservoir mimics real
cases of the north of the Netherlands (Figure 4). The levelling
measurements give vertical displacements only (subsidence or
heave, indicated by u3); GPS also measures the horizontal
displacements (West-East component u1, and North-South u2).
The additional assimilation of the horizontal displacements is
particularly interesting for constraining the shape of the
subsidence bowl. Our integrated approach allows flexible
incorporation of other measurement types like InSAR, if
necessary.

The selected 90 double differences for the training period
[1986–2007], and including both optical levelling and GPS, were
chosen from one member (which was not used anymore in the
further analysis) of the prior ensemble of the bilinear
compaction model.

Along with the simulated observations, the uncertainties of the
observations due to measurement noise, and temporal and
spatio-temporal idealization noise were considered, formalized
with the full data covariance matrix according to (van Leijen et al.,
2017). A detailed description of the method used to simulate the
noise of the measurements and the full covariance matrix is
beyond the scope of the present publication. We simply note here
that the full data-covariance matrix, describing the uncertainty/
variance of each measurement, but also the temporal and spatio-
temporal correlations between the measurements, even if often
neglected (e.g., Fokker et al., 2012), is essential for a proper
conditioning of the model parameters. Indeed, the data
covariance matrix is key to properly weight the relative
importance of each measuring point during the conditioning
step (see later Section 3.7).

Figure 5 presents the full data covariance matrix of the 90
double differences for the training period [1986–2007]. The
temporally correlated idealization noise, mostly giving positive
off-diagonal numbers, describes the effect of benchmark

instability. Most negative off-diagonal numbers are related to
the spatio-temporal components reflecting additional surface
motion not associated with the signal of interest, e.g.,
compaction of shallow soft soil layers. Additional complexities,
such as additional ongoing processes which are not mapped in
our forward modelling strategy, are thus accounted for in our
integrated approach by the data covariance matrix.

Conditioning of the Models With the Data
The next step consists in confronting or conditioning the prior
estimates up to T1 with the geodetic data acquired up to T1 (that is
from 1986 to 2007 [1986–2007]).

The ensemble-smoother algorithm consists in an inversion
scheme, for which the goal is to maximize an objective function J
(or minimize–log [J]) of the form (Menke 1989; Tarantola 2005):

J(m) � exp[ − 1
2
((G(m) − dd)T C−1

dd (G(m) − dd)

+ (m −m0)T C−1
m (m −m0))] (24)

where m and G(m) are respectively the “optimized” (posterior)
vector of model parameters and double differences predictions
(that is ddpost) from time T0 to T1 [1986–2007].

In other words, the objective function is integrated in an
inversion scheme seeking the solution for the vector m of model
parameters that optimizes the match with the data and with the
prior information m0. This way, the ensemble-smoother
conditioning step updates both models and predictions.

The optimal “least-square” solution of Equation 24 for one
particular realization and assuming a linear inverse problem is
given by Tarantola (2005):

m̂ � m0 + CmG
T(GCmG

T + Cdd)−1(dd − Gm0) (25)
Converting this expression into an ensemble expression, we

can translate this equation to a forward model that does not have
to be a matrix multiplication–i.e., using the equation GM’

0
(Equation 23) as the difference of GM0 and its mean. The
estimate then is replaced by the new ensemble and Equation
25 becomes:

M̂ � M0 + CMG
T(GCMG

T + Cdd)−1(DD − GM0) (26)
which can be rewritten as:

M̂ � M0 + M0
′M′T

0

Ne − 1
GT{GM0

′M′T
0

Ne − 1
GT + Cdd}

−1
· (DD − GM0)

� M0 +M0
′M′T

0 G
T{GM0

′M′T
0 G

T + (Ne − 1)Cdd}−1
· (DD − GM0)

� M0 +M0
′[GM0

′]T{GM0
′[GM0

′]T + (Ne − 1) C−1
dd}−1

· (DD − GM0)
(27)

In Equation 27 M0 is the prior ensemble of model
parameters; GM0 represents the result of the non-linear
geomechanical forward model working on all the members

FIGURE 5 | Full covariance matrix of the 90 double differences (in mm2).
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of the prior ensemble, that is the ensemble of prior double
differences predictions. The expression CM � M’

0M
’T
0 /(Ne − 1)

corresponds to the model covariance matrix which includes
the known and belief bandwidths of the model parameters.
Primes indicate anomalies with respect to the ensemble mean
as M’

0 � M0 − <M0 > . Finally DD � (dd + ε1, dd +
ε2, . . . dd + εNe) corresponds to an ensemble of double
differences data realizations created adding to the vector
data dd random noise vectors ε corresponding to the
uncertainty range of the measurements. This procedure
ensures a posterior error covariance that is consistent with
the theory. The background of this was discussed by Burgers
et al. (1998).

After the data assimilation step has been performed, that is
computing Equation 27, posterior model parameters included
in M̂ are used to re-run the compaction models and influence
functions to generate the posterior ensemble of ground-
surface displacements. This implementation is called the
Ensemble Smoother with one Single Step of data
assimilation (ES-SS).

The non-linearity in the geomechanical forward model can
be more appropriately handled by applying multiple steps of
data assimilation, so called Ensemble Smoother with Multiple
Data Assimilation (ES-MDA) (Emerick and Reynolds 2013a).
In ES-MDA, the output ensemble of the smoother is used as
input for the next update. The same data are used for all
assimilation steps; to compensate for the effect of the multiple
application, the data covariances used in the update steps are
increased with respect to its actual value. For each step, a data
covariance multiplication factor αi must be chosen, so that∑Na

i�1 1
αi
� 1 (with Na the number of assimilation steps).

Following Emerick and Reynolds (2013a), we apply four
steps with decreasing αi with increasing i, giving
progressively larger weights to later update steps.

ES-MDA updates model parameters in a more “progressive”
way, relative to the rather “aggressive” single step of the ES-SS.
Indeed, even if at the end of the four steps of the ES-MDA the
actual data covariance is honored, during each step of the ES-
MDA the update can be seen as relatively “gentle” because of the
data covariance inflation. Therefore, one can expect a higher
ability of the ES-MDA for avoiding ensemble collapse. The
downside of ES-MDA is that it is computationally slower; in
our case, 4 times slower as we pick four steps of assimilation.

Performance Assessment
The performance of the ensemble-smoother algorithms (ES-SS
and ES-MDA), in updating the prior ensembles towards posterior
ensembles consistent with the data, can quantitatively be
evaluated by different metrics. First we define a metric based
on the Absolute Error (AE) (Baù et al., 2015; Gazzola et al., 2021),
which is possible since the synthetic data were generated with
known parameters:

AE(dd) � 1
Ne ·Ndd

∑Ne

j�1 ∑Ndd

i�1
∣∣∣∣ddi,j − ddi,true

∣∣∣∣ (28)

AE(m) � 1
Ne

∑Ne

j�1
∣∣∣∣mj −mtrue

∣∣∣∣ (29)

A second metric, the Average Ensemble Spread (AES) can be
defined independently from the true values: the variation of the
values with regard to their average (Baù et al., 2015; Gazzola et al.,
2021):

AES(dd) � 1
Ne ·Ndd

∑Ne

j�1 ∑Ndd

i�1
∣∣∣∣ddi,j − ddi

∣∣∣∣ (30)

AES(m) � 1
Ne

∑Ne

j�1
∣∣∣∣mj − �m

∣∣∣∣ (31)

Both metrics can be defined independently for the data (dd)
and for the model parameters (m). For the comparison of data
with model results, the average is determined. For the model
parameters we calculate the value for each parameter separately,
because we want to know the behavior of the separate parameters,
and their absolute values differ considerably. Low values of AE
correspond to a model close to the truth. Low values of AES
indicate that the spread of the ensemble and thus the model
uncertainties are small.

To evaluate the update of the ensemble-smoother algorithms
(ES-SS and ES-MDA) we evaluate the variation between the prior
and the posterior metrics with respect to the prior metrics:
AEprior−AEposterior

AEprior
and AESprior−AESposterior

AESprior
. The closer their value is to

unity, the better the estimate is (for AE) or the stronger the
constraining power of the smoother, in the sense of reducing the
uncertainty of the estimate (for AES). In Sections 4, 5, we will
only use the normalized values, but we will still call them AE and
AES for convenience.

A third class of quality metrics is formed by a chi-square (χ2)
test. It evaluates the difference between model results and data
with account of their covariances. We have defined two
formulations. One formulation ( χ2c

Ndd
) in which the covariance

is formed by the combination of covariances of both 1) the
posterior model ensemble and 2) the data (Equation 32). One
formulation ( χ2

Ndd
) in which only the covariance of the data

(Equation 33) is used:

χ2c
Ndd

� 1
Ndd

(dd − μ[ddpost])T.[Cdd + CGM]−1.(dd − μ[ddpost])
(32)

χ2

Ndd
� 1
Ndd

(dd − μ[ddpost])T.C−1
dd.(dd − μ[ddpost]) (33)

The chi-square test (Equations 32 and 33) judge if the
model posterior predictions and the data are consistent.
Loosely speaking, the average squared mismatch should be
of the order of the covariance. A chi-square test close to unity
means that the model ensemble is matching the data and that
the quality of the match is in agreement with the error
covariance of the data.

RESULTS

This Section 4 presents all the results obtained with four prior
ensembles, corresponding to each type of compaction model, and
one identical member of the bilinear ensemble as data.
Supplementary Appendix A.1 presents the results obtained
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with another set of four different prior ensembles and bilinear
data. Similar conclusions can be drawn for the results presented
in Section 4 and Supplementary Appendix A.1.

Model Parameters
Figures 6, 7 display the prior and posterior ensembles of model
parameters for both the ES-SS and ES-MDA. The posterior
ensembles are the ones inferred after calibration during the
training period [1986–2007]. The less aggressive multi-step
update of the ES-MDA helps to “better constrain” most of the
model parameters. “Better constrain”means that the reduction of
the parameters uncertainties is more effective with the ES-MDA
than with the ES-SS. For the model parameters of the influence
function, used to propagate the reservoir compaction in terms of
ground-surface displacement, only the ratio between the Young’s
modulus of the top layer (Er from the ground surface to -3800 m
depth, that is including the reservoir) and the Young’s modulus of
the bottom layer (Eb that is the basement) is updated significantly
during the data assimilation procedure. Interestingly this update
of the Young’s modulus is very similar for all types of compaction
models.

For the bilinear compaction model, where we know the true
model parameters used to generate the synthetic data, the visual-
inspection-based conclusion about the parameter distributions is
confirmed by the metrics AE and AES. The metrics show more
constraining power for the ES-MDA than for the ES-SS
(Figure 8): the posterior ensembles of model parameters
obtained after the fourth assimilation step of the ES-MDA are

less scattered and more centered around the true set of model
parameters. Figure 8 also shows that the Young’s modulus of the
basement (Eb) is more constrained by the data assimilation than
the elasticity of the top layer (Er). The conditioning of the ratio of
Young’s modulus (Er/ Eb) towards the true, as visualized in
Figures 6, 7, is thus dominated by the update of the Young’s
modulus of the basement (Eb).

Ground-Surface Displacements
Figures 9–12 display the prior and posterior ensembles of
ground-surface displacements for both the ES-SS and ES-
MDA. The results are shown for two specific geodetic
benchmark locations, one on top of the reservoir (location
18, Figure 4) and one on top of the aquifer (location 8,
Figure 4). The results for other geodetic benchmark
locations are presented at Supplementary Appendix A.1.
For both ensemble-smoother algorithms (ES-SS and ES-
MDA), a qualitative assessment of the curves indicates that
the spread of each posterior is smaller than the spread of their
prior. The vertical ground-surface displacements of the
posterior ensembles are mostly “well aligned” with the data
in the sense that the spread of the posterior ensembles
encompasses the data. Only for the linear compaction
model, and for the combination rate-type compaction model
with ES-SS, the alignment is suboptimal. With the exception of
the rate-type compaction model with the ES-SS, the horizontal
ground-surface displacements (West-East component u1),
even if of low magnitudes, are relatively “well constrained”

FIGURE 6 | Prior and posterior (following the ES-SS algorithm and for the training period [1986–2007]) ensembles of model parameters.
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by the posterior ensembles for both the reservoir benchmark
and aquifer benchmark.

The posterior ground-surface displacements at the
benchmark location on top of the aquifer (benchmark
location 8, Figure 4) are in better agreement with the data
than the movements calculated with the prior ensemble.
Actually, the mean posteriors moved very close to the data
during the assimilation procedure. This is remarkable given 1)
the high uncertainty of the aquifer depletion and 2) the low
magnitudes of the ground-surface displacements on top of the
aquifer compared to those on top of the reservoir.

Interestingly, for the benchmark location on top of the
aquifer, the relative bandwidths of the posterior (with the
ES-MDA after four steps of assimilation) horizontal
ground-surface displacements (defined as the ratio between
the standard deviation and the mean of the ensemble) are
smaller than those of the posterior vertical displacements. As
an example, for the bilinear compaction model, the relative
bandwidth of the posterior horizontal ground-surface
displacements on top of the aquifer is 0.57 whereas for the
posterior vertical ground-surface displacements it is 1.01. This
points out the importance of the use of the horizontal ground

FIGURE 7 | Prior and posterior (following the ES-MDA algorithm and for the training period [1986–2007]) ensembles of model parameters.

FIGURE 8 | AE and AES performance metrics (over the training period [1986–2007]) for the model parameters of the bilinear ensembles.
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displacements to constrain the shape of the subsidence bowl on
the sides of the reservoir and ultimately to constrain the aquifer
activity.

For each compaction model, both metrics AE and AES, are
better for the ES-MDA than for the ES-SS (Figure 13). For the
bilinear, time decay, and rate type compaction model, both

FIGURE 9 | Prior and posterior ground-surface displacements for the linear ensembles. Thin blue curves: prior ensembles. Thin red curves: posterior ensembles.
Blue thick curves: mean of the prior ensembles. Red thick curves: mean of the posterior ensembles. Dark thick curves: data. Top row: with the ES-SS algorithm. Bottom
row: with the ES-MDA algorithm andwith the posterior obtained after four steps of data assimilation. On top of each graph the benchmark location (see Figure 4) and the
component of the ground-surface displacement is indicated. The vertical dashed gray line corresponds to the end of the training period.

FIGURE 10 | Prior and posterior ground-surface displacements for the bilinear ensembles. Thin blue curves: prior ensembles. Thin red curves: posterior
ensembles. Blue thick curves: mean of the prior ensembles. Red thick curves: mean of the posterior ensembles. Dark thick curves: data. Top row: with the ES-SS
algorithm. Bottom row: with the ES-MDA algorithm and with the posterior obtained after four steps of data assimilation. On top of each graph the benchmark location
(see Figure 4) and the component of the ground-surface displacement is indicated. The vertical dashed gray line corresponds to the end of the training period.
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metrics have reduced considerably after the fourth step of
assimilation with the ES-MDA. This demonstrates the good
fit of the mean posterior ensembles and the reduction of the
initial large prior bandwidths of ground-surface

displacements after application of the ES-MDA. Even if the
time decay compaction model is slightly under-performing
(indicated by a lower AE), the performance differences as
evaluated by the AE and AES, between the posterior

FIGURE 11 | Prior and posterior ground-surface displacements for the time decay ensembles. Thin blue curves: prior ensembles. Thin red curves: posterior
ensembles. Blue thick curves: mean of the prior ensembles. Red thick curves: mean of the posterior ensembles. Dark thick curves: data. Top row: with the ES-SS
algorithm. Bottom row: with the ES-MDA algorithm and with the posterior obtained after four steps of data assimilation. On top of each graph the benchmark location
(see Figure 4) and the component of the ground-surface displacement is indicated. The vertical dashed gray line corresponds to the end of the training period.

FIGURE 12 | Prior and posterior ground-surface displacements for the rate type ensembles. Thin blue curves: prior ensembles. Thin red curves: posterior
ensembles. Blue thick curves: mean of the prior ensembles. Red thick curves: mean of the posterior ensembles. Dark thick curves: data. Top row: with the ES-SS
algorithm. Bottom row: with the ES-MDA algorithm and with the posterior obtained after four steps of data assimilation. On top of each graph the benchmark location
(see Figure 4) and the component of the ground-surface displacement is indicated. The vertical dashed gray line corresponds to the end of the training period.
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ensembles obtained with the ES-MDA for the bilinear, time
decay, and rate type compaction are not striking. However,
the χ2c

Ndd
and χ2

Ndd
metrics indicate that the posterior ensembles

of the bilinear compaction model is the one best
explaining–that is with the values closest to unity–the
synthetic data (Figure 13).

FIGURE 13 | AE, AES, χ2c
Ndd

and χ2

Ndd
performance metrics for the ensembles of double differences. The horizontal dark dashed lines indicate an optimum posterior

ensemble ( χ
2
c

Ndd
� 1 and χ2

Ndd
� 1).

Frontiers in Earth Science | www.frontiersin.org March 2022 | Volume 10 | Article 71327315

Candela et al. Disentanglement of Rock-Compaction Processes

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


The suboptimal update obtained with the ES-SS for the
ground-surface displacements of the rate-type compaction
model (Figure 12) is confirmed by the lower AE and AES
than for the bilinear and time decay ensembles (Figure 13).
For the rate-type compaction model, the performance
differences between the ES-SS and ES-MDA are larger than
for the other compaction models. It seems that for a complex
compaction model (with a higher number of model parameters)
as the rate type, the need for a less aggressive assimilation
procedure with multiple steps is more pronounced. The
suboptimal alignments of the posterior ground-surface
displacements of the linear compaction model (Figure 9) are
confirmed by their poor values for AE, χ2c

Ndd
and χ2

Ndd
(i.e. χ2c

Ndd
≫ 1

and χ2

Ndd
≫ 1) compared to those derived for the other compaction

models (Figure 13).
An important question concerns the reliability of our

subsidence forecasts. Figure 13 presents the quality metrics
both for the training period [1986–2007] and for the full
period [1986–2015] including the forecasting period
[2008–2015], for which no measurements were used in the
assimilation. We see that the metric for the full period is not
significantly different from the metric for the training period.
Especially the χ2c

Ndd
and χ2

Ndd
for the bilinear model do not increase

with the extension of the evaluation period. This indicates that the
forecast of the bilinear model is trustworthy.

DISCUSSION

The main objective of our exercise was to test if our integrated
approach could effectively identify the bilinear compaction model as
the best compaction model to explain the synthetic data (themselves
generated with a bilinear compaction model). Our analysis has
demonstrated that with the combination of the AE and AES
metrics it was possible to identify the bilinear and rate-type as
best performing compaction models. The additional χ2c

Ndd
and χ2

Ndd

metrics allowed to clearly identify the bilinear compaction model as
better performing than the rate-typemodel. Our integrated approach
is thus indeed capable to identify the main driving compaction
model. This is especially remarkable as our exercise incorporated the
full spectrum of uncertainties from the reservoir flow to the
modelling of subsidence. To our best knowledge, there are no
previous studies that have honored this full spectrum. Even if
large uncertainties in the ensembles of pressure-depletion
scenarios and influence functions were effectively “blurring” the
spatio-temporal signature of the reservoir compaction, the integrated
approach successfully recognized the bilinear compaction as best
model to explain the synthetic data.

It is important to stress here that the pressure-depletion
realizations were not subjected to the assimilation procedure.
Even if the uncertainties in the pressure depletion were kept
constant throughout the assimilation procedure, the model
parameters of the bilinear compaction model were well
constrained and aligned with the true-synthetic data. Both
footprints in the subsidence signal, of 1) the pressure
depletion and 2) the bilinear compaction, were thus effectively
disentangled by our integrated approach.

In addition, our analysis has demonstrated that the update
of the model parameters of the influence function is
independent of the type of compaction model. Indeed, for
each type of compaction model, the posterior ensembles of the
Young’s modulus ratio (between the two subsurface layers)
similarly converged towards the data. This last result indicates
that again our integrated approach was capable to disentangle
the unique footprint of the elastic layering on the subsidence
signal from the footprints of the pressure depletion and
compaction.

The main limitation of the current workflow is that the
ensemble of reservoir flow simulations is unchanged upon
assimilation. Ideally one should update the controlling
reservoir parameters and make a new reservoir simulation
for every ensemble member. Introducing potential future
implementations, it is important to utilize the versatility of
applications offered by ensemble-smoother algorithms. Our
integrated approach was developed for the production of a
natural gas field, but it can easily be adapted for other settings
of exploitation of subsurface resources causing ground-surface
movement. Typical examples are the injection of CO2 (Vasco
et al., 2010), underground gas storage (Teatini et al., 2011;
Castelleto et al., 2013), steam injection (Khakim et al., 2012),
geothermal systems (Mossop & Segall 1999; Allis et al., 2009;
Vasco et al., 2013), groundwater extraction (Galloway and
Burbey 2011; Zhu et al., 2015), phreatic groundwater level
management (Fokker et al., 2019) and salt mining (Fokker and
Visser 2014). We have recently deployed the ES-SS to identify
the driving mechanisms of induced seismicity at the
Groningen gas field on a real dataset (Candela et al., 2021).
This specific scenario demonstrates that the ensemble-
smoother algorithms can be also applied to a discrete
dataset, such as an earthquake catalog. The flexibility of the
implementation of the ensemble-smoother also offers the
possibility to assimilate multiple types of data. As an
example, jointly assimilating subsidence geodetic
observations and seismicity data, our understanding of the
driving mechanisms of both induced subsidence and seismicity
might be improved. An active research area in the Netherlands
is the disentangling of the relative contribution between deeply
seated sources of subsidence (as natural gas extraction) and
shallow seated sources of subsidence (Fokker et al., 2019).
These sources often interfere. Incorporating in ESIP the
additional forward models for shallow seated sources of
subsidence, such as soil compaction and oxidation caused
by lowering of the phreatic level, might help to achieve this
disentangling (Candela et al., 2020).

CONCLUSION

We have presented an integrated approach for subsidence
evaluation, coined ESIP (Ensemble-Based Subsidence
Interpretation and Prediction). The key elements of ESIP are:

- it combines fast physics-based forward models with
ensemble-smoother algorithms for the data assimilation;

Frontiers in Earth Science | www.frontiersin.org March 2022 | Volume 10 | Article 71327316

Candela et al. Disentanglement of Rock-Compaction Processes

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


- it covers all the known a-priori complexities in terms of
processes and subsurface parameters, and their
uncertainties;

- the error covariance matrix of the subsidence data enables to
properly weight the contribution of each measuring point
during the conditioning;

The predictive power of ESIP has been demonstrated for a
synthetic gas reservoir-aquifer system incorporating all the
characteristics of real cases in the north of Netherlands. The
key conclusions of the presented exercise are:

- the model parameter uncertainties of each fast forward
model are reduced with the assimilation of subsidence data;

- our hindcast and forecast are improved with the assimilation
of subsidence data;

- the bilinear compaction process gives the best hindcast and
forecast with well-defined error bounds in agreement with
the data;

- the bilinear compaction process is thus successfully
identified as the driving compaction process at depth.

The identification of the driving compaction process is especially
important for the subsidence forecasts. In the case of a reservoir
production shutdown, the subsidence forecast obtained with each
reservoir compaction model would be drastically different. As an
example, for an identical pressure diffusion scenario after shutdown,
the bilinear compaction model would result in a more severe
subsidence than for the linear compaction model.
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