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A B S T R A C T   

Clean energy technologies are important for meeting long-term climate and competitiveness goals. But clean 
energy industries are part of global value chains (GVCs), where past manufacturing shifts from developed to 
emerging economies have raised questions on a decline in long-term innovation. Our research centers on how 
geographic shifts in the GVC shape long-term innovation, i.e., innovation in a time frame within which “mission- 
oriented”, societal, or firm strategic objectives need to be met rather than tactical, near-term market competi-
tiveness alone. Focusing on wind energy, we introduce a temporal measure to distinguish between long-term and 
short-term innovation, applying natural language processing methods on patent text data. We consider supply- 
side value chain factors (i.e., manufacturing supplier relationships with original equipment manufacturers 
(OEMs)) and demand-side factors (i.e., policy-induced clean energy market growth), shaping the patenting ac-
tivities of 358 global specialized wind suppliers (2006–2016). Our findings suggest that the wind industry did not 
suppress long-term innovation during manufacturing shifts, in this case to China. After 2012 when China 
developed a large wind market, long-term innovation increased by 80.7% in European suppliers working with 
non-European OEMs (including Chinese) and by 67.2% in Chinese suppliers working with non-Chinese OEMs. 
Our results highlight the importance of coupling international manufacturing relationships with sizeable local 
demand for inducing long-term innovation. Our results advance research in innovation, GVCs, and green in-
dustrial policy with implications for several industries that can contribute to climate mitigation.   

1. Introduction 

Accelerating innovation in clean energy technologies is urgently 
needed for addressing climate change mitigation goals (i.e., long-term 
net-zero targets and emission reduction) and economic and develop-
ment goals (i.e., competitiveness and employment in rapidly expanding 
green industries). Estimates suggest that currently mature technologies 
are sufficient to meet only a quarter of the long-term emission reduction 
targets through 2070 (IEA, 2020). This means that the direction of 
innovation must focus not only on generating breakthroughs or radical 
changes (Breakthrough Energy, 2021), but also on ensuring that 
different technologies can deliver on long-term societal goals (e.g., at 

least 10–20 years in the future) to avoid locking in technologies that are 
already mature. 

Delivering the innovation needed to meet climate-related societal 
goals requires introducing a temporal dimension to the analysis of inno-
vation and its relationship with changing markets and industries—i.e., 
with the provision of short-term innovation related to current needs and 
the provision of long-term innovation linked to anticipated future needs. 
The temporal dimension complements extant approaches on measuring 
innovation through novelty (e.g., breakthroughs, radicalness, explora-
tion) (e.g., Arts et al., 2021; Funk and Owen-Smith, 2017; Kelly et al., 
2018; Verhoeven et al., 2016). Existing approaches do not explicitly 
consider innovation relative to societal challenges, industry needs, or 
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longer-term strategic competitiveness goals for innovating firms. The 
novel temporal dimension can be crucial for scholars and policymakers 
grappling with the challenge of enabling long-term innovation for 
climate change, economic, and development goals, as exemplified by 
efforts of the European Commission to translate the concept of ‘mis-
sion-oriented innovation’ in various areas into their institutions or in 
technology-specific plans (e.g., for lithium-ion batteries) in the United 
States (U.S.) (Anadón, 2012; European Commission, 2021; Foray et al., 
2012; Mazzucato, 2018; U.S. Department of Energy, 2021). 

While enabling long-term clean energy innovation outcomes is 
important for meeting climate-related societal goals, firms must also 
quickly react to growing global demand and expanding international 
competition and networks, especially with many new entrants from 
China and other emerging economies. Such globalization of supply 
(changes in location of manufacturing) and demand (changes in location 
of deployment) can shape innovation outcomes in different directions 
(Binz and Truffer, 2017; Meckling and Hughes, 2018; Nemet, 2009)— 
and in some cases, significantly limit some types of innovation efforts. 
The global value chains (GVCs) for manufacturing clean energy tech-
nologies have shifted from Europe, the U.S., and Japan to emerging 
economies since 2010, most notably to China (Sandor et al., 2020; 
Surana et al., 2020; Zhang and Gallagher, 2016). Experience from other 
modern industries such as optoelectronics, automobiles, and rare-earth 
element technology suggests that shifts in manufacturing from devel-
oped to emerging economies could suppress long-term innovation by 
moving innovation away from technologies that are further from 
commercialization (Fifarek et al., 2008; Fuchs, 2014; Fuchs et al., 2011; 
Fuchs and Kirchain, 2010). However, the location of demand is also 
important, as the proximity between manufacturing and deployment 
could create learning effects that spur innovation (Fuchs, 2014; Nemet, 
2009; Von Hippel, 1994). For clean energy, manufacturing activities in 
China have been associated with innovation that has short-term benefits 
for scale-up and cost reductions, often linked to the increase in domestic 
demand (Helveston and Nahm, 2019; Lam et al., 2017). However, these 
manufacturing shifts to China may have suppressed advanced or next 
generation alternative designs with long-term benefits (Sivaram et al., 
2018), as has been suggested for other areas like optoelectronics (Fuchs 
and Kirchain, 2010). This raises the question whether shifts in 
manufacturing from developed countries to emerging economies such as 
China combined with strong local demands in emerging economies 
promote or suppress long-term clean energy innovation necessary for 
meeting societal goals. 

The relationship between the location of supply, demand, and the 
temporal dimension of innovation is not only important when it comes 
to the end products (e.g., wind turbines or solar panels) and lead firms (i. 
e., Original Equipment Manufacturers, or OEMs), but also for the com-
ponents and suppliers in the GVC of these final products (Gao and Rai, 
2019; Meckling and Hughes, 2017; Sandor et al., 2020; Surana et al., 
2020; van der Loos et al., 2022; Zhang and Gallagher, 2016). Suppliers’ 
and OEMs’ locations depend on local public policies, skills of the sup-
pliers, the complexity of the components they manufacture, or market 
size, while firm strategy (e.g., the strategic priorities of suppliers or 
OEMs and their relationships in the value chain) and the location of 
firms can shape innovation (Nemet, 2009; Surana et al., 2020; Von 
Hippel, 1994). OEMs and their end products have been extensively 
studied in extant literature on energy innovation (Awate et al., 2015; 
Garud and Karnoe, 2003), but research trying to understand the activ-
ities of hundreds of specialized suppliers remains limited to a few studies 
(e.g., Zhang and Gallagher, 2016; Haakonsson and Slepniov, 2018; Hipp 
and Binz, 2020; Surana et al., 2020). Understanding the activities of 
suppliers is particularly important in general (see Ambos et al., 2021 for 
a review) and specifically in clean energy technologies such as wind 
turbines that are complex products and systems where innovation takes 
place at the component-level, involving hundreds of suppliers (Huen-
teler et al., 2016a; IEA Wind 2013; IEA Wind 2001). 

This paper analyzes if supplier-OEM relationships in the GVC of clean 

energy manufacturing (supply) and the proximity to deployment (de-
mand) over time promote or suppress long-term innovation activities of 
suppliers. In particular, we introduce the temporal dimension of inno-
vation, where we define short-term innovation as likely to be in the 
market within 0–10 years, and long-term innovation as technologies 
that have a possible impact in the market at least 10–20 years into the 
future. Specifically, we focus on wind energy suppliers and study how 
different types of domestic or international manufacturing relationships 
(i.e., between suppliers and OEMs) in the GVC and demand-pull in major 
wind energy markets (shifting over time from Europe to China) shape 
long-term innovation. To do so, we first map the GVC of wind energy, 
examining the supplier-OEM manufacturing relationships between 2006 
and 2016. For each supplier and OEM, we analyze the filed patents with 
a novel measure for the temporal dimension of innovation, where we 
map the innovation needs and timelines identified by global research- 
industry consortia (IEA Wind 2013; IEA Wind 2001) to the content of 
patent descriptions identified through natural language processing 
methods (i.e., term frequency analysis and topic modeling). Finally, we 
quantify the link between supplier-OEM manufacturing relationships, 
their proximity to deployment of wind energy, and their impact on 
long-term innovation efforts. We focus on the home-country of the 
supplier and OEM to assess whether the relationship is local (e.g., Chi-
nese supplier with Chinese OEM) or international (e.g., Chinese supplier 
with OEM from Europe). To relate this to deployment, we distinguish 
two time windows in our statistical analysis: (a) 2006 to 2012, when the 
European wind energy market showed high increases in new installed 
wind energy capacity; and (b) 2012 to 2016, when the Chinese wind 
energy market clearly dominated annual installations (IRENA, 2021). 

Our analysis suggests that European wind energy suppliers did not 
reduce their long-term innovation activities because of manufacturing 
shifts to China, in part because of the importance of the large local 
market. From 2006–2012, when the European wind energy market 
dominated global installations, long-term innovation activities 
increased for European suppliers (by 87.4% for relationships with Eu-
ropean OEMs). From 2012–2016, when China had developed a policy- 
driven, large, and attractive wind market, long-term innovation 
increased for international relationships for both European suppliers (by 
80.7% with non-European OEMs, including Chinese) and for Chinese 
suppliers (by 67.2%, with non-Chinese OEMs). Overall, our findings 
suggest that international relationships combined with local demand 
matter more for long-term innovation than the country of origin of the 
supplier, i.e., whether their home country is an emerging or a developed 
economy. 

These findings have several implications for research and public 
policy. First, we introduce a novel, temporal dimension to the direction 
of innovation that complements established perspectives on measuring 
novelty or radicalness (e.g., Arts et al., 2021; Kelly et al., 2018; Verho-
even et al., 2016). The temporal dimension can be particularly impor-
tant for assessing and advancing clean energy innovation in the context 
of mission-oriented policies. Second, our analysis is one of the few that 
centers on suppliers rather than OEMs (Gao and Rai, 2019; Haakonsson 
and Slepniov, 2018; Hipp and Binz, 2020; Surana et al., 2020; Zhang and 
Gallagher, 2016). Assessing the drivers of innovation in the full GVC is 
essential for understanding the contribution of all types of firms to 
long-term innovation. Third, our assessment of the drivers of long-term 
innovation in relation to the location of suppliers in the GVC, their re-
lationships (i.e., their local or international relationships with OEMs), 
and the location of demand expands prior notions on the direction of 
innovation in developed vs. emerging economies (especially China) 
(Fuchs et al., 2011; Fuchs and Kirchain, 2010; Helveston and Nahm, 
2019; Lam et al., 2017; Sivaram et al., 2018). Instead of reductions in 
longer-term innovation activities due to manufacturing shifts in 
technology-intensive industries, our findings provide novel evidence for 
previous claims on how increases in the globalization of value chains in 
emerging economies may be able to drive long-term innovation when 
combined with strong local markets (Fuchs, 2014). Finally, to meet 
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climate, economic, and development goals for green growth while 
ensuring long-term innovation, we suggest that policymakers continue 
to strengthen collaborations between research and the large number of 
industry stakeholders that must cut emissions, enable large markets 
through stable policy-induced incentives, and foster international 
supplier-OEM collaborations with China and other emerging economies 
with large or growing markets. 

The rest of the paper is structured as follows. Section 2 provides an 
overview of the literature on the direction of innovation and its drivers 
in the global value chain. Section 3 provides the case context. Section 4 
presents our data and methodological approach. Section 5 presents re-
sults. Section 6 discusses our findings and the contributions to research. 
Section 7 concludes with implications for public policy. 

2. Theoretical background 

We first review the research on measuring energy innovation and the 
need for including a temporal dimension to the direction of innovation 
(2.1) and follow with the (largely qualitative) literature on how sup-
pliers in the GVC of clean energy technologies can shape the direction of 
innovation (2.2). 

2.1. The temporal dimension of innovation 

The direction of innovation in clean energy technologies can refer to 
various types of innovation: e.g., carbon-intensive vs. low-carbon tech-
nologies (Anadón, 2012; Mazzucato and Semieniuk, 2018; Schmidt 
et al., 2012) or incremental vs. radical innovation (also related to 
breakthrough or exploratory innovation) (Hoppmann et al., 2013; Li 
et al., 2021; Nemet, 2009). With consensus on the need for low-carbon 
innovation, energy innovation scholars have often pointed to the need 
for novelty: i.e., promoting radical innovations for meeting net-zero 
climate goals, rather than only focusing on incremental innovation 
that delivers small improvements in the performance of existing clean 
energy technologies (Nemet, 2009; Sivaram et al., 2018; Wilson, 2018). 
However, these novelty-oriented aspects have overlooked the impor-
tance of the temporal perspective—i.e., whether the focus of techno-
logical developments over time is aligned with what is needed for 
simultaneously meeting different societal and competitiveness goals for 
net-zero emissions and green growth. 

Research to date from the general innovation literature, applied to 
energy innovation, offers valuable insights for measuring and analyzing 
novelty and radical innovation.1 For example, scholars have proxied 
non-incremental innovations in wind technology by using highly cited 
patents (Nemet, 2009), developed novelty measures for solar technol-
ogies based on the similarities of patent codes (Li et al., 2021 as pro-
posed by Verhoeven et al., 2016), and studied breakthrough solar 
innovations considering novelty and relevance based on topics gener-
ated from natural language processing (Sun et al., 2021 based on Dahlin 
and Behrens, 2005). However, these novelty-oriented measures of 
innovation have two limitations in their ability to provide insights 
regarding the expected time-horizon for specific technologies to reach 

commercialization. First, important characteristics may get obscured in 
large patent datasets. For example, analyzing the average characteristics 
of a full set of patents (i.e., all patents from universities, research in-
stitutes, industry, or individuals) overlooks features from the subset of 
patents of industry stakeholders well-positioned to quickly commer-
cialize technology improvements. Similarly, the novelty indicators that 
are sector-agnostic in identifying general radical innovations (e.g., 
Verhoeven et al., 2016) may not be targeted enough for developing 
meaningful policy implications for specific industries, green growth, and 
competitiveness considering the heterogeneity in energy technologies2 

(Huenteler et al., 2016b; IEA, 2020; Malhotra and Schmidt, 2020; Meng 
et al., 2021; Wilson et al., 2020). Second, patent citations as indicators of 
novelty, as often used in the innovation literature, have several draw-
backs. Patent citations may vary based on different citation practices in 
different patent offices or the individual patent examiner, they could 
depend on the strategic decisions of firms in what they cite as prior art, 
and most important, they can only be analyzed several years ex-post 
(Jaffe and Rassenfosse, 2017). 

The temporal approach we develop to understand the direction of 
innovation builds on—and expands—methods in innovation studies and 
other novelty literature. It analyzes the content of patents and links them 
closely to both societal needs (e.g., climate change goals) and industry 
motivations (e.g., specific technology targets). It is distinct from existing 
novelty measures in two ways. First, technology development for long- 
term climate goals may not always link to radical innovation. Radical 
innovation, or the new combination of existing scientific principles, is 
often measured as the first combination of patent codes (Verhoeven 
et al., 2016). But these approaches would not classify technologies such 
as offshore wind as a radical innovation in the early 2000s. Even though 
onshore wind was still not cost-competitive at that time, offshore wind 
was hardly in the horizon and thus, developing capabilities in offshore 
wind technologies was important for meeting longer-term climate and 
competitiveness goals.3 Second, for suppliers and OEMs, research efforts 
would be designed to yield profits or competitive advantage based on 
temporal needs and requirements, and not on the potentially trans-
formational impact on markets. For long-term innovation, the difference 
to novelty relates to how much suppliers ‘think ahead’ in terms of 
meeting societal goals through their innovative activities, and the need 
to balance considering how long-term innovation aligns (or not) with 
the anticipated future needs of their OEM partners. Short-term innova-
tion is connected to the OEM’s current market needs. In relation to 
novelty, it may be linked to both incremental innovation with regard to 
improvements in existing products, or to radical innovation when 
working on a component for a specific OEM that can potentially have a 
transformational impact on markets (Hoppmann et al., 2013; Nemet, 
2009; Tushman and Anderson, 1986). 

Evaluating the direction of clean energy innovation centering on a 
temporal dimension is therefore crucial for developing policy and 
management approaches to deliver the time-dependent, technology- 
specific innovation needs to meet climate, economic, and development 
goals and to avoid lock-ins and limiting future technology options (e.g., 
IEA, 2020; IEA Wind, 2013). 

1 In the broader innovation literature, the novelty dimension of innovation 
has been assessed based on patent data using different indicators. Prominent 
measurements for radicalness or novelty are based on (1) the number of for-
ward citations (Ahuja and Lampert, 2001; Phene et al., 2006; Singh and 
Fleming, 2010); (2) the centrality of patents in the citation network (Corre-
doira and Banerjee, 2015; Verspagen, 2007); (3) the introduction of new 
combination of patent codes (Verhoeven et al., 2016); (4) new combination of 
keywords (Arts et al., 2021) or topics (Kaplan and Vakili, 2015) based on 
natural language processing; and (5), more advanced measurements combine 
novelty and impact, investigating how similar patents are compared to previous 
and future patents based on co-citation or text based similarity measures 
(Dahlin and Behrens, 2005; Kelly et al., 2018). 

2 For example, innovation in some technologies may be in processes (e.g. in 
solar photovoltaics) while others may be in components or products (e.g. in 
wind) (Huenteler et al., 2016b). And even within a specific low carbon tech-
nology (e.g. solar) the focus of innovation may be in incumbent technologies (e. 
g. silicon solar cells) or in new technologies (e.g. perovskite solar cells).  

3 For example, the codes indicating offshore wind, i.e., F03D (wind motors) 
and B63B (ships or other waterborne vessels; related equipment), appear 
together in a patent with priority year as early as 1973 (JPS51135399U), and in 
our filtered database, already before 2006 (see, for example, DE10055973A1, 
EP1101935A2, JP2004019470A). Relying on the first combination of patent 
codes for novelty would not classify all of these as novel, even though they 
would be a long-term innovation as offshore wind was not commercially viable 
in the early 2000s. 
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2.2. Suppliers and innovation in global value chains 

In addition to measuring the temporal dimension of innovation, it is 
important to understand what drives long-term innovation, especially in 
the context of GVCs (Ambos et al., 2021; Pietrobelli and Rabellotti, 
2011; Van Assche, 2017). GVCs represent the multifaceted patterns of 
internationalization and fragmented innovation and manufacturing in 
modern technologies (Gereffi et al., 2005; Pietrobelli and Rabellotti, 
2011; Taglioni and Winkler, 2016; The World Bank, 2017; Zhang and 
Gallagher, 2016). These GVCs comprise a few leading firms, or OEMs, 
that integrate and deliver end products and the hundreds of suppliers 
that deliver components to the OEMs. While either OEMs or only their 
suppliers have been extensively studied in the broader GVC literature, a 
recent review by Ambos et al. (2021) emphasizes the need to center on 
the suppliers and their interactions with OEMs (rather than the OEMs 
only) in shaping the direction of innovation in the GVCs. 

We expand this broader OEM-centric perspective by evaluating the 
drivers of long-term innovation at the level of suppliers based on three 
related dimensions discussed in the GVC and manufacturing literature. 
First, the relationship between the OEMs and their suppliers, known as 
the GVC governance, can drive innovation (e.g., Gereffi et al., 2005; 
Pietrobelli and Rabellotti, 2011; Buciuni and Pisano, 2021). Suppliers 
respond to the different strategies or needs of the OEMs they work 
with—for example, whether the OEMs ‘make’ (in-house) or ‘buy’ (arm’s 
length), the complexity of components involved, the extent of compe-
tition with other suppliers, the size of markets, proximity to consumers 
that provide co-location cost benefits, and other cost drivers (Baldwin 
and Venables, 2013; Cattaneoet al., 2013; Novak and Eppinger, 2001; 
Surana et al., 2020; Taglioni and Winkler, 2016). 

Second, suppliers’ innovation activities can depend on how they 
source knowledge, for example by connecting to a global network of 
OEMs or of other suppliers (Ambos et al., 2021). Suppliers working with 
multiple OEMs from different countries may have more capacity to 
absorb external knowledge through knowledge transfer and learning 
that spur long-term innovation —and have pressures to meet interna-
tional standards—when compared with suppliers only supplying to one 
OEM or only domestic OEMs (Pietrobelli and Rabellotti, 2011). Sup-
pliers with stronger technological capabilities, especially those from 
industrialized countries such as the U.S. or Europe, are perhaps more 
likely to engage in long-term innovation (Haakonsson and Slepniov, 
2018; Surana et al., 2020). Suppliers might also benefit differently in 
terms of gaining knowledge from working with different OEMs. OEMs 
from industrialized countries tend to have stronger technology capa-
bilities and locate in more central positions in the global knowledge 

network of a technology than their peers from emerging countries 
(Awate et al., 2012; Zhou et al., 2016). In addition, their OEM interac-
tion may otherwise shape their Research and development (R&D) pri-
orities towards long-term or short-term innovation. Suppliers from 
emerging economies like China may therefore be influenced by their 
interactions in the course of supplying components to OEMs from 
industrialized countries. The learning process to meet technology stan-
dards or policy goals may increase their long-term innovation as they are 
exposed to new technological developments (Ambos and Ambos, 2011; 
Pietrobelli and Rabellotti, 2011; Zhang and Gallagher, 2016). 

Third, the proximity of manufacturing (supply) and deployment 
(demand) can facilitate long-term innovations given the geographical 
dispersion of GVCs (Fuchs and Kirchain, 2010; Pisano and Shih, 2012, 
2009; Yang et al., 2016). For example, prior research on the optoelec-
tronics industry has suggested that manufacturing shifts from the U.S. to 
the ‘East’ had unfavorable consequences on more ‘advanced’ techno-
logical innovation that could have reduced costs in the lon-
ger-term—both in the home country (i.e., the U.S.) and for the 
technology in general (Fuchs and Kirchain, 2010). This lowering of a 
firm’s capability to innovate could be explained by reduced communi-
cations between development and production when production activ-
ities are moved to a different country and reduced (Tyre and von Hippel, 
1997; Von Hippel, 1994), constrained and small global markets, as well 
as the low strength or enforcement of intellectual property rights 
(Fuchs, 2014). As previously mentioned, differences across industrial 
and cost structures, shippability, as well as policy and manufacturing 
contexts may affect how manufacturing shifts influence the focus of 
research. 

While the supplier-centric GVC lens we take in this paper offers a 
comprehensive approach to analyze the drivers of innovation in clean 
energy technologies, it would be insufficient without also accounting for 
the impact of public policies as well-established drivers of energy 
innovation indicators, especially market-pull deployment policies (see 
systematic reviews in Grubb et al., 2021; Peñasco et al., 2021; Popp, 
2019). Research has highlighted the importance of demand-pull through 
a stable domestic market, enabled by public policies, for advancing 
innovation and technological improvements in clean energy industries 
through economies of scale and learning by doing (Dechezleprêtre and 
Glachant, 2014; Lewis, 2011; Lewis and Wiser, 2007; Quitzow et al., 
2014; Sagar and van der Zwaan, 2006). Although demand-pull alone 
may not lead to non-incremental innovations in clean energy (Nemet 
2009), it could make a difference and accelerate rather than reduce 
innovation in the case of manufacturing shifts to emerging economies. 
This is because the proximity between firms and growing (instead of 
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small, constrained) markets might facilitate the communications and 
interactions needed to help advance technical problem-solving (Fuchs, 
2014; Von Hippel, 1994). This could be particularly relevant in the 
context of clean energy technologies, especially complex products and 
systems such as wind energy, where technologies are not as easily 
shippable and need to be adapted to local physical conditions or regu-
lations (Schmidt and Huenteler, 2016). Thus, the proximity to lead 
markets might also facilitate the long-term innovations of suppliers in 
the clean energy industry. 

In sum, we expect that the origin and technological capabilities of 
suppliers, relations with international OEMs, and the proximity to lead 
markets will shape the direction of innovation of suppliers, especially 
the temporal dimension, in the GVC of the clean energy industry. 

3. Research setting: the global wind energy industry 

The wind energy industry is an important, relevant, and suitable 
empirical setting for analyzing the temporal dimension of innovation in 
the context of supply-side developments along the GVC—including both 
suppliers and OEMs—and its proximity to demand, for the following 
three reasons. 

First, wind energy represents one of the key renewable technologies 
for meeting climate goals and is one of the most mature clean energy 
technologies today. Despite its maturity, the temporal dimension of 
innovation matters for wind energy. R&D activities have led to larger 
turbines that have enabled cost-effective deployment of onshore wind 
energy (e.g., Enevoldsen and Xydis, 2019). However, innovation is still 
needed to ensure continually larger turbines, low materials use, efficient 
manufacturing, grid stability, or operation in new settings (e.g., build-
ings, low wind speeds) (IEA, 2020). In addition, offshore wind energy is 
still not deployed at scale outside early markets, such as the UK, and 
innovation is needed to enhance installation processes, foundation de-
signs, operation under different conditions (e.g., hurricanes), and 
transmission connections with demand regions (IEA, 2020). 

Second, the wind energy industry has experienced shifts in location in 
terms of demand and supply in the last decades, shaped by public policy, 
with an increasingly prominent role of China. Deployment (demand) in 
the rapidly expanding wind energy industry shifted from Europe and the 
U.S. to China between 2006 and 2016 (our study period, see Fig. 1).4 

This shift started in 2010 but clearly stabilized and dominated after 
2012, where the Chinese wind energy market became the fastest 
growing globally (see Fig. 1a and 1b),5 enabled by systemic policy in-
centives for deployment as well as manufacturing and innovation 
(Surana and Anadón, 2015; Zhu et al., 2022). Trends in the supply of 
wind energy technologies paralleled trends in demand. OEMs from 
countries such as Denmark, Germany, Netherlands, and the U.S.—with 
extensive R&D activities—initially dominated with around 97% of the 
global market share in 2000 (BTM Consult, 2001). The growing demand 
in new markets (such as China and India) led to the rise of new OEMs in 
these emerging economies. By 2012, domestic OEMs (and a few joint 
ventures) served 80% of the Chinese market and over 50% of the Indian 
market, while the rest was served by foreign subsidiaries (Surana and 
Anadón, 2015). The rise of domestic OEMs in large emerging markets 
meant that the share of European and U.S. OEMs in total global turbine 
sales declined over time; by 2016 four of the largest Chinese OEMs held 
25% of the global market share (Ren21, 2017). And with the OEM shifts 

to China, suppliers also followed as they emerged or evolved in working 
with different international OEMs (Surana et al., 2020). Thus, wind is an 
interesting case from the perspective of understanding the relationships 
between changes in manufacturing location and the temporal dimension 
of innovation. 

Third, suppliers are central to innovation in wind energy. Wind tur-
bines are complex products with high-level system integration and 
structural interactions between different components, and innovation 
takes place at the component rather than the process-level (Huenteler 
et al., 2016a; Malhotra and Schmidt, 2020; Schmidt and Huenteler, 
2016). Prior research on wind energy innovation has highlighted the 
importance of public policies, locational factors and collaboration, 
focusing on countries or OEMs (Awate et al., 2015; Garud and Karnoe, 
2003; Gosens and Lu, 2014; Haakonsson and Kirkegaard, 2016; Lema 
and Lema, 2012; Lewis, 2011; Nemet, 2009; Qiu and Anadón, 2012; 
Surana and Anadón, 2015). But despite the crucial roles of suppliers in 
developing these components, the extent to which their research focuses 
on different types of innovation remains a major gap. 

4. Methodology 

Our approach for understanding the drivers of long-term innovation 
in the global wind industry comprises three steps: setting up a database 
on wind GVCs (4.1), developing a novel measure for the temporal 
dimension of innovation (long-term and short-term) by analyzing the 
content of patents (4.2), and generating measures and variables to 
analyze where innovation occurs, how it changes over time, and how the 
location of suppliers in the GVC is associated with long-term innovation 
(4.3). 

4.1. Data generation on industry-specific GVCs 

We use a global database of component suppliers to major OEM for 
wind turbines, building on Surana et al. (2020). The database is based on 
industry reports from Navigant Consulting (2006, 2008, 2010, 2012, 
and 2014) (Navigant Research, 2014), complemented with additional 
data and verification from Orbis, Amadeus, or Bloomberg or the sup-
pliers’ webpages. The database includes information on 358 major 
component suppliers such as firm size, founding year, or geographical 
location. The database also includes similar information on the OEMs 
that suppliers deliver nine components to, and the relationships of the 
supplier firms with OEMs (either as in-house development of compo-
nents for the OEMs or as external or outsourced from OEM to the sup-
plier). The database assumes that each supplier-OEM relationship is 
reported for a 3-year horizon, therefore covering a study period from 
2006 to 2016. The dataset also includes a metric of technology 
complexity applied at the component level representing the differences 
across wind energy components (Surana et al., 2020). 

The location of suppliers and OEMs is based on the headquarter 
addresses in the case of larger companies with multiple facilities (mostly 
in the case of OEMs). Additionally, wind companies experienced mul-
tiple mergers and acquisitions in the timeframe of our study (e.g., 
Suzlon, REPower, and Senvion). The dataset considers them as indi-
vidually operating companies if they are not integrated and continued to 
operate under a different brand (Awate et al., 2015). 

The OEMs were firms with the greatest global market shares between 
2006 and 2016 and were based in Germany (Siemens, Nordex, Enercon, 
REPower/Senvion), Denmark (Vestas), Spain (Gamesa), the U.S. (Gen-
eral Electric), Japan (Mitsubishi), China (Goldwind, Mingyang, Dong-
fang, United Power), and India (Suzlon). The majority of suppliers 
(38.5% of 358 suppliers) are from Europe (i.e., Austria, Belgium, Czech 
Republic, Denmark, Finland, France, Germany, Ireland, Italy, 
Netherlands, Norway, Poland, Portugal, Slovakia, Spain, Sweden, 
Switzerland, UK), which we treated as one ‘region’ due to physical 
proximity between the countries and the EU trading zone. The aggregate 
of European suppliers consists primarily of German, Spanish, and Danish 

4 The annual new installed global wind capacity grew from around 15 GW in 
2006 to 51 GW in 2016 (IRENA, 2021). In 2006, over 80% of the cumulative 
global wind capacity was in Europe (65%) and the US (15%) with only a small 
amount in China (3%). However, by 2016, the Chinese wind market had grown 
so rapidly that it accounted for 32% of global wind capacity (IRENA, 2021).  

5 Most of the installations were in the technologically mature onshore wind 
technologies. In terms of emerging large-scale offshore wind, Europe (and 
specifically the UK) showed highest installations. 
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suppliers, where we found no major differences to the European 
average. Chinese suppliers also dominate our sample, accounting for 
34.6% of all suppliers. A smaller share of suppliers originated from the 
U.S. (9.5%), India (5.6%), Japan (2.0%), and other countries (9.8%, e.g., 
in Turkey, Brazil, Egypt, South Korea, Australia, Indonesia) (see Fig. 2). 

Given the centrality of the European and Chinese markets in the 
global wind energy sector and the fact that approximately two-thirds of 
the suppliers included in our sample originate from Europe and China, 
we present detailed findings for these two markets in Section 5. 

4.2. The temporal dimension of innovation 

We identified the anticipated long-term and short-term research 
priorities using expert reports published by the International Energy 
Agency’s Implementing Agreement for Co-operation in the Research, 
Development, and Deployment of Wind Energy Systems (or IEA-Wind), 
in 2001 and 2013 (IEA Wind 2013; IEA Wind 2001). IEA-Wind com-
prises key stakeholders involved in wind energy planning–including 
national government agencies (such as the U.S. Department of Energy) 
and industry associations (such as the Chinese Wind Energy Associa-
tion). IEA-Wind conducts periodic assessments of experts to determine 
research, development, and demonstration needs for wind energy, 
which are published in reports. From these reports, we identified in-
novations expected to lead to commercialization in the 
short-to-mid-term (0–10 years) and long-term (10–20 years) (see 
Table A1). 

After identifying the research and innovation needs, we analyzed the 
content of patents to identify what firms and inventors aim to achieve 
from innovation in terms of the focus of technology. To do so, we first 
obtained global patent data from all reported patent offices from the 
Derwent Innovations Index, accessed through Web of Science, using a 
rigorous keyword search covering all global wind energy patents be-
tween 1998 and 2018 (i.e., two years after the last supplier-OEM rela-
tionship in our dataset). The keyword search was based on prior work 
published by Huenteler et al., (2016a,b). Our initial dataset (of all wind 
patents) comprised over 70,000 patents of which 12,975 patents cor-
responded to a supplier or an OEM in our GVC dataset. The remaining 
patents involved individuals, universities or research institutes, and 
other firms that are not directly or actively involved in the wind GVC (e. 
g., Airbus, OEMs with small global market shares (e.g., World Wind 
India), start-ups, spin-offs, entrepreneurial firms, or those that design or 
maintain wind turbines (e.g., Aerodyn or Availon)). These were not 
included in our primary analysis (Section 5.2) but were instead 

compared with our sample in the sensitivity analyses (Section 5.3). We 
extracted patent information (e.g., title, abstract including translated 
abstracts, description, technology classification, priority country where 
the patent was first filed, and date of application) on each of the firms. 
Our search methodology limited patent results to wind energy tech-
nologies and components even for suppliers and OEMs that engage in 
multiple industries (e.g., large conglomerates like Siemens and GE). Our 
approach does (purposefully) not include all patenting activity that 
contributes to wind energy innovation but is not specific to wind energy 
(e.g., in jet engines, unless the patent is tagged with a wind-relevant 
classification code or keyword). However, we expect our approach to 
be thorough in capturing the innovation across the wind industry as our 
analysis emphasizes on the content of the patent in its specified linkages 
to wind-related R&D. Then, we used the text from the title and 
description (until the independent claim) of each patent to create a text 
corpus for natural language processing (NLP) using R (version 3.6.2). 
We assigned a greater weight to the title (through repetition) with the 
assumption that the keywords presented in the title are most represen-
tative of the focus of innovative activity. The patent information was 
prepared for text-based analysis using the text mining package tm 
(Feinerer et al., 2008) for pre-processing of the text corpus in the title 
and description text; (e.g., by removing redundant words in patent 
language such as ‘section’ or ‘description’, which are likely to be present 
in most patents, but do not add any significant meaning to the technical 
content of the invention). We also applied standard data cleaning ap-
proaches such as stemming words, removing punctuation and numbers, 
and removing stop words (commonly occurring words such as ‘a’, ‘the’, 
‘if’ etc.). 

We used multiple natural language processing methods on the text 
corpus developed above to identify the focus of innovation and manu-
ally matched it to the temporal dimension of innovation (based on the 
IEA-Wind outlook, Table A1). We linked patents to long-term innovation 
if any of the rigorous approaches mentioned below distinctly pointed 
towards long-term innovation. First, we used probabilistic topic 
modeling with Latent Dirichlet Allocation (LDA) to identify clusters of 
similar topics, using the topicmodels package for NLP (Grün and Hornik, 
2011). LDA discovers similar topics in multiple documents (in this case 
patents) and automatically classifies documents under these topics by 
assigning a probability for each document to be associated with each 
topic. The topicmodels package allowed us to differentiate the techno-
logical focus of innovation in patents by clubbing together topics with 
similar word occurrences (Chan, 2015; Kim et al., 2014). We used 45 
topics after assessing for the optimal number of topics (based on 
Deveaud et al., 2014), given the size of the corpus and the level of detail 
in the long-term innovation directions. Using the IEA-wind reports (see 
Table A1), we identified topics clearly associated with long-term 
research areas with at least 30% probability of being associated with 
long-term research needs. Second, we used the international patent 
classification (IPC) system to identify long-term innovation. We identi-
fied the various IPC codes appearing in our dataset and manually 
mapped the IPC class with general topic areas, where we classified some 
as long-term research (see Table A1 and Table A2). Third, we used 
another NLP technique, i.e., term frequency analysis, of the content of 
patents, where we counted keywords likely to be associated with 
long-term innovation needs (based on Table A1 and with more contex-
tual details available in the IEA reports). For example, we specifically 
searched for keywords associated with offshore wind to classify those as 
long-term innovation during the time period considered, based on in-
formation in the IEA reports (Table A3). In addition, we conducted a 
sensitivity check by comparing our approach with existing measures of 
novelty (e.g., Verhoeven et al., 2016, see also Sections 2.1 and 5.3). 

4.3. Measures and variables 

4.3.1. Dependent variables 
Our main dependent variable is long-term patenting activity, which we 
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Share of total suppliers in the dataset (%)
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China

Other countries 
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Fig. 2. Home country of suppliers in our dataset. n represents the number 
of firms. 
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estimate as the annual number of long-term patents per supplier and per 
year. We also report the findings for short-term patenting activity using 
the same approach to identify changes in trajectories. To generate the 
variables, we matched and analyzed the patents to individual suppliers 
(i.e., where the supplier was an assignee on the patent) per year (see 
Section 3.2). While patents are by no means a complete reflection of the 
extent of R&D or innovation activities in a company, they are a well- 
established measure for indicating the focus of innovation within a 
company that is validated in an external examination process (Griliches, 
1990; Hall et al., 2005; Howell, 2017). Moreover, they are especially 
relevant in industries with longer product life cycles (e.g., energy), 
which explains the high reliance on patents as measures of innovation in 
the wind energy context (Huenteler et al., 2016a, 2016b; Nemet, 2009). 
To account for the time-span between starting an innovation project and 
filing for a patent, we used time-lags based on the number of patents in 
the two years that followed the observation of the independent variables 
(t + 1 and t + 2). Both long-term and short-term patenting activity are 
count variables. 

4.3.2. Independent variables 
Our main independent variables are the international and local re-

lationships of the suppliers with the OEMs, based on the home country of 
both. To quantify the relationships between supplier firms and OEMs 
over different reported time periods (i.e., 2006 and 2014), we used 
network analysis techniques (Taglioni and Winkler, 2016), specifically 
degree centrality. The degree centrality for each supplier captures the 
number of relationships of the supplier (‘node’) and is the simplest 
network measure that allows more intuitive interpretation of results 
(Doblinger et al., 2019). A relationship describes inter-firm linkages 
between a supplier and an OEM based on market transactions of sup-
plying products or goods (e.g., Titan Wind (supplier) supplied to Vestas 
(OEM) in 2014–2016). A local relationship refers to suppliers supplying 
to OEMs that are headquartered in the same country as the supplier, 
whereas an OEM headquartered in a different country is treated as an 

international relationship. As we are interested in understanding if and 
how access to international knowledge shapes innovation outcomes in 
terms of long-term patenting, we used the headquarter of the OEMs and 
suppliers as explained above. As OEMs also have manufacturing and 
R&D locations in other countries than their headquarter or 
home-country, we control for this potential impact in our statistical 
models (see Section 4.3.3 and 4.4). 

4.3.3. Control variables 
We included several control variables in our statistical models at the 

level of the supplier-year. Pre-sample patents account for the diminishing 
importance of earlier knowledge. We included prior patents of the 
suppliers in terms of the pre-sample patent stock as a control variable, 
annually depreciated at a rate of 15 percent (e.g., Popp, 2004; Qiu and 
Anadón, 2012). Following Schilling and Phelps (2007), we included the 
annually depreciated value of pre-sample patents (before 2006 or before 
entering the sample) to control for unobserved heterogeneity in firm 
patenting activity. We split the variable in three groups (no prior pat-
ents, one or two patents, and three or more prior patents). Specialization 
accounts for potential effects from whether the supplier specialized in 
wind energy (=1) or was active in other sectors outside of the wind 
industry (=0). Size estimates the number of employees, based on last 
available data of full-time employees (or equivalents) as time varying 
data is not available for many private firms. We split the variable in two 
groups of less and more than 250 employees, following the common 
definition of Small and Medium Enterprises (SMEs) (European Commi-
sion, 2021). Age represents the time interval since the founding year of 
the supplier. We split the variable in three groups (<10 employees, 
10–50 employees, >50 employees). Technology complexity represents the 
complexity of the component(s) in which the supplier is active ac-
counting for potential differences that result from distinct internation-
alization and patenting behaviors prevalent in different components (e. 
g., towers vs. gearboxes). Outsourcing or insourcing strategies applied by 
the OEMs indicate how dependent each supplier is on the OEM, 
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reflecting the governance approaches for procuring components from 
suppliers (Nieto and Rodríguez, 2011; Surana et al., 2020). This is a 
continuous variable ranging from 0 (only in-house relationships) to 1 
(only outsourced relationships). R&D/Manufacturing locations of large 
OEMs are often in countries different from the one they are head-
quartered in. This is a factor variable that distinguishes the following 
five cases: (i) European OEM with R&D/manufacturing location(s) in a 
developing country; (ii) European OEM with R&D/manufacturing 
location(s) in an industrialized country only; (iii) Chinese OEM with 
R&D/manufacturing locations(s) in industrialized country; (iv) Chinese 
OEM with R&D/manufacturing in developing country only; (v) Mixed. 
Cumulative installed capacity captures the cumulative learning effects and 
the knowledge stock that develops over time within the global wind 
industry due to increases in global deployment (Qiu and Anadón, 2012). 
The variable consists of the annual cumulative installed capacity 
(Megawatts, MW) of wind energy as reported by IRENA (2006–2016). 

4.4. Statistical models 

To estimate the impact of international and local relationships on 
long-term (and short-term) patenting activity, we conducted a set of 
Negative Binomial Regression analyses from 2006 to 2016 using sta-
tistical modeling in Stata (version 16). We use negative binomial re-
gressions because our dependent variables are based on the count of 
patenting activity and because of overdispersion when estimating 
Poisson regressions. In the regression results, the long-term and short- 
term patenting activity (Yi(t + 1, t + 2)) for supplier i is estimated using 
the following Negative Binomial Regression model: 

log
(
Yi(t+1, t+2)

)
= β0 +β1local relationshipsit +β2international relationshipsit+

β3specializedit +β4 component complexityit +β5presample patentsi +β6sizei+

β7agei +β8OEM outsourceit +β9OEM strategyit+

β10cumulative installed capacityit + εi (1)  

where β1–2 are the coefficients of interest, β3–10 the coefficients of the 
control variables including the continuous linear time trend (cumulative 
installed capacity per year). We clustered the standard errors by supplier 
in all models. While we present the direct coefficients in the models, 
they can be converted to incidence rate ratios between suppliers by 
calculating exp(β). Given the importance of the large and stable Chinese 
wind energy market after 2012 (see Section 3), we distinguish between 
pre- and post-2012 developments in our statistical models by presenting 
findings separately for these two time periods using sample splits. 
Moreover, in the negative binomial regression models, we focus on 
comparing the findings for European and Chinese suppliers during these 
two time periods and refer to the findings for all global suppliers in the 
Appendix (see Table A4). 

Table 1 
Descriptive statistics.  

Variable Obs Mean Std. 
Dev. 

Min Max 

Long-term patents 1867 1.284 6.385 0 107 
Short-term patents 1867 2.126 8.626 0 165 
International relationship 1867 1.245 1.483 0 8 
Local relationship 1867 1.329 1.372 0 11 
Specialized 1867 0.242 0.428 0 1 
Pre-sample patents (range) 1867 0.572 0.802 0 2 
Component complexity 1867 0.398 0.488 − 0.42 1.73 
Size (range) 1867 0.606 0.489 0 1 
Age (range) 1867 1.193 0.498 0 2 
OEM outsource 1867 0.917 0.262 0 1 
Cumulative installed 

capacity (MW) 
1867 242,287 103,096 14,753 408,721  
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5. Results 

5.1. Descriptive results 

In total, we have an unbalanced panel of 1867 observations of 358 
suppliers from 2006 to 2016. Our descriptive analysis shows the 
following key features, which we present for Chinese and European 
suppliers. The total number of patents was lower in China compared to 
Europe. Fig. 3 shows the annual long-term and short-term wind patents 
filed by suppliers in China and Europe. These graphs suggest that while 
the overall patenting activity, especially for long-term innovation, was 
higher in Europe, there was an upward trend in China during the last 
three years of our observation period (2014–2016). We also observe an 
overall decline in patenting activity in Europe after 2011–2012 coin-
ciding with a period of industry consolidation (e.g., through mergers and 
acquisitions), relatively low gas prices, as well as with the general 
reduction of renewable energy patents after 2012 (Probst et al., 2021). 
Although the total number of suppliers active in the market decreased in 
the study period, the remaining suppliers intensified their patenting 
activities. 

We summarize the descriptive statistics and correlations in Table 1. A 

supplier had on average 1.25 international and 1.33 home-country re-
lationships. Moreover, the 358 suppliers were 41.3 years old on average 
(ranging from 4 to 311 years). Overall, a supplier filed for 1.29 long- 
term patents per year (ranging from 0 to 107), and 2.12 short-term 
patents (ranging from 0 to 165). Table 2 shows the correlations be-
tween our variables, which are not highly correlated. 

5.2. Results from negative binomial regression analyses 

We present our regression results in Table 3 and plot the coefficients 
in Figs. 4a (long-term innovation) and 4b (short-term innovation). In 
Table 3, we use sample splits in Models 1–2 for European suppliers, and 
Models 3–4 for Chinese suppliers. The same set of explanatory and 
control variables presented in Eq. (1) in Section 4.4 are used in all cases. 

Figs. 4a and 4b as well as Model 1 in Table 3 imply that for European 
suppliers, local relationships (i.e., European supplier-European OEM) 
are significantly positively associated with long-term and short-term 
patenting activity before 2012. As negative binomial regressions 
model the log of incident counts, long-term patenting increased by 
87.4% for every additional local relationship (β = 0.628, p-value =
0.000, Model 1), yet this long-term patenting advantage became 

Table 3 
Results from negative binomial regressions.   

Long-term patenting activity Short-term patenting activity  
(1) European 
suppliers before 
2012 

(2) European 
suppliers after 
2012 

(3) Chinese 
suppliers before 
2012 

(4) Chinese 
suppliers after 
2012 

(1) European 
suppliers before 
2012 

(2) European 
suppliers after 
2012 

(3) Chinese 
suppliers before 
2012 

(4) Chinese 
suppliers after 
2012 

Main effects         
International 

relationship 
− 0.807 0.592*** 0.125 0.514*** − 0.499 0.369 − 0.117 0.518**  

(0.245) (0.006) (0.570) (0.002) (0.363) (0.108) (0.570) (0.027)  
[0.694] [0.214] [0.220] [0.163] [0.549] [0.230] [0.206] [0.235] 

Local 
relationship 

0.628*** 0.151 − 0.503 0.320 0.497** 0.401** 0.235 0.197  

0.000 (0.263) (0.330) (0.277) (0.020) (0.028) (0.545) (0.500)  
[0.125] [0.135] [0.516] [0.295] [0.214] [0.182] [0.388] [0.292] 

Controls         
Specialized 1.602* 2.128*** 0.616 − 0.595 1.425* 1.851** 1.243 − 0.259  

(0.085) 0.000 (0.663) (0.206) (0.090) (0.012) (0.110) (0.489)  
[0.931] [0.488] [1.414] [0.470] [0.842] [0.735] [0.777] [0.374] 

Component 
complexity 

1.274*** 0.750 − 0.119 − 0.293 0.266 1.522*** − 1.002 0.159  

(0.006) (0.124) (0.921) (0.650) (0.600) (0.002) (0.164) (0.755)  
[0.462] [0.487] [1.192] [0.646] [0.507] [0.483] [0.720] [0.508] 

Pre-sample 
patents (range) 

1.983*** 0.861** 2.777*** 1.128*** 2.073*** 1.118*** 1.232*** 1.043***  

0.000 (0.019) (0.005) 0.000 0.000 0.000 (0.005) 0.000  
[0.345] [0.368] [0.985] [0.298] [0.357] [0.277] [0.438] [0.232] 

Size (range) 1.209* 1.665*** 16.163*** 0.107 − 1.248 − 0.013 1.371 0.525  
(0.098) (0.005) 0.000 (0.825) (0.103) (0.981) (0.123) (0.268)  
[0.730] [0.594] [0.707] [0.485] [0.765] [0.530] [0.889] [0.473] 

Age (range) − 1.729** 0.270 0.886 − 0.114 0.149 0.781* 1.257 0.593  
(0.026) (0.516) (0.716) (0.866) (0.841) (0.051) (0.174) (0.310)  
[0.775] [0.416] [2.433] [0.674] [0.739] [0.400] [0.925] [0.584] 

OEM outsource 0.519 2.191 − 5.169*** − 1.032 3.407*** 1.865** − 3.654*** − 1.289  
(0.686) (0.103) (0.001) (0.302) (0.009) (0.044) 0.000 (0.371)  
[1.283] [1.344] [1.605] [1.000] [1.305] [0.924] [0.722] [1.441] 

Cumulative 
installed 
capacity 

0.000*** − 0.000*** 0.000 0.000 0.000* − 0.000*** 0.000 0.000  

(0.009) 0.000 (0.881) (0.301) (0.062) 0.000 (0.539) (0.671)  
[0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] 

lnalpha 0.688** 0.984*** 0.077 1.183*** 1.151*** 1.165*** 1.272*** 1.361***  
(0.029) (0.003) (0.937) (0.002) (0.001) 0.000 0.000 0.000  
[0.315] [0.331] [0.964] [0.379] [0.353] [0.330] [0.309] [0.200] 

Constant − 4.622*** − 5.987*** − 15.842*** − 3.655** − 6.419*** − 6.225*** 0.511 − 2.151  
(0.002) 0.000 0.000 (0.022) 0.000 0.000 (0.722) (0.276)  
[1.515] [1.127] [2.765] [1.591] [1.396] [1.449] [1.439] [1.975] 

Observations 237 534 150 457 237 534 150 457 
OEM Strategy FE YES YES YES YES YES YES YES YES 
Pseudo R2 0.241 0.24 0.382 0.147 0.16 0.197 0.122 0.0724 

p-value in parentheses *** p<0.01, ** p<0.05, * p<0.1; firm-clustered standard error in brackets. 
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insignificant when market growth shifted to China after 2012. Inter-
estingly, the opposite holds for international relationships. Long-term 
patenting is negative but insignificantly associated with every addi-
tional international relationship (i.e., European supplier-non European 
OEM) before 2012. Yet after 2012, long-term patenting activity 
increased by 80.7% with every additional international relationship (β 
= 0.592, p-value = 0.006, Model 2). Short-term patenting significantly 
increased with every additional local relationship irrespective of where 
market growth was stronger (β = 0.497, p-value = 0.020, Model 1 
(before 2012); β = 0.401, p-value = 0.0028, Model 2 (after 2012)), 
whereas international relationships are not significantly associated with 
short-term patenting before and after 2012 (Models 1 and 2). This im-
plies that European suppliers benefit from collaborating with European 
OEMs for generating more long-term and short-term innovation. How-
ever, when considering that global market demands shifted 2012 on-
wards, primarily to China, we note that internationalization was a key 
driver for long-term patenting within European suppliers. 

For Chinese suppliers, a comparison of Models 3 and 4 (Figs. 4a and 
4b) implies that despite the growing local market in China after 2012, 
local relationships (i.e., Chinese suppliers – Chinese OEMs) were not 
associated with higher long-term or short-term patents. However, after 
2012, we observe that long-term patenting increased by 67.2% with 
every additional international relationship (β = 0.514, p-value = 0.002, 
Model 4), whereas short-term patenting increased at a similar level 
(67.8%) for every additional international relationship (β = 0.518, p- 
value = 0.027, Model 4). This implies that Chinese suppliers increased 
their long-term and short-term innovation activities based on interna-
tional relationships, but only after the Chinese market was more 
attractive for international OEMs after 2012. There are, however, no 
patenting advantages when collaborating with Chinese OEMs. 

5.3. Sensitivity analyses 

We conducted several additional analyses to evaluate the robustness 
of our findings, including comparing our temporal dimension to a 
measure for the novelty of innovation, alternative model specifications, 
an additional control variable on the country of priority of the patent, an 
instrumental variable analysis, and a comparison of our sample to the 
one of other actors active in wind innovation. 

We compared the findings with our metric on long-term and short- 
term patenting activities to a measure of novelty,6 based on the 
concept that radical innovations result from the new combination of 
existing scientific principles (Arthur, 2007; Fleming, 2001; Hargadon, 
2002). However, we use this only as a sensitivity test because all 
long-term innovations may not be radical (see Section 2.1).7 When 
comparing the findings from negative binomial regressions using the 
same models (see Eq. (1)) for the alternative measure based on IPC 
group codes, we get comparable, but not the same findings (see Table A5 
in the Appendix). One of the main differences is that the novelty mea-
sure reveals a positive, yet insignificant association between interna-
tional relationships and long-term patenting for Chinese suppliers after 
2012 (β = 0.307, p-value = 0.138, Model 4), which was significantly 
positive using our temporal-dimension. Moreover, for both Chinese and 
European suppliers, the novelty approach reveals a negative and sig-
nificant association between international relationships and long-term 
innovation before 2012, which was insignificant in the models based 
on our temporal dimension approach. Although both metrics are 
correlated and offer an ex-ante assessment of the focus of innovation, the 

Before 2012 After 2012

-1.5 -1 -.5 0 .5 -1.5 -1 -.5 0 .5

European suppliers Chinese suppliers

International
Relationship

Local
Relationship

a) Long-term innovation

Coefficient

International
Relationship

Local
Relationship

-.5 0 .5 1 -.5 0 .5 1

European suppliers Chinese suppliers

b) Short-term innovation

Coefficient

Fig. 4. Comparison of coefficients for European and Chinese suppliers, before and after 2012, for (a) long-term innovation and (b) short-term innovation. A sig-
nificant negative association is depicted at the left side of the gray line, positive at the right. Significance of the relationships is indicated if estimation and confidence 
interval are on one side of the gray line. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.). 

6 We use the approach proposed by Verhoeven, Bakker and Veugelers (2016) 
that uses patent classification group codes (8-digit level in the IPC system) to 
proxy the scientific principles that patents focus on. When a pair of such codes 
combines for the first time compared to previous patents, it is classified as a 
highly novel or radical innovation.  

7 Taking the example of offshore wind within our dataset, only 23.76% of the 
patents classified as long-term with our approach were classified as radical with 
this approach. A comparison of the correlations between the two measures 
(long-term patenting vs. radicalness) still showed high and significant values 
(long-term patents: r = 0.833, p-value = 0.000; short-term-patents: r = 0.962, 
p-value = 0.000). 
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small but clear differences suggest that our industry-specific assessment 
of the temporal dimension of innovation offers more nuanced insights. 

We also estimated alternative model specifications. We started by 
estimating logit regressions to understand the differences between 
applying for the first long-term or short-term patent when compared to 
the drivers affecting the annual total number of patents, which revealed 
comparable estimates (see Table A6). We next estimated the percentage 
of international relationships by dividing international relationships by 
all relationships (sum of local and international). These findings, again, 
show similar trends (see Table A7), but it is hard to disentangle the likely 
effects of international vs. local relationships. Here, we observe that 
there is an insignificant, but negative association between the percent-
age of international relationships and long-term patenting (β = − 0.994, 
p-value = 0.192, Model 2). Hence, it is the absolute increase in inter-
national relationships that seems to drive long-term patenting activities 
(see Table 3), and not the shift of suppliers’ strategies towards more 
international activities at the cost of local relationships. 

Moreover, we investigate if the country of priority of the patent af-
fects our findings to understand if patents filed in China are different 
from the ones in other countries (Lam et al., 2017). We estimated our 
main models including an additional control variable for the percentage 
share of Chinese long-term and short-term patents (i.e., with priority in 
China) in the total patents per supplier (see Table A8). The key findings 
are the same, showing how both European and Chinese suppliers 
significantly increased their long-term patenting activity in response to 
relationships with international OEMs. We only observe differences to 
Table 3 regarding the role of relationships with Chinese OEMs for Chi-
nese suppliers, which were positive yet insignificant in the main model, 
and turn out to be relevant for long-term patenting after 2012 when 
including the fraction of Chinese patents (Table A8, Model 4). Hence, 
accounting for the potential differences between Chinese and other 
patents does not affect our main findings on the drivers of long-term 
innovation before and after market shifts to China but displays more 
nuances regarding the role of local relationships. 

We addressed potential endogeneity concerns that more patenting 
activities lead to more relationships through various approaches. We 
include time-lags between the relationship and the outcome in terms of 
patents (t + 1 and t + 2, see Section 4.3.1). We also include the pre- 
sample patents, i.e., the number of patents that each supplier acquired 
before 2006, in all our models that allows us to account for the possi-
bility that patents lead to more supplier-OEM relationships in the first 
place. We also conducted an instrumental variable regression (IV) 
analysis (2SLS) by using trade agreements between countries as an in-
strument. We collected the trade agreements on goods and services in 
our time period from the World Trade Organization webpage (WTO, 
2021). The relevance criterion holds because trade agreements are likely 
to have a positive impact on the ease of engaging in internationalization 
endeavors. The exogeneity assumption is also likely to be met because a 
trade agreement between two countries is unlikely to affect or lead to 
adaptations of type and amount of patents (typically affected by factors 
such as prior patents, financing, age, size, etc.). While trade agreements 
are a weak instrument when focusing on the time-period between 2006 
and 2012 (F = 2.20) for European suppliers, this instrument is strong in 
the second observation window between 2012 and 2016 (F = 25.21 for 
both long-term and short-term patenting activity) (Stock and Watson, 
2007). The results from the 2SLS analysis suggested similar findings of a 
significant positive association of international relationships for 
long-term innovation (β = 3.44, p-value = 0.000) (see Table A9).8 

Finally, we examined whether our focus on long-term innovation in 

suppliers and OEMs in the GVC reflected broader wind technology 
innovation trends, including the activities from other actors. We 
collected additional information on other actors innovating across wind 
components, especially universities and research institutes, and applied 
our methodology (see Section 4.2) to assess if those actors have distinct 
developments over time when compared with our sample. However, we 
observe a comparable share of long-term vs. short-term patents of sup-
pliers and OEMs (see Fig. A1) with the one of research institutes and 
universities (see Fig. A2).9 Given that we observe similar trends in 
patenting activity for both suppliers and OEMs and that these stake-
holders are known to collaborate with universities and knowledge 
intensive firms (Haakonsson and Kirkegaard, 2016; Haakonsson and 
Slepniov, 2018), we expect that their ability to innovate in the long-term 
can also be a good proxy for how they integrate and improve any 
long-term innovations developed by other actors. 

6. Discussion 

Our study highlights how a combination of location of 
manufacturing, GVC governance, the proximity of suppliers and OEMs 
for learning effects, and policy-induced demand-pull supported inno-
vation in clean energy technology suppliers for meeting long-term 
climate goals. Our analysis suggests that, in this policy-induced in-
dustry, internationalization has a positive association with long-term 
innovation, as value chains become increasingly globalized and 
manufacturing shifts to emerging economies such as China. For Euro-
pean suppliers, local relationships with European OEMs were associated 
with an 87.4% increase in long-term innovation activities, but only 
before 2012, when the European wind energy market dominated global 
new wind energy installations. As the Chinese market became more 
attractive after 2012, European suppliers with international OEM re-
lationships were associated with an 80.7% increase in their long-term 
innovation activities. International relationships and markets were 
thus a key driver for long-term patenting within European suppliers. For 
Chinese suppliers, relationships with international OEMs increased their 
long-term innovation activities by 67.2%, but only after 2012 when the 
Chinese market became attractive for international OEMs. Meanwhile, 
also after 2012, there were no long-term patenting advantages of local 
relationships, i.e., with Chinese OEMs. Overall, our findings suggest that 
manufacturing shifts to China did not suppress long-term innovation in 
the wind energy industry. These findings allow us to contribute in the 
following three ways to research on clean energy innovation and GVCs. 

6.1. The temporal dimensions of innovation 

Our study introduces a temporal dimension to the direction of 
innovation that can more effectively assess innovation in the context of 
long-term societal goals, including net-zero emissions, economic 
competitiveness, and development. The temporal perspective comple-
ments existing discussions on accelerating innovation that have so far 
focused on low-carbon vs. high-carbon or radical vs. incremental inno-
vation (e.g., Anadón, 2012; Schmidt et al., 2012; Mazzucato and 

8 Please note that we are only able to use this instrumental variable approach 
for our findings for the sub-sample of European firms, as there is hardly any 
variance in the sub-sample of Chinese suppliers (there are no relevant trade 
agreements applying to Chinese suppliers within our observation time 
window). 

9 We also calculated the shares of more and less novel patents using the 
novelty measure described in the first robustness check for all European and 
Chinese wind energy patents of all actors, including individuals and other firms 
that are not directly or actively involved in the wind GVC. We did this addi-
tional step using the novelty metric rather than the temporal dimension 
approach because the methodological and computational approach required to 
develop and run the topic models classifying more than 77,000 patents into 
long-term and short-term and organizing them around various types of in-
novators (e.g., OEMs, suppliers, universities, individuals) requires a dedicated 
research approach and methodological contribution that was beyond the scope 
of this work. Figure A3 displays the shares for all Chinese and European patents, 
which again did not show major changes between the shares of low and high 
novelty over time. 
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Semieniuk, 2018; Li et al., 2021; Nemet, 2009). By introducing a 
different level of analysis (i.e., the long-term and short-term impact of 
clean energy innovation) at a granular technology and component level 
(e.g., not just the wind turbine but all the parts and processes that 
comprise the turbine and its operation), our approach can concretely 
assess progress and trends in individual technologies relative to 
long-term societal goals. In that, we contribute to research on quanti-
fying energy innovation focused on monitoring and evaluating existing 
efforts (e.g., Bettencourt et al., 2013; Choi and Anadón, 2014; Huenteler 
et al., 2016b; Johnstone et al., 2010; Popp et al., 2011). Our approach 
can potentially also support efforts to improve representations of tech-
nological innovation in integrated assessment and other models, given 
our focus on the temporal dimensions and volumes of innovation (e.g., 
Anadón et al., 2017; Meng et al., 2021). Our novel approach opens new 
pathways to developing new and automatized datasets to understand 
the direction of innovation through advanced machine learning tools. 
The metric for the temporal dimension of innovation can also be applied 
to other technologies or sectors beyond clean energy as we build on, and 
complement, existing approaches in the broader novelty literature (e.g., 
Arts et al., 2021; Kelly et al., 2018; Verhoeven et al., 2016) (see also 
Section 6.3). 

6.2. The role of suppliers in shaping innovation in GVCs 

Our research on innovation in GVCs centers on suppliers rather than 
the OEMs, which offers compelling new evidence of their important role 
in shaping the direction of innovation. In that, we address three major 
gaps by: (i) focusing on suppliers (and components) that have been 
generally overlooked in the broader GVC innovation literature (see e.g., 
Ambos et al., 2021), (ii) mapping and empirically assessing the GVC of a 
rapidly expanding modern industry, where despite growing questions 
around globalization of supply and demand GVCs remain ‘heavily 
debated but hardly measured’ (OECD, 2018), and (iii) showing how 
international relationships do not only help emerging economy firms to 
implement cost reductions, but also promote long-term innovation. 

Our empirical evidence of the importance of suppliers in shaping the 
direction of innovation in GVCs advances emerging theories on inno-
vation in global value chains (Cattaneo et al., 2013; Haakonsson and 
Kirkegaard, 2016; Haakonsson and Slepniov, 2018; Jurowetzki et al., 
2018; Pietrobelli and Rabellotti, 2011; Surana et al., 2020; Zhang and 
Gallagher, 2016), especially for technologies associated with complex 
products and systems (see also Section 6.3). While these theories link 
innovation to the governance of the GVC, firm strategies or compe-
tences, mostly from the OEM perspective, our paper is one of the few 
quantitative assessments of suppliers that also differentiates by location 
(see also Surana et al., 2020). In that, our work specifically adds to 
discussions that clean energy innovation in China is primarily linked to 
cost reductions or to reducing dependence on foreign knowledge and 
investment (e.g., Gosens and Lu, 2014; Lam et al., 2017; Sivaram et al., 
2018). Our findings indicate that international relationships may not 
only shape cost reductions (Tang and Popp, 2016), but also support 
long-term innovation for Chinese suppliers. However, when comparing 
the shares of long-term vs. short-term patents (see Fig. A1), our results 
suggest that there might still be a stronger short-term orientation among 
Chinese suppliers when compared with European suppliers, especially 
after 2010. 

6.3. The direction of innovation and manufacturing shifts 

Our comprehensive evaluation of the location of GVC (i.e., both 
suppliers and OEMs in Europe and China) and their local or interna-
tional relationships adds to previous research that emphasizes the 
importance of proximity between manufacturing location and demand 
for innovation (Fuchs and Kirchain, 2010; Von Hippel, 1994). However, 
we also offer new insights that differ from prior findings on the direction 
or emphasis of innovation in developed vs. emerging economies. We 

show how proximity between demand and supply can drive long-term 
innovation in a policy-induced, internationally dispersed value chain 
—and not suppress more advanced innovation as suggested in the op-
toelectronics industry (e.g., Fuchs and Kirchain, 2010; Yang et al., 
2016). In the study period, wind energy technologies were often not cost 
competitive with conventional energy supply and needed government 
interventions to scale up. European wind energy suppliers were oper-
ating in a context of growing market sizes abroad, even stronger than in 
their home markets. On the contrary, the studied firms in optoelec-
tronics faced a trade-off after offshoring their manufacturing activities 
between meeting the needs of the current market more competitively 
and investing in future market needs due to constrained market sizes 
(Fuchs, 2014). In optoelectronics and other industries such as automo-
tive, manufacturing and R&D initially occurred in the country with the 
highest market value and later moved to emerging economies for 
low-cost production to supply new, global markets (Vernon, 1966; 
Fuchs and Kirchain, 2010). In the case of clean energy, supply shifts to 
China occurred also because of Chinese policy-induced incentives for 
clean energy, which enabled large and stable demand, supported do-
mestic R&D, and helped develop domestic manufacturing to meet local 
and global demands (Surana and Anadón, 2015; Zhang and Gallagher, 
2016). With the large Chinese market demands, international relation-
ships in the GVC ensured learning effects resulting from the proximity of 
manufacturing to the users of turbines (Nemet, 2009; Sagar and van der 
Zwaan, 2006; Tang and Popp, 2016; Von Hippel, 1994), yet without the 
tradeoffs resulting from constrained market sizes. Thus, for scholars 
working on manufacturing and GVCs, our approach illustrates the need 
to account for local market sizes and growing demand in emerging 
economies and supplier relationships, which might spur rather than 
suppress long-term innovation. 

However, this interpretation of continued long-term innovation 
despite market shifts to China also needs to be considered in the light of 
the technology. Wind energy technologies are complex components and 
systems that require local adaptations and are characterized by high 
shipment costs and lumpiness (Huenteler et al., 2016a; Malhotra and 
Schmidt, 2020; Wilson et al., 2020), which might spur local R&D. Other 
technologies with similar characteristics in terms of design intensity or 
customization could include concentrating solar power, green hydrogen 
technologies, long-duration energy storage, decarbonized industrial 
process technologies, carbon capture and storage, carbon dioxide 
removal, and modular nuclear reactors (Malhotra and Schmidt, 2020). 
Many of these have similar industry structures (with multiple suppliers, 
and few OEMs), are harder to scale up, and urgently need long-term 
innovation. For other clean energy technologies with different charac-
teristics, primarily solar energy where deployment policies are of similar 
importance, our findings on the drivers of long-term innovation might 
not be fully applicable given lower shipment costs and process-driven 
engineering challenges (independent of the location) instead of local 
adaptations (Huenteler et al., 2016b; Malhotra and Schmidt, 2020). As 
solar energy technologies are similar to optoelectronics (in that inno-
vation challenges are process-driven yet not characterized by small, 
constrained markets given the strong presence of deployment policies), 
we encourage future research to take a time perspective on solar energy 
innovation and explore if and how long-term innovation is affected by 
manufacturing shifts to emerging or developing economies. 

7. Policy implications and conclusions 

This paper emphasizes the need for understanding the temporal 
dimension of clean energy innovation given the need for meeting long- 
term societal goals and to avoid locking in technologies that may be 
inferior. For policymakers, this calls for the design of green industrial or 
mission-oriented policy considering the full GVC, targeting diverse 
timelines rather than focusing on scaling up R&D or deployment activ-
ities in isolation. Such approaches are indeed gaining traction, for 
example in the U.S. battery supply chain policy (U.S. Department of 
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Energy, 2021). In this context, our research offers three major policy 
implications. 

First, our research emphasizes previous insights that public research 
funding needs to incentivize innovation in line with long-term societal 
goals. This means in one sense, not simply focusing on breakthroughs, 
but also supporting long-term evolutionary changes in existing tech-
nologies. It also adds the explicit aspect that firms could view long-term 
outcomes as not only separate from short-term market competitiveness, 
but something that firms themselves also see strategic value in. Inter-
national forums (e.g., IEA’s Technology Collaboration Programs, 
Mission Innovation) provide important platforms for governments, 
research organizations, and industry to discuss innovation needs for 
clean energy and climate technologies where long-term innovation is 
needed (e.g., hydrogen, negative emissions, and carbon removal tech-
nologies), and to ensure that R&D spending is allocated with a long-term 
outlook (UNFCCC, 2021) and enabling future options. 

Second, policymakers need to ensure that their decarbonization 
ambitions increase and enable large demand across the many sectors 
that need to cut emissions, but that these also come with policy stability. 
Consistent signaling and transparency from governments about long- 
term or short-term targets and national climate strategies is a critical 
part of ensuring that the future competitive landscape is communicated 
clearly to innovating firms. This helps link their internal prioritization 
and resource allocation with the solidifying vision of, for example, 2050 
net zero goals and associated policy pathways. In contrast, repeated 
policy reversals and a lack of long-term goals can be detrimental to 
creating this type of strategic clarity. For example, large number of 
suppliers in China compared to the relatively few number of suppliers in 
other countries with large wind markets (such as the U.S. or India) 
suggest that demand alone is not enough and that policy flipflops can 
restrict local industry development (e.g., Barradale, 2010; Surana and 
Anadón, 2015). Increasing the ambition for clean energy deployment 
and communicating policy pathways transparently and clearly can in-
crease confidence, even in a not-perfectly-certain policy future. This can 
help develop a local industry as suppliers emerge, innovate because of 
the learning effects from proximity to users, and in turn become more 
competitive. 

Third, in the specific case of China, creating collaborations on clean 
energy may provide a more effective strategy to deliver on long-term 
clean energy goals than competing (see also Helveston and Nahm, 
2019). China has been central to manufacturing in general in the last 
decades, and to clean energy in particular. While tensions exist between 
China and many other countries in manufacturing and exports of various 
technologies, China continues to be one of the largest markets for clean 
energy. Restricting international supply networks (e.g., through tariffs) 
has limited demonstrated benefits (Sharma et al., 2022). Instead, they 
can hurt firms’ long-term innovation in clean energy technologies, 
which then limits their competitiveness to compete in global markets. 

Our work has two main limitations. One, we use the headquarter 
location of component supplier (or OEM) rather than the location of 
manufacturing (e.g., supplier subsidiaries in other countries) because of 
incomplete publicly available data on manufacturing especially for 
smaller firms (Surana et al., 2020). The internationalization of R&D and 
the co-location of international R&D with manufacturing activities 
might affect the direction of innovation (Ambos et al., 2021). Two, our 
measure for long-term and short-term innovation is sensitive to industry 
context or technology characteristics and requires additional 

verification. Ideally, an evaluation after 10 or 20 years would help in 
determining the actual contributions to research areas currently iden-
tified as being ‘long-term innovation,’ something which can only be fully 
determined in retrospective. We see exciting opportunities for future 
research to further develop our approach on quantifying the temporal 
dimension of innovation and applying it to study the relationships be-
tween the location of manufacturing, demand, and long-term and 
short-term innovation in other clean energy technologies. 
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Table A1 
Long-term and short-term wind energy research needs (in the period of analysis). Source: IEA reports and authors’ assessment (IEA Wind 2013; IEA Wind 2001)  

Description IEA report assessment Authors’ assessment 

Atmospheric flow modeling Long-term Long-term 
Marine environment Long-term Long-term 
Floating offshore wind plants Long-term Long-term 
Blade control system Long-term Long-term 
Blade materials Long-term Long-term 
Advanced generator, superconductor, medium speed Long-term Long-term 
Offshore support, floating foundation Long-term Long-term 
Power plant control, optimization, reliability, lifetime Long-term Long-term 
Advanced manufacturing, carbon fiber, segmented blades, automation, anti-fatigue, recyclable Long-term Long-term 
Improved reliability, more lifetime for components, less temperature cycling Long-term Long-term 
Smart grid Long-term Long-term 
Turbine design tools for onshore and offshore Medium-term Long-term 
Blade sensor and control devices Medium-term Long-term 
Offshore installation and logistics, vessel Medium-term Long-term 
Transmission infrastructure, HVDC Medium-term Long-term 
Offshore transmission Medium-term Long-term 
Studies for flexible reserve, demand side response, storage integration Medium-term Long-term 
Power plant design and optimization Medium-term Long-term 
Noise reduction or increased tip speed Medium-term Long-term 
Direct drive, drivetrain design Medium-term Long-term 
System design and scaling Medium-term Long-term 
Scaling, large turbines Medium-term Long-term 
Flexible rotor, large rotor Medium-term Long-term 
Siting Medium-term Short-term 
Power plant flow modeling Medium-term Short-term 
Wind forecast Medium-term Short-term 
Power production forecast Medium-term Short-term 
Different operating conditions, cold weather, tropical weather etc. Medium-term Short-term 
Power electronics, high efficiency Medium-term Short-term 
Light material and steel replacement for towers Medium-term Short-term 
Operational data, failure rate, repair time Medium-term Short-term 
O&M diagnostic, failure more, modeling damage on cracks, repairing techniques Medium-term Short-term 
Component and system testing facility Medium-term Short-term 
Building-integrated small wind Medium-term Short-term 
Distributed wind Medium-term Short-term 
Manufacturing of small wind turbines Medium-term Short-term 
Distributed wind, SCADA for small wind and smart grid integration Medium-term Short-term 
Resource assessment, wind atlas Short-term Short-term 
Characterizing icing and ice Short-term Short-term 
Remote sensing, lidar, sodar, radar Short-term Short-term 
Electricity market Short-term Short-term 
Grid code, compliance testing, voltage source convertor Short-term Short-term 
Voltage and frequency control systems to monitor and predict voltage dips Short-term Short-term 
Small turbine testing Short-term Short-term  
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Table A2 
Topics identified in the IPC description and corresponding mapping to the temporal dimension of innovation. Note: patent sub-group codes are listed inside the parentheses next to the main-group codes  

Topics identified in the IPC 
description 

IPC codes Temporal dimension of 
innovation 

Offshore wind B63B-021 (50); B63B-035 (44); E02B-017 (00); E02D-027 (52); F03B-013 (10, 12, 14, 26); F03D-013 (25); F16D-001 (06); H02G-001 (10) Long-term 
Blade and control system F01D-007 (00, 02); F01D-017 (00, 02, 06); F03B-015 (00, 06) Long-term 
Wind and energy storage F03D-009 (11, 12, 17, 18, 19) Long-term 
Testing components G01M-013 (02, 021, 028) Long-term 
Meteorology G01S-017 (95); G01W-001 (00, 02, 06, 10, 16) Long-term 
Wind and other technologies 

(hybrid) 
H02S-010 (12); H02S-040 (32) Long-term 

Forgings B21C-037 (29); B21D-001 (08); B21D-003 (16); B21D-039 (03); B21D-047 (00); B21K-023 (04); B21K-025 (00); B22C-009 (00); B22D-007 (00); B22D-019 (00, 04); B22D- 
025 (02); B22F-003 (00); B24B-000 (00); B24B-009 (20); B24B-019 (14, 26); B24B-027 (00); B24B-029 (00); B24B-041 (06); B24B-049 (00); B24B-051 (00); B24B-055 (02); 
B24C-001 (10); B24D-005 (02); C21C-001 (10); C21D-001 (06, 09, 10, 18, 20, 26, 28, 42); C21D-006 (00); C21D-007 (06); C21D-009 (32, 40); C22C-037 (04); C22C-038 (00, 
02, 04, 06, 18, 22, 24, 26, 28, 40, 42, 44, 46, 48, 50, 60); C23C-008 (26, 32, 80); C23C-014 (00, 06, 08); C23F-013 (00, 02); C23F-015 (00) 

Short-term 

Bearings  B21D-053 (10); F03B-011 (06); F03D-001 (00, 02, 06); F03D-003 (00, 02, 04); F04D-029 (04, 056); F16C-000 (00); F16C-003 (02, 08); F16C-011 (04); F16C-013 (02, 04); 
F16C-017 (00, 02, 03, 04, 06, 08, 10, 12, 20, 24, 26); F16C-019 (00, 02, 04, 06, 08, 10, 14, 16, 18, 20, 22, 24, 26, 28, 30, 34, 36, 38, 40, 49, 50, 52, 54, 55, 56); F16C-021 (00); 
F16C-023 (00, 02, 04, 06, 08); F16C-025 (02, 04, 06, 08); F16C-027 (00, 04, 06); F16C-032 (00, 04, 06); F16C-033 (00, 02, 04, 06, 08, 10, 12, 14, 20, 30, 32, 34, 36, 37, 372, 
38, 40, 41, 42, 44, 46, 48, 49, 50, 51, 52, 54, 56, 58, 60, 62, 64, 66, 72, 74, 76, 78, 80); F16C-035 (00, 02, 04, 06, 063, 067, 07, 073, 077, 08); F16C-037 (00); F16C-039 (02, 
04, 06); F16C-041 (00, 02, 04); F16C-043 (00, 02, 04, 06) 

Short-term 

Installation, maintenance, or 
construction 

B25B-005 (14); B25B-011 (00, 02); B25B-021 (00); B25B-023 (14); B25B-027 (00, 02, 06, 14); B25B-029 (02); B25J-005 (00); B25J-009 (16); B25J-011 (00); B25J-019 (02); 
B26D-001 (00, 06, 08); B26D-003 (00, 02, 10); B26D-007 (06, 08); B27B-025 (00); B66B-000 (00); B66B-005 (00); B66B-007 (02); B66B-009 (00, 02, 16, 187); B66B-011 (00, 
02, 04, 06); B66C-000 (00); B66C-001 (00, 08, 10, 12, 16, 18, 22, 24, 42, 44, 54, 62, 66); B66C-005 (02); B66C-013 (00, 04, 06, 08, 16, 18, 46); B66C-017 (00, 04, 06); B66C- 
019 (00); B66C-023 (00, 02, 16, 18, 20, 26, 28, 30, 32, 34, 36, 62, 72, 52); B66D-001 (00, 26, 36, 60); B66D-003 (00); B66F-003 (24, 35, 46); B66F-011 (00, 04); B66F-019 
(00); E02B-017 (02); E02D-000 (00); E02D-005 (22, 34, 54, 72, 74, 80); E02D-007 (00, 26); E02D-011 (00); E02D-013 (00, 04); E02D-023 (00); E02D-027 (00, 10, 12, 16, 32, 
42, 44, 50); E02D-035 (00); E02D-037 (00); E02F-009 (12); E04B-001 (00, 04, 16, 18, 19, 21, 24, 342, 343, 35, 38, 41, 58, 61, 62, 66, 92, 98); E04C-002 (04, 20); E04C-003 
(00, 08, 30); E04C-005 (06, 08, 12, 16); E04F-011 (022); E04F-021 (00); E04G-000 (00); E04G-001 (00, 20, 36); E04G-003 (00, 24, 28, 30, 32); E04G-005 (00); E04G-011 
(20); E04G-013 (02); E04G-021 (00, 02, 04, 12, 14, 16, 18, 24, 32); E04G-023 (00); E04H-000 (00); E04H-001 (00, 12); E04H-003 (00); E04H-005 (02, 04); E04H-009 (04, 
14); E04H-014 (00); E05B-065 (00); E05D-005 (02); E06B-001 (00, 52, 60); E06B-003 (70); E06B-005 (00); E06C-007 (18); E06C-009 (00, 02); E21B-033 (00, 13, 134); 
E21B-041 (00); F03D-009 (02, 10, 30); F03D-013 (00, 10, 35, 30, 20, 40); F03D-080 (50, 55); F16B-000 (00); F16B-001 (00, 02); F16B-002 (00); F16B-004 (00); F16B-005 
(00, 02); F16B-007 (00, 18, 20); F16B-011 (00); F16B-019 (02); F16B-031 (02, 06); F16B-033 (00); F16B-035 (00, 04, 06); F16B-037 (00, 14); F16B-039 (10); F16B-041 (00); 
F16B-043 (00); H02G-000 (00); H02G-001 (08); H02G-003 (00, 02, 04, 22, 30, 32, 38); H02G-005 (00, 02, 06); H02G-007 (12); H02G-009 (00, 02, 06); H02G-011 (00, 02); 
H02G-013 (00); H02G-015 (007, 02); H02K-015 (00, 02, 03, 04, 06, 085, 10, 12, 14, 16) 

Short-term 

Transport (except for offshore 
wind) 

B60P-003 (00, 022, 40, 41); B60P-007 (00, 06, 08, 12, 13, 135); B60T-008 (50); B60T-013 (10, 22, 66, 68); B60W-010 (04, 10); B61B-007 (00); B61B-012 (02); B61B-013 
(00); B61D-000 (00); B61D-003 (14, 16); B62B-003 (04, 10); B62D-021 (14); B62D-053 (00, 04); B63B-001 (04, 10, 12); B63B-003 (48, 56); B63B-009 (00, 06); B63B-011 
(00); B63B-015 (00); B63B-019 (08, 12, 16, 197); B63B-021 (00, 56); B63B-022 (00, 02, 04, 18, 20); B63B-025 (00, 18, 28); B63B-027 (00, 10, 12, 14, 16); B63B-029 (02); 
B63B-035 (00, 34); B63B-039 (00, 03, 06, 08); B63B-043 (06); B63B-059 (04); B63C-011 (04); B63H-000 (00); B63H-001 (00, 06, 14, 20, 26, 28); B63H-003 (00, 06, 08, 10); 
B63H-005 (00, 125); B63H-007 (00, 02); B63H-009 (02); B63H-011 (00); B63H-021 (17, 20); B63H-023 (12, 24); B63H-025 (00, 06, 38, 40, 42); B63J-003 (02, 04); B63J- 
099 (00) 

Short-term 

Tower E04H-012 (00, 02, 04, 06, 08, 10, 12, 14, 16, 18, 20, 22, 24, 28, 34) Short-term 
Sealing F01D-011 (00, 02, 04); F04D-029 (08); F16J-015 (00, 02, 06, 10, 16, 18, 32, 3204, 3232, 3288, 34, 44, 447, 54) Short-term 
Safety F01D-019 (00); F01D-021 (00, 04, 12, 14, 20); H02H-001 (00, 04, 06); H02H-003 (00, 02, 08, 087, 10, 16, 20, 22); H02H-005 (04); H02H-007 (00, 04, 06, 08, 085, 09, 093, 

10, 12, 122, 125, 18, 22, 24, 26, 30); H02H-009 (00, 02, 04, 06); H02H-011 (00) 
Short-term 

Nacelle F01D-025 (00, 02, 04, 06, 12, 14, 16, 24, 26, 28, 34, 36); F03B-011 (02); F03D-011 (04); F03D-080 (30, 40); F04D-029 (40, 54, 56, 58, 60, 66, 68); F16M-001 (00); F16M-005 
(00); F16M-007 (00) 

Short-term 

Lubricant F01M-001 (02, 16); F01M-005 (00); F01M-011 (00, 04, 10); F16N-000 (00); F16N-001 (00); F16N-007 (00, 14, 20, 28, 32, 36, 38, 40); F16N-009 (02); F16N-011 (00); F16N- 
013 (00, 02); F16N-017 (04); F16N-019 (00); F16N-021 (00); F16N-025 (00); F16N-029 (00, 02, 04); F16N-031 (00, 02); F16N-039 (00, 02, 04, 06) 

Short-term 

Power converter and control 
system  

F03B-017 (00); F03D-007 (00, 02, 04, 06); F03D-080 (10, 20); F16P-003 (08); H02J-000 (00); H02J-001 (00, 08, 10, 12, 14); H02J-003 (00, 01, 02, 04, 06, 12, 14, 16, 18, 24, 
26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50); H02J-004 (00); H02J-005 (00); H02J-007 (00, 02, 04, 10, 14, 32, 34, 35); H02J-009 (00, 02, 04, 06, 08); H02J-011 (00); 
H02J-013 (00); H02J-015 (00); H02J-017 (00); H02M-007 (483, 487, 49, 493, 537, 5387, 757, 797) 

Short-term 

Wind energy (general) F03D-000 (00); F03D-001 (04); F03D-011 (00); F03D-080 (00) Short-term 
Adapt to new conditions F03D-009 (00, 22) Short-term 
Measuring and testing  F03D-017 (00); G01B-000 (00); G01B-003 (44); G01B-005 (00, 30); G01B-007 (00, 02, 14, 16, 30); G01B-009 (02); G01B-011 (00, 02, 06, 14, 16, 24, 25, 26); G01B-015 (00, 

02, 06); G01B-017 (02); G01B-021 (02, 08, 16, 22, 32); G01C-001 (00); G01C-003 (00, 08); G01C-009 (00); G01C-019 (02); G01D-001 (14); G01D-003 (02, 08); G01D-005 
(00, 12, 244, 26, 353); G01D-009 (00); G01D-018 (00); G01D-021 (00, 02); G01F-001 (00); G01F-017 (00); G01F-023 (00, 26); G01F-025 (00); G01G-019 (14); G01H-001 
(00, 06, 08, 12, 16); G01H-003 (00); G01H-009 (00); G01H-013 (00); G01H-017 (00); G01J-001 (04, 42); G01J-005 (00); G01K-001 (14); G01K-011 (32); G01K-013 (00, 08); 
G01L-001 (00, 04, 12, 16, 18, 20, 22, 24, 25, 26); G01L-003 (00, 02, 10, 14, 24); G01L-005 (00, 12, 16, 24); G01L-007 (00); G01L-009 (00); G01L-011 (02); G01L-025 (00); 
G01M-000 (00); G01M-001 (00, 12, 16, 22, 28); G01M-003 (00, 26, 40); G01M-005 (00); G01M-007 (00, 02, 04, 06, 08); G01M-009 (00, 02, 06); G01M-011 (00, 08); G01M- 
013 (00, 04, 045); G01M-015 (00, 02, 12, 14); G01M-017 (007); G01M-019 (00); G01M-099 (00); G01N-000 (00); G01N-001 (28); G01N-003 (00, 02, 08, 12, 32, 34, 36); 
G01N-015 (06); G01N-017 (00, 02, 04); G01N-019 (02); G01N-021 (00, 27, 35, 3581, 47, 53, 55, 59, 64, 84, 88, 94, 95, 954); G01N-023 (00, 04, 083, 201); G01N-025 (72); 
G01N-027 (00, 02, 22, 26, 60, 90); G01N-029 (00, 04, 07, 11, 14, 22, 24, 26, 265, 44); G01N-033 (00, 20, 26, 28, 30, 32); G01P-003 (00, 36, 44, 481, 487); G01P-005 (00, 02, 

Short-term 

(continued on next page) 
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Table A2 (continued ) 

Topics identified in the IPC 
description 

IPC codes Temporal dimension of 
innovation 

06, 14, 165, 20, 24, 26); G01P-013 (00, 02, 04); G01P-015 (00, 18); G01P-021 (00, 02); G01R-000 (00); G01R-011 (32, 56); G01R-013 (02); G01R-015 (18, 20); G01R-019 
(00, 06, 10, 165, 25); G01R-021 (00, 06, 127, 133, 14); G01R-023 (00, 02, 16, 167, 20); G01R-025 (00); G01R-027 (00, 02, 08, 16); G01R-029 (00, 08); G01R-031 (00, 02, 08, 
26, 28, 327, 34, 36, 40, 42); G01R-033 (00, 02, 07, 12); G01S-001 (68); G01S-011 (02); G01S-013 (00, 08, 87, 88, 93, 95); G01S-017 (58, 88, 89) 

Cooling or heating F25D-021 (14) Short-term 
Program control and computing 

tools 
G06F-000 (00); G06F-001 (12, 26, 28, 30, 32); G06F-003 (00, 01); G06F-007 (00); G06F-009 (00, 44, 445); G06F-011 (00, 20, 30); G06F-015 (00, 16, 173, 177, 18); G06F- 
017 (00, 10, 18, 30, 40, 50, 60); G06F-019 (00); G06F-021 (44); G06G-007 (48, 54); G06K-009 (00); G06N-003 (08); G06N-020 (00); G06N-099 (00); G06Q-010 (00, 04, 06); 
G06Q-030 (00); G06Q-050 (00, 04, 06, 10); G06T-001 (00); G06T-007 (00, 70); G06T-011 (20) 

Short-term 

Cables H01B-005 (02); H01B-007 (00, 02, 04); H01B-009 (00); H01B-011 (00) Short-term 
Power electronics H01F-000 (00); H01F-003 (04); H01F-005 (04); H01F-006 (06); H01F-007 (02, 06); H01F-013 (00); H01F-027 (00, 02, 06, 08, 10, 12, 16, 24, 25, 26, 28, 30, 32, 38, 40); 

H01F-029 (04); H01F-030 (00, 12); H01F-037 (00); H01F-038 (00, 14, 18); H01F-041 (00, 02, 08, 12); H01G-004 (38); H01H-001 (00); H01H-009 (54); H01H-019 (18); 
H01H-033 (59); H01H-047 (00); H01H-071 (10); H01H-083 (00); H01L-021 (00, 48, 67); H01L-023 (34, 367, 427, 473, 62); H01L-025 (07, 11, 18); H01L-031 (042); H01L- 
041 (09, 113); H01M-002 (10); H01M-004 (58); H01M-008 (00, 06, 18); H01M-010 (42, 44, 46, 48, 50); H01Q-001 (22, 28, 40, 42, 50); H01Q-003 (02); H01Q-015 (00, 14); 
H01Q-017 (00); H01R-000 (00); H01R-011 (00, 01); H01R-013 (24, 533); H01R-039 (00, 08, 18, 24, 38, 46, 58, 64); H01R-043 (00, 10, 14); H01T-001 (22); H01T-004 (00, 
02, 08); H01T-019 (00, 04); H02B-001 (00, 04, 20, 24, 28, 30, 32, 56); H02B-005 (00); H02B-007 (00); H02B-013 (00, 02, 025); H02M-000 (00); H02M-001 (00, 08, 084, 
088, 10, 12, 14, 15, 32, 34, 36, 42, 44); H02M-003 (00, 02, 04, 135, 155, 157, 158, 24, 28, 335, 337); H02M-005 (00, 04, 10, 22, 257, 293, 297, 40, 42, 44, 45, 451, 458); 
H02M-007 (00, 02, 04, 06, 10, 12, 162, 19, 21, 217, 219, 42, 44, 48, 497, 501, 53, 538, 539, 5395, 66, 68, 72, 81); H02M-054 (58); H03D-009 (00); H03K-000 (00); H03K- 
007 (08); H03K-017 (04, 12, 16, 56) 

Short-term 

Gearbox B21D-053 (28); F01D-015 (12); F03D-015 (00, 10, 20); F03D-080 (70); F16D-001 (00, 02, 033, 04, 05, 076, 08, 09, 091, 095, 10, 108); F16D-003 (00, 02, 18, 20, 58); F16D- 
007 (00, 02); F16D-009 (06); F16D-011 (00, 10); F16D-031 (02); F16D-041 (06, 064, 067, 07); F16D-048 (06); F16D-055 (00, 02, 22, 224, 226); F16D-063 (00); F16D-065 
(00, 02, 12, 14, 16, 18, 20, 38); F16D-066 (00, 02); F16D-069 (00, 02); F16D-121 (00, 02, 04, 24); F16D-125 (02); F16H-000 (00); F16H-001 (00, 02, 04, 06, 08, 10, 12, 16, 
20, 22, 24, 26, 28, 32, 36, 46, 48); F16H-003 (08, 44, 54, 62, 64, 70, 72); F16H-007 (00, 02); F16H-009 (00); F16H-013 (08); F16H-019 (04); F16H-025 (02); F16H-035 (00, 
02, 06, 08, 10, 18); F16H-037 (02, 04, 06, 08); F16H-039 (02, 20); F16H-047 (02, 04, 06, 08); F16H-048 (06, 11); F16H-053 (02); F16H-055 (06, 08, 12, 17, 18); F16H-057 
(00, 01, 02, 021, 022, 023, 025, 027, 028, 029, 031, 033, 038, 08, 10, 12, 04); F16H-059 (00); F16H-061 (00, 4017, 4026, 4035, 4043, 4148, 4165, 4183, 42, 421, 423, 431, 
433, 46, 468, 475) 

Not identified 

Blade  B21D-053 (78); B21K-003 (04); B29L-031 (08); B64C-011 (04, 06, 16, 24, 26, 28); B64C-027 (00, 46); F01D-000 (00); F01D-001 (06, 18); F01D-005 (00, 02, 08, 10, 12, 14, 
16, 18, 22, 26, 28, 30, 32); F03B-003 (12, 14); F03D-003 (06); F03D-011 (02); F04D-029 (18, 26, 38, 34, 36) 

Not identified 

Material B29C-000 (00); B29C-031 (00, 04, 08); B29C-033 (00, 02, 04, 10, 12, 14, 16, 20, 22, 26, 28, 30, 34, 38, 40, 42, 44, 50, 56, 68, 76); B29C-035 (00, 02, 04, 08, 16); B29C-037 
(00); B29C-039 (00, 02, 10, 12, 18, 24, 26, 42, 44); B29C-041 (00, 04, 20, 38, 42); B29C-043 (00, 10, 12, 18, 20, 22, 32, 34, 36, 52, 56, 58); B29C-044 (00, 04, 12, 18, 34, 44, 
50, 56); B29C-045 (00, 02, 14, 26, 42); B29C-047 (00, 02, 76); B29C-051 (00, 10, 14, 16); B29C-053 (56, 58, 60, 62, 68, 80, 82); B29C-059 (02); B29C-063 (00, 04, 22); B29C- 
064 (106); B29C-065 (00, 02, 08, 10, 14, 16, 34, 36, 48, 50, 52, 54, 56, 62, 70, 72, 78, 80); B29C-067 (00, 20, 24); B29C-069 (00); B29C-070 (00, 02, 04, 06, 08, 10, 12, 14, 16, 
18, 20, 22, 24, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 68, 70, 72, 74, 76, 78, 84, 86, 88); B29C-071 (00); B29C-073 (00, 02, 04, 10, 12, 26, 30, 32, 34); B29D- 
000 (00); B29D-022 (00); B29D-023 (00); B29D-024 (00); B29D-031 (00); B29D-099 (00); B29K-023 (00); B29K-025 (00); B29K-027 (18); B29K-031 (00); B29K-063 (00); 
B29K-067 (00); B29K-075 (00); B29K-101 (10, 12); B29K-105 (06, 00, 04, 06, 08, 10, 12, 20, 24); B29K-307 (00, 04); B29K-309 (08); B29K-311 (14); B29K-705 (00); B29K- 
707 (04); B29K-709 (08); B29L-000 (00); B29L-009 (00); B29L-022 (00); B29L-031 (00, 30); B29L-31 (08, 30); B32B-000 (00); B32B-001 (00, 04, 08); B32B-003 (00, 02, 06, 
08, 10, 14, 16, 20, 26, 28, 30); B32B-005 (00, 02, 04, 06, 08, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 32); B32B-007 (00, 02, 04, 08, 12); B32B-009 (00, 04); B32B-015 (01, 04, 
08, 14); B32B-017 (00, 02, 04, 06, 10); B32B-021 (04, 14); B32B-025 (08, 10, 14); B32B-027 (00, 02, 04, 06, 08, 12, 20, 28, 30, 32, 36, 38, 40); B32B-033 (00); B32B-037 (00, 
02, 06, 10, 12, 14, 15, 18, 24, 26); B32B-038 (00, 04, 08, 10, 18); B32B-041 (00); B32B-043 (00); B33Y-010 (00); B33Y-080 (00); C02F-001 (44); C08F-002 (34); C08F-010 
(00); C08F-210 (16); C08G-018 (32, 42, 48, 66); C08G-059 (40, 50, 56); C08J-003 (24); C08J-005 (00, 04, 06, 10, 12, 18, 24); C08J-007 (04, 12); C08J-009 (00, 12, 14, 36); 
C08K-003 (04, 08, 22); C08K-007 (02, 06, 14, 22, 28); C08L-027 (18); C08L-033 (06); C08L-063 (00); C08L-067 (00); C08L-075 (04); C08L-101 (00); C09D-007 (12); C09D- 
163 (00); C09D-175 (04); C09J-005 (00); C09J-011 (04); C09J-175 (04); C09J-201 (00); C10M-101 (02); C10M-105 (04, 18, 32); C10M-107 (02); C10M-115 (08); C10M-117 
(00); C10M-125 (22, 24); C10M-129 (68); C10M-137 (04, 10); C10M-169 (00, 02, 04); C10N-010 (02, 04); C10N-020 (00, 02); C10N-030 (00, 08); C10N-040 (02, 04); C10N- 
050 (10) 

Not identified 

Generator and control system  F01D-009 (02); H02N-006 (00); H02P-000 (00); H02P-001 (54); H02P-003 (00, 08, 12, 14, 18, 22, 24); H02P-004 (00); H02P-005 (00, 46); H02P-006 (00, 10, 18); H02P-007 
(00, 06, 28, 298, 36, 635); H02P-009 (00, 02, 04, 06, 08, 10, 12, 14, 26, 30, 36, 38, 40, 42, 44, 46, 48); H02P-011 (00, 06); H02P-013 (00, 06); H02P-021 (00, 05, 06, 12, 13, 
14, 22, 24); H02P-023 (00, 04, 14, 26); H02P-025 (02, 022, 20, 22); H02P-027 (00, 04, 05, 06, 08, 14, 16); H02P-029 (00, 02, 024, 032, 50); H02P-101 (15); H02P-103 (20) 

Not identified 

Generator F01D-009 (04); F01D-015 (10); F01P-001 (00, 06); F01P-003 (00, 18); F01P-007 (06); F02B-063 (04); F03D-009 (25, 28); F03D-080 (60); H02K-000 (00); H02K-001 (00, 02, 
04, 06, 08, 12, 14, 16, 17, 18, 20, 22, 24, 26, 27, 28, 30, 32); H02K-003 (00, 02, 04, 12, 14, 16, 18, 20, 24, 28, 30, 32, 34, 38, 40, 46, 48, 487, 50, 51, 52); H02K-005 (00, 04, 
08, 10, 15, 16, 167, 173, 18, 20, 22, 24); H02K-007 (00, 02, 06, 08, 09, 10, 102, 104, 106, 108, 116, 12, 14, 18, 20); H02K-009 (00, 02, 04, 06, 08, 10, 12, 14, 16, 18, 19, 197, 
20, 22, 26, 28); H02K-011 (00, 01, 02, 04, 042, 049, 20, 25, 30, 33, 40); H02K-013 (00, 02); H02K-015 (08, 09); H02K-016 (00, 02, 04); H02K-017 (00, 16, 30, 42, 44); H02K- 
019 (00, 02, 10, 12, 16, 22, 24, 26, 28, 34, 36, 38); H02K-021 (00, 02, 04, 12, 14, 16, 22, 24, 40, 48); H02K-023 (02, 60); H02K-029 (00, 03); H02K-037 (20); H02K-041 (02, 
03); H02K-049 (10); H02K-051 (00); H02K-055 (00, 02, 04); H02N-001 (12) 

Not identified 

Control system F02C-009 (00, 28); F02D-001 (06); F02D-009 (00); F02D-028 (00); F02D-029 (06); F02D-041 (00); G05B-000 (00); G05B-009 (02, 03); G05B-011 (01, 36); G05B-013 (00, 
02, 04); G05B-015 (00, 02); G05B-017 (02); G05B-019 (04, 042, 048, 05, 18, 402, 406, 414, 418); G05B-021 (02); G05B-023 (00, 02); G05D-001 (00); G05D-003 (00, 12); 
G05D-005 (00); G05D-007 (00, 06); G05D-009 (00); G05D-011 (00); G05D-017 (00, 02); G05D-019 (00, 02); G05D-022 (00, 02); G05D-023 (00, 19); G05F-001 (10, 12, 455, 
618, 66, 67, 70); G05F-003 (04); G05F-005 (00, 04); G08B-001 (08); G08B-005 (00, 22, 38); G08B-021 (00, 18); G08B-023 (00); G08C-015 (00); G08C-017 (00, 02); G08C- 
019 (00); G08G-005 (00, 04) 

Not identified  
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Table A3 
Keyword search related to short-term and long-term innovation. Note that word stems have been trimmed as part of the data cleaning process.  

Keywords Temporal dimension of 
innovation 

ice, freez, frost, froz, ic, deic, lidar, sodar, sonar, radar, remot sens, remote sens, resolut, resource assess, atlas, wind tunnel, windtunnel, model, 
protocol, cost, econom, lcoe, cheap, inexpens, price, discount, budget, affordabl, instal, crane, truck, road, vehic, lorr, ladd, pulley, transport, 
logist, construct, assembl, lift, mount, arrang, gondola, repair, maint, mttr, mttf, dirt, debri, hardwareinloop, hardware in loop, cabl, wire, cord, 
enclosure, nacell, hous, casing, cabin, main fram, hub, brack, shell, plate, cast, molt metal, brack, flange, bolt, screw, lock, weather, cyclon, 
typhoon, storm, seism, rain, hail, snow, earthquake, earth quake, lightn, thunder, cold climat, warm climat, tropic, gust, low wind, data manag, 
data collect, manag* data, collect data, database, data base, data, processor, digit, analysis, analyze, condition, predict, monitor, diagno, 
failuremod, fialure mode, failure mode, statis, crack, defect, wrinkl, crack, dry glass, dri glass, fractur, flaw, deform, lubric, oil, grease, emulsif, 
foam, viscosity, surfac ten, surface ten, seal, cool, outlet, inlet, hole, switch, power conver, filter, inductor capacit, circuit, break, rectifi, inverter, 
thyrist, transist, transform, converter, fabricat, cost, bear, safety, fire, biodegradabl, bio degradabl, eco friendly, ecofriend, recycl, flax, bamboo, 
coir, timber, reus 

Short-term 

meteorolog, climatol, complex terrain, complex flow model, offshor, off shor, sea, marin, harbour, deepwater, float, water depth, coastal, buoy, 
shore, hybrid tower, tall tower, light material, lt blade, large blade, larg blade, light weigh, stiff, smart blade, load shed, load control, thick airfoil, 
thick air foil, activ flow, control surf, vortex, flexibl blade, flexibl rotor, adapt rotor, adapt blade, rotor control, advanc blade, advanc rotor, activ 
blade, rotor blade, turbine blade, turbin blade, gearbox, blade control, blade compress, mult blade, multi blade, multi rotor, mult rotor, bladeless, 
blade less, blade free, curv tip, glass fi, fiber glass, fibre glass, glassfib, fiberglass, fibreglass, pmc, thermoplast, thermo plast, aramid, aromatic 
polyamide, carbon fib, fiber woven, woven fiber, crystallin, nano, fiber carbon, fibre carbon, polyacrylonitril, acrylonitril, carbon nano, cnt, 
squirr, scig, dfig, doubli fed induct, doubl fed induct, direct current generator, dcgenerat, dc generat, super conduc, superconduc, synchron, 
temperaturcycl, temperatur cycl, temperature cycl, lifetime, life time, prepreg, pre preg, pre impreg, preimpreg, resin infus, epoxy infus, vaccuum 
infus, vacuum infus, mold, mould, addit manufact, additiv manufact, virtual grid, virtu* grid, smart, intellig, hvdc, high voltag direct current, 
high voltage direct current, high voltag dc, high voltage dc, energ* storag, batteri, fly wheel, flywheel, supercap, fuel cell, fuelcell, lithi, ultracap, 
grid storag, power storag, monopil, mono pil, direct driv, directdriv, neodym, boron, ferr, rare earth, rareearth, lanthanid, grid stab, power qual, 
voltage stab, voltag stab, frequency stab, freq stab, frequen stab, harmonic dist, harmon dist, brownout, brown out, power qual, low harmon, 
power rat, frequency control, freq control, frequen control, grid control, phase transfor, network voltag, voltage network, voltag network, control 
sys, system control, optim, reliab, drivetrain, drive train, direct drive, network, windfarm, powerpl, hydrogen, landscap, ornament, aesth, beaut, 
flor, faun, bird, specie, anima, bat, ecolog, fatal, scare, grass, wild, fish, organism, fright, foliage, nois, tip speed, loud, torque control, control 
torque, pitch control, control pitch, yaw control, control yaw, small turbin, rooftop, roof top, residen, grid, urban, integrat op, distribut gen, scada 

Long-term  
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Table A4 
Results from negative binomial regressions for all suppliers.   

Long-term patenting activity Short-term patenting activity  
(1) All suppliers before 2012 (2) All suppliers after 2012 (1) All suppliers before 2012 (2) All suppliers after 2012 

Main effects     
International relationship − 0.239 0.115 − 0.103 0.152*  

(0.552) (0.226) (0.573) (0.093)  
[0.402] [0.095] [0.183] [0.091] 

Local relationship 0.422*** 0.291*** 0.266* 0.347***  
(0.005) (0.001) (0.094) 0.000  
[0.150] [0.090] [0.159] [0.090] 

Controls     
Specialized 1.152* 1.302*** 1.330** 1.372**  

(0.080) (0.002) (0.017) (0.018)  
[0.657] [0.429] [0.559] [0.581] 

Component complexity 1.174*** 0.321 0.212 0.801***  
(0.005) (0.377) (0.628) (0.005)  
[0.414] [0.364] [0.437] [0.285] 

Pre-sample patents (range) 1.946*** 1.161*** 1.559*** 1.138***  
0.000 0.000 0.000 0.000  
[0.290] [0.208] [0.299] [0.168] 

Size (range) 1.845*** 0.810** 0.680 0.484  
(0.001) (0.034) (0.193) (0.160)  
[0.581] [0.382] [0.522] [0.344] 

Age (range) − 1.490** 0.029 0.314 0.895***  
(0.031) (0.925) (0.573) (0.003)  
[0.693] [0.304] [0.558] [0.298] 

OEM outsource − 0.156 0.848 0.284 0.930  
(0.844) (0.155) (0.741) (0.222)  
[0.791] [0.597] [0.861] [0.761] 

Cumulative installed capacity 0.000*** − 0.000*** 0.000*** − 0.000***  
(0.007) (0.003) 0.000 (0.001)  
[0.000] [0.000] [0.000] [0.000] 

lnalpha 0.675** 1.456*** 1.374*** 1.410***  
(0.027) 0.000 0.000 0.000  
[0.306] [0.211] [0.221] [0.180] 

Constant − 5.499*** − 3.730*** − 3.614*** − 3.295***  
0.000 0.000 (0.003) 0.000  
[1.237] [0.740] [1.198] [0.926] 

Observations 509 1358 509 1358 
OEM Strategy FE YES YES YES YES 
Country FE YES YES YES YES 
Year FE YES YES YES YES 
Pseudo R2 0.27 0.168 0.147 0.147  
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Table A5 
Sensitivity analysis using innovation radicalness.   

Long-term patenting activity Short-term patenting activity  
(1) European 
suppliers before 
2012 

(2) European 
suppliers after 
2012 

(3) Chinese 
suppliers before 
2012 

(4) Chinese 
suppliers after 
2012 

(1) European 
suppliers before 
2012 

(2) European 
suppliers after 
2012 

(3) Chinese 
suppliers before 
2012 

(4) Chinese 
suppliers after 
2012 

Main effects         
International 

relationship 
− 1.097** 0.450** − 0.934*** 0.307 − 0.499 0.397* − 0.076 0.552**  

(0.024) (0.011) (0.005) (0.138) (0.424) (0.057) (0.723) (0.013)  
[0.487] [0.176] [0.333] [0.207] [0.625] [0.208] [0.215] [0.223] 

Local 
relationship 

0.723*** 0.149 − 0.292 − 0.145 0.570*** 0.327** 0.168 0.321  

(0.001) (0.226) (0.482) (0.658) (0.001) (0.030) (0.656) (0.210)  
[0.220] [0.123] [0.416] [0.327] [0.175] [0.150] [0.377] [0.256] 

Controls         
Specialized 2.512*** 1.480** 1.163 − 0.944 0.922 1.933*** 1.183 − 0.302  

(0.007) (0.040) (0.182) (0.112) (0.260) (0.003) (0.140) (0.429)  
[0.929] [0.720] [0.870] [0.593] [0.819] [0.662] [0.802] [0.381] 

Component 
complexity 

0.991* 0.998** − 0.947 0.207 0.612 1.288*** − 0.826 0.136  

(0.050) (0.040) (0.250) (0.686) (0.194) (0.005) (0.291) (0.792)  
[0.506] [0.485] [0.823] [0.511] [0.472] [0.454] [0.782] [0.515] 

Pre-sample 
patents (range) 

2.604*** 1.010*** 1.511*** 0.690*** 1.598*** 1.061*** 1.535*** 1.030***  

0.000 (0.001) (0.003) (0.001) 0.000 0.000 (0.003) 0.000  
[0.452] [0.301] [0.504] [0.214] [0.346] [0.261] [0.516] [0.241] 

Size (range) − 0.287 1.096** 16.155*** 0.603 − 0.131 0.425 1.329 0.395  
(0.725) (0.016) 0.000 (0.304) (0.867) (0.396) (0.152) (0.411)  
[0.815] [0.453] [0.673] [0.587] [0.778] [0.501] [0.927] [0.480] 

Age (range) − 1.001 0.410 0.081 0.294 − 0.327 0.628* 1.445 0.555  
(0.162) (0.278) (0.948) (0.571) (0.704) (0.079) (0.132) (0.346)  
[0.717] [0.378] [1.243] [0.518] [0.860] [0.357] [0.958] [0.589] 

OEM outsource 2.033* 1.668  − 2.671** 1.140 1.939** − 3.738*** − 0.695  
(0.072) (0.206)  (0.043) (0.375) (0.041) 0.000 (0.581)  
[1.129] [1.320]  [1.320] [1.285] [0.950] [0.782] [1.261] 

Cumulative 
installed 
capacity 

0.000 − 0.000*** 0.000 0.000 0.000*** − 0.000*** 0.000 0.000  

(0.201) 0.000 (0.775) (0.160) (0.004) 0.000 (0.446) (0.395)  
[0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] 

lnalpha 0.892** 0.792 0.824 1.692*** 0.964*** 1.013*** 1.279*** 1.345***  
(0.012) (0.101) (0.184) 0.000 (0.008) (0.002) 0.000 0.000  
[0.354] [0.483] [0.620] [0.410] [0.364] [0.335] [0.297] [0.198] 

Constant − 6.779*** − 4.886*** − 16.621*** − 1.540 − 3.907*** − 5.868*** 0.335 − 3.045*  
0.000 0.000 0.000 (0.302) (0.006) 0.000 (0.818) (0.088)  
[1.724] [1.353] [1.603] [1.492] [1.423] [1.315] [1.456] [1.785] 

Observations 237 534 150 457 237 534 150 457 
OEM Strategy FE YES YES YES YES YES YES YES YES 
Pseudo R2 0.222 0.26 0.233 0.0776 0.162 0.199 0.131 0.0804 

p-value in parentheses *** p<0.01, ** p<0.05, * p<0.1; firm-clustered standard error in brackets. 
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Table A6 
Sensitivity analysis using logit regressions.   

Long-term patenting activity Short-term patenting activity  
(1) European 
suppliers before 
2012 

(2) European 
suppliers after 
2012 

(3) Chinese 
suppliers 
before 2012 

(4) Chinese 
suppliers after 
2012 

(1) European 
suppliers before 
2012 

(2) European 
suppliers after 
2012 

(3) Chinese 
suppliers 
before 2012 

(4) Chinese 
suppliers after 
2012 

Main effects         
International 

relationship 
0.025 0.625*** 0.349 0.569** 1.565* 0.640*** − 0.258 0.370**  

(0.987) (0.005) (0.527) (0.015) (0.087) (0.006) (0.302) (0.048)  
[1.552] [0.221] [0.551] [0.235] [0.915] [0.231] [0.250] [0.188] 

Local 
relationship 

0.548*** 0.267** − 0.645 0.334 0.450** 0.666*** 0.076 0.333  

(0.009) (0.039) (0.225) (0.146) (0.023) (0.001) (0.851) (0.117)  
[0.210] [0.129] [0.532] [0.230] [0.198] [0.199] [0.405] [0.213] 

Controls         
Specialized 2.111** 2.097*** − 0.122 0.215 0.763 1.447** 1.332* 0.685  

(0.011) (0.002) (0.920) (0.696) (0.361) (0.040) (0.069) (0.168)  
[0.830] [0.683] [1.223] [0.550] [0.835] [0.704] [0.733] [0.496] 

Component 
complexity 

1.194** 0.285 − 0.518 − 0.553 − 0.234 1.157** − 0.198 − 0.390  

(0.043) (0.627) (0.689) (0.330) (0.630) (0.033) (0.798) (0.476)  
[0.590] [0.586] [1.294] [0.568] [0.487] [0.543] [0.775] [0.548] 

Pre-sample 
patents (range) 

1.931*** 0.934** 3.182*** 1.448*** 1.977*** 1.401*** 1.568*** 1.317***  

0.000 (0.024) (0.008) 0.000 0.000 (0.001) (0.003) 0.000  
[0.553] [0.415] [1.209] [0.286] [0.530] [0.411] [0.524] [0.258] 

Size (range) 2.151** 1.897**  0.899 0.220 0.531 1.143 0.884*  
(0.012) (0.025)  (0.132) (0.735) (0.365) (0.167) (0.075)  
[0.860] [0.848]  [0.596] [0.651] [0.586] [0.827] [0.496] 

Age (range) − 1.502* − 0.058 0.948 0.078 − 0.916 0.176 0.141 − 0.142  
(0.096) (0.908) (0.739) (0.894) (0.385) (0.732) (0.905) (0.780)  
[0.903] [0.503] [2.841] [0.587] [1.055] [0.515] [1.177] [0.508] 

OEM outsource 1.136 2.078  0.605 1.906 0.414  1.220*  
(0.406) (0.288)  (0.418) (0.241) (0.718)  (0.096)  
[1.367] [1.957]  [0.747] [1.624] [1.144]  [0.733] 

Cumulative 
installed 
capacity 

0.000 − 0.000** 0.000 0.000 0.000 − 0.000* 0.000 0.000  

(0.244) (0.013) (0.993) (0.310) (0.385) (0.066) (0.137) (0.986)  
[0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] 

Constant − 7.898*** − 6.969*** − 5.089 − 7.407*** − 6.667*** − 6.123*** − 1.589 − 5.005***  
(0.002) 0.000 (0.123) 0.000 (0.004) 0.000 (0.287) 0.000  
[2.513] [1.822] [3.296] [1.818] [2.313] [1.398] [1.493] [1.309] 

Observations 237 534 118 424 237 534 148 457 
OEM Strategy FE YES YES YES YES YES YES YES YES 
Pseudo R2 0.555 0.41 0.436 0.3 0.446 0.476 0.196 0.234 

p-value in parentheses *** p<0.01, ** p<0.05, * p<0.1; firm-clustered standard error in brackets. 
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Table A7 
Sensitivity analysis using the percentage of international relationships (i.e., share of international relationships in the total relationships).   

Long-term patenting activity Short-term patenting activity  
(1) European 
suppliers before 
2012 

(2) European 
suppliers after 
2012 

(3) Chinese 
suppliers before 
2012 

(4) Chinese 
suppliers after 
2012 

(1) European 
suppliers before 
2012 

(2) European 
suppliers after 
2012 

(3) Chinese 
suppliers before 
2012 

(4) Chinese 
suppliers after 
2012 

Main effects         
International 

percentage 
− 5.469*** − 0.994 − 1.198 1.454 − 6.511*** − 3.983*** − 0.705 1.497  

(0.007) (0.192) (0.546) (0.408) (0.006) (0.001) (0.313) (0.275)  
[2.029] [0.761] [1.985] [1.757] [2.350] [1.246] [0.700] [1.371] 

Controls         
Specialized 1.494* 2.120*** 0.338 0.094 1.433** 1.760** 1.321* 0.185  

(0.092) 0.000 (0.867) (0.859) (0.041) (0.011) (0.075) (0.608)  
[0.888] [0.541] [2.022] [0.528] [0.701] [0.691] [0.742] [0.362] 

Component 
complexity 

0.967** 0.633 0.101 0.305 0.003 1.209*** − 1.093 − 0.149  

(0.021) (0.268) (0.950) (0.597) (0.995) (0.007) (0.102) (0.727)  
[0.420] [0.572] [1.610] [0.576] [0.500] [0.449] [0.669] [0.427] 

Pre-sample 
patents (range) 

2.111*** 1.419*** 2.733*** 1.287*** 2.238*** 1.625*** 1.193*** 1.103***  

0.000 0.000 (0.001) 0.000 0.000 0.000 (0.003) 0.000  
[0.369] [0.369] [0.818] [0.310] [0.343] [0.258] [0.395] [0.231] 

Size (range) 1.104 1.882*** 17.554*** 0.447 − 1.401* 0.196 1.407** 0.725  
(0.131) (0.004) 0.000 (0.347) (0.065) (0.729) (0.049) (0.147)  
[0.731] [0.651] [1.134] [0.475] [0.761] [0.566] [0.716] [0.500] 

Age (range) − 2.004*** − 0.370 0.581 0.100 0.216 0.400 1.105 0.546  
(0.005) (0.423) (0.859) (0.893) (0.754) (0.328) (0.210) (0.336)  
[0.711] [0.462] [3.261] [0.743] [0.690] [0.409] [0.880] [0.568] 

OEM outsource − 0.822 2.721* − 4.769*** − 0.951 1.439 2.102** − 3.746*** − 1.560  
(0.459) (0.067) 0.000 (0.292) (0.291) (0.019) 0.000 (0.137)  
[1.110] [1.485] [0.931] [0.903] [1.361] [0.896] [0.579] [1.049] 

Cumulative 
installed 
capacity 

− 5.469*** − 0.994 0.000 0.000 0.000 − 0.000*** 0.000 0.000  

(0.007) (0.192) (0.830) (0.288) (0.106) 0.000 (0.413) (0.451)  
[2.029] [0.761] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]  
0.815*** 1.253*** − 0.063 1.465*** 1.130*** 1.258*** 1.261*** 1.421*** 

lnalpha (0.004) (0.001) (0.971) 0.000 (0.001) 0.000 0.000 0.000  
[0.284] [0.385] [1.706] [0.283] [0.340] [0.343] [0.317] [0.199]  
0.219 − 3.737*** − 16.862*** − 3.342 − 1.359 − 2.358** 1.085 − 1.306 

Constant (0.887) (0.002) (0.001) (0.105) (0.546) (0.020) (0.408) (0.448)  
[1.534] [1.193] [5.284] [2.059] [2.252] [1.010] [1.310] [1.720] 

Observations 237 534 150 457 237 534 150 457 
OEM Strategy FE YES YES YES YES YES YES YES YES 
Pseudo R2 0.225 0.205 0.377 0.124 0.165 0.184 0.123 0.0629 

p-value in parentheses *** p<0.01, ** p<0.05, * p<0.1; firm-clustered standard error in brackets. 
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Table A8 
Sensitivity analysis including the percentage of Chinese patents as control.   

Long-term patenting activity Short-term patenting activity  
(1) European 
suppliers before 
2012 

(2) European 
suppliers after 
2012 

(3) Chinese 
suppliers before 
2012 

(4) Chinese 
suppliers after 
2012 

(1) European 
suppliers before 
2012 

(2) European 
suppliers after 
2012 

(3) Chinese 
suppliers before 
2012 

(4) Chinese 
suppliers after 
2012 

Main effects         
International 

relationship 
− 0.676 0.451** 0.125 0.256*** − 0.612 0.167 − 0.117 0.066  

(0.176) (0.015) (0.570) (0.001) (0.110) (0.279) (0.570) (0.529)  
[0.500] [0.185] [0.220] [0.076] [0.383] [0.155] [0.206] [0.105] 

Local 
relationship 

0.509*** 0.138 − 0.503 0.272** 0.456** 0.311** 0.235 0.135  

0.000 (0.271) (0.330) (0.040) (0.032) (0.025) (0.545) (0.433)  
[0.117] [0.126] [0.516] [0.133] [0.212] [0.139] [0.388] [0.173] 

Controls         
Specialized 0.958 1.777*** 0.616 − 0.540** 0.913 0.775* 1.243 − 0.137  

(0.188) 0.000 (0.663) (0.038) (0.203) (0.068) (0.110) (0.573)  
[0.728] [0.462] [1.414] [0.260] [0.718] [0.425] [0.777] [0.244] 

Component 
complexity 

1.066** 0.803* − 0.119 − 0.400 0.271 1.051*** − 1.002 − 0.074  

(0.014) (0.054) (0.921) (0.240) (0.584) (0.006) (0.164) (0.757)  
[0.432] [0.418] [1.192] [0.340] [0.494] [0.379] [0.720] [0.240] 

Pre-sample 
patents (range) 

1.959*** 0.930*** 2.777*** 0.245 1.924*** 1.444*** 1.232*** 0.097  

0.000 (0.009) (0.005) (0.150) 0.000 0.000 (0.005) (0.627)  
[0.329] [0.358] [0.985] [0.170] [0.330] [0.296] [0.438] [0.201] 

Size (range) 2.072*** 2.117*** 16.163*** − 0.521 − 0.831 0.433 1.371 0.262  
(0.010) 0.000 0.000 (0.122) (0.219) (0.381) (0.123) (0.305)  
[0.800] [0.540] [0.689] [0.337] [0.676] [0.494] [0.889] [0.255] 

Age (range) − 1.384* 0.415 0.886 − 0.608*** 0.638 0.848** 1.257 − 0.048  
(0.052) (0.366) (0.716) (0.004) (0.341) (0.039) (0.174) (0.900)  
[0.711] [0.459] [2.433] [0.212] [0.670] [0.411] [0.925] [0.378] 

OEM outsource − 0.080 1.881 − 5.169*** − 1.161*** 2.736** 2.350 − 3.654*** − 1.180  
(0.941) (0.363) (0.001) (0.010) (0.029) (0.348) 0.000 (0.163)  
[1.086] [2.068] [1.605] [0.450] [1.250] [2.506] [0.722] [0.846] 

Cumulative 
installed 
capacity 

0.000*** − 0.000*** 0.000 0.000 0.000* − 0.000*** 0.000 0.000  

(0.008) (0.001) (0.881) (0.286) (0.059) 0.000 (0.539) (0.185)  
[0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]  
4.956*** 5.240***  6.245***     

% long-term 
Chinese 
patents 

(0.007) 0.000  0.000      

[1.827] [1.256]  [1.017]          
8.397** 8.525***  20.633*** 

% short-term 
Chinese 
patents     

(0.016) 0.000  0.000      

[3.473] [2.061]  [0.251]  
0.606* 0.755*** 0.077 − 1.419*** 1.057*** 0.615*** 1.272*** − 0.645*** 

lnalpha (0.051) (0.003) (0.937) 0.000 (0.001) (0.004) 0.000 0.000  
[0.310] [0.250] [0.964] [0.229] [0.308] [0.212] [0.309] [0.166]  
− 4.522*** − 6.361*** − 15.842*** − 4.757*** − 6.128*** − 6.213*** 0.511 − 19.247*** 

Constant (0.001) 0.000 0.000 0.000 0.000 (0.009) (0.722) 0.000  
[1.329] [1.612] [2.765] [1.346] [1.338] [2.370] [1.439] [1.077] 

Observations 237 534 150 457 237 534 150 457 
OEM Strategy FE YES YES YES YES YES YES YES YES 
Pseudo R2 0.264 0.28 0.382 0.503 0.177 0.271 0.122 0.396 

p-value in parentheses *** p<0.01, ** p<0.05, * p<0.1; firm-clustered standard error in brackets. 
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Table A9 
Results for 2SLS IV regression (instrument: Number of trade agreements).   

Long-term patenting activity Short-term patenting activity  
European 
suppliers 
before 2012 

European 
suppliers 
after 2012 

European 
suppliers 
before 2012 

European 
suppliers 
after 2012 

Main effect     
International 

relationship 
6.128 3.438*** 1.817 1.763**  

(0.418) (0.000) (0.643) (0.018)  
[7.560] [0.786] [3.923] [0.748] 

Local 
relationship 

− 0.730 − 0.352 0.821 0.293  

(0.811) (0.164) (0.604) (0.223)  
[3.048] [0.253] [1.582] [0.241] 

Constant 0.016 − 2.150*** − 0.519 − 1.113**  
(0.990) (0.000) (0.445) (0.029)  
[1.307] [0.535] [0.678] [0.509] 

Observations 237 534 237 534 
Durbin (score) 

chi2(1) 
0.756 (p =
0.385) 

22.675 (p =
0.000) 

0.002 (p =
0.969) 

1.260 (p =
0.262) 

Wu-Hausman F 
(1,1963) 

0.745 (p =
0.389) 

23.503 (p =
0.000) 

0.002 (p =
0.970) 

1.253 (p =
0.263) 

Minimum 
eigenvalue 
statistic 

2.20 25.21 2.20 25.21 

p-value in parentheses *** p<0.01, ** p<0.05, * p<0.1; standard error in 
brackets. 
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Peñasco, C., Anadón, L.D., Verdolini, E., 2021. Systematic review of the outcomes and 
trade-offs of ten types of decarbonization policy instruments. Nat. Clim. Chang. 11, 
257–265. https://doi.org/10.1038/s41558-020-00971-x. 

Phene, A., Fladmoe-Lindquist, K., Marsh, L., 2006. Breakthrough innovations in the U.S. 
biotechnology industry: the effects of technological space and geographic origin. 
Strat. Mgmt. J. 27, 369–388. https://doi.org/10.1002/smj.522. 

Pietrobelli, C., Rabellotti, R., 2011. Global value chains meet innovation systems: are 
there learning opportunities for developing countries? World Dev. 39, 1261–1269. 
https://doi.org/10.1016/j.worlddev.2010.05.013. 

Pisano, G.P., Shih, W.C., 2012. Does America really need manufacturing. Harv. Bus. Rev. 
90, 94–102. 

Pisano, G.P., Shih, W.C., 2009. Restoring american competitiveness. Harv. Bus. Rev. 87, 
114–125. 

Popp, D., 2019. Environmental Policy and Innovation: a decade of research. IRERE 13, 
265–337. https://doi.org/10.1561/101.00000111. 

Popp, D., 2004. ENTICE: endogenous technological change in the DICE model of global 
warming. J. Environ. Econ. Manage. 48, 742–768. 

Popp, D., Haščič, I., Medhi, N., 2011. Technology and the diffusion of renewable energy. 
Energy Econ. 33, 648–662. https://doi.org/10.1016/j.eneco.2010.08.007. Special 
Issue on The Economics of Technologies to Combat Global Warming.  

Probst, B., Touboul, S., Glachant, M., Dechezleprêtre, A., 2021. Global trends in the 
invention and diffusion of climate change mitigation technologies. Nat. Energy 6, 
1077–1086. https://doi.org/10.1038/s41560-021-00931-5. 

Qiu, Y., Anadón, L.D., 2012. The price of wind power in China during its expansion: 
technology adoption, learning-by-doing, economies of scale, and manufacturing 
localization. Energy Econ. 34, 772–785. https://doi.org/10.1016/j. 
eneco.2011.06.008. 
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