
Empirical Lagrangian parametrization for wind-driven mixing of
buoyant particles at the ocean surface
Victor Onink1,2,3, Erik van Sebille3, and Charlotte Laufkötter1,2

1Climate and Environmental Physics, Physics Institute, University of Bern, Bern, Switzerland
2Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
3Institute for Marine and Atmospheric Research, Utrecht University, Utrecht, The Netherlands

Correspondence: Victor Onink (victor.onink@climate.unibe.ch)

Abstract. Turbulent mixing is a vital component of vertical particulate transport, but ocean global circulation models (OGCMs)

generally have low resolution representations of near-surface mixing. Furthermore, turbulence data is often not provided in re-

analysis products. We present 1D parametrizations of wind-driven turbulent mixing in the ocean surface mixed layer, which are

designed to be easily included in 3D Lagrangian model experiments. Stochastic transport is computed by Markov-0 or Markov-5

1 models, and we discuss the advantages/disadvantages of two vertical profiles for the vertical diffusion coefficient Kz . All

vertical diffusion profiles and stochastic transport models lead to stable concentration profiles for buoyant particles, which for

particles with rise velocities of 0.03 and 0.003 m s−1 agree relatively well with concentration profiles from field measurements

of microplastics. Markov-0 models provide good model performance for integration timesteps of ∆t≈ 30 seconds, and can be

readily applied in studying the behaviour of buoyant particulates in the ocean. Markov-1 models do not consistently improve10

model performance relative to Markov-0 models, and require an additional parameter that is poorly constrained.

1 Introduction

Lagrangian models are essential tools to examine the transport of particulates in the ocean on a variety of spatial and temporal

scales (Van Sebille et al., 2018), and have been used to study the movement of plastic particulates (Onink et al., 2019), oil15

(Samaras et al., 2014) and fish larvae (Paris et al., 2013). However, especially in the field of marine plastic modelling, most

large scale modelling studies consider only virtual particles (henceforth referred to as particles) that float and remain at the

ocean surface (Lebreton et al., 2018; Liubartseva et al., 2018; Onink et al., 2019, 2021), essentially simplifying the three dimen-

sional ocean into a 2D system. While this does reduce the complexity of models, ultimately vertical transport processes need to

be considered in order to have a complete understanding of oceanic particulate transport (Wichmann et al., 2019; Van Sebille20

et al., 2020).
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In the case of buoyant particulates (particulates with a density lower than seawater), buoyancy is expected to return any

particulates to the ocean surface. However, instead of all buoyant particulates accumulating at the ocean surface, both field

measurements (Kukulka et al., 2012; Kooi et al., 2016b) and regional large-eddy simulations (LES) model studies (e.g. Liang25

et al., 2012; Yang et al., 2014; Brunner et al., 2015; Taylor, 2018) indicate vertical concentration profiles throughout the mixed

layer (ML). These profiles arise due to the balance between the particulate buoyancy and turbulent mixing flows, which are

largely driven by wind and wave breaking at the ocean surface (Chamecki et al., 2019). While such profiles are commonly used

to correct surface measurements of particulates such as microplastics (e.g. Law et al., 2014; Egger et al., 2020), it is difficult to

recreate such vertical mixing profiles in the ML outside of LES models, as vertical turbulent processes generally act on much30

smaller scales than is resolved in ocean global circulation models (OGCMs) (Taylor, 2018). In addition, while it is possible

to represent mixing using the parametrization from Kukulka et al. (2012), this approach is only valid for depths up to several

meters, while the mixed layer depth (MLD) can be hundreds of meters deep (Chamecki et al., 2019).

In this study we present numerical simulations of buoyant virtual particles in the ML with four 1D wind-driven mixing35

parametrizations. These mixing parametrizations have been specifically designed for use in Lagrangian models running with

OGCM data, where the vertical spatial scale might be too coarse to represent turbulent processes or where turbulence data

might not be provided as model output. Using these parametrizations we calculate the vertical equilibrium profiles of buoyant

particles within the ML as a function of the particle rise velocities, the 10m wind speed and the MLD. Buoyant particles are

found below the ML (Pieper et al., 2019; Choy et al., 2019; Egger et al., 2020), but diffusive mixing at such depths is likely40

not due to wind-driven turbulent mixing and therefore goes beyond the scope of this study. We test two methods for solving

stochastic differential equations, and consider vertical diffusion coefficient profiles based on the KPP model (Large et al.,

1994) and on Kukulka et al. (2012) extended by Poulain (2020). The modelled concentration profiles are then compared with

measurements of vertical concentration profiles of microplastics.

2 Model Framework45

2.1 Lagrangian stochastic transport

Turbulence in the ocean occurs over a wide range of spatial and temporal scales, with Kolmogorov length and timescales

of η = (ν3/ε)1/4 = 3× 10−4 m and τn = (ν/ε)1/2 = 0.1 s (Landahl and Christensen, 1998) for turbulent kinetic energy ε=

10−4 m2 s−2 (Gaspar et al., 1990) and kinematic viscosity of seawater ν = 10−6 m2 s−1 (Riisgård and Larsen, 2007). The

vertical resolution of OCGMs is typically on the order of meters and is therefore not capable resolving all turbulent processes.50

Instead, turbulence due to sub-grid scale processes is generally represented stochastically. In our 1D vertical model, we simulate

positively buoyant particles that are vertically transported due to stochastic turbulence and the particle rise velocity wrise. For

such particles, the particle trajectory Z(t) can be computed with a stochastic differential equation (SDE) (Gräwe et al., 2012)
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as:

Z(t+ dt) = Z(t) + (wrise + ∂zKz)dt+
√

2KzdW (1)55

Z(0) = 0 (2)

where Kz =Kz

(
Z(t)

)
is the vertical diffusion coefficient, ∂zKz = ∂Kz/∂z, dW is a Wiener increment with zero mean and

variance dt and we define the vertical axis z as positive upward with z = 0 at the air–sea interface. The Euler-Maruyama (EM)

scheme (Maruyama, 1955) is the simplest numerical approximation of equation 1, where infinitesimal terms dt and dW are

replaced with the finite ∆t and ∆W . Equation 1 can then be rewritten as (Gräwe et al., 2012):60

w′(t) = ∂zKz +
1

∆t

√
2Kz∆W (3)

Z(t+ ∆t) = Z(t) +
(
wrise +w′(t)

)
∆t (4)

where w′ is the stochastic velocity perturbation due to turbulence. The turbulent transport has both a deterministic drift term

and a stochastic term. This is the most basic form of representing turbulent particle transport, as turbulent perturbations on the

particle position are assumed to be uncorrelated (Berloff and McWilliams, 2003). The drift term assures that the well-mixed65

condition is met, which states that an initially uniform particle distribution must remain uniform even with inhomogeneous

turbulence (Brickman and Smith, 2002; Ross and Sharples, 2004). This approach, termed a Markov-0 (M-0) or random walk

model, assumes that turbulent fluctuations exhibit no autocorrelation on timescales ∆t, which for global-scale Lagrangian

simulations can range from 30 seconds (Lobelle et al., 2021) to 30 minutes (Onink et al., 2019). However, measurements from

Lagrangian ocean floats show this is an oversimplification, as coherent oceanic flow structures can induce velocity autocorre-70

lations that can persist for significantly longer timescales (Denman and Gargett, 1983; Brickman and Smith, 2002).

A higher order approach is the Markov-1 (M-1) model, which assumes a degree of autocorrelation of particle velocities set by

the Lagrangian integral timescale TL. The turbulent velocity perturbation is now expressed as a Langevin equation, and with

an EM numerical scheme the particle trajectory Z(t) is computed as (Mofakham and Ahmadi, 2020):75

Z(t+ ∆t) = Z(t) +
(
wrise +w′(t)

)
∆t (5)

w′(t+ ∆t) = αw′(t) + ∂zσ
2
w∆t+

√
2(1−α)σ2

w

∆t
∆W (6)

where α= 1−∆t/TL and σ2
w = σ2

w(z, t) is the variance of w′. The influence of the initial turbulent fluctuations on subsequent

fluctuations is set by α, which in turn depends on the ratio between the integration timestep ∆t and TL. However, empirical and

theoretical estimates for TL range from 6-7 seconds (Kukulka and Veron, 2019) to 15-30 minutes (Denman and Gargett, 1983),80

and TL can also be depth dependent (Brickman and Smith, 2002). In large-eddy simulation (LES) models, TL = 4e/3C0ε

where e is the sub-grid scale turbulent kinetic energy, C0 is a model constant determining diffusion in the velocity space and

ε is the turbulent kinetic energy dissipation rate (Kukulka and Veron, 2019), but e and ε are not commonly available variables

in the output of OGCMs. However, it does indicate why model TL estimates vary widely, as TL describes the autocorrelation
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of the particle velocity from its initial velocity due to unresolved sub-grid processes, which depends on the model resolution85

and setup in a given study. Since there is not a clear indication of the true value of TL, we consider a range of values α ∈
[0,0.1,0.3,0.5,0.7,0.95], corresponding to TL ∈ [1,1.1,1.4,2,3.3,20]×∆t. As the depth dependence of TL is uncertain, we

make the simplification that ∂zTL = ∂zα= 0. Since ∆t≤ TL, we use Kz = σ2
w∆t (Brickman and Smith, 2002), which means

that equation 6 becomes:

w′(t) = αw′(t) + ∂zKz +
1
dt

√
2(1−α)Kz∆W (7)90

In this form, it is clear that equation 7 is equivalent to equation 4 when α= 0. This is because when α= 0, velocity pertur-

bations w′ are assumed to be uncorrelated over timescales ≥∆t, which is equivalent to the M-0 formulation. M-1 stochastic

models generally should lead to improved representation of diffusion in Lagrangian models (Berloff and McWilliams, 2003;

Van Sebille et al., 2018), but it does require insight into turbulence statistics that have not yet been extensively studied in La-

grangian settings. For that reason, while even higher order Markov models are theoretically possible (Berloff and McWilliams,95

2003), we limit this study to just the M-0 and M-1 approaches.

All Lagrangian simulations are run using Parcels v2.2.1 (Delandmeter and Sebille, 2019), starting with 100,000 particles

released at Z(0) = 0 and running for 12 hours. We take ∆t= 30 seconds, where the integration timestep is a compro-

mise between accounting for turbulent transport on short timescales and computational cost for when the 1D model is in-100

tegrated into a larger 3D Lagrangian model. We consider high, medium and low buoyancy particles with rise velocities of

wrise ∈ [0.03,0.003,0.0003] m s−1, which for plastic polyethylene (ρ= 980 kg m−3) particles corresponds to spherical par-

ticles with diameters of 2.2, 0.4 and 0.1 mm (Enders et al., 2015). However, these particle sizes are rough indications of

approximate particle sizes, as the buoyancy of particle depends on a combination of the particle size, shape, polymer density

and degree of biofouling (Kooi et al., 2016b; Brignac et al., 2019; Kaiser et al., 2017). The surface wind stress is computed105

from u10 ∈ [0.85,2.4,4.35,6.65,9.3] m s−1. The model domain is z ∈ [−100,0]m, where we apply a ceiling boundary con-

dition (BC) in which particles that cross the surface boundary are placed at z = 0. This BC assures that neither buoyancy or

turbulence can transport particles out of the water column. Vertical concentration profiles are computed by binning the final

particle locations into 0.2 m bins, and the concentrations are then normalized by the total number of particles in the simulation.

2.2 Vertical diffusion profiles110

Two vertical diffusion coefficient profiles are used, with the first based on Kukulka et al. (2012) and Poulain (2020). Kukulka

et al. (2012) parametrized the near-surface vertical diffusion coefficient KS
z due to breaking waves as:

KS
z = 1.5u∗wκHs (8)

for z >−1.5Hs, where κ= 0.4 is the von Karman constant,Hs is the significant wave height and u∗w is the frictional velocity

of water. The significant wave height Hs is parametrized as HS = 0.96g−1β
3/2
∗ u2

∗a, where g = 9.81 m s−2 is the accelation115

of gravity, β∗ = cp/u∗a is the wave age, cp being the characteristic phase speed of the surface waves and u∗a = τ/ρa is the
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frictional velocity of water. The frictional velocity of air is based on the air density ρa = 1.22 kg m−3 and the surface wind

stress τ = CDρau
2
10, where u10 is the 10m wind speed and CD is the drag coefficient (Large and Pond, 1981). Similarly,

u∗w = τ/ρw with the seawater density ρw = 1027 kg m−3. Following Kukulka et al. (2012), we assume a fully developed sea-

state with β∗ = 35. The Kukulka et al. (2012) parametrization is valid only for z ≈−1.5Hs, and we extend the parametrization120

for greater depths using the eddy viscosity profile νz as found for oscillating grid turbulence by Poulain (2020):

νz =




νS if z >−Hs

νSH
3/2
s |z|−3/2 if z <−Hs

(9)

where νS is the near surface eddy viscosity. Oscillating grid turbulence experiments are commonly used to study wave and

wind induced turbulence (Fernando, 1991), and have been shown to reproduce turbulence decay laws of velocities and dissi-

pation rates found in the ocean ML (Thompson and Turner, 1975; Hopfinger and Toly, 1976; Craig and Banner, 1994). The125

diffusion coefficient Kz depends on νz as Kz = νz/Sct, where Sct is the turbulent Schmidt number, and assuming ∂zSct = 0,

combining equations 8 and 9 results in:

Kz =




KS

z +KB = 1.5u∗wκHs +KB if z >−Hs

KS
z H

3/2
s |z|−3/2 +KB = 1.5u∗wκH

5/2
s |z|−3/2 +KB if z <−Hs

(10)

where KB = 3× 10−5 m2 s−1 is the dianeutral diffusion below the MLD (Waterhouse et al., 2014). The diffusion is thus

constant for z >−Hs, below which Kz ∝ |z|−3/2, while the magnitude of Kz increases for higher wind speeds (Fig. 1). As130

z→−∞, |z|−3/2→ 0, and therefore we include the bulk dianeutral diffusion KB to account for vertical mixing at depths

below the influence of surface wave-driven turbulence. As both Kukulka et al. (2012) and Poulain et al. (2018) considered tur-

bulence generated by breaking surface waves, we refer to this diffusion approach as Surface Wave Breaking (SWB) diffusion.

The second vertical diffusion coefficient profile is a local form of the K-profile parameterization (KPP) (Large et al., 1994;135

Boufadel et al., 2020), where Kz is given by:

Kz =
(
κu∗w
φ

θ

)
(|z|+ z0)

(
1− |z|

MLD

)
+KB (11)

where φ= 0.9 is the "stability function" of the Monin-Obukov boundary layer theory, θ = 1 is a Langmuir circulation enhance-

ment factor, and z0 is the roughness scale of turbulence. The roughness scale z0 depends on the wind speed and the wave age

(Zhao and Li, 2019), and a wave age β∗ = cp/u∗a = 35 is equivalent to β = cp/u10 = 1.21. Following Zhao and Li (2019), the140

roughness scale is given by:

z0 = 3.5153× 10−5β−0.42u2
10/g (12)

The MLD is the maximum depth of the surface ocean boundary layer formed due to interaction with the atmosphere, and in

KPP theory the MLD is defined as the depth where the bulk Richardson number RiB is first equal to a critical value Ricrit. In

5
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Figure 1. Vertical diffusion coefficient profiles for SWB and KPP diffusion under varying wind conditions.

the original formulation Ricrit = 0.3 (Large et al., 1994), but RiB can be difficult to compute in the field as this requires data145

for both vertical density and velocity shear profiles. In this study we prescribe MLD= 20 m, as this falls within the range of

the MLD for field data used to evaluate the model (see Section 2.3). Since KPP theory predicts Kz = 0 if z <−MLD, we add

the same bulk dianeutral diffusion term KB as with the SWB profile (equation 10).

2.3 Field data

We compiled a dataset of vertical plastic concentration profiles collected within the surface mixing layer to validate the mod-150

elled concentration profiles (Table 1), with a total of 90 profiles with 741 data points. Only Kooi et al. (2016b) reported the

rise velocity of a subsample of the collected microplastic particulates, and showed that these particles were positively buoy-

ant. However, the presence of all the other sampled particulates near the open ocean surface indicates they are unlikely to

be negatively buoyant. For all stations the wind speed was recorded and the MLD was determined from CTD data based on a

temperature threshold (de Boyer Montégut et al., 2004). The majority of samples were collected in the North Atlantic (Kukulka155

et al., 2012; Kooi et al., 2016b; Pieper et al., 2019), and in regions with a relatively shallow MLD. Since wind-driven turbu-

lent mixing isn’t expected to influence the concentration depth profile below the MLD, we don’t consider any measurements

collected below 73 m. Measurements were collected with surface wind speeds up to 10.7 m s−1, with the majority of sampled

concentrations being collected for u10 = 3.4− 7.9 m s−1 (535/741 data points).

160

Almost all measurements were collected with neuston nets, either multi-level nets simultaneously sampling fixed depth in-
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Table 1. Overview of the sources of field measurements of microplastic concentration profiles. The uncertainty in the mean MLD is the

standard deviation.

Source
Measurement

Approach

Number of

concentration profiles

Number of

data points

Mean MLD [min max]

(z)

Kooi et al. (2016b) Neuston net 46 506 15.4±3.6 [10.0, 26.2]

Pieper et al. (2019) Niskin bottles 12 152 17.1±5.5 [11.0, 28.0]

Kukulka et al. (2012) Neuston net 13 47 24.3±8.9 [11.0, 45.1]

Egger et al. (2020) Neuston net 16 20 55.8±19.2 [12.3, 72.8]

Amaral-Zettler (unpublished data) Neuston net 3 16 17.8±4.8 [14.0, 26.0]

Total 90 741 17.5±8.8 [10.0, 72.8]

tervals (Kooi et al., 2016b) or using multi-stage nets that consecutively sample fixed depths or depth ranges (Kukulka et al.

(2012); Egger et al. (2020); Amaral-Zettler (unpublished data)). These nets have mesh-sizes of 0.33 mm, and will generally

sample high and medium (wrise = 0.03− 0.003 m s−1) buoyancy particulates, which for non-biofouled polyethylene would

have a diameter greater than the mesh size (2.2 and 0.4 mm). In contrast, low buoyancy particulates (wrise = 0.0003 m s−1)165

are typically not sampled in neuston nets (Kooi et al., 2016b), likely in part due to smaller particulate sizes. Pieper et al. (2019)

filtered samples collected via Niskin bottles with a 0.8µm filter and thus was able to filter out smaller particulates with lower

rise velocities.

All measured microplastic concentrations are normalized by total amount of plastic measured within a vertical profile. Com-170

parison of the modelled concentration profiles with the normalized field measurements is done via the root mean square error

(RMSE)

3 Results

Starting with all particles at z = 0 for t= 0, M-0 models with both KPP and SWB diffusion lead to stable vertical concentration

profiles within 12 hours (Fig. 2), where the equilibrium concentration profile is already established within 2 or 3 hours. For175

both diffusion profiles, increased wind speeds lead to greater downward mixing of the particles. However, with SWB diffusion

the high buoyancy particles remain at the surface until w10 ≥ 9.30 m s−1 while with KPP diffusion high buoyancy particles

always remain at the surface. Less buoyant particles get mixed deeper into the water column, as turbulent mixing forces domi-

nate over the particle rise velocity. The concentration profiles for medium and low buoyancy particles are largely unaffected by

reducing ∆t below 30 seconds (Fig. A1). However, for high buoyancy particles with SWB diffusion the concentration profile180

more strongly depends on ∆t due to the applied boundary condition. For ∆t= 30 s, the M-0 model shows all particles remain

near the ocean surface, but shorter ∆t values indicate that downward mixing already occurs for u10 = 6.65 m s−1.

7
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Figure 2. Vertical concentrations of buoyant particles for KPP and SWB diffusion using M-0 models. Subfigures (a) - (e) show the vertical

concentration profiles for high and medium buoyancy particles with increasing wind speeds. The grey markers indicate field measurements,

with darker shades indicating more measurements. Subfigure (f) shows the vertical concentration profiles for low buoyancy particles under

increasing wind conditions.

For high buoyancy particles, the concentration profiles with KPP and SWB diffusion are very similar, with SWB generally

leading to slightly deeper mixing due to the higher near-surface Kz values (Fig. 1). However, for medium and low buoyancy185

particles KPP diffusion leads to greater downward mixing compared to SWB diffusion. The decreased buoyancy slows the

particle rise to the surface, and for z /−Hs KPP diffusion generally has higher Kz values than SWB diffusion. For the low

buoyancy particles, this leads to uniform concentrations in the ML for wrise > 4.35 m s−1.

Both SWB and KPP diffusion lead to concentration profiles that match reasonably well with observations, with similar RMSE190

values relative to field measurements for given wind conditions (Fig. 3). Model evaluation for the low buoyancy particles is not

possible with the available field measurements as low buoyancy particles are typically too small to be sampled with neuston

nets.

With both KPP and SWB diffusion, M-1 models show increased leads to increased downward mixing of particles with in-195

creasing α (Fig. 4). Relative to the field measurements, M-1 models can at best slightly improve model performance over M-0

models (Fig. 5). However, improved model performance is not shown across all particle sizes and wind conditions, and there

is not a consistent α value leading to the smallest RMSE values.

8

https://doi.org/10.5194/gmd-2021-195
Preprint. Discussion started: 4 October 2021
c© Author(s) 2021. CC BY 4.0 License.



Figure 3. RMSE between field measurements and modelled concentration profiles for M-0 models with KPP and SWB diffusion under

different wind conditions.

4 Discussion

The parametrizations presented in this study are intended for use in 3D Lagrangian experiments using OGCM data, and there-200

fore should yield numerically stable results for the relatively large integration timesteps used in large-scale Lagrangian vertical

transport modelling (Lobelle et al., 2021). While there are more stable schemes available than the EM scheme used in this study

(Gräwe et al., 2012), the EM scheme is computationally the cheapest and yields concentration profiles that match reasonably

well with observations. Both M-0 and M-1 models show largely convergent concentration profiles for ∆t= 30 seconds, which

would make both approaches feasible with regards to computational cost. However, we would currently recommend using a M-205

0 model. M-1 models have the additional tuning parameter α representing the autocorrelation of turbulent velocity fluctuations,

which is poorly constrained in the literature. Using spatially invariant α values at best slightly improved model performance

in comparison with M-0 models, and constraining α is not possible from these results. M-1 models may improve modelling of

9

https://doi.org/10.5194/gmd-2021-195
Preprint. Discussion started: 4 October 2021
c© Author(s) 2021. CC BY 4.0 License.



Figure 4. Vertical concentrations of buoyant particles for (a) KPP and (b) SWB diffusion using M-0 and M-1 models with varying values for

α. All profiles are for u10 = 6.65 m s−1 and medium buoyancy particles (wrise = 0.003 m s−1).

Figure 5. RMSE between field measurements and modelled concentration profiles for M-0 and M-1 models with (a) KPP and (b) SWB

diffusion under different wind conditions and with varying values of α.

vertical diffusive transport, but more work is required to further constrain the value and vertical profile of α. Finally, numer-

ous formulations of the M-1 drift term have been proposed (Mofakham and Ahmadi, 2020; Brickman and Smith, 2002, e.g.)210

which can lead to large differences in the modelled profiles. In this study we used the non-normalized Langevin equation from

Mofakham and Ahmadi (2020), but other formulations could be explored in future work.

10
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While the concentration profiles of medium and low buoyancy particles are unaffected by decreasing the integration timestep

∆t < 30 seconds, using higher ∆t values underestimates the downward mixing when using SWB diffusion. This is because215

for high ∆t values, the upward non-stochastic component of equation 6, which scales with ∆t, dominates the stochastic com-

ponent, which scales with
√

∆t. With KPP diffusion the vertical profile for high buoyancy particles appears unaffected by ∆t,

but this is just because the near-surface Kz values are significantly lower than with SWB diffusion. One possibility to correct

for this is to apply a different BC, such as a reflective BC. While the concentration profiles for medium and low buoyancy

particles are not strongly affected by such a reflective BC (Fig. B1), the reflective BC does show greater downward particle220

mixing with SWB diffusion. However, for ∆t= 30 seconds the downward mixing is now overestimated compared to smaller

∆t values (Fig. B2), while earlier studies have shown that reflecting BC can cause spurious increases in particle concentration

near the boundary (Ross and Sharples, 2004; Nordam et al., 2019). Therefore, changing the BC to a reflective BC would not

improve the concentration profiles of high buoyancy particles. Depending on the model application, the error in the concentra-

tion profile depth (O(1) m for high buoyancy particles) might be acceptable. Otherwise, the error can be reduced by using a225

smaller integration timestep.

Considering the KPP and SWB diffusion profiles, the results in this study are inconclusive with regards to which approach

is superior. For high buoyancy particles, SWB diffusion leads to slightly deeper particle mixing, but model performance is

generally very similar. With medium and low buoyancy particles the KPP profile leads to much deeper mixing, but it is diffi-230

cult to evaluate whether this is a more realistic concentration profile. The majority of the field measurements are collected in

the top 5 meters of the water column, and more measurements would need to be collected at greater depths to evaluate how

many medium-buoyancy particles are mixed further down. The currently available data does not allow for model evaluation

for the low-buoyancy particles. As such, more field measurements (including smaller-sized particles) would be necessary to

distinguish which diffusion profile leads to the most realistic concentration profiles. With regards to necessary data to calculate235

the diffusion profiles, the SWB approach has the benefit that it only requires surface wind stress data, while KPP diffusion

additionally requires MLD data. In contrast, since KPP diffusion is commonly used in OCGMs (Boufadel et al., 2020), using

this would mean that vertical particle transport is consistent with other model tracers. In addition, the influence of wind forcing

on turbulence is generally assumed to be limited to the surface mixed layer (Chamecki et al., 2019), while with the SWB profile

wind-generated turbulence can extend below the MLD. To represent sub-MLD mixing, either a constant Kz value or other Kz240

profiles could be used, such as the Kz estimates for internal tide mixing as proposed by de Lavergne et al. (2020).

In all cases, the vertical concentration profiles stabilized to vertical equilibrium profiles, similar to what has been shown for

buoyant particles in LES model studies (Liang et al., 2012; Yang et al., 2014; Brunner et al., 2015; Taylor, 2018). The modelled

concentration profiles generally resembled the profiles from field measurements of microplastic concentrations under different245

wind conditions, but the concentration profiles of the field measurements are quite noisy. Partly, this could be due to inhomo-

geneity in the particle buoyancy, as the collected microplastic particulates have varying sizes and rise velocities (Kooi et al.,
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2016b; Egger et al., 2020). Additionally, we sorted the field measurements based on wind conditions, but other underlying

oceanographic conditions such as the MLD can still vary significantly even with similar wind speeds. Furthermore, for the

model simulations we assumed constant environmental conditions over 12 hours, but e.g. wind conditions can change on much250

shorter timescales over the ocean surface. To further improve vertical transport model verification, more measurements would

be required, covering a wider range of oceanographic conditions (such as for wind conditions higher than u10 = 10.7 m s−1)

and with a high spatial sampling resolution also for depths z <−5m. Ideally these measurements would also sample small,

neutrally buoyant particulates, but we acknowledge this is difficult with the sampling techniques commonly used today.

255

The parameterizations have been validated for high/medium rise velocities. However, they should also apply to neutral or

negatively buoyant particles, as the SWB and KPP profiles estimate the amount of turbulence in the water column irregardless

of the types of particle that might be present. Given that model verification was only possible for microplastic particulates with

rise velocities approximately between 0.03 - 0.003 m s−1, we would advise additional model verification for other particle

types where the necessary field data is available.260

5 Conclusions

We have developed a number of 1D surface-mixing parametrizations designed to be readily applied in large-scale oceanic

Lagrangian model experiments using OCGM data. Where possible, we would recommend using the turbulence fields from the

OCGM to assure turbulent transport of the particles is consistent with that of other model tracers. However, if the turbulence

fields are unavailable then these parametrizations are shown to produce modelled vertical concentration profiles that match265

relatively well with field observations of microplastics. Verification was only possible for positively buoyant particles larger

than 0.33 mm (which generally have rise velocities≤ 0.003 m s−1), but the parametrizations should also be applicable to other

particle types. The parametrizations can therefore be applied to investigate the influence of turbulent mixing on the vertical

transport of (microplastic) particles within a 3D model setup, and ultimately gain a more complete understanding of the fate of

such particles in the ocean.270

6 Code and data availability

The code for the 1D model, the subsequent analysis and all figures is available at zenodo (Onink, 2021). The field data for Kooi

et al. (2016b) is available at figshare (Kooi et al., 2016a). For the field data from Kukulka et al. (2012), Pieper et al. (2019),

Egger et al. (2020) and Amaral-Zettler (unpublished data), please contact the corresponding authors of the respective studies.
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Figure A1. Vertical concentrations of buoyant particles for (a, c, e) KPP and (b, d, f) SWB diffusion using M-0 models with varying values

for wrise and ∆t ∈ [30,15,10,5,1] second(s). All profiles are for u10 = 6.65 m s−1.
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Figure B1. Vertical concentrations of buoyant particles for (a) KPP and (b) SWB diffusion using M-0 models for reflective and ceiling BC’s.

All profiles are for u10 = 6.65 m s−1.

Appendix A: Influence of ∆t275

Appendix B: Influence of boundary conditions
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