
Revisiting Menu Design Through the Lens of
Implicit Statistical Learning

Emmanouil Giannisakis
EPAM Systems
Berlin, Germany

em.giannisakis@gmail.com

Evanthia Dimara
Utrecht University
Utrecth, Netherlands

evanthia.dimara@gmail.com

Annabelle Goujon
Université de Bourgogne Franche-Comté

Besançon, France
annabelle.goujon@univ-fcomte.fr

Gilles Bailly
Sorbonne Université

Paris, France
gilles.bailly@sorbonne-universite.fr

ABSTRACT
Implicit Statistical Learning (ISL) studies how exposing individuals
to repeated statistical patterns can help develop skills in the absence
of conscious awareness, such as learning a language or detecting
familiar shapes. This paper transposes ISL in the context of menu
design learnability. Our analysis of menu patterns in various ap-
plications from the 80s to today reveals a consistent linear pattern
with command names on the left and keyboard shortcut cues aligned
on the right. We then develop a design space of menu patterns by
manipulating two factors of ISL theory, spatial proximity (distance)
and relative positioning between commands and shortcut cues. We
empirically compare four menu patterns of this design space on
whether they can improve keyboard shortcut adoption through two
controlled experiments. Results did not capture clear effects among
the menu patterns, suggesting that ISL in the context of HCI might
involve more complex factors than initially anticipated, such as the
time the users are exposed to the menu pattern. We reflect on the
challenges in applying theories from cognitive science to HCI and
hope that our systematic methodology and experiment designs will
serve as a basis for encouraging more studies in the area.

CCS CONCEPTS
• Human-centered computing; • Human-Computer Interac-
tion (HCI); • HCI design and evaluation methods;

KEYWORDS
Implicit Statistical Learning, spatial relationships, GUI, menu
ACM Reference Format:
Emmanouil Giannisakis, Evanthia Dimara, Annabelle Goujon, and Gilles
Bailly. 2022. Revisiting Menu Design Through the Lens of Implicit Statistical
Learning. In Proceedings of the 2022 International Conference on Advanced
Visual Interfaces (AVI 2022), June 6–10, 2022, Frascati, Rome, Italy. ACM, New
York, NY, USA, 9 pages. https://doi.org/10.1145/3531073.3531113

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
AVI 2022, June 6–10, 2022, Frascati, Rome, Italy
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9719-3/22/06. . . $15.00
https://doi.org/10.1145/3531073.3531113

1 INTRODUCTION
One of the main HCI challenges is to help users learn how to use
an interface with as little effort as possible [33]. More effortful
approaches such as manuals and tutorials are useful, but not always
feasible in practice [18]. In contrast, designers and researchers strive
to offer effortless and intuitive solutions [25, 32, 58], for example,
by optimizing design layouts attracting user attention to relevant
items and visual cues. Yet, HCI has limited comprehensive theories
and frameworks to help us investigate systematically how users
learn by being exposed to a repeated pattern.

An emerging field in cognitive science that studies how individ-
uals learn new information by interacting with the environment is
the Implicit Statistical Learning (ISL)[16, 19]. ISL investigates learn-
ing (or skill development) in the absence of conscious awareness. It
explains how the brain discovers and encodes patterns (also called
statistical regularities) within its repeated exposure to environment
stimuli. To the best of our knowledge, ISL has not yet been investi-
gated in the HCI literature. Typical ISL applications include how
children learn a language effortlessly by listening to other people
speak [38], or detection of visual shapes among a number of distrac-
tors [31]. Still, understanding and capturing underline processes
of skill acquisition and visual search [18] can be of tremendous
importance for effective user interface design.

Yet transposing ISL in the context of interface learnability is not
straightforward given that individuals have difficulty reflecting on
unconscious processes [49]. The aforementioned tasks and stim-
uli used in cognitive science experiments are typically low-level,
carefully selected for measuring and understanding behavior. HCI
experiments also aim to provide insights on how to design inter-
active systems or displays, while accounting for additional factors
such as aesthetics, usability and functionality. In this paper, we
explore a way of transposing the ISL theory in the context of HCI.

In particular, we focused on menu design learnability through
the lens of ISL. At first, we operationalized the notion of statistical
regularity exploring design menu conventions in approximately 200
menus in various applications from the 80s to today. Our analysis
showed that menus tend to follow a consistent pattern of linear
fashion which displays command names on the left and keyboard
shortcut cues aligned on the right. Optimizing the ISL factors of spa-
tial proximity and relative positioning [31], we developed a design
space of alternative menu patterns. Both those ISL factors affect the
visual arrangement of elements in GUIs which in turn is known to

https://doi.org/10.1145/3531073.3531113
https://doi.org/10.1145/3531073.3531113

AVI 2022, June 6–10, 2022, Frascati, Rome, Italy Giannisakis et al.

influence decision making processes of users [13] and reduce cog-
nitive load [35]. We then consulted designer experts [43] to review
our design space and identify promising menu patterns including
criteria of aesthetics and readability.We evaluated themenu designs
in two controlled experiments investigating the effect of our de-
signs on keyboard shortcut adoption, a well-established HCI problem
[32, 44] on how users can become more efficient by transitioning
from menus to expert methods for command selection.

Results did not capture clear effects on which menu patterns are
better for keyboard shortcut adoption, at least not within the time
scale of our 1-hour lab experiment. While we remain positive on the
importance of studying ISL pattern exposure in HCI, we reflect on
a number of barriers along the process. We suggest that ISL in the
context of HCI might involve more complex factors than initially
anticipated, such as the time the users are exposed to the pattern
and we hope that our systematic methodology and experiment
designs will serve as a basis for more studies in this area.

2 BACKGROUND
In this section we first discuss the main principles of implicit sta-
tistical learning that we consider as relevant to UI design. We then
review current design interventions to promote awareness and
explicit learning in modern GUI.

2.1 Implicit Statistical Learning
Implicit Statistical Learning (ISL) [16, 19] integrates two contempo-
rary approaches: implicit and statistical learning. Implicit learning
[49] usually defined as the process of individuals acquiring knowl-
edge without having intention to do so or being necessarily aware
of it. The most common example is the early child language acquisi-
tion, i.e. how a child learns a language unintentionally without hav-
ing a formal education [38]. This process yields abstract knowledge
about the environment that individuals interact with [49]. Statisti-
cal learning refers to the unconscious process in which repeated
patterns, or statistical regularities (e.g., probabilistic regularities
of the environment that predict future events), are extracted from
sensory inputs [59]. These two approaches are often published in
separate literatures and sometimes interpret their data in a differ-
ent way [16]. However, they describe the same phenomenon and
provide similar results (for an overview see [47]). Consequently,
several authors use the joint term implicit statistical learning to
cover both approaches [16, 19].
2.1.1 Why Does ISL Occur? One of the explanatory theories that
have been offered for ISL is the formation of chunks [28, 47]. Chunk-
ing characterizes the associative processing by which people bind
together co-occurring elements or information from their interac-
tion with the environment. Attention plays a critical role in the
formation of cognitive units: perceptual primitives would only
be grouped together to form a chunk when they are simultane-
ously held in a spatial-attention window, which is constrained by
working-memory limitations [48].

One thing that remains unclear is the role of awareness in ISL.
There has been some debates on whether learning without aware-
ness can occur at all [23, 38] or what type of awareness can facilitate
ISL. A recent study [38] for example focused on two types of aware-
ness: (a) at the level of noticing and (b) at the level of understanding.

An example of the former is when an individual learns a new lan-
guage to notice that some words can take the suffix ’-s’ e.g. dogs
and cats while an example for the latter is understanding that suffix
’-s’ signals plurality. However, prior work has shown that users
tend to notice faster objects or entities that they are already familiar
with, which could affect the ISL processes [53].

2.1.2 ISL on Skill Acquisition. Implicit statistical learning yields
interesting results regarding the skill acquisition. First, ISL appears
within multi-tasking, meaning that people have the ability to im-
plicitly learn one task while executing another task [50, 59].This
is especially interesting for our context, because we expect users
to implicitly learn semantically or visually close elements while in-
teracting with the interface. Second, ISL can help learners to reach
faster automatization of performance without going through the
initial cognitive demanding learning stage [37].

2.1.3 ISL on Visual Search. A form of implicit statistical learning is
the contextual cueing [17]. Contextual cueing explains how contex-
tual regularities present in the display can be implicitly detected and
learnt during the visual search, optimising basic visual processing
[31]. ISL appears sensitive to several factors [26, 31]:
• Spatial proximity is one of the key factors of contextual cueing.
Although ISL on non-spatially close elements is possible, it occurs
under far more restrictive conditions than those required for
learning the relations between spatially close events [31, 47].
This phenomenon relates to the Gestalt’s law of proximity, in
which to perceive an assortment of objects, an individual forms
as a group the ones that are close to each other. This law is often
used in advertising logos to emphasize which aspects of events
are associated.

• Relative Spatial positioning: recent studies [24, 61] highlight that
relative positioning and spatial proximity play an important role
on how individuals detect and learn contextual regularities.

• Temporal proximity: a delay of just 3s between two statistically
contingent elements was sufficient to deteriorate intertrial learn-
ing in a contextual cueing task [56].

• Accumulation of instances in memory: only limited contingencies
can be learnt in a restricted period, suggesting that only few
associations trigger learning [55].

The aforementioned factors suggest potential ways to encourage
the ISL of the UI while the user interacts with it. While performing
a visual search in a User Interface, users are repeatedly exposed to
several graphical elements (e.g. icon, label, text, etc.). It seems plau-
sible that their spatial proximity, exposure timings, as well as the
number of those elements can aid, or impede, the implicit learning
of contextual information. Here we study the spatial proximity of
the graphical elements, as it appears to be a key factor of ISL.

2.2 Skills, Attention & Awareness in HCI
Implicit learning is related to several, but different, phenomena
such as sequence learning [34], visual search [30, 31, 56], attentional
guidance [11, 57], cue-category association [51], causal learning
[29] and motor learning [37, 46]. These phenomena have been
extensively studied inHCI. For instance solutions such as ephemeral
adaptation [25] or changing the background color of an element [58]
attract the attention of the users towards this element to improve

Revisiting Menu Design Through the Lens of
Implicit Statistical Learning AVI 2022, June 6–10, 2022, Frascati, Rome, Italy

visual search in menus. Marking menus[40] favor skill acquisition
by letting users repeatedly perform the same gesture.

2.2.1 Experimental studies of ISL in Cognitive Science. ISL has been
studied under several contexts and for each context the experimen-
tal protocols differ. The most relevant context for our use case is ISL
in visual search which follows a standard experimental task [56].
During this task, participants search for a T-target within a con-
figuration of L-distractors. Half configurations are systematically
repeated across many blocks of trials. The others are presented
only once during the task. A benefit on search times is typically
observed in the repeated contexts compared to the novel contexts.
This indicates that participants encode implicitly some elements of
the context.

Related to our use case, Grossman et al. [32] compare several of
these strategies to favor keyboard shortcut adoption. Interestingly,
authors mentioned that these strategies favor “implicit learning”
in opposition with “explicit learning”. However, based on the ISL
literature, these strategies primarily focus on explicit learning, not
implicit learning, as they motivate users to intentionally learn
keyboard shortcut. In contrast, we investigate whether repeatedly
interacting with a graphical widget can help users to learn infor-
mation in the surroundings without having the intention to learn
them. Bailly, et al. proposed a theoretical model of shortcut adoption
[9]. The model combines several cognitive mechanisms including
implicit and explicit learning. Model fitting and model simulation
suggest that implicit learning plays a role in shortcut adoption.

3 REVISITING MENU DESIGN
Our literature review on Implicit Statistical Learning (ISL) suggested
that certain statistical regularities, or repeated patterns, can aid,
or, conversely, impede implicit learning. This section attempts to
identify and potentially improve such patterns in menu layouts.

3.1 Extracting Traditional Linear Menu
Patterns

C1 C2 C3D

1 Command

name

2 Icon
3 Keyboard

Shortcut Cue

4 Submenu
Symbol

Figure 1: An example of the traditional linear menu of the
inkscape application. The shortcut cue is placed far from the
command name and on its right.

To extract menu design conventions, we analysed approximately
200 menus in various operating systems (Win, Mac, Linux) and
tool-kits (e.g., Qt, Swing) from the 80s to today. Menus followed a
linear, rectangular fashion divided into rows and columns. Each row
is a menu item. The number of rows equals the number of available

commands (plus the separators in semantic organizations). A typical
linear menu organizes the elements in 3 columns (Figure 1):
-1st column contains command icons, the pictorial representations
of functionalities (e.g., ,). Such icons depend on the appli-
cation and the operating system, e.g., most Mac menus (and few
Linux) do not display icons by default. The icon is sometimes re-

placed by a symbol

Revisiting Menu Design Through the Lens of
Implicit Statistical Learning AVI 2022, June 6–10, 2022, Frascati, Rome, Italy

visual search in menus. Marking menus[41] favor skill acquisition
by letting users repeatedly perform the same gesture.

2.2.1 Experimental studies of ISL in Cognitive Science. ISL has been
studied under several contexts and for each context the experimen-
tal protocols differ. The most relevant context for our use case is
ISL in visual search which follow a standard experimental task [57].
During this task, participants search for a T-target within a con-
figuration of L-distractors. Half configurations are systematically
repeated across many blocks of trials. The others are presented
only once during the task. A benefit on search times is typically
observed in the repeated contexts compared to the novel contexts.
This indicates that participants encode implicitly some elements of
the context.

Related to our use case, Grossman et al. [33] compare several of
these strategies to favor keyboard shortcut adoption. Interestingly,
authors mentioned that these strategies favor “implicit learning”
in opposition with “explicit learning”. However, based on the ISL
literature, these strategies primarily focus on explicit learning, not
implicit learning, as they motivate users to intentionally learn
keyboard shortcut. In contrast, we investigate whether repeatedly
interacting with a graphical widget can help users to learn infor-
mation in the surroundings without having the intention to learn
them. Recently, Bailly, et al. proposed a theoretical model of shortcut
adoption [9]. The model combines several cognitive mechanisms in-
cluding implicit and explicit learning. Both model fitting and model
simulation suggest that implicit learning plays a role in shortcut
adoption.

3 REVISITING MENU DESIGN
Our literature review on Implicit Statistical Learning (ISL) suggested
that certain statistical regularities, or repeated patterns, can aid,
or, conversely, impede implicit learning. This section attempts to
identify and potentially improve such patterns in menu layouts.

3.1 Extracting Traditional Linear Menu Patterns

C1 C2 C3D

1 Command

name

2 Icon
3 Keyboard

Shortcut Cue

4 Submenu
Symbol

Figure 1: An example of the traditional linear menu of the
inkscape application. The shortcut cue is placed far from the
command name and on its right.

To extract menu design conventions, we analysed approximately
200 menus in various operating systems (Win, Mac, Linux) and
tool-kits (e.g., Qt, Swing) from the 80s to today. Menus followed a
linear, rectangular fashion divided into rows and columns. Each row
is a menu item. The number of rows equals the number of available

commands (plus the separators in semantic organizations). A typical
linear menu organizes the elements in 3 columns (Figure 1):
-1st column contains command icons, the pictorial representations
of functionalities (e.g., ,). Such icons depend on the appli-
cation and the operating system, e.g., most Mac menus (and few
Linux) do not display icons by default. The icon is sometimes re-
placed by a symbol ✓ or a widget , . Most menus display
icons only for the frequent commands. Since all icons have the
same size, their alignment is always fixed.
-2nd column contains command names, the textual labels repre-
senting the name of functionalities (e.g., Save , Copy). Ellipses can
be added [5?](e.g. Save As...), if the command requires parameters
(i.e. open a dialog box). Few menus (e.g., history menu in Safari) use
an icon (e.g., website logo) in the command name. The alignment
of the command names is always on the left.
-3rd column contains keyboard shortcut cues and submenu sym-
bols (�). The cues represent the sequence of keys to activate a
functionality. Depending on the operating system the cue can be
textual (e.g. Ctrl+S) or, as in Mac systems, a combination of symbol
and text (S). The symbol � , which does not have a cue, indi-
cates hierarchical menu items (i.e. the item opens a sub-menu). The
alignment of the cues is always on the right.

We saw very few exceptions of the above standards. An old Win
3.1 had shortcuts cues with left-alignment, Win had a 4rth column
with � , and Blender had both cues and submenus.

Our analysis showed that the linear menu follows a consistent
design pattern across operating systems and applications. The com-
mands appear on the left, while the shortcut cues on the right.
Similarly, the commands follow left alignment, while the shortcut
cues follow right alignment. This standard introduces implications
for the width of the columns. While the icons’ width (1st column)
is fixed, the command names (2nd column) depend on the longest.
Similarly, the shortcuts’ width (3rd column) depend on the short-
cuts with the largest number of modifiers (max=3). Consequently,
while the (relative) spatial positioning between the shortcut cue and
the command is always the same (i.e. shortcut cue on the right),
their spatial proximity varies a lot from one item to another and
from one menu to another (see Figure 1). ISL theory suggests that
such distance might impair the implicit learning of the keyboard
shortcuts. Current literature further highlights that users often ig-
nore keyboard shortcuts and they favor menus to select commands
[6, 19, 33]. Existing solutions aim to increase users’ awareness
[33, 40, 45, 53], attract attention [33], inform about the relative
performance [45] and/or change the incentives [53] for using the
shortcuts. These approaches mainly focus on when and how to
display information related to keyboard shortcuts, but they haven’t
investigated how the spatial relationship between the command
name and the keyboard shortcut may affect the keyboard shortcut
adoption.

3.2 Strategies to Improve the Menu Pattern
We identify several approaches favoring spatial proximity between
commands and keyboard shortcut cues:
• Decrease variability of command length (2nd column): As the
width of the 2nd column depends on the longest command name,
a designer could maintain similar command lengths. However,

or a widget , . Most menus display
icons only for the frequent commands. Since all icons have the
same size, their alignment is always fixed.
-2nd column contains command names, the textual labels repre-
senting the name of functionalities (e.g.,

Revisiting Menu Design Through the Lens of
Implicit Statistical Learning AVI 2022, June 6–10, 2022, Frascati, Rome, Italy

visual search in menus. Marking menus[41] favor skill acquisition
by letting users repeatedly perform the same gesture.

2.2.1 Experimental studies of ISL in Cognitive Science. ISL has been
studied under several contexts and for each context the experimen-
tal protocols differ. The most relevant context for our use case is
ISL in visual search which follow a standard experimental task [57].
During this task, participants search for a T-target within a con-
figuration of L-distractors. Half configurations are systematically
repeated across many blocks of trials. The others are presented
only once during the task. A benefit on search times is typically
observed in the repeated contexts compared to the novel contexts.
This indicates that participants encode implicitly some elements of
the context.

Related to our use case, Grossman et al. [33] compare several of
these strategies to favor keyboard shortcut adoption. Interestingly,
authors mentioned that these strategies favor “implicit learning”
in opposition with “explicit learning”. However, based on the ISL
literature, these strategies primarily focus on explicit learning, not
implicit learning, as they motivate users to intentionally learn
keyboard shortcut. In contrast, we investigate whether repeatedly
interacting with a graphical widget can help users to learn infor-
mation in the surroundings without having the intention to learn
them. Recently, Bailly, et al. proposed a theoretical model of shortcut
adoption [9]. The model combines several cognitive mechanisms in-
cluding implicit and explicit learning. Both model fitting and model
simulation suggest that implicit learning plays a role in shortcut
adoption.

3 REVISITING MENU DESIGN
Our literature review on Implicit Statistical Learning (ISL) suggested
that certain statistical regularities, or repeated patterns, can aid,
or, conversely, impede implicit learning. This section attempts to
identify and potentially improve such patterns in menu layouts.

3.1 Extracting Traditional Linear Menu Patterns

C1 C2 C3D

1 Command

name

2 Icon
3 Keyboard

Shortcut Cue

4 Submenu
Symbol

Figure 1: An example of the traditional linear menu of the
inkscape application. The shortcut cue is placed far from the
command name and on its right.

To extract menu design conventions, we analysed approximately
200 menus in various operating systems (Win, Mac, Linux) and
tool-kits (e.g., Qt, Swing) from the 80s to today. Menus followed a
linear, rectangular fashion divided into rows and columns. Each row
is a menu item. The number of rows equals the number of available

commands (plus the separators in semantic organizations). A typical
linear menu organizes the elements in 3 columns (Figure 1):
-1st column contains command icons, the pictorial representations
of functionalities (e.g., ,). Such icons depend on the appli-
cation and the operating system, e.g., most Mac menus (and few
Linux) do not display icons by default. The icon is sometimes re-
placed by a symbol ✓ or a widget , . Most menus display
icons only for the frequent commands. Since all icons have the
same size, their alignment is always fixed.
-2nd column contains command names, the textual labels repre-
senting the name of functionalities (e.g., Save , Copy). Ellipses can
be added [5?](e.g. Save As...), if the command requires parameters
(i.e. open a dialog box). Few menus (e.g., history menu in Safari) use
an icon (e.g., website logo) in the command name. The alignment
of the command names is always on the left.
-3rd column contains keyboard shortcut cues and submenu sym-
bols (�). The cues represent the sequence of keys to activate a
functionality. Depending on the operating system the cue can be
textual (e.g. Ctrl+S) or, as in Mac systems, a combination of symbol
and text (S). The symbol � , which does not have a cue, indi-
cates hierarchical menu items (i.e. the item opens a sub-menu). The
alignment of the cues is always on the right.

We saw very few exceptions of the above standards. An old Win
3.1 had shortcuts cues with left-alignment, Win had a 4rth column
with � , and Blender had both cues and submenus.

Our analysis showed that the linear menu follows a consistent
design pattern across operating systems and applications. The com-
mands appear on the left, while the shortcut cues on the right.
Similarly, the commands follow left alignment, while the shortcut
cues follow right alignment. This standard introduces implications
for the width of the columns. While the icons’ width (1st column)
is fixed, the command names (2nd column) depend on the longest.
Similarly, the shortcuts’ width (3rd column) depend on the short-
cuts with the largest number of modifiers (max=3). Consequently,
while the (relative) spatial positioning between the shortcut cue and
the command is always the same (i.e. shortcut cue on the right),
their spatial proximity varies a lot from one item to another and
from one menu to another (see Figure 1). ISL theory suggests that
such distance might impair the implicit learning of the keyboard
shortcuts. Current literature further highlights that users often ig-
nore keyboard shortcuts and they favor menus to select commands
[6, 19, 33]. Existing solutions aim to increase users’ awareness
[33, 40, 45, 53], attract attention [33], inform about the relative
performance [45] and/or change the incentives [53] for using the
shortcuts. These approaches mainly focus on when and how to
display information related to keyboard shortcuts, but they haven’t
investigated how the spatial relationship between the command
name and the keyboard shortcut may affect the keyboard shortcut
adoption.

3.2 Strategies to Improve the Menu Pattern
We identify several approaches favoring spatial proximity between
commands and keyboard shortcut cues:
• Decrease variability of command length (2nd column): As the
width of the 2nd column depends on the longest command name,
a designer could maintain similar command lengths. However,

,

Revisiting Menu Design Through the Lens of
Implicit Statistical Learning AVI 2022, June 6–10, 2022, Frascati, Rome, Italy

visual search in menus. Marking menus[41] favor skill acquisition
by letting users repeatedly perform the same gesture.

2.2.1 Experimental studies of ISL in Cognitive Science. ISL has been
studied under several contexts and for each context the experimen-
tal protocols differ. The most relevant context for our use case is
ISL in visual search which follow a standard experimental task [57].
During this task, participants search for a T-target within a con-
figuration of L-distractors. Half configurations are systematically
repeated across many blocks of trials. The others are presented
only once during the task. A benefit on search times is typically
observed in the repeated contexts compared to the novel contexts.
This indicates that participants encode implicitly some elements of
the context.

Related to our use case, Grossman et al. [33] compare several of
these strategies to favor keyboard shortcut adoption. Interestingly,
authors mentioned that these strategies favor “implicit learning”
in opposition with “explicit learning”. However, based on the ISL
literature, these strategies primarily focus on explicit learning, not
implicit learning, as they motivate users to intentionally learn
keyboard shortcut. In contrast, we investigate whether repeatedly
interacting with a graphical widget can help users to learn infor-
mation in the surroundings without having the intention to learn
them. Recently, Bailly, et al. proposed a theoretical model of shortcut
adoption [9]. The model combines several cognitive mechanisms in-
cluding implicit and explicit learning. Both model fitting and model
simulation suggest that implicit learning plays a role in shortcut
adoption.

3 REVISITING MENU DESIGN
Our literature review on Implicit Statistical Learning (ISL) suggested
that certain statistical regularities, or repeated patterns, can aid,
or, conversely, impede implicit learning. This section attempts to
identify and potentially improve such patterns in menu layouts.

3.1 Extracting Traditional Linear Menu Patterns

C1 C2 C3D

1 Command

name

2 Icon
3 Keyboard

Shortcut Cue

4 Submenu
Symbol

Figure 1: An example of the traditional linear menu of the
inkscape application. The shortcut cue is placed far from the
command name and on its right.

To extract menu design conventions, we analysed approximately
200 menus in various operating systems (Win, Mac, Linux) and
tool-kits (e.g., Qt, Swing) from the 80s to today. Menus followed a
linear, rectangular fashion divided into rows and columns. Each row
is a menu item. The number of rows equals the number of available

commands (plus the separators in semantic organizations). A typical
linear menu organizes the elements in 3 columns (Figure 1):
-1st column contains command icons, the pictorial representations
of functionalities (e.g., ,). Such icons depend on the appli-
cation and the operating system, e.g., most Mac menus (and few
Linux) do not display icons by default. The icon is sometimes re-
placed by a symbol ✓ or a widget , . Most menus display
icons only for the frequent commands. Since all icons have the
same size, their alignment is always fixed.
-2nd column contains command names, the textual labels repre-
senting the name of functionalities (e.g., Save , Copy). Ellipses can
be added [5?](e.g. Save As...), if the command requires parameters
(i.e. open a dialog box). Few menus (e.g., history menu in Safari) use
an icon (e.g., website logo) in the command name. The alignment
of the command names is always on the left.
-3rd column contains keyboard shortcut cues and submenu sym-
bols (�). The cues represent the sequence of keys to activate a
functionality. Depending on the operating system the cue can be
textual (e.g. Ctrl+S) or, as in Mac systems, a combination of symbol
and text (S). The symbol � , which does not have a cue, indi-
cates hierarchical menu items (i.e. the item opens a sub-menu). The
alignment of the cues is always on the right.

We saw very few exceptions of the above standards. An old Win
3.1 had shortcuts cues with left-alignment, Win had a 4rth column
with � , and Blender had both cues and submenus.

Our analysis showed that the linear menu follows a consistent
design pattern across operating systems and applications. The com-
mands appear on the left, while the shortcut cues on the right.
Similarly, the commands follow left alignment, while the shortcut
cues follow right alignment. This standard introduces implications
for the width of the columns. While the icons’ width (1st column)
is fixed, the command names (2nd column) depend on the longest.
Similarly, the shortcuts’ width (3rd column) depend on the short-
cuts with the largest number of modifiers (max=3). Consequently,
while the (relative) spatial positioning between the shortcut cue and
the command is always the same (i.e. shortcut cue on the right),
their spatial proximity varies a lot from one item to another and
from one menu to another (see Figure 1). ISL theory suggests that
such distance might impair the implicit learning of the keyboard
shortcuts. Current literature further highlights that users often ig-
nore keyboard shortcuts and they favor menus to select commands
[6, 19, 33]. Existing solutions aim to increase users’ awareness
[33, 40, 45, 53], attract attention [33], inform about the relative
performance [45] and/or change the incentives [53] for using the
shortcuts. These approaches mainly focus on when and how to
display information related to keyboard shortcuts, but they haven’t
investigated how the spatial relationship between the command
name and the keyboard shortcut may affect the keyboard shortcut
adoption.

3.2 Strategies to Improve the Menu Pattern
We identify several approaches favoring spatial proximity between
commands and keyboard shortcut cues:
• Decrease variability of command length (2nd column): As the
width of the 2nd column depends on the longest command name,
a designer could maintain similar command lengths. However,

). Ellipses can
be added [5?](e.g.

Revisiting Menu Design Through the Lens of
Implicit Statistical Learning AVI 2022, June 6–10, 2022, Frascati, Rome, Italy

visual search in menus. Marking menus[41] favor skill acquisition
by letting users repeatedly perform the same gesture.

2.2.1 Experimental studies of ISL in Cognitive Science. ISL has been
studied under several contexts and for each context the experimen-
tal protocols differ. The most relevant context for our use case is
ISL in visual search which follow a standard experimental task [57].
During this task, participants search for a T-target within a con-
figuration of L-distractors. Half configurations are systematically
repeated across many blocks of trials. The others are presented
only once during the task. A benefit on search times is typically
observed in the repeated contexts compared to the novel contexts.
This indicates that participants encode implicitly some elements of
the context.

Related to our use case, Grossman et al. [33] compare several of
these strategies to favor keyboard shortcut adoption. Interestingly,
authors mentioned that these strategies favor “implicit learning”
in opposition with “explicit learning”. However, based on the ISL
literature, these strategies primarily focus on explicit learning, not
implicit learning, as they motivate users to intentionally learn
keyboard shortcut. In contrast, we investigate whether repeatedly
interacting with a graphical widget can help users to learn infor-
mation in the surroundings without having the intention to learn
them. Recently, Bailly, et al. proposed a theoretical model of shortcut
adoption [9]. The model combines several cognitive mechanisms in-
cluding implicit and explicit learning. Both model fitting and model
simulation suggest that implicit learning plays a role in shortcut
adoption.

3 REVISITING MENU DESIGN
Our literature review on Implicit Statistical Learning (ISL) suggested
that certain statistical regularities, or repeated patterns, can aid,
or, conversely, impede implicit learning. This section attempts to
identify and potentially improve such patterns in menu layouts.

3.1 Extracting Traditional Linear Menu Patterns

C1 C2 C3D

1 Command

name

2 Icon
3 Keyboard

Shortcut Cue

4 Submenu
Symbol

Figure 1: An example of the traditional linear menu of the
inkscape application. The shortcut cue is placed far from the
command name and on its right.

To extract menu design conventions, we analysed approximately
200 menus in various operating systems (Win, Mac, Linux) and
tool-kits (e.g., Qt, Swing) from the 80s to today. Menus followed a
linear, rectangular fashion divided into rows and columns. Each row
is a menu item. The number of rows equals the number of available

commands (plus the separators in semantic organizations). A typical
linear menu organizes the elements in 3 columns (Figure 1):
-1st column contains command icons, the pictorial representations
of functionalities (e.g., ,). Such icons depend on the appli-
cation and the operating system, e.g., most Mac menus (and few
Linux) do not display icons by default. The icon is sometimes re-
placed by a symbol ✓ or a widget , . Most menus display
icons only for the frequent commands. Since all icons have the
same size, their alignment is always fixed.
-2nd column contains command names, the textual labels repre-
senting the name of functionalities (e.g., Save , Copy). Ellipses can
be added [5?](e.g. Save As...), if the command requires parameters
(i.e. open a dialog box). Few menus (e.g., history menu in Safari) use
an icon (e.g., website logo) in the command name. The alignment
of the command names is always on the left.
-3rd column contains keyboard shortcut cues and submenu sym-
bols (�). The cues represent the sequence of keys to activate a
functionality. Depending on the operating system the cue can be
textual (e.g. Ctrl+S) or, as in Mac systems, a combination of symbol
and text (S). The symbol � , which does not have a cue, indi-
cates hierarchical menu items (i.e. the item opens a sub-menu). The
alignment of the cues is always on the right.

We saw very few exceptions of the above standards. An old Win
3.1 had shortcuts cues with left-alignment, Win had a 4rth column
with � , and Blender had both cues and submenus.

Our analysis showed that the linear menu follows a consistent
design pattern across operating systems and applications. The com-
mands appear on the left, while the shortcut cues on the right.
Similarly, the commands follow left alignment, while the shortcut
cues follow right alignment. This standard introduces implications
for the width of the columns. While the icons’ width (1st column)
is fixed, the command names (2nd column) depend on the longest.
Similarly, the shortcuts’ width (3rd column) depend on the short-
cuts with the largest number of modifiers (max=3). Consequently,
while the (relative) spatial positioning between the shortcut cue and
the command is always the same (i.e. shortcut cue on the right),
their spatial proximity varies a lot from one item to another and
from one menu to another (see Figure 1). ISL theory suggests that
such distance might impair the implicit learning of the keyboard
shortcuts. Current literature further highlights that users often ig-
nore keyboard shortcuts and they favor menus to select commands
[6, 19, 33]. Existing solutions aim to increase users’ awareness
[33, 40, 45, 53], attract attention [33], inform about the relative
performance [45] and/or change the incentives [53] for using the
shortcuts. These approaches mainly focus on when and how to
display information related to keyboard shortcuts, but they haven’t
investigated how the spatial relationship between the command
name and the keyboard shortcut may affect the keyboard shortcut
adoption.

3.2 Strategies to Improve the Menu Pattern
We identify several approaches favoring spatial proximity between
commands and keyboard shortcut cues:
• Decrease variability of command length (2nd column): As the
width of the 2nd column depends on the longest command name,
a designer could maintain similar command lengths. However,

), if the command requires parameters
(i.e. open a dialog box). Few menus (e.g., history menu in Safari) use
an icon (e.g., website logo) in the command name. The alignment
of the command names is always on the left.
-3rd column contains keyboard shortcut cues and submenu sym-
bols (

Revisiting Menu Design Through the Lens of
Implicit Statistical Learning AVI 2022, June 6–10, 2022, Frascati, Rome, Italy

visual search in menus. Marking menus[41] favor skill acquisition
by letting users repeatedly perform the same gesture.

2.2.1 Experimental studies of ISL in Cognitive Science. ISL has been
studied under several contexts and for each context the experimen-
tal protocols differ. The most relevant context for our use case is
ISL in visual search which follow a standard experimental task [57].
During this task, participants search for a T-target within a con-
figuration of L-distractors. Half configurations are systematically
repeated across many blocks of trials. The others are presented
only once during the task. A benefit on search times is typically
observed in the repeated contexts compared to the novel contexts.
This indicates that participants encode implicitly some elements of
the context.

Related to our use case, Grossman et al. [33] compare several of
these strategies to favor keyboard shortcut adoption. Interestingly,
authors mentioned that these strategies favor “implicit learning”
in opposition with “explicit learning”. However, based on the ISL
literature, these strategies primarily focus on explicit learning, not
implicit learning, as they motivate users to intentionally learn
keyboard shortcut. In contrast, we investigate whether repeatedly
interacting with a graphical widget can help users to learn infor-
mation in the surroundings without having the intention to learn
them. Recently, Bailly, et al. proposed a theoretical model of shortcut
adoption [9]. The model combines several cognitive mechanisms in-
cluding implicit and explicit learning. Both model fitting and model
simulation suggest that implicit learning plays a role in shortcut
adoption.

3 REVISITING MENU DESIGN
Our literature review on Implicit Statistical Learning (ISL) suggested
that certain statistical regularities, or repeated patterns, can aid,
or, conversely, impede implicit learning. This section attempts to
identify and potentially improve such patterns in menu layouts.

3.1 Extracting Traditional Linear Menu Patterns

C1 C2 C3D

1 Command

name

2 Icon
3 Keyboard

Shortcut Cue

4 Submenu
Symbol

Figure 1: An example of the traditional linear menu of the
inkscape application. The shortcut cue is placed far from the
command name and on its right.

To extract menu design conventions, we analysed approximately
200 menus in various operating systems (Win, Mac, Linux) and
tool-kits (e.g., Qt, Swing) from the 80s to today. Menus followed a
linear, rectangular fashion divided into rows and columns. Each row
is a menu item. The number of rows equals the number of available

commands (plus the separators in semantic organizations). A typical
linear menu organizes the elements in 3 columns (Figure 1):
-1st column contains command icons, the pictorial representations
of functionalities (e.g., ,). Such icons depend on the appli-
cation and the operating system, e.g., most Mac menus (and few
Linux) do not display icons by default. The icon is sometimes re-
placed by a symbol ✓ or a widget , . Most menus display
icons only for the frequent commands. Since all icons have the
same size, their alignment is always fixed.
-2nd column contains command names, the textual labels repre-
senting the name of functionalities (e.g., Save , Copy). Ellipses can
be added [5?](e.g. Save As...), if the command requires parameters
(i.e. open a dialog box). Few menus (e.g., history menu in Safari) use
an icon (e.g., website logo) in the command name. The alignment
of the command names is always on the left.
-3rd column contains keyboard shortcut cues and submenu sym-
bols (�). The cues represent the sequence of keys to activate a
functionality. Depending on the operating system the cue can be
textual (e.g. Ctrl+S) or, as in Mac systems, a combination of symbol
and text (S). The symbol � , which does not have a cue, indi-
cates hierarchical menu items (i.e. the item opens a sub-menu). The
alignment of the cues is always on the right.

We saw very few exceptions of the above standards. An old Win
3.1 had shortcuts cues with left-alignment, Win had a 4rth column
with � , and Blender had both cues and submenus.

Our analysis showed that the linear menu follows a consistent
design pattern across operating systems and applications. The com-
mands appear on the left, while the shortcut cues on the right.
Similarly, the commands follow left alignment, while the shortcut
cues follow right alignment. This standard introduces implications
for the width of the columns. While the icons’ width (1st column)
is fixed, the command names (2nd column) depend on the longest.
Similarly, the shortcuts’ width (3rd column) depend on the short-
cuts with the largest number of modifiers (max=3). Consequently,
while the (relative) spatial positioning between the shortcut cue and
the command is always the same (i.e. shortcut cue on the right),
their spatial proximity varies a lot from one item to another and
from one menu to another (see Figure 1). ISL theory suggests that
such distance might impair the implicit learning of the keyboard
shortcuts. Current literature further highlights that users often ig-
nore keyboard shortcuts and they favor menus to select commands
[6, 19, 33]. Existing solutions aim to increase users’ awareness
[33, 40, 45, 53], attract attention [33], inform about the relative
performance [45] and/or change the incentives [53] for using the
shortcuts. These approaches mainly focus on when and how to
display information related to keyboard shortcuts, but they haven’t
investigated how the spatial relationship between the command
name and the keyboard shortcut may affect the keyboard shortcut
adoption.

3.2 Strategies to Improve the Menu Pattern
We identify several approaches favoring spatial proximity between
commands and keyboard shortcut cues:
• Decrease variability of command length (2nd column): As the
width of the 2nd column depends on the longest command name,
a designer could maintain similar command lengths. However,

). The cues represent the sequence of keys to activate
a functionality. Depending on the operating system the cue can
be textual (e.g.

Revisiting Menu Design Through the Lens of
Implicit Statistical Learning AVI 2022, June 6–10, 2022, Frascati, Rome, Italy

visual search in menus. Marking menus[41] favor skill acquisition
by letting users repeatedly perform the same gesture.

2.2.1 Experimental studies of ISL in Cognitive Science. ISL has been
studied under several contexts and for each context the experimen-
tal protocols differ. The most relevant context for our use case is
ISL in visual search which follow a standard experimental task [57].
During this task, participants search for a T-target within a con-
figuration of L-distractors. Half configurations are systematically
repeated across many blocks of trials. The others are presented
only once during the task. A benefit on search times is typically
observed in the repeated contexts compared to the novel contexts.
This indicates that participants encode implicitly some elements of
the context.

Related to our use case, Grossman et al. [33] compare several of
these strategies to favor keyboard shortcut adoption. Interestingly,
authors mentioned that these strategies favor “implicit learning”
in opposition with “explicit learning”. However, based on the ISL
literature, these strategies primarily focus on explicit learning, not
implicit learning, as they motivate users to intentionally learn
keyboard shortcut. In contrast, we investigate whether repeatedly
interacting with a graphical widget can help users to learn infor-
mation in the surroundings without having the intention to learn
them. Recently, Bailly, et al. proposed a theoretical model of shortcut
adoption [9]. The model combines several cognitive mechanisms in-
cluding implicit and explicit learning. Both model fitting and model
simulation suggest that implicit learning plays a role in shortcut
adoption.

3 REVISITING MENU DESIGN
Our literature review on Implicit Statistical Learning (ISL) suggested
that certain statistical regularities, or repeated patterns, can aid,
or, conversely, impede implicit learning. This section attempts to
identify and potentially improve such patterns in menu layouts.

3.1 Extracting Traditional Linear Menu Patterns

C1 C2 C3D

1 Command

name

2 Icon
3 Keyboard

Shortcut Cue

4 Submenu
Symbol

Figure 1: An example of the traditional linear menu of the
inkscape application. The shortcut cue is placed far from the
command name and on its right.

To extract menu design conventions, we analysed approximately
200 menus in various operating systems (Win, Mac, Linux) and
tool-kits (e.g., Qt, Swing) from the 80s to today. Menus followed a
linear, rectangular fashion divided into rows and columns. Each row
is a menu item. The number of rows equals the number of available

commands (plus the separators in semantic organizations). A typical
linear menu organizes the elements in 3 columns (Figure 1):
-1st column contains command icons, the pictorial representations
of functionalities (e.g., ,). Such icons depend on the appli-
cation and the operating system, e.g., most Mac menus (and few
Linux) do not display icons by default. The icon is sometimes re-
placed by a symbol ✓ or a widget , . Most menus display
icons only for the frequent commands. Since all icons have the
same size, their alignment is always fixed.
-2nd column contains command names, the textual labels repre-
senting the name of functionalities (e.g., Save , Copy). Ellipses can
be added [5?](e.g. Save As...), if the command requires parameters
(i.e. open a dialog box). Few menus (e.g., history menu in Safari) use
an icon (e.g., website logo) in the command name. The alignment
of the command names is always on the left.
-3rd column contains keyboard shortcut cues and submenu sym-
bols (�). The cues represent the sequence of keys to activate a
functionality. Depending on the operating system the cue can be
textual (e.g. Ctrl+S) or, as in Mac systems, a combination of symbol
and text (S). The symbol � , which does not have a cue, indi-
cates hierarchical menu items (i.e. the item opens a sub-menu). The
alignment of the cues is always on the right.

We saw very few exceptions of the above standards. An old Win
3.1 had shortcuts cues with left-alignment, Win had a 4rth column
with � , and Blender had both cues and submenus.

Our analysis showed that the linear menu follows a consistent
design pattern across operating systems and applications. The com-
mands appear on the left, while the shortcut cues on the right.
Similarly, the commands follow left alignment, while the shortcut
cues follow right alignment. This standard introduces implications
for the width of the columns. While the icons’ width (1st column)
is fixed, the command names (2nd column) depend on the longest.
Similarly, the shortcuts’ width (3rd column) depend on the short-
cuts with the largest number of modifiers (max=3). Consequently,
while the (relative) spatial positioning between the shortcut cue and
the command is always the same (i.e. shortcut cue on the right),
their spatial proximity varies a lot from one item to another and
from one menu to another (see Figure 1). ISL theory suggests that
such distance might impair the implicit learning of the keyboard
shortcuts. Current literature further highlights that users often ig-
nore keyboard shortcuts and they favor menus to select commands
[6, 19, 33]. Existing solutions aim to increase users’ awareness
[33, 40, 45, 53], attract attention [33], inform about the relative
performance [45] and/or change the incentives [53] for using the
shortcuts. These approaches mainly focus on when and how to
display information related to keyboard shortcuts, but they haven’t
investigated how the spatial relationship between the command
name and the keyboard shortcut may affect the keyboard shortcut
adoption.

3.2 Strategies to Improve the Menu Pattern
We identify several approaches favoring spatial proximity between
commands and keyboard shortcut cues:
• Decrease variability of command length (2nd column): As the
width of the 2nd column depends on the longest command name,
a designer could maintain similar command lengths. However,

) or, as in Mac systems, a combination of
symbol and text (

Revisiting Menu Design Through the Lens of
Implicit Statistical Learning AVI 2022, June 6–10, 2022, Frascati, Rome, Italy

visual search in menus. Marking menus[41] favor skill acquisition
by letting users repeatedly perform the same gesture.

2.2.1 Experimental studies of ISL in Cognitive Science. ISL has been
studied under several contexts and for each context the experimen-
tal protocols differ. The most relevant context for our use case is
ISL in visual search which follow a standard experimental task [57].
During this task, participants search for a T-target within a con-
figuration of L-distractors. Half configurations are systematically
repeated across many blocks of trials. The others are presented
only once during the task. A benefit on search times is typically
observed in the repeated contexts compared to the novel contexts.
This indicates that participants encode implicitly some elements of
the context.

Related to our use case, Grossman et al. [33] compare several of
these strategies to favor keyboard shortcut adoption. Interestingly,
authors mentioned that these strategies favor “implicit learning”
in opposition with “explicit learning”. However, based on the ISL
literature, these strategies primarily focus on explicit learning, not
implicit learning, as they motivate users to intentionally learn
keyboard shortcut. In contrast, we investigate whether repeatedly
interacting with a graphical widget can help users to learn infor-
mation in the surroundings without having the intention to learn
them. Recently, Bailly, et al. proposed a theoretical model of shortcut
adoption [9]. The model combines several cognitive mechanisms in-
cluding implicit and explicit learning. Both model fitting and model
simulation suggest that implicit learning plays a role in shortcut
adoption.

3 REVISITING MENU DESIGN
Our literature review on Implicit Statistical Learning (ISL) suggested
that certain statistical regularities, or repeated patterns, can aid,
or, conversely, impede implicit learning. This section attempts to
identify and potentially improve such patterns in menu layouts.

3.1 Extracting Traditional Linear Menu Patterns

C1 C2 C3D

1 Command

name

2 Icon
3 Keyboard

Shortcut Cue

4 Submenu
Symbol

Figure 1: An example of the traditional linear menu of the
inkscape application. The shortcut cue is placed far from the
command name and on its right.

To extract menu design conventions, we analysed approximately
200 menus in various operating systems (Win, Mac, Linux) and
tool-kits (e.g., Qt, Swing) from the 80s to today. Menus followed a
linear, rectangular fashion divided into rows and columns. Each row
is a menu item. The number of rows equals the number of available

commands (plus the separators in semantic organizations). A typical
linear menu organizes the elements in 3 columns (Figure 1):
-1st column contains command icons, the pictorial representations
of functionalities (e.g., ,). Such icons depend on the appli-
cation and the operating system, e.g., most Mac menus (and few
Linux) do not display icons by default. The icon is sometimes re-
placed by a symbol ✓ or a widget , . Most menus display
icons only for the frequent commands. Since all icons have the
same size, their alignment is always fixed.
-2nd column contains command names, the textual labels repre-
senting the name of functionalities (e.g., Save , Copy). Ellipses can
be added [5?](e.g. Save As...), if the command requires parameters
(i.e. open a dialog box). Few menus (e.g., history menu in Safari) use
an icon (e.g., website logo) in the command name. The alignment
of the command names is always on the left.
-3rd column contains keyboard shortcut cues and submenu sym-
bols (�). The cues represent the sequence of keys to activate a
functionality. Depending on the operating system the cue can be
textual (e.g. Ctrl+S) or, as in Mac systems, a combination of symbol
and text (S). The symbol � , which does not have a cue, indi-
cates hierarchical menu items (i.e. the item opens a sub-menu). The
alignment of the cues is always on the right.

We saw very few exceptions of the above standards. An old Win
3.1 had shortcuts cues with left-alignment, Win had a 4rth column
with � , and Blender had both cues and submenus.

Our analysis showed that the linear menu follows a consistent
design pattern across operating systems and applications. The com-
mands appear on the left, while the shortcut cues on the right.
Similarly, the commands follow left alignment, while the shortcut
cues follow right alignment. This standard introduces implications
for the width of the columns. While the icons’ width (1st column)
is fixed, the command names (2nd column) depend on the longest.
Similarly, the shortcuts’ width (3rd column) depend on the short-
cuts with the largest number of modifiers (max=3). Consequently,
while the (relative) spatial positioning between the shortcut cue and
the command is always the same (i.e. shortcut cue on the right),
their spatial proximity varies a lot from one item to another and
from one menu to another (see Figure 1). ISL theory suggests that
such distance might impair the implicit learning of the keyboard
shortcuts. Current literature further highlights that users often ig-
nore keyboard shortcuts and they favor menus to select commands
[6, 19, 33]. Existing solutions aim to increase users’ awareness
[33, 40, 45, 53], attract attention [33], inform about the relative
performance [45] and/or change the incentives [53] for using the
shortcuts. These approaches mainly focus on when and how to
display information related to keyboard shortcuts, but they haven’t
investigated how the spatial relationship between the command
name and the keyboard shortcut may affect the keyboard shortcut
adoption.

3.2 Strategies to Improve the Menu Pattern
We identify several approaches favoring spatial proximity between
commands and keyboard shortcut cues:
• Decrease variability of command length (2nd column): As the
width of the 2nd column depends on the longest command name,
a designer could maintain similar command lengths. However,

). The symbol

Revisiting Menu Design Through the Lens of
Implicit Statistical Learning AVI 2022, June 6–10, 2022, Frascati, Rome, Italy

visual search in menus. Marking menus[41] favor skill acquisition
by letting users repeatedly perform the same gesture.

2.2.1 Experimental studies of ISL in Cognitive Science. ISL has been
studied under several contexts and for each context the experimen-
tal protocols differ. The most relevant context for our use case is
ISL in visual search which follow a standard experimental task [57].
During this task, participants search for a T-target within a con-
figuration of L-distractors. Half configurations are systematically
repeated across many blocks of trials. The others are presented
only once during the task. A benefit on search times is typically
observed in the repeated contexts compared to the novel contexts.
This indicates that participants encode implicitly some elements of
the context.

Related to our use case, Grossman et al. [33] compare several of
these strategies to favor keyboard shortcut adoption. Interestingly,
authors mentioned that these strategies favor “implicit learning”
in opposition with “explicit learning”. However, based on the ISL
literature, these strategies primarily focus on explicit learning, not
implicit learning, as they motivate users to intentionally learn
keyboard shortcut. In contrast, we investigate whether repeatedly
interacting with a graphical widget can help users to learn infor-
mation in the surroundings without having the intention to learn
them. Recently, Bailly, et al. proposed a theoretical model of shortcut
adoption [9]. The model combines several cognitive mechanisms in-
cluding implicit and explicit learning. Both model fitting and model
simulation suggest that implicit learning plays a role in shortcut
adoption.

3 REVISITING MENU DESIGN
Our literature review on Implicit Statistical Learning (ISL) suggested
that certain statistical regularities, or repeated patterns, can aid,
or, conversely, impede implicit learning. This section attempts to
identify and potentially improve such patterns in menu layouts.

3.1 Extracting Traditional Linear Menu Patterns

C1 C2 C3D

1 Command

name

2 Icon
3 Keyboard

Shortcut Cue

4 Submenu
Symbol

Figure 1: An example of the traditional linear menu of the
inkscape application. The shortcut cue is placed far from the
command name and on its right.

To extract menu design conventions, we analysed approximately
200 menus in various operating systems (Win, Mac, Linux) and
tool-kits (e.g., Qt, Swing) from the 80s to today. Menus followed a
linear, rectangular fashion divided into rows and columns. Each row
is a menu item. The number of rows equals the number of available

commands (plus the separators in semantic organizations). A typical
linear menu organizes the elements in 3 columns (Figure 1):
-1st column contains command icons, the pictorial representations
of functionalities (e.g., ,). Such icons depend on the appli-
cation and the operating system, e.g., most Mac menus (and few
Linux) do not display icons by default. The icon is sometimes re-
placed by a symbol ✓ or a widget , . Most menus display
icons only for the frequent commands. Since all icons have the
same size, their alignment is always fixed.
-2nd column contains command names, the textual labels repre-
senting the name of functionalities (e.g., Save , Copy). Ellipses can
be added [5?](e.g. Save As...), if the command requires parameters
(i.e. open a dialog box). Few menus (e.g., history menu in Safari) use
an icon (e.g., website logo) in the command name. The alignment
of the command names is always on the left.
-3rd column contains keyboard shortcut cues and submenu sym-
bols (�). The cues represent the sequence of keys to activate a
functionality. Depending on the operating system the cue can be
textual (e.g. Ctrl+S) or, as in Mac systems, a combination of symbol
and text (S). The symbol � , which does not have a cue, indi-
cates hierarchical menu items (i.e. the item opens a sub-menu). The
alignment of the cues is always on the right.

We saw very few exceptions of the above standards. An old Win
3.1 had shortcuts cues with left-alignment, Win had a 4rth column
with � , and Blender had both cues and submenus.

Our analysis showed that the linear menu follows a consistent
design pattern across operating systems and applications. The com-
mands appear on the left, while the shortcut cues on the right.
Similarly, the commands follow left alignment, while the shortcut
cues follow right alignment. This standard introduces implications
for the width of the columns. While the icons’ width (1st column)
is fixed, the command names (2nd column) depend on the longest.
Similarly, the shortcuts’ width (3rd column) depend on the short-
cuts with the largest number of modifiers (max=3). Consequently,
while the (relative) spatial positioning between the shortcut cue and
the command is always the same (i.e. shortcut cue on the right),
their spatial proximity varies a lot from one item to another and
from one menu to another (see Figure 1). ISL theory suggests that
such distance might impair the implicit learning of the keyboard
shortcuts. Current literature further highlights that users often ig-
nore keyboard shortcuts and they favor menus to select commands
[6, 19, 33]. Existing solutions aim to increase users’ awareness
[33, 40, 45, 53], attract attention [33], inform about the relative
performance [45] and/or change the incentives [53] for using the
shortcuts. These approaches mainly focus on when and how to
display information related to keyboard shortcuts, but they haven’t
investigated how the spatial relationship between the command
name and the keyboard shortcut may affect the keyboard shortcut
adoption.

3.2 Strategies to Improve the Menu Pattern
We identify several approaches favoring spatial proximity between
commands and keyboard shortcut cues:
• Decrease variability of command length (2nd column): As the
width of the 2nd column depends on the longest command name,
a designer could maintain similar command lengths. However,

, which does not have a cue,
indicates hierarchical menu items (i.e. the item opens a sub-menu).
The alignment of the cues is always on the right.

We saw very few exceptions of the above standards. An old Win
3.1 had shortcuts cues with left-alignment, Win had a 4rth column
with

Revisiting Menu Design Through the Lens of
Implicit Statistical Learning AVI 2022, June 6–10, 2022, Frascati, Rome, Italy

visual search in menus. Marking menus[41] favor skill acquisition
by letting users repeatedly perform the same gesture.

2.2.1 Experimental studies of ISL in Cognitive Science. ISL has been
studied under several contexts and for each context the experimen-
tal protocols differ. The most relevant context for our use case is
ISL in visual search which follow a standard experimental task [57].
During this task, participants search for a T-target within a con-
figuration of L-distractors. Half configurations are systematically
repeated across many blocks of trials. The others are presented
only once during the task. A benefit on search times is typically
observed in the repeated contexts compared to the novel contexts.
This indicates that participants encode implicitly some elements of
the context.

Related to our use case, Grossman et al. [33] compare several of
these strategies to favor keyboard shortcut adoption. Interestingly,
authors mentioned that these strategies favor “implicit learning”
in opposition with “explicit learning”. However, based on the ISL
literature, these strategies primarily focus on explicit learning, not
implicit learning, as they motivate users to intentionally learn
keyboard shortcut. In contrast, we investigate whether repeatedly
interacting with a graphical widget can help users to learn infor-
mation in the surroundings without having the intention to learn
them. Recently, Bailly, et al. proposed a theoretical model of shortcut
adoption [9]. The model combines several cognitive mechanisms in-
cluding implicit and explicit learning. Both model fitting and model
simulation suggest that implicit learning plays a role in shortcut
adoption.

3 REVISITING MENU DESIGN
Our literature review on Implicit Statistical Learning (ISL) suggested
that certain statistical regularities, or repeated patterns, can aid,
or, conversely, impede implicit learning. This section attempts to
identify and potentially improve such patterns in menu layouts.

3.1 Extracting Traditional Linear Menu Patterns

C1 C2 C3D

1 Command

name

2 Icon
3 Keyboard

Shortcut Cue

4 Submenu
Symbol

Figure 1: An example of the traditional linear menu of the
inkscape application. The shortcut cue is placed far from the
command name and on its right.

To extract menu design conventions, we analysed approximately
200 menus in various operating systems (Win, Mac, Linux) and
tool-kits (e.g., Qt, Swing) from the 80s to today. Menus followed a
linear, rectangular fashion divided into rows and columns. Each row
is a menu item. The number of rows equals the number of available

commands (plus the separators in semantic organizations). A typical
linear menu organizes the elements in 3 columns (Figure 1):
-1st column contains command icons, the pictorial representations
of functionalities (e.g., ,). Such icons depend on the appli-
cation and the operating system, e.g., most Mac menus (and few
Linux) do not display icons by default. The icon is sometimes re-
placed by a symbol ✓ or a widget , . Most menus display
icons only for the frequent commands. Since all icons have the
same size, their alignment is always fixed.
-2nd column contains command names, the textual labels repre-
senting the name of functionalities (e.g., Save , Copy). Ellipses can
be added [5?](e.g. Save As...), if the command requires parameters
(i.e. open a dialog box). Few menus (e.g., history menu in Safari) use
an icon (e.g., website logo) in the command name. The alignment
of the command names is always on the left.
-3rd column contains keyboard shortcut cues and submenu sym-
bols (�). The cues represent the sequence of keys to activate a
functionality. Depending on the operating system the cue can be
textual (e.g. Ctrl+S) or, as in Mac systems, a combination of symbol
and text (S). The symbol � , which does not have a cue, indi-
cates hierarchical menu items (i.e. the item opens a sub-menu). The
alignment of the cues is always on the right.

We saw very few exceptions of the above standards. An old Win
3.1 had shortcuts cues with left-alignment, Win had a 4rth column
with � , and Blender had both cues and submenus.

Our analysis showed that the linear menu follows a consistent
design pattern across operating systems and applications. The com-
mands appear on the left, while the shortcut cues on the right.
Similarly, the commands follow left alignment, while the shortcut
cues follow right alignment. This standard introduces implications
for the width of the columns. While the icons’ width (1st column)
is fixed, the command names (2nd column) depend on the longest.
Similarly, the shortcuts’ width (3rd column) depend on the short-
cuts with the largest number of modifiers (max=3). Consequently,
while the (relative) spatial positioning between the shortcut cue and
the command is always the same (i.e. shortcut cue on the right),
their spatial proximity varies a lot from one item to another and
from one menu to another (see Figure 1). ISL theory suggests that
such distance might impair the implicit learning of the keyboard
shortcuts. Current literature further highlights that users often ig-
nore keyboard shortcuts and they favor menus to select commands
[6, 19, 33]. Existing solutions aim to increase users’ awareness
[33, 40, 45, 53], attract attention [33], inform about the relative
performance [45] and/or change the incentives [53] for using the
shortcuts. These approaches mainly focus on when and how to
display information related to keyboard shortcuts, but they haven’t
investigated how the spatial relationship between the command
name and the keyboard shortcut may affect the keyboard shortcut
adoption.

3.2 Strategies to Improve the Menu Pattern
We identify several approaches favoring spatial proximity between
commands and keyboard shortcut cues:
• Decrease variability of command length (2nd column): As the
width of the 2nd column depends on the longest command name,
a designer could maintain similar command lengths. However,

, and Blender had both cues and submenus.
Our analysis showed that the linear menu follows a consistent

design pattern across operating systems and applications. The com-
mands appear on the left, while the shortcut cues on the right.
Similarly, the commands follow left alignment, while the shortcut
cues follow right alignment. This standard introduces implications
for the width of the columns. While the icons’ width (1st column)
is fixed, the command names (2nd column) depend on the longest.
Similarly, the shortcuts’ width (3rd column) depend on the short-
cuts with the largest number of modifiers (max=3). Consequently,
while the (relative) spatial positioning between the shortcut cue and
the command is always the same (i.e. shortcut cue on the right),
their spatial proximity varies a lot from one item to another and
from one menu to another (see Figure 1). ISL theory suggests that
such distance might impair the implicit learning of the keyboard
shortcuts. Current literature further highlights that users often ig-
nore keyboard shortcuts and they favor menus to select commands
[6, 18, 32]. Existing solutions aim to increase users’ awareness
[32, 39, 44, 52], attract attention [32], inform about the relative
performance [44] and/or change the incentives [52] for using the
shortcuts. These approaches mainly focus on when and how to
display information related to keyboard shortcuts, but they haven’t
investigated how the spatial relationship between the command
name and the keyboard shortcut may affect the keyboard shortcut
adoption.

3.2 Strategies to Improve the Menu Pattern
We identify several approaches favoring spatial proximity between
commands and keyboard shortcut cues:
• Decrease variability of command length (2nd column): As the
width of the 2nd column depends on the longest command name,

AVI 2022, June 6–10, 2022, Frascati, Rome, Italy Giannisakis et al.

a designer could maintain similar command lengths. However,
changing the wording of commands is a challenging task [7, 10].
Users are familiar with specific names, e.g.,

Revisiting Menu Design Through the Lens of
Implicit Statistical Learning AVI 2022, June 6–10, 2022, Frascati, Rome, Italy

visual search in menus. Marking menus[41] favor skill acquisition
by letting users repeatedly perform the same gesture.

2.2.1 Experimental studies of ISL in Cognitive Science. ISL has been
studied under several contexts and for each context the experimen-
tal protocols differ. The most relevant context for our use case is
ISL in visual search which follow a standard experimental task [57].
During this task, participants search for a T-target within a con-
figuration of L-distractors. Half configurations are systematically
repeated across many blocks of trials. The others are presented
only once during the task. A benefit on search times is typically
observed in the repeated contexts compared to the novel contexts.
This indicates that participants encode implicitly some elements of
the context.

Related to our use case, Grossman et al. [33] compare several of
these strategies to favor keyboard shortcut adoption. Interestingly,
authors mentioned that these strategies favor “implicit learning”
in opposition with “explicit learning”. However, based on the ISL
literature, these strategies primarily focus on explicit learning, not
implicit learning, as they motivate users to intentionally learn
keyboard shortcut. In contrast, we investigate whether repeatedly
interacting with a graphical widget can help users to learn infor-
mation in the surroundings without having the intention to learn
them. Recently, Bailly, et al. proposed a theoretical model of shortcut
adoption [9]. The model combines several cognitive mechanisms in-
cluding implicit and explicit learning. Both model fitting and model
simulation suggest that implicit learning plays a role in shortcut
adoption.

3 REVISITING MENU DESIGN
Our literature review on Implicit Statistical Learning (ISL) suggested
that certain statistical regularities, or repeated patterns, can aid,
or, conversely, impede implicit learning. This section attempts to
identify and potentially improve such patterns in menu layouts.

3.1 Extracting Traditional Linear Menu Patterns

C1 C2 C3D

1 Command

name

2 Icon
3 Keyboard

Shortcut Cue

4 Submenu
Symbol

Figure 1: An example of the traditional linear menu of the
inkscape application. The shortcut cue is placed far from the
command name and on its right.

To extract menu design conventions, we analysed approximately
200 menus in various operating systems (Win, Mac, Linux) and
tool-kits (e.g., Qt, Swing) from the 80s to today. Menus followed a
linear, rectangular fashion divided into rows and columns. Each row
is a menu item. The number of rows equals the number of available

commands (plus the separators in semantic organizations). A typical
linear menu organizes the elements in 3 columns (Figure 1):
-1st column contains command icons, the pictorial representations
of functionalities (e.g., ,). Such icons depend on the appli-
cation and the operating system, e.g., most Mac menus (and few
Linux) do not display icons by default. The icon is sometimes re-
placed by a symbol ✓ or a widget , . Most menus display
icons only for the frequent commands. Since all icons have the
same size, their alignment is always fixed.
-2nd column contains command names, the textual labels repre-
senting the name of functionalities (e.g., Save , Copy). Ellipses can
be added [5?](e.g. Save As...), if the command requires parameters
(i.e. open a dialog box). Few menus (e.g., history menu in Safari) use
an icon (e.g., website logo) in the command name. The alignment
of the command names is always on the left.
-3rd column contains keyboard shortcut cues and submenu sym-
bols (�). The cues represent the sequence of keys to activate a
functionality. Depending on the operating system the cue can be
textual (e.g. Ctrl+S) or, as in Mac systems, a combination of symbol
and text (S). The symbol � , which does not have a cue, indi-
cates hierarchical menu items (i.e. the item opens a sub-menu). The
alignment of the cues is always on the right.

We saw very few exceptions of the above standards. An old Win
3.1 had shortcuts cues with left-alignment, Win had a 4rth column
with � , and Blender had both cues and submenus.

Our analysis showed that the linear menu follows a consistent
design pattern across operating systems and applications. The com-
mands appear on the left, while the shortcut cues on the right.
Similarly, the commands follow left alignment, while the shortcut
cues follow right alignment. This standard introduces implications
for the width of the columns. While the icons’ width (1st column)
is fixed, the command names (2nd column) depend on the longest.
Similarly, the shortcuts’ width (3rd column) depend on the short-
cuts with the largest number of modifiers (max=3). Consequently,
while the (relative) spatial positioning between the shortcut cue and
the command is always the same (i.e. shortcut cue on the right),
their spatial proximity varies a lot from one item to another and
from one menu to another (see Figure 1). ISL theory suggests that
such distance might impair the implicit learning of the keyboard
shortcuts. Current literature further highlights that users often ig-
nore keyboard shortcuts and they favor menus to select commands
[6, 19, 33]. Existing solutions aim to increase users’ awareness
[33, 40, 45, 53], attract attention [33], inform about the relative
performance [45] and/or change the incentives [53] for using the
shortcuts. These approaches mainly focus on when and how to
display information related to keyboard shortcuts, but they haven’t
investigated how the spatial relationship between the command
name and the keyboard shortcut may affect the keyboard shortcut
adoption.

3.2 Strategies to Improve the Menu Pattern
We identify several approaches favoring spatial proximity between
commands and keyboard shortcut cues:
• Decrease variability of command length (2nd column): As the
width of the 2nd column depends on the longest command name,
a designer could maintain similar command lengths. However,

,

AVI 2022, June 6–10, 2022, Frascati, Rome, Italy Giannisakis et al.

changing the wording of commands is a challenging task for
designers [7, 10]. Users are familiar with specific names, e.g.,
Save , Open while alternative command names do not always
exist.

• Decrease variability of shortcut cue length (3rd column): Similarly
to the command names, the shortcut cues can also maintain the
same width by reducing modifiers or replacing modifiers with
symbols (e.g., Apple menus). Designers tend to anyways follow
this solution, favoring simple shortcuts or using symbols. How-
ever, given the variability of the command names, this solution
saves only a couple of pixels (as well as solutions that reduce
padding or margins).

• Change column alignment (2nd & 3rd column): This approach
changes the position of the elements within columns. While the
2nd column is left aligned and the 3rd is right aligned several
alternatives are possible while maintaining the column order.

• Change position (2nd & 3rd column): This approach focuses
on the relative position between the command name and the
shortcut cue, typically, changing the order of the columns.
We focus on the two last strategies which do not modify the

semantic of the command name or the shortcut cue.

3.3 Design Space: Position & Alignment
The design space of the linear menu is enormous involving numer-
ous variables (e.g., font, saliency, icon design etc.) [10, 28]. We focus
on the position and the alignment between the keyboard shortcut
cues and the name of the commands.

To describe this design space, we use the iconified notation
displayed in Figure 2. The grids on the left of eachmenu offer a quick
overview of the set of possibilities and facilitate prototyping and
brainstorming among designers. The command name is represented
by the icon cmd and the keyboard shortcut cue by the icon ks .
Each element is displayed in a box icon representing the whole
space allocated for the elements, typically, the column width. The
relative position (e.g., top, bottom, left, right) of the box represents
the dimension position, while their relative position within the
box represents their alignment (e.g., left , right, center). Figure 2
illustrates 8 menu instances of this design space by manipulating
the position and the alignment of the two elements. A key feature
of the design space is that the two elements can share the same box
as shown in Figure 2.e.f. In that case, the designer is choosing to
allocate one column for both elements. Consequently, this pair of
elements will be following a unique alignment.

All combinations of positions and alignments between keyboard
shortcut cues and command names derived 42 different menu pat-
terns 1 More precisely, we considered 4 relative positions of the
keyboard shortcut cue in relation to the command name: left, right,
below or above (e.g., Fig2.c.d.h.g respectively). We also considered
3 alignments for each of these two elements: left, right, or center
(e.g., for cues Fig2.b.c.d respectively). We also considered all (6)
the menus where the elements are appended to each other. Given
the configuration of these menus, we considered only 2 relative
positions left or at the right (e.g., Fig2.f.e) and three alignments left
(e.g., Fig2.e), right, or center (e.g., Fig2.f).

1Figure 2 shows only a subset of the menus. All menus are available in the supplemen-
tary material. See the osf link in Experiment 1.

3.4 Menu Pattern Selection
From the 42 menus, we discarded the 27 which were strongly sensi-
tive to the length of the commands (e.g., in patterns .b and .d small
command names are far from the shortcut cues). This systematic
analysis resulted in 14 menu candidates that increase the spatial
proximity between the shortcut cue and the command name 2.

Yet, considering solely spatial proximity might affect other crite-
ria of menu pattern design such as: menu readability, if commands
and shortcut cues are easy to read; menu aesthetics,if they are aes-
thetically pleasing; and frequency in UI, if it is familiar in element
organization in digital or physical documents (e.g. , applications,
web pages, books, documents, journals). To account for those crite-
ria, we consulted 4 design experts (28-48 years, 2 female, 1 male, 1
non-binary) of years of experience 3, 6-10 years and 1 > 10 years. On
a 7-likert scale, the designers volunteered to evaluate the 14 menu
patterns as well as the traditional linear menu pattern based on
readability, aesthetics and frequency as well as the shortcut notice-
ability itself (i.e. if they think that the user will notice the keyboard
shortcut of each command in this menu) Examples of the stimuli
are the gray menus Figure 2.

Figure 3 reports the designers’ responses. Each column cor-
responds to a menu pattern and the blue boxes the average rat-
ing for each criterion. Stronger blue indicates higher rating. Each
menu can be identified uniquely by its position: cue on the (R)ight,
(L)eft,(B)elow, (A)bove of the command and alignment: (R)ight,
(L)eft, (C)enter, shown in the 2 last rows. Interestingly, the Left
(Figure 2.c) was recognized as one of the most promising candidate,
especially regarding shortcut noticeability.

We then performed a trade-off analysis to select the most promis-
ing menu patterns. On the one side, we considered the ratings of
the designers for each menu. The relative importance of the criteria
was: noticeability of the shortcut > > readability > > aesthetics >
frequency. On the other side, we wanted to ensure that the selected
menu patterns were different enough in terms of spatial relation-
ships. Three promising menu patterns were retained which we will
empirically evaluate next:
• the left (Figure 2.c) where the keyboard shortcut cues are posi-
tioned before the command names.

• the right (Figure 2.e) where the keyboard shortcut cues are
appended right after the command names.

• the below (Figure 2.h) where the keyboard shortcut cues are
located below the command names.

4 EXPERIMENT 1
Through the exploration of the design space we manage to identify
three promising menu layouts however we don’t know whether
they will affect the keyboard shortcut adoption. Therefore, we
compare the three aforementioned menu patterns to the traditional
linear menu (baseline) on keyboard shortcut adoption. We also
manipulate the length of the commands as it can influence spatial
proximity (but not spatial positioning). Experimental material is
available here: https://osf.io/sgqrf/?view_only=85faa79f72bc40119e380ab0030a53fe

2see osf.io link in Experiment 1 to access the full list of menu designs

while
alternative command names do not always exist.

• Decrease variability of shortcut cue length (3rd column): Similarly
to the command names, the shortcut cues can also maintain the
same width by reducing modifiers or replacing modifiers with
symbols (e.g., Apple menus). Designers tend to anyways follow
this solution, favoring simple shortcuts or using symbols. How-
ever, given the variability of the command names, this solution
saves only a couple of pixels (as well as solutions that reduce
padding or margins).

• Change column alignment (2nd & 3rd column): This approach
changes the position of the elements within columns. While the
2nd column is left aligned and the 3rd is right aligned several
alternatives are possible while maintaining the column order.

• Change position (2nd & 3rd column): This approach focuses
on the relative position between the command name and the
shortcut cue, typically, changing the order of the columns.
We focus on the two last strategies which do not modify the

semantic of the command name or the shortcut cue.

3.3 Design Space: Position & Alignment
The design space of the linear menu is enormous involving numer-
ous variables (e.g., font, saliency, icon design etc.) [10, 27]. We focus
on the position and the alignment between the keyboard shortcut
cues and the name of the commands.

To describe this design space, we use the iconified notation
displayed in Figure 2. The grids on the left of eachmenu offer a quick
overview of the set of possibilities and facilitate prototyping and
brainstorming among designers. The command name is represented
by the icon

AVI 2022, June 6–10, 2022, Frascati, Rome, Italy Giannisakis et al.

changing the wording of commands is a challenging task for
designers [7, 10]. Users are familiar with specific names, e.g.,
Save , Open while alternative command names do not always
exist.

• Decrease variability of shortcut cue length (3rd column): Similarly
to the command names, the shortcut cues can also maintain the
same width by reducing modifiers or replacing modifiers with
symbols (e.g., Apple menus). Designers tend to anyways follow
this solution, favoring simple shortcuts or using symbols. How-
ever, given the variability of the command names, this solution
saves only a couple of pixels (as well as solutions that reduce
padding or margins).

• Change column alignment (2nd & 3rd column): This approach
changes the position of the elements within columns. While the
2nd column is left aligned and the 3rd is right aligned several
alternatives are possible while maintaining the column order.

• Change position (2nd & 3rd column): This approach focuses
on the relative position between the command name and the
shortcut cue, typically, changing the order of the columns.
We focus on the two last strategies which do not modify the

semantic of the command name or the shortcut cue.

3.3 Design Space: Position & Alignment
The design space of the linear menu is enormous involving numer-
ous variables (e.g., font, saliency, icon design etc.) [10, 28]. We focus
on the position and the alignment between the keyboard shortcut
cues and the name of the commands.

To describe this design space, we use the iconified notation
displayed in Figure 2. The grids on the left of eachmenu offer a quick
overview of the set of possibilities and facilitate prototyping and
brainstorming among designers. The command name is represented
by the icon cmd and the keyboard shortcut cue by the icon ks .
Each element is displayed in a box icon representing the whole
space allocated for the elements, typically, the column width. The
relative position (e.g., top, bottom, left, right) of the box represents
the dimension position, while their relative position within the
box represents their alignment (e.g., left , right, center). Figure 2
illustrates 8 menu instances of this design space by manipulating
the position and the alignment of the two elements. A key feature
of the design space is that the two elements can share the same box
as shown in Figure 2.e.f. In that case, the designer is choosing to
allocate one column for both elements. Consequently, this pair of
elements will be following a unique alignment.

All combinations of positions and alignments between keyboard
shortcut cues and command names derived 42 different menu pat-
terns 1 More precisely, we considered 4 relative positions of the
keyboard shortcut cue in relation to the command name: left, right,
below or above (e.g., Fig2.c.d.h.g respectively). We also considered
3 alignments for each of these two elements: left, right, or center
(e.g., for cues Fig2.b.c.d respectively). We also considered all (6)
the menus where the elements are appended to each other. Given
the configuration of these menus, we considered only 2 relative
positions left or at the right (e.g., Fig2.f.e) and three alignments left
(e.g., Fig2.e), right, or center (e.g., Fig2.f).

1Figure 2 shows only a subset of the menus. All menus are available in the supplemen-
tary material. See the osf link in Experiment 1.

3.4 Menu Pattern Selection
From the 42 menus, we discarded the 27 which were strongly sensi-
tive to the length of the commands (e.g., in patterns .b and .d small
command names are far from the shortcut cues). This systematic
analysis resulted in 14 menu candidates that increase the spatial
proximity between the shortcut cue and the command name 2.

Yet, considering solely spatial proximity might affect other crite-
ria of menu pattern design such as: menu readability, if commands
and shortcut cues are easy to read; menu aesthetics,if they are aes-
thetically pleasing; and frequency in UI, if it is familiar in element
organization in digital or physical documents (e.g. , applications,
web pages, books, documents, journals). To account for those crite-
ria, we consulted 4 design experts (28-48 years, 2 female, 1 male, 1
non-binary) of years of experience 3, 6-10 years and 1 > 10 years. On
a 7-likert scale, the designers volunteered to evaluate the 14 menu
patterns as well as the traditional linear menu pattern based on
readability, aesthetics and frequency as well as the shortcut notice-
ability itself (i.e. if they think that the user will notice the keyboard
shortcut of each command in this menu) Examples of the stimuli
are the gray menus Figure 2.

Figure 3 reports the designers’ responses. Each column cor-
responds to a menu pattern and the blue boxes the average rat-
ing for each criterion. Stronger blue indicates higher rating. Each
menu can be identified uniquely by its position: cue on the (R)ight,
(L)eft,(B)elow, (A)bove of the command and alignment: (R)ight,
(L)eft, (C)enter, shown in the 2 last rows. Interestingly, the Left
(Figure 2.c) was recognized as one of the most promising candidate,
especially regarding shortcut noticeability.

We then performed a trade-off analysis to select the most promis-
ing menu patterns. On the one side, we considered the ratings of
the designers for each menu. The relative importance of the criteria
was: noticeability of the shortcut > > readability > > aesthetics >
frequency. On the other side, we wanted to ensure that the selected
menu patterns were different enough in terms of spatial relation-
ships. Three promising menu patterns were retained which we will
empirically evaluate next:
• the left (Figure 2.c) where the keyboard shortcut cues are posi-
tioned before the command names.

• the right (Figure 2.e) where the keyboard shortcut cues are
appended right after the command names.

• the below (Figure 2.h) where the keyboard shortcut cues are
located below the command names.

4 EXPERIMENT 1
Through the exploration of the design space we manage to identify
three promising menu layouts however we don’t know whether
they will affect the keyboard shortcut adoption. Therefore, we
compare the three aforementioned menu patterns to the traditional
linear menu (baseline) on keyboard shortcut adoption. We also
manipulate the length of the commands as it can influence spatial
proximity (but not spatial positioning). Experimental material is
available here: https://osf.io/sgqrf/?view_only=85faa79f72bc40119e380ab0030a53fe

2see osf.io link in Experiment 1 to access the full list of menu designs

and the keyboard shortcut cue by the icon

AVI 2022, June 6–10, 2022, Frascati, Rome, Italy Giannisakis et al.

changing the wording of commands is a challenging task for
designers [7, 10]. Users are familiar with specific names, e.g.,
Save , Open while alternative command names do not always
exist.

• Decrease variability of shortcut cue length (3rd column): Similarly
to the command names, the shortcut cues can also maintain the
same width by reducing modifiers or replacing modifiers with
symbols (e.g., Apple menus). Designers tend to anyways follow
this solution, favoring simple shortcuts or using symbols. How-
ever, given the variability of the command names, this solution
saves only a couple of pixels (as well as solutions that reduce
padding or margins).

• Change column alignment (2nd & 3rd column): This approach
changes the position of the elements within columns. While the
2nd column is left aligned and the 3rd is right aligned several
alternatives are possible while maintaining the column order.

• Change position (2nd & 3rd column): This approach focuses
on the relative position between the command name and the
shortcut cue, typically, changing the order of the columns.
We focus on the two last strategies which do not modify the

semantic of the command name or the shortcut cue.

3.3 Design Space: Position & Alignment
The design space of the linear menu is enormous involving numer-
ous variables (e.g., font, saliency, icon design etc.) [10, 28]. We focus
on the position and the alignment between the keyboard shortcut
cues and the name of the commands.

To describe this design space, we use the iconified notation
displayed in Figure 2. The grids on the left of eachmenu offer a quick
overview of the set of possibilities and facilitate prototyping and
brainstorming among designers. The command name is represented
by the icon cmd and the keyboard shortcut cue by the icon ks .
Each element is displayed in a box icon representing the whole
space allocated for the elements, typically, the column width. The
relative position (e.g., top, bottom, left, right) of the box represents
the dimension position, while their relative position within the
box represents their alignment (e.g., left , right, center). Figure 2
illustrates 8 menu instances of this design space by manipulating
the position and the alignment of the two elements. A key feature
of the design space is that the two elements can share the same box
as shown in Figure 2.e.f. In that case, the designer is choosing to
allocate one column for both elements. Consequently, this pair of
elements will be following a unique alignment.

All combinations of positions and alignments between keyboard
shortcut cues and command names derived 42 different menu pat-
terns 1 More precisely, we considered 4 relative positions of the
keyboard shortcut cue in relation to the command name: left, right,
below or above (e.g., Fig2.c.d.h.g respectively). We also considered
3 alignments for each of these two elements: left, right, or center
(e.g., for cues Fig2.b.c.d respectively). We also considered all (6)
the menus where the elements are appended to each other. Given
the configuration of these menus, we considered only 2 relative
positions left or at the right (e.g., Fig2.f.e) and three alignments left
(e.g., Fig2.e), right, or center (e.g., Fig2.f).

1Figure 2 shows only a subset of the menus. All menus are available in the supplemen-
tary material. See the osf link in Experiment 1.

3.4 Menu Pattern Selection
From the 42 menus, we discarded the 27 which were strongly sensi-
tive to the length of the commands (e.g., in patterns .b and .d small
command names are far from the shortcut cues). This systematic
analysis resulted in 14 menu candidates that increase the spatial
proximity between the shortcut cue and the command name 2.

Yet, considering solely spatial proximity might affect other crite-
ria of menu pattern design such as: menu readability, if commands
and shortcut cues are easy to read; menu aesthetics,if they are aes-
thetically pleasing; and frequency in UI, if it is familiar in element
organization in digital or physical documents (e.g. , applications,
web pages, books, documents, journals). To account for those crite-
ria, we consulted 4 design experts (28-48 years, 2 female, 1 male, 1
non-binary) of years of experience 3, 6-10 years and 1 > 10 years. On
a 7-likert scale, the designers volunteered to evaluate the 14 menu
patterns as well as the traditional linear menu pattern based on
readability, aesthetics and frequency as well as the shortcut notice-
ability itself (i.e. if they think that the user will notice the keyboard
shortcut of each command in this menu) Examples of the stimuli
are the gray menus Figure 2.

Figure 3 reports the designers’ responses. Each column cor-
responds to a menu pattern and the blue boxes the average rat-
ing for each criterion. Stronger blue indicates higher rating. Each
menu can be identified uniquely by its position: cue on the (R)ight,
(L)eft,(B)elow, (A)bove of the command and alignment: (R)ight,
(L)eft, (C)enter, shown in the 2 last rows. Interestingly, the Left
(Figure 2.c) was recognized as one of the most promising candidate,
especially regarding shortcut noticeability.

We then performed a trade-off analysis to select the most promis-
ing menu patterns. On the one side, we considered the ratings of
the designers for each menu. The relative importance of the criteria
was: noticeability of the shortcut > > readability > > aesthetics >
frequency. On the other side, we wanted to ensure that the selected
menu patterns were different enough in terms of spatial relation-
ships. Three promising menu patterns were retained which we will
empirically evaluate next:
• the left (Figure 2.c) where the keyboard shortcut cues are posi-
tioned before the command names.

• the right (Figure 2.e) where the keyboard shortcut cues are
appended right after the command names.

• the below (Figure 2.h) where the keyboard shortcut cues are
located below the command names.

4 EXPERIMENT 1
Through the exploration of the design space we manage to identify
three promising menu layouts however we don’t know whether
they will affect the keyboard shortcut adoption. Therefore, we
compare the three aforementioned menu patterns to the traditional
linear menu (baseline) on keyboard shortcut adoption. We also
manipulate the length of the commands as it can influence spatial
proximity (but not spatial positioning). Experimental material is
available here: https://osf.io/sgqrf/?view_only=85faa79f72bc40119e380ab0030a53fe

2see osf.io link in Experiment 1 to access the full list of menu designs

.
Each element is displayed in a box icon representing the whole
space allocated for the elements, typically, the column width. The
relative position (e.g., top, bottom, left, right) of the box represents
the dimension position, while their relative position within the
box represents their alignment (e.g., left , right, center). Figure 2
illustrates 8 menu instances of this design space by manipulating
the position and the alignment of the two elements. A key feature
of the design space is that the two elements can share the same box
as shown in Figure 2.e.f. In that case, the designer is choosing to
allocate one column for both elements. Consequently, this pair of
elements will be following a unique alignment.

All combinations of positions and alignments between keyboard
shortcut cues and command names derived 42 different menu pat-
terns 1 More precisely, we considered 4 relative positions of the
keyboard shortcut cue in relation to the command name: left, right,
below or above (e.g., Fig2.c.d.h.g respectively). We also considered
3 alignments for each of these two elements: left, right, or center
(e.g., for cues Fig2.b.c.d respectively). We also considered all (6)
the menus where the elements are appended to each other. Given
the configuration of these menus, we considered only 2 relative
positions left or at the right (e.g., Fig2.f.e) and three alignments left
(e.g., Fig2.e), right, or center (e.g., Fig2.f).

1Figure 2 shows only a subset of the menus. All menus are available in the supplemen-
tary material. See the osf link in Experiment 1.

3.4 Menu Pattern Selection
From the 42 menus, we discarded the 27 which were strongly sensi-
tive to the length of the commands (e.g., in patterns .b and .d small
command names are far from the shortcut cues). This systematic
analysis resulted in 14 menu candidates that increase the spatial
proximity between the shortcut cue and the command name 2.

Yet, considering solely spatial proximity might affect other crite-
ria of menu pattern design such as: menu readability, if commands
and shortcut cues are easy to read; menu aesthetics,if they are aes-
thetically pleasing; and frequency in UI, if it is familiar in element
organization in digital or physical documents (e.g. , applications,
web pages, books, documents, journals). To account for those crite-
ria, we consulted 4 design experts (28-48 years, 2 female, 1 male, 1
non-binary) of years of experience 3, 6-10 years and 1 > 10 years. On
a 7-likert scale, the designers volunteered to evaluate the 14 menu
patterns as well as the traditional linear menu pattern based on
readability, aesthetics and frequency as well as the shortcut notice-
ability itself (i.e. if they think that the user will notice the keyboard
shortcut of each command in this menu) Examples of the stimuli
are the gray menus Figure 2.

Figure 3 reports the designers’ responses. Each column cor-
responds to a menu pattern and the blue boxes the average rat-
ing for each criterion. Stronger blue indicates higher rating. Each
menu can be identified uniquely by its position: cue on the (R)ight,
(L)eft,(B)elow, (A)bove of the command and alignment: (R)ight,
(L)eft, (C)enter, shown in the 2 last rows. Interestingly, the Left
(Figure 2.c) was recognized as one of the most promising candidate,
especially regarding shortcut noticeability.

We then performed a trade-off analysis to select the most promis-
ing menu patterns. On the one side, we considered the ratings of
the designers for each menu. The relative importance of the criteria
was: noticeability of the shortcut > > readability > > aesthetics >
frequency. On the other side, we wanted to ensure that the selected
menu patterns were different enough in terms of spatial relation-
ships. Three promising menu patterns were retained which we will
empirically evaluate next:
• the left (Figure 2.c) where the keyboard shortcut cues are posi-
tioned before the command names.

• the right (Figure 2.e) where the keyboard shortcut cues are
appended right after the command names.

• the below (Figure 2.h) where the keyboard shortcut cues are
located below the command names.

4 EXPERIMENT 1
Through the exploration of the design space we manage to identify
three promising menu layouts however we don’t know whether
they will affect the keyboard shortcut adoption. Therefore, we
compare the three aforementioned menu patterns to the tradi-
tional linear menu (baseline) on keyboard shortcut adoption.
We also manipulate the length of the commands as it can in-
fluence spatial proximity (but not spatial positioning). Experi-
mental material is available here: https://osf.io/sgqrf/?view_only=
85faa79f72bc40119e380ab0030a53fe

2see osf.io link in Experiment 1 to access the full list of menu designs

https://osf.io/sgqrf/?view_only=85faa79f72bc40119e380ab0030a53fe
https://osf.io/sgqrf/?view_only=85faa79f72bc40119e380ab0030a53fe

Revisiting Menu Design Through the Lens of
Implicit Statistical Learning AVI 2022, June 6–10, 2022, Frascati, Rome, Italy

Open
Send Backward
Select All
Play Slideshow

Ctrl+O
Alt+Shift+Ctrl+B

Ctrl+A
Alt+Ctrl+P

Open
Send Backward
Select All
Play Slideshow

Ctrl+O
Alt+Shift+Ctrl+B

Ctrl+A
Alt+Ctrl+P

Ctrl+O
Open

Alt+Shift+Ctrl+B
Send Backward

Ctrl+A
Select All

Alt+Ctrl+P
Play Slideshow

Open
Ctrl+O

Send Backward
Alt+Shift+Ctrl+B

Select All
Ctrl+A

Play Slideshow
Alt+Ctrl+P

Open
Send Backward
Select All
Play Slideshow

Ctrl+O
Alt+Shift+Ctrl+B

Ctrl+A
Alt+Ctrl+P

Open Ctrl+O
Send Backward Alt+Shift+Ctrl+B
Select All Ctrl+A
Play Slideshow Alt+Ctrl+P

Open
Send Backward
Select All
Play Slideshow

Ctrl+O
Alt+Shift+Ctrl+B
Ctrl+A
Alt+Ctrl+P

Ctrl+O Open
Alt+Shift+Ctrl+B Send Backward

Ctrl+A Select All
Alt+Ctrl+P Play Slideshow

a.

b.

c.

d.

e.

f.

g. h.
cmd ks

cmd ks

ks cmd

cmd ks

cmd ks

cmdks

cmd

ks

cmd

ks

Figure 2: Design space for placing the keyboard shortcut cue (

AVI 2022, June 6–10, 2022, Frascati, Rome, Italy Giannisakis et al.

changing the wording of commands is a challenging task for
designers [7, 10]. Users are familiar with specific names, e.g.,
Save , Open while alternative command names do not always
exist.

• Decrease variability of shortcut cue length (3rd column): Similarly
to the command names, the shortcut cues can also maintain the
same width by reducing modifiers or replacing modifiers with
symbols (e.g., Apple menus). Designers tend to anyways follow
this solution, favoring simple shortcuts or using symbols. How-
ever, given the variability of the command names, this solution
saves only a couple of pixels (as well as solutions that reduce
padding or margins).

• Change column alignment (2nd & 3rd column): This approach
changes the position of the elements within columns. While the
2nd column is left aligned and the 3rd is right aligned several
alternatives are possible while maintaining the column order.

• Change position (2nd & 3rd column): This approach focuses
on the relative position between the command name and the
shortcut cue, typically, changing the order of the columns.
We focus on the two last strategies which do not modify the

semantic of the command name or the shortcut cue.

3.3 Design Space: Position & Alignment
The design space of the linear menu is enormous involving numer-
ous variables (e.g., font, saliency, icon design etc.) [10, 28]. We focus
on the position and the alignment between the keyboard shortcut
cues and the name of the commands.

To describe this design space, we use the iconified notation
displayed in Figure 2. The grids on the left of eachmenu offer a quick
overview of the set of possibilities and facilitate prototyping and
brainstorming among designers. The command name is represented
by the icon cmd and the keyboard shortcut cue by the icon ks .
Each element is displayed in a box icon representing the whole
space allocated for the elements, typically, the column width. The
relative position (e.g., top, bottom, left, right) of the box represents
the dimension position, while their relative position within the
box represents their alignment (e.g., left , right, center). Figure 2
illustrates 8 menu instances of this design space by manipulating
the position and the alignment of the two elements. A key feature
of the design space is that the two elements can share the same box
as shown in Figure 2.e.f. In that case, the designer is choosing to
allocate one column for both elements. Consequently, this pair of
elements will be following a unique alignment.

All combinations of positions and alignments between keyboard
shortcut cues and command names derived 42 different menu pat-
terns 1 More precisely, we considered 4 relative positions of the
keyboard shortcut cue in relation to the command name: left, right,
below or above (e.g., Fig2.c.d.h.g respectively). We also considered
3 alignments for each of these two elements: left, right, or center
(e.g., for cues Fig2.b.c.d respectively). We also considered all (6)
the menus where the elements are appended to each other. Given
the configuration of these menus, we considered only 2 relative
positions left or at the right (e.g., Fig2.f.e) and three alignments left
(e.g., Fig2.e), right, or center (e.g., Fig2.f).

1Figure 2 shows only a subset of the menus. All menus are available in the supplemen-
tary material. See the osf link in Experiment 1.

3.4 Menu Pattern Selection
From the 42 menus, we discarded the 27 which were strongly sensi-
tive to the length of the commands (e.g., in patterns .b and .d small
command names are far from the shortcut cues). This systematic
analysis resulted in 14 menu candidates that increase the spatial
proximity between the shortcut cue and the command name 2.

Yet, considering solely spatial proximity might affect other crite-
ria of menu pattern design such as: menu readability, if commands
and shortcut cues are easy to read; menu aesthetics,if they are aes-
thetically pleasing; and frequency in UI, if it is familiar in element
organization in digital or physical documents (e.g. , applications,
web pages, books, documents, journals). To account for those crite-
ria, we consulted 4 design experts (28-48 years, 2 female, 1 male, 1
non-binary) of years of experience 3, 6-10 years and 1 > 10 years. On
a 7-likert scale, the designers volunteered to evaluate the 14 menu
patterns as well as the traditional linear menu pattern based on
readability, aesthetics and frequency as well as the shortcut notice-
ability itself (i.e. if they think that the user will notice the keyboard
shortcut of each command in this menu) Examples of the stimuli
are the gray menus Figure 2.

Figure 3 reports the designers’ responses. Each column cor-
responds to a menu pattern and the blue boxes the average rat-
ing for each criterion. Stronger blue indicates higher rating. Each
menu can be identified uniquely by its position: cue on the (R)ight,
(L)eft,(B)elow, (A)bove of the command and alignment: (R)ight,
(L)eft, (C)enter, shown in the 2 last rows. Interestingly, the Left
(Figure 2.c) was recognized as one of the most promising candidate,
especially regarding shortcut noticeability.

We then performed a trade-off analysis to select the most promis-
ing menu patterns. On the one side, we considered the ratings of
the designers for each menu. The relative importance of the criteria
was: noticeability of the shortcut > > readability > > aesthetics >
frequency. On the other side, we wanted to ensure that the selected
menu patterns were different enough in terms of spatial relation-
ships. Three promising menu patterns were retained which we will
empirically evaluate next:
• the left (Figure 2.c) where the keyboard shortcut cues are posi-
tioned before the command names.

• the right (Figure 2.e) where the keyboard shortcut cues are
appended right after the command names.

• the below (Figure 2.h) where the keyboard shortcut cues are
located below the command names.

4 EXPERIMENT 1
Through the exploration of the design space we manage to identify
three promising menu layouts however we don’t know whether
they will affect the keyboard shortcut adoption. Therefore, we
compare the three aforementioned menu patterns to the traditional
linear menu (baseline) on keyboard shortcut adoption. We also
manipulate the length of the commands as it can influence spatial
proximity (but not spatial positioning). Experimental material is
available here: https://osf.io/sgqrf/?view_only=85faa79f72bc40119e380ab0030a53fe

2see osf.io link in Experiment 1 to access the full list of menu designs

) in relation to its command name (

AVI 2022, June 6–10, 2022, Frascati, Rome, Italy Giannisakis et al.

changing the wording of commands is a challenging task for
designers [7, 10]. Users are familiar with specific names, e.g.,
Save , Open while alternative command names do not always
exist.

• Decrease variability of shortcut cue length (3rd column): Similarly
to the command names, the shortcut cues can also maintain the
same width by reducing modifiers or replacing modifiers with
symbols (e.g., Apple menus). Designers tend to anyways follow
this solution, favoring simple shortcuts or using symbols. How-
ever, given the variability of the command names, this solution
saves only a couple of pixels (as well as solutions that reduce
padding or margins).

• Change column alignment (2nd & 3rd column): This approach
changes the position of the elements within columns. While the
2nd column is left aligned and the 3rd is right aligned several
alternatives are possible while maintaining the column order.

• Change position (2nd & 3rd column): This approach focuses
on the relative position between the command name and the
shortcut cue, typically, changing the order of the columns.
We focus on the two last strategies which do not modify the

semantic of the command name or the shortcut cue.

3.3 Design Space: Position & Alignment
The design space of the linear menu is enormous involving numer-
ous variables (e.g., font, saliency, icon design etc.) [10, 28]. We focus
on the position and the alignment between the keyboard shortcut
cues and the name of the commands.

To describe this design space, we use the iconified notation
displayed in Figure 2. The grids on the left of eachmenu offer a quick
overview of the set of possibilities and facilitate prototyping and
brainstorming among designers. The command name is represented
by the icon cmd and the keyboard shortcut cue by the icon ks .
Each element is displayed in a box icon representing the whole
space allocated for the elements, typically, the column width. The
relative position (e.g., top, bottom, left, right) of the box represents
the dimension position, while their relative position within the
box represents their alignment (e.g., left , right, center). Figure 2
illustrates 8 menu instances of this design space by manipulating
the position and the alignment of the two elements. A key feature
of the design space is that the two elements can share the same box
as shown in Figure 2.e.f. In that case, the designer is choosing to
allocate one column for both elements. Consequently, this pair of
elements will be following a unique alignment.

All combinations of positions and alignments between keyboard
shortcut cues and command names derived 42 different menu pat-
terns 1 More precisely, we considered 4 relative positions of the
keyboard shortcut cue in relation to the command name: left, right,
below or above (e.g., Fig2.c.d.h.g respectively). We also considered
3 alignments for each of these two elements: left, right, or center
(e.g., for cues Fig2.b.c.d respectively). We also considered all (6)
the menus where the elements are appended to each other. Given
the configuration of these menus, we considered only 2 relative
positions left or at the right (e.g., Fig2.f.e) and three alignments left
(e.g., Fig2.e), right, or center (e.g., Fig2.f).

1Figure 2 shows only a subset of the menus. All menus are available in the supplemen-
tary material. See the osf link in Experiment 1.

3.4 Menu Pattern Selection
From the 42 menus, we discarded the 27 which were strongly sensi-
tive to the length of the commands (e.g., in patterns .b and .d small
command names are far from the shortcut cues). This systematic
analysis resulted in 14 menu candidates that increase the spatial
proximity between the shortcut cue and the command name 2.

Yet, considering solely spatial proximity might affect other crite-
ria of menu pattern design such as: menu readability, if commands
and shortcut cues are easy to read; menu aesthetics,if they are aes-
thetically pleasing; and frequency in UI, if it is familiar in element
organization in digital or physical documents (e.g. , applications,
web pages, books, documents, journals). To account for those crite-
ria, we consulted 4 design experts (28-48 years, 2 female, 1 male, 1
non-binary) of years of experience 3, 6-10 years and 1 > 10 years. On
a 7-likert scale, the designers volunteered to evaluate the 14 menu
patterns as well as the traditional linear menu pattern based on
readability, aesthetics and frequency as well as the shortcut notice-
ability itself (i.e. if they think that the user will notice the keyboard
shortcut of each command in this menu) Examples of the stimuli
are the gray menus Figure 2.

Figure 3 reports the designers’ responses. Each column cor-
responds to a menu pattern and the blue boxes the average rat-
ing for each criterion. Stronger blue indicates higher rating. Each
menu can be identified uniquely by its position: cue on the (R)ight,
(L)eft,(B)elow, (A)bove of the command and alignment: (R)ight,
(L)eft, (C)enter, shown in the 2 last rows. Interestingly, the Left
(Figure 2.c) was recognized as one of the most promising candidate,
especially regarding shortcut noticeability.

We then performed a trade-off analysis to select the most promis-
ing menu patterns. On the one side, we considered the ratings of
the designers for each menu. The relative importance of the criteria
was: noticeability of the shortcut > > readability > > aesthetics >
frequency. On the other side, we wanted to ensure that the selected
menu patterns were different enough in terms of spatial relation-
ships. Three promising menu patterns were retained which we will
empirically evaluate next:
• the left (Figure 2.c) where the keyboard shortcut cues are posi-
tioned before the command names.

• the right (Figure 2.e) where the keyboard shortcut cues are
appended right after the command names.

• the below (Figure 2.h) where the keyboard shortcut cues are
located below the command names.

4 EXPERIMENT 1
Through the exploration of the design space we manage to identify
three promising menu layouts however we don’t know whether
they will affect the keyboard shortcut adoption. Therefore, we
compare the three aforementioned menu patterns to the traditional
linear menu (baseline) on keyboard shortcut adoption. We also
manipulate the length of the commands as it can influence spatial
proximity (but not spatial positioning). Experimental material is
available here: https://osf.io/sgqrf/?view_only=85faa79f72bc40119e380ab0030a53fe

2see osf.io link in Experiment 1 to access the full list of menu designs

) regarding two
dimensions: position and alignment. Shortcut positions: left (c,f), right (a,b,d,e) bottom (h), up (g) or diagonal (not shown in
the figure). Shortcut alignments: left (b,h), right (a,c), and centered (f,g). The circled letters highlight the designs that we finally
compared in Experiment 1.

menu aesthetics
frequency in UI

menu readability

shortcut noticeability

BASELINE BELOW RIGHT

R

accumulated

category: position

14 menus with minimum spatial proximity between command and shortcut cue

7

1
category: aligment

R B B B A A A
R L L R C R L C

R L L R L R
L L R C C R

LEFT

L
R

Figure 3: Expert designer average scores for each menu pat-
tern.

4.1 Experimental design
Participants & Apparatus: We hired 27 university students (20-30
years) 3. The payment was 10 e/hour and an extra bonus of 20, 15
and 10 e for the three fastest participants. We used a 23” screen, a
keyboard and a mouse. The duration was 1 hour.
Menu, Targets & Frequency: This experiment follows the rational
of the first Grossman’s et al. study [32]: on the top of the screen,
a menu system contained 4 dropdown menus of 12 items each.
Each menu had a different layout [32]: left, below, right and the
traditional menu layout (baseline) 4. To compare both technique
and individual item performance, we used an uniform frequency
distribution (all items have the same frequency)[32]. The mapping
of command names to keyboard shortcut cues followed the “Bad”
quality rule of Grossman’s et al. [32], i.e. the hotkey is not part of
the command name. The design differed from the original only on
command lengths, names and target lengths:
–Command name lengths. To create menus containing “realistic”
variety of command name lengths and manipulate this factor, we
used a database of about 30 frequent Mac OS applications (1048
menus in total) [8] and we computed the mean command name
length (mean= 10 characters) and the variance [15] (24, with a 95%
bootstrap confidence interval of [22, 25]). From this database, we

3The planned size was 28, but one participant’s data was lost due to a technical crush.
4 Two main options exist for within design: either show the 4 conditions within the
same menu system (ours and Grossman’s [32]) or sequentially, one after the other. The
drawback of the first option is that one layout motivating the users to use the shortcuts,
might also motivates all conditions, resulting in observing smaller differences between
conditions. However, the sequential option can also motivate the users to use shortcuts
when switching from one condition to another, while more trials and mappings can
overload participants’ working memory [32].

randomly pick one 12-item menu with command name length dis-
tribution: 4-5-6-7-12-13-13-13-14-15-17-18. The mapping command
name length-location was randomized for each menu.
–Command names. To fit the command lengths above (3 - 10 chars),
we used only a subset of Grossman’s categories [32]: “animals”,
“vegetables”, “fruits” and “office”, synthesising command names with
common expressions of 2-3 words (e.g., “red fish”) to precisely fit
their length (i.e. number of chars).
–Targets. To use the command name length as a factor, each of the
4 menus contained 3 targets: the small word (4 characters), the
medium word (13 characters), and the long word (18 characters).
This resulted in 12 target items in total (instead of 14 in [32]).
Stimulus & Task: On top of the screen, a menubar contained 4
buttons for each menu. The stimulus, displayed at the bottom, was
an image depicting the target command (e.g. a “red fish”). The task
was to select the target item as fast and accurately as possible using
either the dropdown menu or the corresponding keyboard shortcut
[32]. For wrong selections, a pop-up window appeared at the center
of the screen. As a penalty, participants had to close this window
and redo the task ([32] used 3 sec delay penalty instead). The next
trial starts when participants executed the command correctly.
Procedure: Participants first performed a pre-test to ensure that
they know what is a keyboard shortcut and how to execute it. We
then explained participants the task encouraging them to be as
fast and accurate as possible, emphasising also that they are free
to use any method they want. We further mentioned that some
previous studies indicate that using keyboard shortcuts can be
faster. We also indicated that it is acceptable to make some mistakes
in the beginning, to motivate risk-averse persons to use keyboard
shortcuts. After 5 block of trials (each block consisted of 12 trials) a
short dialog box appeared allowing the participants to take a 20”
break. We then asked participants to fill out a post-questionnaire
with gender, age and, how often they used keyboard shortcuts and
perform a recall test where we showed them the visual stimuli they
encountered during the session and asked them to indicate the
corresponding keyboard shortcut.
Design: The experiment had two within factors: menu layout
(baseline vs. right vs. below vs. left) and command length

AVI 2022, June 6–10, 2022, Frascati, Rome, Italy Giannisakis et al.

Error bars 95% CIs

Figure 4: Mean% of shortcuts per menu.

Blocks

% Correct keyboard shortucts Selection time

Blocks

 95% CIs con�dence bands

Figure 5: Mean% of shortcuts & time per menu

Error bars 95% CIs

Figure 6: Mean% of shortcuts per command length
.

Blocks

% Correct keyboard shortucts Selection time

Blocks

 95% CIs con�dence bands

Figure 7: Mean% of shortcuts & time per command length

(small, medium and long). The mapping was counter-balanced
using a Latin square design. Participants performed 45 blocks of
12 selections. Each selection corresponds to one condition (Menu
layout × command length). Selection order was randomized within
block. Overall, the design was 27 participants × 45 blocks × 12 trials
(3 command lengths × 4 targets) = 14580 selections.
Data analysis:We measured shortcut use as the mean rate of correct
keyboard shortcuts, i.e the proportion of trials where participants
successfully used the shortcuts without help. This dependent vari-
able is often used to compare different designs promoting shortcut
usage [4, 32, 44, 45] as it captures not only the fact that users use
keyboard shortcuts but also correct mapping. Following recent
criticism on p-values [22], we report and interpret our inferential
statistics using bootstrapped confidence intervals (CI) [14].

4.2 Results
Errors bars in Figures 4,6,8 and confidence bands in Figures 5,7 rep-
resent 95% confidence intervals (CI) indicating a range of plausible
values for the population mean.
Keyboard shortcut use per menu: Figure 4 shows that the confidence
intervals of the 4 menus are large and with a high degree of overlap.
Thus we can not draw conclusions on whether a menu layout
out-performs the others in promoting correct keyboard shortcuts.
Figure 5 shows the learning speed per menu plotting the correct
keyboard shortcuts rate and command selection time per block.
Results indicate that for the first 20 blocks baseline under-performs
to the other menus in terms of correct keyboard shortcuts rate. After
block 20, differences among the 4 menus appear negligible.

% Correct answers in recall test

Figure 8: Mean% of recalls per menu.

masked visible selected

activated
Figure 9: Experiment 2: Interface with 4 target stages

Keyboard shortcut use per command length: baseline and right
are sensitive to length of the command, because its length affects
the distance between command and shortcut. Thus, we analysed
the keyboard shortcut adoption for each command length. Figure 6
shows no conclusive effect for the menu-command length pairs [20].
Yet, we notice a small trend favoring the small and long for the
baseline and right. Similarly, in Figure 7, shows results of learning
speed for each command length which remained inconclusive for
both correct keyboard shortcuts rate and selection time.
Recall test: For the keyboard shortcut recall test, Figure 8 shows no
conclusive differences among the 4 menus.

5 EXPERIMENT 2
Experiment 1was inconclusive on the difference among the 4menus.
We considered several explanations including that (I) the effect is
smaller than expected, or that (II) both the instructions and the
task were too explicit on prompting participants to learn shortcuts,
masking potential implicit learning behavior, or that (III) the within-
subjects design introduced unintended skill transfer, one menu
pattern motivating participants to adopt the shortcuts with the
other. We run a second experiment to mitigate those possibilities.

To further increase statistical power (I),we compared only two
conditions, baseline and left, the best rated by designers in terms
of noticeability of the shortcut (Figure 3) and followed between-
subjects design (III). To improve ecological validity within the ISL
context (II), Experiment 2 builds on Banovic et al. design [12] with
instructions which did not explicitly invite participants to learn
keyboard shortcuts. While this scenario was more realistic, the risk
was that a large proportion of participants might not use keyboard
shortcuts (lack of awareness, motivation, etc.). We mitigated this
risk with the use of safeguards in periodic times during the exper-
iment, using usage tips. Experiment 2 is identical to Experiment
1 including participant payment, apparatus keyboard shortcuts,
identical menu hierarchy structure and target items. We next detail
only the elements that differ between the two experiments.

5.1 Experimental design
Participants: We recruited 72 different university students (20-30
years) from various fields (e.g. engineering, law, medicine). The
duration was 1 hour.

Revisiting Menu Design Through the Lens of
Implicit Statistical Learning AVI 2022, June 6–10, 2022, Frascati, Rome, Italy

Stimulus & Task: Due to the between-subjects design (III), all sub-
menus now had the same layout (all baseline or all left). To
increase similarity with real applications (II), we added a context
menu as a common method to select commands. The new interface
(Figure 9) displayed a 5x12 grid in the center of the screen. Each
cell had four states: masked, where no image is shown; visible, the
image indicates the target command, i.e. the command that the user
has to execute on this cell; selected, the image is outlined in blue
when clicking on it (with the left or right mouse button). Then they
can use their preferred method to select the command (menubar,
context menu, or shortcuts); activated, the image is blurred, checked
and outlined in green to indicate a successfully selected command.
The targets appeared in a cell inside the grid interface (Figure 9). Par-
ticipants had to select a cell before executing the command and then
select the next cell, until all cells were activated. The rational behind
this design choice was to use a high level task (“complete the grid”),
rather than series of low-level tasks (execute individual commands).
Forcing participants to interact with multiple objects-of-interest
(cells) located at different places on the screen can potentially foster
more realistic mouse behavior (II). Moreover, it may help partici-
pants to perceive the “real cost” [21] of mouse-based commands.
Indeed, the “real cost” of menu-based methods [21] includes not
only the time to reach the menu widget (e.g. menubar) and the time
to navigate in the menu system, but also the time to return back to
the objects-of-interest [21] (refer to [7] for extended discussion).
Frequency: Unlike Experiment 1 (uniform distribution), to reflect
real application usage (II), we used a zipfian distribution for the
frequency of appearance of each target [60]. We used the standard
zipfian distribution equation [42, 62] (exponent=1) and applied it
to the set of the 12 target commands of Experiment 1 following the
procedure described in [32]. The resulted frequencies were rounded
off and consisted of: 12, 12, 6, 6, 4, 4, 3, 3, 2, 2, 2, 2. For each session,
each item was randomly assigned a frequency.
Procedure: In the pre-test, participants executed again a few simple
shortcuts, but this time the keyboard was not connected to the
screen. Participants were then told to complete the grid by executing
the corresponding commands on each image, but they were not
informed about the available methods. So, they did not receive
incentives favoring keyboard shortcuts. Between blocks a dialog
encouraged them to take a 20 second break. To avoid having too
many participants that do not transition we introduced tips. From
pilots and Experiment 1 data analysis, we saw that participants are
very likely to “never” transition, if they do not transition during
the first three blocks. Therefore, after the third block, we added
tips during the inter block breaks (like the ones we can find in
modern applications, e.g. Pycharm [2]) to encourage the use of
keyboard shortcuts. We added 3 tips appearing at different times.
The 1st tip (inter-block 5) informed participants that there are
three methods to execute commands (menubar, context menu and
keyboard shortcuts). The 2nd tip (inter-block 6) informed them that
studies have shown that keyboard shortcuts are faster than menus.
The 3rd tip (inter-block 7) explicitly informed them that they should
use keyboard shortcuts to optimize their performance. Once a tip
was shown, it remained visible during all the following inter-blocks.
Such tips ensured having enough data to analyse, while allowed
us to capture an initially more spontaneous behaviour. At the end

of Participants (P) who started the transition

Original 42 P

Extra 30P

Figure 10: Transitioning to shortcuts after each tip

Error bars 95% CIs

Figure 11: A:Mean% of shortcuts per menu B: Their mean
difference

Blocks

% Correct keyboard shortucts Selection time

Blocks
 95% CIs con�dence bands

Figure 12: Mean% of shortcuts & time per menu

Blocks

% Correct keyboard shortucts Selection time

Blocks
 95% CIs con�dence bands

Figure 13: Mean% of shortcuts & time per command length

of the session, participants filled a questionnaire and preformed a
recall test similar to Experiment 1.
Design: We used a mixed-subjects design, with participants ran-
domly assigned to one menu (baseline or left). The within design
factor was the command frequency. The position of targets in the
grid was randomly assigned in each block. Each participant per-
formed 10 blocks of 58 selections. Overall, the design was 2 menus
× 36 participants × 10 blocks × 58 trials = 41760 selections.
Planned analysis: Our original planned analysis was to recruit 42
participants who met the criteria threshold to user correct keyboard
shortcuts for at least 25% of the trials. We based this decision on
[41] who used a similar protocol to ensure that they had enough
participants used shortcuts. However, we finally decided to fully
report the same analysis of Experiment 1. We also realised that 42
participants is a rather arbitrary numberwhichmight not be enough
to capture the effect 5. Therefore we added 30 participants based
on the formula of Prashant et al. [36]. This formula calculates the
sample size for a follow-up experiment based on the results of the
initial experiment. We considered those two deviations acceptable,
given that the new analysis includes the planned analysis.

5.2 Results
Errors bars in Figures 11, 15, 14, 16 and confidence bands in Figures
12, 13 represent 95% confidence intervals (CI).
Tips: Figure 10 shows when participants started the transition (i.e.,
used correct keyboard shortcuts for the first time) based on the
different tips. The bars show the results of the 42 participants and
the additional 30 participants. We observe that the majority of
the participants started using correct keyboard shortcuts before the

5In the osf.io link, we provide results for the original planned analysis as well for the
30 added participants separately in which the effects were consistent with the current
reported analysis.

AVI 2022, June 6–10, 2022, Frascati, Rome, Italy Giannisakis et al.

Error bars 95% CIs

Figure 14: A:Mean% of shortcuts per menu and familiarity
B: Their mean difference.

Error bars 95% CIs

Figure 15: Mean% of shortcuts per command length

% Correct answers in recall test Error bars 95% CIs

Figure 16: Mean% of recalls per menu for all (A), familiar
(B) and unfamiliar (C) participants.
1st tip (82%), indicating the lack of influence of the tips on the
awareness of the keyboard shortcuts for most participants.
Keyboard shortcut use menu: Figure 11 reports the results of our
analysis regarding the differences between the two layouts.Our
analysis indicates that the mean rate difference is inconclusive
between the 2 layouts. Figure 12 reports the results of the learning
speed analysis. We observe a trend favoring the baseline over the
left especially regarding the mean rate adoption per block.
Keyboard shortcut use per menu item length: Similar to Experiment 1
we investigated the effect of the command length for each layout on
the keyboard shortcut adoption. Figure 15 shows no conclusive dif-
ference among the menu-command length pairs. Figure 13 reports
the results of the learning speed analysis. Once again, it remains
unclear if the learning speed was affected by the three conditions.
Keyboard shortcut use per user profile: To better understand our
results we decided to perform an extra analysis based on the users’
profiles. In particular we are interested to see if their familiarity
with keyboard shortcuts played a role in their behavior. In the
post-questionnaire of each session in both studies we asked the
participants to indicate their familiarity with keyboard shortcuts.
Most Experiment 1 participants (21 out of 26) were unfamiliar
with keyboard shortcuts. In contrast, in Experiment 2, the ratio
between the familiar-unfamiliar users was better (44 familiar,
28 unfamiliar). We thus decided to investigate where their profiles
may have affected our results. Figure 14 reports the results of the
keyboard shortcut adoption per layout(baseline, left) and user
profile(familiar, unfamiliar). Results indicate that familiar users
used more keyboard shortcuts than the unfamiliar but we couldn’t
detect any differences among layouts and user profiles
Recall test: Figure 16 shows the mean rate of correct answers for
each menu layout for all participants and for each familiarity group.
We couldn’t detect any differences among the 2 layouts.

6 DISCUSSION & FUTURE DIRECTIONS
Although our results did not confirm our original hypothesis, we
argue that they are informative because, based on our review of ISL
theory they are surprising and open a number of future directions:

Familiarity & User Profile. While the familiarity analysis (Fig-
ure 14 and 16) did not produce conclusive results, we observed

an interesting trend. The familiar group performed better with
baseline than left while participants in the unfamiliar group
performed better with left than baseline. It is worth investigation
whether interactions between familiarity and spatial relationships
influence implicit learning. It is likely that the familiar group ex-
ploits prior experience with the menu pattern and how its elements
are positioned, while the unfamiliar group lacks this advantage.

Other ISL Factors. In the ISL related work, we identified further
design factors worth investigating. For instance, exposure time
may increase the adoption of the keyboard shortcut. In drop-down
menus, the commands are only visible when the menu is open
which may hinder the repeated exposure of the pattern. Other
command selectionwidgets like command palettes or toolbars could
be more appropriate as they are always visible. Another factor is
accumulation of instances in memory, for which we know that
only limited contingencies can be learnt in a restricted period,
suggesting that only a few associations trigger learning [55]. In our
context, this suggests that limiting the total number of commands
can facilitate the implicit learning of the remaining ones.

Methods. It remains unclear how to effectively transpose find-
ings and methodologies from cognitive science to the HCI con-
text. Alternative experimental protocols can be investigated. For
instance, 1-hour experiments may not be enough to capture such
phenomenona. Some experimental protocols in cognitive science
use multiple sessions as exposure time [47, 52, 54]. Future inves-
tigations could increase exposure time while an eye-tracker can
detect when and how long participants gaze the menu commands.

Traditional ISL studies “force" participants to learn a single pat-
tern [56]. In contrast, our study was based on prior work [32] and
let the participant decide which modality they wish to use to com-
plete their task. This decision could have affected the ISL processes.
Further investigation could examine the role of choice between
different modalities in ISL study design.

Questioning UI design conventions. This paper questioned
menu design conventions used in existing systems to some extend.
We extracted the design space of spatial relationships in the menu
patterns and as future work, we suggest extending this design space
considering additional criteria. For instance, through the lens of
ISL theory, we can revisit icon and symbol (e.g.

Revisiting Menu Design Through the Lens of
Implicit Statistical Learning AVI 2022, June 6–10, 2022, Frascati, Rome, Italy

visual search in menus. Marking menus[41] favor skill acquisition
by letting users repeatedly perform the same gesture.

2.2.1 Experimental studies of ISL in Cognitive Science. ISL has been
studied under several contexts and for each context the experimen-
tal protocols differ. The most relevant context for our use case is
ISL in visual search which follow a standard experimental task [57].
During this task, participants search for a T-target within a con-
figuration of L-distractors. Half configurations are systematically
repeated across many blocks of trials. The others are presented
only once during the task. A benefit on search times is typically
observed in the repeated contexts compared to the novel contexts.
This indicates that participants encode implicitly some elements of
the context.

Related to our use case, Grossman et al. [33] compare several of
these strategies to favor keyboard shortcut adoption. Interestingly,
authors mentioned that these strategies favor “implicit learning”
in opposition with “explicit learning”. However, based on the ISL
literature, these strategies primarily focus on explicit learning, not
implicit learning, as they motivate users to intentionally learn
keyboard shortcut. In contrast, we investigate whether repeatedly
interacting with a graphical widget can help users to learn infor-
mation in the surroundings without having the intention to learn
them. Recently, Bailly, et al. proposed a theoretical model of shortcut
adoption [9]. The model combines several cognitive mechanisms in-
cluding implicit and explicit learning. Both model fitting and model
simulation suggest that implicit learning plays a role in shortcut
adoption.

3 REVISITING MENU DESIGN
Our literature review on Implicit Statistical Learning (ISL) suggested
that certain statistical regularities, or repeated patterns, can aid,
or, conversely, impede implicit learning. This section attempts to
identify and potentially improve such patterns in menu layouts.

3.1 Extracting Traditional Linear Menu Patterns

C1 C2 C3D

1 Command

name

2 Icon
3 Keyboard

Shortcut Cue

4 Submenu
Symbol

Figure 1: An example of the traditional linear menu of the
inkscape application. The shortcut cue is placed far from the
command name and on its right.

To extract menu design conventions, we analysed approximately
200 menus in various operating systems (Win, Mac, Linux) and
tool-kits (e.g., Qt, Swing) from the 80s to today. Menus followed a
linear, rectangular fashion divided into rows and columns. Each row
is a menu item. The number of rows equals the number of available

commands (plus the separators in semantic organizations). A typical
linear menu organizes the elements in 3 columns (Figure 1):
-1st column contains command icons, the pictorial representations
of functionalities (e.g., ,). Such icons depend on the appli-
cation and the operating system, e.g., most Mac menus (and few
Linux) do not display icons by default. The icon is sometimes re-
placed by a symbol ✓ or a widget , . Most menus display
icons only for the frequent commands. Since all icons have the
same size, their alignment is always fixed.
-2nd column contains command names, the textual labels repre-
senting the name of functionalities (e.g., Save , Copy). Ellipses can
be added [5?](e.g. Save As...), if the command requires parameters
(i.e. open a dialog box). Few menus (e.g., history menu in Safari) use
an icon (e.g., website logo) in the command name. The alignment
of the command names is always on the left.
-3rd column contains keyboard shortcut cues and submenu sym-
bols (�). The cues represent the sequence of keys to activate a
functionality. Depending on the operating system the cue can be
textual (e.g. Ctrl+S) or, as in Mac systems, a combination of symbol
and text (S). The symbol � , which does not have a cue, indi-
cates hierarchical menu items (i.e. the item opens a sub-menu). The
alignment of the cues is always on the right.

We saw very few exceptions of the above standards. An old Win
3.1 had shortcuts cues with left-alignment, Win had a 4rth column
with � , and Blender had both cues and submenus.

Our analysis showed that the linear menu follows a consistent
design pattern across operating systems and applications. The com-
mands appear on the left, while the shortcut cues on the right.
Similarly, the commands follow left alignment, while the shortcut
cues follow right alignment. This standard introduces implications
for the width of the columns. While the icons’ width (1st column)
is fixed, the command names (2nd column) depend on the longest.
Similarly, the shortcuts’ width (3rd column) depend on the short-
cuts with the largest number of modifiers (max=3). Consequently,
while the (relative) spatial positioning between the shortcut cue and
the command is always the same (i.e. shortcut cue on the right),
their spatial proximity varies a lot from one item to another and
from one menu to another (see Figure 1). ISL theory suggests that
such distance might impair the implicit learning of the keyboard
shortcuts. Current literature further highlights that users often ig-
nore keyboard shortcuts and they favor menus to select commands
[6, 19, 33]. Existing solutions aim to increase users’ awareness
[33, 40, 45, 53], attract attention [33], inform about the relative
performance [45] and/or change the incentives [53] for using the
shortcuts. These approaches mainly focus on when and how to
display information related to keyboard shortcuts, but they haven’t
investigated how the spatial relationship between the command
name and the keyboard shortcut may affect the keyboard shortcut
adoption.

3.2 Strategies to Improve the Menu Pattern
We identify several approaches favoring spatial proximity between
commands and keyboard shortcut cues:
• Decrease variability of command length (2nd column): As the
width of the 2nd column depends on the longest command name,
a designer could maintain similar command lengths. However,

) placements
and radically different menu patterns (e.g. circular layout [3]). It is
also worth investigating the influence of spatial relationships on
other aspects of usability (readability, aesthetics, preferences etc).
Our study with professional designers (Figure 3) suggests poten-
tial benefits of alternative menu layouts (e.g below) on usability
(e.g. aesthetics). A common barrier for practitioners in questioning
conventions is to confuse users hindering, at least temporally, their
performance. Our findings showed that it is possible that less con-
ventional menu designs do not impact negatively user performance
even within limited exposure. We thus encourage HCI research to
be open in revisiting such conventions and investigate how design
novelty can benefit users.

REFERENCES
[1]]hickeys [n. d.]. https://shorturl.at/pqKNR
[2] 2018. Pycharm: Python IDE for Professional Developers.
[3] David Ahlstroem, Rainer Alexandrowicz, and Martin Hitz. 2006. Improving menu

interaction: a comparison of standard, force enhanced and jumping menus. ACM
CHI 1 (2006), 1067–1076.

https://shorturl.at/pqKNR

Revisiting Menu Design Through the Lens of
Implicit Statistical Learning AVI 2022, June 6–10, 2022, Frascati, Rome, Italy

[4] Caroline Appert and Shumin Zhai. 2009. Using Strokes As Command Shortcuts:
Cognitive Benefits and Toolkit Support. In ACM CHI. 2289–2298.

[5] Apple Cooporation. 2018. . https://developer.apple.com/macos/human-interface-
guidelines/windows-and-views/toolbars/

[6] Gilles Bailly, Eric Lecolinet, and Laurence Nigay. 2009. MenUA: a design space of
menu techniques. Retrieved April 2 (2009), 2016.

[7] Gilles Bailly, Eric Lecolinet, and Laurence Nigay. 2016. Visual Menu Techniques.
Comput. Surveys 49, 4 (2016), 1–41.

[8] Gilles Bailly and Sylvain Malacria. 2013. MenuInspector: Outil pour l’analyse
des menus et cas d’étude. In ACM IHM. 103.

[9] Gilles Bailly, Khamassi Mehdi, and Benoit Girard. 2022. Computational Model
of the Transition from Novice to Expert Interaction Techniques. ACM ToCHI. to
appear (2022).

[10] Gilles Bailly, Antti Oulasvirta, Timo Kötzing, and Sabrina Hoppe. 2013. MenuOp-
timizer: interactive optimization of menu systems. In ACM UIST. 331 – 342.

[11] Chris Baker, Carl Olson, and M. Behrmann. 2004. Role of attention and perceptual
grouping in visual statistical learning. Psychol.Sci. 15, 7 (2004), 460–466.

[12] Nikola Banovic, F. Chevalier, Tovi Grossman, and G. Fitzmaurice. 2012. Triggering
triggers and burying barriers to customizing software. In ACM CHI. 2717–26.

[13] Ana Caraban, Evangelos Karapanos, Daniel Gonçalves, and Pedro Campos. 2019.
23 ways to nudge: A review of technology-mediated nudging in human-computer
interaction. In ACM CHI. 1–15.

[14] James Carpenter and John Bithell. 2000. Bootstrap confidence intervals: when,
which, what? A practical guide for medical statisticians. Statistics in medicine 19,
9 (2000), 1141–1164.

[15] Tony F Chan, Gene H Golub, and Randall J LeVeque. 1983. Algorithms for
computing the sample variance: Analysis and recommendations. The American
Statistician 37, 3 (1983), 242–247.

[16] Morten H Christiansen. 2019. Implicit statistical learning: A tale of two literatures.
Topics in cognitive science 11, 3 (2019), 468–481.

[17] Marvin M Chun and Yuhong Jiang. 1998. Contextual cueing: Implicit learning
and memory of visual context guides spatial attention. Cog.Psy 36, 1 (1998).

[18] Andy Cockburn, Carl Gutwin, Joey Scarr, and Sylvain Malacria. 2014. Supporting
Novice to Expert Transitions in User Interfaces. 47, 2 (2014), 1–36.

[19] Christopher M Conway and Morten H Christiansen. 2006. Statistical learn-
ing within and between modalities: Pitting abstract against stimulus-specific
representations. Psychol.Sci. 17, 10 (2006), 905–912.

[20] Geoff Cumming and Sue Finch. 2005. Inference by eye: confidence intervals and
how to read pictures of data. American Psychologist 60, 2 (2005), 170.

[21] R. F. Dillon, Jeff D. Edey, and Jo W. Tombaugh. 1990. Measuring the True Cost of
Command Selection: Techniques and Results. In ACM CHI. 19–26.

[22] Pierre Dragicevic, Fanny Chevalier, and Stéphane Huot. 2014. Running an hci
experiment in multiple parallel universes. In ACM CHI Ext Abstracts. 607–618.

[23] Nick C Ellis. 2015. Implicit and explicit learning: Their dynamic interface and
complexity. John Benjamins.

[24] Nobutaka Endo and Yuji Takeda. 2005. Use of spatial context is restricted by
relative position in implicit learning. Psychon Bull Rev 12, 5 (2005), 880–885.

[25] Leah Findlater, Karyn Moffatt, Joanna McGrenere, and Jessica Dawson. 2009.
Ephemeral adaptation: The use of gradual onset to improve menu selection
performance. In ACM CHI. 1655–1664.

[26] Andrea L Gebhart, Elissa L Newport, and Richard N Aslin. 2009. Statistical
learning of adjacent and nonadjacent dependencies among nonlinguistic sounds.
Psychon Bull Rev 16, 3 (2009), 486–490.

[27] Emmanouil Giannisakis, Gilles Bailly, Sylvain Malacria, and Fanny Chevalier.
2017. IconHK: Using Toolbar button Icons to Communicate Keyboard Shortcuts.
ACM CHI (2017), 4715–4726.

[28] Fernand Gobet, Peter CR Lane, Steve Croker, Peter CH Cheng, Gary Jones, Iain
Oliver, and Julian M Pine. 2001. Chunking mechanisms in human learning. Trends
Cogn.Sci. 5, 6 (2001).

[29] Alison Gopnik and Henry M Wellman. 2012. Reconstructing constructivism:
Causal models, Bayesian learning mechanisms, and the theory theory. Psychol.
Bull. 138, 6 (2012), 1085.

[30] A. Goujon, A. Didierjean, and S. Poulet. 2014. The emergence of explicit knowl-
edge from implicit learning. Mem Cognit 42, 2 (2014), 225–236.

[31] A. Goujon, A. Didierjean, and S. Thorpe. 2015. Investigating implicit statistical
learning mechanisms through contextual cueing. Trends Cogn.Sci. 19, 9 (2015).

[32] Tovi Grossman, Pierre Dragicevic, and Ravin Balakrishnan. 2007. Strategies for
Accelerating On-line Learning of Hotkeys. In ACM CHI. 1591–1600.

[33] Tovi Grossman, George Fitzmaurice, and Ramtin Attar. 2009. A survey of software
learnability: metrics, methodologies and guidelines. In CHI. 649–658.

[34] Marshall M Haith, Naomi Wentworth, and Richard L Canfield. 1993. The forma-
tion of expectations in early infancy. Advances in infancy research (1993).

[35] Mary Hegarty, Patricia A Carpenter, and Marcel Adam Just. 1991. Diagrams in
the comprehension of scientific texts. (1991).

[36] Prashant Kadam and Supriya Bhalerao. 2010. Sample size calculation. Interna-
tional journal of Ayurveda research 1, 1 (2010), 55.

[37] Elmar Kal, Rens Prosé, Marinus Winters, and John van der Kamp. 2018. Does
implicit motor learning lead to greater automatization of motor skills compared

to explicit motor learning? A systematic review. PloS one (2018).
[38] Elma Kerz, Daniel Wiechmann, and Florian B Riedel. 2017. Implicit learning in

the crowd: Investigating the role of awareness in the acquisition of L2 knowledge.
Studies in Second Language Acquisition 39, 4 (2017), 711–734.

[39] Brian Krisler and Richard Alterman. 2008. Training Towards Mastery : Overcom-
ing the Active User Paradox. (2008), 18–22.

[40] Gordon Paul Kurtenbach. 1993. The design and evaluation of marking menus.
Ph. D. Dissertation. University of Toronto.

[41] B Lafreniere, C Gutwin, and A Cockburn. 2017. Investigating the post-training
persistence of expert interaction techniques. ACM TOCHI 24, 4 (2017), 29.

[42] Wanyu Liu, Gilles Bailly, and Andrew Howes. 2017. Effects of Frequency Distri-
bution on Linear Menu Performance. In ACM CHI. 1307–1312.

[43] Robert L Mack and Jakob Nielsen. 1995. Usability inspection methods: Executive
summary. In Readings in Human–Computer Interaction. Elsevier, 170–181.

[44] S Malacria, G Bailly, J Harrison, A Cockburn, and C Gutwin. 2013. Promoting
Hotkey Use Through Rehearsal with ExposeHK. In ACM CHI. 573–582.

[45] Sylvain Malacria, Joey Scarr, Andy Cockburn, Carl Gutwin, and Tovi Grossman.
2013. Skillometers: Reflective Widgets That Motivate and Help Users to Improve
Performance. In ACM UIST. 321–330.

[46] JP Maxwell, RSW Masters, E Kerr, and E Weedon. 2001. The implicit benefit of
learning without errors. Q J Exp Psychol 54, 4 (2001), 1049–1068.

[47] Pierre Perruchet and Sebastien Pacton. 2006. Implicit learning and statistical
learning: One phenomenon, two approaches. Trends Cogn.Sci. 10, 5 (2006).

[48] Pierre Perruchet and Annie Vinter. 1998. PARSER: A model for word segmenta-
tion. Journal of memory and language 39, 2 (1998), 246–263.

[49] Arthur S Reber. 1989. Implicit learning and tacit knowledge. J.Exp.Psychol.Gen.
118, 3 (1989), 219.

[50] Jenny R Saffran, Elissa L Newport, Richard N Aslin, Rachel A Tunick, and Sandra
Barrueco. 1997. Incidental language learning: Listening (and learning) out of the
corner of your ear. Psychol.Sci. 8, 2 (1997), 101–105.

[51] Jenny R Saffran and Erik D Thiessen. 2007. Domain-general learning capacities.
Blackwell handbook of language development (2007), 68–86.

[52] Joey Scarr, Andy Cockburn, Carl Gutwin, and Philip Quinn. 2011. Dips and Ceil-
ings: Understanding and Supporting Transitions to Expertise in User Interfaces.
In ACM CHI. 2741–2750.

[53] Ryan B Scott and Zoltán Dienes. 2008. The conscious, the unconscious, and
familiarity. Journal of Experimental Psychology: Learning, Memory, and Cognition
34, 5 (2008), 1264.

[54] Dennis Shelton and Robert C Newhouse. 1981. Incidental learning in a paired-
associate task. Int. J. Exp. Educ 50, 1 (1981), 36–38.

[55] Andrea C Smyth and David R Shanks. 2008. Awareness in contextual cuing with
extended and concurrent explicit tests. Mem Cognit 36, 2 (2008), 403–415.

[56] Cyril Thomas, A. Didierjean, F. Maquestiaux, and Annabelle Goujon. 2018. On the
limits of statistical learning: Intertrial contextual cueing is confined to temporally
close contingencies. Atten Percept Psychophys (2018), 1–16.

[57] Juan M Toro, Scott Sinnett, and Salvador Soto-Faraco. 2005. Speech segmentation
by statistical learning depends on attention. Cognition 97, 2 (2005), B25–B34.

[58] Theophanis Tsandilas and MC Schraefel. 2007. Bubbling menus: a selective
mechanism for accessing hierarchical drop-down menus. In ACM CHI. 1195–
1204.

[59] Nicholas B Turk-Browne, Justin A Jungé, and Brian J Scholl. 2005. The automatic-
ity of visual statistical learning. J.Exp.Psychol. Gen. 134, 4 (2005), 552.

[60] Ian H. Witten, John G. Cleary, and Saul Greenberg. 1984. On frequency-based
menu-splitting algorithms. IJMMS 21, 2 (1984), 135–148.

[61] Xuelian Zang, Lina Jia, Hermann J Müller, and Zhuanghua Shi. 2015. Invariant
spatial context is learned but not retrieved in gaze-contingent tunnel-view search.
JoEP: Learning, Memory, and Cognition 41, 3 (2015), 807.

[62] George Kingsley Zipf. 2016. Human behavior and the principle of least effort: An
introduction to human ecology. Ravenio Books.

https://developer.apple.com/macos/human-interface-guidelines/windows-and-views/toolbars/
https://developer.apple.com/macos/human-interface-guidelines/windows-and-views/toolbars/

	Abstract
	1 Introduction
	2 Background
	2.1 Implicit Statistical Learning
	2.2 Skills, Attention & Awareness in HCI

	3 Revisiting Menu Design
	3.1 Extracting Traditional Linear Menu Patterns
	3.2 Strategies to Improve the Menu Pattern
	3.3 Design Space: Position & Alignment
	3.4 Menu Pattern Selection

	4 Experiment 1
	4.1 Experimental design
	4.2 Results

	5 Experiment 2
	5.1 Experimental design
	5.2 Results

	6 Discussion & Future Directions
	References

