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ABSTRACT: The mathematical models for the capillary-driven
flow of fluids in tubes typically assume a static contact angle at the
fluid−air contact line on the tube walls. However, the dynamic
evolution of the fluid−air interface is an important feature during
capillary rise. Furthermore, inertial effects are relevant at early
times and may lead to oscillations. To incorporate and quantify the
different effects, a fundamental description of the physical
processes within the tube is used to derive an upscaled model of
capillary-driven flow in circular cylindrical tubes. The upscaled
model extends the classical Lucas−Washburn model by incorpo-
rating a dynamic contact angle and slip. It is then further extended
to account for inertial effects. Finally, the solutions of the different
models are compared to experimental data. In contrast to the
Lucas−Washburn model, the models with dynamic contact angle match well the experimental data, both the rise height and the
contact angle, even at early times. The models have a free parameter through the dynamic contact angle description, which is fitted
using the experimental data. The findings here suggest that this parameter depends only on the properties of the fluid but is
independent of geometrical features, such as the tube radius. Therefore, the presented models can predict the capillary-driven flow in
tubular systems upon knowledge of the underlying dynamic contact-angle relation.

■ INTRODUCTION

One hundred years ago, the classical works of Lucas,1

Washburn,2 Rideal,3 and Bosanquet4 laid the foundation for
the description of the capillary-driven flow of fluids in porous
structures. Since then, this field of research has gained
attention because of its various applications, ranging from
water transport in soil and plants, over printing with ink, to oil
recovery and CO2 sequestration. To understand the flow
processes in a porous medium, knowledge about the fluid
dynamics within its fundamental structures, the single pores, is
needed. In these, the surface tension leads to capillary-driven
flow. An overview on the topic can be found in the recent
review by Cai et al.5

The model of Lucas and Washburn describes the balance
between capillary and hydrostatic pressure, leading to viscous
flow until equilibrium at the so-called Jurin’s height is reached.
Fries and Dreyer6 derived a formulation for the solution of the
Lucas−Washburn equation that remains valid also at late
times. Levine et al.7 studied in detail the resulting flow close to
the fluid−air interface, assuming a spherical meniscus and low
Reynolds numbers. Although these basic mechanisms are well-
understood, the complex wetting effects lead to a dynamic
evolution of the interface, in particular of both its shape and
position. An important feature is the contact angle formed

between the fluid−air interface and the pore wall. In the
aforementioned works, this contact angle is assumed constant.
However, experimental results invalidate this assumption, in
particular at early times.8,9 Martic et al.10,11 discussed this
based on molecular dynamics simulations and the molecular
kinetics theory. This theory is also used by Hamraoui and
Nylander12 to discuss the effect of a dynamic contact angle as a
source of interface retardation and viscous dissipation.
Chebbi13 and Popescu et al.14 compare several dynamic
contact-angle models when applied to the Lucas−Washburn
equation.
Furthermore, inertial effects are relevant for early times of

capillary rise, as discussed in detail by Queŕe,́15 and for low
viscous fluids they can even lead to (damped) oscillations
around Jurin’s height at late times. Xiao et al.16 additionally
considered the end effect at the reservoir (sink flow) for
parallel plates and tubes and derived a double Dirichlet series
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representation of the solution. An overview of the different
regimes has been given by Zhmud et al.17 as well as by Fries
and Dreyer.18 However, all these models are based on the
assumption of a static contact angle.
To incorporate and quantify the influence of the different

effects of the dynamic contact angle and of inertia, one should
start with a derivation based on the fundamental description
within the tube. Considering this detailed pore-scale model,
and under suitable assumptions on the nondimensional
parameters like the Reynolds and capillary number, one can
employ asymptotic expansion techniques to derive an effective,
so-called upscaled model for the relevant quantities like flux,
pressure, and rise height. The result is an upscaled model that
describes the effective behavior of the relevant physical
quantities, which can be validated using experimental data.
Thereby, the dynamics of the capillary rise including the
detailed evolution of the contact angle becomes predictable.
Furthermore, the application of these extended models helps
to reduce the observed discrepancy9 between the experiments
and the classical Lucas−Washburn model.
In this paper, the upscaling of the capillary-driven flow in

cylindrical tubes is discussed first. The result is an upscaled
model, which is a nonlinear first-order differential equation of
the Lucas−Washburn type. This is solved analytically to obtain
directly usable solutions. While capillary-rise models with
dynamic contact angle have been described in the literature, to
the best of the authors’ knowledge, this work is the first to
derive such a model rigorously by upscaling. The upscaled
model is then extended to incorporate inertial effects. To
validate the theory, the solutions to the upscaled and to the
extended model are compared to the experimental results
reported by Heshmati and Piri.9 This includes the simulta-
neous comparison to the provided height and contact-angle
data for different fluids and several radii, which has not been
presented before. Finally, the results of the comparison
including uncertainties and limitations are discussed. More
details of the upscaling procedure and of the comparison are
presented in the Supporting Information.

■ MATERIALS AND METHODS
First, the derivation of the upscaled model and its analytical solution
are discussed. To this end, the capillary-driven flow in circular
cylindrical tubes is modeled by the Navier−Stokes equations. These
equations are defined in an evolving domain, as the fluid−air interface
is moving because of capillary effects. The model includes a dynamic
contact angle and slip. Then, a matched asymptotic expansion method
is applied to obtain the effective model. Thereafter, the model is
extended to incorporate inertial effects.
Upscaled Model and Analytic Solution. In the following, we

summarize the derivation of the upscaled model based on the ideas
presented by Lunowa et al.19 The detailed derivation of the equation
is provided in the Supporting Information, where the details and
assumptions for the nondimensionalization and the asymptotic
expansion are given.
The flow of a fluid in a thin, vertical tube, driven by the surface

tension at the fluid−air interface, can be modeled by the Navier−
Stokes equations defined in a time-dependent domain, where the
fluid−air interface is a free boundary. Assuming a small Reynolds
number, one can derive the solution by a matched asymptotic
expansion for the limit of a vanishing radius-to-length ratio ε = R/L≪
1 (R being the tube radius and L Jurin’s height). The result is Hagen−
Poiseuille flow driven by the difference between the surface tension
and the hydrostatic pressure. In the dimensionless form, the evolution
of the fluid rise height h is then governed by
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Here pin is the pressure at the inlet (bottom), λ denotes the slip length
at the tube wall, and Ca is the capillary number (see Figure 1). Note

that the dynamic contact angle θ may depend on the velocity of the
interface. Furthermore, eq 1 resembles the relation derived by
Washburn,2 based on macroscopic arguments. However, Washburn
discussed only the case of a static contact angle, whereas here a
dynamic contact-angle model is incorporated.

In the context of capillary rise experiments, the pressure at the inlet
is approximately atmospheric, i.e., pin = 0. The typical length scale is
given by the equilibrium or Jurin’s height L = 2σ cos(θs)/(ρgR),
attained as t → ∞, and which is depending on the fluid−air surface
tension σ, the static contact angle θs (measured in the fluid), the
density ρ of the fluid, the gravitational acceleration g = 9.81 m/s2, and
the tube radius R. This yields Ca = 2 cos(θs) (cf. the Supporting
Information), so that eq 1 becomes
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for all t > 0. Clearly, the solution h = h(t) depends on the contact-
angle model. However, the specific choice of this model is uncertain
without much reference data, because the differences resulting after
fitting the different models are typically very small.14,20 For simplicity,
a linear model in the velocity is considered here, which was also used
frequently as a simplification of the molecular kinetics
theory,10−12,14,20−22 valid at low velocities. Specifically,

θ θ η= −v vcos( ( )) cos( ) Cas

where the dynamic parameter η ≥ 0 denotes the strength of the linear

response due to the interface velocity =v h
t

d
d
. Note that this model

arises naturally for all possible contact-angle models after linearization

using the relation θ θ θ̃ ≈ ̃ − ̃ θ ̃
v vcos ( ) cos (0) sin (0) (0)

v
d
d

and there-

fore is generic. Other models could be used as well; however, the
advantage of the linear model is that the resulting equation can be
solved analytically, as discussed in the following. With this contact-
angle model, the rise model eq 2 becomes

Figure 1. Schematic drawing of the tube with radius R. The contact
angle θ is formed between the tube wall and the fluid−air interface at
rise height hL. The inlet pressure pin is attained between tube and
reservoir.
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for all t > 0. A natural initial condition is

=h(0) 0 (4)

Observe that, because 1 is an equilibrium solution to eq 3, the
solution to the initial value problem (eqs 3 and 4) remains below 1 for
all times t. Moreover, h is increasing. By separation of variables, the
solution to eqs 3 and 4 is obtained in implicit form
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Because h is monotonic, using eq 5 one can express t as a function of
h, namely
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If η = 0, this resembles the classical Lucas−Washburn equation. If η >
0, the first term implies a linear time−height relation at early times,
when h≪ 1, and therefore, quadratic terms can be neglected. Figure 2

illustrates possible solutions. The dynamic parameter η determines
the velocity of the rise in the beginning, because eq 3 yields

=
η

(0)h
t

d
d

1
2
. In particular, it is singular if η = 0, because inertial terms

and the movement of the air are neglected. On the other hand, the
influence of the slip length λ on the velocity increases with increasing
height h. Furthermore, for η > 0, this yields an initial contact angle θ =
90° at time t = 0.
Extended Model Including Inertial Effects. The upscaled

model described above requires the Reynolds number to be small. In
the case of a low viscosity, or when the tube radius increases, the

Reynolds number becomes large, so that one cannot neglect inertial
effects. In that situation, the upscaling procedure does not yield a
closed expression for the height of the capillary rise, as the system
remains fully coupled. Instead, an empirical extension of the upscaled
model is used, based on macroscopic considerations.4,12,17,18,22 In
these references, the balance between hydrostatic, inertial and
capillary forces was considered assuming Hagen−Poiseuille flow and
a spherical meniscus. In this context, the resulting balance reads
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where ε ρ μ σ θ= = g RRe /(2 cos( ))s
2 3 2 5 2 is the inertial coefficient

(see the Supporting Information). Note that the denominator (1 +

4λ) accounts for slip, and the term η2 h
t

d
d

is due to the linearized

contact-angle model. Note that this extended model (eq 6) is closely
related to the modified Lucas−Washburn equation discussed by
Martic et al.10,11 However, they considered a model that does not
account for a slip length λ.

With eq 4, this nonlinear second-order differential equation (eq 6)
becomes degenerate. Furthermore, one needs to specify a second
initial condition, similar to the initial velocity. For this purpose, one
can use an asymptotic analysis carried out for t→ 0 with ansatz h(t) =
ctα + o(tα).17,22 Equating the leading order terms yields

η η∼ + +h t t( ) /( )2 , and hence
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To solve the initial value problem (eqs 4, 6, and 7) numerically, it is
reformulated as a system of nonlinear first-order differential equations

in the variables w ≔ h2 and =v: w
t

d
d
. Equation 6 then becomes
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To avoid the singularity at w = 0, the initial conditions used here are

w(0) = 10−12 and v(0) = η η+ −w2 (0) ( )/2 . Note that this
choice does not significantly affect the result as long as w(0) is
sufficiently small. The implementation of the numerical solver23 is
done in Python using the packages NumPy 1.21.024 and SciPy 1.3.3.25

The chosen time integrator is an implicit multistep variable-order (1−
5) BDF method.

■ RESULTS AND DISCUSSION
To validate the suggested models, the solutions are compared
to the experimental data reported by Heshmati and Piri,9

where the capillary rise of glycerol, Soltrol 170, and water in
vertical glass tubes with constant radii was investigated. These
results include both the rise height and the contact angle over
time.
Thereafter, the physical basis of the fitted dynamical

parameter is elaborated, and further aspects that might have
an impact on the experimental and theoretical data are
discussed. In particular, the influence of the initial transient
regime and of the meniscus shape are considered, as well as
possible wetting films and resulting slip in the case of water.

Figure 2. Height of the capillary rise given by eq 5 increases faster for
higher slip length λ. The dynamic parameter η retards the rise and
determines the initial velocity at time t = 0.

Table 1. Density (ρ), Viscosity (μ), Surface Tension (σ) of the Fluids, and the Tube Radii (R) of the Experiments,9 and the
Static Contact Angle (θs) Extracted from Late-Time Data

fluid ρ (kg/m3) μ (Pa s) σ (N/m) R (mm) θs (deg)

glycerol 1260 1.011 1 0.063 46 0.250 0.500 1.00 5.63
Soltrol 170 774 0.002 6 0.024 83 0.375 0.500 0.65 9.79
water 997 0.001 1 0.072 8 0.375 0.500 0.65 9.99
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Finally, the uncertainty and limitations of the suggested models
and of the fitting are addressed.
Comparison with Experimental Data. The comparison

with experimental data is done in three steps. First, the
reported physical properties are used for the dimensionless
scaling (see also Table 1). Note that the scale ratio ε was
below 0.1 in all cases. Second, the late-time data is assumed to
be near equilibrium, so that the static contact angle can be
extracted from it for each of the three fluids. Note that the
resulting static angles (<10°) hardly influence the rise height
(<2%), but strongly affect the dynamic contact angle. In the
third step, the solutions of the suggested models are matched
to the experimental data by fitting the remaining parameters,
namely, the dynamic contact-angle parameter (η) and the slip
length (λ). For this, for each fluid and each radius separately, a
nonlinear least-squares fitting of the rise height (h-fit), of the
contact angle (θ-fit), and of both at the same time (both-fit) is
performed. Thereby, one can compare the parameter values
obtained for the different fits as well as for the different radii to
investigate the predictive abilities of the suggested models. The
implementation of the procedure23 is done in Python using the
packages pandas 1.3.026 and LMFIT 1.0.2.27

To illustrate the effect of the dynamic contact-angle model,
the classical Lucas−Washburn (LW) solution is also provided.
It is obtained from eq. 5 when taking η = 0 and λ = 0, using the
dimensionless scaling and static contact angle found in the first
and second step for comparison.
Glycerol. In the first set of measurements, glycerol was used

as the rising fluid. Because of the high viscosity, the inertial

effects are negligible < × −( 1.5 10 )3 , so that the solutions to
the upscaled model (eq 5) and to the extended one (eq 6)
coincide. Therefore, only the results for the upscaled model are
presented in Table 2. Note that the simultaneous fitting of the
parameters η and λ results in dimensionless slip lengths λ <
10−2, except for the both-fit at the radius 1.0 mm, which yields
λ = 0.026 ± 0.109. Hence, slip is negligible and ignored in the
subsequent discussion.
The comparison of the experimental data with the fitted

upscaled model (eq 3) and the classical Lucas−Washburn
model in Figure 3 illustrates the relevance of the dynamic
contact angle. While both models match the late-time data
when the static contact angle is approached, only the upscaled
model with dynamic contact angle agrees with the early time
data. In particular, it matches reasonably both the rise height
and the contact angle for all three radii. Note that the three fit-
types (h, θ, and both) yield different parameters, but the
resulting solutions differ only on the scale of the scatter in the
experimental data (cf. the Supporting Information). Note that
the increase in η with increasing radius is expected, as the
dimensional dynamic parameter should be approximately
constant. This effect is discussed below for all fluids.

Soltrol. In the second set of measurements, Soltrol 170 was
used as the rising fluid. In contrast to the previous case, the
extended model differs from the upscaled one ( = 1.0, 4.2,
15.7), but for all radii the best-fit parameters coincide within
1.5 standard deviations (<5% difference), while the residuals
are rather lower (−40% to +30% difference, avg. −6%). The
minor differences are illustrated in Figure 4, and the results for

Table 2. Best-Fit Parameter η (± Estimated Standard Deviation) and the Reduced Residual χν
2 When Fitting the Upscaled

Model to the Experimental Data of the Height (h-fit), the Contact Angle (θ-fit), and Both (both-fit), for the Glycerol
Experiments

h-fit θ-fit both-fit

R (mm) η χν
2 η χν

2 η χν
2

0.25 0.402 ± 0.010 0.059 0.525 ± 0.008 0.647 0.519 ± 0.006 0.388
0.50 2.356 ± 0.066 0.327 2.151 ± 0.069 2.105 2.183 ± 0.049 1.203
1.00 5.935 ± 0.383 1.226 10.077 ± 0.613 3.985 8.787 ± 0.461 4.053

Figure 3. Experimental data for glycerol is matched well by the upscaled model (both-fit). In particular, at early times the representation of the rise
is much better than the one for the classical Lucas−Washburn model.
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Figure 4. Experimental data for Soltrol 170 is matched almost perfectly by the upscaled model (both-fit), while the classical Lucas−Washburn
model (LW) describes only the stationary solution well (after 1 s). For the upscaled and the extended models after fitting, the solutions practically
coincide.

Table 3. Best-Fit Parameter η (± Estimated Standard Deviation) and the Reduced Residual χν
2 When Fitting the Upscaled

Model (top rows) and the Extended Model (bottom rows) to the Experimental Data of the Height (h-fit), the Contact Angle
(θ-fit), and Both (both-fit), for the Soltrol 170 Experiments

h-fit θ-fit both-fit

R (mm) η χν
2 η χν

2 η χν
2

0.375 1.464 ± 0.067 0.313 1.250 ± 0.058 2.153 1.273 ± 0.042 1.232
0.500 2.521 ± 0.080 0.196 2.358 ± 0.081 1.042 2.386 ± 0.056 0.603
0.650 4.588 ± 0.162 0.414 3.963 ± 0.143 1.370 4.098 ± 0.108 0.951
0.375 1.437 ± 0.005 0.340 1.241 ± 0.027 2.239 1.261 ± 0.044 1.275
0.500 2.430 ± 0.075 0.207 2.309 ± 0.062 0.623 2.330 ± 0.045 0.403
0.650 4.370 ± 0.016 0.537 3.830 ± 0.024 1.183 3.944 ± 0.122 0.899

Figure 5. Experimental data for water is matched well by the extended model (both-fit), while the upscaled model (both-fit) matches only the
contact angle and late-time data (after ∼0.05 s). The classical Lucas−Washburn (LW) model describes only the stationary solution well (after 0.1
s).
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both models are reported in Table 3. Note that the fit of the
dimensionless slip length yields λ < 10−6 in all cases, which is
again negligible and thus ignored.
For Soltrol, the fitted upscaled model (eq 5) matches the

experimental data almost perfectly, while the classical Lucas−
Washburn model predicts only the stationary solution well (see
Figure 4). In particular, the upscaled model with dynamic
contact angle agrees with the data of both the rise height and
the contact angle for all three radii and at all times. For more
details, see also the Supporting Information. The fit of the
extended model coincides with that of the upscaled model.
Only at very early times (until 0.05 s) does the extended model
predict a slightly lower contact angle. These early time
dynamics are especially relevant for larger radii and less viscous
fluids like water, as shown and discussed below.
Water. In the last set of measurements, distilled water was

used as the rising fluid. In contrast to the previous cases, the
extended model differs significantly from the upscaled one (

= 4.1, 17, 64) (see Figure 5). The upscaled model (both-fit)
matches only the contact angle and late-time height (after
∼0.05 s). The experimental data is much better represented by
the extended model; hence, only these results are reported in
Table 4. More details and the results of the upscaled model can
be found in the Supporting Information. Note that the fit of
the dimensionless slip length was inconsistent (λ < 0.15) with
generally large standard deviation. For the θ-fits, the slip was
negligible (λ < 10−9), while the other fits suggest the
occurrence of an effective slip, which might be due to
prewetting films, as discussed below.
For water, the fitted extended model matches reasonably the

experimental data, although the rise height is slightly
overpredicted (+10%) for the radius R = 0.65 mm (see Figure
5). In particular, note that the model predicts an overshoot
(between 0.2 and 0.4 s). The experimental data does not show

this behavior. Instead, the rise seems delayed compared to the
other experiments (3.4 vs 6.5−7.4 mm at time 0.016 s).

Dynamic Parameter as Physical Property. The dynamic
parameter η obtained by fitting can be interpreted as a physical
property of the fluid system. For this, dimensional quantities
are marked with a hat. Although the different fitting criteria,
namely, the height, the contact angle, or both, provide optimal
parameters with significant variation, the dynamic parameter η ̂
[s/m] (scaling μ/(ρgR2)) seems to be independent of the tube
radius (see Figure 6). This agrees with the results reported by
Hamraoui et al.,12,21 where the Lucas−Washburn equation
with dynamic contact angle was compared with experiments of
ethanol, water, and silicon oil in glass tubes, and those
obtained by Martic et al.10 for molecular dynamics simulations.
Further experimental data considering a larger range of radii
and hence velocities are necessary to confirm this hypothesis.
Note that the closely related linearized molecular-kinetic

theory10−12,20−22 yields the dynamic contact-angle model

θ θ ξ− = ̂vcos( ) cos( )s

where ̂v denotes the contact line velocity. Here, the intrinsic
friction coefficient ξ (s/m) is proportional to the ratio μ/σ of
the viscosity to the fluid−air surface tension. Therefore, one
expects an almost constant ratio ησ μ̂ / for all fluids, which is
also found for the fitted parameter η ,̂ because the ratio is ca.
30−70 for glycerol, ca. 25−35 for Soltrol 170, and ca. 5−50 for
water. Finally, Martic et al.11 demonstrated that neglecting the
dynamic parameter can lead to significant underestimation of
the effective pore radius in porous media.

Influence of the Initial Transient Regime. At the start
of the experiment, the tube touches the surface of the fluid in
the reservoir. This topological change initiates the rise and the
meniscus shape, which are hence strongly affected by the
(touch) speed and the exact (nanometric) surface of the tube
tip. In the suggested models, this initial transient regime is

Table 4. Best-Fit Parameter η (± Standard Deviation) and the Reduced Residual χν
2 When Fitting the Extended Model

(without slip) to the Experimental Data of the Height (h-fit), the Contact Angle (θ-fit), and Both (both-fit) for the Water
Experiments

h-fit θ-fit both-fit

R (mm) η χν
2 η χν

2 η χν
2

0.375 0.162 ± 0.005 0.058 0.377 ± 0.017 2.054 0.367 ± 0.013 1.143
0.500 0.111 ± 0.020 0.153 0.498 ± 0.037 3.914 0.476 ± 0.026 2.249
0.650 2.849 ± 0.064 0.234 1.052 ± 0.079 4.595 1.248 ± 0.079 4.203

Figure 6. Dimensional dynamic parameter η ̂ of the models (empty, upscaled; filled, extended) fitted to the experimental data of the height (h-fit),
the contact angle (θ-fit), and both (both-fit). Observe that these parameters vary significantly from one fluid to another but appear to not depend
on the tube radius.
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neglected, and a stable Hagen−Poiseuille flow profile and a
spherical meniscus are assumed to form quasi-instantaneously.
To understand the details better, accurate microscale analysis
and simulations in the initial stage are necessary. For
microgravity experiments, Stange et al.28 found three
successive phases: a quadratic dependence of the meniscus
height on time (h ∼ t2); followed by a linear increase (h ∼ t);
and finally, the Lucas−Washburn behavior (h2 ∼ t).
However, the fitting results suggest that the initial transient

regime is indeed negligible here, especially for glycerol and
Soltrol 170 (cf. the above comparison), for which one could
even neglect inertia. Nevertheless, for large radii, as well as less
viscous fluids, such as water, these effects might be significant.
In particular, the water experiment with largest radius (R =
0.65 mm) shows deviations from an initially linear height−
time relation (see Figure 5 and the Supporting Information).
Additionally, for such regimes, the proper choice of the
(numerical) initial conditions for the extended model eq 6
might be important. Here, they are based on asymptotic
analysis to approach t = 0 and a sufficiently small numerical
regularization with negligible impact on the solution. Further
investigation can lead to conditions (or extensions) that
include the transient effect.
Meniscus Shape. The meniscus shape is assumed spherical

for the experimental measurement of the contact angle, as well
as for the discussed models. However, this shape might be
deformed because of the influence of the inertia and gravity.
For glycerol and Soltrol 170, the agreement of the
experimental contact-angle data and the fitted upscaled
model gives confidence that these effects can be neglected.
For water, the experimental contact angle data has a rather
large scatter, and the differences between experiments and
fitted models are higher (cf. Figure 5 and the Supporting
Information). For experiments with water in glass tubes of
lower radius (R = 0.15 mm and R = 0.2 mm), Xue et al.8

reported that the rise velocity is too high to have a spherical
meniscus shape. Therefore, the obtained results for the contact
angle of water should be treated with caution.
Wetting Films and Slip. For glycerol and Soltrol 170,

Heshmati and Piri9 vacuum-dried the tubes immediately
before the experiments, so that no prewetting films were
present. The model fitting resulted accordingly in negligible
slip lengths, λ < 10−2, which translates into a dimensional slip
length below 1 μm. In contrast, the tubes for the experiments
with water were only partially dried using a paper filter, to
avoid contamination affecting the contact angle and the
equilibrium rise.9 Hence, heterogeneous prewetting films of
water could possibly be present in the tubes. This can influence
the contact angle and the meniscus shape and induces
difficulties for the measurements and the modeling, so that a
direct comparison becomes more involved.
Additionally, the presence of wetting films would reduce the

dissipation from the formation of water−glass interfacial area.
Hence, the water rises faster, which corresponds to an effective
slip in the presented models. In the fitting of the extended
model using the height data (h-fit and both-fit), indeed, a
relevant slip length up to 0.15 (dimension of about 0.1 mm, cf.
the Supporting Information) was observed. However, the
dynamic coefficient (η) and the slip length (λ) are strongly
correlated, such that the slip length in the model is difficult to
relate to the physical behavior.
Furthermore, note that negative effective slip was observed

for nanometric pores.29 There, the effective slip length depends

on the wettability and the viscosity, which considerably differs
for confined water near walls and for bulk water. Here,
however, the fitting did not allow for negative slip lengths,
because these effects were found to be relevant only for radii
on the nanometer scale.29

Uncertainty and Limitations of the Suggested
Models and of the Fitting. Because the suggested models
are derived in leading order for ε ≪ 1, errors in the order of ε
are expected (here ε < 0.01). Furthermore, a linearized
dynamic contact-angle model is chosen here for simplicity. A
higher accuracy can be obtained using a more sophisticated
contact-angle model, which, itself, needs further investigation
and validation.14,20 Additionally, a Hagen−Poiseuille flow is
assumed for the extended model. Deviations due to inertial
effects are ignored but might affect the inertial coefficient .
This could explain the overshoot observed for the extended
model in the case of water with tube radius R = 0.65 mm (cf.
Figure 5), which is not present in the experiment.
Furthermore, the static contact angle is highly sensitive to

the used materials. In contrast to the total wetting (θ = 0°)
used by Heshmati and Piri,9 the values extracted from the
experiments range between 5° and 10°. Note that, for water−
air−glass systems, even a static contact angle of 20−30° is
reported by Li et al.30 Although this has only a minor influence
on the rise height, it affects the fitting for the dynamic contact
angle.

■ CONCLUSIONS

The upscaled model of capillary-driven flow in circular
cylindrical tubes extends the classical Lucas−Washburn theory
by incorporating a dynamic contact angle. Using a simple
relation between the contact angle and the velocity of the
moving contact line, an analytical expression for the capillary
rise over time was derived. Based on empirical arguments, the
mathematical model was extended to account for inertial
effects.
To validate the models, the solutions were compared to the

experimental data observed by Heshmati and Piri.9 In contrast
to the Lucas−Washburn model, the models with dynamic
contact angle do match the experimental data, both the rise
height and the contact angle, even at early times. The fitting
procedure requires only one parameter for the dynamic contact
angle. In particular, the findings suggest that this parameter
depends only on the physical properties of the involved fluids
(and of the tube) but is independent of geometrical features,
such as the radius of the tube. Therefore, the presented models
can be used to predict capillary-driven flow in tubular systems
upon knowledge of the underlying dynamic contact-angle
relation.
In future work, this approach will be used to construct

dynamic pore-network models, to study the resulting dynamic
core-scale effects, and to derive upscaled models valid on a
possibly larger scale.

■ ASSOCIATED CONTENT

*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.langmuir.1c02680.

Details of the upscaling procedure and of the
comparison between model solutions and experimental
data (PDF)

Langmuir pubs.acs.org/Langmuir Article

https://doi.org/10.1021/acs.langmuir.1c02680
Langmuir 2022, 38, 1680−1688

1686

https://pubs.acs.org/doi/suppl/10.1021/acs.langmuir.1c02680/suppl_file/la1c02680_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.langmuir.1c02680/suppl_file/la1c02680_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.langmuir.1c02680/suppl_file/la1c02680_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.langmuir.1c02680/suppl_file/la1c02680_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.langmuir.1c02680?goto=supporting-info
https://pubs.acs.org/doi/suppl/10.1021/acs.langmuir.1c02680/suppl_file/la1c02680_si_001.pdf
pubs.acs.org/Langmuir?ref=pdf
https://doi.org/10.1021/acs.langmuir.1c02680?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


■ AUTHOR INFORMATION

Corresponding Author
Stephan B. Lunowa − Computational Mathematics, UHasselt
− Hasselt University, 3590 Diepenbeek, Belgium;
orcid.org/0000-0002-5214-7245;

Email: stephan.lunowa@uhasselt.be

Authors
Arjen Mascini − Pore-Scale Processes in Geomaterials
Research Group (PProGRess), Department of Geology, Ghent
University, 9000 Ghent, Belgium

Carina Bringedal − Institute for Modelling Hydraulic and
Environmental Systems, University of Stuttgart, 70569
Stuttgart, Germany

Tom Bultreys − Pore-Scale Processes in Geomaterials Research
Group (PProGRess), Department of Geology, Ghent
University, 9000 Ghent, Belgium

Veerle Cnudde − Pore-Scale Processes in Geomaterials
Research Group (PProGRess), Department of Geology, Ghent
University, 9000 Ghent, Belgium; Environmental
Hydrogeology Group, Department of Earth Sciences, Utrecht
University, 3584CB Utrecht, The Netherlands

Iuliu Sorin Pop − Computational Mathematics, UHasselt −
Hasselt University, 3590 Diepenbeek, Belgium

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.langmuir.1c02680

Author Contributions
CRediT author statement: S.B.L.: Conceptualization, Data
curation, Formal analysis, Investigation, Methodology, Soft-
ware, Validation, Visualization, Writing - original draft. A.M.:
Conceptualization, Methodology, Investigation, Validation,
Writing - review and editing. C.B.: Conceptualization,
Methodology, Writing - review and editing. T.B.: Conceptu-
alization, Funding acquisition, Writing - review and editing.
V.C.: Conceptualization, Funding acquisition, Writing - review
and editing. I.S.P.: Conceptualization, Funding acquisition,
Methodology, Writing - review and editing.

Notes
The authors declare no competing financial interest.
The data that support the findings of this study was generated
using the source code23 which is openly available at https://
github.com/s-lunowa/dynamic-capillary-rise.

■ ACKNOWLEDGMENTS

The authors are grateful to Mohammad Heshmati and
Mohammad Piri for providing their experimental data. The
authors thank the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) for supporting this work by
funding the Collaborative Research Center on Interface-Driven
Multi-Field Processes in Porous Media (SFB 1313, grant
number 327154368) and by funding EXC 2075-390740016
under Germany’s Excellence Strategy. We acknowledge
support by the Stuttgart Centre for Simulation Science
(SimTech). This work was supported by Hasselt University
(project number BOF17NI01) and the Research Foundation
Flanders (FWO) [grant numbers G051418N, G0G1316N, and
12X0919N]; Tom Bultreys is a postdoctoral fellow of the
Research Foundation Flanders.

■ REFERENCES
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