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Abstract. Renewable Energy Communities (RECs) are anticipated as key means to re-
structure the energy system in the European Union. However, there are still many open
questions regarding the needed conditions that would allow their extensive roll-out. Here we
propose a techno-economic model to assess the conditions needed by RECs to operate in an
economic beneficial way in the Belgian context. The results indicate that while user type, user
consumption and electricity tariff design are important, they are not as important as the amount
of installed flexible technology, e.g. heat pumps or electric vehicles, to reduce operational costs.
In scenarios with high penetration of flexible technologies the annual operational costs of the
REC can be up to 17 % lower than the operational costs of the business-as-usual situation.

1. Introduction
Renewable Energy Community (REC) has become a recurring term linked to the energy
transition towards more sustainable cities and energy system. RECs allow a wider range of
actors, such as private citizens, citizen organization as well as small and medium enterprises
to become active participants to the energy transition. Favorable conditions are created for
individuals to become energy prosumers with the right to consume, sell or store renewable
energy on their premises and within their community. Although the recast of the Renewable
Energy Directive [1] provides an enabling framework for RECs on EU level, the specific definition
and local enabling conditions still depend on the transposition at the individual EU member
states level. While there are member states making considerable progress on this, there are
still many open questions regarding needed conditions that would allow an extensive roll-out of
RECs [2]. While Flanders (Belgium) is home to one of the pioneers within energy cooperatives
(ecopower), it still lacks a specific legal framework for RECs and has tariffing structures that are
unfavorable for REC economic feasibility [3]. In this study we assess alternative configurations
of RECs in order to understand the conditions needed to assure their operational economic
benefits in the Flemish context. The configuration of the REC is varied in three main factors
that can impact the economic benefits: 1) different combination of consumer/prosumer that
will constitute the community; 2) the type of electricity tariffs implemented; and 3) the energy
production, conversion and storage technologies to be included. A set of scenarios for different
types of users, tariffs and technology mix has been defined. The scenarios are the input for a
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model that optimizes total operational cost of an energy community. Finally, to analyze the
benefits for a REC for each scenario, we compare the operational cost for three different levels
(business-as-usual, single-user and REC) of optimization.

2. Data and model descriptions
2.1. Data
We rely on data collected from 10 RECs around Flanders to construct a generic REC that
resembles the local conditions. A total of 22 different electricity power consumption profiles with
hourly time-step over one-year horizon provided by the Flemish distribution system operator,
Fluvius, were used. Eleven of them are from residential consumers connected to the low-voltage
(LV) grid, while the other 11 are a mix of commercial and public buildings linked to the medium-
voltage (MV) grid. Nine of the residential profiles represent single-family houses and the other
2 are apartment buildings. The mix of buildings connected to the MV grid is composed by:
a bank office, a sheltered housing, a library, an extracurricular school, two local shops, a
community centre, a secondary school with its sport halls, a supermarket and a tennis club.
Heating and cooling demand data were not available, hence they were simulated in TRNSYS
based on building type, usage and outside temperature. One heating profile per category was
simulated for the residential buildings, while both heating and cooling demand were simulated
for all the commercial and public buildings. These heating and cooling demand profiles were
then transformed in electric consumption of heat pumps using the outside temperature and
the variable coefficient-of-performance of the devices. Regarding EV, two different charging
demand profiles were used: one for LV users and one for MV users. Charging demand for LV
buildings is based on a synthetic profile generated based on a fixed daily demand of 7 kWh
and a fixed charging schedule, while the EV charging profile for MV buildings corresponds to
actual measurements from public charging stations located at the parking areas of the campus of
the Vrije University Brussel, a Flemish University. PV energy generation profiles are estimated
using a standard generation profile based on the average weather profile for Flanders, which are
scaled based on specified installed capacities.

2.2. Scenarios and assumptions
Following a collaborative and iterative approach with representatives from academia, REC pilots,
engineering companies, banks and grid operators we proposed a total of 135 scenarios that results
from the combination of five REC user configuration scenarios, three technology scenarios, three
tariffs design alternatives and three levels of optimization to evaluate the potential operational
economic benefits of the generic REC. The gathered and simulated energy consumption profiles
were used to build five different REC configurations based on the distribution of their total
energy consumption (see Table 1). The aim of using different REC user configuration scenarios
was to identify the potential impact of different combinations of LV and MV users on the
potential economical gain.

Table 1. REC configurations

REC Scenario 1 2 3 4 5

LV consumption (%) 100 70 50 30 0
MV consumption (%) 0 30 50 70 100

Furthermore, assets are assigned per user (Table 2) and asset maximum capacities are fixed per
technology (Table 3). The values in both tables defer for low voltage and medium voltage users.
We created three different scenarios for technology penetration for the two buildings categories.
Technology scenario 1 and 2 were designed to test optimistic future scenarios of technology
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usage based on the stakeholder insights from the Flemish market, while scenario 3 represent the
average of 10 REC pilot sites involved in Flemish project ROLECS.

Table 2. Technology penetration ratio and capacities

Technology
scenario

PV
(% of users)

HP
(% of users)

EV
(% of users)

BESS
(% of users)

LV MV LV MV LV MV LV MV

1 50 50 33 33 20 33 0 0
2 50 50 33 100 20 100 50 50
3 40 20 20 20 50 10 30 10

Table 3. Technology capacities

Technology
scenario

PV cover factor
(% of consumption)

HP capacity
(kW)

EV charging power
(kW)

BESS capacity
(% of PV capacity)

LV MV LV MV LV MV LV MV

1 100 20 2.5-4 14-288 3.5 55 0 0
2 100 20 2.5 4 14-288 3.5 55 50 50
3 50 20 2.5-4 14-288 3.5 55 80 60

Three electricity tariffs alternatives are proposed. The main focus is to test the impact of moving
from a purely volumetric tariff towards a more capacity based one. For doing so we identified
the final cost split of an electricity tariff from [4]: 28 % represents the commodity, 18 % the
DSO tariff, 7 % the TSO tariff, 17 % the VAT and the remaining 30 % are fees and taxes. Since
in Flanders there are various suppliers and prices of electricity vary, we take an average of prices
of the current kWh based tariff [5]. Our reference scenario consider a day/night tariff with peak
prices between 7 and 22, and off-peak prices the rest of the day and the weekends. The average
prices used for LV buildings are 28 c€/kWh for peak times and 21 c€/kWh for off-peak times.
Prices for MV buildings are 50 % of the LV tariffs. These considerations lead to the following
tariffs: i) 100 % of the cost is kWh-based ii) The DSO tariff (18 % of the total) are kW-based
iii) All the costs except VAT and taxes (53 % of the total) are kW-based. The first tariff is
the reference and common scenario in Belgium, the second scenario represent the planned tariff
for 2022 in Flanders [4], while the third one represents an additional potential future scenario.
We introduce a capacity tariff of 50 €/kW/year in the second scenario which scales to 147.2
€/kW/year in the third one. MV tariffs are 50 % of LV tariffs also for capacity. Injection price
is fixed for all type of buildings and tariffs, with a revenue of 3.5 c€/kWh.
Finally, the proposed group of users with varying technologies and tariffs are analyzed within
three levels of energy cost optimization:

(i) Business-as-usual (BAU): no optimization at all

(ii) Individual building optimization (IBO): optimization at building level and no energy
exchange between different buildings

(iii) REC optimization: optimization at community level with possibility of peer-to-peer energy
exchange

In the BAU scenario, electrical energy balance is calculated at every time step for every building.
Heat pump usage match the hourly heating/cooling profile, as the EV charging pattern follows
the hourly charging demand. In the LV cases, EV charging starts at 7pm until the daily
demand is met. No BESS is included in this scenarios as no optimization on assets scheduling
is introduced. For the IBO, heat pump consumption matches the simulated daily demand but
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it is optimized hourly to match 24 hours energy demand profiles. The same concept applies to
EV charging, the only difference is that we apply a time-window constraint on the EV charging
hours for the LV buildings, which forces each user to charge the car only between 7 PM to 7
AM. The RES optimization uses the same principle for technology as IBO taking into account
the energy use/cost optimization is on the energy community level and allows for optional peer-
to-peer exchange. The peer-to-peer structure follows the community-based market concept [6],
where a consumer inside the REC has a possibility to buy energy either from the supplier or
from community member. The buying price of electricity is the same regardless of where the
electricity is coming from. The difference lays in the revenue that the prosumer gets from
injecting into the REC instead to sell back to the main grid. In fact, the energy part of the tariff
(28 % in our case) does not go to the DSO but stays inside the community which will reduce
the net cost for the community compared to interaction with the grid only.

2.3. Mathematical model
The mathematical model presented in this section is the generalized model for the REC
optimization scenarios. BAU and ISO represent simpler optimizations, due to no BESS or
no peer-to-peer exchange. In those cases respective part of the equation becomes zero. The
objective function minimizes the total annual electricity consumption cost of the REC:

min
∑
b∈B,
t∈T

(P im
t,b · λ

ext,im
t,b − P ex

t,b · λ
ext,ex
t,b ) ·∆t +

∑
b∈B,
m∈M

(P p
m,b · λ

p
b) +

∑
b∈B

Cint
b

(1)

The first summation term represents the total annual net cost for the energy exchange between
the community and the grid, which is simply the difference between the cost of importing energy
and the gain for injecting energy back to the grid. All the variables are indexed over the hourly
time set T and the buildings set B. P im

t,b and P ex
t,b represent the power imported and exported

from/to the grid for every timestep t and building b, while λext,imt,b and λext,ext,b are the tariffs in

€/kWh for importing an exporting energy respectively. Finally, ∆t is the difference between
two timesteps to convert power into energy. The second summation term constitutes the annual
cost for the monthly peak consumption. P p

m,b is the peak power imported from the grid for

month m and building b and λpb is its associated cost in €/kW. Finally, the last term is the sum
of the peer-to-peer exchange costs Cint

b for each building.
The peer-to-peer exchange cost for each building is calculated in a similar way as for the

energy exchange between the community and the grid:

Cint
b =

∑
t∈T

(Qim
t,b · λ

int,im
t,b −Qex

t,b · λ
int,ex
t,b ) ·∆t (2)

where Qim
t,b and Qex

t,b are the imported power from the community and exported power to the

community of each building b at timestep t. λint,imt,b and λint,ext,b are the internal tariffs for
purchasing and selling energy inside the community. The power balance for exchange among
buildings in a community is assured for every hour as defined in Eq. 3:∑

b∈B
(Qim

t,b − Qex
t,b) = 0 (3)

Moreover, the power flows of the exchange with the grid and the exchanges inside the community
needs to be balanced with the power flow pt,b of each building:

pt,b − Qim
t,b − P im

t,b + Qex
t,b + P ex

t,b = 0 (4)
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The power flow of each building pt,b is a power balance per building b in timestep t:

pt,b = lt,b + phpt,b + pcoolt,b + pevt,b − ppvt,b + pcht,b · ycht,b − pdischt,b · ydischt,b (5)

where lt,b represents the base load consumption of the building, phpt,b, p
cool
t,b and pevt,b are the power

demand for heating using the heat pump, the power demand for cooling using the heat pump
and the electric vehicle charger. ppvt,b is the power output of the solar PV installation, while pcht,b
and pdischt,b are the charging and discharging power of the battery. ycht,b and ydischt,b are the binary

variables ensuring that the battery is not charging and discharging at the same time (Eq. 6).
Heating and cooling loads of the heat pump and electric vehicle all have their own demand to
be met (Eq. 7).

ycht,b + ydischt,b = 1 (6)∑
i∈Id

(pji,b · Y
j
i,b) = djd,b (7)

where Id is the set containing the 24 hours of each day d during the year and j is indexed over
the set {hp, cool, ev}. Y j

i,b is the hourly availability of asset j and djd,b is the power demand of
asset j during day d for each building. Each of the flexible assets hourly power output is limited
by its maximum output mj

b (Table 3):

pjt,b ≤ mj
b (8)

Eq. 9 represents the energy balance of the battery, where et,b is the energy stored in the battery
at the hour t for building b, lbatt is the static loss of stored energy between each timesteps, ηch

and ηdisch are the charging and discharging efficiencies.

et+1,b = (1− lbatt) · et,b + ∆t · (ycht,b · pcht,b · ηch − ydischt,b · pdischt,b /ηdisch) (9)

In addition boundaries for the charging and discharging powers of the battery as well as a
minimum and maximum state-of-charge are introduced.

3. Results
All the results for the individual building optimization and REC optimization are presented as
% of total cost of the business-as-usual case in Table 4. For IBO and BAU results, the sum of
each individual user’s annual energy consumption cost was taken to be compared to the total
cost of REC. When looking at difference between tariffs, tariff 3 gives the best result for every
scenario and in general a tariff based more on capacity leads to a reduction of total annual
energy consumption costs. Variation in use of flexible technologies have the most impact on the
operational economic benefits of both individually optimized buildings and REC. The scenarios
where technologies with flexible loads, such as heat pumps, EVs and BESS, are included allow
for preferential shifting of the loads to times with lower electricity tariffs. The impact of use of
flexible technologies is visible in decrease of costs for REC scenario 4 and 5 (majority of MV
users) in technology scenario 2. While these REC scenarios in combination with technology
scenario 1 and 3 lead to the lowest cost reductions, in combination with technology scenario
2 (more flexible technologies) the highest cost reduction is achieved. This shows that share of
flexible load technologies used and base load building energy consumption have a bigger impact
on total costs than ratio between LV and MV buildings participating in REC. Finally, for all
the scenarios it is visible that REC leads to the lowest annual energy consumption costs, with
maximum cost savings of 17 %, even though in most cases the economical benefit over the IBO
configuration is not substantial (between 0 % to 7 %). Moreover, it is important to keep in mind
that the operation of a REC will have additional costs (e.g. IT infrastructure for peer-to-peer
exchange) which are not included in this study.
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Table 4. Cost comparison for all scenarios (in bold scenarios with at least 10 % cost reduction)

REC scenario
IBO (% of BAU cost) REC (% of BAU cost)

Tariff 1 Tariff 2 Tariff 3 Tariff 1 Tariff 2 Tariff 3

Technology
scenario

1

1 96.00 95.34 93.53 92.12 91.22 86.55
2 96.56 95.88 93.96 92.28 91.28 87.22
3 97.28 96.71 95.06 92.86 91.89 88.52
4 97.94 97.41 95.86 93.30 92.46 89.89
5 99.25 98.83 97.55 97.72 97.38 96.37

Technology
scenario

2

1 95.87 94.59 91.44 93.33 91.89 87.82
2 95.15 93.39 88.68 92.60 90.63 85.26
3 96.65 95.22 91.43 94.33 92.70 88.34
4 95.78 93.62 87.36 94.13 91.82 85.16
5 95.12 92.15 82.79 95.09 92.12 82.76

Technology
scenario

3

1 98.10 97.18 94.93 97.19 96.21 93.79
2 98.33 97.49 95.34 97.49 96.58 94.29
3 98.78 98.15 96.47 98.16 97.47 95.65
4 98.84 98.22 96.52 98.37 97.70 95.87
5 99.43 99.07 97.95 99.42 99.07 97.95

4. Conclusions
The key factor to create economic benefit in the operation of a REC is the amount of available
flexible technologies. Based on our analysis, the cost benefit is optimal when flexible assets are
utilised with a capacity tariff that further exploits the possibility to shave peaks in demand. The
best case can reach up to 17 % of cost reduction compared to the business-as-usual case. While
variation of different LV and MV users in the REC did not have significant impact, their effect
was mainly due to their level of energy consumption and not the consumption behavior. The
rather specific model presented in this study will be further extended to address on one hand
the impact of needed investment in the flexible technologies by individual or community and on
the other hand the potential benefits of use of different mechanisms of peer-to-peer exchange
within a REC.
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