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Abstract

In two-photon collisions at LEP2 and a future e+e− linear collider heavy quarks (mainly

charm) will be pair-produced rather copiously. The production via direct and resolved

photons can be distinguished experimentally via a remnant-jet tag. We study correla-

tions of the heavy quarks at next-to-leading order in QCD in the direct channel, which

is free from phenomenological parton densities in the photon. These correlations are

therefore directly calculable in perturbative QCD and provide a stringent test of the

production mechanism.
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1. Introduction

The production of heavy quarks in two-photon collisions has interesting aspects. Each

of the photons can behave as either a pointlike or a hadronic particle [1]. Consequently

one distinguishes in such collisions direct- (both photons are pointlike), single resolved-

(one photon is pointlike, the other hadronlike), and double resolved (both are hadronlike)

production channels. The resolved channels require the use of parton densities in the photon,

whereas the production via the direct channel is free of such phenomenological inputs and

depends only on the QCD coupling and the heavy quark mass. The heavy mass provides

the hard scale for the perturbative analysis and ensures that the separation into direct

and resolved production channels is unambiguous even at the next-to-leading order (NLO)

level. Hence production via the direct channel is directly calculable in perturbative QCD

(pQCD) and in principle the best way for examining the validity of such an analysis and

for confronting the pQCD prediction with experiment.

Two-photon collisions can be investigated at e+e− colliders, where a large number of

equivalent photons is generated. Charm quark production in two-photon collisions has been

analysed in many experiments. One has mainly studied the reaction e+e− → e+e−D∗±X

with neither outgoing lepton tagged (“no-tag”), because it proceeds predominantly via the

fusion of two equivalent photons to produce open charm (γγ → cc̄). The existence of the

D∗± has been inferred either from direct reconstruction [2] or from unfolding the distribution

of soft pions [3] resulting from its decay. There have in addition been studies that use soft

leptons [4] and kaons [5] to tag charm quarks.

Due to the low experimental acceptance of heavy quark production in two-photon col-

lisions this reaction has been studied also theoretically at next-to-leading order in QCD

only in the single-particle inclusive case. Ref.[6] concentrated on the no-tag case, and ref.[7]

on the case where one of the outgoing leptons is tagged. At LEP2 and a future e+e− lin-

ear collider (NLC) the higher cms energy and large luminosity will lead to fairly copious

production of charm quark pairs. Thus it will become possible to measure both heavy

quarks and analyse their correlations. The study of these correlations constitutes a more

comprehensive test of the theory and is our purpose in this letter. Heavy-quark correla-

tions have been investigated theoretically also in hadroproduction [8], photoproduction [9]

and electroproduction [10], and experimentally in [11]. We concentrate here on the no-tag

case and, to eliminate the uncertainties related to the parton densities in the photon, on

the direct channel only. Note that the TOPAZ collaboration [5] has recently shown that

the direct channel may be isolated experimentally from the resolved ones by detecting the

photon-remnant jet, present in the resolved channels only.

The paper is organized as follows: In section 2 we describe our method of calculation

and in section 3 we show heavy quark correlations for LEP2, and a NLC at a center of mass

energy of 500 GeV. We conclude in section 4.

1



2. Method

In this section we describe the method we used to calculate the QCD corrections to the

process

γ(k1) + γ(k2) → Q(p1) +Q(p2) , (1)

where Q(Q) is a heavy (anti)-quark. We want to have full exclusive information about the

final state. Our method is a special case of a more general method for performing exclusive

higher order QCD calculations [12].

The Born process (1) is described by the differential cross section

dσ(0) =
4α2

ee
4
QNc

s

(
t1
u1

+
u1
t1

+
4m2s

t1u1

(
1− m2s

t1u1

))

× d3p1

2
√
|~p1|2 +m2

d3p2

2
√
|~p2|2 +m2

δ(4)(k1 + k2 − p1 − p2) . (2)

Here eQ is the charge of the heavy quark in units of e, Nc = 3 the number of colors, and m

the mass of the heavy quark. The kinematic invariants are defined by

s = (k1 + k2)
2, t1 = (k1 − p1)

2 −m2, u1 = (k1 − p2)
2 −m2 . (3)

The virtual QCD corrections to the Born process consist of the interference between the

Born amplitude (depicted e.g. in Fig. A1 in [6]) and its one-loop corrections. Explicit results

have already been presented in [13] and we will not repeat the details of the calculation here.

We merely note that we regularized the ultraviolet (UV) and infrared (IR) singularities that

occur in the virtual corrections by working in d = 4− 2ǫ dimensions, and absorbed the UV

singularities via mass renormalization in the on-shell scheme. We are then left with only

IR singularities, which appear as 1/ǫ poles and factorize into a universal factor multiplying

the Born differential cross section, eq.(2).

The bremsstrahlung corrections at NLO are due to the radiation of a gluon from one of

the heavy quarks

γ(k1) + γ(k2) → Q(p1) +Q(p2) + g(k3) . (4)

Since our method here is a little different from what was done previously in the literature,

we give a few more details. Note first of all that when a gluon is radiated from the heavy

quark, no collinear singularity occurs, because it is shielded by the heavy quark mass. We

divide up the phase space into a “soft” region and a “hard” region. The soft region is

defined by the condition

0 ≤ s13, s23 ≤ smin (5)

where si3 = 2pi · k3 (i = 1, 2) and smin is an arbitrary cut-off, to be chosen small. The hard

region is the complementary one.

In the hard phase space region, one can work in 4 dimensions and perform the phase

space integrations numerically, allowing for easy implementation of experimental cuts. As

is well known, in the soft region both the phase space and the matrix element factorize in
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the limit of small smin. In both cases, one of the factors contains the quantum numbers

of the gluon, and the other is only related to the lower order process. As a consequence,

one may perform the integral of the momentum of the gluon in this region analytically in

d-dimensions. Specifically one must do the integral

4παsCF

∫
dPS(soft)K(soft) . (6)

with the color factor CF = (N2 − 1)/(2N). Here the soft gluon phase space factor is

dPS(soft) =
(4π)ǫ

16π2Γ(1− ǫ)
ds13ds23(sβ)

2ǫ−1[s12s13s23 −m2(s213 + s223)]
−ǫ (7)

where β =
√
1− 4m2/s and s12 = 2p1 · p2. Note that the expression in square brackets

must be positive. The soft gluon matrix element factor can easily be found in the eikonal

approximation, and is

K(soft) = 4

(
s12s13s23 −m2(s213 + s223)

s213s
2
23

)
. (8)

Thus, upon combining both factors and integrating over the range (5), one obtains a univer-

sal factor multiplying the differential Born cross section (2). This factor contains 1/ǫ poles

which cancel against those originating in the virtual corrections. The soft contribution to

the fully differential cross section can then finally be written as

dσ(1)(soft) = SF (s,m
2, smin) dσ

(0) (9)

where

SF =

(
αsCF

π

){
− 2

(
1 +

(
1− 2m2

s

)
lnx

β

)(
lnx− ln

(
s

smin

)
− ln β

)

−2 (ln(1− x) + ln(1 + x)− lnx) + 1− β

− 1

β

(
1− 2m2

s

)
lnx

(
1 + 2 ln

(1 + x)(1− x)

x

)
(10)

+
1

2β

(
1− 2m2

s

)(
Li2

(
1− 1

x2

)
− Li2(1− x2)

)

+
m2

sβ
lnx

(
(1 + x)(1− x)

x
+

3s

2m2

(
1− 2m2

s

)
lnx

)}
.

Here x = (1− β)/(1 + β) and Li2(z) is the dilogarithmic function as defined in [14].

Finally, one is left with a two-to-two particle contribution (consisting of the Born and

soft-plus-virtual corrections) and the two-to-three particle contribution in the hard region.

Each contribution depends on the theoretical cut-off smin, but as long as smin is small enough

compared to the typical scale of our process, the sum does not. This we checked explicitly.
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3. Results

Using the method described in the previous section we have constructed a Monte Carlo

program for the reaction γγ → QQ for direct photons, including the complete O(αs) correc-

tions, which is fully exclusive in all final state particles. We checked that we could reproduce

the results in [6] for the total cross section and single particle transverse momentum (pt) and

rapidity (y) distributions for the direct channel. We only present results for charm quark

production because the bottom quark production rate is very much reduced in two-photon

collisions due to charge and phase space suppression.

We first list the default choices we made for various parameters for producing the results

shown in the rest of this section. To compute αs we used the two loop expression with

Λ
(5)
QCD = 0.215 GeV and nlf active flavors, where nlf is the number of flavors with mass less

than the renormalization scale. For the charm quark mass we used 1.5 GeV. The center

of mass energy was chosen to be 175 (500) GeV for LEP2 (NLC). For the renormalization

scale we took µ =
√
m2 + (p2t (Q) + p2t (Q))/2. In the present process the choice of scale

only affects the value of αs. We used the Weizsäcker-Williams density of [15] with an anti-

tag angle θmax of 30 (175) mrad for the case of LEP2 (NLC). At the NLC beamstrahlung

is expected to play an important rôle, so we include its effect here by adopting for its

spectrum the expression given in [16], with parameters Υeff = 0.039 and σz = 0.5 mm [17]

corresponding to the TESLA design. For the NLC we will as default coherently superimpose

the Weizsäcker-Williams density and the beamstrahlung density, in order to incorporate the

case where one photon is of beam- and the other of bremsstrahlung origin.

For most results we have not used charm-to-D meson fragmentation function. For the

cases that we do, which we indicate explicitly, we employed the Peterson et al. parametriza-

tion [18]

D(z) =
N

z(1 − 1/z − ǫ/(1− z))2
(11)

with ǫ = 0.06 the value given in [19] for the case of charm. Our interest when including

the fragmentation function lies mainly in how it changes the shapes of distributions, rather

than their normalization. Hence we choose N such that
∫ 1
0 dz D(z) = 1.

We will only present one single particle distribution here, since such distributions have

already been studied in [6,20]. Fig.1 shows the single particle pt distribution at LO, NLO,

and at NLO with fragmentation. We see that inclusion of NLO corrections decreases the

cross section at large pt and enhances it at small pt, and that the application of the frag-

mentation function softens it considerably.

Turning to correlations, we begin by showing distributions which allow a comparison

between the LO and NLO calculations. In Fig.2 we show the cross section versus the

invariant mass MQQ of the heavy quark pair for LEP2 and NLC at both LO and NLO.

Notice in Fig.2 the sizable difference that occurs at both small and large invariant masses

when including the NLO corrections. This can be understood as follows. Consider first

the situation where the two photons collide with all the momentum of their parent leptons.

Denoting the invariant mass of the heavy quark pair in this case by M̂
QQ

, then at LO

4



Figure 1: Single charm quark pt spectrum at LEP2, comparison of LO, NLO and NLO

with fragmentation.

Figure 2: M
QQ

distribution for charm for LEP2 and NLC at both LO and NLO.
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M̂
QQ

is fixed at
√
sγγ . At NLO it may assume smaller values, and there the cross section

is positive. For M̂QQ =
√
sγγ one has at NLO also a negative contribution coming from

the virtual graphs. To go back to the case of LEP2 and NLC we must fold with the

photon spectrum. A given M̂
QQ

value then contributes to the spectrum for M
QQ

under the

restriction MQQ < M̂QQ, so that at large MQQ the LO spectrum is mainly modified by the

negative contribution at M̂
QQ

=
√
sγγ , and at small M

QQ
by the positive contributions at

smaller M̂QQ.

In Fig.3 we show the ∆R distribution, defined by ∆R =
√
(∆φ)2 + (∆η)2, at LO and

NLO for both LEP2 and the NLC. Here ∆φ is the azimuthal angle between the charm and

Figure 3: ∆R distribution for charm and anti-charm quark at LEP2 and NLC.

anticharm in the plane transverse to the beam axis and ∆η is the pseudo-rapidity difference

of the two heavy quarks. At LO ∆R > π, but at NLO ∆R may also assume values below

that. Note that NLO effects seem to be mostly active for ∆R ∼< 4.

We now show two distributions which are only non-trivial at NLO (and higher orders).

In Fig.4 we present the pt distribution of the charm-anticharm pair, and in Fig.5 the az-

imuthal correlation between the two heavy quarks. We also show in Fig.4 the NLC curves

with only beamstrahlung photons and with only Weizsäcker-Williams photons for the pur-

pose of comparison. One observes in Fig.4 that at the NLC charm pairs produced by

beamstrahlung photons prefer to have a lower pt than those due to WW equivalent pho-

tons. This is a consequence of the TESLA beamstrahlung spectrum, which is enhanced

at small z and depleted at large z compared to the WW spectrum (z is the momentum

fraction of the photon relative to its parent lepton).
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Figure 4: pt(cc̄) distribution for charm and anti-charm quark at LEP2 and NLC.

Figure 5: ∆φ distribution for charm and anti-charm quark at LEP2 and NLC.
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In Fig.5 we see that the ∆φ distributions are all quite uniform. We observe however

that at the NLC for the case of charm the beamstrahlung contribution dominates the WW

one.

Finally we comment on the consequences of choosing different values of the renormal-

ization scale µ and the charm mass m. To see how Figs.1-3 change when varying µ one can

simply rescale the differences between the LO and NLO curves according the change in αs,

whereas in Figs.4 and 5 the whole curve will change by an overall factor. We further remark

that choosing a different value for m changes mainly the normalizations of the curves shown

in this section, but not their shapes.

4. Conclusions

In this paper we have presented a NLO calculation of heavy quark production in direct

two-photon collisions. We have described our calculation method and presented numerical

studies of various correlations between the heavy quarks. We observed that the inclusion of

the NLO corrections significantly modifies the shapes and normalizations of the distributions

we studied. Experimentally such studies will be challenging at LEP2 due to the low charm

acceptance, but they are certainly feasible at a future e+e− linear collider.
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