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Abstract

We resum Sudakov threshold enhancements in heavy quark hadroproduction for single-
heavy quark inclusive and pair-inclusive kinematics. We expand these resummed results
and derive analytical finite-order cross sections through next-to-next-to-leading order.
This involves the construction of next-to-leading order matching conditions in color space.
For the scale dependent terms we derive exact results using renormalization group meth-
ods. We study the effects of scale variations, scheme and kinematics choice on the partonic
and hadronic cross sections, and provide estimates for top and bottom quark production
cross sections.
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1 Introduction

Long- and short-distance dynamics in inclusive hadronic hard-scattering cross sections are fac-
torized in Quantum Chromodynamics (QCD) into universal, non-perturbative parton distri-
bution functions and fragmentation functions, and perturbatively calculable hard scattering
functions. Remnants of long-distance dynamics in a hard scattering function can, however,
become large in regions of phase space near partonic threshold and dominate higher order
corrections. Such Sudakov corrections assume the form of distributions that are singular at
partonic threshold. Threshold resummation organizes these double-logarithmic corrections to
all orders, thereby extending the predictive power of QCD to these phase space regions.

Early on [1, 2], the organization of such corrections to arbitrary logarithmic accuracy was
achieved for the Drell-Yan cross section. An equivalent level of understanding for general
QCD processes with more complex color structures at the Born level has been achieved more
recently [3, 4, 5, 6, 7, 8]. The resummation of Sudakov corrections in such processes to next-to-
leading logarithmic (NLL) accuracy requires understanding how these structures mix under soft
gluon radiation. Many NLL-resummed cross sections have been calculated: heavy quark hadro-
[4, 5, 8, 9, 10, 11, 12] and electroproduction [13, 14], dijet production [6, 7], single-jet production
[15], Higgs production [16], prompt photon production [12, 17, 18, 19, 20] and hadroproduction
of electroweak bosons [21]. For a recent review see Ref. [22]. The formalism of Refs. [3, 4, 5, 6, 7]
and the one1 of Ref. [8] both allow arbitrary logarithmic accuracy. Processes involving Born-
level two-particle scattering may be described in either single-particle inclusive or pair-inclusive
kinematics. NLL resummation was initially performed in pair-inclusive kinematics [4, 5, 6, 7]
and later extended to single-particle kinematics [12, 17].

Resummed cross sections constitute an approximate sum of the complete perturbative ex-
pansion if, at each order, the Sudakov corrections dominate. The numerical evaluation of
resummed cross sections requires a prescription to handle infrared renormalon singularities.
Resummed cross sections may also be expanded to provide estimates of finite higher order
corrections which do not suffer from renormalon problems. In this paper we shall employ
the resummed cross sections in the latter fashion: as generating functionals of approximate
perturbation theory.

Resummed results for heavy quark production at leading logarithmic accuracy have been
presented some time ago [24, 25, 26, 27, 28, 29]. In our paper we expand the NLL resummed
cross sections presented in Refs. [4, 5, 12] and derive complete analytic expressions through
next-to-next-to-leading order (NNLO) for double-differential heavy quark cross sections in two
different kinematics: heavy quark pair-inclusive and single-heavy quark inclusive. To achieve
next-to-next-to-leading logarithmic (NNLL) accuracy we include color-coherence effects and
contributions due to soft radiation from one-loop virtual graphs via matching conditions.

Our paper is organized as follows. In section 2 we discuss both types of kinematics and
their singular functions. Section 3 describes the construction of the resummed cross sections.
In section 4 we expand the resummed cross section to NLO and NNLO and present analytical
NNLL double-differential cross sections at each order, with both types of kinematics, in the
gluon-gluon (gg) and quark-antiquark (qq) channels. We numerically study the inclusive par-
tonic and hadronic cross sections in sections 5 and 6 respectively. Our conclusions are presented
in section 7. Appendix A contains the NLO matching terms for pair-inclusive kinematics. In
appendix B we collect all our explicit expressions for the NLO and NNLO differential cross

1A recent study, Ref. [23], compares these formalisms for prompt photon production.
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sections.
A companion study [30], also addressing third and fourth order corrections, contributions

from subleading logarithms, and some differential distributions, already featuring some of the
second order results for inclusive cross sections derived in this paper, was recently presented by
one of us.

2 Kinematics and cross sections

The kinematics of inclusive heavy quark hadroproduction depend on which final state momenta
are reconstructed. In threshold resummation this kinematics choice manifests itself at next-to-
leading logarithmic level [12]. We discuss two types of near-elastic kinematics in heavy quark
hadroproduction, one-particle inclusive (1PI) and pair-invariant mass (PIM) kinematics.

2.1 One-particle inclusive (1PI) kinematics

Heavy quark hadroproduction in 1PI kinematics is defined by

h1(P1) + h2(P2) −→ Q(p1) + X [Q](pX) , (1)

where h1 and h2 are hadrons, X [Q] denotes any allowed hadronic final state containing at
least the heavy antiquark, and Q(p1) is the identified heavy quark with mass m. The hadronic
invariants in this reaction are

S = (P1 + P2)
2 , T1 = (P2 − p1)

2 −m2 , U1 = (P1 − p1)
2 −m2 , (2)

and
S4 = S + T1 + U1 , (3)

where S4 is a measure of the inelasticity of the hadronic reaction (1). Near threshold, reaction
(1) is dominated by the partonic subprocesses

q(k1) + q(k2) −→ Q(p1) + X ′[Q](p′2) , (4)

g(k1) + g(k2) −→ Q(p1) + X ′[Q](p′2) . (5)

If X ′[Q](p′2) = Q(p̄2), the reaction is at partonic threshold and the heavy antiquark has mo-
mentum p̄2. Note that threshold production does not mean that the heavy quarks are produced
at rest. The qg and qg channels contribute at one order higher in αs than the reactions (4) and
(5)2. The partonic invariants corresponding to (2) are

s = (k1 + k2)
2 , t1 = (k2 − p1)

2 −m2 , u1 = (k1 − p1)
2 −m2 . (6)

The invariant s4 = (p′2)
2−m2 which measures the inelasticity of the partonic reactions (4) and

(5) is related to the other partonic invariants by

s4 = s+ t1 + u1 . (7)

2For example, for top quark pair production at the Tevatron pp̄ collider these subprocesses contribute only
1% of the total cross section [31, 32, 33].
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The inclusive partonic cross section may be calculated from

σij(s,m
2) =

s(1+β)/2
∫

s(1−β)/2

d(−t1)
smax

4
∫

0

ds4
d2σij(s, t1, s4)

dt1 ds4
(8)

where β =
√

1− 4m2/s and

smax
4 = s+ t1 +

sm2

t1
. (9)

The recoil momentum p′2 may be split into the momentum at threshold, p̄2, and the momentum
of any additional radiation above threshold, k, i.e. p′2 = p̄2 + k. Then, when k2 is small, we
can define a dimensionless weight w1PI [3] that measures the distance from threshold in 1PI
kinematics which can in turn be expressed in terms of a vector ζµ1PI:

w1PI =
s4
m2

≃ 2p̄2 · k
m2

≡ 2ζ1PI · k
m

. (10)

Ref. [33] contains an exact NLO treatment of this kinematics at the parton and hadron levels.

2.2 Pair-invariant mass (PIM) kinematics

Heavy quark hadroproduction in pair-invariant mass kinematics is defined by

h1(P1) + h2(P2) −→ QQ(p′) + X(pX) . (11)

At the parton level, the important reactions are

q(k1) + q(k2) −→ QQ(p′) + X ′(k) , (12)

g(k1) + g(k2) −→ QQ(p′) + X ′(k) , (13)

where p′2 = M2 is the pair-mass squared. If X ′(k) = 0, the reaction is at partonic threshold
with M2 = s. Then

t1 = −M
2

2
(1− βM cosθ) ,

u1 = −M
2

2
(1 + βM cosθ) (14)

where βM =
√

1− 4m2/M2 and θ is the scattering angle in the parton center-of-mass frame.
In PIM kinematics, the inclusive partonic cross section may be calculated from

σij(s,m
2) =

s(1+β)/2
∫

s(1−β)/2

d(−t1)
s
∫

M2

min

dM2 d2σij(s,M
2, t1)

dM2 dt1
. (15)

with

M2
min =

−m2

(t1/s)2 + (t1/s)
. (16)
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The weight wPIM measures the inelasticity in PIM kinematics,

wPIM = 1− z =
s−M2

s
≃ 2p̄′ · k

s
≡ 2ζPIM · k√

s
, (17)

where z ≡ M2/s. Equation (17) defines the vector ζµPIM in terms of the heavy quark pair
momentum at threshold (indicated by the bar). An exact NLO treatment of this kinematics at
the parton and hadron levels may be found in Ref. [34].

2.3 Inclusive cross section

The inclusive hadronic cross section is obtained by convoluting the inclusive partonic cross
sections, Eqs. (8) and (15), with a parton flux factor Φij ,

Φij(τ, µ
2) = τ

1
∫

0

dx1

1
∫

0

dx2 δ(x1x2 − τ) φi/h1(x1, µ
2)φj/h2(x2, µ

2) , (18)

where φi/h(x, µ
2) is the density of partons of flavor i in hadron h carrying a fraction x of the

initial hadron h momentum, at factorization scale µ. Then

σh1h2(S,m
2) =

∑

i,j=q,q,g

1
∫

4m2/S

dτ

τ
Φij(τ, µ

2) σij(τS,m
2, µ2) (19)

=
∑

i,j=q,q,g

∫ log
10
(S/4m2

−1)

−∞

d log10 η
η

1 + η
ln(10) Φij(η, µ

2) σij(η,m
2, µ2)

where

η =
s

4m2
− 1 =

τS

4m2
− 1 . (20)

The sum is over all massless parton flavors. The second equality in Eq. (19) facilitates inter-
pretation of the figures in section 5.

2.4 Singular functions

The double-differential hadronic cross section for reactions (1) and (11), d2σh1h2/dV dW , enjoys
the factorization [35]

S2 d
2σh1h2(S, V,W )

dV dW
=

∑

i,j=q,q,g

1
∫

x−
1

dx1
x1

1
∫

x−
2

dx2
x2

φi/h1(x1, µ
2)φj/h2(x2, µ

2)

× ωij(wK , s, t1, u1, m
2, µ2, αs(µ)) +O

(

Λ2

m2

)

, (21)

where ωij is the partonic cross section, or hard scattering function, whose dependence on
kinematics is indicated by the weight wK with K = (1PI,PIM). The variables V and W
represent either 1PI or PIM kinematic variables such as the transverse momentum and rapidity
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of either a single heavy quark or the heavy quark pair, respectively. The parton momentum
fractions x1 and x2 have lower limits x−1 and x−2 which depend3 on V and W .

We shall resum the higher order logarithmic contributions to ωij that are singular at thresh-
old. The arguments of these logarithms are the weights wK . Thus, the 1PI singular functions
are plus distributions in s4,

[

lnl(s4/m
2)

s4

]

+

= lim
∆→0

{

lnl(s4/m
2)

s4
θ(s4 −∆) +

1

l + 1
lnl+1

( ∆

m2

)

δ(s4)

}

, (22)

while the PIM singular functions are plus distributions in 1− z

[

lnl(1− z)

1− z

]

+

= lim
δ→0

{

lnl(1− z)

1− z
θ(1− z − δ) +

1

l + 1
lnl+1(δ) δ(1− z)

}

. (23)

These singular functions yield finite large results when convoluted with smooth but rapidly
changing functions such as parton densities. Note that we have normalized the 1PI functions
to have mass dimension −2. Because our paper deals mostly with finite order cross sections,
we denote corrections as leading logarithmic (LL) if l = 2i + 1 at order O(αi+3

s ), i = 0, 1, . . .,
as next-to-leading logarithmic (NLL) if l = 2i, etc.

It is often convenient to work in moment space, defined by the Laplace transform with
respect to wK

f̃(N) =

∞
∫

0

dwK e
−NwKf(wK) . (24)

The upper limit of this integral is not very important, and may be set to 1, where lnwK = 0.
Under Laplace transformations, the plus distributions in Eqs. (22) and (23) become linear
combinations of lnk(Ñ) with k ≤ l + 1 and Ñ = N exp(γE) where γE is the Euler constant4.
The precise correspondence to second order can be found in Ref. [2], and through fourth order
in Ref. [30]. We shall almost always talk about logarithmic accuracy in momentum space.
Occasionally in the following we denote in moment space leading logarithmic corrections at
order O(αi+2

s ), i = 1, 2, . . . to correspond to l = 2i, NLL ones to l = 2i − 1 etc. Although
the Laplace transformation of the l’th plus distribution generates lower powers of lnN besides
lnl+1N , there should be no confusion in practice.

We work in axial gauge, n · A = 0, with the gauge vector chosen as nµ = ζµK . The implicit
renormalization scheme is that of Ref. [36] and m is a pole mass. The renormalization scale µR
is assumed to be equal to the factorization scale µ, except where explicitly indicated otherwise.
The scale dependence of the coupling constant is controlled by the QCD β-function

µ
d

dµ

αs(µ)

π
= β(αs(µ)) = −2b2

(

αs(µ)

π

)2

− 2b3

(

αs(µ)

π

)3

− . . . , (25)

where b2 = (11CA − 2nf )/12, and b3 = (34C2
A − 2nf(3CF + 5CA))/48.

3When V,W = T1, U1 in 1PI kinematics one has x−

1 = −U1/(S + T1) and x−

2 = −x1T1/(x1S +U1) while for
V,W = M2, Y in PIM kinematics one has x−

1 = M exp(Y )/
√
S and x−

2 = M exp(−Y )/
√
S where Y is the pair

rapidity.
4All the N ’s in the remainder of this work are actually Ñ , unless specified otherwise.
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3 Resummed cross sections

Here we describe the threshold resummation of the heavy quark hadroproduction cross section
in PIM [4, 5] and 1PI [12] kinematics. Both resummations can be presented simultaneously
using the methods and results of Refs. [3, 4, 5, 6, 7, 12].

3.1 Refactorization

The resummation of the singular functions in Eqs. (22) and (23) in the perturbative expansion
of ωij rests upon the refactorization of ωij into separate functions of the jet-like, soft, and
off-shell quanta that contribute to its quantum corrections. This refactorization, valid in the
threshold region of phase space, is pictured in Fig. 1. Each of the functions ψ, h, and S organizes

hijI h∗ijJ

ψj/j(wj)

ψi/i(wi)

⊗

i

j

SijJI(ws)

cijI c∗ijJ

Figure 1: Refactorized form of heavy quark partonic cross section near threshold.

large corrections corresponding to a particular region of phase space. The meaning of the I, J
indices will be given shortly and the coefficients cij I are given below in Eq. (43). Factorizations
of this type have been discussed earlier for deep-inelastic scattering and Drell-Yan production
[1], heavy quark hadro- and electroproduction [4, 5, 8, 13], dijet [6] and Higgs [16] production,
and single-particle/jet inclusive cross sections [12, 21]. They may be generalized to include
recoil effects [37].

Figure 1 indicates that each factorized function depends on its own weight function [3]. In
essence, the choice of working in 1PI or PIM kinematics depends on how the total weight wK
is constructed from the individual contributions of each weight function [6, 12]:

PIM : wPIM = wi + wj + ws (26)

1PI : w1PI = wi

(−u1
m2

)

+ wj

(−t1
m2

)

+ ws . (27)

In the case of 1PI kinematics it is convenient to define

1PI : Nu = N
(−u1
m2

)

, Nt = N
(−t1
m2

)

. (28)
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In both kinematics, the moments of the ij partonic cross section, Eqs. (4), (5), (12), and (13),
can be written in refactorized form, up to O(1/N) corrections, as [4, 5, 6, 12]

ω̃ij(N, s, t1, u1, m
2, µ2, αs(µ)) = h∗ij J(ζK , m

2, µ2) S̃ij JI

(

m

Nµ
, ζK

)

hij I(ζK , m
2, µ2)

×
[

ψ̃i/i(Nu, k1 · ζK/µ) ψ̃j/j(Nt, k2 · ζK/µ)
φ̃i/i(Nu, µ) φ̃j/j(Nt, µ)

]

. (29)

The indices5 I and J take values in the color-tensor space spanned by the invariant tensors
that combine the SU(3) representations of the external partons at threshold into a singlet. The
vector ζµK defines the kinematics, see section 2. The “incoming-jet functions” ψ̃i/i describe the

dynamics of partons moving collinearly to the incoming parton i. The distributions φ̃i/i are

defined at fixed light-cone momentum while the functions ψ̃i/i are defined at fixed ki · ζK . The
(real) ψ̃i/i functions include all leading and some next-to-leading singular functions and are

diagonal in color-tensor space. The function S̃ij JI , a Hermitian matrix in color-tensor space,
summarizes the dynamics of soft gluons that are not collinear to the incoming partons and
contains the remaining next-to-leading contributions. Note that (next-to-leading) singularities
associated with soft radiation from the outgoing heavy quarks6 are included in S̃ij JI [4, 5].
Finally, the Hermitian matrix HijIJ ≡ hijIh

∗

ijJ incorporates the effects of far off-shell partons
and contains no singular functions.

The jet and soft functions in Eq. (29) can each be represented as operator matrix elements
[4, 5, 6, 7, 12]. The refactorization of the cross section in Eq. (29) can in fact be seen as a
separation of near-threshold degrees of freedom into distinct effective field theories [3, 4, 5]. In
each effective theory a resummation of the singular functions may be performed via appropriate
evolution equations. The resummed cross section is composed of contributions from all these
effective theories which must be matched together properly, at a specified scale and to a certain
order in perturbation theory. In this paper we match to NLO, leading to NNLL accuracy in
our finite order expansions. Our matching scale is the heavy quark mass m. The matching
procedure is described in section 4.

In the following we describe the resummation of the jet and soft functions. Most of these
steps have been discussed previously in the literature [4, 5, 6, 12] so that our description is
brief.

3.2 Resummed Jet and Soft Functions

The (exponentiated) N dependence of the ratio ψ̃i/i/φ̃i/i in Eq. (29) follows from its factorization

properties [1, 3]. The function ψ̃i/i obeys, beside a renormalization group equation, an evolution
equation governing the energy dependence, expressed as gauge-dependence [1, 3, 38, 39]. Solving
these equations leads to the resummed form of this ratio. The function ψ has been defined in
PIM kinematics for i = q [1] and g [6] with the 1PI equivalents given in Refs. [13, 12]. The
resummation of Sudakov logarithms in 1PI kinematics was verified [13] to trace those in PIM
kinematics [1]. Expressed in terms of wi, the ψ̃i/i are the same in PIM and 1PI kinematics.

5Unless stated otherwise, repeated indices are summed over.
6Were we to treat the heavy quarks as massless, each heavy quark would be assigned its own jet function

[6, 7, 12, 17]. However, because the heavy quark mass prevents collinear singularities, all singular functions
arising from the final state heavy quarks are due to soft gluons.
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The resummed ratio ψ̃i/i/φ̃i/i is

ln
ψ̃i/i (N, 2ki · ζK/µ)

φ̃i/i(N, µ)

∣

∣

∣

µ=2ki·ζK
= Ẽi (N, 2ki · ζK) , (30)

with the MS exponent

Ẽi (N, 2ki · ζK) =

∞
∫

0

dw
(1− e−Nw)

w

{ 1
∫

w2

dλ

λ
Ai
[

αs(
√
λ 2ki · ζK)

]

(31)

+
1

2
νi [αs (w 2ki · ζK)]

}

.

The functions Ai and ν
i differ by color factors for i = q and g so that

Aq(αs) =
αs
π
CF +

(

αs
π

)2 (1

2
CF K

)

+ . . . , Ag(αs) =
αs
π
CA +

(

αs
π

)2 (1

2
CAK

)

+ . . . ,

νq (αs) =
αs
π
(2CF ) + . . . , νg(αs) =

αs
π
(2CA) + . . . , (32)

with K = CA (67/18− π2/6)− 5nf/9 [40].
To incorporate the effects of scale changes in finite-order αs expansions, we note that the

ratio ψ̃i/i/φ̃i/i transforms under renormalization scale, µR, and factorization scale, µ, as

µR
d

dµR
ln
ψ̃i/i (N, 2ki · ζK/µR)

φ̃i/i(N, µ)
= γψi

= 2γi (αs(µR)) , (33)

µ
d

dµ
ln
ψ̃i/i (N, 2ki · ζK/µR)

φ̃i/i(N, µ)
= −2γi/i (N,αs(µ)) , (34)

where γi and 2γi/i are, respectively, the anomalous dimension of the quantum field i and of

the operator whose matrix element represents [41, 42] the MS-density φ̃i/i. The anomalous

dimension for the renormalization scale dependence of ψ̃i/i [6] in Eq. (33) does not depend on

the moment N because the ultraviolet (UV) divergences of ψ̃i/i are only due to wavefunction
renormalization of parton i. Hence γψi

= 2γi where γi is calculated in the axial gauge. The
anomalous dimension γi/i controlling the factorization scale dependence does depend on N .
The axial gauge anomalous dimensions are (neglecting O(1/N) terms)

γq (αs) =
3

4
CF

αs
π

+ . . . , (35)

γq/q (N,αs) = −αs
π

(

CF lnN − 3

4
CF

)

−
(

αs
π

)2 (1

2
CFK lnN

)

+ . . . , (36)

γg (αs) = b2
αs
π

+ . . . , (37)

γg/g (N,αs) = −αs
π

(

CA lnN − b2

)

−
(

αs
π

)2 (1

2
CAK lnN

)

+ . . . , (38)

where b2 is given below Eq. (25) and K is given below Eq. (32).
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The composite operator [7] that defines S̃ij JI contains UV divergences beyond the self
energies of its external legs. An additional renormalization removes these extra divergences.
However, the product HijIJ S̃ijJI has no UV divergencies beyond those taken into account
by the renormalization of the elementary fields and couplings of the theory, because the
renormalization-group invariant cross section and this product only differ by the functions ψ̃i/i
which are renormalized as if they were (the “square” of) elementary fields (33). Hence the extra
UV divergencies of S̃ijJI are balanced by similar ones in HijIJ . Therefore, the unrenormalized
expressions S̃bare

ijJI and Hbare
ijIJ renormalize multiplicatively [4, 5, 6]

Hbare
ij IJ = Z−1

i Z−1
j

(

Zij S
)

−1

IK
Hij KL

(

Z
†

ij S

)

−1

LJ
, (39)

S̃bare
ij JI =

(

Z
†

ij S

)

JK
S̃ij KL

(

Zij S
)

LI
. (40)

The factors Zi denote the renormalization constants of the external fields i = q, q̄, g. For a
given parton pair ij, the (Zij S)IJ constitute a matrix, in color-tensor space, of renormalization
constants for the overall renormalization of the soft function. Note that (Zij S)IJ also includes
the wave function renormalization of the external heavy quark legs.

Equation (40) leads directly to a renormalization group equation for the matrix S̃ijJI [4, 5, 6]

µR
d

dµR
S̃ij JI = −Γij

†

S,JK S̃ij KI − S̃ij JK ΓijS,KI . (41)

The soft anomalous dimension matrix ΓijS,IJ is obtained from the renormalization constants
(ZS)IJ , computed in d = 4− ǫ dimensions, by [43]

ΓijS,IJ = −gs
2

∂

∂gs
Resǫ→0(Zij S)IJ(αs, ǫ) . (42)

with g2s = 4παs. The solution of Eq. (41) is in general expressed in terms of path-ordered
exponentials [4, 5, 6], see below.

An explicit expression for ΓijS,IJ requires a choice of basis tensors in color-tensor space. We
choose an s-channel singlet-octet basis

(cqq I)mnkl = (δmnδkl , (T
c
F )nm (T cF )kl) ,

(cgg I)abkl = (δabδkl , dabc(T
c
F )kl , ifabc(T

c
F )kl) , (43)

where T cF are the SU(3) generators in the fundamental representation, where the indices
m,n, k, l take values. The indices a, b, c are adjoint indices while dabc and fabc are the to-
tally symmetric and antisymmetric SU(3) invariant tensors, respectively. In this basis, the
one-loop soft anomalous dimension matrix for the qq̄ process is [4, 5, 22]

Γqq̄S =

[

Γqq̄11 Γqq̄12
Γqq̄21 Γqq̄22

]

, (44)

with matrix elements

Γqq̄11 = −αs
π
CF [Lβ + ln(2

√
ν1ν2) + πi] ,

Γqq̄21 =
2αs
π

ln
(

u1
t1

)

,
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Γqq̄12 =
αs
π

CF
CA

ln
(

u1
t1

)

,

Γqq̄22 =
αs
π

{

CF

[

4 ln
(

u1
t1

)

− ln(2
√
ν1ν2)− Lβ − πi

]

+
CA
2

[

−3 ln
(

u1
t1

)

− ln

(

m2s

t1u1

)

+ Lβ + πi

]}

. (45)

The function Lβ is defined as

Lβ =
1− 2m2/s

β

(

ln
1− β

1 + β
+ πi

)

. (46)

The variables νi, i = 1, 2 are

νi =
2(ki · ζK)2

s
. (47)

The one-loop soft anomalous dimension matrix for the gg process [5, 22] can be written as

ΓggS =











Γgg11 0 1
2
Γgg31

0 Γgg22
Nc

4
Γgg31

Γgg31
N2

c−4
4Nc

Γgg31 Γgg22











, (48)

where the three independent matrix elements are

Γgg11 =
αs
π

[

−CF (Lβ + 1) + CA

(

−1

2
ln (4ν1ν2) + 1− πi

)]

, (49)

Γgg31 =
2αs
π

ln
(

u1
t1

)

,

Γgg22 =
αs
π

{

−CF (Lβ + 1) +
CA
2

[

− ln (4ν1ν2) + 2 + ln
(

t1u1
m2s

)

+ Lβ − πi
]}

.

Note that we did not absorb the function νi of Eq. (31) into ΓS.
Combining the solution of Eq. (41) with the resummed jet functions and the hard function,

and using matrix notation for Hij and S̃ij , the full resummed partonic cross section is

ω̃res
ij (N, s, t1, u1, m

2, µ2, αs(µ)) = Tr

{

Hij(ζK , m
2, m2) (50)

×P̄ exp

[

∫ m/N

m

dµ′

µ′
(ΓijS )

†

(αs(µ
′))

]

S̃ij(1, ζK) P exp

[

∫ m/N

m

dµ′

µ′
ΓijS (αs(µ

′))

]}

× exp
(

Ẽi(Nu, µ, µR)
)

exp
(

Ẽj(Nt, µ, µR)
)

exp

{

2

m
∫

µR

dµ′

µ′

(

γi (αs(µ
′)) + γj (αs(µ

′))
)

}

,

where the trace is in color-tensor space, and P refers to path-ordering in µ′ such that ΓijS (αs(m))
is ordered to the far right while ΓijS (αs(m/N)) is ordered to the far left. The operation P̄ orders
in the opposite way. The exponential exp(Ẽi) is given by

exp(Ẽi(Nu, µ, µR)) = exp

{

Ẽi
(

Nu, 2ki · ζK
)

}

(51)

× exp

{

− 2

2ki·ζK
∫

µR

dµ′

µ′
γi (αs(µ

′)) + 2

2ki·ζK
∫

µ

dµ′

µ′
γi/i

(

Nu, αs(µ
′)
)

}

.

11



The exponential exp(Ẽj) is identical except for obvious relabelling. In Eq. (50) we used the
renormalization group behaviour, derived from Eqs. (39) and (40), of the product Hij IJ S̃ij JI

µR
d

dµR
ln
[

Hij IJ(µR)S̃ij JI(N, µR)
]

= −2γi (αs(µR))− 2γj (αs(µR)) , (52)

where we have only indicated the µR and N dependence. Notice that all µR dependence cancels
in Eq. (50).

So far, the results have all been given in the MS-scheme. The qq results can also be presented
in the DIS scheme, in which the function Ẽq of Eq. (31) is

Ẽq (N, 2ki · ζK)
∣

∣

∣

∣

∣

DIS

= Ẽq (N, 2ki · ζK)
∣

∣

∣

∣

∣

MS

+

∞
∫

0

dw
(1− e−Nw)

w

{

−
1
∫

w

dλ

λ
Aq
[

αs(
√
λs)

]

+ gDIS
q

[

αs(
√
ws)

]

}

, (53)

with

gDIS
q (αs) = −3

4
CF

αs
π

+ . . . . (54)

In some cases, e.g. for the unexpanded resummed cross section, it is preferable to diagonalize
the matrix ΓijS,IJ [7, 11, 22, 44] by a change of basis in color-tensor space,

ΓR,S = R−1 ΓS R , (55)

written in matrix notation with ΓR,S diagonal. The channel labels have been suppressed. The
columns of the matrix R are the eigenvectors of ΓS. This leads to ordinary exponentials in
the solution of Eq. (41), rather than path-ordered ones. The elements on the diagonal are the
(complex) eigenvalues λI . In the new basis, indicated by the subscript R, the matrices S̃ and
H are

S̃R = R
†

S̃R , HR = R−1H
(

R−1
)†

, (56)

again in matrix notation. Eq. (41) then becomes

µ
d

dµ
S̃R,JI = − (λI + λ∗J) S̃R,JI . (57)

The matrix Rqq is given in Refs. [11, 22] while Rgg appears in Ref. [22]. The solution of Eq. (57)
is

S̃R,JI

(

m

Nµ
, ζK

)

= S̃R,JI(1, ζK) exp







m/N
∫

µ

dµ′

µ′

{

λI(αs(µ
′)) + λ∗J(αs(µ

′))
}





 (58)

so that (reinstating the channel labels)

ω̃res
ij (N, s, t1, u1, m

2, µ2, αs(µ)) =
∑

I,J

HR,ij IJ(ζK , m
2, m2) (59)

×S̃R,ij JI(1, ζK) exp
{

Ẽij JI
}

exp

[

2

m
∫

µ

dµ′

µ′

{

γi (αs(µ
′)) + γj (αs(µ

′))
}

]

.
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The exponential in Eq. (59) carrying color-tensor indices is

exp(Ẽij JI) = exp(Ẽi(Nu, µ, µR)) exp(Ẽj(Nt, µ, µR)) (60)

× exp







m/N
∫

m

dµ′

µ′

{

λI(αs(µ
′)) + λ∗J(αs(µ

′))
}





 ,

with exp(Ẽi) and exp(Ẽj) given in Eq. (51). We derived the bulk of our subsequent results in
both bases.

4 NNLL-NNLO expansions for partonic cross sections

In this section we derive analytical expressions for partonic double-differential heavy quark
cross sections up to NNLO by expanding the resummed cross section of the previous section.
We concentrate here on the derivation; our explicit results are collected in the appendices. We
obtain expressions for both 1PI and PIM kinematics and in both MS and DIS factorization
schemes. Our aim is NNLL accuracy, as defined in section 2.4, including the scale dependent
sector where we distinguish between the renormalization scale µR and mass factorization scale
µ. This means that for coefficients of lni(µ2/m2) or lni(µ2

R/m
2) we include the most singular

plus distribution and the two next-most-singular ones.
To achieve NNLL accuracy we must derive NLO matching conditions for certain functions

in the resummed cross section, Eq. (50). To this end we expand the factors in this equation and
identify order by order the perturbative coefficients of the functions in Eq. (50). The coefficients
can in part be explicitly computed and in part inferred by matching to exact NLO results.

4.1 Expansions

Let us expand each factor in Eq. (50) in powers of αs. We set µR = m here because Eq. (50) is
independent of µR, leading to a cross section expansion in αs(m) which can easily be changed
back to αs(µR). Neglecting 1/N terms, the two-loop expansion of exp(Ẽi) may be written as

exp(Ẽi(Nu, µ,m)) ≃ 1 +
αs
π

(

2
∑

k=0

C
i,(1)
k lnk(Nu)

)

+
(

αs
π

)2
(

4
∑

k=0

C
i,(2)
k lnk(Nu)

)

+ . . . (61)

The coefficients C
i,(n)
k can be computed from the results in section 3. To NNLL accuracy they

are

C
i,(1)
2 = A

(1)
i , C

i,(1)
1 =

1

2
κi + A

(1)
i lµ, C

i,(1)
0 = ζ2C

i,(1)
2 − dilµ ,

C
i,(2)
4 =

1

2

(

A
(1)
i

)2
, C

i,(2)
3 =

2

3
b2A

(1)
i +

1

2
κiA

(1)
i +

(

A
(1)
i

)2
lµ ,

C
i,(2)
2 = A

(2)
i + ζ2

(

A
(1)
i

)2
+

1

8
(κi)

2 +
1

2
b2κi +

1

2

(

A
(1)
i

)2
l2µ

+
1

2
A

(1)
i κilµ − diA

(1)
i lµ ,

C
i,(2)
1 =

(

ζ2
(

A
(1)
i

)2
− 1

2
diκi + A

(2)
i

)

lµ +
(

−1

2
b2A

(1)
i − diA

(1)
i

)

l2µ ,

C
i,(2)
0 =

(

1

2
b2di +

1

2
d2i

)

l2µ , (62)
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where we have used the notation

κi = νi,(1) − 2νi,(1) ln

(√
2νis

m

)

, lµ = ln

(

µ2

m2

)

,

dq =
3

4
CF , dg = b2 , (63)

and where A
(n)
i and νi,(n) are the coefficients of (αs/π)

n in the expansion of the functions Ai
and νi in Eq. (32). The two-loop expansion of the path-ordered exponential in Eq. (50) reads

P exp

[

∫ m/N

m

dµ′

µ′
ΓijS (αs(µ

′))

]

IJ

= δIJ −
αs(m)

π
ln(N)Γ

ij (1)
S,IJ

+

(

αs(m)

π

)2 [
1

2
ln2(N)

[

Γ
ij (1)
S × Γ

ij (1)
S

]

IJ
− b2 ln2(N)Γ

ij (1)
S,IJ

]

+ . . . , (64)

where Γ
ij (1)
S is the coefficient of αs/π in the one-loop soft anomalous dimensions of Eqs. (44)

and (48). The P̄ ordered exponential is identical to O(α2
s) up to replacing ΓS by Γ

†

S. The
matrices Hij IJ(t1, u1, m

2, m2) and S̃ij IJ(1, ζK, βi, βj) expand to one loop as

Hij IJ = H
(0)
ij IJ +

αs
π
H

(1)
ij IJ ,

S̃ij IJ = S̃
(0)
ij IJ +

αs
π
S̃
(1)
ij IJ . (65)

Let us for the moment choose PIM kinematics by putting Nt = Nu = N . We substitute
Eqs. (61), (64), and (65) into Eq. (50), finding the moment space expression for the NNLL-
NNLO expanded cross section:

ω̃NNLO
ij (N, s, t1, u1, m

2, µ2, αs(µ)) = Tr
{

H
(0)
ij S̃

(0)
ij

}

(66)

+
αs
π

[

(

(C
i,(1)
2 + C

j,(1)
2 ) ln2(N) + (C

i,(1)
1 + C

j,(1)
1 ) ln(N)

)

Tr
{

H
(0)
ij S̃

(0)
ij

}

− ln(N) Tr
{

H
(0)
ij

(

Γ
ij (1)
S

)†

S̃
(0)
ij +H

(0)
ij S̃

(0)
ij Γ

ij (1)
S

}

+Tr
{

H
(0)
ij S̃

(1) +H(1)S̃
(0)
ij

}

+ (C
i,(1)
0 + C

j,(1)
0 )Tr

{

H
(0)
ij S̃

(0)
ij

}

]

+
(

αs
π

)2
[(

(

C
i,(2)
4 + C

j,(2)
4 + C

i,(1)
2 C

j,(1)
2

)

ln4(N)

+
(

C
i,(2)
3 + C

j,(2)
3 + C

i,(1)
1 C

j,(1)
2 + C

i,(1)
2 C

j,(1)
1

)

)

ln3(N) Tr
{

H
(0)
ij S̃

(0)
ij

}

−
(

C
i,(1)
2 + C

j,(1)
2

)

ln3(N) Tr
{

H
(0)
ij

(

Γ
ij (1)
S

)†

S̃
(0)
ij +H

(0)
ij S̃

(0)
ij Γ

ij (1)
S

}

+ ln2(N)

(

C
i,(2)
2 + C

j,(2)
2 +

2
∑

k=0

C
i,(1)
k C

j,(1)
2−k

)

Tr
{

H
(0)
ij S̃

(0)
ij

}
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−(b2 + C
i,(1)
1 + C

j,(1)
1 ) ln2(N) Tr

{

H
(0)
ij

(

Γ
ij (1)
S

)†

S̃
(0)
ij +H

(0)
ij S̃

(0)
ij Γ

ij (1)
S

}

+ (C
i,(1)
2 + C

j,(1)
2 ) ln2(N) Tr

{

H
(0)
ij S̃

(1)
ij +H

(1)
ij S̃

(0)
ij

}

+ ln2(N) Tr

{

1

2
H

(0)
ij

(

Γ
ij (1)
S

)† (

Γ
ij (1)
S

)†

S̃
(0)
ij +H

(0)
ij

(

Γ
ij (1)
S

)†

S̃
(0)
ij Γ

ij (1)
S

+
1

2
H

(0)
ij S̃

(0)
ij Γ

ij (1)
S Γ

ij (1)
S

}]

.

With 1PI kinematics we use Eq. (28) and expand ln(Nu) = ln(N) + ln(−u1/m2) etc. To
transform from moment to momentum space we use results given in the appendices of Refs. [2,
13, 30]. Note that we do not keep subleading terms in our expansions when we invert to
momentum space [30].

4.2 Matching

We can identify the functions we must determine from Eq. (66).

The coefficients C
i,(n)
k are given in Eq. (62). The matrices Γ

ij (1)
IJ are given in Eqs. (45) and

(49). The remaining unknowns are

S
(0)
ij IJ , H

(0)
ij IJ , Tr

{

H
(0)
ij S̃

(1)
ij +H

(1)
ij S̃

(0)
ij

}

. (67)

The leading-order soft function S̃
(0)
IJ is simply

S̃
(0)
ij IJ = tr

(

c
†

I cJ
)

, (68)

where {cI} is our basis in color-tensor space. Recall that we have chosen the s-channel singlet-

octet basis, Eq. (43). Note that S̃(0) = S(0). The lowest-order hard function H
(0)
ij IJ = h

(0)
ij Ih

∗(0)
ij J

is calculated by projecting the lowest order amplitude Aij onto this color basis:

h
(0)
ij I =

(

S̃
(0)
ij

)

−1

IK
tr
(

c
†

K Aij

)

, h
∗(0)
ij J = tr

(

A†

ij cK
) (

S̃
(0)
ij

)

−1

KJ
, (69)

where the trace acts in ordinary color space. Note that at this stage the function h
(0)
ij I may

still depend on all other quantum numbers of the process under consideration, such as Lorentz-
spinor and spin degrees of freedom. We are however not interested here in spin-dependent
observables and we trace over all remaining degrees of freedom. The matrix H

(0)
ij IJ is real and

symmetric but may have zero eigenvalues if the Born process does not span the full color-tensor
space, as is the case for the qq̄ channel. For the qq channel [11] the results are

S̃
(0)
qq IJ =







N2
c 0

0
N2
c − 1

4





 , H
(0)
qq IJ =

(

0 0

0 H
(0)
qq 22

)

, (70)

with H
(0)
qq 22 given by

H
(0)
qq 22(m,m) =

2π α2
s(m)

N2
c

(

t21 + u21
s2

+
2m2

s

)

. (71)
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The lowest-order results are kinematics-independent. For the gg channel we find

S̃
(0)
gg IJ =

















Nc(N
2
c − 1) 0 0

0 (N2
c − 1)

N2
c − 4

2Nc
0

0 0
1

2
Nc(N

2
c − 1)

















, (72)

H
(0)
gg IJ =













H
(0)
gg 11 NcH

(0)
gg 11 H

(0)
gg 13

NcH
(0)
gg 11 N2

cH
(0)
gg 11 NcH

(0)
gg 13

H
(0)
gg 13 NcH

(0)
gg 13 H

(0)
gg 33













, (73)

where

H
(0)
gg 11(m,m) =

πα2
s(m)

2N2
c (N

2
c − 1)2

Bgg , (74)

H
(0)
gg 13(m,m) =

πα2
s(m)

2Nc(N2
c − 1)2

Bgg
t21 − u21
s2

, (75)

H
(0)
gg 33(m,m) =

πα2
s(m)

2(N2
c − 1)2

Bgg

(

2
t21 + u21
s2

− 1

)

, (76)

and

Bgg =
u1
t1

+
t1
u1

+
4sm2

t1u1

(

1− sm2

t1u1

)

. (77)

It now remains to determine7

Tr
{

H
(0)
ij S̃

(1)
ij +H

(1)
ij S̃

(0)
ij

}

. (78)

We do this by matching. The necessary matching conditions can be inferred by comparing the
expansion in Eq. (66) to exact results for the partonic cross section.

At lowest order, the matching condition is

ω̃LO
ij (N, s, t1, u1, m

2, µ2, αs(µ)) = H
(0)
ij IJ S̃

(0)
ij JI . (79)

It is straightforward to check that this condition is fulfilled by our results for S̃
(0)
ij IJ and H

(0)
ij IJ .

Neglecting 1/N terms, and choosing the case K = PIM for the moment, we have at NLO the
matching condition

αs
π
T̃

(1)
ij K ≡ Tr

{

H
(0)
ij S̃

(1)
ij +H

(1)
ij S̃

(0)
ij

}

= ω̃NLO
ij (N, s, t1, u1, m

2, µ2, αs(µ)) (80)

− αs
π

[

(

(C
i,(1)
2 + C

j,(1)
2 ) ln2(N) + (C

i,(1)
1 + C

j,(1)
1 ) ln(N)

)

Tr
{

H
(0)
ij S̃

(0)
ij

}

− ln(N) Tr
{

H
(0)
ij

(

Γ
ij (1)
S

)†

S̃
(0)
ij +H

(0)
ij S̃

(0)
ij Γ

ij (1)
S

}

+ (C
i,(1)
0 + C

j,(1)
0 )Tr

{

H
(0)
ij S̃

(0)
ij

}

]

.

7Note that we do not need the individual matrices S
(1)
ij IJ and H

(1)
ij IJ .
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Let us discuss this equation. To begin, the first term on the right hand side may be determined
from the exact results in Refs. [32, 33, 34], converted to moment space. To NNLL accuracy this
term consists of all terms in the differential one-loop partonic cross sections that either diverge
logarithmically or are constant.

The constant terms consist, first of all, of the virtual graph contributions. In addition there
is the soft-gluon contribution from the radiative graphs. The virtual contribution is kinematics
independent but the soft gluon one is not because what is defined as soft differs for 1PI and
PIM kinematics. The respective criteria are s4 < ∆ and 1 − z < δ, with ∆ and δ defined in
Eqs. (22) and (23). The virtual graphs contain various divergences. The ultraviolet ones are
cancelled by renormalization of the QCD coupling constant and the heavy quark mass, for both
kinematics in the scheme of Ref. [36]. Infrared divergences are cancelled by adding the virtual
and soft contributions, so that only collinear divergences remain. These must be subtracted
via mass factorization. The corresponding subtraction terms in general involve convolutions of
Altarelli-Parisi splitting functions [45] with the lowest order cross section. However, we must
mass factorize only with the soft plus virtual parts of these splitting functions. These depend on
kinematics, see e.g. Eqs. (6.8) and (6.13) in [32]. What remains at NLO after mass factorization
can now be categorized as terms multiplying lni(∆/m2) or lni(δ), i = 1, 2, and other terms.
The logarithms ln(∆/m2) or ln(δ) should be completed to plus-distributions via Eqs. (22) and
(23). The final result of these procedures, in moment space, is what constitutes the first term
on the right hand side of the equals sign in Eq. (80). The other terms on the right hand side
merely subtract all terms containing the singular functions in Eq. (22) or (23).

For 1PI kinematics there is a slight subtlety, related to the use of Nt and Nu in Eq. (28).
Expanding ln(Nt) = ln(N) + ln(−t1/m2) (and ln(Nu) likewise) leads to extra terms containing
ln(−t1/m2) and ln(−u1/m2) but not ln(N) and one must be careful in accounting for such
terms.

We can now obtain specific results for the matching terms in momentum space. At NLO,
T

(1)
ij K on the left hand side of Eq. (80) for 1PI kinematics,

T
(1)
ij 1PI(s, t1, u1) ≡ T̂

(1)
ij 1PI(s, t1, u1) δ(s4) , (81)

is the expression for s2d2σ
(1),S+V
ij (s, t1, u1)/dt1 du1 given by Eq. (4.7) of Ref. [33] for ij = qq,

and Eq. (6.19) of Ref. [32] for ij = gg, modified by removing a factor αs/π as well as all terms
containing ln2(∆/m2) or ln(∆/m2) and terms containing ln(µ/m) or ln(µR/m)8. The definition
of the hatted symbol in Eq. (81) makes the delta function explicit and is useful when we present
the two-loop results.

In PIM kinematics the NLO matching terms may be determined as follows. We start
from the above 1PI results and modify those parts that are kinematics dependent. From our
discussion following Eq. (80), it is clear that these are only the soft contributions and the mass
factorization subtraction terms. We shall label these terms by the superscript S+MF. The soft
contributions to the PIM NLO cross sections can be computed using the results of Ref. [34]. As
mentioned in the above, we mass-factorize these results with only the soft plus virtual part of
the splitting functions in PIM kinematics. The same procedure is done for the 1PI case using

8Note that in these references the factorization scale is denoted by Q and that the definition of t1 and u1 in
Ref. [33] for ij = qq is interchanged as compared to this work.

17



the results of Refs. [32, 33]. For channel ij we then compute the MS quantity

∆
(1)
ij (M

2, cosθ) = s
d2σ

(1),S+MF
ij (s,M2, cosθ)

dM2 dcosθ
− β

2
s2
d2σ

(1),S+MF
ij (s, t1, u1)

dt1 du1

∣

∣

∣

∣

∣

PIM

(82)

where the subscript PIM on the second term on the right hand side indicates that for t1, u1
one must use the expressions in Eq. (14). Note that we may replace βM by β to the accuracy
at which we are working in this paper, and we shall do so for all following results. Explicit
expressions for the terms on the right hand side of Eq. (82) can be found in appendix A. Then
the PIM equivalent of Eq. (81) is, accounting for an overall jacobian factor originating from
the definition of the cross section,

T
(1)
ij PIM(M

2, cosθ) ≡ T̂
(1)
ij PIM(M

2, cosθ)δ(1− z) =
β

2
T

(1)
ij 1PI(s, t1, u1)

∣

∣

∣

∣

∣

PIM

+∆
(1)
ij (M

2, cosθ) . (83)

Note that terms containing renormalization and factorization scale dependence can be easily
included by expanding the corresponding scale dependent exponentials in Eq. (50) and adjust-
ing the coefficients in Eq. (66) correspondingly. Alternatively, the scale dependence can be
constructed using renormalization group methods, which we do in the next section.

Changing to the DIS scheme at NNLL for the qq channel involves using Eq. (53) rather than
Eq. (31) in the expansion, Eq. (61), and extra constant terms at NLO as given in appendix B.

Because of their length, we have collected all our results in appendix B. In the next section
we perform a numerical study of the results obtained in this section for the inclusive partonic
cross sections.

5 Scaling functions

It is convenient to express the inclusive partonic cross sections in terms of dimensionless scaling
functions f

(k,l)
ij that depend only on η, defined in Eq. (20), as

σij(s,m
2, µ2) =

α2
s(µ)

m2

∞
∑

k=0

(4παs(µ))
k

k
∑

l=0

f
(k,l)
ij (η) lnl

(

µ2

m2

)

. (84)

We derive LL, NLL, and NNLL approximations to f
(k,l)
ij (η) for both the qq and gg channels

using the results of the previous section, via Eqs. (8) and (15). Where possible we will compare
with exact results. We also examine the results for the qq channel in the DIS scheme. Of
course, a complete comparison between the DIS and MS schemes also requires the use of DIS
parton densities, as discussed in the next section.

We begin by showing the scaling functions f
(k,0)
ij (η), k = 0, 1, 2, in both 1PI and PIM kine-

matics. In Fig. 2 we present the qq Born and MS NLO results for the scaling functions f
(0,0)
qq

and f
(1,0)
qq , respectively. A comparison shows that, in the case of f

(1,0)
qq , the LL approximations

already reproduce the exact curve quite well in both kinematics [24], but the NLL approxi-
mations agree much better with the exact results to larger η. Adding the NNLL corrections,
numerically dominated by the negative contributions from gluon exchange between final state
heavy quarks (Coulomb terms), leads to excellent agreement with the exact curve over a large
range of η. Such progressive improvement was also observed, for 1PI kinematics, in Ref. [46]
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where the absolute threshold limit was taken. We also see that, while the LL approximations
in 1PI and PIM kinematics differ and under- or overestimate the true result, the NLL approx-
imations in both kinematics agree better with each other, and even more so at NNLL, at least
for η ∼< 0.1. To summarize the one loop results in this channel, differences due to kinematics
choice decrease as the logarithmic accuracy increases.

The same conclusions hold for the NLO scaling function in the gg channel, f (1,0)
gg , shown in

Fig. 3. The Coulomb terms are positive here. At large η, the agreement between the 1PI and
PIM results is not as good as in the qq channel: the 1PI results at NNLL remain positive while
the PIM ones are negative.
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Figure 2: (a) The η-dependence of the scaling functions f
(k,0)
qq (η), k = 0, 1 in the MS-scheme and

1PI kinematics. We show the exact results for f
(k,0)
qq , k = 0, 1 (solid lines), the LL approximation

to f
(1,0)
qq (dotted line), the NLL approximation to f

(1,0)
qq (dashed line) and the NNLL approximation

to f
(1,0)
qq (dashed-dotted line). (b) The same as (a) in PIM kinematics. The spaced-dotted curve

corresponds to the approximation involving the leading two powers of ln(β).

In Figs. 4 and 5, we show the NNLO scaling functions f
(2,0)
qq and f (2,0)

gg for both kinemat-
ics. Again, the LL approximations differ but there is good agreement between 1PI and PIM
kinematics at NLL accuracy. We also display the NNLL approximations for f

(2,0)
qq and f (2,0)

gg ,
presently the best estimates for these functions, at least for η ∼<1, since exact calculations are
not yet available. Near threshold, the NNLL approximations show some deviation from the
NLL approximation due to interplay between the one-loop LL contributions and the one-loop
Coulomb terms. Note that while the qq channel shows relatively good agreement between the
two kinematics at large η, the gg results are quite different since the 1PI results are positive
while the PIM results are negative.

We have also calculated the behavior of the scaling functions f
(k,0)
ij (η), k = 1, 2, in the

threshold limit s → 4m2, keeping only terms that grow as ln(β) to next-to-leading accuracy.
The resulting expressions are given in appendix B.5, and shown in Figs. 2(b), 3(b), 4(b) and
5(b). They agree fairly well with the NLL PIM results.

In general, comparison of the exact and approximate results in the various channels and
kinematics in Figs. 2 and 3 indicates the range of η values over which we expect the threshold
approximation to be valid. The large-η behaviour of the scaling functions, furthest away from
threshold, may be approximated by the methods of Ref. [47, 48, 49, 50]. However, the behavior
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Figure 3: (a) The η-dependence of the scaling functions f
(k,0)
gg (η), k = 0, 1 in 1PI kinematics. We

show the exact results for f
(k,0)
gg , k = 0, 1 (solid lines), the LL approximation to f

(1,0)
gg (dotted line),

the NLL approximation to f
(1,0)
gg (dashed line) and the the NNLL approximation to f

(1,0)
gg (dashed-

dotted line). (b) The same as (a) in PIM kinematics. The spaced-dotted curve corresponds to the

approximation involving the leading two powers of ln(β).

of the scaling functions in the intermediate region, 1 ∼< η ∼< 10, can only be determined by
exact computation.

We now check if the qq MS results are mirrored in the DIS scheme. Since the scaling
functions in the two schemes differ already at LL, the higher-order scaling functions will be
quite different numerically. Of course, this difference should be compensated in principle by
the parton densities for the scheme-independent hadronic cross section.

Figures 6 and 7 show the functions f
(1,0)
qq and f

(2,0)
qq in the DIS scheme. We see again, as

in Figs. 2 and 4, that the exact f
(1,0)
qq results are best approximated at small η by the NNLL

calculations in both kinematics while the LL and NLL calculations either over- or underestimate
the exact calculation. The MS results generally trace the exact curves somewhat better than
those in the DIS scheme. In particular, for the DIS scaling function f

(1,0)
qq , only the NNLL

approximations provide good agreement with the exact curve for both 1PI and PIM kinematics
over a large range in η. This can be traced to the large delta-function terms in the scheme-
changing functions in Eqs. (B.6) and (B.20).

We next discuss the functions controlling the scale dependence. They can be determined
exactly at NLO and NNLO using renormalization group methods. The exact f

(1,0)
ij are required

to construct f
(2,1)
ij and f

(2,2)
ij . We neglect flavor mixing terms which are of order 1/N , where N is

the moment variable. We checked that at Tevatron energies the error due to this approximation
is less than 1% at NNLO. In this way we obtain

f
(1,1)
qq =

1

4π2

[

2b2 f
(0,0)
qq − f

(0,0)
qq ⊗ P (0)

qq

]

, (85)

f
(2,1)
qq ≃ 1

(4π2)2

[

2b3 f
(0,0)
qq − f

(0,0)
qq ⊗ P (1)

qq

]

+
1

4π2

[

3b2 f
(1,0)
qq − f

(1,0)
qq ⊗ P (0)

qq

]

, (86)

f
(2,2)
qq ≃ 1

(4π2)2

[

3b22 f
(0,0)
qq − 5

2
b2 f

(0,0)
qq ⊗ P (0)

qq +
1

2
f
(0,0)
qq ⊗ P (0,0)

qq

]

, (87)
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Figure 4: (a) The η-dependence of the scaling function f
(2,0)
qq (η) in the MS-scheme and 1PI

kinematics. We show the LL approximation (dotted line), the NLL approximation (dashed line)

and the NNLL approximation (dashed-dotted line). (b) The same as (a) in PIM kinematics. The

spaced-dotted curve corresponds to the approximation involving the leading two powers of ln(β).
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Figure 5: (a) The η-dependence of the scaling function f
(2,0)
gg (η) in 1PI kinematics. We show the

LL approximation (dotted line), the NLL approximation (dashed line) and the NNLL approximation

(dashed-dotted line). (b) The same as (a) in PIM kinematics. The spaced-dotted curve corresponds

to the approximation involving the leading two powers of ln(β).
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Figure 6: (a) The η-dependence of the scaling function f
(1,0)
qq (η) in the DIS-scheme and 1PI

kinematics. We show the exact result (solid line), the LL approximation (dotted line), the NLL

approximation (dashed line) and the NNLL approximation (dashed-dotted line). (b) The same as (a)

in PIM kinematics.
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(b)
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Figure 7: (a) The η-dependence of the scaling function f
(2,0)
qq (η) in the DIS-scheme and 1PI

kinematics. We show the LL approximation (dotted line), the NLL approximation (dashed line) and

the NNLL approximation (dashed-dotted line). (b) The same as (a) in PIM kinematics.
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f (1,1)
gg =

1

4π2

[

2b2 f
(0,0)
gg − f (0,0)

gg ⊗ P (0)
gg

]

, (88)

f (2,1)
gg ≃ 1

(4π2)2

[

2b3 f
(0,0)
gg − f (0,0)

gg ⊗ P (1)
gg

]

+
1

4π2

[

3b2 f
(1,0)
gg − f (1,0)

gg ⊗ P (0)
gg

]

, (89)

f (2,2)
gg ≃ 1

(4π2)2

[

3b22 f
(0,0)
gg − 5

2
b2 f

(0,0)
gg ⊗ P (0)

gg +
1

2
f (0,0)
gg ⊗ P (0,0)

gg

]

, (90)

where P (0)
qq , P

(0)
gg and P (1)

qq , P (1)
gg are the one- and two-loop splitting functions [51, 41, 52], and

≃ indicates the neglect of flavor-mixing terms. The convolutions involving a scaling function
f
(i,0)
ij are defined as

(

f
(i,0)
pk ⊗ P

(j)
p′k

)

(η(x)) ≡
1
∫

4m2/s

dz f
(i,0)
pk (η(xz)) P

(j)
p′k(z) (91)

with η(x) = xs/(4m2) − 1. The standard convolution of two splitting functions, P (0,0)
qq and

P (0,0)
gg , in Eqs. (87) and (90) are

P
(0,0)
ii (x) ≡

1
∫

0

dx1

1
∫

0

dx2 δ(x− x1x2)P
(0)
ii (x1)P

(0)
ii (x2) , (92)

with i = q, g. Equations (85) and (88) naturally agree with the results for f
(1,1)
qq and f (1,1)

gg in
Ref. [31]. We have also checked that the above results agree to NNLL with the expressions
in appendix B when integrated as in Eqs. (8) and (15). Note that in appendix B we have
also given results for terms in the differential NNLO functions controlling the scale dependence
beyond NNLL accuracy, thus deriving all the soft plus virtual terms in these functions. The
exact hard terms are calculated only for the integrated cross section as above.

We begin by showing the scale-changing scaling functions in the qq channel and MS scheme,
comparing 1PI and PIM kinematics. In Fig. 8 we show f

(1,1)
qq and note that the PIM LL

approximation reproduces the exact curve somewhat better than the 1PI LL aproximation.
The NLL approximations agree better, even for larger η.

In Fig. 9 we show the NNLO scaling functions f
(2,1)
qq and f

(2,2)
qq . We compare the exact curves

calculated from Eqs. (86) and (87) with our LL, NLL, and NNLL approximations. Again we
see that the NNLL approximations provide a remarkably good description of the exact results,
both in shape and magnitude. The NNLL curves for 1PI and PIM kinematics are in very good
agreement with each other, i.e. ambiguities from the kinematics choice are very mild. Similar
conclusions hold for the gg scaling functions f (1,1)

gg , f (2,1)
gg , and f (2,2)

gg , shown in Figs. 10 and 11.

Note however that also here the NNLL 1PI and PIM results for f (2,1)
gg differ at large η. The

PIM NNLL scaling function differs significantly from the exact result.
For completeness, we also display the NNLO scaling functions f

(2,1)
qq and f

(2,2)
qq in the DIS

scheme. The NLL approximations roughly trace the exact curve. The (percentage-wise) large
difference between the NLL approximation and the exact curve close to threshold may be
attributed to the large constants in the one-loop scheme-changing functions in Eqs. (B.6) and
(B.20) that interfere with the one-loop LL terms. These are accounted for at NNLL accuracy,

as Fig. 12 demonstrates. However, the NNLL results for f
(2,1)
qq differ more significantly between

the two kinematic choices than their MS counterparts.
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Figure 8: (a) The η-dependence of the scaling function f
(1,1)
qq (η) in 1PI kinematics. We show the

exact result (solid line), the LL approximation (dotted line) and the NLL approximation (dashed line).

(b) The same as (a) in PIM kinematics.
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Figure 9: (a) The η-dependence of the scaling functions f
(2,1)
qq (η) (MS-scheme) and f

(2,1)
qq (η) in 1PI

kinematics. We show the exact results (solid lines), the LL approximations (dotted lines), the NLL

approximations (dashed lines) and the NNLL approximations (dashed-dotted lines). (b) The same as

(a) in PIM kinematics.
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Figure 10: (a) The η-dependence of the scaling function f
(1,1)
gg (η) in 1PI kinematics. We show

the exact result (solid line), the LL approximation (dotted line) and the NLL approximation (dashed

line). (b) The same as (a) in PIM kinematics; LL and NLL approximation coincide here.
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Figure 11: (a) The η-dependence of the scaling function f
(2,l)
gg (η), l = 1, 2 in 1PI kinematics. We

show the exact results (solid lines), the LL approximations (dotted lines), the NLL approximations

(dashed lines) and the NNLL approximations (dashed-dotted lines). (b) The same as (a) in PIM

kinematics.
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Figure 12: (a) The η-dependence of the scaling function f
(2,1)
qq (η) in the DIS-scheme and 1PI

kinematics. We show the exact result (solid line), the LL approximation (dotted line), the NLL

approximation (dashed line) and the NNLL approximation (dashed-dotted line). (b) The same as (a)

in PIM kinematics.

6 Hadronic cross sections

In the previous section we examined the quality of our threshold approximations at the parton
level. Here we assess these approximations at the hadron level for inclusive top quark pro-
duction at the Fermilab Tevatron and bottom quark production at HERA-B. The inclusive
hadronic cross section is the convolution, Eq. (19), of parton distribution functions with the
partonic cross section, expressed in terms of the scaling functions, Eq. (84). To facilitate the
understanding of the results in this section in terms of those of the previous section, we plot the
flux factors Φij(η, µ

2), Eq. (18), for the above cases in Fig. 13. They show which η values re-
ceive the most weight in the convolution integral. In our numerical studies we use the two-loop
expression of αs and the CTEQ5M (MS scheme) or CTEQ5D (DIS scheme) parametrizations
of the parton distributions [53] not only for the NLO results, but also for the NNLO (NNLO
parton distributions are not yet available) and LO results. Thus in this section we keep the
nonperturbative part of our results fixed when studying the effect of increasing the perturbative
order of our partonic cross sections. For top quark production at the Tevatron and bottom
quark production at HERA-B the calculations probe the moderate to large x region where the
parton distributions are well known, see Fig. 13. We use five and four active flavors respec-
tively for these cases and fix µR = µ. Except where specified otherwise we have multiplied
the non-exact scaling functions at NLO and NNLO with a damping factor 1/

√
1 + η, as in

Ref. [54] in order to lessen the influence of the large η region of the scaling functions where
threshold logarithms become less dominant and we lose some theoretical control9. Figure 14
demonstrates that this factor indeed damps the large η region of the NNLO scaling functions
f
(2,0)
ij , while leaving the small and medium η regions unaffected. The effect of the damping
factor will also be made explicit in the tables.

9In 1PI kinematics such a factor is effectively equivalent to including θ(s4 −m2) in Eq. (8), see Ref. [13].
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Figure 13: (a) The qq parton flux factor ln(10)η/(1 + η)Φqq (see Eq. (19)) for the CTEQ5M

parametrization at the Tevatron (upper three curves,
√
S = 1.8 TeV and m = 175 GeV) and for

HERA-B (lower three curves
√
S = 41.6 GeV and m = 4.75 GeV). We show results for µ = m (solid

curves), µ = m/2 (dotted curves), and µ = 2m (dashed curves). (b) Same as (a) for the gg parton

flux factor ln(10)η/(1 + η)Φgg. Now the upper set of curves correspond to HERA-B and the lower set

to the Tevatron.

(a)

fqq
   (2,0)    in MS   –
             ––

η = s/(4m2) - 1

-0.02

0

0.02

0.04

0.06

0.08

0.1

10
-4

10
-3

10
-2

10
-1

1 10

(b)

fgg
   (2,0)

η = s/(4m2) - 1

-0.1

-0.05

0

0.05

0.1

0.15

0.2

10
-4

10
-3

10
-2

10
-1

1 10

Figure 14: (a) The η-dependence of the scaling functions f
(2,0)
qq (η) in the MS scheme with and

without the damping factor 1/
√
1 + η. We show the NNLL approximation to f

(2,0)
qq in 1PI/PIM kine-

matics without the factor 1/
√
1 + η (upper/lower dashed-dotted lines) and with the factor 1/

√
1 + η

(upper/lower boundary of shaded region). The shaded region indicates the residual uncertainty for

f
(2,0)
qq due to a particular kinematics choice. (b) The same as (a) for f

(2,0)
gg (η).
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6.1 Results for tt̄ production at the Tevatron

We first discuss top quark production at the Tevatron in proton-antiproton collisions. (For a
review of the data see Refs. [55, 56].) We give results for both Run I (

√
S = 1.8 TeV) and Run

II (
√
S = 2.0 TeV). At the Tevatron, top quarks are mainly produced in pairs. With a top

quark mass of 175 GeV, the dominant production channel is qq̄ annihilation, constituting about
90% of the total cross section at the Born level for

√
S = 1.8 TeV, with the gg channel making

up the remainder. The NLO corrections in the qq̄ channel are moderate, of the order of 20%,
whereas those in the gg channel are more than 80% so that the gg channel gains significance at
NLO10. These large corrections originate predominantly from the threshold region. Figure 13
shows that the range 0.1 ∼< η ∼< 2 contributes the most. At still higher orders, this trend
continues: the relative corrections to the gg channel are larger than those for the qq̄ channel,
as we shall see. This is due to the larger color factors in the analytical expressions for the
corrections for the gg channel. As we mentioned earlier, the qg and q̄g channels give negligible
contributions to the total cross section and are not considered here.

We begin by comparing MS results in 1PI and PIM kinematics, including only the qq̄ channel
in Eq. (19), at

√
S = 1.8 TeV. In Fig. 15 we show the Born cross section and the exact and

approximate NLO corrections, the latter at both NLL and NNLL accuracy, for µ = m in the
range 150 < m < 200 GeV. We see that our NLO 1PI approximations are a little larger than
the exact result while the NLO-NNLL approximation in PIM kinematics is indistinguishable
from the exact answer. The corrections are about 20–30% in the mass range shown. In Fig. 16
we give the equivalent results for the gg channel. Here the 1PI approximations agree with the
exact result better than the PIM ones.

Figure 17(a) displays the approximate qq̄ NNLO corrections at NLL and NNLL accuracy for
µ = m as a function of the top quark mass in a direct comparison of the 1PI and PIM results.
The shaded area indicates the kinematics ambiguity at NNLL, about 0.6 pb at m = 175 GeV.
The figure shows that the NNLL ambiguity is larger than the NLL one. (Thus the small size of
the NLL kinematics ambiguity seems somewhat accidental.) Figure 17(b) shows similar results
for the gg channel.

For completeness, we show the corresponding results for the qq̄ channel in the DIS scheme in
Figs. 18 and 19. Again PIM kinematics approximates the exact results somewhat better than
1PI kinematics at NLO-NNLL. We see that the NNLL-NNLO kinematics ambiguity in Fig. 19,
again indicated by the shaded region, is greatly reduced compared to the MS case, Fig. 17(a).
It should however be kept in mind that, in the DIS scheme, the parton densities absorb large
threshold logarithms which are not properly accounted for at NNLO if one uses NLO parton
distributions as in Fig. 19. Therefore it seems likely that the DIS scheme kinematics ambiguity
is somewhat underestimated in Fig. 19.

In Fig. 20 the sum of the qq̄ and gg channels in the MS scheme is shown as a function of
the top quark mass. We display the exact NLO cross section and the approximate NNLO cross
section, which is the sum of the exact NLO cross section and the NNLL-NNLO corrections. We
show results for µ = m/2, m, and 2m. We see that the NNLO cross section is uniformly larger
than the exact NLO one, although less so in PIM kinematics, and that the scale dependence of
the NNLO cross section is considerably reduced relative to NLO. Comparing Figs. 20(a) and
(b) we observe that the kinematics ambiguity is larger than the scale uncertainty.

We now turn to a more detailed study of the scale dependence of the inclusive MS top

10Recall that we also use NLO parton distribution function for LO cross sections.
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Figure 15: (a) The qq̄ channel contribution to the top quark cross section at the Tevatron with√
S = 1.8 TeV and µ = m in the MS scheme. We show the Born term (upper solid line), the exact NLO

corrections (lower solid line) and the 1PI approximate NLL (dashed line) and NNLL (dashed-dotted

line) one-loop corrections. (b) The same as (a) in PIM kinematics.
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Figure 16: (a) The gg channel contribution to the top quark cross section at the Tevatron with√
S = 1.8 TeV and µ = m in the MS scheme. We show the Born term (upper solid line), the exact NLO

corrections (lower solid line) and the 1PI approximate NLL (dashed line) and NNLL (dashed-dotted

line) one-loop corrections. (b) The same as (a) in PIM kinematics.
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Figure 17: (a) The qq̄ channel two-loop corrections to the top quark cross section at the Tevatron

with
√
S = 1.8 TeV and µ = m in the MS scheme. We show the 1PI approximate NLL (upper dashed

line) and NNLL (upper boundary of shaded region) two-loop corrections and the PIM approximate

NLL (lower dashed line) and NNLL (lower boundary of shaded region) two-loop corrections. (b) The

same as (a) for the gg channel two-loop corrections.
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Figure 18: (a) The qq̄ channel contribution to the top quark cross section at the Tevatron with√
S = 1.8 TeV and µ = m in the DIS scheme. We show the Born term (upper solid line), the exact NLO

corrections (lower solid line) and the 1PI approximate NLL (dashed line) and NNLL (dashed-dotted

line) one-loop corrections. (b) The same as (a) in PIM kinematics.
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Figure 19: The qq̄ channel contribution to the top quark cross section at the Tevatron with√
S = 1.8 TeV and µ = m in the DIS scheme. We show the 1PI approximate NLL (upper dashed line)

and NNLL (lower boundary of shaded region) two-loop corrections and the PIM approximate NLL

(lower dashed line) and NNLL (upper boundary of shaded region) two-loop corrections.
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Figure 20: (a) The top quark cross section at the Tevatron with
√
S = 1.8 TeV for the sum of the

qq̄ and gg channels in the MS scheme. We show the exact NLO cross section for µ = m (solid line),

m/2 (upper dotted line), and 2m (lower dotted line), and the 1PI approximate NNLL-NNLO cross

section for µ = m (dashed-dotted line), m/2 (upper dashed line), and 2m (lower dashed line). (b)

The same as (a) in PIM kinematics.
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cross section. We show the sum of the qq̄ and gg channels in Fig. 21 at
√
S = 1.8 TeV and

m =175 GeV at several orders and to different accuracies. The Born and NLO results shown
are exact. One of the NNLO curves is constructed by adding the contributions from the NNLL
approximate two-loop scaling functions f

(2,l)
ij , l = 0, 1, 2, to the exact NLO results, the other

by adding instead the exact f
(2,1)
ij and f

(2,2)
ij functions to the approximate f

(2,0)
ij , thus making

the changes to the partonic cross section when changing µ exact. The differences between
these two NNLO curves are due to subleading terms and represent, for each kinematics, the
corresponding ambiguity in the scale dependence. At very small µ the contributions of the
terms involving f

(2,1)
ij and f

(2,2)
ij are much larger that the contribution from f

(2,0)
ij . The sizable

difference between the two NNLO curves in Fig. 21(a) is in fact mainly due to the difference

between the exact and NNLL 1PI results for f
(2,1)
qq at medium and large η in Fig. 9(a). Even if

we include all soft plus virtual terms in the approximate 1PI f
(2,1)
qq , as derived in appendix B,

there is still a sizeable difference from the exact result. Therefore this difference stems mainly
from the hard, i.e. O(1/N), terms in f

(2,1)
qq .

The NNLO differences in PIM kinematics are much smaller than in 1PI kinematics, in
correspondence with the good agreement of the exact and NNLL PIM results for f

(2,1)
qq over all

relevant η, as shown in Fig. 21(b).
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Figure 21: (a) The µ-dependence of the top quark cross section at the Tevatron with
√
S = 1.8

TeV and m = 175 GeV for the sum of the qq̄ and gg channels in the MS scheme. We show the Born

(upper solid line at small µ/m) and the exact NLO (lower solid line at small µ/m) cross sections, the

1PI approximate NNLL-NNLO cross section (dashed line) and the NNLO estimate with only f
(2,0)
qq

and f
(2,0)
gg NNLL approximate (dashed-dotted line). (b) The same as (a) in PIM kinematics.

Next, in view of the upgrade in energy for the Tevatron from
√
S = 1.8 to 2.0 TeV, we

investigate the
√
S dependence of the top quark production cross section. In Fig. 22 we present

the inclusive cross section for the sum of the qq̄ and gg channels in the MS scheme at NLO
and NNLO as a function of

√
S. The NNLO curves result from adding the NNLL NNLO

corrections to the exact NLO cross section. We have normalized all calculations to the value
of the exact NLO cross section at µ = m. Comparing 1PI and PIM kinematics we find that at
lower energies, where the qq̄ channel is dominant, the NNLO results are 10-30% larger than at
NLO in both kinematics. As

√
S increases, the gg channel, with its larger corrections, grows

in importance. The cross sections are also more sensitive to the large η behavior of the scaling
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functions. This leads to large kinematics differences at energies above 5 TeV although the scale
uncertainties remain small. In PIM kinematics this is due to f (2,0)

gg which is large and negative
for η > 0.1 at NNLL, thus reducing the NNLO results relative to the exact NLO cross section.
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Figure 22: (a) The top quark cross section with m = 175 GeV at pp̄ colliders for the sum of the qq̄

and gg channels in the MS scheme as a function of
√
S normalized to the exact NLO cross section at

µ = m. We show the ratios of the exact NLO cross sections for µ = m (solid line), m/2 (upper dotted

line), and 2m (lower dotted line), and the ratios of the 1PI approximate NNLL-NNLO cross sections

for µ = m (dashed-dotted line), m/2 (upper dashed line), and 2m (lower dashed line). (b) The same

as (a) in PIM kinematics.

We now present the values of the NLO and NNLO total MS cross sections for top quark
production at the Tevatron with

√
S = 1.8 TeV and 2.0 TeV form = 175 GeV and µ = m, m/2,

and 2m in Tables 1 and 2. They detail the effects of both multiplying the approximate scaling
functions f

(2,k)
ij , k = 0, 1, 2, with the damping factor 1/

√
1 + η and using the approximate or

exact (Eqs. (85)–(90)) scaling functions f
(2,1)
ij and f

(2,2)
ij on the NNLO results. Note that all

NNLO results in the figures correspond to the option AP+DF, except in Fig. 21 where we also
show NNLO results corresponding to the EX+DF choice (dash-dotted lines). Comparing the
NNLO and NLO cross sections in the tables shows that the NNLO corrections are much smaller
in PIM kinematics than in 1PI kinematics, as already shown in Figs. 22(a) and (b). We see
that for the top cross section the effect of the damping factor is rather small. We also note that
the use of exact f

(2,1)
ij and f

(2,2)
ij affects the µ = m/2 case the most. The difference between

the exact and approximate calculation is larger for 1PI than PIM kinematics, as can also be
observed in Fig. 21.

We note that AP results in 1PI kinematics were also presented in Ref. [30]. There are some
small numerical differences with the results in this paper stemming mainly from using slightly
different analytical expressions, all equivalent at threshold. To be specific, the expressions
t21 + u21 and s

2 − 2t1u1 are equivalent at threshold and either choice can be made in our NNLO
expansions. Different choices produce slightly different numerical results away from threshold
and the variation in these results represents a small but inherent uncertainty in the cross
sections.

Let us finally comment on the applicability of our results for top quark production at the
LHC where

√
S = 14 TeV. At this pp collider the gg channel is dominant (about 90% of the
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√
S = 1.8 TeV

µ = m/2 µ = m µ = 2m
NLO 5.39 5.16 4.61

NNLO (1PI)
AP 6.27 6.32 6.12

AP+DF 6.19 6.22 5.97
EX 6.91 6.32 5.84

EX+DF 6.73 6.22 5.78
NNLO (PIM)

AP 5.37 5.35 5.26
AP+DF 5.45 5.45 5.29

EX 5.18 5.35 5.26
EX+DF 5.36 5.45 5.31

Table 1: The hadronic tt production cross sections in pb for pp collisions in the MS scheme with√
S = 1.8 TeV and m = 175 GeV, for µ = m,m/2, and 2m. The labelling of the NNLO results

corresponds to with or without the damping factor (DF) 1/
√
1 + η, and using exact (EX) or NNLL

approximate (AP) scaling functions f
(2,1)
ij and f

(2,2)
ij .

√
S = 2.0 TeV

µ = m/2 µ = m µ = 2m
NLO 7.37 7.10 6.36

NNLO (1PI)
AP 8.58 8.71 8.46

AP+DF 8.47 8.56 8.24
EX 9.47 8.71 8.06

EX+DF 9.21 8.56 7.97
NNLO (PIM)

AP 7.27 7.27 7.17
AP+DF 7.40 7.43 7.24

EX 6.88 7.27 7.20
EX+DF 7.20 7.43 7.29

Table 2: The hadronic tt production cross sections in pb for pp collisions in the MS scheme with√
S = 2.0 TeV and m = 175 GeV, for µ = m,m/2, and 2m. The labelling of the NNLO results

corresponds to with or without the damping factor (DF) 1/
√
1 + η, and using exact (EX) or NNLL

approximate (AP) scaling functions f
(2,1)
ij and f

(2,2)
ij .
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total) because only sea quarks contribute to the antiquark distributions in the qq̄ channel.
Although top production at these energies is far from the hadronic threshold region, it might
be close enough to partonic threshold for threshold resummation to be relevant since the gluon
flux may favor small values of s = x1x2S ≪ S (see the discussion in Refs. [57, 58]). Fig. 23
indeed confirms this, but also shows that the hadronic cross section is sensitive to the high-
energy behaviour of the scaling functions. Thus, estimates of the inclusive top cross section at
the LHC based on the threshold approximation alone are unreliable.
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Figure 23: (a) The qq parton flux factor, ln(10)η/(1 + η)Φqq, for the CTEQ5M parametrization at

the LHC (
√
S = 14 TeV andm = 175 GeV). We show results for µ = m (solid curve), µ = m/2 (dotted

curve), and µ = 2m (dashed curve). (b) Same as (a) for the gg parton flux factor, ln(10)η/(1+ η)Φgg .

6.2 Results for bb̄ production at HERA-B

In this section we present the inclusive cross section for bottom quark production at fixed-
target pp experiments, in particular, the HERA-B experiment. The energy of the proton beam
at HERA-B is 920 GeV so that

√
S = 41.6 GeV. Here the gg channel is dominant (about 70%

of the total cross section), with the qq̄ channel contributing the remainder. The gq and gq̄
channels are again negligible, of the order of a few percent. Figure 13 shows that the η ∼< 1
region is dominant in the convolution with the parton densities, Eq. (19).

In Fig. 24 we present our NLO and NNLL-NNLO results for the b quark production cross
section in fixed-target pp interactions as a function of beam energy in the range 200-1200
GeV/c with m = 4.75 GeV. Comparing 1PI and PIM kinematics we find that, particularly at
high energies, the NNLO predictions are different. Again, this can be attributed to increased
sensitivity to the high-energy asymptotics of the scaling functions. In Table 3 we list the NLO
and NNLO inclusive b quark production cross sections. We show the effects of both using the
damping factor 1/

√
1 + η and the approximate or exact (Eqs. (85)–(90)) scaling functions f

(2,1)
ij

and f
(2,2)
ij on the NNLO results.

We observe that the damping factor has a significant effect at small scales. The use of exact
scaling functions also has a dramatic effect since it causes the NNLO bottom cross section in
PIM kinematics to become negative at µ = m/2. The 1PI inclusive cross section at NNLO is
significantly larger than the PIM cross section. Only the PIM NNLO results show a significant
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Figure 24: (a) The total MS bottom quark cross section at fixed-target pp experiments with

m = 4.75 GeV. We show the exact NLO cross section for µ = m (solid line), m/2 (upper dotted line),

and 2m (lower dotted line), and the NNLL-NNLO cross section for µ = m (dashed-dotted line), m/2

(upper dashed line), and 2m (lower dashed line). (b) The same as (a) in PIM kinematics.

√
S = 41.6 GeV

µ = m/2 µ = m µ = 2m
NLO 31.1 17.8 9.7

NNLO (1PI)
AP 77.1 39.1 21.9

AP+DF 72.2 37.2 20.8
EX 91.1 39.1 20.8

EX+DF 80.7 37.2 20.3
NNLO (PIM)

AP 18.1 19.0 14.0
AP+DF 27.3 21.8 14.7

EX -19.8 19.0 15.6
EX+DF -2.5 21.8 16.2

Table 3: The hadronic bb production cross sections in nb at HERA-B in the MS scheme with
√
S = 41.6

GeV and m = 4.75 GeV for µ = m,m/2, and 2m. The labelling of the NNLO results corresponds

to with or without the damping factor (DF) 1/
√
1 + η, and using exact (EX) or NNLL approximate

(AP) scaling functions f
(2,1)
ij and f

(2,2)
ij .
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reduction in scale dependence. Note also that for most options the scale uncertainty is larger
than the kinematics ambiguity. In general, we see that the theoretical control over this cross
section is still rather poor.

7 Conclusions

In this paper we have resummed threshold enhancements to double-differential heavy quark
hadroproduction cross sections, both in single-particle inclusive and pair-invariant mass kine-
matics and in the qq̄ and gg production channels. We used these resummed expressions to
construct analytic approximations for the heavy quark cross sections up to NNLO, including
the first three powers (NNLL) of the large logarithms. This involved including color-coherence
effects and soft radiation attached to all the one-loop virtual corrections, the contribution of
which we determined via matching conditions. We derived exact results for the scale-dependent
terms at NNLO using renormalization group methods.

We examined the magnitude of the NNLO correction to the inclusive cross section at the
parton and hadron levels and studied its variations due to kinematics choice, factorization
scheme choice, and changes in the renormalization/factorization scale for top quark production
at the Tevatron and bottom quark production at HERA-B. We found that the scale dependence
of the cross section after including the NNLO correction is typically substantially reduced, as
expected on general grounds [59, 60].

We now provide what are, in our judgement, reasonable values of the approximate NNLO
top cross section at 1.8 and 2.0 TeV and the approximate NNLO bottom cross section at 41.6
GeV. These values, based on a combination of the results and their uncertainties, are obtained
in the following procedure. For each energy, we take the AP+DF results for each kinematics
choice, given in the tables in section 6. The scale uncertainty for 1PI or PIM is given by the
maximum and minimum values of the cross sections in each row. The central value of the cross
section is the average of the µ = m values in 1PI and PIM kinematics. Two errors are assigned
to the resulting cross section. The first is due to the kinematics-induced ambiguity and is the
difference between the central value and the µ = m values obtained in 1PI and PIM kinematics
alone. The second is the weighted average of the scale uncertainties in the two kinematics,
giving more weight to smaller scale uncertainties. Thus we obtain the following NNLO top
production cross sections at the Tevatron,

σtt̄(1.8TeV) = 5.8± 0.4± 0.1 pb , (93)

and
σtt̄(2.0TeV) = 8.0± 0.6± 0.1 pb . (94)

The HERA-B cross section to NNLO is

σbb̄(41.6GeV) = 30± 8± 10 nb . (95)

Recall that the first set of errors indicates the kinematics ambiguity while the second is an
estimate of the scale uncertainty. Note that the scale uncertainty is considerably smaller than
the kinematics uncertainty for top production. There are other sources of uncertainties in
the total cross section such as parton distribution function uncertainties [61, 62, 63, 64, 65],
ambiguities in the analytical expressions near threshold, as discussed in the previous section,
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and contributions from subleading logarithms [30]. Contributions from even higher orders may
also be significant [30]. Due to the relative large uncertainties in the cross section we give one
less significant figure in our combined results than in the tables of the previous section.

We note that the central values for the cross sections do not change at all for top production
and change only slightly for bottom production if we use any of the other options in the
tables. The kinematics uncertainty also changes only slightly for the other options. The scale
uncertainty is increased substantially, however, if we use the EX or EX+DF options. The
combined results presented here reflect our subjective judgment - more unbiased results are
presented in section 6.

In conclusion, we have provided, using soft gluon resummation techniques, improved finite-
order perturbative estimates for heavy quark production along with their uncertainties. We
hope that our results will thereby allow more meaningful comparisons with measurements.
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A NNLL matching terms for PIM kinematics

Here we collect the terms required for NLO matching in PIM kinematics. We first define the
Born functions that occur in these terms. Recall that in our notation the superscript (n)
indicates the power, (αs(µR)/π)

n, in the expansion of the corresponding quantity.
The qq channel 1PI Born function is

FBorn
qq (s, t1, u1) = π α2

s(µR)
CF
Nc

(

t21 + u21
s2

+
2m2

s

)

. (A.1)

The PIM Born function is

FBorn
qq (s,M2, cosθ) =

β

2
FBorn
qq (s, t1, u1)|PIM , (A.2)

where the subscript PIM indicates that the expressions for t1 and u1 in Eq. (14) should be used
with βM replaced by β.

The gg channel 1PI Born function is

FBorn
gg (s, t1, u1) =

α2
s(µR) π

2(N2
c − 1)2

Bgg

[

CO

(

1− 2t1u1
s2

)

− CK

]

, (A.3)

Bgg =
u1
t1

+
t1
u1

+
4sm2

t1u1

(

1− sm2

t1u1

)

. (A.4)
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The color factors CO, CK and, for later use, CQED, are defined as

CO = Nc(N
2
c − 1) , CK =

N2
c − 1

Nc

, CQED =
N4
c − 1

N2
c

. (A.5)

The PIM Born function is

FBorn
gg (s,M2, cosθ) =

β

2
FBorn
gg (s, t1, u1)|PIM . (A.6)

We again indicate that the expressions in Eq. (14) should be used for t1 and u1 with βM replaced
by β. We also define for PIM kinematics

B′

gg =
β

2
Bgg . (A.7)

Let us now turn to the one-loop S +MF cross sections, as defined in section 4. The MS
scheme 1PI qq result is

s2
d2σ

(1),S+MF
qq (s, t1, u1)

dt1 du1
= FBorn

qq (s, t1, u1) δ(s4) (A.8)

×
[

(

CF − CA
2

)

1− 2m2/s

β

{

2 Li2(x) + 2 Li2(−x) + 2 ln(x) ln(1− x2)− ln2(x)− ζ2
}

+CF

{

1− 3

2
ζ2 + 4 ln(x) ln

(

t1
u1

)

+ 4Li2

(

1− u1
xt1

)
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(

1− t1
xu1

)

+Li2

(

1− sm2

t1u1

)

+
1

2
ln2

(
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t1u1

)

− ReLβ

}

+
1

2
CA

{

−3 ln(x) ln
(
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)

− 1

2
ln2 x− 3Li2

(
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xt1
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(
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xu1

)

−Li2

(
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t1u1

)

− 1

2
ln2

(

sm2

t1u1

)

+
1

2
ln2

(

t1
u1

)

}]

with x ≡ (1− β)/(1 + β). The MS scheme PIM qq result is

s
d2σ

(1),S+MF
qq (s,M2, cosθ)

dM2 dcosθ
=

1

s
FBorn
qq (s,M2, cosθ) δ(1− z) (A.9)

×
[

(

CF − CA
2

)

1− 2m2/s
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{

−Li2

(

2β

1 + β

)

+ Li2

(

−2β
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)

− ln(x) ln
(

s
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)

}
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{
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β
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2
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(
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)

ln
(

s

m2
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(
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(
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)
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+4 ln

(
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−2t1
s(1− β)
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)

}
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+CA

{

1

4
ln2(x) + 2 ln
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s
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− ln
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m2

)

ln
(

s
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)
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(
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)
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(
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)
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(
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− 1

2
ln2

(

s
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)

}]

.

The MS scheme 1PI gg result is

s2
d2σ(1),S+MF

gg (s, t1, u1)

dt1 du1
=

α2
s(µR)π

2(N2
c − 1)2

Bgg δ(s4) (A.10)

×
[

1

2

(

CQED −NcCK

(

1− 2t1u1
s2

))

1− 2m2/s

β
{2 Li2(x) + 2 Li2(−x)

+2 ln(x) ln(1− x2)− ln2(x)− ζ2
}

+
1

2
CQED {1− ReLβ}

+
1

2
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{

(

1− 2t1u1
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(

1− ReLβ − 3ζ2 −
1

2
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1

2
ln2

(
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u1

)

+ Li2

(
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t1u1

)

+
1

2
ln2

(

sm2

t1u1

))
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(t21 − u21)
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(

ln(x) ln
(

t1
u1

)

+ Li2

(

1− u1
xt1

)

− Li2

(

1− t1
xu1
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}

+
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(
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)
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(
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s2

)

(1− ReLβ)

}]

.

The MS scheme PIM gg result is

s
d2σ(1),S+MF

gg (s,M2, cosθ)

dM2 dcosθ
=

1

s

α2
s(µR)π

2(N2
c − 1)2

B′

gg δ(1− z) (A.11)

×
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1
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(
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)
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(
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(
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)
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(
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(
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+
1

2
NcCK

{

2
1

β
ln(x) + 3ζ2 − ln2(x)− 2 ln

(
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)
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(

s
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)
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)
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)

+2Li2

(
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(
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(
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(
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+2 ln

(
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ln

(
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)
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(
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(

1

β
ln(x) + ln

(

s
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)

)}]

.

B NNLL differential partonic heavy quark cross sections

to NNLO

In this appendix we collect all our results for the NNLL-NNLO differential partonic heavy
quark cross sections. We first make some general observations. The NLO 1PI results agree
with those in Refs. [32, 33, 54]. The NLO PIM results are consistent with Ref. [34]. The qq
channel results contain terms that are antisymmetric under t1, u1 interchange, a consequence
of charge conjugation asymmetry of the initial state. The gg channel results are symmetric
under t1 ↔ u1. In the qq channel the Born function factors out as a whole for LL and NLL
terms. In the gg channel the Born function function factors out as a whole only for LL terms.
We also use the notation that the superscript (n) denotes the coefficient of (αs(µR)/π)

n in the
expansion of the corresponding quantity.

B.1 The qq channel in 1PI kinematics

In the qq̄ channel, Eq. (4), the Born cross section is

s2
d2σ

(0)
qq (s, t1, u1)

dt1 du1
= ω

(0)
qq (s, t1, u1) = δ(s+ t1 + u1)F

Born
qq (s, t1, u1) (B.1)

with FBorn
qq (s, t1, u1) given in Eq. (A.1). The MS one-loop NNLL corrections are

s2
d2σ

(1)
qq (s, t1, u1)

dt1 du1
= ω

(1)
qq (s4, s, t1, u1) = FBorn

qq (s, t1, u1) (B.2)

×
[

4CF
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+
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1
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(
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(
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(
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(
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2

)

+ 2 ln

(
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R
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)
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}]

+ T
(1)
qq 1PI(s, t1, u1) .
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The MS two-loop NLL corrections are

s2
d2σ

(2)
qq (s, t1, u1)

dt1 du1
= ω

(2)
qq (s4, s, t1, u1) = FBorn

qq (s, t1, u1) (B.3)

×
[
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+
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(
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(
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(
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− ln

(

sm2

t1u1

)

+ ReLβ
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+
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(
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(
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(
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(
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+
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.

To achieve NNLL accuracy one must add

2CF T̂
(1)
qq 1PI(s, t1, u1)

{

2
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]

+
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+
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(
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(
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(
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(
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+
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(
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+
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(
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{
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(
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+
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F ln2

(
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(
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(B.4)

where we suppressed the qq channel label on the soft anomalous dimension matrix elements.
We note that at NNLL accuracy we have derived all NNLO soft plus virtual terms involving

the scale, except for δ(s4) terms involving single logarithms of the scale. We can go beyond
NNLL accuracy and also derive these terms in the partonic cross section by requiring that the
scale dependence in the hadronic cross section cancel out. These terms are

FBorn
qq (s, t1, u1)δ(s4)

{
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, (B.5)

with T̂ ′
(1)

qq̄ 1PI(s, t1, u1) = T̂
(1)
qq̄ 1PI(s, t1, u1)/F

Born
qq (s, t1, u1). We have checked that these results are

consistent with the exact expressions in Eq. (86) and with the expansion of the resummed cross
section beyond NNLL accuracy as discussed in Ref. [30].

The DIS one-loop NNLL corrections are
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∣
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∣

∣
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∣

∣

∣
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.

The DIS two-loop NLL corrections are
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To achieve NNLL accuracy for the DIS scheme at two loops we have to add to the NNLL MS
terms
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B.2 The gg channel in 1PI kinematics

In the gg channel, Eq. (5), the Born cross section is
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= ω(0)
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Born
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with FBorn
gg (s, t1, u1) given in Eq. (A.3). The MS one-loop NNLL corrections are
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The MS two-loop NLL corrections are
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To achieve NNLL accuracy one must add
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where we suppressed the gg channel label on the soft anomalous dimension matrix elements.
As we discussed in the previous subsection, we can also derive the NNLO δ(s4) terms

involving single logarithms of the scale. These terms are
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with T̂ ′
(1)

gg 1PI(s, t1, u1) = T̂
(1)
gg 1PI(s, t1, u1)/F

Born
gg (s, t1, u1). We have checked that these results are

consistent with the exact expressions in Eq. (89) and with the expansion of the resummed cross
section beyond NNLL accuracy.

B.3 The qq channel in PIM kinematics

In the qq channel, Eq. (12), the Born cross section is
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with FBorn
qq (s,M2, cosθ) defined in Eq. (A.2).

The MS one-loop NNLL corrections are
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+ T
(1)
qq PIM(M

2, cos θ).

The MS two-loop NLL corrections are
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To achieve NNLL accuracy to two-loops one must add
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. (B.18)

As for 1PI kinematics, we note that at NNLL accuracy we have derived all NNLO soft plus
virtual terms involving the scale, except for δ(1 − z) terms involving single logarithms of the
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scale. We can go beyond NNLL accuracy and derive these terms in the partonic cross section
by requiring that the scale dependence in the hadronic cross section cancel out. These terms
are
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(B.19)

with T̂ ′
(1)

qq̄ PIM(M
2, cosθ) = s T̂

(1)
qq̄ PIM(M

2, cosθ)/FBorn
qq (s,M2, cosθ). Again, we have checked that

these results are consistent with Eq. (86) and with the expansion of the resummed cross section
beyond NNLL accuracy.

The DIS one-loop NNLL corrections are
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The DIS two-loop NLL corrections are
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To achieve NNLL accuracy for the DIS scheme at two loops we have to add to the NNLL MS
terms
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B.4 The gg channel in PIM kinematics

In the gg channel, Eq. (13), the Born cross section is
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with FBorn
gg (s,M2, cosθ) defined in Eq. (A.6). The MS one-loop NNLL corrections are
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The MS two-loop NLL corrections are
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)}

b2

]

.

To achieve NNLL accuracy to two-loops one must add

2CA T̂
(1)
gg PIM(M

2, cosθ)

{

2

[

ln(1− z)

1− z

]

+

−
[

1

1− z

]

+
ln

(

µ2

m2

)}

+
1

s

[

ln(1− z)

1− z

]

+

(

FBorn
gg (s,M2, cosθ) (−16ζ2N

2
c + 2NcK)

+
α2
s(µR)π

2(N2
c − 1)

B′

gg

(

1− 2t1u1
s2

)

{

(

Nc +
1

4
N3
c

)

(

Γ
(1)
31

)2

− 4Ncb2

(

ReΓ
(1)
22 − CA + CA ln

(

2
√
ν1ν2

s

m2

))

+ 4Nc

(

ReΓ
(1)
22 − CA + CA ln

(

2
√
ν1ν2

s

m2

))2
}

+
α2
s(µR)π

2(N2
c − 1)

B′

gg

(t21 − u21)

s2

{

4
(

ReΓ
(1)
11 − CA + CA ln

(

2
√
ν1ν2

s

m2

))

Γ
(1)
31

+ 2(N2
c − 2)Γ

(1)
31

(

ReΓ
(1)
22 − CA + CA ln

(

2
√
ν1ν2

s

m2
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−N2
c b2Γ

(1)
31

}

+
α2
s(µR)π

2(N2
c − 1)

B′

gg

{

−4
1

Nc
b2

(

ReΓ
(1)
11 − CA + CA ln

(

2
√
ν1ν2

s
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+ 4
1

Nc

(

ReΓ
(1)
11 − CA + CA ln

(

2
√
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s
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2

(

Γ
(1)
31

)2
+ 8

1
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(

ReΓ
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(

2
√
ν1ν2

s
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− 8
1

Nc

(

ReΓ
(1)
22 − CA + CA ln

(

2
√
ν1ν2

s

m2

))2
})

+
1

s

[

1

1− z

]

+

(

FBorn
gg (s,M2, cosθ) ln
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α2
s(µR)π
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(
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(
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(
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(

µ2

m2

)}

N2
c b2Γ
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(
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(
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(
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1
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−2ζ2N
2
c ln

2

(

µ2
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)

+ 3b22 ln
2

(

µ2
R
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)}

. (B.26)

As we discussed in the previous subsection, we can also derive the NNLO δ(1 − z) terms
involving single logarithms of the scale. These terms are

1

s
FBorn
gg (s,M2, cosθ)δ(1− z)

{

ln

(

µ2
F

m2

)[

−8ζ3C
2
A − 4C2

Aζ2 ln

(

m2

s

)

− b2
8
T̂ ′

(1)

ggPIM(M
2, cosθ)

]

+ ln

(

µ2
R

m2

)[

b3
128

+
3

16
b2T̂ ′

(1)

ggPIM(M
2, cosθ)

]}

+
α2
sπ

(N2
c − 1)2

B′

gg ln

(

µ2
F

m2

)

2CAζ2 δ(1− z)

{

Nc(N
2
c − 1)

(t21 + u21)

s2

[(

−CF +
CA
2

)

ReLβ

+
CA
2

ln
(

t1u1
m2s

)

− CF

]

+
(N2

c − 1)

Nc

(CF − CA)ReLβ

− (N2
c − 1) ln

(

t1u1
m2s

)

+ CF
(N2

c − 1)

Nc
+
N2
c

2
(N2

c − 1) ln
(

u1
t1

)

(t21 − u21)

s2

}

, (B.27)

with T̂ ′
(1)

ggPIM(M
2, cosθ) = s T̂

(1)
gg PIM(M

2, cosθ)/FBorn
gg (s,M2, cosθ). Again, we have checked that

these results are consistent with Eq. (89) and with the expansion of the resummed cross section
beyond NNLL accuracy.

B.5 Results for s→ 4m2

Here we present the scaling functions of section 5 up to two loops for the inclusive cross section
for s → 4m2. They may be obtained from the results in sections B.1 to B.4 via Eqs. (8) and
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(15), keeping only terms that behave as ln(β). We checked that we find the same results for
both kinematics. Our results are as follows.

For the qq̄ channel in the MS scheme

f
(1,0)
qq =

1

4π2
f
(0,0)
qq

{

8CF ln2 (β) + (24CF ln(2)− 16CF − 2CA) ln (β)

}

, (B.28)

f
(2,0)
qq =

1

16π4
f
(0,0)
qq

{

32C2
F ln4 (β) +

16

3
CF (36CF ln(2)− 24CF − 3CA − 2b2) ln

3 (β)

}

,

(B.29)

while in the DIS scheme we have

f
(1,0)
qq =

1

4π2
f
(0,0)
qq

{

4CF ln2 (β) + (16CF ln(2)− 5CF − 2CA) ln (β)

}

, (B.30)

f
(2,0)
qq =

1

16π4
f
(0,0)
qq

{

8C2
F ln4 (β) + 4CF (16CF ln(2)− 5CF − 2CA − 2b2) ln

3 (β)

}

.

(B.31)

For the gg channel we find

f (1,0)
gg =

1

4π2
f (0,0)
gg

{

8CA ln2 (β) +

(

24CA ln(2)− 18CA +
4CA
N2
c − 2

)

ln (β)

}

, (B.32)

f (2,0)
gg =

1

16π4
f (0,0)
gg

{

32C2
A ln4 (β) +

16

3
CA

(

36CA ln(2)− 27CA − 2b2 +
6CA
N2
c − 2

)

ln3 (β)

}

.

(B.33)
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