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Abstract. French mathematician Michel Chasles (1793-1880), a staunch de-
fender of pure geometrical methods, is now mostly remembered as the author

of the Aperçu Historique (1837). In this book, he retraced the history of geom-

etry in order to expound epistemological theses on what constitutes a virtuous
practice of geometry. Amongst these stands out the assertion that the val-

ues of generality and simplicity in mathematics are intimately connected. In
this paper, we flesh out this claim by analysing Chasles’ geometrical solutions

to the century-old problem of the attraction of the ellipsoids. We show how

these solutions echo Chasles’ evaluation of the relative strengths of geomet-
rical and analytical methods, and how they embody a set of normative rules

for the geometer’s practice whose observance Chasles deemed necessary and

sufficient for the development of general methods and theories. Geometry and
Mechanics and Simplicity and Generality and Chasles

1. Introduction

In the twelfth section of the first book of the Principia, Newton dealt with the
attraction of spherical bodies. Most notably, he stated what later became known as
his ‘Shell theorem’, which states that the attraction of a spherical surface is equal to
that of a fictional point located at its center, and where all of the mass of the surface
is concentrated. However, Newton did not attempt to study the attractive forces of
bodies or surfaces of other, more elaborate shapes. A few decades later, MacLaurin
would write his Treatise of Fluxions as a response to some of the criticisms that
Newton’s concept of fluxions had elicited, and especially to Berkeley’s. MacLaurin’s
treatise showcased the power and fruitfulness of Newton’s fluxions, while grounding
them in what he considered to be a rigorous framework. The rigor of his work, he
claimed, was made undeniable by the fact that he proceeded ‘after the manner of
the Antients1’.

To do so in a manner that would meet the criterias of rigour laid out by New-
ton’s critics, MacLaurin elected to use in this treatise a reworked Euclidean frame-
work, while still incorporating fluxions and algebraic calculations. As a result of
this adaptation of the language of Ancient Greek geometry, his propositions were
mostly stated in terms of equality of ratios. In chapter XIV of book I of the Trea-
tise, MacLaurin expanded on Newton’s work on the attractive forces of bodies. In
particular, he stated and proved important results on the attraction of ellipsoids.
When computing attractions, rather than writing formulas explicitly giving a direct
expression for the attraction of a body, MacLaurin would compare the attractions
of two similar bodies. One of MacLaurin’s results, which drew a great deal of at-
tention, can be thus restated: the attractions exerted by two confocal ellipsoids of
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1[Mac42], Book I, Preface, p.ix
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revolution on an exterior point S are in the same ratio as their volumes2, provided
that S be on the axis of revolution of these ellipsoids or in the plane of their equa-
tor. MacLaurin was also able to show that the same result holds for two general
confocal ellipsoids if the point is on their main axis3.

Such results, which state that the attractions of two confocal ellipsoids on an
exterior point are in the same proportion as their volumes, provided that certain
conditions be satisfied, would all shortly thereafter be gathered under the label
‘MacLaurin’s theorem’. To prove that this theorem holds for any two confocal
ellipsoids on any exterior point (which, in what follows, we will call ‘MacLaurin’s
generalized theorem’), and to give an expression for this attraction, was a most
important problem for mathematicians to try their hands (and new methods) at
throughout the 18th century. This was especially so in France, where MacLaurin’s
work on tides and the shape of the Earth had been awarded a prize by the Académie
de Paris4. Thus, questions pertaining to the attractions of ellipsoids became topics
of interest for mathematicians and physicists all throughout the development of
Newtonian mechanics. However, what the actors of this development deemed to
be a general and satisfactory answer to these questions changed, and so did the
mathematical tools used to that purpose5.

One of the mathematicians involved in this scientific endeavour is French geome-
ter Michel Chasles, who published several articles and memoirs on the attraction of
ellipsoids between 1837 and 1842. An important actor in the renewal of pure geom-
etry in the wake of the works of Monge, Carnot, and Poncelet, he used this problem
as a case-in-point to showcase the newly-found power of modern, pure geometry,
and its various epistemic advantages over analytical methods, whose hegemony he
had staunchly criticized6. In this paper, we set out to examine his work on the at-
traction of ellipsoids, and its connections with some of the broader epistemological
theses he had previously expressed in his Aperçu Historique7.

2Or masses, if these ellipsoids are taken to be of homogeneous density. To abbreviate and

simplify expressions, in this paper, we will only consider homogeneous ellipsoids of density ρ = 1,
and omit this term when reproducing equations and formulas.

3These results and MacLaurin’s proofs can be found in [Mac42], Book I, Chapter XIV, §649-
654. To what extent did MacLaurin prove these results was, as we will see in section 3, a point of

contention between Chasles and previous commentators.
4See [Gra97] for more on the context of MacLaurin’s reception in continental Europe.
5A longitudinal study of the history of mechanics following this particular problem would

probably give rise to a finer picture of the fluctuation of disciplinary and epistemological boundaries
between geometry, algebra, and mechanics. Indeed, the computational difficulties this problem

entails, and the rich geometrical interpretations it allows, make it a robust and abundant source
for reflections and discussions. Therefore, it is no surprise that such a picture would include
the works of most of the mathematicians usually associated with the development of mechanics:
D’Alembert, Legendre, Poisson.. all worked at some point in their career on the attraction of

ellipsoids. Even far into the 20th century, mathematical physicists continued to go back to this
problem for renewed insights (see, for instance, [Arn85]).

6In first approximation, analytical geometry here refers to geometry done with the help of
Cartesian coordinates, and algebraic or infinitesimal calculus. Pure geometry, on the other hand,

is geometry done without such tools. We will go back to this distinction later in the paper, and
explain how such crude distinctions do not really capture the disciplinary and epistemological
boundaries that actors such as Chasles identify with these terms.

7See [Cha37a]. The complete title of this book translates into ‘General historical survey of
the origin and development of methods in geometry, in particular of those that relate to modern

geometry, followed by a memoir of geometry on two general principles of that science, that is,

duality and homography’. To a large extent, this text will constitute our main source to study
Chasles’ early epistemology and practice of geometry, which substantially evolves in his later

works, as he obtained a chair at the Sorbonne where he developed and taught what he called

Higher Geometry (see [Cha52]).
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Despite Chasles’ fame and institutional importance in his time8, his mathemati-
cal works have been the object of considerably fewer studies than some of his direct
contemporaries, such as for instance Poncelet for the history of projective geometry
, or Poinsot for the history of geometrical mechanics9. And yet, his influence on
generations of students and scientists is undeniable. In the decades following the
publications of his work on ellipsoids, many students from various French univer-
sities would refer to and comment upon it, especially in the context of doctoral
dissertations10. These mentions all bear witness to the large and rapid circulation
of the ideas we will be discussing in the following sections. This circulation would
be a fruitful one. Chasles’ papers on the attraction of ellipsoids stem from his
theory of second-degree surfaces, which would later prove to play an important
role for his student Darboux, as the latter studied orthogonal systems of surfaces
for his doctoral dissertation11, but also for the development of Hamilton’s theory
of quaternions, in which Chasles’ geometry of the ellipsoid (via a translation into
English by Reverend Charles Graves) is mentioned12. In this context, a thorough
analysis of Chasles’ proofs of MacLaurin’s generalized theorems provides us with a
vantage point atop which a finer picture of French geometrical mechanics, and its
influence on several episodes in 19th century geometry, can be gained.

Furthermore, Chasles’ proofs are particularly interesting inasmuch as their pri-
mary aim is not the establishment of new results, but rather that of a strong case
for pure geometrical methods. Indeed, a few years prior to Chasles’ writings on this
subject, a memoir by Poisson13 had definitively solved the problem with regards
to the standard expectations for such a proof shared by the Parisian mathematical
community14. What Chasles produced, however, is a set of alternative proofs whose
value resides not in the epistemic assurance they provide, but rather in their epis-
temological quality15. While previous results concerning the attraction of ellipsoids
answered the problem in a satisfactory manner, their proof remained insufficiently
simple, to Chasles’ eyes. He did not pursue simplicity for its own sake, however.

8Let us here remember that, when he died, Chasles was a member of most European academies,
the first foreign recipient of the Copley medal, and had been teaching at the Sorbonne for several

decades. In a obituary published in the New York Times shortly after his death, he is even said to
be ‘the most distinguished mathematician in France’. However, his fame quickly declined over the
decades following his death. The reasons for this decline are still unclear. Possible explanations

include the infamous Vrain-Lucas affair, by which he was publicly ridiculed and which left a lasting

mark on the collective memory of his life, but also the celebration of other 19th century geometers
such as Poncelet or Von Staudt as the main protagonists of the development of projective geometry

in subsequent historical narratives.
9In his general history of 19th geometry, [Gra07] acknowledges that ‘research needs to be done

on Chasles’ presentation of projective geometry, and the way his work eclipsed that of Poncelet’

(Introduction, p.vii). Recent attempts to do just so include [Nab06], [Che16]. Despite the fact
that several of Chasles’ first successful scientific contributions dealt with mechanics (whether it
be with kinematics or, in our case, the theory of attraction), and that Chasles taught mechanics

at the Ecole Polytechnique between 1841 and 1851, his work is rarely mentioned in more than
passing footnotes in general studies in the history of mechanics. See for instance [GG90].

10See for instance [Bor40], [Cat41], [Hop63], [Pes43] among many others. [Ber92] (p.xiii), in

a eulogy pronounced a dozen years after Chasles’ death, asserts that these proofs of MacLaurin’s
theorem have become ‘classics’, taught by most professors who desire to teach this subject. To

what extent this claim is truthful, however, remains unclear.
11[Dar66]. For a comprehensive analysis of said dissertation, as well as of its relation with

Chasles’ early geometrical works, see [Cro16], particularly chapters 2 & 3.
12See [Ham63], p.280-288.
13[Poi33]
14Chasles himself acknowledges it, see [Cha46], p.640.
15In that respect, these proofs yield rich insights into the practice of re-proving, a practice

which has been studied in detail in [Daw15].
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What motivated the production of his alternative proofs was the notion that sim-
plicity and generality, both in mathematical methods, proofs, and theorems, are
intimately linked16. Chasles conceded that analytical proofs such as Poisson’s were
swift, ingenious, and efficient; but their convoluted calculations could not lead to
a satisfactory explanation of the truth of MacLaurin’s generalized theorem. To his
eyes, the complexities of artificial, computational machines such as Algebra may
have led to quick and powerful solutions, but at a certain cost: these proofs make
us blind to what is really happening to the figures at play, behind the cogwheels
of calculus. These proofs do not permit any insight into the mathematical truths
they produce, and as such, are unfit for further generalizations. However, Chasles
claimed, pure geometry was finally able to provide epistemologically virtuous so-
lutions. Modern methods, inspired by the likes of Monge and Poncelet, made it
possible to find proofs that resort only to the resources provided by human rea-
soning, and the figures themselves. Such proofs, he asserted, would necessarily be
simple and general. To understand these claims, and the way they inform Chasles’
mathematical practice, is what we set out to do in this paper.

2. A geometer’s ethos

First, we must sketch Chasles’ early epistemology of geometry in greater detail17,
which we will then connect to both his historiographical and his mathematical
practice, through the study of his work on the problem of ellipsoids. We will
show that Chasles’ epistemology of geometry was no mere theoretical musing. His
philosophy of geometry, and the epistemological values it enlists, actively guided
and structured his scientific work. In that sense, these values played a strong
normative role, both in Chasles’ selection of problems, and in the tools he elected
to use in order to prove and communicate them. These epistemological values take
a moral turn, as from them derive a set of normative rules for the practice of the
geometer that Chasles not only preaches, but closely observes.

2.1. Tracking the means for a greater generality in past geometrical
methods. In 1829, the Académie Royale des Sciences de Belgique proposed a
prize for the best essay on the topic of ‘the philosophical examination of various
geometrical methods used in recent geometry, and, in particular, of the method of
reciprocal polars’. Chasles’ winning entry was to be immediately published, but
some political turmoil caused by the Belgian Revolution put this project to a tem-
porary halt18. As he was finally allowed to send a manuscript to press in 1837,
Chasles had more than doubled the size of his dissertation. On top of the two
memoirs on the principles of homography and duality which the Belgian Academy
had rewarded, he had added a detailed historical and philosophical study of the
development of Geometry, from the classical works of Thales and Pythagoras to
the recent discoveries of Dupin and Poncelet; as well as 34 notes which go in depth
into some technical, historical, or philosophical details evoked during the historical
account itself.

16Such a claim is far from being unique in the history of mathematics. For instance, in
his autobiography, Récoltes & Semailles, French mathematician Alexandre Grothendieck makes
constant use of the notion of ‘childish simplicity’ (‘simplicité enfantine’), which he uses to describe
extremely complex theorems, precisely because of their perceived generality. See [McL03] for more

on that issue.
17We will mainly focus on Chasles’ Aperçu Historique; a more detailed description thereof,

with special emphasis on the theme of generality, can be found in [Che16], from which some of
the examples discussed below are borrowed. Several shifts occur after a chair of Higher Geometry
was created at the Sorbonne for Chasles, which we do not discuss here.

18See [Que72], p.36-37.
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Despite its title, this book should not be regarded as a purely historical account
of the development of a certain science. History is here used as a means to an
epistemological end : to understand what enabled geometers to develop ever more
general methods and results, and to further these investigations on that very same
path. As Chasles puts it,

‘While recounting the march of Geometry, and while presenting
the state of its discoveries and recent doctrines, we mainly set our
sights on showing, by a few examples, that the hallmark of these
doctrines is to bring, in all parts of the science of extension, a new
simplicity and the means for a generalization, until then unknown,
of all geometrical truths19.’

Such a project very much bears the mark of a certain milieu, namely that of
the École Polytechnique. An important tradition, perhaps best embodied by the
influential teaching of Lagrange, had been shaped there, in which historical consid-
erations were central to the very understanding of what constituted the strengths
and advantages of the methods and discipline being taught20. For instance, in the
very first pages of his Traité de Mécanique Analytique, Lagrange sets out to ‘re-
duce this science to general formulas’, and to ‘unite the different principles found
until now under a single viewpoint’. To do so, in both parts of his book (respec-
tively dealing with statics and dynamics), the first section is devoted to a historical
overview of these previously found principles, while the second section unites them
within so-called general formulas. History thus plays an instrumental as well as a
pedagogical role, and serves to put on display the perfection reached by analytical
methods, which reduce to two principles, and two formulas, the sum of all mechan-
ical knowledge acquired throughout the centuries. While Chasles and Lagrange
reach very different conclusions as to what tools are best suited for the develop-
ment of mechanics, the parallelism in their argumentations, and their shared way of
producing and reflecting on mathematical knowledge must be emphasized here21.

Chasles’ history of geometry takes the form of a succession in five stages (‘époques’ ),
each marking a decisive turn in the sort of geometrical methods available to math-
ematicians, and characterized by an ever-greater generality. However, unlike the
sort of narratives for the development of sciences suggested by Comte’s well-known
theory of the ‘three stages’, Chasles allows for parallel developments to take place.
For instance, he claims that both Descartes’ and Desargues’ geometries display
levels of generality which, in their respective fields of application, were previously
unattainable, while being contemporary. And yet, these geometries appear in dif-
ferent ‘époques’. Despite this fact, Chasles’ historical account can be regarded as
narrating the progress of geometry towards generality, and stops at a point where
various powerful methods have been found, which still remain to be unified un-
der a minimal set of principles. Chasles’ initial project when expanding on his
prize-winning dissertation was to include a exposition dogmatique of some of these
modern geometrical theories22, including a theory of second-degree surfaces which

19‘Nous avons eu en vue surtout, en retraçant la marche de la Géométrie, et en présentant
l’état de ses découvertes et de ses doctrines récentes, de montrer, par quelques exemples, que

le caractère de ces doctrines est d’apporter, dans toutes les parties de la science de l’étendue,
une facilité nouvelle et les moyens d’arriver à une généralisation, jusqu’ici inconnue, de toutes les

vérités géométriques.’, [Cha37a], p.2.
20See [Wan17].
21This mathematical habitus can be detected in many other works from that period and that

milieu, such as Lacroix’s Traité du Calcul Différentiel (1797/8), or Fourier’s Théorie Analytique
de la Chaleur (1822).

22[Cha37a], p.254. This project was eventually dropped, but gave Chasles the initial content
for the redaction of several notes.
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we will briefly discuss in what follows. This abandoned project betrays the influ-
ence of another fellow Polytechnicien, on whom this perceived interest of returning
to the historical development of sciences as a means to track what allowed for their
perfecting also left a mark. Indeed, in his Leçons de Philosophie Positive, briefly
quoted in Chasles’ Aperçu23, French philosopher Auguste Comte resorted to a sim-
ilar instrumental use of the history of science. Comte famously claimed that ‘one
can only completely know a science once one knows its history24’, as only history can
reveal how scientific knowledge was formed, how generality was reached, how found-
ing principles for a given science were discovered. This historical study, however,
can and must be supplemented in Comte’s view by an exposition of the ‘dogmatic
march’ of said science25, so that the historical account becomes intelligible.

2.2. Striving for generality. The Aperçu Historique opens with what historian
Karine Chemla calls a ‘diagnosis about the limits of ancient geometry’ 26. These
limits consist mainly in a lack of generality that can be found in both the mathe-
matical statements and the geometrical methods used by ancient Greek geometers.
While they can certainly be linked, these two limits must first be separated and
explained in their own rights27.

The first of these limits is that certain theorems, or propositions, are redundant
for the modern geometer. For instance, in the seventh book of Pappus’ Collection,
43 lemmas are given which, according to Chasles, ‘express a single theorem’ 28. The
multiplicity of these lemmas follows from the fact that ancient geometers had to give
different proofs for different configurations of the points involved in the theorem.
Several of these propositions pertain to a point on a line, which happens to be either
within or without a certain segment. In each of these cases, a different proposition
and a different proof are needed, which modern geometry can unite within a single
statement (and, thus, a single proof). In this manner, for instance, Chasles explains
that ‘through the consideration of negative and positive quantities, under a single
statement, one theorem can display diverse cases’ 29. By allowing the symbol ab,
which refers to the segment bounded by points a and b, to be either a positive or a
negative quantity (depending on the relative position of these points with respect to
an arbitrary direction), Chasles would show in his lectures at the Sorbonne how one
can achieve generality through the choice of adequate notations30. Therefore, the
importance for Chasles of the development of an adequate language for geometrical
studies must be stressed. Not only is generality linked with the capacity of group-
ing statements (as opposed to truths, results, or formulas), but it is through the
development of a certain symbolic or linguistic grasp on geometrical statements,
that the latter have been simplified. The development of geometry requires the
shaping of certain discursive tools which allow for the description of various related

23[Cha37a], p.415. It is also likely that the entire Note V (p.288-290) is directed against

Comte’s 10th Leçon, where Geometry is defined a the science of the measurement of extension,

which Chasles very much refused.
24[Com30], Deuxième Leçon, p.82
25ibid.
26[Che16], p.50.
27Note that this criticism does not apply equally to the whole of Ancient geometry. For

instance, Apollonius seems somewhat immune to it, as Chasles reads his Conics as bearing the
mark of what would become the foundation of Descartes’ analysis; namely that a single propriety

between two magnitudes on a conic serves as a unifying notion on which the whole theory is built.
See [Cha37a], p.17-18.

28[Cha37a], p.41.
29ibid.
30See [Cha52], ch.1. These lectures were given a few years after the texts on the attraction of

ellipsoids, and Chasles’ reflections on generality expressed therein display some subtle variations,
but these are out of the scope of this paper.
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configurations to be purveyed at once31. The benefits of such general statements
are manifold. Not only does a single theorem expressing many other ones allow for
a better understanding of the ‘general modes of transformation’ at play behind the
actual theorems32, but also from a truly general statement, a large amount of lesser
results can be easily deduced. Thus, Chasles claims, from his mystical hexagram
alone, Pascal was able to deduce 400 corollaries, precisely because these corollaries
all ‘express a certain property of six points on a conic’ 33.

A second criticism expressed by Chasles towards Ancient geometry is the lack
of systematicity in the application of its methods34. For instance, Archimedes’
method of exhaustion, while quite general with regards to the variety of figures to
which it can be, or has been, applied, is no match for modern integral methods as
far as the systematicity of the method is concerned. Chasles writes:

‘The method of exhaustion, which rested on a completely general
main idea, did not deprive Geometry of its character of narrow-
mindedness and specialization, since this conception, lacking gen-
eral means of application, became, in each particular case, a wholly
new question, which found resources only in the individual proper-
ties of the figure to which it was applied35’.

This method requires a renewed effort every time it is applied to a new figure,
and thus does not follow systematically from the application of a certain set of rules.
Let us compare this to the optimistic description of modern geometry Chasles gave
at the very end of his history of geometry:

‘Nowadays, anyone can step up, pick any known truth, and submit
it to the various general principes of transformation. In so doing,
they will gather other truths, either different or more general, and
on these truths similar operations can be carried out-so that one
can multiply, almost to infinity, the number of new truths deduced
from the first. [..] Genius is no longer required to contribute36’.

The generality of a method is here linked to its systematicity, even to the effort-
lessness of its application. The very need for proof seems to disappear: the study
of modern geometry, to Chasles’ eyes, resembles an easy, spontaneous passage from
one truth to another. This stands in stark contrast to his assessment of the sheer
mental effort that Ancient geometry requires from its practicioner.

The form of pure geometry here envisioned and promoted cannot rely on dia-
grammatic reasoning. While no concern for the rigour of such a form of reasoning
is expressed here, a different argument is produced. Diagrams, Chasles claims, are

31This call for a renewal of the language of geometry can also be found in Poncelet’s well-known
Traité des Propriétés Projectives, see [Pon22], p.xxii.

32ibid., but also [Cha37a], Note VIII, p.297-301.
33[Cha37a], p.73. Our emphasis.
34This notion of generality can be compared to Steiner’s ‘systematicity’. See for instance

[Lor16], in particular p.429.
35‘La méthode d’exhaustion, qui reposait sur une idée mère tout à fait générale, n’ôta point

à la Géométrie son caractère d’étroitesse et de spécialité, parce que cette conception y manquant
de moyens généraux d’application, devenait, dans chaque cas particulier, une question toute nou-

velle, qui ne trouvait de ressources que dans les propriétés individuelles de la figure à laquelle on
l’appliquait.’, [Cha37a] p.52.

36‘Aujourd’hui, chacun peut se présenter, prendre une vérité quelconque connue, et la soumet-

tre aux divers principes généraux de transformation; il en retirera d’autres vérités, différentes
ou plus générales; et celles-ci seront susceptibles de pareilles opérations; de sorte qu’on pourra

multiplier, presque à l’infini, le nombre des vérités nouvelles déduites de la première. [..] le génie

n’est plus indispensable pour ajouter une pierre à l’édifice’, [Cha37a] p.268-269.
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an impediment for truly general methods, to this free derivation of truths we just
described. Such a claim is expressed when describing Monge’s descriptive geometry:

‘This useful influence of descriptive Geometry extended naturally
just as well to our style and language in mathematics, which it made
easier and clearer, by freeing the complications brought about by
figures, whose use distracts from the attention we owe essentially
to ideas, and which hinders imagination and speech. In a nutshell,
descriptive Geometry was adequate for fortifying and developing
our powers of conception; to give our faculty of judgement more
sharpness and certainty; our language more precision and clarity37’.

More so than merely an epistemology of mathematical generality, Chasles’ writ-
ings are shaping a moral economy of mathematical practice, that is to say a ‘web
of affect-saturated values that stand and function in well-defined relationship to one
another38’. Indeed, as we have seen, the values of generality, simplicity, or system-
aticity, when mobilized by Chasles, are very much saturated with affects, as the
hindrance caused by a diagram contrasts with the easiness through which geomet-
rical truths are combined in one’s mind, the blindness of analytical calculations
with the clarity provided by proper geometrical reasoning. Furthermore, a theory
of their mutual dependence is given, as we will see in what follows. Most important,
however, is the fact that from these values derive a set of normative rules, by which
the mathematician must abide in order to gain knowledge that is deemed episte-
mologically good. Indeed, in the midst of historical narrative, Chasles expresses
two rules, whose observance he deems to be still required of geometers who wish to
advance geometry:

• ‘Generalize more and more particular propositions, in order to
attain, step by step, what is most general; which will always
be, at the same time, the most natural and the simplest.
• Within the proof of a theorem or the solution of a problem,

never be satisfied by an initial result which would be enough
in a particular case viewed independently of its place within a
general system in science; but be satisfied by a proof or solution
only when its simplicity, or its intuitive deduction from some
known theory, will prove that you have attached the question
to the very doctrine it naturally depends on.

To indicate a way to recognize whether the practice of these
two rules has led to the desired goal, that is to say whether we
have marched on the true roads of definitive truth, and reached its
source, we believe that, in each theory, there must always be, and
we must always be able to recognize, some principal truth from
which all others easily follow, as simple transformations or natural
corollaries; and that this fulfilled condition only will be the mark
of the true perfection of a science39’.

37‘Cette influence utile de la Géométrie descriptive s’étendit naturellement aussi sur notre style

et notre langage en mathématiques, qu’elle rendit plus aisés et plus lucides, en les affranchissant
de cette complication de figures dont l’usage distrait de l’attention qu’on doit au fond des idées, et
entrave l’imagination et la parole. La Géométrie descriptive, en un mot, fut propre à fortifier et à
développer notre puissance de conception; à donner plus de netteté et de süreté à notre jugement;

de précision et de clarté à notre langage’, [Cha37a], p.190.
38[Das95], p.4.
39[Cha37a], p.115.
• ’Généraliser de plus en plus les propositions particulières, pour arriver de proche en proche

à ce qu’il y a de plus général; ce qui sera toujours, en même temps, le plus simple, le plus
naturel et le plus facile;
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Generality is thus seen as the benefit of a virtuous mathematical practice. Such
a practice, Chasles contends, should strive to root each proposition it establishes
into its natural theoretical setting. Such an endeavour, in return, is said to reward
the virtuous geometer with the most general proposition they could have hoped to
establish. Chasles’ successive solutions of the problem of the attraction of ellipsoids
attempt to do just so. As we will see in the next sections, selection of this problem
as a worthy challenge for further geometrical investigations, of the tools used to
solve it, and of the narrative in which his success would be cast, all abide by
this normative ideal. But this is no mere rhetoric: as he reproves MacLaurin’s
generalized theorem, Chasles progressively does away with the specific properties
of ellipsoids, and ends up with a proof that can be applied to more general surfaces.
What’s more, he is able to extract from these very proofs the seeds for what he
thought would become a general, geometrical theory of attraction.

The intimate connection between the values of generality and simplicity, at this
stage, remains somewhat unclear. In the quote given above, it also seems to be
something of a creed, a conviction that virtuous mathematical practice pays off.
However, in a footnote immediately following it, Chasles expands on this claim40:
not only is it an empirical and experimental truth, that generality and simplicity
come hand in hand, but it also follows from a theoretical argument a priori :

‘The most general principles, that is to say those that extend their
domain to the largest number of particular facts, are necessarily
free from the various circumstances which seemed to to give a dis-
tinct and different character to each of these particular facts when
conceived in isolation, prior to the discovery of their common link
and origin: if they were complicated by all these particular cir-
cumstances and properties, they would bear the mark of these par-
ticularities in all of their corollaries, and would, in general, only
give rise to truths which excessively embarassed and complicated
themselves. These most general principles are therefore, by nature,
necessarily the simplest41’.

However convincing or not this argument may seem to us, from its conclusions
sprung several epistemic norms and rules which Chasles attempted to abide by,
as best he could. Moreover, these norms would guide and inform his reading and
understanding of other mathematicians’ works, as will be shown in the next section.
This circulation of epistemic norms from mathematical to historiographical practice

• Ne point se contenter, dans la démonstration d’un théorème ou la solution d’un problème,

d’un premier résultat, qui suffirait s’il s’agissait d’une recherche particulière, indépendante du
système général d’une partie de la science; mais ne se satisfaire d’une démonstration ou d’une
solution, que quand leur simplicité, ou leur déduction intuitive de quelque théorie connue,

prouvera qu’on a rattaché la question à la véritable doctrine dont elle dépend naturellement.
Pour indiquer un moyen de reconnâıtre si la pratique de ces deux règles a conduit au but désiré,

c’est-à-dire si l’on a rencontré les vraies routes de la vérité définitive, et pénétré jusqu’à son

origine, nous croyons pouvoir dire que, dans chaque théorie, il doit toujours exister, et que l’on
doit reconnâıtre, quelque vérité principale dont toutes les autres se déduisent aisément, comme
simples transformations ou corollaires naturels; et que cette condition accomplie sera seule le

cachet de la véritable perfection de la science’.
40ibid., p.115-116.
41‘Les principes les plus généraux, c’est-à-dire qui s’étendent sur le plus grand nombre de

faits particuliers, doivent être dégagés des diverses circonstances qui semblaient donner un car-

actère distinctif et différent à chacun de ces faits particuliers, considéré isolément, avant qu’on eüt
découvert leur lien et leur origine commune: s’ils étaient compliqués de toutes ces circonstances ou
propriétés particulières, ils en porteraient l’empreinte dans tous leurs corollaires, et ne donneraient

lieu, généralement, qu’à des vérités excessivement embarrassées et compliquées elles-mëmes. Ces
principes les plus généraux sont donc nécessairement, par leur nature, les plus simples’, [Cha37a],
p.116.
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is usually carried out by the transfer of what we could call a ‘stability criterion’.
When Chasles assesses positively the generality of a certain mathematical method
or proof (past or present), it is rather common for him to base his judgment on
the fact that a certain term in the proof (or in the method) can be replaced by a
more general one without altering the validity of the proof. For instance, if every
occurrence of the word ‘circle’ can replaced by the word ‘conic’ in a proof (and if
all related terms are replaced accordingly), in a way that does not falsify the proof,
then the latter is usually deemed general by Chasles. While such a criterion is not
explicitly stated, it matches many generality judgements that Chasles makes both
in his historical accounts and in his arguments for the worth of certain notations or
principles42, up until late in his career where this view is more clearly outlined43.
This stability, for Chasles, bears witness to the fact that a generalization of a
result can be achieved without ‘genius’, to the fact that an adequate geometrical
language has been achieved, as well as to the deep connection between generality
and simplicity.

2.3. Analysis versus Geometry. We now turn to Chasles’ argument for pure
geometry against so-called analytic methods, which he felt dominated the institu-
tional and scientific landscape in French mathematics at the time. Chasles rarely
defines the terms Analysis and Synthesis44 and even seems reluctant to use them,
as he agrees with Poinsot, Poncelet, and others that they do not provide ade-
quate descriptions of modern geometry45. When he does, however, he resorts to
characterizing analytical methods by the use of coordinates and algebraic calculus.
Conversely, Synthesis then refers to geometry without coordinates, without algebra,
built through ‘natural reasoning alone’46. However, the term ‘synthetic geometry’
is almost never used by Chasles (a very special exception being precisely the mem-
oirs on the attraction of ellipsoids), who much prefers to talk of pure geometry, or
sometimes of modern geometry47.

It must be pointed out that Chasles is not opposed to the practice, nor to the
teaching of analytical methods. He never mentions doubting the validity of an
analytical proof, or expresses distrust towards the metaphysics of the calculus, and
he even acknowledges its sheer efficiency. Furthermore, he concedes that Analysis
benefits from a certain kind of generality which the very nature of its instruments,
such as Algebra, bestows upon it. Indeed, when working with Cartesian equations,
the analyst is able to prove a property of all curves of a certain degree via a single
proof or computation. More precisely, Chasles claims:

‘Descartes’ Geometry distingues itself from Ancient geometry in
another particular regard, which ought to be noted; it establishes,
through a single formula, general properties of entire families of
curves; so that one could not in this way discover some property
of a curve without it immediately yielding similar or analogous
properties in an infinity of other lines.48’

42See for instance [Cha52], Préface, especially p.v-xii.
43See [Cha74], p.579.
44The classical definitions of these two terms in Ancient Greek geometry notwithstanding

([Cha37a], p.5), as these are of little relevance to our case. Note that in [Cha52], however, an
interesting link is drawn between the ancient use of these terms and their more recent acceptations.

See the Discours Inaugural, p.550-576.
45See for instance the quote by Poinsot given in [Cha37a], p.252.
46[Cha52], p.551.
47The term ‘rational geometry’ also appears sometimes in Chasles’ writings.
48‘La Géométrie de Descartes, [..], se distingue encore de la Géométrie ancienne sous un rapport

particulier, qui mérite d’être remarqué; c’est qu’elle établit, par une seule formule, des propriétés
générales de familles entières de courbes; de sorte que l’on ne saurait découvrir par cette voie
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Thus, the achievements of Analysis are not only valid, but also laudable, as they
enabled important generalisations in geometry. However, Chasles found much to
be faulted in the epistemological quality of the knowledge provided by Analysis.
These flaws have to do mainly with the fact that analytical calculations obfuscate
the intermediary propositions which form the chain of truths linking hypotheses
and results49. This obscurity is both a strength, as it allows for a steady march
onto the path of resolution without requiring the formation of these intermediary
propositions that pure Geometry must construct step-by-step; but it also is the
source of a major weakness, in that it prevents the mathematician from finding
out what principles, what primary truths are causing the theorem to be true. This
is why a certain lack of generality and simplicity can be found in the methods
of analytical geometers: as they steadily compute and prove theorems, they are
sometimes unable to see that their work could be subject to geometrical interpre-
tation, and then placed in a more natural setting. In particular, Chasles’ criticism
of Legendre’s proofs of MacLaurin’s theorem, which will be studied in what fol-
lows, exemplifies and strongly substantiates this thesis on the compared strengths
of analytical and geometrical methods. As analytical computations swiftly reach
the targeted theorems, without the help of geometrical interpretations, they do
not provide any information on why these theorems are true, what their causes
are. Hence, they cannot form the basis of a generalisation in the sense described
previously. Geometrical methods, on the other hand, do not suffer the same fate.
To display this difference between both sciences in vivo is precisely what Chasles
intended to do by giving alternative solutions to the problem of the attraction of
ellipsoids and commenting both on its historical development and on the limitations
of the existing proofs.

3. Chasles’ historical account of the problem of ellipsoids

Chasles’ first writings on this problem occur in the context of the historical sec-
tion of the Aperçu Historique, as he described the achievements of MacLaurin, and
in particular his Treatise on Fluxions50. In this text, Chasles found many a reason
for admiration and hope for the future of pure geometry. However, he observed
that the attraction of ellipsoids, throughout the 18th century, had mostly remained
a chasse gardée for analysts. Consequently, after describing the improvements that
had been built upon MacLaurin’s initial results, and the relative success of these
analysts who tried to generalize MacLaurin’s theorem, Chasles expressed the desire
to find a ‘more synthetic proof’ (p.166) of these new, extended results. He thought
such a feat had been made possible by the development of a modern, geometrical
theory of second-degree surfaces. Later in the Aperçu Historique, in Note XXXI51,
such a theory would be sketched52, after which Chasles claimed to have found such
a proof (p.396), thus giving us an idea of the chronology of his works. Furthermore,
the first memoir sent by Chasles to the Académie des Sciences on this very sub-
ject contains a long historical introduction53. These historical accounts are largely
structured by the Analysis/Synthesis distinction: Chasles frames his narrative as a
competition between two sides, one of which has largely pulled ahead over the past
decades. Such an emphasis on this distinction serves to reinforce the strategical

quelque propriété d’une courbe, qu’elle ne fasse aussitôt connâıtre des propriétés semblables ou
analogues dans une infinité d’autres lignes’, [Cha37a], p.95.

49[Cha37a], p.114
50[Cha37a], p.162-170.
51[Cha37a], p.384-399.
52Let us remember that this very theory was first supposed to be part of an ‘exposition dog-

matique’ of modern geometry previously mentioned.
53[Cha46], p.629-640.
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and rhetorical point of his new solutions to this century-old problem: Chasles does
not aim to bring to the fore new results, but to show what can be gained by the
pursuit of purely geometrical methods. We will not render Chasles’ entire narrative
here, nor will we attempt to assess its historical accuracy. Rather, we wish to delve
into a couple of episodes which reveal how the epistemological theses explored in
the previous section inform his historiographical practice, but also his motivation
for attempting a new resolution of said problem.

3.1. MacLaurin’s undervalued achievements. As we’ve already mentioned,
MacLaurin was (in Chasles’ view) the first to properly tackle the problem of finding
the attraction of ellipsoids on a particule, whether it be inside or outside the body.
In particular, he had stated and proved that, in certain configurations, two confocal
ellipsoids exerted attractions on an exterior point in the same direction, and with
intensities in the same proportion as their volumes. This result, to which we refer
as MacLaurin’s theorem in what follows, was obtained in a manner that Chasles
describes as ‘synthetic’, but also ‘elegant’ and ‘simple’. In particular, Chasles
explains:

‘MacLaurin was able to draw, from a few properties of conics, all of
the required resources for the solution of this question, which had
always passed, in the eyes of the most renowned analysts, as one of
the most difficult54’.

One striking feature of Chasles’ historical account is the extension of the theo-
rems he credits MacLaurin with proving. Previous commentators such as D’Alembert,
Lagrange, or Legendre had all asserted that MacLaurin had proved his theorem in
one particular configuration (two confocal ellipsoids of revolution attracting a point
on the plane of their equator) but only stated a more general case (two general con-
focal ellipsoids, attracting a point on one of their axes), without giving a proof. To
that interpretation, Chasles objects that MacLaurin’s turn of phrase when stating
this more general case, ’and it will appear in the same manner’ 55 shows that the
Scottish geometer was keenly aware that the same proof held in this new configura-
tion, ’without adding or subtracting a single word’ 56. We do not wish to assess the
validity of Chasles’ claim here, but simply to point out that it deeply connects with
his view of generality, described in the previous section, as he defends the generality
of MacLaurin’s geometrical method in terms of stability of a proof (and even of a
proof-text). This stability, in Chasles’ reading, derives from MacLaurin’s ability
to find a few fundamental properties of conics, and to tie his proofs to these very
properties, so that no new adjustement was required when moving from a particular
case to a more general one. Chasles as a reader of past mathematical texts does not
do away with his epistemological theses. On the contrary, they inform and guide
his understanding of MacLaurin’s proofs, and conversely, he uses MacLaurin as a
case in point to show that geometry has the resources to rival analytical methods
on the field of generality.

3.2. The criticism of Legendre’s proofs. Even in light of Chasles’ generous
reading, however, there remained room for genereralisation in MacLaurin’s the-
orems. While many analysts attempted to extend these results during the 18th

century, little to no progress was achieved prior to Legendre’s series of memoirs

54’Mac-Laurin sut tirer, de quelques propriétés des coniques, toutes les ressources suffisantes
pour la solution de cette question, qui a toujours passé, auprès des plus célèbres analystes, pour

l’une des plus difficiles’, [Cha37a], p.163
55[Mac42],p.131. Chasles’ emphasis is striking in [Cha46], p.633: ’MacLaurin a formellement

démontré son théorème’.
56[Cha37a],p.168-169
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published between 1788 and 1812. In these texts, and in particular in [Leg88],
he was able to prove that MacLaurin’s theorem holds generally for the attraction
of any two confocal ellipsoids on an exterior point. However, Chasles diagnosed
several limitations hindering Legendre’s analytical proofs.

The first of these limitations is that Legendre’s memoirs were deemed too obscure
and complex, so much that even fellow analysts would declare them unsatisfactory,
merely on that ground. For instance, Poisson declared Legendre’s 1788 solution
to be full of ‘inextricable computations’ in his own memoir57. Secondly, a more
technical criticism had also been levelled by Poisson against Legendre’s but also
other analytical solutions: the integral formulas they ended up with were not direct
enough, and involved auxiliary quantities, which it was not easy to determine or
eliminate58. However, a more crucial limitation to Chasles’ eyes is the fact that
Legendre’s proofs suffer from a certain blindness, which is characteristic of purely
analytical methods. After complimenting Legendre’s 1788 memoir for proving for
the first time the total generality of MacLaurin’s theorem, Chasles describes it as
a:

‘Very beautiful and very deep memoir, which would be even richer
in interesting results, had Legendre given the geometrical meaning
of some of the many formulas through which he had to pass, in
order to arrive at the conclusion of the theorem at hand59’.

Indeed, as Chasles will keenly point out, some of the algebraic quantities Le-
gendre handled in his memoir could have benefited from a geometrical interpreta-
tion. Had he known what some of his infinitesimal elements represented, he could
have used some geometrical properties to simplify and improve his solution. But
there’s more: in so doing, he would have been led to understand what the real
cause behind MacLaurin’s generalised theorem was, and the connections between
the problem of the attraction of ellipsoids, and the theory of second-degree surfaces.
Discussing more generally the application of Analysis to such problems inspired by
physics, Chasles asserted that:

‘Already, in the most skilful investigations in mathematical physics,
Analysis has uncovered the presence of surfaces [of the second de-
gree]; but most of the times, this ever so happy circumstance has
been viewed as fortuitous and secondary, no one has thought that,
on the contrary, it may be directly linked to the first cause of the
phenomena, and even be conceived as the real origin, and not an
accidental one, of all the circumstances it can offer60’.

Analysis may have quickly led Legendre to a proof, where geometers were at
their wit’s ends. In so doing, however, Legendre did not uncover the wealth of
riches that a proper understanding of this problem would have disclosed. Therefore,
Analysis did now allow him, nor any other analyst for that matter, to generalize his
proof properly. Furthermore, Chasles reiterates his opposition between the analyst’s
reliance on shrewd, artificial computational devices, where the geometer’s keen eye
observes the natural causes at play. Virtuous geometrical practice, by uncovering

57[Poi33], p.499.
58ibid., p.500.
59’Mémoire fort beau et très-profond, et qui serait plus riche encore en résultats intéressants,

si M.Legendre avait donné la signification géométrique de plusieurs des nombreuses formules par
lesquelles il lui faut passer, pour arriver à la conclusion du théorème en question’, [Cha37a], p.165

60’Déjà, dans les plus savantes recherches physico-mathématiques, l’Analyse a dévoilé la

présence de ces surfaces; mais le plus souvent on a regardé une si heureuse circonstance comme
fortuite et secondaire, sans songer qu’au contraire elle pouvait se rattacher directement à la cause
première du phénomène, et mëme ëtre prise pour l’origine réelle, et non pas accidentelle, de toutes

les circonstances qu’il peut offrir’, [Cha37a], p.251.
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such natural causes, is wont to achieve more general and simpler proofs: such is
the claim that Chasles’ memoirs attempt to show.

Chasles’ historical account of this problem serves as a counterpoint to his proofs:
it emphasises the hidden, underestimated strengths of geometry, while putting on
display some glaring weaknesses of analytical methods. Chasles’ alternative proofs,
to which we now turn our attention, then completes the argument by not only
displaying a rather simple access to MacLaurin’s theorem, but also by leading
naturally to a more general theory of attraction based on notions which emerged
from the specialised proofs themselves.

4. From generality to simplicity : the proof by homography

Around 1837, Chasles wrote and published four texts on the subject of the attrac-
tion of ellipsoids, two of which were sent to the Journal de l’École Polytechnique61,
and two of which to the Académie des Sciences62. As these memoirs were directed
towards different audiences, they display different rhetorics, but also different sets
of mathematical tools. In particular, the papers for the Journal were to be read
by students of the École Polytechnique, and Chasles did not deem these to be the
appropriate place for a full-blown defense of synthetic methods63. Therefore, we
will focus here solely on the memoirs sent to the Académie des Sciences.

The first proof we examine was first sent to the Académie des Sciences at the
end of the year 1837, but was only published in 1846 in the Mémoires des Savants
Etrangers64. Chasles describes it as a ‘synthetic proof’, both within the title and
at several occasions in the proof itself. As we already mentioned, this term rarely
occurs under Chasles’ pen. In the context of these proofs, however, Chasles dons
the banner of synthesis for strategical purposes. Indeed, one of the central (and
explicit) purposes of this memoir is to convince a broad audience of mathematicians
that pursuing modern geometry is a worthy endeavour, and to correct the misguided
judgement of past mathematicians who deemed Synthesis incapable of solving this
problem65.

Despite the strategical status of this term of ‘synthesis’, and the fact that one
shouldn’t look in Chasles’ writings for a precise definition of what Synthesis is (in
the context of modern geometry), one may be surprised when looking at the proof
itself. Indeed, it contains both algebraic and infinitesimal calculations, Cartesian
coordinates, integrals etc., which seemed to be the preserve of Analysis. Therefore,
we must understand how some calculations, even when based on algebraic and infin-
itesimal notions, can be mobilized in a so-called synthetic proof while maintaining
the simplicity and intuitiveness that characterizes geometrical insights. In this sec-
tion, we sketch Chasles’ first proof of MacLaurin’s generalized theorem, which we
divide into three parts. First, we describe how Chasles sets up a geometrical trans-
formation (which he borrows from Poncelet), and establishes two equations through
which he is able to control what this transformation does to geometrical figures.
Second, we follow Chasles as he shows how fruitful this transformation can be when
applied to second-degree surfaces. Third and last, Chasles produces what he calls
a ‘synthetic calculation’ of the attraction of ellipsoids, in ways that were naturally
suggested by the geometrical investigations carried out previously. Readers not
familiar with projective geometry may skip the technical details on first reading.

61[Cha37b], [Cha37c].
62[Cha46], [Cha38].
63For more on the readership of this journal, see [Mas14].
64All references are made to this 1846 edition.
65Chasles gives quotes by Legendre and Poisson (among others) to that effect, see for instance

[Cha46], p.640.



CHASLES’S GEOMETRICAL THEORY OF ATTRACTION 15

4.1. Setting up a geometrical transformation. Chasles’ proof starts off with
a series of results pertaining to the geometry of second-degree surfaces66. Most
of these results were already stated and proved in Note XXXI of the Aperçu His-
torique67, where they were presented as consequences of a general theory of second-
degree surfaces, centered around what Chasles called the excentric or focal conic of
a quadric. These conics are to quadrics what the focal points are to a conic, and
were taken to be the basis of a modern, geometrical (read : non-analytical) theory
of surfaces. However, in his memoir to the Académie des Sciences, Chasles does not
employ this mode of exposition, and instead follows a narrower path into the theory
of second-degree surfaces. He claims this shouldn’t be seen as a hurdle and a diffi-
culty specific to geometrical methods, for had geometry been studied as much as it
should have, therefore as much as Analysis, this geometrical introduction wouldn’t
have been necessary68. What must be shown, then, is how a proof of MacLaurin’s
theorem derives easily from this geometrical knowledge that is sorely lacking in the
training of most young mathematicians69. To do so, Chasles will only mobilize the-
ories which were developed some decades prior to his own works, namely the theory
of transversal of Carnot70 and the theory of polar transformations of Poncelet71.
We now sketch these geometrical preliminaries.

First, considering two homothetic second-degree surfaces72 U, V , of ratio λ, with
distinct centers G and S, Chasles lets a transversal ‘turn about the point S’73.
Readers unfamiliar with the language of 19th century geometry may think of a
transversal line either as a mobile line turning about a point S, or as a collection of
lines (mathematicians nowadays would speak of a ‘pencil of lines’ ) which all pass
through a common point S. The aim of the theory of transversals, as devised by
Carnot, was to express properties of a system of figures through equations which
involve the intersection points of this transversal and the figures of the system.
Remarkably, this notion enables Chasles, after Carnot, to use a single letter to refer
to the transversal (or to its intersection with a fixed line, for instance), despite the
transversal being mobile (or one element of a collection). Thus, for Carnot, ‘the
theory of transversal is, in the end, the same as that of coordinates74’. In Chasles’
case, these transversals cross U in two points noted Π,Π′, and V in a point π75. A
relation holds identically during the motion of this transversal:

66[Cha46], p.645-669.
67[Cha37a], p.384-399.
68[Cha46], p.644
69Note that a similar concern is expressed in the Aperçu, Ch.VI, p.253 : ‘Monge’s descriptive

geometry is being taught. [..] But the other methods we have talked about are still scattered in
the Memoirs of the geometers who used them, Memoirs which may seem lengthy and painful to
read, because of the very large amount of new results they include. This is, I believe, the real

cause for the detachment to rational geometry, where one mistakenly perceives, and this mistake
is to be deplored, a mere chaos of new propositions found by chance, with no connection between

them, and no future for a noteworthy improvement of the science of extension’. Here, rational
geometry can be roughly understood to refer to pure geometry.

70[Car06]
71[Pon22]
72Homotheties (a term introduced by Chasles himself) refer to figures which derive from one

another by a homogeneous dilation. Here, the second ellipsoid is obtained by enlarging the first
ellipsoid (and shifting its center from G to S), with a scale factor of λ.

73This sort of expression would disappear in his later works, where talks of homographic
correspondences replace this cinematic viewpoint, in particular in the wake of [Cha52].

74[Car06], p.65. For more on Carnot, see [Che98], in particular p.172.
75A transversal should cross V in two points. However, here, it seems that Chasles is looking

at transversals as rays or half-lines, which is unusual, although he does not comment it. See fig.1

& fig.2 below for the geometrical configuration that is being constructed.
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(a) SΠ · SΠ′ = λ2(
SG2

GH2
− 1) · Sπ2

Chasles obtains this relation from what could be called an intersecting chord

theorem for conics: with the notations above, SΠ·SΠ′

Gρ2 (where Gρ is the radius of

U , parallel to SΠ) remains constant for all transversal lines passing through S76;

in particular, it is equal to SH′·SH
GH′2 . Since the two ellipsoids are λ-homothetic,

Gρ = λSπ, hence the formula (a).
Furthermore, there are exactly two planes perpendicular to one given transversal

line of this pencil, which are also tangent to U . Similarly, there is one plane
perpendicular to this line and tangent to V . If Γ,Γ′, γ denote the points on which
the line and the planes cut each other, Chasles notices that (SΓ−SΓ′) is the distance
between two planes tangent to U , while Sγ is half the distance between the two
corresponding planes tangent to V . Because of the λ-homothety, the following
equation always holds77 :

(b) SΓ− SΓ′ = 2λ · Sγ

Figure 1

Figure 2. My figures.

Chasles then makes use of the polar transformation of these surfaces U, V with
regards to the sphere of center S, and radius 1, which Poncelet had devised a few
years earlier in [Pon22]. This transformation was first conceived as a correlation of
the points and lines of a plane through geometrical constructions which involve a
given, fixed conic. To construct the polar line of a point, with respect to a given
conic, one simply draws the two tangent lines to the conic passing through the
point, and we join the points where the tangents intersect the conic. Conversely,
to construct the pole of a line, one draws the tangent to the conic passing through
the points where the line intersects the conic. The pole is the intersection of these
two lines.

76This quantity can be thought of as the power of point S with respect to a conic. One can find
a similar result already in Apollonius’ Conics, III, 27. Chasles does not mention any particular
source for this theorem.

77See figures below. These figures do not appear in Chasles’ texts, in which very few figures
are present, and whose role is mostly to clarify some notations.
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In the three-dimensional case, things are more complicated. However, a similar
transformation can be constructed in three-dimensional space78, which correlates
points and planes. The key property of this transformation is that coplanar points
correspond to planes which all intersect, and conversely. This makes the transfor-
mation reciprocal (taking the polar plane of a point, then the pole of this plane,
means returning to the original point), and yields several properties for the locus of
the poles of the planes enveloping a given surface, or for the surface envelopped by
the polar planes of the points of a certain surface. Moreover, here, the polar plane
of a point m is perpendicular to the radius of the given sphere, and the distance
between the polar plane and S is equal to 1

Sm .
This transformation yields two second-degree surfaces U ′, V ′, corresponding to

U, V respectively; but also two planes tangent to U ′ corresponding to Π,Π′, as well
as a plane tangent to V ′ corresponding to π, whose distances to S are respectively

SP =
1

SΠ
, SP ′ =

1

SΠ′
, and Sp =

1

Sπ

Replacing SΠ, SΠ′, Sπ in (a) and (b), Chasles obtains two polar equations :

1

SP
· 1

SP ′
= λ2(

SG2

GH2
− 1) · 1

Sp
(a’)

1

SM
− 1

SM ′
= 2λ · 1

Sm
(b’)

where M,M ′,m are the points corresponding to the three planes perpendicular
to the transversal line described above. Through these polar equations, Chasles
can control the surfaces generated by transversal lines (or specific points thereon).
In fact, the first relation helps control the points of this surface, whilst the second
helps control its tangent planes. In particular, for any second-degree surface A, if
S is a fixed point in space (be it within or without the surface), a transversal line
turning around S will cross A in points M,M ′. Let Oµ denote the radius of U
parallel to the direction of the transversal line. The locus described by the point
m on a line of the pencil can now be controlled, and Chasles states the following
theorem:

Let m be a point on each transversal line defined by the equation

Sm = C Oµ2

MM ′ (where C is an arbitrarily chosen, constant number),
then m generates a second-degree surface A′, of center S.

This sort of result is central to Chasles’ early geometrical practice : a general
configuration is set up, in which certain figures (here, a transversal line) can move in
certain fashions, while certain relations are maintained between the elements of the
configuration. Hence, transversal lines, and the intersections they form with certain
fixed elements of the configuration play a role akin to those of the analysts’ variables.
However, these ‘geometrical variables’ are imbued with geometrical meaning, as
their role in the configuration is not arbitrary, but rather appears naturally from the
motion of the transversal lines. Furthermore, by specifying the configuration, and
observing the transformations such specifications impose on the control-relations
(my term), Chasles is able to obtain information on the surface-locus generated
by these transversal lines. Note that the notion of transformation plays here a
key role: it is by recentering geometrical methods around it that Chasles hopes to
elevate geometry to a status more befitting of its capacities. While transformations
are here still largely thought of, and used as, transformations of extension and of

78See the footnote p.646 in [Cha46] for the details of this transformation.
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figures, in later texts they will rather play the role of transformation of statements,
through the development of the notion of (homographic) correspondences79.

The theorem Chasles has obtained at this point is of a peculiar kind: it is
both a geometrical construction, a relation between certain magnitudes, and a
theorem about second-degree surfaces. A good deal of computations went into the
derivation of this theorem, but these calculations can be correlated to successive
transformations (or specifications) of a certain geometrical configuration. That is
to say, they play a role quite different from that of a blind series of analytical
calculations, whose only goal is to obtain a formula for a certain magnitude.

Specifying the conditions of this transformation even further with regard to the
problem of the ellipsoids, Chasles takes the point attracted, S, to be external to
the attracting ellipsoid, A. Then, some of the lines within the pencil of transversals
will be tangent to A, crossing it in a single double point M = M ′. It follows from
the equations above that Sm will go to infinity when m correspond to this double
point M . Hence, A′ is an hyperboloid, and its principal diameters can be shown to
be none others than the principal axes of the cone of apex S and circumscribed to
A.

This stems partly from the fact that the sets of transversal lines for which Oµ2

MM ′ is
constant form cones, which all share the same principal axes. These cones, Chasles
explains, are precisely the cones involved in Legendre’s clumsy and inextricable
analytic computation of the attraction of an ellipsoid. What appeared to Legendre
as a ‘lucky and fortuitous circumstance’ 80 has now been generated through a trans-
formation of a configuration, and a certain relation which controls said transforma-
tion. Hence, these cones appear organically, from within the geometrical reasoning
itself, and from the study of similar second-degree surfaces. This transformation
has plenty of properties which will shed light and clarity upon the proof itself. In
particular, they will provide Chasles with a natural, hence simple, choice for the
infinitesimal volumes to be integrated. But more can be said of these geometrical
objects in the context of confocal ellipsoids, to which we now turn our attention.

4.2. Rooting the proof in the theory of second-degree surfaces. The polar
transformation of surfaces can now be put to use on pairs of confocal second-degree
surfaces to great effect. First, Chasles notices that, for two second-degree surfaces
A,B of same center C,

A and B are confocal if and only if for any plane TM tangent to
A, if T ′M denotes the plane parallel to TM and tangent to B, the
quantity |d(C, TM )2 − d(C, T ′M )2| is constant (see Fig.3).

Chasles’ proof of this result goes as follows: if A and B are confocal, suppose
their principal axes are CX,CY,CZ. Then, considering two tangent planes TM
and T ′M as described above, let PA, PB denote the points where these planes re-
spectively cross A and B. Then, one can see that CP 2

A = a2 cos2(∠PACX) +
b2 cos2(∠PACY ) + a2 cos2(∠PACZ), where a, b, c are the principal radii of A. In a
similar fashion, CP 2

B = a′2 cos2(∠PBCX) + b′2 cos2(∠PBCY ) + a′2 cos2(∠PBCZ).
But due to the parallelism between both planes, ∠PACX = ∠PBCX, and so on
for Y,Z, and the sum of these squared cosinus equals 1. Therefore, CP 2

A −CP 2
B =

a′2− a2. Conversely, suppose A and B are concentric, and for each pair of parallel,
tangent planes TM , T

′
M , |d(C, TM )2 − d(C, T ′M )2| = λ. Then consider the surface

B′, confocal with A, such that its principal radii α, β, γ satisfy a2 − α2 = λ. The

79In particular, in [Cha52], correspondences are substituted to transformations, which elicited
some bitter remarks by Poncelet.

80[Cha37a], p.251
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Figure 3. Here, |CA2 − CB2| = |CH2 − CI2| (my figure)

reasoning above shows here that the planes tangent to B′ are exactly those tangent
to B, hence B = B′, thus allowing Chasles to conclude.

Chasles then considers two confocal, same-centered surfaces A,B, and S a fixed
point. The polar transformation discussed in the previous subsection yields two
polar surfaces A′, B′, of same center S. Using the equations (a′), (b′) given above,
Chasles shows that the conditions of the theorem stated previously are satisfied,
and thus that A′, B′ are confocal. This implies that their principal axes are the
same. But these axes are precisely the axes of the cones circumscribed to A,B of
apex S. Hence, these cones have the same axes as well.

Taking S to be on one of these surfaces, for instance B, then one of the cones will
be the plane tangent to B at S. One of its principal axes will be the normal to B at
S. The two other axes are also the normals to two other surfaces that go through S,
and which are confocal to A. These three surfaces will play an crucial role in what
follows81. For any second-degree surface A, and any external point S, there will
consequently be three confocal, second-degree surfaces S1,S2,S3 passing through
S, whose normals at S are the principal axes of the cone of apex S, circumscribed
to A. From that follows as well that the principal axes of A′ are these normals as
well, hence A′ and A are confocal.

With these geometrical properties in mind, Chasles is able to determine the prin-
cipal diameters of A′, through a series of (in part, algebraic) computations. From
these computations82 emerge a specific polar transformation of special interest. If
ε, ε′ are two confocal ellipsoids, S a fixed point in space, for any transversal line
turning about S, Chasles can construct a specific corresponding transversal line so

81Let us note here that they form an exemple of a triply orthogonal system of surfaces, which
would go on to form the basis of important works by Gaston Darboux, whose doctoral thesis on
this subject was supervised by Chasles himself in 1866.

82While we can’t give the details here, the reader is referred to [Cha46], see p.655-663.
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that both transversal respectively cross ε, ε′ at E,F and E′, F ′, and so that the
following equation always holds83:

(?)
Oe2

EF
:
Oe′

E′F ′
=

abc

a′b′c′
:

√
a2

1 − a2
√
a3 − a2√

a2
2 − a′2

√
a2

3 − a′2

where O is the center of ε and ε′, Oe,Oe′ their radiuses, a, a′ half their major
principal axes, ai half the major principal axis of Si.

4.3. A ’synthetic calculation’. From this moment onwards, Chasles is ready to
tackle the mechanical part of this problem. First he shows MacLaurin’s theorem for
an infinitely thin, ellipsoidal layer, comprised between two infinitely close, confocal
ellipsoidal surfaces ε1, ε2. Denoting the external point attracted S, Chasles consid-
ers the infinitely small element of volume intercepted by an infinitely small cone
whose apex is S. Let dv denote its volume, r its distance to S, then the attraction
it exerts on S is, as Newton’s mechanics state:

dv

r2

Now, Chasles can decompose this attraction onto three axes SA, SB, SC, using a
transformation into spherical coordinates that was well-known of any student of the
Ecole Polytechnique. This yields formulas which only involve the angles between
the axes and r. Let θ denote the angle formed by SA and r, and ω the angle formed
by SA and the plane generated by SB, SC. Then

dv = dr × rdθ × r sin θdω = r2 sin θ · drdθdω
Hence, the attraction of the ellipsoid along each axis is respectively

sin θ cos θ · dθdωdr , sin2 θ cosω · dθdωdr , sin2 θ sinω · dθdωdr
Now, denoting E,F the points where r crosses ε2, G their center, D,D′ the

points where OS crosses ε2, Oe the radius parallel to r (see Fig.4), the quantities
SE·SF
Oe2 and SD·SD′

OD2 are equal84. The same points can be considered for ε1, and since

ε1 and ε2 are confocal, G stays the same, as well as Oe
OD . Hence, the infinitesimal

dGE between each surface of the thin layer, which is equal to dr, can be computed.

Indeed, one simply rewrites SE · SF = SG2 −GE2 = Oe2

OD2 (SO2 −OD2); differen-
tiating this equation to take into account the thinness of the layer, since we know
which quantities are constant, we obtain

dr =
Oe2

GE

d ·OD
OD

= 2
Oe2

EF
· da
a

Therefore, the attraction of the thin layer on the point S, along the axis SA, is

2
da

a

Oe

EF
sin θdθdω

This derivation of the attraction of the thin ellipsoidal layer is what Chasles
calls a calcul synthéthique. Within the context of Chasles’ theory of second-degree
surfaces, there is now a natural choice for the axes SA, SB, SC. Indeed, by taking
SA, SB, SC to be the three normals to the surfaces aforementioned, and if consid-
ering a second confocal, infinitely thin ellipsoidal layer, attracting the same particle

83Giving the details of this construction is well without the scope of this paper. We hope,

however, that the details given above will enable the curious reader to follow Chasles’ proofs,
which is to be found in [Cha46], p.645-663.

84This is the very same ‘intersecting chords theorem for conics’ used at the very beginning of
this proof.
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Figure 4. One of Chasles’ few figures in this memoir. It mainly
serves to fix the notations.

S, the same computations hold and Chasles obtains an expression for the attraction
of this second layer (along SA) analogous to the one above. Now, using equation
(?) to determine the ratio of the attractions of these two layers, Chasles easily finds
that this ratio is

bcda

b′c′da′

Since dV = 4πbcda, and dV ′ = 4πb′c′da′, bcda
b′c′da′ = dV

dV ′ , the attractions of two
thin, ellipsoidal layers have the same ratio as their weights, as well as the same
direction. Decomposing two confocal ellipsoids E1, E2 into series of confocal thin
layers, one can establish a correspondance between these layers : let A,B,C denote
the principal diameters of E1, A′, B′, C ′ those of E2, the layers of each ellipsoid will
have, as principal diameters, respectively nA, nB, nC, and n′A′, n′B′, n′C ′. Two
layers are said to be corresponding when n = n′. It is then clear that corresponding
layers are confocal, and therefore the formulas can be summed. Thus concludes
Chasles’ first proof of MacLaurin’s generalized theorem.

Furthermore, at this point, Chasles is able to determine the direction of the
attraction of an ellipsoid on an exterior point. Considering MacLaurin’s generalized
theorem, it suffices to determine this attraction for a thin ellipsoidal layer, for
which we have obtained an expression earlier. Among the three surfaces we have
considered earlier, one is the confocal ellipsoid passing through S. Suppose that
SA is the normal of this ellipsoid at S, it can easily be seen that the attractions
exerted by two elements of volume of the ellipsoidal layer, located on transversal
lines passing through S and forming equal angles with SA, are equal. Hence, the
attraction is entirely directed along the axis SA. Therefore, we can define level-
surfaces as the surfaces which are, at every point, normal to the direction of the
attraction of the ellipsoid on this point. It appears then that the level-surfaces of
an ellipsoidal layer are its confocal ellipsoids85.

Chasles’ proof displays close to no figures, and proceeds via a large amount of
calculations and formulas, even resorting to infinitesimal, integral, and algebraic
computations. One could be tempted to rather tip the scales in favor of Analysis
when describing it, despite the fact Chasles himself regarded it as a faire-valoir
of the synthetic approach. To understand this apparent contradiction, one must

85While we do not tackle it in this paper, the computation of the intensity of this attraction is
carried out in several different ways by Chasles across his memoirs, which also highlight different
practices of computations, with various levels of geometrical interpretation involved. In [Cha37c],
Chasles uses the Laplacian equation ∆V = 0 (V denoting here the potential), and an integration
method first devised in [Lam37]. In other texts, he tries to limit the need for differential calculus.
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remember that Chasles’ criticism of Analysis did not bear on calculations qua cal-
culations, but only on blind calculations, that is calculations based on a thoughtless
use of arbitrary cartesian coordinates, and on the idea of reducing all of geometry
to a matter of mechanical computations86. The case of Legendre is but one striking
example of the blindness analytical calculations sometimes provoke; to which bears
witness his inability to see the specific nature and role of the cones involved in
his integration87. As such, Chasles’ ‘synthetic’ approach cannot purely be charac-
terized by the mathematical theories and tools it relies on, but rather by a set of
interconnected epistemological values and a specific practice of the proof88. The
virtuous practice derived from this set of values and rules is not necessarily one
without computations, but it is one where each and every computation has to be
correlated to a geometrical interpretation, so as to be clearly situated in this chain
of truths.

What this proof first shows, to Chasles, is that modern geometry has the re-
sources to attain truths which were previously thought to be the preserve of Anal-
ysis. In that regard, new methods, such as the theory of transversals or polar
transformations play a crucial role. Secondly, these alternative, geometrical proofs
cast a new light on a subject already well-studied by analysis. By virtue of these
advantages of pure geometry, which we described abstractly in the previous sec-
tions, Chasles has been able to root MacLaurin’s theorem in its natural setting,
namely the theory of second-degree surfaces. In so doing, he gained a clearer un-
derstanding of the causes of this theorem, and enlightened the central role of some
auxiliary surfaces: the confocal ellipsoids, which happen to be the level-surfaces to
the attraction of the initial ellipsoid. From the generality of modern geometry, a
simpler, more intuitive proof has been obtained89.

5. From simplicity to generality : the proof by correspondence

The second proof we wish to examine now was communicated to the Académie
des Sciences a few months later than the first one, during one of its weekly session,
on June 25th 183890. This proof does not require prior knowledge of Chasles’
theory of second-degree surfaces, and does not proceed by rooting the problem
of the attraction of ellipsoids within a more general geometrical theory. Rather,
Chasles carved a new geometrical object from some properties which played a key
role in the proof we outlined in the previous section, as well as from an 1809 memoir
written by Scottish mathematician James Ivory91. In this section, we first show how
Ivory’s notion of a correspondence between points on two confocal ellipsoids enabled
Chasles to drastically shorten and simplify his proof of MacLaurin’s generalized
theorem. Then, we describe how from this simpler proof, he extracted a more
general notion of geometrical correspondence, on which he set out to build a general

86As did Comte, in his Leçons de philosophie positive, in particular in his tenth lesson, where

he states : ‘One can form a very clear idea of the geometrical science, conceived in its totality, if we
assign as its general goal the reduction of comparisons of all sorts of extended volumes, surfaces,

lines etc. to simple comparisons of straight lines..’
87[Cha37a], p.395
88Do note, however, that this argument is limited to the case of Chasles’ specific conception

of geometry, and wouldn’t describe the synthetic geometry of, say, Von Staudt.
89Of course, this simplicity judgment by a 19th century actor is wont to be at odds with

our contemporary assessments. The fact that Chasles’ proof may seem more difficult to us than

intricate calculations, whose technical basis is more likely to have been taught to us, should not
distract us from the fact that our aim here is to understand how an actor’s epistemic values
structure and guide his mathematical practice, and not to search for an hypothetical conceptual

content of simplicity.
90[Cha38].
91[Ivo09].
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geometrical theory of attraction. In so doing, we will show another facet of the
connection between simplicity and generality, as in this case, simplicity paves the
way for a more geometrical theory to emerge.

5.1. Ivory’s memoir revisited. Ivory’s 1809 memoir was of great value and im-
portance for both Chasles and analysts such as Poisson92. As part of an effort
to incorporate French Analysis and mechanics into British science, Ivory wrote his
memoir in part to simplify and make more accessible new results obtained in France
in both of these scientific fields93. To that effect, his strategy was to work on the
analytic expression for the attraction of an ellipsoid E on an exterior point S, and
to transform it so that it can be read as the attraction of another ellipsoid E ′, on
an another point S′, interior to E ′. Effectively, this would reduce the problem of
the attraction of an ellipsoid on an exterior point, to that of an ellipsoid on an
interior point. To do so, Ivory constructed E ′ as the ellipsoid confocal with E , and
whose external surface passes through S94. After some analytic calculations, S′

was determined as well, and it was shown that these attractions were in the same
proportion. Ivory then proceeded to call these pairs of points and surfaces ‘corre-
spondent’. This was enough to show that MacLaurin’s theorem held for any two
confocal ellipsoids attracting points on the surfaces of one another.

Poisson put this memoir to great use, as he used the analytical transformation
at the basis of Ivory’s correspondence to compute the attraction of an ellipsoidal
body as the sum of infinitely-thin layers of confocal ellipsoidal layers. It is notewor-
thy that Chasles still classified Ivory’s proof as a synthetic one95, despite it being
largely composed of calculations we would easily regard as analytic, especially with
Poisson’s proof in mind. In a way, Chasles’ reading is basically an inversion of
that of Poisson : while the latter sees the notion of correspondence as a mere tool
to gain a tractable decomposition of ellipsoid, Chasles thematizes it and centers
his second proof around it. To do so, he devises the following definition96: ‘two
points of two confocal ellipsoids are said to be correspondent if and only if their
coordinates along each principal axis are in the same proportion as the diameters
of the ellipsoids along these axes’. This is the same notion as the one present in
Ivory’s memoir. However, it does not result from a calculation anymore: the cor-
respondence is taken to be a basic notion from which the study of confocal pairs of
ellipsoids will proceed, and will then be a potential object for generalization. This
shows how diverse the readings of a single mathematical text can be. While the
analyst’s computational mastery allows him to read in Ivory’s memoir an infini-
tesimal decomposition of ellipsoids which allows for a tractable integration of their
attraction, the very same text becomes a study in the geometrical correspondence
between confocal ellipsoids, while under scrutiny from a trained geometer.

92[Poi33], p.499, mentions his early and continued interest in Ivory’s work.
93‘It will not be altogether unworthy of the notice of the Royal Society, if [my method con-

tributes] to simplify a branch of physical astronomy of great difficulty, and which has so much

engaged the attention of the most eminent mathematicians’, [Ivo09], p.347. These ‘eminent math-
ematicians’, according to what precedes this quotation, are mainly Legendre and Laplace. For
more on the circulation of French Analysis in Great Britain (especially in context of astronomical

studies), see [Cra16].
94[Ivo09],p.351
95[Cha37a], p.165
96[Cha38], p.903
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Chasles’ rewriting and reinterpretation of Ivory’s correspondences had already
led to an important result in his Aperçu Historique, which would later be known
as Ivory’s theorem97. In Chasles’ terms, this theorem states that98:

For any two arbitrary points S,m on an ellipsoid, denoting their
correspondent points S′,m′, we have Sm′ = S′m.

Figure 5. Ivory’s theorem (my figure)

In his 1838 memoir on the attraction of ellipsoids, Chasles was able to use this
theorem to derive a much shorter solution, which we now reproduce. Chasles first
considered the following ellipsoids:

x2

a2
+
y2

b2
+
z2

c2
= 1(A)

x2

a2
+
y2

b2
+
z2

c2
= n2(An)

Furthermore, defining the correspondence between two points in space (x, y, z)
and (x′, y′, z′) by the equations

x

a
=
x′

a′
,
y

b
=
y′

b′
,
z

c
=
z′

c′

where a′, b′, c′ are arbitrary numbers, Chasles formed two ellipsoids A′, A′n, cor-
responding respectively to A and An. Choosing a′, b′, c′ so that

a2 − b2 = a′2 − b′2

a2 − c2 = a′2 − c′2

ensures that A,A′ (resp. An, A
′
n) are confocal99. Chasles then takes n smaller

than but infinitely close to 1, so that A and An become the internal and external

97This result has applications in the theory of billards, as well as in hyperbolic geometry, see
for instance [SW04]. Despite its name, most likely inherited after the publication of Dingeldey’s

article on the geometry of conics in Klein’s and Meyer’s Encyklopädie der mathematischen Wis-
senschaften, the theorem itself is not explicitly stated in Ivory’s memoir.

98[Cha37a], p.393-394. See fig.5.
99On a sheaf of confocal ellipsoids, correspondent points form confocal hyperboloids, which

are orthogonal to the ellipsoids (see fig.5). These hyperboloids are among the orthogonal surfaces
we described in the previous proof



CHASLES’S GEOMETRICAL THEORY OF ATTRACTION 25

surfaces of an infinitely thin layer C (the same holds for A′, A′n, C
′). The width of

each layer along the x-axis is, respectively:

da = (1− n)a , da′ = (1− n)a′

hence
da

da′
=

a

a′

For two points S,m on the surface A, and dν a volume element around m, and
their corresponding elements on A′,

dν

dν′
=

abc

a′b′c′

Now, Chasles’ theorem for corresponding points states that mS′ = m′S. Hence,
the previous equation can be rewritten:

dν

mS′
:
dν′

m′S
=

abc

a′b′c′

Summing that expression with regards to each and every ‘molecule100’ of each
layer, Chasles obtains the following equation:

Σ
dν

mS′
: Σ

dν′

m′S
=

abc

a′b′c′

which is also the ratio of the weights of each layer.

5.2. A second proof of MacLaurin’s generalized theorem. This last equation
expresses what Chasles describes as a ‘property that is sufficient to solve the whole
question101’. First, he notices that the differential coefficients of the function Σ dν

mS′

are equal to the coordinates of the attraction the layer C exerts on S′. Taking C to
be the external layer of the ellipsoidal layer, then S′ belongs to the internal surface
of the layer. Then, a generalized form of Newton’s ‘Shell theorem’ for ellipsoids
shows that the layer exerts no attraction on S′ (see fig. below).

Figure 6. A shell theorem for ellipsoids: the attraction of a thin
ellipsoidal layer on an internal point is null

Therefore, the differential coefficients of Σ dν
mS′ are null on the internal surface of

C, and Σ dν′

m′S is constant on A, and equal to a′b′c′

abc Σ dν
mS′ . It follows that A is normal

to the attraction C ′ exerts on S. Chasles then considers another layer C ′′, defined
in an analogous manner to C ′, for which

Σ dν′

mS′

Σ dν′′

mS′′

=
a′b′c′

a′′b′′c′′

100This is Chasles’ term for elements of volume.
101[Cha38], p.905
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Differentiating this equation along the x-axis for instance, Chasles shows that
the attractions of both layers along this axis have the same ratio as their weights,
and states the following result102:

Two confocal, ellipsoidal layers exert on an external point an at-
traction of similar direction, and whose magnitudes are in the same
proportion as the masses of the layers. This direction is that of the
normal of the ellipsoid passing through the attracted point and
confocal with these layers.

From there onwards, MacLaurin’s generalized theorem can be established fol-
lowing the same line of thought as in Chasles’ memoir. However, along the way,
new information has been gained, as the series of ellipsoids confocal to a given
ellipsoid can now be regarded as level-surfaces for the attraction of this given el-
lipsoid. Chasles regarded this alternative proof as much simpler than the previous
one. Not only is it considerably shorter, it also does not require an advanced knowl-
edge of modern geometry. More important, however, is the fact that it is centered
around one geometrical property that is very simple, therefore subject to further
generalizations, through the study of the geometry of level-surfaces.

5.3. Towards a geometrical theory of attraction. As early as 1837, within his
second memoir for the Journal de l’Ecole Polytechnique, Chasles had worked out
general theorems on the attraction of bodies, which allowed for analogous state-
ments in the theory of electricity, of heat, or hydrodynamics. However, in 1839,
in a public communication to the Académie des Sciences, he was able to go much
further, on the basis of a generalization of his work on ellipsoids. After stating a
theorem on level-surfaces of a body of any shape, he explained

‘This theorem enables us, once we know the level-surfaces related
to the attraction of a body, to reduce the calculation of this at-
traction to that of the attraction of an infinitely thin layer. [..]
And so this problem, considered from a general point of view, is
stripped of the great difficulties it had presented when we attacked
it through considerations both narrow and specific to the special
shape of this body. This case seems to offer a new example of the
advantages of generalization in geometry, to simplify theories and
shed an intuitive light on them103’.

Two years later, he published a short mémoire in the Connaissance des Temps104,
in which this striking claim is made more explicit. In this memoir, Chasles does
not start with level-surfaces, but rather with isotherms. Indeed, as he had already
noted in the specific case of ellipsoids, the isotherms can be obtained by fixing the
value of Laplace’s potential function V . On the importance of the introduction of
this function, Chasles makes the following observation:

‘Although the function considered by Laplace has not ceased to
play a major role in [all research related to attraction, magnetism,
or electricity], it has been exclusively studied under an analytic
point of view and within a second order differential equation; and

102[Cha38], p.906.
103‘Ce théorème permet, quand on connâıt les surfaces de niveau relatives à l’attraction d’un

corps, de ramener le calcul de cette attraction à celui de l’attraction d’un corps infiniment mince.

[..] De sorte que ce problème, envisagé ainsi d’un point de vue général, se dépouille des grandes

difficultés qu’il avait présentées quand on l’attaquait par des considérations restreintes et toutes
spéciales à la forme particulière du corps. Ce cas parâıt offrir un nouvel exemple des avantages

de la généralisation en géométrie, pour simplifier les théories et y répandre une clarté intuitive’,

[Cha39]; p.209-210.
104[Cha42]
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it has not yet been thought of to consider some surfaces which this
function gives rise to; surfaces that are analogous to those we call,
in hydrodynamics, level surfaces, and which we may also call level
surfaces relative to the attraction of bodies because the attractions
exerted by the body on the different points of each of these surfaces,
are directed along their normals105’.

What Chasles would then show, is that one can obtain these objects geometri-
cally, thus preserving their meaning and developing a geometrical theory of attrac-
tion. For that purpose, he considered a finite, closed body of any shape, and the
level-surfaces with regards to the attraction it exerts, given by the equations

V = λ

where λ is a constant number. In what follows, only surfaces that are entirely
external to the body are considered by Chasles. Let A be one of these surfaces,
m ∈ A, and dn the normal to A at m comprised between A and another level-surface
infinitely close to A. Chasles defines a more general concept of correspondence on
these level-surfaces: two points m,m′ on two level-surfaces A,A′ are said to be
correspondent if and only if they are on a line that is orthogonal to every level-
surface. Corresponding volume elements are similarly defined.

The main property of these correspondences, around which Chasles’ memoir is
structured, is that the body exerts an equal attraction on corresponding volume
elements. This translates into the following equation106:

dV

dn
dω =

dV ′

dn′
dω′

Chasles doesn’t prove this formula in his 1840 memoir; instead, he claims to have
already done so in his second memoir for the Journal de l’Ecole Polytechnique.
Tracing back his original statement, one cannot find any proof, but rather the
assertion that the result for the case of ellipsoids ‘se prête à la généralisation’ 107.
By this expression, it is to be understood that the reasoning adopted within the
case of ellipsoids can be applied mutatis mutandis to that of any sort of body, in
line with the stability criteria we described previously. The generalization from
the attraction of ellipsoids to the attraction of general surfaces is an effortless one:
because Chasles has found a simple, natural solution of the particular case, it suffices
to replace every particular term by its more general equivalent for the solution of
the general problem to follow.

This generalization, shows Chasles, turns out to be a most fruitful one. For
instance, his equation shows that the sum of the attractions exerted by the body
on the elements of a single level-surface is constant, and Chasles is able to compute
this sum, thus independently finding a result already proved by Gauss and Green108:∫ ∫

dV

dn
dω = 4πM

105‘Mais, bien que la fonction considérée par Laplace n’ait pas cessé depuis de jouer un röle

principal dans toutes les recherches de ce genre, c’est toujours sous un point de vue exclusivement
analytique et dans l’équation différentielle du second ordre, qu’on l’a étudiée ; et l’on n’a pas songé
à considérer certaines surfaces auxquelles donne lieu cette fonction ; surfaces analogues à celles
qu’on appelle, dans la théorie des fluides, surfaces de niveau, et qu’on peut appeler aussi surfaces

de niveau relatives à l’attraction du corps, parce que les attractions exercées par le corps sur les
différents points de chacune de ces surfaces, sont dirigées suivant les normales.’, [Cha42], p.19.

106Notice the similarity with the geometrical property at the center of the proof by correspon-
dence above.

107[Cha37c], p.284-286
108[Cha42], p.25.
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where M is the mass of the body, and the integral is extended to all of the
elements of the surface A. Perhaps more importantly, Chasles can rewrite the
equality of the attractions of the body on corresponding elements of volume in the
following manner109:

KdV ′

K ′dV
=
Kdω

dn
:
K ′dω′

dn′

where K,K ′ are two infinitely-small coefficients of the second order. Since dV
and dV ′ are constant for points on level-surfaces A,A′, so is the right-hand term,
which is also the ratio between corresponding elements of volume on A and A′.
Summing on the whole surfaces, this ratio is shown to be also the ratio between
the whole layers on A and A′. Hence110,

Any canal orthogonal to every level-surface intercepts in two layers
volumes which are in the same proportion as the total volumes of
the layers, which can be expressed by the equation:

dµ

µ
=
dµ′

µ′

This equation is shown by Chasles to have many consequences, most notably
a general shell theorem for a wide category of bodies, which shows how powerful
this geometrical perspective on mechanics can be111. The seeds for a geometrical
theory of attraction were planted. Chasles, however, did not pursue these matters
any further, leaving these promises mostly unfulfilled112. Whatever the merits of
this theory, what we assuredly gained from the study of this memoir, is an insight
into how simplicity in geometrical practices can lead to generality, and how these
values actively structured Chasles’ quest for simpler, more general proofs.

6. Conclusion

Chasles’ sequence of publications on the problem of the attraction of ellipsoids
illustrates and substantiates his theses on the connection between the values of
simplicity and generality in mathematical practice. This connection is manifold
but also dynamic: through the search for a simpler proof, more general settings
and results are found, and vice-versa. Chasles’ alternative proofs are motivated
by an active search for a general theoretical setting in which the solution to the
problem of the attraction of ellipsoids becomes much more simple. Conversely, as
Chasles demonstrates, such simple proofs necessarily reveal and indicate a clear
and open path towards generalization. Thusly, these proofs adduce evidence to the
claim that virtuous geometrical practices do end up yielding a wealth of riches that
the analyst, only concerned with the speedy derivation of a formula, will fail to
apprehend.

In this sense, the connection Chasles establishes between the values of simplicity
and generality is not only constitutive of a certain epistemology of geometry, but
also of an ethos, of a way of acting as a geometer. Such an outlook explains why
Chasles’ epistemological discussions echo so strongly his mathematical practice.
Rather than viewing the latter as an application of a general theory of mathemat-
ical knowledge, whose internal coherence and stability may be subject to further

109ibid., p.26.
110ibid., p.27.
111Although some restrictions ought to be put on Chasles’ statements for the theorems to

satisfy modern criterias of exactness.
112Although these ideas were not lost to everyone; see, for example, Benjamin Peirce, whose

System of Analytic Mechanics develops a concept of ‘Chaslesian shells’.
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discussion and criticism, we suggest regarding both as produced by a single agent
bounded by the same set of epistemic imperatives. Investigating this ethos demands
to read closely both Chasles’ mathematics, with their own autonomous rationality,
and the expression of the rules which determine how this autonomous mathematics
comes into being, that is to say is actually produced and written down. Through
the case of the attraction of ellipsoids we come to see how both epistemological
discussions and self-imposed epistemic rules are necessary to understand an actor’s
practice. The history of Newtonian mechanics, therefore, is not merely that of a
succession of results: it is in fact shaped by the fluctuation in disciplinary bound-
aries and identities, and one can do without neither the discussion of these results,
nor of these disciplinary changes.

References

[Arn85] Vladimir Arnold. Some Remarks on Elliptic Coordinates. Journal of Soviet Mathemat-

ics, 31:3280–3289, 1985.

[Ber92] Joseph Bertrand. Eloge Historique de michel Chasles. Séances publiques annuelles de
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915, 1838.
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[Cha52] Michel Chasles. Traité de Géométrie Supérieure. Bachelier, Paris, 1852.
[Cha74] Michel Chasles. Considérations sur le caractère propre du principe de correspondance.

Comptes-Rendus de l’Académie des Sciences, pages 577–585, 1874.
[Che98] Karine Chemla. Lazare carnot et la généralité en géométrie. variations sur le théorème
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des mathématiques, 22:223–294, 2016.
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