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Abstract

We consider the inclusive cross section for jet production with large trans-
verse momentum in deep-inelastic scattering. This process has been proposed
as a probe of small-x physics, particularly the measurement of ‘hot spots’ in-
side the proton. We present a numerical calculation of this process, taking
into account a larger phase space. The theoretical reliability as well as phe-
nomenological uncertainties of the calculation are discussed.

1email: eric@fnth010.fnal.gov
2On leave from St. Petersburg Nuclear Physics Institute, 188350 Gatchina, St. Peters-

burg, Russia

e-mail: levin@fnal.fnal.gov, FNAL::LEVIN
3by E. Levin

1

http://arxiv.org/abs/hep-ph/9305341v1


1 Introduction.

In order to study the main properties of low xB deep-inelastic scattering
processes, Mueller suggested in [1] an experiment in which all anticipated
new phenomena in this kinematical region should have a large effect. His
idea was to measure the inclusive production of a gluon jet with a transverse
momentum kj,t very close to the photon virtuality Q and with a fraction of
energy xj as close to one as is feasible, so that the ratio xB/xj can be small.
In this case,

• the cross section of the process can be calculated within the framework
of perturbative QCD, if k2

t ≃ Q2 >> Λ2
QCD.

• the dependence of the cross section on xB is governed by low xB gluon
emission which can be described by the BFKL evolution equation [2].
This is in contrast with the usual GLAP [3] approach, in which the
cross section is described by the simple Born diagram of Fig.1a. and
turns out to be constant with respect to xB.

• the scale of the shadowing corrections is determined by the size of the
‘hot spot’ , namely R ≃ 1/kj,t and they are expected to be large (see
ref. [4]).

Numerical estimates for this process have been performed in a series of
papers [5]-[9], but, in our view, the matter has not been settled yet (cf. the
strong dependence on an infrared cut-off in the BFKL equation with running
coupling, for values of k2

t and Q2 that are smaller than about 50 GeV2 [7]-[9]).
In this paper we reconsider the theoretical formulae for the cross section

and present our numerical estimates in studying the small-x and infrared
behavior of the one-jet inclusive cross section. We will not consider any
shadowing corrections.

2 The basic formula.

The correct formula for inclusive one-jet production in the region of small xB

was given in ref. [11]. In terms of a differential structure function involving
the jet variables xj and k2

t (resp. the longitudinal momentum fraction of the
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jet and its tranverse momentum squared), it looks as follows for gluon jet
production

dF2(xB, Q
2; xj, k

2
t )

d lnxjdk2
t

=
3Nc

πk2
t

∫

d2k1,td
2k2,t

π
· αS(min{k2

1,t, k
2
2,t, k

2
t })

φB(
xB

xj
, k2

1,t, Q
2)φG(xj , k

2
2,t) · δ

(2)(kt − k1,t − k2,t)

=
3Nc

πk2
t

∫ dk2
1,tdk

2
2,t

√

−λ(k2
1,t, k

2
2,t, k

2
t )

· αS(min{k2
1,t, k

2
2,t, k

2
t })

φB(
xB

xj
, k2

1,t, Q
2)φG(xj , k

2
2,t), (2.1)

where all notation is explained in Fig.1b., λ(x, y, z) = x2 + y2 + z2 − 2xy −
2xz − 2yz, and φG is the gluon density, related to the gluon distribution
function xG(x,Q2) by

dαS(k
2)xG(x, k2)

dk2
= φG(x, k

2)αS(k
2). (2.2)

As was shown in ref. [10], eq. (2.1) can be reduced in the double logarithm
approximation (DLA) of perturbative QCD to the expression of eq.(51) in
[11], where the inclusive production in deep-inelastic scattering was studied
in detail within this approximation. (see also [10]). If we integrate in eq.
(2.1) only the part of phase space where k2

2,t << k2
1,t (k2

1,t ≃ k2
t ) (‘small’

phase space) we can rewrite eq. (2.1) in the form:

dF2

d lnxjdk
2
t

=
3Nc

πk2
t

∫

dk2
2,t · αS(k

2
2,t)φB(

xB

xj

, k2
t , Q

2)φG(xj , k
2
2,t)

=
3Nc

πk2
t

αS(k
2
t )φB(

xB

xj

, k2
t , Q

2)xjG(xj , k
2
t ). (2.3)

It is this equation that was used in all previous numerical estimates of the
inclusive jet production [5]-[9]. Here we calculate the differential structure
function without any restriction on the region of integration (‘large’ phase
space). In comparing the two we will find an enhancement of the cross section
due to the larger phase space of about 80 %.
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3 Calculational procedure.

The functions φ in eq. (2.1) are solutions of the BFKL-equation [2],

∂φ(x, k2)

∂ ln(1/x)
=

3αS

π

∫

∞

k2
0

dk′2
{φ(x, k′2)− φ(x, k2)k2/k′2

|k′2 − k2|
+

k2

k′2

φ(x, k2)

(4k′4 + k4)(1/2)

}

.

(3.1)
We now discuss aspects of our procedure of solving this equation.

We chose different initial conditions for the functions φB(
xB

xj
, k2

t , Q
2) and

φG(xj , k
2
t ) in (2.1). For φB(

xB

xj
, k2

t , Q
2) we used the same initial condition as

in ref. [7], namely at z0 = xB/xj = 10−1

φB(z0, k
2
t , q

2) =
F0(z0, k

2
t , Q

2)

k2
≃

F0(k
2, Q2)

k2
, (3.2)

where the function F0, related to the quark box diagram, was calculated in
refs. [5]-[7]. For φG(xj , k

2
t ) we have to reconstruct the initial condition from

experimental data. However, in order to solve the BFKL-equation we need
to know the behavior of φ at any value of k2

t for some fixed x, even at k2
t → 0.

To accomplish this, we used the following procedure to describe the low k2
t

behavior of xjG(xj , k
2
t ):

xjG(xj , k
2) →

k2

k2 + q20
x̃jG(x̃j , k̃

2) (3.3)

where k̃2 = k2 + q20, x̃ = x/(x + k2/k̃2(1 − x)). We used the mapping (3.3)
because (1) this parametrization ensures xjG(xj , k

2) ≃ k2 as k2 → 0 and
such a behavior is the direct consequence of the gauge invariance of QCD,
and (2) it works for the case of F2 (see refs. [12]-[13]).

For the function x̃jG(x̃j, k̃
2) we used a fit 4 to the data set from the CTEQ

collaboration [14] down to Q2 values of 1 GeV2. The initial condition for φG

was then constructed according to (2.2) (we used a fixed coupling), at a value
x = 10−2, where, as in [7], instead of xG(x, k2) we used the effective density
xG(x, k2) + 4

9

∑4
f=1 x[qf (x, k

2) + q̄f (x, k
2)].

We solved5 the BFKL equation (3.1) with a fixed coupling αS = αS(Q
2)

because this equation only sums the leading logs (αS ln(1/x))
n, and not the

4We are grateful to J. Botts for making this fit, and discussions relating to it.
5We are grateful to J. Kwiecinski for sending us his program to solve the BFKL equation

numerically.
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subleading ones. The latter remains an unsolved problem. However, we made
a rough estimate of how important the corrections from a running αS could
be by calculating an average αS

< αS >i=

∫

dk2αS(k
2)φi(x, k

2)
∫

dk2φi(x, k2)
, i = B,G (3.4)

The dependence of < αS >i on xB showed that we could use αS = αS(Q
2) as

a good first approximation. For example, for k2 = Q2 = 10 GeV2, we found
αS(Q

2) ≃ 0.2, and < αS >i≃ 0.15 for x < 10−2 for both i = B,G.
A much more detailed study of this problem can be found in [9].
The last point we discuss is the infrared cut-off k2

0 in eq. (3.1). In principle
eq. (3.1) is infrared stable and one can take k2

0 = 0. However, in order to
further investigate the dependence of the solution of (3.1) on small momenta
we preferred to introduce a cut-off k2

0 and see how much the answer depends
on its value.

4 Results and conclusions.

The results are shown in Figs.2a and 2b. for the values k2 = Q2 = 10 GeV2,
xj = 10−2. The first observation we make from Fig.2a is that the answer for
(2.1) when one includes the correct (‘large’) phase space increases the results
of previous calculations (small phase space) by about 80 %. Furthermore,
the dependence on q20 is visible, but does not compensate for the difference
between small and large phase space. A similar conclusion we found to hold
for the dependence on the infrared cut-off k2

0.
The most discouraging result is shown in Fig.2b. Here we plot the nor-

malized differential structure function

R2 =
1

F2(xB, Q2)

dF2(xB, Q
2; xj , k

2)

d lnxjdk2
(4.1)

where we took F2(x,Q
2) =

∫

dk2φB(
xB

xj
, k2, Q2)φG(xj , k

2). One notes that

this ratio seems to be independent of xB. This would seem to indicate that,
within the approximations made, this special environment does not seem to
be much better for measuring small-x effects than a direct measurement of
F2. This feature persisted when we took F2(x,Q

2) constructed from the MRS
D ′ distributions [15].
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Figure Captions

Fig.1a. Born diagram for single gluon jet production in deep-inelastic scat-
tering.

Fig.1b. Single-jet production in deep-inelastic scattering in the large phase
space case.

Fig.2a. Plot of dF2

d lnxjdk2
vs. xB. The value of xj is 0.01 and we took k2 =

Q2 = 10 GeV2. The solid line corresponds to the small phase space case,
the three remaining to the large phase space case with three different
values of q20, namely q20 = 1 GeV2 (long-dashed), q20 = 2 GeV2 (short-
dashed) and q20 = 4 GeV2 (dotted).

Fig.2b. The ratio R2 (4.1) for three values of q20 in the large phase space
case. The notation is the same as in Fig.2a.
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