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Abstract

We investigate the effects of photon radiation on deep-inelastic eγ scat-
tering. Depending on the set of variables chosen, we find appreciable effects
in the kinematic region accessible at LEP2. Convenient analytic results for
O(α) corrected differential cross sections are presented.
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1 Introduction

In the period leading up to the start of the HERA program a substantial amount
of work was done on radiative corrections to observables in deep-inelastic scatter-
ing (DIS) of electrons off protons (see e.g. [1] for an overview). These corrections
are substantial enough for both HERA experiments to correct for them. Part of
the upcoming LEP2 physics programme involves the measurement of the photon
structure function F γ

2 (x,Q
2). This structure function is extracted from deep-

inelastic electron–photon scattering in the reaction e+e− → e+e−X , where one of
the leptons escapes undetected down the beam pipe, while the other is measured
at rather large angle. It is therefore important to study radiative corrections to
deep-inelastic electron–photon scattering. This is our purpose in this paper.

Radiative corrections to e+e− → e+e−X have been calculated forX a (pseudo)
scalar particle [2, 3, 4] and X = µ+µ− [4, 5]. It was found that they are very
small (on the percent level) in the no-tag case, when neither the electron nor
the positron is being measured. In such a kinematic configuration, when the
momentum transfer between the incident and outgoing electron (or positron) is
small, the vertex- and bremsstrahlung contributions effectively cancel each other,
leaving a small correction dominated by vacuum polarization [3, 4]. This implies
that for the equivalent photon spectrum, which is essential to relate e±γ with
e+e− reactions, corrections are small. In contrast, radiative corrections can be
sizeable in the case where one of the leptons scatters at a large angle - single tag
- and one studies differential cross sections which depend strongly on the energy
and angle of the tagged electron (or positron).

Surprisingly, no calculations of the size of radiative corrections for inclusive
deep-inelastic electron–photon scattering, i.e. eγ → eX with both large Q2 (the
absolute value of the transferred momentum squared) and W (the mass of state
X), have been performed yet. Correspondingly, in experimental analyses of the
(hadronic) photon structure function F γ

2 (x,Q
2) radiative corrections have so far

not been included (as usual, x = Q2/(Q2 +W 2)). They are usually assumed to
be negligible. Recently, the AMY collaboration [6] estimated the size of radia-
tive corrections by comparing a Monte-Carlo event generator based on the full
cross section formula for e+e− → e+e−γµ+µ− [5] (with the muon mass and elec-
tric charge changed to correspond with quark-antiquark pair production) with
a generator for e+e− → e+e−qq̄ where the cross section for eγ → eqq̄ with a
real photon was convoluted with the equivalent photon spectrum. A (positive)
correction of order 10% for the visible x distribution was found, which, however,
cancelled effectively against the correction due to a non-vanishing target-photon
mass. Hence no net correction was applied.

Nevertheless, it is important to understand both corrections separately, and
their behavior as a function of the kinematic variables chosen and phase space.
Moreover, the hadronic structure of the photon must not be neglected. Here we
therefore estimate the size of the radiative corrections to inclusive deep-inelastic
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eγ scattering, using the full photon structure function.
In the next section we describe the relevant kinematics and formalism and in

section 3 we present results.

2 Formalism

We consider the O(α) corrections to deep-inelastic scattering (DIS) of electrons
on (quasi-real) photons:

e(l) + γ(p) → e(l′) + γ(k) +X(pX) . (1)

This process is depicted in Fig.1, in which we indicate all momentum labels.
The target photon γ(p) is part of the flux of equivalent photons around the

non-tagged lepton. We assume that this flux has a momentum density given by
the Weizsäcker-Williams expression

fγ/e(z) =
α

2π

{

1 + (1− z)2

z
ln

P 2
max

P 2
min

− 2m2
ez(

1

P 2
min

− 1

P 2
max

)

}

(2)

where P 2
min = (z2m2

e)/(1 − z) and P 2
max = (1 − z) (Ebθmax)

2. Here z is the
longitudinal momentum fraction of the target photon with respect to its parent
lepton, Eb =

√
s/2 is the lepton beam energy, θmax is the anti-tag 1 angle and

P 2 = −p2. In the following we put P 2 = 0 and neglect electron masses everywhere
except in (2). Moreover we substitute P 2

max by P 2
max +P 2

min so that we can easily
extend the z range to 1, see [7].

e(l)

e(l’)

e(m)
e(m’)

γ(q)

γ(k)

pXγ(p)

Figure 1: Photon bremsstrahlung from the tagged lepton line in deep-inelastic scattering off an

equivalent photon.

The DIS variables can be defined either from the leptonic or the hadronic
1i.e. all events in which the parent lepton scatters at an angle larger than θmax are rejected.
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momenta:
ql = l − l′ qh = pX − p = ql − k

W 2
l = (p+ ql)

2 W 2
h = (p+ qh)

2 = p2X
Q2

l = −q2l Q2
h = −q2h

xl = Q2
l /2p · ql xh = Q2

h/2p · qh
yl = p · ql/p · l yh = p · qh/p · l

(3)

Note that both Q2
l = xlylseγ and Q2

h = xhyhseγ, where seγ = (p + l)2, but that
leptonic and hadronic variables agree only for nonradiative events, i.e. if k = 0.
We will see that the size of the corrections strongly depends on which set of
variables are used in the measurement. In practice one determines Q2 from the
tagged lepton, and x from the (visible) hadronic energy Wh.

The Born cross section (i.e. no γ(k) in (1)) is given by

d2σB

dxdQ2
= fB(x,Q2, s) , (4)

where

fB(x,Q2, s) =
2πα2

xQ4
F2(x,Q

2) (5)

×
∫ 1

zmin(x,Q2,s)
dz fγ/e(z) Y+

(

Q2

xzs

) {

1 +R

(

x,Q2,
Q2

xzs

)}

. (6)

Here we have defined zmin(x,Q
2, s) = Q2/xs, Y+(y) = 1 + (1− y)2 and

R(x,Q2, y) =
−y2

1 + (1− y)2
FL(x,Q

2)

F2(x,Q2)
. (7)

F2,L are the photon structure functions (we have dropped the superscript γ). The
above form eq. (6) is useful because F2 can be factored out of the z integration.
For comparison of eγ with ep scattering we will also give the cross section in
terms of x and y

d2σB

dxdy
= gB(x, y, s) , (8)

where

gB(x, y, s) =
2πα2 Y+(y)

x2y2s

∫ 1

ǫ(x,y,s)

dz

z
fγ/e(z)F2(x, xyzs) {1 +R(x, xyzs, y)} . (9)

The lower limit ǫ = W 2
min/(1 − x)ys on the z-integration in eq. (9) arises if

a lower cut is applied to the invariant hadronic mass W . At the Born level
expressions (4) and (8) are equivalent and valid for both sets of variables in
(3). For the ep case the full electroweak corrections have been calculated for
both neutral current reactions [8, 9], including elastic nucleon scattering [10],
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and charged-current reactions [11]. It is well-known that the leading logarithmic
approximation (LLA) (in ln(Q2/m2

e)) reproduces the exact results to within a few
percent however [12, 13]. Here we will therefore work within this approximation
and neglect furthermore Z exchange.

We consider first the radiative corrections to the differential cross section in
(8) in terms of xl and yl. The O(α) corrections in LLA arise from collinear and
soft bremsstrahlung from the initial and final electron that couple to the “probing
photon” and from the Compton process2. The latter corresponds to the case in
Fig.1 where the exchanged photon γ(q) is quite soft, but γ(k) is radiated at a
wide angle causing the lepton e(l′) to be tagged. The bremsstrahlung terms are
given by

d2σBr

dxdy
=
∫ 1

0
dxi De/e(xi, Q

2)
{

Θ
(

xi − x0
i

)

J(x1, x2)g
B(x̂, ŷ, ŝ)− gB(x, y, s)

}

(10)
where ŝ = x1s, x̂ = xx1y/(x1x2 + y − 1), ŷ = yx/x2x̂, J(x1, x2) = y/x1x

2
2ŷ,

x0
1 = (1− y)/(1− xy) and x0

2 = xy + 1− y, and

De/e(x,Q
2) =

α

2π
ln

(

Q2

m2
e

)

1 + x2

1− x
. (11)

In eq. (10) we have supressed the subscript l on x and y for clarity. Initial-
state radiation corresponds to xi = x1 and x2 = 1 in eq. (10) and vice versa for
final-state radiation. The Compton contribution is given by

d2σC

dxldyl
=
∫ 1

ǫ
dz fγ/e(z) h

C(xl, yl, xlylzs, zs) , (12)

where

hC(x, y, Q2, s) =
α3

x2(1− y)s
Y+(y) ln

Q2

M2

∫ 1

x

dv

v

[

1 +
(

1− x

v

)2
]

× F2(v,Q
2)(1 +R(v,Q2, y)) . (13)

The logarithm ln(Q2/M2) is a result of the absorption of the collinear singularity
from the quark to photon splitting by renormalizing the photon density in the
quark at scale M . We take M here to be the proton mass [8].

Next we discuss the radiative corrections to the differential cross section ex-
pressed in hadronic variables. Now there are, in accordance with the KLN the-
orem [14], in LLA approximation neither corrections from final state radiation,
nor from the Compton process because these process do not affect the kinematic

2As stated above, radiative effects to the Weizsäcker-Williams spectrum are small [4] and
we therefore neglect them.

4



variables. We find that the correction due to initial state radiation can simply
be expressed as

d2σcorr

dxhdQ2
h

=
2πα2

xhQ4
h

{

F2(xh, Q
2
h)
∫ 1

zmin(xh,Q
2

h
,s)

dz fγ/e(z) gh

(

xh, Q
2
h,

Q2
h

zxhs

)

+ FL(xh, Q
2
h)
∫ 1

zmin(xh,Q
2

h
,s)

dz fγ/e(z) hh

(

xh, Q
2
h,

Q2
h

zxhs

)}

(14)

where

gh(x,Q
2, y) =

α

π
ln

Q2

m2
e

{

Y+(y) ln(1− y) + y
(

1− y

2

)

ln y + y
(

1− y

4

)}

(15)

and

hh(x,Q
2, y) =

α

π
ln

Q2

m2
e

{

−y2 ln(1− y) +
y2

2
ln y − y

2

(

1− y

2

)

}

(16)

The corrections are large at large y (soft region), and can in fact be resummed
by simple exponentiation, with the result

gh(x,Q
2, y) = Y+(y)

{

exp

[

α

π

(

ln
Q2

m2
e

− 1

)

ln(1− y)

]

− 1

}

+
α

π
ln

Q2

m2
e

{

y
(

1− y

2

)

ln y + y
(

1− y

4

)}

(17)

and

hh(x,Q
2, y) = −y2

{

exp

[

α

π

(

ln
Q2

m2
e

− 1

)

ln(1− y)

]

− 1

}

+
α

π
ln

Q2

m2
e

{(

y2

2

)

ln y − y

2

(

1− y

2

)

}

(18)

In the next section we use the formulae listed in the above to estimate the size
of the corrections.

3 Results

Here we study the radiative correction to deep-inelastic electron–photon scat-
tering numerically. For the results presented below we use

√
s = 175GeV and

Wmin = 2GeV. For the parton densities in the photon we use set 1 of [15]. This
set has an already low minimum Q2 of Q2

0 = 0.36GeV2. However in radiative
events even lower values of Q2 contribute. We therefore extrapolate below this
value by

F γ
2 (x,Q

2 < Q2
0) = F γ

2 (x,Q
2
0)

(

Q2

Q2
0

)2

+

(

1− Q2

Q2
0

)

Q2(1− x)

112GeV2

×
(

0.211(
W 2

GeV2
)0.08 + 0.297(

W 2

GeV2
)−0.45

)

, (19)
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(this expression correctly approaches the γγ total cross section in the small Q2

limit) which vanishes as Q2 → 0, as required by gauge invariance. Furthermore
we have neglected F γ

L , i.e. we put R in (6) and (9) to zero. We found that its
inclusion has a negligible effect.
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-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
yl

Figure 2: The ratio δ(xl, yl) (20) vs. yl for various xl values. Top curve is for xl = 0.01, the
next for xl = 0.1. Each subsequent curve represents an increase of xl by 0.1.

For comparison with the ep case we now show in Fig.2 the correction δ(xl, yl),
using (8), (10) and (12), defined by

d2σBr

dxldyl
+

d2σC

dxldyl
=

d2σB

dxldyl
δ(xl, yl) . (20)

Note that we use here the leptonic variables to conform with the ep case. A
closer examination reveals that initial and final state radiation are similar in
order of magnitude throughout most of the x, y region, whereas the Compton
contributions is appreciable only in the small and medium x, large y region. Also
we note that if one freezes F2 at F2(Q

2
0) for Q

2 < Q2
0, instead of extrapolating as

in (19), we find that only the xl = 0.01 curve changes significantly. It decreases
at small and medium yl by up to 50%. Note that inclusion of final state radiation
implies a perfect measurement of the energy and momentum of the tagged lepton,
even in the presence of collinear radiation.
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We see in Fig.2 that radiative effects can in principle be large, around 40%
for medium x and small y.

Next we show in Fig.3 the correction factor δ(xh, Q
2
h), defined by

d2σcorr

dxhdQ2
h

=
d2σB

dxhdQ2
h

δ(xh, Q
2
h) ., (21)

in terms of hadronic variables, as a function of xh for various choices of Q2
h, cf.

(14). Here only initial state lepton bremsstrahlung is taken into account, because
the scattered lepton is not used in constructing the kinematic variables.

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
xh

Figure 3: The ratio δ(xh, Q
2
h) vs. xh for three Q2

h values. Top curve: Q2
h = 1GeV2. Middle

curve: Q2
h = 10GeV2. Lower curve: Q2

h = 100GeV2.

We see that the corrections are sizable only for large Q2. Using however the
resummed version of (17) and (18), we find that the corrections are reduced by
about an order of magnitude.

Thus we conclude that the size of the radiative corrections depends signifi-
cantly on the set of variables chosen. These corrections can in principle be quite
large. As noted before, in practice mixed variables are used. In view of the
results obtained in this paper, we think a more careful study, involving Monte
Carlo simulation of the full final state, is warranted.
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