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Abstract

We examine the contributions of soft gluons to the Higgs production cross

section at the LHC in the Standard Model and its minimal supersymmetric

extension. The soft gluon radiation effects of this reaction share many features

with the Drell-Yan process, but arise at lowest order from a purely gluonic initial

state. We provide an extension of the conventional soft gluon resummation

formalism to include a new class of contributions which we argue to be universal,

and resum these and the usual Sudakov effects to all orders. The effect of these

new terms is striking: only if they are included, does the expansion of the

resummed cross section to next-to-leading order reproduce the exact result

to within a few percent for the full range of Higgs boson masses. We use

our resummed cross section to derive next-to-next-to-leading order results, and

their scale dependence. Moreover, we demonstrate the importance of including

the novel contributions in the resummed Drell-Yan process.
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1. Introduction

The search for Higgs particles [1] is one of the most important endeavors for

future high energy e+e− and hadron collider experiments. The Higgs boson is the

only particle of the Standard Model (SM) which has not been discovered so far. The

direct search at the LEP1 experiments via the process e+e− → Z∗H yields a lower

bound on the Higgs mass of 65.2 GeV [2]. Theoretical consistency restricts the Higgs

mass to be smaller than ∼ 700 GeV [3]. The dominant Higgs production mechanism

at the LHC, a pp collider with a c.m. energy of 14 TeV, is the gluon fusion process

gg → H which is mediated by a heavy quark triangle loop at lowest order [4]. As

an important step to increase the theoretical precision the two-loop QCD corrections

have been calculated, resulting in a significant increase of the predicted total cross

section by about 50 – 100% [5,6]. The dependence on the unphysical renormalization

and factorization scales decreased considerably by including these next-to-leading-

order (NLO) corrections, resulting in an estimate of about 15% for the remaining

scale sensitivity [5]. It is important to note, and we will demonstrate, that the NLO

corrections are dominated by soft gluon radiation effects.

The minimal supersymmetric extension of the Standard Model (MSSM) is among

the most attractive extensions of the SM. It requires the introduction of two Higgs

doublets leading to the existence of five scalar Higgs particles, two scalar CP-even

h,H , one pseudoscalar CP-odd A and two charged bosons H±. This Higgs sector can

be described by fixing two parameters, which are usually chosen to be tgβ, the ratio of

the two vacuum expectation values, and the pseudoscalar Higgs mass MA. Including

higher order corrections to the Higgs masses and couplings up to the two-loop level,

the mass of the lightest scalar Higgs particle h is restricted to be smaller than ∼ 130

GeV [7]. The direct search at LEP1 sets lower bounds of about 45 GeV on the masses

of the MSSM Higgs bosons [2]. The dominant neutral Higgs production mechanisms

at the LHC are the gluon fusion processes gg → h,H,A and the associated production

with a bb̄ pair gg, qq̄ → bb̄h, bb̄H, bb̄A which becomes important only for large tgβ [8].

The coupling of the neutral Higgs particles to gluons is again mediated by top and

bottom loops, with the latter providing the dominant contribution for large tgβ, and

squark loops, if their masses are smaller than about 400 GeV [9]. (In this paper

we shall assume the squark masses to be 1 TeV, so that squark loops can safely be

neglected.) The two-loop (NLO) QCD corrections to the gluon fusion mechanism

have also been calculated [5,9] and conclusions completely analogous to the SM case

emerge. Soft gluon radiation effects again provide the dominant contribution to these

corrections, for small tgβ. For large tgβ bottom mass effects will be of similar size

due to the dominance of the bottom quark loops and we will not consider this regime

in this paper.

In previous analyses the resummation of soft gluon radiation in the transverse
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momentum distribution of the Higgs bosons has been performed [10], which are sig-

nificant at small pT . We consider universal soft gluon effects on the total production

cross section and demonstrate that these dominate the NLO corrections both in the

SM and the MSSM for small tgβ. The study of these effects in higher orders, and

their resummation to all orders is our purpose in this paper.

Although our main focus is Higgs production, we will consider soft gluon effects

in the Drell-Yan process for comparison. Higgs production shares many features

with this reaction, apart from the species of leading initial state partons, e.g. it

also proceeds at lowest order via a color singlet hard scattering process, and is a

2 → 1 process at lowest order. The Drell-Yan process has been studied by performing

exact perturbative QCD calculations up to next-to-next-to-leading order (NNLO) in

Ref. [11] and in the context of soft gluon resummation in [12]. In this paper we

present an extension of the conventional soft gluon resummation formalism, in which

we use the Drell-Yan reaction to gauge its quality and importance. We then apply the

extension to Higgs production to derive the first estimates of NNLO effects. These

estimates are important in view of the size of the NLO corrections.

The paper is organized as follows: In section 2 we describe the construction of the

resummed cross section and the extension of the soft gluon resummation formalism.

In section 3 we present NLO and NNLO results from the expansion of the resummed

cross sections for Higgs production and the Drell-Yan process. We conclude and

present an outlook in section 4.

2. The Resummed Exponent

In this section we derive the resummed partonic cross section for Higgs boson

production via gluon fusion. In order to set the stage, we must first discuss some

preliminary approximations to the exact NLO calculation in Ref. [5].

In the Standard Model, the leading order (LO) process consists of gluon fusion into

a Higgs boson via a heavy quark triangle loop, see Fig. 1. Because the Higgs coupling

to fermions is proportional to the fermion mass, the top quark strongly dominates

this coupling, constituting about 90% of the total coupling. Our first approximation

is to neglect the quark-antiquark and quark-gluon channels as these contribute at

next-to-leading order (NLO) to the full cross section with less than 10% [5].

The exact NLO calculation in [5] was performed for the general massive case,

i.e. all masses were taken into account explicitly. However, the following very useful

approximation was identified, involving the heavy top mass limit of the calculation.
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g

g

t,b H

Figure 1: Higgs boson production via gluon fusion mediated by top- and bottom quark

loops

Let us define the (NLO) K-factor2 by

Kt+b
NLO(τt, τb) ≡

σNLO(τt, τb)

σLO(τt, τb)
(1)

where σLO/NLO(τt, τb) denotes the hadronic gluon-fusion cross section for the general

massive case, calculated exactly in LO/NLO, and the scaling variables are defined by

τQ = 4m2
Q/M

2
H (Q = t, b).

In Figs. 2 and 3 we compare σNLO(τt, τb) with the approximation

Kt
NLO(∞)× σLO(τt, τb) (2)

for scalar and pseudoscalar Higgs boson production, where the K-factor Kt
NLO(∞)

takes into account the top quark contribution to the relative QCD corrections only,

in the limit of a heavy top quark. We observe that the approximation (2) is accurate

to within 10% for the full Higgs mass range MH >∼ 65 GeV of the SM Higgs boson

as well as the pseudoscalar Higgs particle of the MSSM for small tgβ [At the tt̄

threshold MA = 2mt the pseudoscalar cross section develops a Coulomb singularity

so that perturbation theory is not valid in a small margin around this value for the

pseudoscalar mass MA [5].]. The same accuracy of the approximation emerges for the

two scalar Higgs particles of the MSSM for small tgβ. Our second approximation then

consists of assuming that Kt(∞)×σLO(τt, τb) is a valid approximation to σ(τt, τb) for

all orders, i.e. we will assume that the higher-order K-factor, when computed in the

infinite top mass limit and combined with the massive LO cross section, will give a

good approximation to the higher order cross section in the general massive case. In

fact, we will see that at NLO the bulk of the K-factor is due to soft and collinear

gluons, which do not resolve the effective coupling. The assumption that this persists

2It should be noted that we use here NLO parton densities and strong coupling αs in the NLO

cross sections and LO quantities in the LO cross sections for this “hadronic” K-factor. This leads

to K-factors smaller than two in contrast with the “partonic” K-factor, which is defined with NLO

parton densities and strong coupling also in the LO cross section.
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σNLO(τt ,τb )

Kt   
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Figure 2: Exact and approximate results in the heavy top quark limit for the total SM

Higgs production cross sections as a function of the Higgs mass MH . The top mass

has been chosen as mt = 175 GeV and the bottom mass as mb = 5 GeV. CTEQ4M

parton densities [13] with NLO strong coupling [αs(M
2
Z) = 0.116] have been used.

σNLO(τt ,τb )

Kt   
NLO

  (∞) × σLO(τt ,τb )

√s = 14 TeV

tgβ = 1

tgβ = 1.6

tgβ = 5

σ(pp → A + X) [pb]

MA [GeV]

10
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Figure 3: As in Fig.2, but now for the MSSM pseudoscalar Higgs particle for three

values of tgβ.
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to higher orders is supported by the validity of the infinite top mass approximation

at NLO.

In the MSSM, the validity of these approximations depends strongly on the pa-

rameter tgβ. For tgβ <∼ 1.6 the top quark contribution to the cross sections amounts

to more than 70%. The heavy top quark limit is thus a reasonable approximation in

this regime. For large values of tgβ the bottom loop contribution becomes significant

so that the approximations are no longer valid. Still, the infinite top mass approx-

imation deviates from the full NLO result, including bottom contributions, by less

than 25% for tgβ <∼ 5 as can be inferred from Fig.3.

We are now ready for the construction of the resummed partonic cross section,

for which we will employ the methods of Ref. [14]. In order to retain similarity to the

Drell-Yan case, we will denote the Higgs mass squared with Q2 throughout the text

of this paper.

In the approximations outlined above, the regularized total Higgs production cross

sections may be written in d = 4− 2ǫ dimensions as [φ = h,H,A]

σφ(τφ, Q
2, µ2) =

∫ 1

τφ

dx1

∫ 1

τφ/x1

dx2 g(x1) g(x2) σ̂
φ
gg(z, Q

2, µ2, ǫ) (3)

or, in terms of moments,

σφ(N,Q2, µ2) =
∫ 1

0
dτφ τN−1

φ σφ(τφ, Q
2, µ2) = g2(N + 1) σ̂φ

gg(N,Q2, µ2, ǫ) (4)

where τφ = Q2/S, z = τφ/(x1x2), S is the hadronic c.m. energy squared, µ is the

dimensional regularization scale, and g(x) is the bare gluon distribution function.

Note that the definition is such that the dependence on the moment variable in the

parton densities is shifted by one unit compared to the dependence of the partonic

cross section. In this way we remove an overall 1/z factor, emphasizing the soft gluon

contribution to the partonic cross section.

In the approximations discussed in the beginning of this section, the d-dimensional

partonic cross sections can be cast into the form

σ̂φ
gg = σφ

0 κφ ρφ(z, Q
2/µ2, ǫ) (5)

with the coefficients

σh,H
0 = gh,Ht

GFα
2
s,BNCCF

1152
√
2π

Γ2(1 + ǫ)

1− ǫ

(

4π

m2
t

)2ǫ

, (6)

σA
0 = gAt

GFα
2
s,BNCCF

512
√
2π

Γ2(1 + ǫ)

1− ǫ

(

4π

m2
t

)2ǫ

, (7)

where αs,B is the bare strong coupling constant (with dimension 2ǫ) and gφt (φ =

h,H,A) denote the modified top Yukawa couplings normalized to the SM coupling,
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which are given in [5]. The factor κφ in eq. (5) stems from the effective coupling of

the Higgs boson to gluons in the heavy top quark limit, which can be obtained by

means of low energy theorems [5,15]. They are given3 by [5,16]

κh,H =











3π
[

α
(5)
s (m2

t )
]2

βt[α
(6)
s (m2

t )]

1 + γm[α
(6)
s (m2

t )]





α(5)
s (m2

t )

α
(5)
s (M2

h,H)





2
β[α(5)

s (M2
h,H)]

β[α
(5)
s (m2

t )]











2

(8)

κA = 1 (9)

where α
(nf )
s (nf = 5, 6) is the strong coupling constant in the MS scheme including

nf flavors in the evolution; the couplings for 5 and 6 flavors are related by [18]

α(5)
s (m2

t ) = α(6)
s (m2

t )







1 +
11

72

(

α(6)
s (m2

t )

π

)2






(10)

β(αs) denotes the QCD β function and βt(αs) its top quark contribution4, which is

given by [18,20] [nf = 5 is the number of light flavors]

3π

α2
s

βt(αs) = 1 +
19

4

αs

π
+

6793− 281nf

288

α2
s

π2
+O(α3

s) , (11)

γm(αs) is the anomalous mass dimension including 6 flavors, which can be expressed

as [21]

γm(αs) = 2
αs

π
+
(

101

12
− 5

18
[nf + 1]

)

α2
s

π2
+O(α3

s). (12)

Using these expansions the effective scalar couplings κh,H are given by5

κh,H = 1 +
11

2

α(5)
s (m2

t )

π
+

3866− 201nf

144

(

α(5)
s (m2

t )

π

)2

+
153− 19nf

33− 2nf

α(5)
s (M2

h,H)− α(5)
s (m2

t )

π
+O(α3

s) (13)

where mt denotes the pole mass of the top quark. The scale dependence of the strong

coupling in the lowest order cross section eq. (7) and the factor ρφ eq. (5) includes 5

light flavors, i.e. the top quark is decoupled. In the rest of the paper we identify

αs(µ
2) ≡ α(5)

s (µ2) . (14)

3The last two factors in the large bracket originate from the anomalous dimension of the gluon

operators [16]. The top mass mt denotes the scale invariant MS mass mt = mt(mt). We would

like to thank the authors of Ref. [17] for pointing out two errors in our treatment of the strong

coupling in eq.(8) and the anomalous mass dimension of eq.(12) in an earlier version of this paper.

The numerical size of these errors is about 0.03% and thus negligible.
4The factors κh,H include the top quark contribution at vanishing momentum transfer, which

differs from the top quark contribution to the MS β function by a finite amount at O(α4

s) [19].
5This result agrees with Ref. [17].
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Note further that the expression (5) is not yet finite for d → 4; mass factorization

and renormalization of the bare coupling in the Born cross section will be carried

out after resummation. In eq. (5) we denote the correction factors by ρφ(z, Q
2/µ2, ǫ),

which are defined in the infinite mass limit without the factorizing corrections κφ to

the effective coupling. They may be expanded as

ρφ(z, Q
2/µ2, α(µ2), ǫ) =

∞
∑

n=0

αn(µ2)ρ
(n)
φ (z, Q2/µ2, ǫ) (15)

where we define, for the sake of convenience,

α(µ2) ≡ αs(µ
2)

π
. (16)

Here αs(µ
2) is the renormalized strong coupling and we have chosen the renormal-

ization scale equal to µ for the moment. From Ref. [5,6] we can derive the following

expression for the first two coefficients of the SM Higgs correction factor

ρ
(0)
φ (z, Q2/µ2, ǫ) = δ(1− z) (17)

ρ
(1)
h,H(z, Q

2/µ2, ǫ) =
( µ2

Q2

)ǫ
CA

{

− zǫ

ǫ

[

1 + z4 + (1− z)4

(1− z)1+2ǫ

]

+

+ δ(1− z)

(

11

6ǫ
+

203

36
+

π2

3

)

− 11

6
zǫ(1− z)3−2ǫ

}

(18)

ρ
(1)
A = ρ

(1)
h,H + 2

(

µ2

Q2

)ǫ

CAδ(1− z) (19)

Note that we have implicitly redefined the scale µ by µ2 → µ2 exp[−(ln(4π)− γE)] to

eliminate factors (4π)ǫ and Γ(1− ǫ)/Γ(1− 2ǫ). The plus distribution in eq. (18) is as

usual defined by
∫ 1

x
dzg(z)[f(z)]+ =

∫ 1

x
dz(g(z)− g(1))f(z)− g(1)

∫ x

0
dzf(z) . (20)

We will now construct a resummed expression for ρφ(z, Q
2/µ2, α, ǫ) by means of

the methods described in Ref. [14]. Near the elastic edge of phase space the Higgs cross

section in the infinite mass limit may be factorized into hard, soft and jet functions,

in completely analogy with the Drell-Yan cross section. Following the arguments of

Ref. [14] this leads to the Sudakov evolution equation

Q2 d

dQ2
ρφ(z, Q

2/µ2, α(µ2), ǫ)=
∫ 1

z

dz′

z′
Wφ(z

′, Q2/µ2, α(µ2), ǫ)ρφ(z/z
′, Q2/µ2, α(µ2), ǫ) .

(21)

In order to solve eq. (21) we must impose a boundary condition. We will shortly

argue [14] that we may use the boundary condition ρ̃φ(N,Q2/µ2 = 0, α(µ2), ǫ) = 1

for the moments, or in z-space

ρφ(z, Q
2/µ2 = 0, α(µ2), ǫ) = δ(1− z). (22)
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The solution to eq. (21) is then, in Mellin space,

ρ̃φ(N,Q2/µ2, α(µ2), ǫ) = exp

[

∫ Q2

0

dξ2

ξ2
W̃φ

(

N,
ξ2

µ2
, α(µ2), ǫ

)

]

, (23)

where as above d = 4− 2ǫ > 4. The formal Mellin inversion reads

Wφ(z, Q
2/µ2, α(µ2), ǫ) =

∫ i∞

−i∞

dN

2πi
N−z W̃φ(N,Q2/µ2, α(µ2), ǫ) . (24)

The solution (23) may be expressed as

ρ̃φ(N,Q2/µ2, α(µ2), ǫ) = exp
[∫ 1

0
dzzN−1

∫ νQ2/µ2

0

dλ

λ

{

α(λ, α(µ2), ǫ)W
(1)
φ (z, 1/ν, ǫ)

+ α2(λ, α(µ2), ǫ)W
(2)
φ (z, 1/ν, ǫ) +O(α3)

}

]

. (25)

with ν(z) an arbitrary function. Note that ν(z) is to be treated as part of any

plus distributions in Wφ, because it arises from the originally z-independent scale

ratio. In deriving eq. (25) we have used the renormalization group invariance of

the evolution kernel Wφ. Note further that we have expanded the full evolution

kernel Wφ(z, ξ
2/µ2, α(µ2), ǫ) in the d-dimensional running coupling constant, with

λ = ν(z)ξ2/µ2. The defining equation of the d-dimensional running coupling is

λ1−ǫ∂[λ
ǫα(λ, α(µ2), ǫ)]

∂λ
= −b2α

2(λ, α(µ2), ǫ)− b3α
3(λ, α(µ2), ǫ) , (26)

with the boundary condition α(1, α(µ2), ǫ) = α(µ2). Here b2 = (11CA − 2nf)/12 and

b3 = 34C2
A/48− (20CA/3 + 4CF )nf/32. The solution, linearized in b3, is

λǫα(λ, α(µ2), ǫ) =
α(µ2)

1− γ(λǫ, ǫ)α(µ2)
+

b3
b2

α2(µ2)

[1− γ(λǫ, ǫ)α(µ2)]2
f(λǫ, α(µ2), ǫ) , (27)

with γ(λǫ, ǫ) ≡ b2
ǫ
(λ−ǫ − 1), f(λǫ, α, ǫ) = 1 − λ−ǫ −

(

1 + ǫ
b2α

)

ln[1 − γ(λǫ, ǫ)α]. We

shall now justify the boundary condition in eq. (22). To this end, note that for

ǫ < 0 (d > 4), the dimensionally-continued running coupling vanishes at zero scale,

α(0, α(µ2
1), ǫ) = 0, order by order in its perturbative expansion in the coupling α(µ2

1)

evaluated at any nonzero scale µ1. Dimensionally-continued radiative corrections to

ρφ therefore vanish at Q2 = 0.

The functions W
(1)
φ , W

(2)
φ can be determined by choosing ν = 1 in eq. (25) and

expanding the Sudakov equation to second order in the d-dimensional running cou-

pling

Q2 ∂

∂Q2
ln ρ̃φ(N,Q2/µ2, α(µ2), ǫ) = α(Q2/µ2, α(µ2), ǫ) W̃

(1)
φ (N, 1, ǫ)

+ α2(Q2/µ2, α(µ2), ǫ) W̃
(2)
φ (N, 1, ǫ) , (28)

8



in terms of αs(µ
2), using (see eq. (27))

λǫα(λ, α(µ2), ǫ) = α(µ2) + γ(λǫ, ǫ)α2(µ2) +O(α3) . (29)

The resulting one- and two-loop coefficients of the evolution kernel can then be

derived from low order calculations of the correction factors via

W̃
(1)
φ (N, 1, ǫ) = (Q2/µ2)ǫQ2 ∂

∂Q2
ρ̃
(1)
φ (N,Q2/µ2, ǫ) , (30)

and

W̃
(2)
φ (N, 1, ǫ) = (Q2/µ2)2ǫ

{

∂

∂ lnQ2

(

ρ̃
(2)
φ (N,Q2/µ2, ǫ)− 1

2

[

ρ̃
(1)
φ (N,Q2/µ2, ǫ)

]

2
)

− γ((Q2/µ2)ǫ, ǫ)
∂

∂ lnQ2
ρ̃
(1)
φ (N,Q2/µ2, ǫ)

}

. (31)

Of course, unlike for Drell-Yan [11], the second order corrections to Higgs produc-

tion have not yet been calculated. The above results can easily be inverted to derive

W
(1,2)
φ (z, 1, ǫ), if the functions ρ

(1,2)
φ are known. The full functions W

(1,2)
φ (z, ξ2/µ2, ǫ)

may then be constructed by reexpanding the running coupling α(ξ2/µ2, α(µ2), ǫ) in

α(µ2), using eq. (27) with λ = ξ2/µ2,

W
(1)
φ (z, ξ2/µ2, ǫ) =

(

µ2

ξ2

)ǫ

W
(1)
φ (z, 1, ǫ) , (32)

W
(2)
φ (z, ξ2/µ2, ǫ) =

(

µ2

ξ2

)2ǫ

W
(2)
φ (z, 1, ǫ) + γ((ξ2/µ2)ǫ, ǫ)

(

µ2

ξ2

)ǫ

W
(1)
φ (z, 1, ǫ) .

In this way the one-loop coefficients W
(1)
φ can be straightforwardly determined

from eqs. (18,19). They may be written as

W
(1)
φ (z, 1, ǫ) = δ(1− z)f

(1)
φ (ǫ) + zǫ

(

g(1)(z, ǫ)

(1− z)1+2ǫ

)

+

+ h(1)(z, ǫ) , (33)

where the coefficient functions f
(1)
φ , g(1), h(1) are regular functions of their arguments

at z = 1. In the present case they are given by

f
(1)
h,H(ǫ) = −CAǫ

(

11

6ǫ
+

203

36
+

π2

3

)

, (34)

f
(1)
A (ǫ) = f

(1)
h,H(ǫ)− 2CAǫ, (35)

g(1)(z, ǫ) = CA

(

1 + z4 + (1− z)4
)

, (36)

h(1)(z, ǫ) = CAǫ
11

6
zǫ(1− z)3−2ǫ. (37)
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Given the limitations of the factorization theorem near the edge of phase space [22],

from which the evolution equation (21) is derived [14], we might be tempted to im-

mediately discard all terms of order 1/N . However, we wish to be careful with these

terms, and we will examine them and their relevance later in this section.

As was shown in [14], the term δ(1− z) f
(1)
φ and the plus-distributions in eq. (33)

are separately renormalization group invariant. We are therefore free to choose differ-

ent functions ν(z) for these two terms in the general resummed expression eq. (25).

The natural choice for the δ(1 − z) f
(1)
φ term is ν = 1. Changes in µ generate terms

b2 ln(µ
′/µ) at higher orders. The λ integral may then be carried out explicitly for

this term in eq. (25). For the plus-distribution term however, the natural choice is

ν(z) = (1− z)2, just as for Drell-Yan. Then, using ξ = (1− z)µ in eq. (32), we absorb

the factor (1− z)−2ǫ in (33) into the boundary of the λ integral in eq. (25), involving

only the running coupling. The term h(1) is of O(1/N4) and will be neglected.

We now turn our attention to the function g(1)(z, ǫ) in (36). We have some freedom

in its treatment, as different choices will only differ by constants or in O(lnN/N).

However, we will argue that among all such terms the ones generated by g(1)(z, ǫ) are

universal and can legitimately be included in the resummed expression. To exhibit

the importance of the different treatments of the residue function g(1)(z, ǫ) we choose

three schemes which probe the full range of possibilities. After rescaling to incorporate

the factor (1−z)−2ǫ and combining the plus distribution with the Mellin transform in

eq. (25), we see that the relevant function to approximate is (zN−1 − 1)g(1)(z, ǫ) [We

are neglecting the coefficient zǫ, because it is contributing at O(1/N).]. The three

schemes are defined by

scheme α :
1

CA
(zN−1 − 1)g(1)(z, ǫ) → (zN−1 − 1) 2

scheme β :
1

CA
(zN−1 − 1)g(1)(z, ǫ) → (zN−1 − 1) 2− (1− z)(2z2 − 4z − 2z3)

scheme γ :
1

CA
(zN−1 − 1)g(1)(z, ǫ) → (zN−1 − 1) 2− (1− z)(2z2 − 4z − 2z3)

−4zN−1(1− z) . (38)

The minimal scheme α involves replacing g(1)(z, ǫ) simply by g(1)(1, ǫ), scheme β

includes all terms of O(1) in the exponent, whereas scheme γ includes in addition

some O(lniN/N) terms in the exponent. Using the one-loop evolution kernel W
(1)
φ

we can now construct the resummed expressions for the Higgs production correction

factor in the three schemes. However, these expressions are still divergent for ǫ → 0.

The divergences are cancelled by mass factorization and renormalization for which

we choose the MS scheme [23] throughout this paper. For this purpose we need the

resummed MS gluon distribution [24]. To one loop accuracy it may be written as
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[14,24]

φ̃
(1)

MS

(

N,
M2

µ2
, α(µ2), ǫ

)

= exp

[

−
∫ M2

0

dµ′2

µ′2
Γ(1)
gg (N,αs(µ

′2))

]

= φ̄
(1)

MS

(

N,
M2

µ2
, α(µ2), ǫ

)

z0

(

M2

µ2
, α(µ2), ǫ

)

(39)

where

φ̄
(1)

MS
= exp

[

CA

2

∫ 1

0
dz

(

zN−1 − 1

1− z

)

(1 + z4 + (1− z)4)
∫ M2/µ2

0

dλ

λ
α(λ, α(µ2), ǫ)

]

× exp

[

−11

6

CA

2

∫ M2/µ2

0

dλ

λ
α(λ, α(µ2), ǫ)

]

. (40)

and

z0

(

M2

µ2
, α(µ2), ǫ

)

= exp

[

b2

∫ M2/µ2

0

dλ

λ
α(λ, α(µ2), ǫ)

]

, (41)

where M is the mass factorization scale. As is well-known, the one-loop anomalous

dimension Γ(1)
gg (N,αs) is derived from the residue of the collinear singularity in the

gluon operator matrix element. The function z0 is related to that component of the

residue which is proportional to the one loop coefficient of the QCD β-function. The

strong coupling in the LO cross section (7) has been left unrenormalized so far. The

renormalization of this bare coupling is now performed in the MS scheme, via the

replacement

αs,B = αs(R
2)
(

R2
)ǫ

Zα

(

R2

µ2
, αs(µ

2), ǫ

)

(42)

= αs(R
2)
(

R2
)ǫ

exp

[

∫ R2/µ2

0

dλ

λ

{

b2 α(λ, α(µ
2), ǫ) + b3 α

2(λ, α(µ2), ǫ) + . . .
}

]

where we explicitly show the renormalization scale R. Thus the renormalization

factorizes into several pieces according to the perturbative expansion of the QCD β

function,

αs,B = αs(R
2)
(

R2
)ǫ

z0

(

R2

µ2
, αs(µ

2), ǫ

)

z1

(

R2

µ2
, αs(µ

2), ǫ

)

. . . (43)

where

z1

(

R2

µ2
, α(µ2), ǫ

)

= exp

[

b3

∫ R2/µ2

0

dλ

λ
α(λ, α(µ2), ǫ)

]

. (44)

Note that the above form of the Z-factor for the strong coupling constant, which

is completely factorized from the correction factor, is very similar in form to the

δ(1 − z) piece of the MS density, and we may thus combine the overall coupling

constant renormalization with the mass factorization procedure. Restricting ourselves

11



to next-to-leading order (i.e. putting z1 = 1) and choosing R = M one finds that

simultaneous mass factorization and renormalization of the bare coupling in eq. (7)

leads to

ρφ(N,Q2/M2, α(M2)) =
ρφ(N,Q2/µ2, α(µ2), ǫ)

[

φ̄
(1)

MS
(N,M2/µ2, α(µ2), ǫ)

]2 . (45)

Note that the dependence on the dimensional regularization scale µ drops out on the

l.h.s. Because ρφ is infrared safe, we can return to four dimensions, and we find

ραh,H

(

N,
Q2

M2
, α(M2)

)

=exp
[

−CA

∫ 1

0
dz

zN−1 − 1

1− z
2
∫ 1

(1−z)2 Q2

M2

dλ

λ
α(λ, α(M2), ǫ)

]

× exp
{

α(Q2)CA

[

π2/3 + 203/36− 11/6 ln

(

Q2

M2

)

]

−11/12α2(Q2)CAb2 ln
2

(

Q2

M2

)

}

, (46)

ρβh,H

(

N,
Q2

M2
, α(M2)

)

= ραh,H

(

N,
Q2

M2
, α(M2)

)

(47)

× exp
[

−2CA

∫ 1

0
dz(2z − z2 + z3)

∫ 1

(1−z)2 Q2

M2

dλ

λ
α(λ, α(M2), ǫ)

]

,

ργh,H

(

N,
Q2

M2
, α(M2)

)

= ρβh,H

(

N,
Q2

M2
, α(M2)

)

(48)

× exp
[

+4CA

∫ 1

0
dz zN−1

∫ 1

(1−z)2 Q2

M2

dλ

λ
α(λ, α(M2), ǫ)

]

,

ρα,β,γA

(

N,
Q2

M2
, α(M2)

)

= ρα,β,γh,H

(

N,
Q2

M2
, α(M2)

)

× exp
[

2CAα(Q
2)
]

. (49)

A few remarks are in order. First, the above expressions are formally not well defined

because the integration paths in the exponent traverse a singularity, related to an

infrared renormalon. Our purpose in this paper is however not the numerical eval-

uation of the resummed cross section; we consider the resummed formulae to be a

generating functional for an approximation to the QCD perturbation series, rather

than its approximate sum.

The second remark is that one may try to incorporate (a part of) the two loop

evolution kernel. Some of the NNLO terms in the exact calculation can be inferred

using renormalization group methods, such as used for Drell-Yan in Ref. [25]. A

straightforward calculation along these lines leads to

W
(2)
φ (z, 1, ǫ) = z(1 − z)−4ǫP (1)

gg (z) + . . . , (50)

where P (1)
gg is the two-loop component of the Altarelli-Parisi gluon-to-gluon splitting

function [26]. Moreover, the mass factorization and renormalization of the overall

12



coupling in the Born cross section can be carried out in a similar fashion as at one

loop, leading to the modified MS distribution (for R = M)

φ̄
(2)

MS
(N,

M2

µ2
, α(µ2), ǫ) = φ

(2)

MS
(N,

M2

µ2
, α(µ2), ǫ) z−1

0 (
M2

µ2
, α(µ2), ǫ) z−1

1 (
M2

µ2
, α(µ2), ǫ) . . .

(51)

where φ
(2)

MS
denotes the resummed MS distribution based on the two-loop anomalous

dimension Γ(2)
gg [26]. However, we stress that in this paper we restrict ourselves to

examining the consequences of resummation with the one-loop kernel W
(1)
φ .6

There are several arguments supporting the inclusion of lni N/N terms in the

resummation via the γ-scheme. In momentum space such terms correspond either to

the usual plus-distributions, which are already included, or to terms lni(1 − z), see

the Appendix. The latter are usually discarded in Sudakov resummation procedures.

Their inclusion extends the resummation formalism to incorporate subleading, in

the sense that they are down by a power of N compared to the plus distributions,

divergent contributions for z → 1 in addition to the plus distributions.

Our first observation is that those lni(1 − z) terms which are included by using

scheme γ originate from the Altarelli-Parisi splitting function, as we have demon-

strated above. In distinction to the plus-distributions, which have the same origin,

they are not enhanced by the infrared eikonal factor 1/(1 − z), hence they are es-

sentially of a collinear nature. Their origin thus implies that they are universal and

independent of the hard process. A second observation is that the integral in the

exponent in eq. (48), which generates these logarithms, is partly composed of the

full MS distribution (40), which is an exact result, without any soft gluon approx-

imation. A third supporting argument can be obtained from existing NNLO (MS

scheme) calculations for the qq̄ channel in the Drell-Yan reaction [11] and the non-

singlet structure function F2 [27] in deep-inelastic scattering. We are able to derive

the leading lni(1 − z) terms and those subleading terms which are related to the

running coupling at NNLO using the resummed formulae for the hard parts for these

reactions, given in [12,14] (e.g. for Drell-Yan see eq. (5.18) and the analogous DIS

result obtained from renormalizing eq. (5.13) in [14]).

Numerical consequences of including the lni(1− z) terms will be presented in the

next section for both Drell-Yan and Higgs boson production at the LHC.

3. Two- and Three Loop Results

In this section we examine the quality and the scheme dependence of our resummed

formulae. We do this by expanding our results for the correction factors of Higgs boson

6Except for a b2 ln(µ
′/µ) term at NNLO.
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production and the analogous expression for the qq̄ channel in Drell-Yan (eq. (5.18)

in [14]), in various schemes (α, β, γ) to NLO and NNLO in order to compare with the

exact results of Refs. [5] and [11]. All comparisons will be made for the LHC. We will

find that for both reactions scheme γ reproduces the exact results remarkably well,

much better than the more conventional schemes α and β at low Higgs/γ∗ masses.

We further derive the scale-dependent logarithms in the NNLO expansion from our

resummed expressions. Here also the agreement is reasonable.

From the NNLO expansion of our resummed formulae for Higgs production, we

can obtain the first indication on the importance of the NNLO contributions. As

mentioned earlier, these estimates are important because the NLO K-factor is sizable.

A full numerical study of the resummed cross sections, which requires a regularization

of the renormalon singularity [28], will be published elsewhere [29].

Analogous to eq. (15) the renormalized correction factor ρφ of eqs. (46-49) may

be expanded as

ρφ(z, Q
2/M2, α) =

∞
∑

n=0

αn(M2)ρ
(n)
φ (z, Q2/M2) (52)

We begin with the NLO expansion. Using the Mellin transform formulae of the

Appendix and the methods of [30], we find that the O(α) terms, upon inversion to

momentum space [keeping the renormalization/factorization scale M2 different from

Q2] are given by

ρ
α(1)
h,H (z,

Q2

M2
) =CA

{

4D1(z) + 2D0(z)LM + (
π2

3
+

203

36
− 11

6
LM )δ(1− z)

}

, (53)

ρ
β(1)
h,H (z,

Q2

M2
) =CA

{

4D1(z) + 2D0(z)LM +
π2

3
δ(1− z)

}

, (54)

ρ
γ(1)
h,H (z,

Q2

M2
) = ρ

β(1)
h,H (z,

Q2

M2
)− CA

{

8E1(z)
}

, (55)

ρ
(1)
A (z,

Q2

M2
) = ρ

(1)
h,H(z,

Q2

M2
) + 2CAδ(1− z) [for all three schemes] , (56)

where we use the notation

Di(z) =

[

lni(1− z)

1− z

]

+

, Ei(z) = lni(1− z) , LM = ln(Q2/M2) . (57)

With the results above we construct the correction factors according to eq. (52) for

the three schemes α, β and γ so that we can compare with exact results. Similarly

one may obtain results to O(α2). We find

ρ
α(2)
h,H (z, Q2/M2) = CA

{

8CAD3(z) + (−4b2 + 12CALM)D2(z)

+ (
203

9
CA − 8CAζ2 − 4b2LM − 22

3
CALM + 4CAL

2
M)D1(z)
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+ (16CAζ3 − 4CAζ2LM +
203

18
CALM − b2L

2
M − 11

3
CAL

2
M)D0(z)

+ (
203

18
CAζ2 + 6CAζ

2
2 − 12CAζ4 +

41209

2592
CA

+ 8CAζ3LM − 2ζ2b2LM − 203

36
b2LM − 11

3
CAζ2LM − 2233

216
CALM

+
121

72
CAL

2
M − 2CAζ2L

2
M +

11

12
b2L

2
M)δ(1− z)

}

, (58)

ρ
β(2)
h,H (z, Q2/M2) = CA

{

8CAD3(z) + (−4b2 + 12CALM)D2(z)

+ (−8CAζ2 − 4b2LM + 4CAL
2
M)D1(z)

+ (16CAζ3 − 4CAζ2LM − b2L
2
M)D0(z)

+ (6CAζ
2
2 − 12CAζ4 −

2909

216
b2 − 2ζ2b2LM

+ 8CAζ3LM − 2CAζ2L
2
M)δ(1− z)

}

, (59)

ρ
γ(2)
h,H (z, Q2/M2) = ρ

β(2)
h,H (z, Q2/M2) + CA

{

− 16CAE3(z)
+ (8b2 + 8CA − 24CALM)E2(z)
+ (16CAζ2 + 8b2LM + 8CALM − 8CAL

2
M )E1(z)

}

, (60)

ρ
α(2)
A (z, Q2/M2) = ρ

α(2)
h,H (z, Q2/M2) + CA

{

8CAD1(z) + 4CAD0(z)LM

+ (4CAζ2 −
11

3
CALM +

239

18
CA − 2b2LM)δ(1− z)

}

, (61)

ρ
β(2)
A (z, Q2/M2) = ρ

β(2)
h,H (z, Q2/M2) + CA

{

8CAD1(z) + 4CAD0(z)LM

+ (4CAζ2 + 2CA − 2b2LM)δ(1− z)
}

, (62)

ρ
γ(2)
A (z, Q2/M2) = ρ

γ(2)
h,H (z, Q2/M2) + CA

{

8CAD1(z) + 4CAD0(z)LM

− 16CAE1(z) + (4CAζ2 + 2CA − 2b2LM )δ(1− z)
}

. (63)

In constructing the scale logarithms in the above expressions we have used the re-

placement

α(Q2) = α(M2)− α(M2)2b2LM (64)

in the last exponents of eqs. (46,49). We note that this effectively amounts to including

one term from the two-loop Sudakov evolution kernel W
(2)
φ . This term can be derived

from the one-loop evolution kernel using the renormalization group, see the discussion

below eq. (37). In Fig. 4 we present the correction factors for SM Higgs production

at the LHC, which coincide with the correction factors of MSSM scalar Higgs boson

production for small tgβ, and in Fig. 5 for MSSM pseudoscalar Higgs production,

where we have identifiedM2 = Q2. For all results in this section we used the CTEQ4M

parton densities [13], a two-loop running coupling constant, with Λ
(5)

MS
= 202 MeV for

the NLO and NNLO quantities and CTEQ4L densities with a LO strong coupling

constant (Λ
(5)
LO = 181 MeV) for the LO quantities.

In Figs. 4a and 5a the “partonic” K-factors, obtained from folding the correction
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factors ρφ with NLO parton densities and using a NLO strong coupling for all orders

of the cross sections, are presented. For comparison we show in Figs. 4b and 5b

the corresponding NLO “hadronic” K-factors [which include the small contributions

from κφ] normalized to the LO cross sections evolved with LO parton densities and αs.

Whereas the former indicate the effect of the higher order corrections to the partonic

cross section, the latter exhibit the convergence of the perturbative approach to the

physical (hadronic) quantities. We observe from Figs. 4 and 5 that at NLO scheme

γ reproduces the exact NLO calculation almost exactly for the full range of the SM

Higgs mass MH >∼ 65 GeV and the MSSM Higgs masses Mφ >∼ 45 GeV, whereas the

schemes α and β agree with the exact result only for Mφ ≫ 1 TeV (the agreement of

scheme α in the intermediate Higgs mass range is accidental). Moreover, note that the

NNLO corrections to the partonic cross sections in scheme γ are still significant. Full

NNLO predictions for hadronic cross sections require NNLO parton densities, which

are not yet available. At NLO, a significant reduction of the hadronic K-factors

compared to the partonic K-factors can be read off from Figs. 4b and 5b, indicating a

more reliable perturbative QCD expansion contrary to what Figs. 4a and 5a suggest.

We point out that should the size of the NNLO corrections to the physical cross

section warrant concern about the convergence of the perturbative approach, our

resummation method can provide a tool to control such large corrections.

Besides the three-loop anomalous dimension, the determination of NNLO densi-

ties requires NNLO calculations for the physical quantities included in a global fit.

However, there are presently only a few exact NNLO calculations available [11,27,31].

An approximate way to proceed might be provided by the use of NNLO expansions

of resummed cross sections, which at NLO have to approximate the exact results re-

liably. For future high-energy hadron colliders we expect this to require the inclusion

of the novel subleading contributions that have been discussed in our analysis. Once

approximate NNLO results have been obtained for several processes, e.g. heavy fla-

vor production at the LHC, and the three-loop anomalous dimensions for the NNLO

evolution of the parton densities have been calculated, a global fit of approximate

NNLO parton densities can be performed. The same procedure could of course also

be followed at the resummed level.

To investigate the reliability of scheme γ at NNLO we confront in Fig. 6 the

approximate partonic K-factor, using NLO parton densities and strong coupling in

all expressions, for the Drell-Yan qq̄ production channel at the LHC as a function of

the off-shell photon mass Q with the exact calculation of Ref. [11]. We do this at

NLO and NNLO in schemes β and γ. The expressions used are given in eqs. (A.77)

and (A.78) of the Appendix. We observe that for scheme γ the agreement is again

excellent at NLO. As for the Higgs case, this is perhaps not so surprising, since the

NLO answer is to a large extent included in the evolution kernel. However, note that

the agreement is remarkably good even at NNLO. Clearly the lni(1 − z) terms are
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b) KH (pp → H + X)
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Figure 4: a) Exact and approximate two- and three-loop partonic K-factors, convoluted

with the NLO gluon-gluon luminosity dLgg
NLO/dτ , in the heavy top-mass limit. The

results for the three different schemes are presented as a function of the scalar Higgs

mass MH , using NLO CTEQ4M parton densities [13] and αs [Λ
(5)

MS
= 202 MeV]. b)

Hadronic NLO K-factor using LO CTEQ4L parton densities [13] and αs [Λ
(5)
LO = 181

MeV] for the LO cross section and including the NLO contributions from κH .
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a) dLgg
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b) KA (pp → A + X)
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Figure 5: As in the previous figure, but now for the pseudoscalar Higgs in the MSSM

for small tgβ.
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dominant in this order as well. In scheme α we found at NLO a similar accidental

agreement with the exact result, as in the Higgs case. In Fig. 6 we show the NNLO

result for scheme α, which fails to approximate the exact NNLO curve, in contrast

with scheme γ. Note that scheme β fails at medium and low Q2. The impressive

agreement in NNLO, in combination with the general arguments given at the end of

the previous section, gives us confidence to assert that the NNLO expansion for Higgs

production in scheme γ will be close to the exact value.

dLqq
_

   NLO

  dτ
_____            ⊗  ω(qq

_
 → γ*) [pb]

√s = 14 TeVγ1 γ2
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Figure 6: Exact and approximate one- and two-loop partonic K-factors, using NLO

CTEQ4M parton densities [13] and strong coupling [Λ
(5)

MS
= 202 MeV] in all orders

of the cross section, for Drell-Yan, in three different schemes, as a function of the

γ∗ mass Q. The lower solid line is the exact NLO result, in the qq̄ channel, and the

upper solid line is the NNLO one.

Next we investigate the consequences of the scale logarithms for Higgs production.

It was found in Ref.[5] that the scale dependence of the NLO cross section is still a

monotonous function of the scales. In view of the outstanding agreement of the

exact results with our approximate ones in scheme γ for M2 = Q2 for the τ = Q2/S

dependence, we may use the same results to examine the scale dependence at NNLO.

In fact, from arguments such as given in [25], one may deduce that eqs. (58-63)

approximate the exact scale dependent terms very well, the only term lacking being

proportional to the two-loop anomalous dimension eq. (50), which we have omitted.

Again we use the Drell-Yan case to gauge the quality of scheme γ in describing the
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scale dependence. This is done in Fig. 7 for two values of the γ∗ mass Q. To obtain the

best approximation, we have defined the curve labelled γ2, the NNLO approximation

in scheme γ, by adding the NNLO term of the expanded resummed exponential to

the exact NLO result, rather than the γ1 curve. We see that at NLO and NNLO

scheme γ again describes the scale dependence quite reasonably. Again, for both the

exact and approximate expressions a consistent analysis requires the use of NNLO

parton densities in determining the scale dependence, but these are not available

yet. (It was shown in [11] that for the full NNLO Drell-Yan cross section, including

other production channels, there is a strong indication, albeit based on NLO parton

densities, that the scale dependence is significantly reduced compared to NLO).

In Fig. 8 we present the scale dependence for SM Higgs production. The curve

labelled γ1 includes the sum of the approximate term ρ
γ(1)
H of eq. (55) and the NLO

contribution to κH of eq. (13) for the gg initial state. The approximate NNLO

result, labelled γ2, has been obtained by adding the NNLO term ρ
γ(2)
H of eq. (60)

and the corresponding contributions up to NNLO to κH of eq. (13) to the exact

NLO result [this significantly improves the approximation similar to the Drell-Yan

process]. The curves labelled NNLO include the full NNLO scale dependence in the

partonic cross section, which has been obtained from the exact NLO result by means

of renormalization group methods, neglecting quarks at all stages. This curve has

been normalized to the γ2 curve at ξ = 1. We observe that the NLO term of scheme

γ deviates from the exact NLO slightly at large scales and significantly for small

scales. This is caused by terms of O(1/N), which have been neglected. At NNLO

there is a strong indication for a significant stabilization of the theoretical prediction

for the total Higgs production cross section at the LHC. There are deviations between

the NNLO and γ2 curves at small and large scales, which are again due to terms of

O(1/N) that have been neglected in scheme γ. We found similar results to hold for

the MSSM pseudoscalar Higgs case.

Finally, let us comment on the phenomenological implications of our results for

the Higgs K-factor at NNLO. When the NLO corrections to the Higgs production

cross section were calculated both for the infinite mass limit [6] and for the general

massive case [5] it was found that the ratio of the NLO cross section to the LO

one could be larger than two if one used NLO parton densities and strong coupling

for both cross sections at LO and NLO. In order to estimate the increase in size of

the QCD corrected physical cross section the hadronic K-factor has to be defined

by including the corresponding cross sections evaluated with parton densities and

strong coupling at the same order, i.e. LO cross sections with LO quantities and

NLO with NLO quantities. This hadronic NLO K-factor amounts to 1.5-2.0 in the

phenomenologically relevant Higgs mass range. This indicates that the procedure to

predict with increasing accuracy the physical cross section, by including higher order

corrections consistently in all quantities entering the factorization theorem, seems to
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Figure 7: Scale dependence of the Drell-Yan cross section for two values of the γ∗

mass Q. The solid lines represent the exact calculation at NLO and NNLO and the

dotted line the LO one. NLO CTEQ4M parton densities [13] and strong coupling

[Λ
(5)

MS
= 202 MeV] have been used.
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(5)

MS
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MeV] have been used in all expressions, so that the NNLO results do not correspond

to the physical NNLO cross sections.
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converge better than one might conclude from Figs. 4a and 5a. A consistent NNLO

hadronic K-factor requires NNLO strong coupling and parton densities, which are not

yet available, but one might expect a further reduction from them. However, as long

as we do not know the parton densities beyond NLO, we observe from Figs. 4a and 5a

that NNLO corrections to the partonic cross sections are sizable. Our demonstration

that the bulk of the corrections originates from soft and collinear gluon radiation,

and the fact that they can be resummed analytically, provides then a different way to

organize the perturbative expansion in the phenomenologically relevant Higgs mass

range: one may redefine the original QCD perturbation series by rewriting it as

the product of our resummed expression, times a new series. Due to the excellent

approximation of the original series by the expanded resummed series, the new series

is expected to be very well behaved perturbatively. This is of course the standard

method for making sense of perturbative QCD near the edges of phase space, where

QCD corrections are large. However, the result can now be extended much further

away from threshold due to the inclusion of the novel subleading contributions. Note

that this procedure would also require resummed parton densities. We furthermore

note that the large size of the corrections compared to Drell-Yan is partly due to the

fact that for every power of αs a color factor CA = 3 appears. We have seen that for

Drell-Yan in the MS scheme, where the corresponding color factor is CF = 4/3 but the

analytical structure of the soft gluon corrections is quite similar, the corrections are

considerably smaller. The same phenomenon was observed for the case of resummed

heavy quark production in Ref. [32]. These color factors are correctly included in the

resummed formulae.

As remarked earlier, the evaluation of the resummed series has its own subtleties,

related to the appearance of the infrared renormalon. For its treatment there have

recently been a number of proposals [28], which we will not discuss here. We anticipate

that the resummed Higgs production cross section will be quite sensitive to the details

of handling the renormalon, due the large color factor in the exponent [32].

4. Conclusions

In this paper we have performed the all order resummation of soft gluon effects

in Higgs production both for the Standard Model and its minimal supersymmetric

extension, to next-to-leading logarithmic accuracy. We have extended the usual re-

summation formalism to include logarithms which, although integrable, diverge in

the partonic cross section near the edge of phase space. By expanding our resummed

results to NLO and NNLO, and using the Drell-Yan process for comparison, we have

shown that this extension expands the applicability of resummation efforts into the

phenomenologically relevant Higgs boson production range at the LHC. An accurate
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assessment of the expected Higgs production rate is of paramount importance for the

LHC physics programme. However, a physical prediction of the NNLO cross section

requires knowledge of NNLO parton densities, which is not yet available. Clearly, in

this regard, it would be interesting to investigate the applicability of our extended

formalism to many other QCD production processes with potentially large K-factors

at NLO, e.g. heavy quark production [33] both at the Tevatron and the LHC, or to

revisit the Drell-Yan process for phenomenological studies along the lines of [34].
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Appendix A: Useful formulae

In this appendix we collect some useful formulae used in section 2. We begin by

extending the Mellin transform table of Ref. [35] up to O(1/N). Define

In(N) =
∫ 1

0
dx xN−1

[ lnn(1− x)

1− x

]

+
. (A.65)

For the lowest four values of n this integral is, up to O(1/N)

I0(N) = − ln Ñ +
1

2

1

N
(A.66)

I1(N) =
1

2
ln2 Ñ +

1

2
ζ2 −

(1

2
ln Ñ +

1

2

) 1

N
(A.67)

I2(N) = −1

3
ln3 Ñ − ζ2 ln Ñ − 2

3
ζ3 +

(1

2
ln2 Ñ +

1

2
ζ2 + ln Ñ

) 1

N
(A.68)

I3(N) =
1

4
ln4 Ñ +

3

2
ζ2 ln

2 Ñ + 2ζ3 ln Ñ +
3

4
ζ22 +

3

2
ζ4

+
(

− 1

2
ln3 Ñ − 3

2
ζ2 ln Ñ − ζ3 −

3

2
ln2 Ñ − 3

2
ζ2
) 1

N
(A.69)

with Ñ = NeγE and γE denoting the Euler constant. Define also

Jn(N) =
∫ 1

0
dx xN−1 lnn(1− x) (A.70)

For the lowest four values of n this integral is, up to O(1/N)

J0(N) =
1

N
(A.71)

24



J1(N) = − ln Ñ

N
(A.72)

J2(N) =
ln2 Ñ

N
+

ζ2
N

(A.73)

J3(N) = − ln3 Ñ

N
− 3ζ2

ln Ñ

N
− 2

ζ3
N

(A.74)

Next we present the NNLO perturbative expansions of the resummed hard part ωqq̄

of the MS Drell-Yan cross section in two schemes, defined in analogy to eq. (38).

The relevant function to approximate here is (zN−1 − 1)g
(1)
DY(z, ǫ) with g

(1)
DY(z, ǫ) =

CF (1 + z2). The schemes α, β and γ are defined by the replacements

scheme α :
1

CF

(zN−1 − 1)g
(1)
DY(z, ǫ) → (zN−1 − 1) 2

scheme β :
1

CF

(zN−1 − 1)g
(1)
DY(z, ǫ) → (zN−1 − 1) 2 + (1− z)(1 + z)

scheme γ :
1

CF

(zN−1 − 1)g
(1)
DY(z, ǫ) → (zN−1 − 1) 2 + (1− z)(1 + z)

−2zN−1(1− z) . (A.75)

We find the results

ωMS
α,qq̄(z, Q

2/M2) = δ(1− z) + α(M2)CF

{

4D1(z) + 2D0(z)LM

+ (2ζ2 −
1

2
)δ(1− z)

}

+ α(M2)2CF

{

8CFD3(z) + (−4b2

+ 12CFLM )D2(z) + (−8CF ζ2 − 2CF − 4b2LM + 4CFL
2
M )D1(z)

+ (16CF ζ3 − 4CF ζ2LM − b2L
2
M − CFLM)D0(z)

+ (6CF ζ
2
2 − 12CF ζ4 − CF ζ2 + CF

1

8
+

1

2
b2LM − 2ζ2b2LM

+ 8CF ζ3LM − 2CF ζ2L
2
M)δ(1− z)

}

(A.76)

ωMS
β,qq̄(z, Q

2/M2) = δ(1− z) + α(M2)CF

{

4D1(z) + 2D0(z)LM

+ (2ζ2 − 4 +
3

2
LM )δ(1− z)

}

+ α(M2)2CF

{

8CFD3(z) + (−4b2 + 12CFLM)D2(z)

+ (−8CF ζ2 − 16CF + 6CFLM − 4b2LM + 4CFL
2
M )D1(z)

+ (16CF ζ3 − 4CF ζ2LM − 8CFLM − b2L
2
M + 3CFL

2
M )D0(z)

+ (6CF ζ
2
2 − 12CF ζ4 −

15

2
b2 − 8CF ζ2 + 8CF − 6CFLM

+ 4b2LM − 2ζ2b2LM + 3CF ζ2LM + 8CF ζ3LM

− 3

4
b2L

2
M − 2CF ζ2L

2
M +

9

8
CFL

2
M)δ(1− z)

}

(A.77)

ωMS
γ,qq̄(z, Q

2/M2) = ωβ,qq̄(z, Q
2/M2) +
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+ α(M2)CF

{

− 4E1(z)
}

+ α(M2)2CF

{

− 8CFE3(z) + (4b2 + 8CF − 12CFLM)E2(z)

+ (16CF + 8CF ζ2 + 2CFLM + 4b2LM − 4CFL
2
M )E1(z)

}

. (A.78)
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