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There is now much geological evidence that the Earth was fully glaciated during several periods
in the geological past (about 700Myr ago) and attained a so-called Snowball Earth (SBE)
state. Additional support for this idea has come from climate models of varying complexity
that show transitions to SBE states and undergo hysteresis under changes in solar radiation.
In this paper, we apply large-scale bifurcation analyses to a novel, fully-implicit Earth System
Model of Intermediate Complexity (I-EMIC) to study SBE transitions. The I-EMIC contains
a primitive equation ocean model, a model for atmospheric heat and moisture transport, a
sea ice component and formulations for the adjustment of albedo over snow and ice. With
the I-EMIC, high-dimensional branches of the SBE bifurcation diagram are obtained through
parameter continuation. We are able to identify stable and unstable equilibria and uncover an
intricate bifurcation structure associated with the ice-albedo feedback. Moreover, large-scale
linear stability analyses are performed near major bifurcations, revealing the spatial nature of
destabilizing perturbations.
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1. Introduction

Glacial deposits that appeared to have formed in
the tropics [Kirschvink, 1992] lead eventually to the
idea that grounded ice sheets reached sea level at all
latitudes during two long-lived glaciations in the so-
called Cryogenian (718–635 Myr). A comprehensive
review [Hoffman et al., 2017] describes most of the
current knowledge of the climate dynamics and the
geology–geobiology of the corresponding “Snowball
Earth” (SBE) states.

Transitions to SBE conditions are already
present in simple energy balance models (EBMs)
that simulate an ice-albedo feedback [Ghil & Chil-
dress, 1987]. Moreover, numerical simulations with
models of higher complexity show the existence of a
similar bifurcation structure and hysteresis behav-
ior [Abbot et al., 2011; Voigt et al., 2011; Yang
et al., 2012a, 2012b]. Several models with varying
topography configurations show the existence of
SBE bifurcations. An aquaplanet (no continents) is
used in [Abbot et al., 2011], where additional inter-
mediate steady states are found with a small strip
of open ocean around the equator. In [Voigt et al.,
2011] the bifurcation points are investigated for a
more realistic Marinoan topography and present-
day topographies are used in [Yang et al., 2012a,
2012b]. Global glaciations have also been found in
the study of Earth-like climates [Boschi et al., 2012].

To understand the spatial patterns associated
with SBE transitions, bifurcation analyses of spa-
tially extended models (i.e. described by PDEs) is
needed. Here, we build on the fully-implicit primi-
tive equation ocean model THCM [Dijkstra et al.,
2001; de Niet et al., 2007] to develop a novel Implicit
Earth System Model of Intermediate Complexity
(I-EMIC). Apart from the ocean model THCM,
the I-EMIC contains models of sea ice, atmospheric
heat and humidity transport, evaporation, precipi-
tation and albedo adjustments. The challenge here
is to construct a model suitable for continuation
methods, where one needs to avoid ad-hoc proce-
dures, i.e. hard on-off switches of physical mecha-
nisms that break the differentiability of the discrete
equations. In particular, switches in forcing due
to changes in local state characteristics cannot be
instantaneous. Here, the general procedure to cir-
cumvent on-off selection is by letting an auxiliary,
continuous “masking” field determine which forcing
is applied.

With the I-EMIC, we create a more complete
view of the SBE bifurcation diagram than what is

currently available with limited time integrations.
The implicit methodology allows the use of a con-
tinuation algorithm that tracks steady states under
changes in incoming solar radiation. At bifurcation
points, the algorithm continues into the unstable
regime, where spatial patterns of the destabilizing
perturbations can be obtained through eigenvalue
analyses. As in [Yang et al., 2012b], we will iden-
tify the bifurcation points for a model configuration
with a present-day topography.

In Sec. 2, we present the components of the
I-EMIC. Details on the implementation and cou-
pling of the components are given in Sec. 3. Details
on the numerical methods used are presented in
Sec. 4. In Sec. 5, we compute bifurcation diagrams
using numerical continuations in radiative forcing.
The major SBE bifurcations are identified, includ-
ing the destabilizing perturbation patterns that
explain the transition from and to a SBE state. We
conclude with a summary and discussion in Sec. 6.

2. Components of the I-EMIC

Central to the I-EMIC is the fully-implicit ocean
model THCM [Dijkstra et al., 2001]. The added
geophysical components are implicit adaptations of
models presented in [Gildor & Tziperman, 2001;
Fanning & Weaver, 1996; Weaver et al., 2001] and
couple to the temperature and salinity equations in
THCM. In this section we will provide the model
equations in their dimensional form. An overview
of the model equations and a list of the relevant
parameter values are given in Appendices A and B,
respectively.

2.1. The ocean model

The ocean component of the I-EMIC is the fully-
implicit thermohaline circulation model THCM,
originally described in [Dijkstra et al., 2001]. The
model has been adapted through the years with
an improved grid configuration [Wubs et al., 2006],
tailored preconditioning [de Niet et al., 2007],
improved mixing representations [de Niet et al.,
2007; den Toom et al., 2011] and a parallelization
strategy [Thies et al., 2009]. As the equations have
been presented and discussed elsewhere, we only
describe the main aspects of the model and provide
the full equations in Appendix A.

The primitive equations are formulated using
spherical coordinates (φ, θ, z) restricted to a domain
φ ∈ [φW , φE ], θ ∈ [θS , θN ] and z ∈ [−Ho, 0], that is
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rotating with angular velocity Ω. Here, Ho is the
maximum ocean depth and the atmosphere-ocean
interface at z = 0 is rigid. Additional boundaries
within the domain are introduced using a land mask
M(φ, θ, z) ∈ [0, 1] that describes the bathymetry
and, hence, a more detailed flow domain. Note that
in the experiments in Sec. 5 we consider a global
configuration and let the zonal boundaries φW and
φE become periodic.

Horizontal velocities are given by u in the lon-
gitudinal and v in the latitudinal direction. Vertical
velocity, pressure, temperature and salinity are indi-
cated by w, p, T and S, respectively. The govern-
ing equations use the hydrostatic and Boussinesq
approximations and are shown in Appendix A,
Eqs. (A.1)–(A.6). Mixing of momentum is repre-
sented by eddy diffusivities, where AH and AV are
the horizontal and vertical friction coefficients. The
coefficients KH and KV determine the horizontal
and vertical diffusivities of heat and salt. A linear
equation of state is used, with expansion coefficients
αT and αS. In Table B.1 an overview is given of the
relevant ocean parameters. The horizontal velocity
field is driven by a wind stress (Qφ

τ , Qθ
τ ), that is

applied as a body forcing over the upper layer.
In the temperature and salinity equations, con-

tinuous convective adjustment terms, ca(·), are
introduced to locally remove static instabilities
using strong vertical mixing of heat and salinity
[den Toom et al., 2011]. Driving terms for heat and
salinity are provided by surface fluxes QT and QS

that depend on the atmosphere and sea ice state.
Similar to the wind stress field, the fluxes QT and
QS are applied as body forcings over the upper layer
(see Sec. 3).

At the bottom and surface boundaries we
apply slip conditions for the horizontal velocities,
impose no flow conditions on the vertical veloc-
ity and require heat and salinity fluxes to be zero
[see (A.20)–(A.22)]. At the lateral boundaries we
impose no-slip conditions on the velocities and zero-
flux conditions on heat and salinity. In a global con-
figuration the zonal boundaries are replaced by peri-
odicity constraints, i.e. when φW = φE , we require
that u(φW ) = u(φE), v(φW ) = v(φE), w(φW ) =
w(φE), T (φW ) = T (φE) and S(φW ) = S(φE).

2.2. The atmosphere model

The atmosphere equations in the I-EMIC are
based on the energy-moisture balance model in

[Fanning & Weaver, 1996]. The state of the atmo-
sphere component contains atmospheric tempera-
ture T a, specific humidity q, albedo α and the
global mean precipitation P . The evolution of T a

and q is governed by vertically integrated energy
balance models, with a linear Budyko–Sellers-type
parameterization of outgoing longwave radiation
QLW [Budyko, 1969]. We let adjustments in albedo
α depend on surface type and temperature. The
full parameterization of α is discussed separately
in Sec. 2.5. Precipitation is included through a spa-
tial distribution function d combined with a mean
precipitation P , which is computed through an
auxiliary integral equation.

The two-dimensional energy balance equations
are formulated using spherical coordinates (φ, θ),
restricted to φ ∈ [φW , φE ] and θ ∈ [θS , θN ]. At
the lateral boundaries we require no flux condi-
tions [see (A.23)–(A.24)]. In a global configura-
tion we let φW = φE, which leads to requiring
T a(φW ) = T a(φE) and q(φW ) = q(φE).

The vertically integrated temperature T a is
subject to horizontal diffusive heat transport, QD,
and driven by a balance of radiative forcings
containing outgoing longwave radiation QLW , net
shortwave radiation QSW , sensible heat flux QSH

and a latent heat flux due to precipitation QLH :

ρaHaCpa
∂T a

∂t
= QD −QLW + QSW + QSH + QLH ,

QD = ρaHaCpaD0∇h · (D(θ)∇hT a),
(1)

where ρa denotes atmospheric density, Ha the inte-
gration scale height and Cpa the specific heat of
air. The latitudinal dependence on, and magnitude
of eddy diffusivity are controlled by D(θ) and D0,
where

D(θ) = 0.9 + 1.5e−12θ2/π. (2)

The radiative forcing terms are given by

QLW = A + BT a, (3)

QSW =
Σ0

4
S(θ)(1 − α)(1 − C0), (4)

QSH = μ(T s − T a), (5)

QLH = ρoLvP. (6)

Here, we use a linear outgoing longwave radiative
flux QLW , with coefficients A and B [Budyko, 1969].
The shortwave radiation QSW is determined by
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the solar constant Σ0, albedo α and atmospheric
absorption 1 − C0. A latitudinal dependence is
introduced through S(θ) [North et al., 1981]:

S(θ) = 1 − 0.482(3 sin2(θ) − 1)
2

. (7)

In the sensible heat flux QSH , T s denotes the
temperature of the underlying surface and we use a
simplified exchange coefficient μ = ρaCpaCH |Va|,
where CH is the Stanton number and |Va| the
mean surface wind speed. The latent heat flux QLH

depends on precipitation P (12), and is computed
using the reference water density ρo and latent heat
of vaporization Lv.

The vertically integrated specific humidity q is
subject to diffusive horizontal transport and driven
by the difference between evaporation and precip-
itation E − P [Fanning & Weaver, 1996; Weaver
et al., 2001]:

ρaHq
∂q

∂t
= ρaHq∇h · (κ∇hq) + ρo(E − P ), (8)

where Hq is the integration scale height for specific
humidity and κ the eddy diffusivity. Evaporation E
is calculated from

E = η(qsat(T s) − q), with η =
ρaCE|Va|

ρo
. (9)

Here, CE is the Dalton number and qsat(T s) the
saturation humidity that depends on the underlying
surface type [Weaver et al., 2001], see Sec. 3.3. In
Table B.2 an overview of all atmosphere parameters
with their dimensions and typical values is given.

Precipitation is obtained through an additional
constraint on the E − P difference that ensures
that all evaporated water is returned through
precipitation:

∫
(E − P )dA = 0, (10)

where A denotes the ocean surface. The total mean
precipitation is then given by

P =
1
A

∫
E dA. (11)

To incorporate spatial features of the precipita-
tion field a distribution function d is introduced,
giving

P = Pd(φ, θ), (12)

with the function d chosen such that (10) is satis-
fied, i.e.

1
A

∫
d(φ, θ)dA = 1. (13)

The mean precipitation P is added to the atmo-
sphere model as an auxiliary unknown. An addi-
tional integral equation given by (11) is then added
to close the system of equations. The distribution
function d is implemented stationary, but can be
chosen freely as long as (13) holds. This implies
that precipitation/snowfall on land can be repre-
sented (P is allowed to be nonzero above land) but,
without runoff, this is only useful in the parameter-
ization of reflectivity α (Sec. 2.5).

2.3. Land temperature

The heat flux from the atmosphere into the land,
Qla

T , depends on the reflectivity α, the atmospheric
temperature T a and the land temperature T l:

Qla
T = QSW − QSH , (14)

with

QSW =
Σ0

4
S(θ)(1 − α)C0,

QSH = μ(T l − T a),

where we reuse the radiative flux notations in the
context of heat fluxes over land [cf. (4) and (5)]. For
simplicity, we let the heat capacity of land be zero,
which leads to zero heat flux from the atmosphere
into the land, i.e. Qla

T = 0. Land temperature can
therefore be written as a function of atmospheric
temperature and albedo:

T l = T a +
Σ0

4μ
S(θ)(1 − α)C0. (15)

We do not append T l to the model unknowns and
this expression is not added to the system of atmo-
sphere equations, but substituted where needed.

2.4. The sea ice model

The sea ice component is an implicit formulation of
the thermodynamic sea ice model in [Weaver et al.,
2001], where a number of additional unknowns
are introduced to ease submodel interactions. An
evolution equation for sea ice thickness H is
solved, together with three algebraic constraints
that compute the sea ice-atmosphere heat flux Qsa

T ,
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a continuous sea ice mask M si and the sea ice sur-
face temperature T i. The mask equation is added
to simplify sea ice-dependent derivatives by repre-
senting the (possibly fractional) presence of sea ice
at a grid point.

The evolution of sea ice thickness is governed
by

ρiLf
∂H

∂t
= Qos

T − Qsa
T − ρoLfE, (16)

where the difference Qos
T − Qas

T is the heat flux
available for the creation of sea ice, ρi is the ice
density, Lf is the latent heat of fusion of ice and
E is sublimation. The heat flux directed from the
sea ice into the ocean Qos

T depends on the (salin-
ity dependent) freezing point of ocean water T f

and the ocean surface layer temperature T o (which
we distinguish from the full 3D ocean temperature
state T ):

Qos
T = ζ(T f − T o), with ζ = CsuτρoCpo. (17)

Here, Cpo is the specific heat of sea water, uτ is
the skin friction velocity and Cs is a relaxation
parameter.

The heat flux from the atmosphere into the sea
ice, Qsa

T , is given by

0 = Qsa
T − QSW + QSH + QLH , (18)

with

QSW =
Σ0

4
S(θ)(1 − α)C0,

QSH = μ(T i − T a),

QLH = ρoLsE.

Here, QSW is the incoming shortwave radiation, the
sensible heat flux QSH is calculated with sea ice sur-
face temperature T i, QLH is the latent heat flux due
to sublimation and Ls is the latent heat of sublima-
tion of ice. The heat flux Qsa

T is added to the sea ice
model state and the corresponding algebraic con-
straint (18) is added to the system of equations.

Equating the sea ice-atmosphere flux with the
conductive flux through the ice, results in an expres-
sion for the sea ice surface temperature T i [Weaver
et al., 2001]:

0 = T f (S) − T i +
Qsa

T H

Ic
, (19)

with Ic denoting the thermal conductivity of ice.
The surface temperature T i is added as a model

state component, which leads to the addition of (19)
to the system of equations.

Finally, an equation for the sea ice mask M si is
added:

0 = M si − 1
2

[
1 + tanh

(
H − τs

ε

)]
, (20)

with τs a threshold ice thickness and ε a transition
width that may represent subgrid sea ice fractions.
See Table B.3 for an overview of the sea ice specific
parameters and their values.

The resulting sea ice model state contains the
unknowns (H,Qsa

T ,M si, T i) with the following gov-
erning system of equations:

ρiLf
∂H

∂t
= Qos

T − Qsa
T − ρoLfE, (21)

0 = Qsa
T − QSW + QSH + QLH , (22)

0 = M si − 1
2

[
1 + tanh

(
H − τs

ε

)]
, (23)

0 = T f − T i +
Qsa

T H

Ic
. (24)

2.5. The albedo model

The reflectivity α, present in the incoming short-
wave radiation fluxes, depends on the type of under-
lying surface. For atmosphere points above ocean
and sea ice this can be written as a straightfor-
ward dependence on the continuous sea ice mask
M si ∈ [0, 1]. On land we need a parameterization
for the occurrence of snow and ice that depends on
land temperature T l and precipitation P . We let
albedo evolve according to

∂α

∂t
=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

τ−1
f (α0 + Δαf(T l, P ) − α)

above land points,

τ−1
c (α0 + ΔαM si − α)

above ocean or sea ice points,

(25)

with restoring timescales τf , τc, a mean background
value α0 and an excursion Δα. The function
f(T l, P ) : R × R → [0, 1] combines parameteriza-
tion for melt, accumulation and the ratio of snow
and liquid precipitation:

f(T l, P ) = H(Tm − T l, εm)H(P − Pa, εa)

×H(Tr − T l, εr) (26)
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with

H(x, ε) =
1
2

[
1 + tanh

(x

ε

)]
. (27)

The center and width of the switching behavior in
the approximate Heaviside functions H are given
by (εm, Tm) for melting, (εa, Pa) for accumulation
and (εr, Tr) for the snow/rain ratio. Melt transitions
smoothly from year-round ice cover to year-round
ice free conditions. Accumulation and the snow/rain
ratio require a sharper switch at their critical val-
ues. We let albedo α be an additional state compo-
nent of the atmosphere model and add the evolution
equation (25) to the atmosphere system.

3. Coupling Details

In this section we describe the heat and freshwater
fluxes that are communicated between the compo-
nents of the I-EMIC. The coupled model setup is
such that the state of one component becomes the
forcing of another one, with minimal adjustments.
For instance, the fluxes into the ocean are calculated
using internal (ocean) and external (atmosphere or
sea ice) states. We only communicate state compo-
nents and let submodels construct fluxes indepen-
dently. In this way, derivatives with respect to all
unknowns (internal and external) are readily avail-
able at the model level. In most cases this is a nat-
ural implementation. It does, however, imply that
some fluxes are computed multiple times at differ-
ent locations.

The I-EMIC contains two different masks that
determine the type of fluxes for the submodel inter-
actions. A fixed, three-dimensional land mask M ∈
[0, 1] describes the ocean bathymetry with discrete
values: M = 1 on land and M = 0 elsewhere. Then
there is an evolving, two-dimensional sea ice mask
M si ∈ [0, 1] that depends continuously on sea ice
thickness H, see Sec. 2.4. With sufficient sea ice
cover, M si ≈ 1. A critical sea ice thickness will
trigger a change in flux interactions between the
submodels. By adding M si to the list of sea ice
unknowns, we let a state component control flux
changes directly and, thereby, simplify flux deriva-
tives.

3.1. Forcing of oceanic temperature
and salinity

The forcing in the oceanic temperature equation,
QT in (A.5), is a combination of atmospheric and

sea ice heat fluxes (ignoring geothermal heat fluxes)
that are applied to the ocean’s upper layer:

QT =
g(z)

ρoCpoHm
(Qoa

T (1 − M si) + M siQos
T ), (28)

where Hm is the upper layer depth, Qoa
T the heat

flux from the atmosphere into the ocean, Qos
T the

heat flux from the sea ice into the ocean [as given
by (17)] and M si ∈ [0, 1] the sea ice mask. The
body forcing uses a vertical distribution g(z), which
equals 1 in the upper layer and 0 elsewhere.

The heat flux from the atmosphere into the
ocean contains incoming shortwave radiation QSW ,
a sensible heat flux QSH and a latent heat flux due
to evaporation QLH :

Qoa
T = QSW − QSH − QLH , (29)

with

QSW =
Σ0

4
S(θ)(1 − α)C0,

QSH = μ(T o − T a),

QLH = ρoLvE.

The forcing QS of the salinity equation (A.6)
is given by the ocean-atmosphere freshwater flux
Qoa

S and the ocean-sea ice brine and melt flux Qos
S ,

which are combined through the sea ice mask M si

and applied to the upper layer of the ocean:

QS =
g(z)S0

Hm
((1 − M si)Qoa

S + M siQos
S − γ). (30)

Here, γ is an integral correction such that∫
QSdA = 0, which ensures conservation of salt. In

Sec. 3.2, it is shown that γ compensates for a lack
of physical mechanisms represented by the ocean-
sea ice freshwater flux Qos

S . The ocean-atmosphere
freshwater flux Qoa

S , directed into the ocean, is the
evaporation-precipitation difference

Qoa
S = Eo − P, (31)

where evaporation over ocean points Eo is a func-
tion of the ocean surface temperature T o and spe-
cific humidity q in the atmosphere (9). Precipitation
P is computed according to (12). The salinity flux
due to brine rejection and melting is [Weaver et al.,
2001]

Qos
S =

Qos
T − Qsa

T

ρoLf
. (32)

To summarize, the ocean submodel depends on
all state components of the atmosphere model: T a,
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q, α and P . Of the sea ice model, only the unknown
flux Qsa

T and mask M si are needed, as the flux Qos
T

can be computed from oceanic state components.
However, an additional correction factor γ to guar-
antee salinity conservation is also required, which
we discuss in the next section.

3.2. Buoyancy flux correction

The salinity flux due to brine rejection and melting,
Qos

S , adds to the otherwise closed salinity budget. In
the total buoyancy flux QS (30) this leads to a cor-
rection term γ in order to satisfy the conservation
of salt. Note that, without sea ice, the flux QS does
satisfy this conservation requirement due to (10).
Taking the integral of (30) over the ocean surface
and setting it to zero leads to an expression for γ:

γA =
∫

Qoa
S dA −

∫
M siQoa

S dA

+
∫

M siQos
S dA. (33)

Using (31) we write∫
Qoa

S dA =
∫

EodA − PA, (34)

where Eo is the evaporation at ocean points (see
Sec. 3.3) and P is the global mean precipitation (11)
which satisfies the integral equation:

PA =
∫

EodA +
∫

M si(Ei − Eo)dA, (35)

where we distinguish between evaporation over
ocean points Eo and sublimation over sea ice
points Ei. Substituting (35) in (34) gives∫

Qoa
S dA =

∫
M si(Eo − Ei)dA. (36)

A part of the atmospheric buoyancy flux is blocked
by the sea ice. Integrated over the sea ice area the
blocked flux is given by∫

M siQoa
S dA =

∫
M si(Eo − P )dA. (37)

Using (36) and (37), the correction equation (33)
reduces to

γA =
∫

M si(Qos
S − (Ei − P ))dA. (38)

Hence, physically, the correction γ originates from
the difference between the net buoyancy fluxes at
the top and bottom of the floating sea ice. This

correction therefore compensates for the lack of
additional physical mechanisms, e.g. precipitation
and runoff.

3.3. Forcing of the atmosphere

The atmosphere model depends on the underly-
ing surface type and surface temperature T s, which
influences sensible heat fluxes, albedo and evapo-
ration/sublimation. The surface temperature T s is
given by

T s =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T l if M = 1

(land surface temperature),

T i if M si = 1

(sea ice surface temperature),

T o elsewhere

(ocean surface temperature).
(39)

With the mask fields and different surface types
incorporated, the sensible heat flux (5) expands to

QSH =

⎧⎪⎪⎨
⎪⎪⎩

μ(T l − T a) if M = 1,

μ(T o[1 − M si] + T iM si − T a)

elsewhere.

(40)

The latent heat flux (6) depends on the mean pre-
cipitation P , which is given by (11). The evapo-
rative term in (11) and (8) is expanded with the
different surface types:

P =
1
A

∫
EdA =

1
A

∫
(Eo(1 − M si) + M siEi)dA,

(41)

with

Eo = η(qsat(T o) − q), (42)

Ei = η(qsat(T i) − q), (43)

where the saturation humidity qsat for different
surface types is given by

qsat(T ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

c1 exp
(

c2T

T + c3

)
if T = T i,

c1 exp
(

c4T

T + c5

)
if T = T o.

(44)

The values of the saturation humidity coefficients
are given in Table B.4.
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4. Numerical Aspects

The ocean equations are discretized using a con-
trol volume discretization on an Arakawa B-grid in
the horizontal [Arakawa & Lamb, 1977] and on a
C-grid in the vertical direction. Earlier versions of
THCM made use of a C-grid in the horizontal direc-
tion and suffered from numerical wiggles for small
horizontal diffusivities AH . In [Wubs et al., 2006],
it is shown that these numerical artifacts disappear
when a B-grid is used in the horizontal direction.
The unknowns of the other two-dimensional sub-
models couple with temperature and salinity at the
cell-centers and are therefore also positioned at the
cell-centers of a B-grid.

4.1. Fixed point continuation

Apart from a few transient computations we mainly
use pseudo-arclength continuation [Keller, 1977] to
obtain steady states for a range of control parame-
ter values. After spatial discretization, the complete
coupled problem (A.1)–(A.15) can be formulated as

Bẋ = F (x, λ), (45)

where F : R
n × R → R

n is a nonlinear operator
given by the spatially discretized right-hand side of
(A.1)–(A.15), λ denotes a control parameter and
x ∈ R

n is a vector containing n model unknowns.
The matrix B ∈ R

n×n controls the time derivatives
in (A.1)–(A.15) and contains zero rows correspond-
ing to algebraic constraints and integral equations.
As B is singular, (45) is a system of differential-
algebraic equations (DAEs).

Steady states of (45) satisfy

F (x, λ) = 0. (46)

Fixed points (x, λ) lie on a curve that is natu-
rally parameterized with an arclength parameter s:
γ(s) = (x(s), λ(s)). The curve satisfies a normaliza-
tion constraint that closes the system:

ζ

∥∥∥∥dx
ds

∥∥∥∥
2

2

+ (1 − ζ)
(

dλ

ds

)2

= 1, (47)

where ζ ∈ (0, 1) is a positive tuning factor. The
pseudo-arclength continuation algorithm follows a
predictor-corrector procedure that is initialized
with a known or trivial steady state. A new point
on the curve is predicted and subsequently cor-
rected in a Newton–Raphson root finding procedure
[Press et al., 2007]. The advantage of the arclength

parameterization is that when the Jacobian matrix
of F becomes singular, the combined system (46)
and (47) can still be solved. This allows the
predictor-corrector procedure to continue through
a bifurcation onto an unstable branch. See [Sey-
del, 2010] for a broad introduction into continuation
techniques.

4.2. Linear stability analysis

The stability of points (x, λ) that satisfy (46)
is investigated through a linear stability analysis.
Consider a small perturbation of the steady state:
x + x̃. Linearization of the perturbed system (45)
around x gives an expression for the evolution of a
local perturbation:

B
dx̃
dt

= J(x, λ)x̃, (48)

where J = ∂F
∂x is the Jacobian matrix of F . Solu-

tions of (48) are of the form x̃ = x̂eσt, which gives
a generalized eigenvalue problem:

σBx̂ = J(x, λ)x̂. (49)

Local stability properties are then given by the
eigenvalues σ and patterns of associated variabil-
ity can be inferred from the eigenvectors x̂. For the
large-scale linear stability problems in Sec. 5 we
use the JDQZ generalized eigenvalue solver [Slei-
jpen et al., 1996].

4.3. Numerical coupling framework

Submodels of the I-EMIC follow the monolithic for-
mulation in (45). Next to a differentiable right-hand
side Fi, the ith submodel also provides a Jacobian
matrix Ji = ∂Fi

∂xi
, derivatives with respect to other

submodel states Cij = ∂Fi
∂xj

and a suitable precon-
ditioner for the Jacobian matrix, Mi, such that the
conditioning of M−1

i Ji is better than that of Ji, and
Mi is cheap to invert. The coupled Jacobian of the
I-EMIC is given by

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

J1 C12 · · · C1m

C21 J2
...

...
. . . Cm−1m

Cm1 · · · Cmm−1 Jm

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (50)

The system of equations Jδx = b is solved several
times in the Newton corrector step of the arclength
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continuation. Here we use flexible GMRES [Saad,
1993] on the full (monolithic) problem with right
preconditioning. The coupled preconditioner M
consists of the submodel preconditioners Mi, com-
bined with the coupling blocks Cij. Inversion of M
is then performed with a few (backward or forward)
block Gauss–Seidel iterations [Saad, 2003], allowing
a partitioned preconditioning approach. The action
z = M−1v, for instance, can be approximated by
the following forward Gauss-Seidel iteration:

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

M1 0 · · · 0

C21 M2
...

...
. . .

Cm1 · · · Cmm−1 Mm

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
zk

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 C12 · · · C1m

0 0
...

...
. . . Cm−1m

0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
zk−1 + v. (51)

5. Snowball Earth Bifurcations

We will use the full model (A.1)–(A.15) to compute
a bifurcation diagram with the solar constant as
control parameter. First, we compute stable station-
ary states through an implicit spinup, i.e. through
time integration. Then, we apply a parameter con-
tinuation procedure to compute branches of steady
states versus the solar constant.

The computations are performed for the fully
coupled problem. We use a computational grid with
a resolution of approximately 4◦ in both horizon-
tal directions. In the vertical direction we use 12
layers with refinements towards the surface, such
that the upper and bottom layers are 72 m and
858 m deep, respectively. For simplicity and com-
putational efficiency we use a flat bottom ocean
depth of 5000 m and a large horizontal eddy viscos-
ity of AH = 1.6×107 m2s−1. The horizontal domain
is periodic in the zonal direction and bounded by
latitudes [θS , θN ] = [85.5◦S, 85.5◦N]. Within the
computational domain, the lateral boundaries are
provided by a present-day topography mask.

Steady states are computed for two different
physical setups. In setup (a), the ocean dynamics

are fully disabled. In setup (b) the ocean is driven
by an idealized wind stress (Qφ

τ , Qθ
τ ), and heat

fluxes QT from the atmosphere and sea ice com-
ponents (28). Freshwater fluxes QS are ignored and
the wind stress contains only a zonal component,
given by the analytical profile in [Bryan, 1987]. The
solar constant, present in the shortwave radiation
terms QSW , is adjusted through λΣΣ0, where λΣ

acts as the control parameter with λΣ = 1 for the
default configuration. Figure 1 shows branches of
steady states under changing λΣ for both setups.
On the y-axis the total sea ice cover Asi =

∫
M sidA,

scaled with the total ocean surface A, is taken as a
state indicator.

The continuations are started at steady states
achieved through transient computations at λΣ =
0.98. As time stepping scheme, we use backward
Euler with an adaptive time step that depends on
the number of Newton iterations. The transients
give steady states at points Pa

1 and Pb
1 for setups

(a) and (b), respectively. From these points con-
tinuations in λΣ are performed in both directions
along the branch of steady states. This procedure
is repeated for both configurations at λΣ = 0.94,
where transients end up in the fully ice-covered
snowball state [left endpoint of the upper curve
in Fig. 1(a)]. From here, continuations are only
performed in the direction of increasing λΣ. For
a dynamic ocean (configuration (b)) another tran-
sient to steady state is computed for λΣ = 0.975,
and continuations in both directions of λΣ are per-
formed [see orange curve in Fig. 1(c)]. Due to
the high computational cost involved with travers-
ing the complicated branches, most continuations
remain incomplete and our focus lies on sections
of the bifurcation diagram near the important
bifurcations.

The continuation, starting at Pa
1 and in the

direction of decreasing λΣ, reaches a snowball Earth
bifurcation at La

1. This can be verified with tran-
sients in a neighborhood of La

1, but we choose to
solve the eigenvalue problem (49) at points before
and after the saddle-node bifurcation. With this
approach we find that, at La

1, an eigenvalue crosses
the imaginary axis. The snowball Earth bifurca-
tion for setup (b) is located at Lb

1. Here, eigenvalue
solutions remain inconclusive (as the JDQZ solver
fails to converge) and verification is done through
the computation of transients. Both configurations
reach the second snowball Earth bifurcation L2,
starting from P2 in the direction of increased λΣ.
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Fig. 1. (a) Complete and (b) and (c) zoomed-in views of the I-EMIC bifurcation diagram with solar forcing λΣΣ0. Default
conditions are given by λΣ = 1.0. The points L∗

1 and L2 are the first and second critical snowball Earth bifurcations. In the
multiple equilibria regime with sea ice present, we select points P at λΣ = 0.98. The ocean circulation is disabled (enabled)
at Pa

1 (Pb
1). In the SBE branch, at P2, both configurations coincide. (b) Zoom-in of the region around the L2 bifurcation. (c)

Zoom-in of the region containing bifurcations La
1 , Lb

1 and points Pa
1 , Pb

1.

Eigenvalue solves for both configurations show an
eigenvalue crossing the imaginary axis at L2.

The sea ice thickness and temperature state
components of the coupled problem at Pa

1 and Pb
1

are depicted in Fig. 2. The sea ice thickness fields
[Figs. 2(a) and 2(b)] show that sea ice extent is
severely reduced by the existence of advective heat
transport. Heat is transported to higher latitudes
and prevents the formation of sea ice. The warmer
ocean surface at high latitudes and the reduced
reflectivity due to a lack of sea ice, contribute to a
warmer atmosphere [Fig. 2(d)]. A stabilizing feed-
back loop is closed by considering that the warmer
atmosphere at Pb

1 keeps the ocean surface temper-
ature above freezing values. The effect of enhanced
oceanic heat transport is also visible from the posi-
tion of the saddle-node bifurcations La

1 and Lb
1:

the snowball Earth bifurcation occurs for lower

incoming shortwave radiation and with less sea ice
cover in configuration (b).

Density-driven ocean flows are enabled in con-
figuration (b), which leads to advective transport
of heat through overturning circulations. Figure 3
shows the meridional overturning circulation at the
fixed points Pb

1 and Lb
1, where the top panels display

the global overturning circulations and the bottom
panels their respective Atlantic components with
Northern sinking profiles [Figs. 3(c) and 3(d)]. At
the bifurcation Lb

1, the global overturning pattern
persists [Fig. 3(b)], compared to Pb

1 [Fig. 3(a)], with
a similar positive and negative amplitude. Figure 4
shows the sea ice extent, sea surface- and atmo-
spheric temperature at the two bifurcations La

1 and
Lb

1. The atmospheric temperature distribution at Lb
1

[Fig. 4(d)] is similar to that at the bifurcation La
1

[Fig. 4(c)], where no ocean circulations exist. At La
1,
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(a) (b)

(c) (d)

Fig. 2. (a) and (b) Sea ice thickness (colors, in m) and sea surface temperature (contours, in ◦C). (a) Without ocean
circulation at Pa

1 (see Fig. 1) and (b) with ocean circulation enabled at Pb
1. (c) and (d) Atmospheric temperature in ◦C at the

points (c) Pa
1 and (d) Pb

1.

sea ice is well established in the Southern Ocean and
is almost constant in the zonal direction, which is
not the case at Lb

1. Ocean circulations inhibit sea
ice growth and lead to a smaller sea ice extent and
more spatial variation in sea ice cover at the snow-
ball bifurcation.

The snowball states at P2 and L2 are shown
in Fig. 5. In a fully ice-covered ocean, the surface

temperature is restored to the local freezing temper-
ature of sea water, according to (17). Hence, during
the transition to a snowball state, the temperature-
driven overturning circulation breaks down. Also,
when QS = 0, the sea surface temperature is
approximately homogeneous in the snowball state
at P2 [Fig. 5(a)], which explains why the bifurca-
tion point L2 is independent of the chosen setup.

(a) (b)

Fig. 3. (a) and (b) Global and (c) and (d) Atlantic meridional overturning streamfunction in Sv at points at (a) and (c) Pb
1

and (b) and (d) Lb
1. The colorbar is based on streamfunction values below 1 km.
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(c) (d)

Fig. 3. (Continued)

Near the bifurcation L2 some spatial variation
emerges at the equator near Australia [Fig. 5(b)]. It
appears that, in a transient computation, this point
could mark the beginning of a transition to the ice-
free branch.

For a better understanding of the destabiliz-
ing characteristics at La

1 and L2, we compute solu-
tions of the generalized eigenvalue problem (49). At
these bifurcations, an eigenvalue has been observed

to cross the imaginary axis. The atmospheric tem-
perature component of the corresponding eigenvec-
tors are shown in Fig. 6. The unstable eigenmodes
show the pattern of unstable growth at the bifur-
cations. At La

1, a strong anomaly is present in the
North Pacific near the Eurasian continent, which
corresponds to a minor excursion of sea ice, visi-
ble in Fig. 4(a). This indicates that, for setup (a),
this area is sensitive to perturbations and, hence,

(a) (b)

(c) (d)

Fig. 4. (a) and (b) Sea ice thickness (colors, in m) and sea surface temperature (contours, in ◦C), at the bifurcations (a) La
1

and (b) Lb
1. (c) and (d) Atmospheric temperature (in ◦C) at the bifurcations (c) La

1 and (d) Lb
1.
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(a) (b)

Fig. 5. Sea ice thickness (colors, in m) and sea surface temperature (contours, in ◦C) at the points (a) P2 and (b) L2.
Variation in sea surface temperature only occurs at the first opening in sea ice cover in (b).

(a) (b)

Fig. 6. Atmospheric temperature component of the unstable eigenmode at (a) La
1 and (b) L2 in Fig. 1. Note that the sign

and magnitude of the perturbation patterns are arbitrary.

a growth to a fully ice-covered ocean is likely to
initiate here.

The destabilizing perturbation pattern at L2 in
Fig. 6(b) shows an anomaly at the equator near
Australia. This area corresponds to the initial open-
ing in the sea ice cover, visible in Fig. 5(b). The
unstable eigenmode therefore confirms the suspicion
that an opening in this region marks the start of a
transition to the ice-free branch.

6. Summary and Discussion

In this paper, we have presented the first fully-
implicit Earth system model of intermediate com-
plexity: the I-EMIC. The discretized model equa-
tions are explored using implicit time integration
methods and continuation techniques. Both meth-
ods have been applied to investigate the snow-
ball Earth hypothesis and the associated hystere-
sis structure. Time integrations were used to find
steady states in the snowball Earth bifurcation

diagram, after which branches of equilibria were
computed using numerical continuations. With this
approach we were able to traverse a complex bifur-
cation structure associated with the ice-albedo feed-
back. The ability of the I-EMIC to perform these
continuations has shown that the formulation of the
coupled climate model is sufficiently smooth, i.e.
it achieves a good Newton–Raphson convergence
rate.

Several previous numerical parameter studies of
global glaciation events [Abbot et al., 2011; Voigt
et al., 2011] were limited to transient simulations
and provided only a limited view of the snowball
Earth bifurcation diagram. Now, with the I-EMIC,
it is possible to follow stable and unstable branches
precisely and thereby fully reveal the dynamical
structure that underlies local and global hysteresis
mechanisms. Furthermore, the I-EMIC allows novel
insights into the patterns of variability around criti-
cal snowball Earth bifurcations using large-scale lin-
ear stability analyses. Dominant eigenvectors of the
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Jacobian matrix, obtained at stable and unstable
steady states, show the subtleties involved in the
interaction between components of the Earth sys-
tem that lead to a global instability mechanism.

Eigenvalue solutions, needed for the linear sta-
bility analysis of steady states within the I-EMIC,
have so far been moderately successful. For model
configurations without an ocean circulation, the
computation of eigenvalues and eigenvectors is fea-
sible for the fully coupled model. However, with
wind- and density-driven flows in the ocean, the
conditioning of the problem exceeds the current
capabilities of the solving scheme. A particular bot-
tleneck in the calculations is the preconditioning,
which requires improvements in order to speed up
continuations through densely packed fold bifurca-
tions, and to be able to find eigenmodes of the fully
dynamical problem at horizontal resolutions of 4◦
and finer.

The sections of the bifurcation diagram associ-
ated with sea ice growth, contain a dense structure
of fold bifurcations due to sea ice-albedo feedbacks.
From a tandem of local ice-albedo mechanisms,
a large-scale bifurcation structure emerges. The
choice of sea ice transition width ε affects the slope
of the branches, but the intermediate bifurcations
can only be removed by radically altering the basic
radiation balance that governs the feedback. The
dense occurrence of bifurcations is inherent to the
discretized equations and, with the current sea ice
formulation, only grid refinements may somewhat
remedy this problem.

Additional modeling efforts are necessary to
extend the atmospheric radiation balance, as the
current formulation in the I-EMIC lacks a repre-
sentation of greenhouse gases — most importantly
CO2. With an added carbon cycle in both the atmo-
sphere and the ocean, the I-EMIC will acquire a
new degree of realism, which, after meticulous test-
ing and tuning, should make it suitable for efficient
climate sensitivity analyses. Furthermore, the tran-
sition width in the sea ice mask equation should
be a better approximation of the sea ice fraction
within a grid cell. In order to compare with pre-
vious, transient based efforts [Voigt et al., 2011],
future snowball Earth experiments with the I-EMIC
need to include a realistic, Marinoan topography.
Additionally, to investigate the “Jormungand” state
[Abbot et al., 2011], the albedo parameterization in
the I-EMIC needs to be expanded with a sea ice
thickness dependency.

Apart from the snowball Earth problem, the
I-EMIC has enormous potential in climate research
as equilibrium states can be quickly computed ver-
sus parameters. This offers the possibility to tackle,
for example, problems related to the Pleistocene
Ice Ages, problems such as the Eocene-Oligocene
transition and other deep-time scientific issues such
as the climate in the Precambrium. The I-EMIC
appears also very well suited to compute equilib-
rium climate states of other (exo)planets within
(e.g. the climate on Titan) and outside of our solar
system.

Acknowledgments

T. E. Mulder, H. Goelzer and H. A. Dijkstra
acknowledge support from the Netherlands Earth
System Science Centre (NESSC), financially sup-
ported by the Ministry of Education, Culture and
Science (OCW), Grant No. 024.002.001. T. E. Mul-
der and F. W. Wubs also acknowledge support from
the Netherlands eScience Center (NLeSC) within
the SMCM project, Grant No. 027.017.G02. Lastly,
we thank the two anonymous referees for their
constructive comments on the manuscript.

Code Availability

The I-EMIC project is being actively developed in
collaboration with the Netherlands eScience Cen-
ter (NLeSC) and is publicly available at https://
github.com/nlesc-smcm/i-emic. The JDQZ general-
ized eigenvalue solver [Sleijpen et al., 1996] used for
this project is a templated C++ port of the original
code by Fokkema and van Gijzen. It can be found
at https://github.com/erik808/jdqzpp.

References

Abbot, D. S., Voigt, A. & Koll, D. [2011] “The Jor-
mungand global climate state and implications for
Neoproterozoic glaciations,” J. Geophys. Res. 116,
D18103.

Arakawa, A. & Lamb, V. [1977] “Computational design
of the basic dynamical processes of the ucla gen-
eral circulation model,” General Circulation Models of
the Atmosphere, Methods in Computational Physics:
Advances in Research and Applications, Vol. 17 (Aca-
demic Press), pp. 173–265.

Boschi, R., Lucarini, V. & Pascale, S. [2012] “Bistability
of the climate around the habitable zone: A thermo-
dynamic investigation,” Icarus 226, 1724–1742.

2130017-14

In
t. 

J.
 B

if
ur

ca
tio

n 
C

ha
os

 2
02

1.
31

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 1
39

.4
7.

25
.1

52
 o

n 
01

/0
3/

22
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



June 8, 2021 16:56 WSPC/S0218-1274 2130017

Snowball Earth Bifurcations in a Fully-Implicit Earth System Model

Bryan, F. [1987] “Parameter sensitivity of primitive
equation ocean general circulation models,” J. Phys.
Oceanogr. 17, 970–985.

Budyko, M. I. [1969] “The effect of solar radiation vari-
ations on the climate of the Earth,” Tellus A 21,
611–619.

de Niet, A., Wubs, F., van Scheltinga, A. T. & Dijkstra,
H. A. [2007] “A tailored solver for bifurcation analysis
of ocean-climate models,” J. Comput. Phys. 227, 654–
679.

den Toom, M., Dijkstra, H. A. & Wubs, F. W. [2011]
“Spurious multiple equilibria introduced by convec-
tive adjustment,” Ocean Model. 38, 126–137.

Dijkstra, H. A., Oksuzoglu, H., Wubs, F. W. & Botta,
E. F. F. [2001] “A fully implicit model of the three-
dimensional thermohaline ocean circulation,” J. Com-
put. Phys. 173, 685–715.

Fanning, A. F. & Weaver, A. J. [1996] “An atmospheric
energy-moisture balance model: Climatology, inter-
pentadal climate change, and coupling to an ocean
general circulation model,” J. Geophys. Res. 101,
15111.

Ghil, M. & Childress, S. [1987] Topics in Geophysi-
cal Fluid Dynamics: Atmospheric Dynamics, Dynamo
Theory, and Climate Dynamics (Springer-Verlag,
Berlin/Heidelberg/New York).

Gildor, H. & Tziperman, E. [2001] “A sea ice climate
switch mechanism for the 100-kyr glacial cycles,”
J. Geophys. Res. 106, 9117.

Hoffman, P. F., Abbot, D. S., Ashkenazy, Y., Benn,
D. I., Brocks, J. J., Cohen, P. A., Cox, G. M., Crev-
eling, J. R., Donnadieu, Y., Erwin, D. H., Fairchild,
I. J., Ferreira, D., Goodman, J. C., Halverson, G. P.,
Jansen, M. F., Le Hir, G., Love, G. D., Macdon-
ald, F. A., Maloof, A. C., Partin, C. A., Ramstein,
G., Rose, B. E. J., Rose, C. V., Sadler, P. M.,
Tziperman, E., Voigt, A. & Warren, S. G. [2017]
“Snowball earth climate dynamics and cryogenian
geology-geobiology,” Sci. Adv. 3, e1600983.

Keller, H. B. [1977] “Numerical solution of bifurca-
tion and nonlinear eigenvalue problems,” Applications
of Bifurcation Theory (Proc. Advanced Sem., Univ.
Wisconsin, Madison, Wis., 1976 ), Publ. Math. Res.
Center, No. 38 (Academic Press, NY), pp. 359–384.

Kirschvink, J. L. [1992] “Late proterozoic low-latitude
global glaciation: The snowball earth,” The Pro-
terozoic Biosphere: A Multidisciplinary Study, eds.
Schopf, J. W., Klein, C. & Des Maris, D. (Cambridge
University Press), pp. 51–52.

North, G. R., Cahalan, R. F. & Coakley, J. A. [1981]
“Energy balance climate models,” Rev. Geophys. 19,
91.

Press, W. H., Teukolsky, S. A., Vetterling, W. T. &
Flannery, B. P. [2007] Numerical Recipes. The Art
of Scientific Computing, third edition (Cambridge
University Press, Cambridge).

Saad, Y. [1993] “A flexible inner-outer preconditioned
GMRES algorithm,” SIAM J. Sci. Comput. 14, 461–
469.

Saad, Y. [2003] Iterative Methods for Sparse Linear Sys-
tems, second edition (SIAM).

Seydel, R. [2010] Practical Bifurcation and Stabil-
ity Analysis, Interdisciplinary Applied Mathematics,
Vol. 5 (Springer, NY).

Sleijpen, G. L. G., Booten, A. G. L., Fokkema, D. R. &
Vorst, H. A. [1996] “Jacobi–Davidson type methods
for generalized eigenproblems and polynomial eigen-
problems,” BIT Numer. Math. 36, 595–633.

Thies, J., Wubs, F. & Dijkstra, H. A. [2009] “Bifurca-
tion analysis of 3D ocean flows using a parallel fully-
implicit ocean model,” Ocean Model. 30, 287–297.

Voigt, A., Abbot, D. S., Pierrehumbert, R. T. &
Marotzke, J. [2011] “Initiation of a Marinoan Snow-
ball Earth in a state-of-the-art atmosphere-ocean gen-
eral circulation model,” Clim. Past 7, 249–263.

Weaver, A. J., Eby, M., Wiebe, E. C., Bitz, C. M., Duffy,
P. B., Ewen, T. L., Fanning, A. F., Holland, M. M.,
MacFadyen, A., Matthews, H. D., Meissner, K. J.,
Saenko, O., Schmittner, A., Wang, H. & Yoshimori,
M. [2001] “The UVic earth system climate model:
Model description, climatology, and applications to
past, present and future climates,” Atmosph. Ocean
39, 361–428.

Wubs, F. W., de Niet, A. C. & Dijkstra, H. A. [2006]
“The performance of implicit ocean models on B- and
C-grids,” J. Comput. Phys. 211, 210–228.

Yang, J., Peltier, W. R. & Hu, Y. [2012a] “The initiation
of modern soft and hard Snowball Earth climates in
CCSM4,” Clim. Past 8, 907–918.

Yang, J., Peltier, W. R. & Hu, Y. [2012b] “The initi-
ation of modern ‘soft snowball’ and ‘hard snowball’
climates in CCSM3. Part I: The influences of solar
luminosity, CO2 concentration, and the sea ice/snow
Albedo parameterization,” J. Clim. 25, 2711–
2736.

Appendix A

Model Overview and Matrix
Formulation

In this section, we provide an overview of the I-
EMIC’s equations and follow with the structure of
the associated Jacobian matrix.

Du

dt
− uv tan θ

r0
− 2Ωv sin θ

= − 1
ρor0 cos θ

∂p

∂φ
+ AV

∂2u

∂z2

+ AHV(u, v) + Qφ
τ , (A.1)
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Dv

dt
+

u2 tan θ

r0
+ 2Ωu sin θ

= − 1
ρor0

∂p

∂θ
+ AV

∂2v

∂z2

+ AHV(v,−u) + Qθ
τ , (A.2)

0 = −∂p

∂z
− ρog(1 − αT (T − T0)

+ αS(S − S0)), (A.3)

0 =
∂w

∂z
+

1
r0 cos θ

(
∂u

∂φ
+

∂(v cos θ)
∂θ

)
, (A.4)

DT

dt
= ∇h · (KH∇hT ) +

∂

∂z

(
KV

∂T

∂z

)

+ ca(T ) + QT , (A.5)

DS

dt
= ∇h · (KH∇hS) +

∂

∂z

(
KV

∂S

∂z

)

+ ca(S) + QS , (A.6)

ρaHaCpa
∂T a

∂t
= QT − QLW + QSW

+ QSH + QLH , (A.7)

ρaHq
∂q

∂t
= ρaHq∇h · (κ∇hq) + ρo(E − P ),

(A.8)

∂α

∂t
=

⎧⎨
⎩

τ−1
f (α0 + Δαf(T l, P ) − α) if M = 1,

τ−1
c (α0 + ΔαM si − α) if M = 0,

(A.9)

0 =
d(φ, θ)

A

∫
EdA − P, (A.10)

ρiLf
∂H

∂t
= Qos

T − Qsa
T − ρoLfE, (A.11)

0 = Qsa
T − QSW + QSH + QLH , (A.12)

0 = M si − 1
2

[
1 + tanh

(
H − τs

ε

)]
, (A.13)

0 = T f − T i +
Qsa

T H

Ic
, (A.14)

0 =
∫

M si(Qos
S − (Ei − P ))dA − γA, (A.15)

where a linear equation of state is substituted in the
hydrostatic equation (A.3) and

D

dt
=

∂

∂t
+

u

r0 cos θ

∂

∂φ
+

v

r0

∂

∂θ
+ w

∂

∂z
,

(A.16)

V(f, g) = ∇2
hf − f

r2
0 cos2θ

− 2 sin θ

r2
0 cos2θ

∂g

∂φ
, (A.17)

∇hf =
(

1
r0 cos θ

∂f

∂φ
,

1
r0

∂f

∂θ

)T

, (A.18)

∇2
h = ∇h · ∇h. (A.19)

Boundary conditions for the ocean equations are
given by

φ = φW , φE :

u = v = w = 0,
∂T

∂φ
=

∂S

∂φ
= 0, (A.20)

θ = θS , θN :

u = v = w = 0,
∂T

∂θ
=

∂S

∂θ
= 0, (A.21)

z = −D, 0 :

∂u

∂z
=

∂v

∂z
= 0, w = 0,

∂T

∂z
=

∂S

∂z
= 0.

(A.22)

Similarly, for the atmosphere equations we require

φ = φW , φE :
∂T a

∂φ
=

∂q

∂φ
= 0, (A.23)

θ = θS, θN :
∂T a

∂θ
=

∂q

∂θ
= 0. (A.24)

Spatial discretization gives a system of
differential-algebraic equations (DAEs, see Sec. 4):

Bẋ = F (x, λ). (A.25)

Newton–Raphson iterations are necessary to com-
pute orbits and steady states of (A.25) implicitly.
This root-finding procedure requires the solution of

Jx = b, (A.26)

where x,b ∈ R
n are vectors in the state space of the

dynamical system (A.25) and J ∈ R
n×n is the Jaco-

bian matrix, i.e. the derivative of F with respect
to the state. One way to summarize the couplings
between the submodels is through expanding the
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matrix-vector product in (A.26):

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Juv Ew Guv
p

0 Gw
p BTS

Duv Dw 0

Buv Bw JTS CTS
Tq CTS

α cTS
P CTS

QT CTS
M cTS

γ

CTq
TS JTq CTq

α cTq
P CTq

QT CTq
M

Cα
Tq Jα cα

P Cα
M

pᵀ
TS pᵀ

Tq −1 pᵀ
QT pᵀ

M

CH
TS CH

Tq 0 CH
QT

CQT
TS CQT

Tq CQT
α CQT

H JQT

CM
H JM

γᵀ
TS γᵀ

Tq γP γᵀ
QT γᵀ

M −A

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xuv

xw

xp

xTS

xTq

xα

xP

xH

xQT

xM

xγ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (A.27)

The ocean model derivatives determine the first
four rows, atmosphere derivatives are present in the
next three rows and the remaining four rows are
given by sea ice derivatives. The diagonal blocks Juv

and JTS are convection-diffusion operators, where
Juv also contains a Coriolis component. The JTq

block is a plain diffusion operator and the remain-
ing diagonal blocks do not differentiate spatial dis-
cretizations. For the internal off-diagonal ocean
model blocks we use the notation of [de Niet et al.,
2007]. The matrix Ew contains the coupling of the
horizontal momentum equations with w through
the material derivative, G∗

p are gradient operators
that act on the pressure field, D∗ are divergence
operators for the velocities and heat and salinity
dependencies are present in the B∗ blocks. The
remaining couplings are represented by the coupling
blocks Cx

y . For instance, the derivative of the ocean
model T and S equations with respect to reflectiv-
ity α is given by CTS

α . Integral equations are given
by transposed vectors.

The expanded matrix-vector product (A.27)
shows how the oceanic heat and salinity equations
provide the coupling interface in the I-EMIC. If we
would ignore any circulation in the ocean, the Jaco-
bian can be reduced to the shaded part in (A.27),
ignoring the first three rows and columns. The spar-
sity structure of this reduced problem is shown in
Fig. 7.

Fig. 7. Sparsity pattern of the shaded blocks in (A.27) that
are relevant for the coupling between the submodels using a
Jacobian matrix that is based on a coarse aquaplanet problem
(no continents). Dashed lines show the separation of blocks
using the ordering in (A.27), starting at the diagonal block
JTS (top left corner) and ending at the final element −A
(lower right corner). Horizontal red lines mark the auxiliary
integral equations for P (A.10) and γ (A.15) and vertical red
lines are the dependencies on these auxiliary unknowns. Note
that two other integral equations are present in the blocks
JTS and JTq . These are integral constraints that require con-
servation of humidity and salinity.
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Appendix B

Parameter Values

Table B.1. Ocean parameters that are used for the continuation runs in Sec. 5.

ρo 1024 kg m−3 Reference water density

Ho 5.0 × 103 m Maximum ocean depth
Hm 72m Ocean upper layer depth

Cpo 4.1 × 103 J (kgK)−1 Specific heat of sea water

AH 1.6 × 107 m2 s−1 Horizontal eddy viscosity

AV 1.0 × 10−3 m2 s−1 Vertical eddy viscosity

KH 1.0 × 103 m2 s−1 Horizontal diffusivity of heat and salt

KV 1.0 × 10−4 m2 s−1 Vertical diffusivity of heat and salt

αT 1.0 × 10−4 K−1 Thermal expansion coefficient

αS 7.6 × 10−4 psu−1 Haline contraction coefficient

Table B.2. Atmospheric temperature and specific humidity parameter values.

ρa 1.25 kg m−3 Atmospheric density

Ha 8.4 × 103 m Atmospheric scale height

Hq 1.8 × 103 m Specific humidity scale height

Cpa 103 J (kg K)−1 Specific heat of air

CE 1.3 × 10−3 Dalton number

CH 1.22 × 10−3 Stanton number (≈ 0.94CE )

|Va| 8.5 m s−1 Mean surface wind speed

D0 3.1 × 106 m2 s−1 Constant eddy diffusivity

κ 1.0 × 106 m2 s−1 Constant eddy diffusivity
1 − C0 0.57 Atmospheric absorption coefficient

Σ0 1.36 × 103 Wm−2 Solar constant

A 216 W m−2 QLW offset

B 1.5 W m−2 K−1 QLW temperature sensitivity

Lv 2.5 × 106 J kg−1 Latent heat of vaporization

μ 13 W m−2 K−1 Exchange coefficient

η 1.35 × 10−5 ms−1 Evaporation scale

Table B.3. Summary of the parameters used for the implicit sea ice model.

Cpo =4.1 × 103 J (kgK)−1 Specific heat of sea water
Cs =0.0058 Relaxation parameter

uτ =0.02 ms−1 Skin friction velocity

Ic =2.166 W m−1 K−1 Thermal conductivity of ice

Lf =3.347 × 105 J kg−1 Latent heat of fusion of ice

Ls =2.835 × 106 J kg−1 Latent heat of sublimation of ice
τs =0.3 m Threshold ice thickness
ε =0.6 m Transition width

Table B.4. Coefficients for the computation of
the saturation specific humidity qsat(T ) above
ocean and sea ice points.

c1 =3.8 × 10−3 kgkg−1 c2 =21.87
c3 =265.5 K c4 =17.67
c5 =243.5 K
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