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Simple Summary: A new open-source software package for live particle tracking provides the
possibility of intensive data processing while acquiring images at the highest possible readout speed
with a camera.

Abstract: We introduce PyNTA, a modular instrumentation software for live particle tracking.
By using the multiprocessing library of Python and the distributed messaging library pyZMQ,
PyNTA allows users to acquire images from a camera at close to maximum readout bandwidth
while simultaneously performing computations on each image on a separate processing unit. This
publisher/subscriber pattern generates a small overhead and leverages the multi-core capabilities of
modern computers. We demonstrate capabilities of the PyNTA package on the featured application
of nanoparticle tracking analysis. Real-time particle tracking on megapixel images at a rate of 50
Hz is presented. Reliable live tracking reduces the required storage capacity for particle tracking
measurements by a factor of approximately 103, as compared with raw data storage, allowing for a
virtually unlimited duration of measurements.

Keywords: video microscopy, imaging, automated data acquisition, nanoparticle tracking,
measurement embedded applications, open-source software

1. Introduction

Experiments in STEM fields increasingly rely on digital data acquisition and storage. While
computation power has grown tremendously, the increasing complexity and bandwidth of sensory
equipment are for some experiments outpacing the storage capacity and bandwidth. One widely
used example is video microscopy that usually comes with a high rate of data generation. In most
experiments, the actual required information is not the data contained in each pixel of the raw images,
but specific features in the frame. While several approaches have been introduced for industrial
applications, these customised solutions are not available to researchers that perform small-scale
table-top experiments. As a result, data acquisition and data analysis are mostly performed on separate
stages (for example see Chenouard et. al. [1] and the references there-in). This procedure is time
consuming and a major limitation on the experimental workflow because real-time feedback and
adjustment is not possible [2]. Moreover, when working with videos, every new frame needs to
be stored. Since the amount of memory on the computer and the writing speed on hard drives is
limited, the experiments face a limitation caused by storage capacity and bandwidth, rather than by
computational power.

Here, we introduce PyNTA, an open-source software package written in Python, that allows
acquiring images from a camera at maximum bandwidth while simultaneously performing
computations on each image on a separate processing unit. The program generates real-time results
and therefore only the necessary processed information needs to be stored. The graphical user interface
and direct control on the measurement instrument are built into the package, empowering users
to act on the available data during the measurement. Here we demonstrate the capabilities of the
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PyNTA package by focusing on nanoparticle tracking analysis (NTA) as a widely used application. We
emphasise that the approach can be adapted and extended to any other instrumentation software.

PyNTA is released as open source with a GPLv3 license, and can be installed on any PC running
Windows, Linux, or MacOS operating systems. Contribution guidelines are provided to enable other
developers to easily extend or add new features to the program.

2. Nanoparticle tracking analysis

Measuring the size of objects with a diameter below the diffraction limit requires dedicated
techniques. Electron microscopy gives access to very accurate results but requires a high investment
and is very time-consuming. Optical ensemble measurements such as dynamic light scattering (DLS)
are more affordable but best suited for relatively homogeneous samples. The results of inhomogeneous
samples will be dominated by the properties of brighter particles, even if they are not statistically
more abundant [3]. Single-nanoparticle tracking analysis (NTA) is a video microscopy technique that
can be applied to samples with heterogeneous particle sizes at a fraction of the cost of using electron
microscopy.

NTA relies on correlating the random motion of the particles to their diameter through the use of
the Stokes-Einstein equation:

D =
kBT

3πηd
, (1)

where D is the diffusion coefficient, kB the Boltzmann constant, T the temperature, η the viscosity of
the medium and d the particle diameter. In order to measure the particle size distribution, one needs
to know the properties of the medium and to determine the diffusion coefficient. The viscosity is well
studied for common fluids or can be determined through independent measurements. Determining
the diffusion coefficient is done indirectly. By tracking the position of a single nanoparticle over time,
it is possible to calculate the mean squared displacement (MSD) as a function of time. For normal
Brownian diffusion recorded in two dimensions, the following relationship applies:〈

[r(t′ + t)− r(t′)]2
〉

t′
= 4Dt . (2)

Measuring the diffusion constant from nanoparticle tracking in video microscopy experiments
involves several steps. One of the most widely-used algorithms is from Crocker and Grier [4]. First,
the researcher needs to record a sequence of images from the particles diffusing in a known medium.
Next, an algorithm locates the particles in each individual image. Then, another algorithm is used to
determine which locations in a sequence belong to a single particles at different time steps in order
to generate a trajectory. Finally, from these trajectories, the MSD is calculated and Eq. (2) is used to
derive the diffusion coefficient which in turn relates to the particle radius with Eq. (1).

3. The PyNTA package

PyNTA is capable of both scripted and interactive measurements. Scripted measurements are
faster to develop and are ideal for accumulating statistics once the setup is properly characterised.
Interactive measurements programs require developers to be familiar with user-interface design.

3.1. The User Interface

The user interface of PyNTA was designed around nanoparticle tracking experiments. This means
that the flow of the program is adapted to the different steps needed for such measurements. However,
it is worth mentioning that the underlying architecture can be expanded to a wealth of scenarios,
and the user interface provided can be regarded as a starting point for further developments, with
examples on the most important features for real-time data analysis and display.

Figure 1 shows a screenshot of the program after initialisation. The main window is divided into
two different sections. The left panel displays the real-time feed from the camera or the latest snapped
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Figure 1. Screenshot of PyNTA. On the left panel, it is possible to observe a frame during the acquisition
of a movie. The right panel shows a histogram of diffusion coefficients generated in real-time. The
program was developed not only to be efficient but also user-friendly, for example by providing
intuitive icons and drop-down menus in the user interface.

frame. The right panel shows the measured distribution of diffusion coefficients. On top of the screen,
there is a toolbar which provides quick access to the most common actions, such as starting a free
run recording, snapping a frame, setting the region of interest of the camera, etc. The program also
includes a configuration window in which the user has a high degree of control over the acquisition
parameters such as exposure time, binning, acquisition frame-rate, etc.

Nanoparticle tracking experiments require a set of steps to properly configure various parameters.
A common workflow would be, for example: the user snaps a photo, and based on the observation,
she would modify the camera settings such as exposure time and intensity threshold. Once satisfied, it
is possible to adapt the parameters of the localisation algorithm in order to identify the particles on the
image, with instant feedback either on the live feed or on a still image. Detected particles are identified
with a red cross on them.

Once the user finds the optimum parameters for localisation accuracy, i.e. an acceptable number
of false-positives/negatives, she can proceed to link the extracted coordinates of the particles in each
frame to reconstruct the trajectories of single-particles. This step is necessary in order to measure the
diffusion coefficient in real time, but it is not mandatory for a successful experiment. Linking and extra
analysis steps can be performed a-posteriori on saved data. It is important to point out that PyNTA
allows to stream to disk either the raw images, the analysed localisation coordinates, or both. The latter
has the advantage of being substantially smaller in size, allowing to stream data much faster. This
effectively allows to either increase the duration of acquisition or to work at much higher acquisition
frame-rates.

3.2. The Model-View-Controller Pattern

PyNTA was developed following the Model-View-Controller (MVC) structure. This means that
the code is separated into different modules, each one in a different folder, and with a clear separation
of tasks. These modules are summarised in Fig. 2 and can be explained as follows:

• Controller: The drivers for the hardware. These modules handle the low-level communication
with the devices.
• Model: Specifies the logic and the order of operations to perform a certain measurement
• View: User-facing elements, such as the graphical user interface (GUI), or the command-line

interface (CLI)
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Figure 2. Scheme of the Model-View-Controller for laboratory software. Controllers are the drivers for
hardware, Models implement the specific steps on how devices are used or the experiment is performed,
and the View is where the user interface is defined.

To further understand the architecture of the code, we specify some of the main contents of each
module. Controllers can be regarded as the drivers for devices, or the Python wrappers for these drivers.
Manufacturers of hardware sometimes offer the drivers, such as PyPylon [6] for Basler cameras or
NIDAQmx [7] for National Instruments cards. Often, drivers are developed by other researchers, such
as the driver for Hamamatsu cameras provided by storm-control [13]. Sometimes there is no available
driver for the cameras and the user will need to develop their own.

Models are responsible for defining the logic behind the experiment. A simple case would be an
experiment in which it is needed to open a shutter, acquire a frame, close the shutter and save the data.
The measurement steps are determined by the user and thus should be separated from the controllers.
In Python, this is manifested as different methods for a class called experiment. PyNTA specifies steps
such as start_free_run, which starts a continuous acquisition from a camera, or save_stream which
continuously saves the acquired images to the hard drive.

Models do not only specify the overall logic of the experiment, they also specify how devices are
used. For example, if the camera is set to acquire one frame, to capture a movie one needs to run a
sequence of single-frame acquisitions. The advantage of developing models for devices is that they
offer common entry points to the user, regardless of the underlying hardware.

We illustrate this point with an example. A camera with a frame-grabber is able to generate
movies by acquiring several frames and storing them into a buffer. The computer needs to periodically
download the information from the buffer, freeing it for new frames. A camera without a frame-grabber
needs to be continuously read out. This two devices work in very different ways, but it is possible
to define two models, each with a method called acquire_movie that generates the same output: a
sequence of images.

The benefits of implementing models for devices may not seem obvious at the beginning, but
they become apparent for larger or long-term projects. A common case found in many labs is the need
for exchanging the hardware. If the user upgrades or replaces part of the equipment, it is only needed
to develop a new model, and the rest of the code will continue to run, including the data acquisition,
post-processing, analysis, etc.

The view is the collection of tools used for interacting with the user. These tools can be both a
command-line interface (CLI) or a graphical user interface (GUI). In the case of PyNTA, the view folder
contains a collection of widgets that are used to display different aspects of the data to the user. The
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real-time plots are built on PyQtGraph [12], a library that gives access to a powerful set of tools for
embedding plots in user interfaces. The icons used in the GUI are designed by The Artificial1 and
released under a CC-BY license.

The view is one of the most challenging aspects of any program, since it requires a different set of
skills compared to the rest of the program. Building the view on top of a well-defined model makes
it also independent from it. By completely separating the logic of the experiment and the devices
from the view itself, it is possible to quickly prototype solutions that in most cases are enough for a
researcher.

PyNTA was built strictly following the MVC pattern. This is reflected by the three folders that can
be found in the source code, called precisely model, view, and controller. It has to be noted that PyNTA
aims not only at acquiring data, but also to perform a real-time analysis of it. This analysis has a high
computational cost, required the program to leverage the possibilities of multi-core processors.

3.3. Distributed Architecture

One common requirement for instrumentation software is to remain flexible over time. A common
situation is, for example, a user is monitoring a signal and when everything is ready, she decides to
start saving the data, without interrupting the flow. Moreover, she can decide to switch-on a special
post-processing task and save the output of it, or just visualise it in real-time. The previous description
means that the same information can be consumed by different tasks which may become active at
different moments in time. This requirement is not trivial, especially when taking into account that
different tasks will be running as different processes without access to shared memory.

Figure 3. Scheme of the underlying architecture that enables the use of multiple processes. A central
publisher broadcasts the information to any listening subscriber. Colours depict whether processes
generate new data or only consume it. Processes can be started in any order and are completely
independent from each other.

In order to develop a flexible, multiprocessing-safe solution, we have developed a specific
architecture for the models. A schematic representation of this architecture can be seen in figure 3. One
central process, called publisher, is in charge of broadcasting the available data to any other processes
which are listening to specific topics. For example, the process in charge of acquiring images sends
each one of them to the publisher. The localisation process consumes the frames and sends the location
coordinates back to the publisher. In turn, the linking process uses this information to build trajectories
of the particles. These process have a different colour in the figure because they not only consume the
available data but they also generate new information.

There are also dedicated processes for saving the available data, either the images, coordinates
of located particles, or linked trajectories. These processes where depicted in a different colour in
Fig. 3 because they only consume information but do not send anything new to the publisher. This is
also the case for the process in charge of calculating the size distribution of the particles based on the
trajectories. It has to be stressed that all this exchange of information happens asynchronously. This

1 https://toicon.com
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means that the process for localising the particles is not waiting for the linking process to finish in
order to analyse a new frame.

Not all processes are active at all time, and activation of one specific process does not guarantees
that others are also executed. For example, when the camera is acquiring data it is possible to run
a separate process to save the images to the hard drive, but it is not required. It is also possible to
run a localisation algorithm on each frame, but again, this is not required. These two processes are
independent from each other and is the user who decides whether to run them or not. The user can
trigger processes whenever she judges that it is useful to store or to analyse the data.

To achieve this degree of flexibility at run-time, we have decided to combine the multiprocessing
library of Python with the distributed messaging library ZMQ through its Python bindings called
pyZMQ [8]. This combination allowed us to build a Publisher/Subscriber pattern with a very small
overhead. Subscribers are the processes discussed in the previous paragraphs and depicted in Fig. 3.
Each subscriber is a separated python process, thus leveraging the multi-core capabilities of modern
computers. The computational cost in this approach comes from the need to serialise/deserialise
python objects in order to transmit them from one process to the other, but it has an overall small
impact.

ZMQ is a library which relies on sockets to exchange information. The main advantage of relying
on sockets is that they are available in mostly, if not all, programming languages. Therefore, the
information generated by PyNTA can be easily consumed by any other program, written in any other
language, which is able to listen on a specific port. This feature makes the program very easy to extend
by developers with different knowledge-sets. Moreover, this architecture opens the door to distributed
solutions, exchanging information not only on the same computer but over the network.

3.4. Tracking Particles and Linking Trajectories

The tracking and linking algorithm for the localisation of nanoparticles are based on the excellent
Trackpy library [5,9], which implements the Crocker and Grier algorithm [4] in Python. Data is saved
in HDF5 format, which makes it compatible with most data analysis programs and workflows. It is
also possible to convert the data into plain ascii files with simple tools available online.

The design of the program makes it simple to replace the algorithms in case there is a better
solution for a ceratain user’s needs. Within the model module, the localisation subroutines expose the
workflow for identifying and linking trajectories.

3.5. Performance Testing

To check program dependencies and evaluate the performance of different PyNTA methods,
an iPython notebook has been provided with the package, examples/test_tracking_speed.ipynb.
The design of Pynta allows it to run without a GUI, therefore this notebook can also be used as a
reference for testing the installation and time performance of the different tracking steps. This part can
also be tested without connection with the hardware and based on simulated data, using the module
named SimBrownian, which also gains access to "ground data" for possible tests of other tracking
algorithms. This module also provides the possibility of accumulating frames into memory in order to
loop through them instead of keep simulating data. We tested the dependence of the average analysis
time per frame on frame size, apparent particle diameter, and number of particles in the frame, by
running this notebook on a laptop with an Intel i7 processor. Dependence of the average processing
speed per frame on three most plausible measurement parameters are tested based on simulations and
results are presented in Fig. 4 . Among the tested parameter, the apparent particle size has the biggest
influence on slowing down the analysis process.

3.6. Addition and customisation

The architecture described in the previous sections, makes it possible to quickly expand the code
and customise its function. Understanding the MVC design pattern allows developers to quickly
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Figure 4. . The average processing speed per frame for various measurement conditions. (a)
dependence on the number of particles present in each frame with apparent particle diameter of
3 pixels, (b) dependence on the apparent particle diameter for an average 50 particles in each frame,
and (c) dependence on the frame size, for apparent particle diameter of 3 pixels and 50 particles in each
frame.

inquire what parts of the code to alter in order to meet their needs. This flexibility is best explained
through an example. A foreseeable desired feature could be to track complex objects, such as cells,
animals, etc. Any algorithm that allows to extract coordinates of objects out of an image can be easily
integrated following the documentation and the existing code as an example.

Consider the case of a developer who wishes to add support for choosing the region of interest
(ROI) in the image before acquiring data from the camera. Assuming that the driver for the camera
supports such a feature, the user should search in the model folder and find a sub-folder called cameras.
In that folder, there is a python file with the brand of the camera.

In the model for the camera, the developer will find a collection of methods such as setExposure
or triggerCamera. Next to those methods, she can develop a new one called, for example, setROI that
takes as arguments the coordinates of the corners of the region of interest. Then, she will proceed to
develop the steps needed to set the region of interest in the camera using the controller’s methods.

The next step is to develop a method that can handle the ROI in the experiment model, which can
be found inside the experiments folder within the model folder. This method will handle the input of
the new coordinates, will pass it to the camera model and will update the necessary parameters, such
as buffers, to the new image size.

The final necessary action is to update the view in order to handle the ROI input. This can be
achieved by developing a widget in which the user can input the coordinates, or the main window
widget can be expanded to allow some mouse interaction. In any case, the view will grab these values
and will use the method available in the experiment to update the ROI.

This example is actually implemented in the code and can be used as a reference for developers
who would like to expand the code. It is relatively straightforward to follow the different connections
between different parts of the code if one follows the steps just described.

4. Discussion

One of the key aspects of open source software is that it can be expanded by anyone. We believe
that the architecture of PyNTA allows users with different levels of expertise to collaborate in the
project. For instance, developing models for cameras is a good introduction to many of the features of
Python programming while it is a relatively simple task since there are examples readily available.
More experienced users can focus on developing new controllers for other cameras or improve the
efficiency of the routines of the experiment.
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The code is under git version control and hosted on Github. This means that any user interested
in improving or fixing issues can fork the code onto their own repository. The changes can then be
submitted as a pull request with appropriate descriptions. After reviewing the code, accepting the
changes is straightforward. This procedure is very transparent and allows to give proper credit to
different contributors.

Current processing speed of the software is mainly limited by the rate at which frames can
be analysed. In order to investigate the limitations of the program, we performed the tracking on
simulated data, in which the particle behaviour is well defined. The computational cost of the Crocker
and Grier algorithm depends on different factors such as the frame size but also on the particle
diameter. During our tests, identifying 50 particles with an average diameter on the camera of 5 pixels
takes approximately 17 ms on a dedicated core of an Intel i7 processor. 60 frames per second on a
12− bit, 2 Mpix camera amounts to roughly 170 MB/s of data. On the other hand, the localisation of
50 particles at the same frame rate amounts to roughly 60 kB/s, three orders of magnitude lower than
for recording the full frame.

The linking procedure, i.e. identifying locations in different frames as belonging to the same
particle, implements a maximum likelihood algorithm. The algorithm speed also depends on different
parameters, such as the number of particles on a frame and the maximum estimate distance for the
movement of a particle between two successive frames. In the cases studied in which between 10 and
50 particles were present on each frame, the linking algorithm proved to be faster than the identification
algorithm. However, further tests need to be carried on to identify its limitations.

5. Conclusions

Nanoparticle tracking analysis is a tool that is gaining momentum in different fields. We believe
that a timely tool such as PyNTA can enhance the development of the technique. By building the
program using Python, we give access to a broad community of researchers in different fields to further
enhance the tool in a collaborative way.

With PyNTA, researchers can easily perform experiments on existing setups, lowering the
overhead that implies the acquisition of new hardware. Any wide-field microscope is readily available
to perform nanoparticle tracking experiments. Leveraging the capabilities of live particle tracking,
PyNTA reduces the amount of data that requires saving, which translates to the possibility of increasing
the acquisition frame rate and duration. Moreover, the capability of estimating the size distributions
while the acquisition is running, allows researchers to preform on-spot adaptive experiments.

6. Availability of software

The PyNTA package currently provides interfaces for Hamamatsu, Photonic Science, and Basler
cameras. The code is available on Github2, together with its extensive documentation both for users
and future contributors3.
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