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A brief introduction

This thesis concerns the study of Hamiltonian actions and momentum maps in the Pois-
son geometric framework introduced by Mikami and Weinstein in [60]. Before turning to
its contents, let us provide a bit of historical background.

The more classical concept of a Hamiltonian Lie group action has received much study
ever since its appearance in the works of Kostant and Souriau in the 1960’s (see e.g.
[54, Section 11.2] for more details on the origin of this notion). This has led to various
beautiful results, such as:

• the symplectic reduction theorem due to Marsden and Weinstein [53], Meyer [59],
and its generalization to the singular setting due to Lerman and Sjamaar [46],
• the convexity theorem due to Atiyah [4], Guillemin and Sternberg [34, 35] and

Kirwan [41],
• the Duistermaat-Heckman linear variation theorem and formula [24],
• Delzant’s classification theorem for toric manifolds [22] and its generalization to

actions of non-abelian Lie groups [23,38,42,82].
With the development of Poisson geometry in the 1980’s-2000’s, variations on the notion
of a Hamiltonian Lie group action have been discovered in which the momentum map
takes values in a specified Poisson (or more generally twisted Dirac) manifold different
from the dual of a Lie algebra (see e.g. [1, 25,49,57,58,78]). The relevant notion of sym-
metry in each of these variations can be understood as a Hamiltonian action of a specified
symplectic (or twisted pre-symplectic) groupoid corresponding to the Poisson (or twisted
Dirac) manifold in which the momentum map takes values (see e.g. [10, 84, 87]), where
the notion of a Hamiltonian action of a symplectic groupoid is in the sense of Mikami and
Weinstein [60] (and of [10, 84] in the more general twisted pre-symplectic setting). Such
Hamiltonian groupoid actions therefore provide a unifying framework for the aforemen-
tioned variations. For many of these variations corresponding versions of the convexity
theorem for Hamiltonian Lie group actions have been found (see e.g. [1,29,58,78]). This
led Weinstein to envision a general convexity theorem for such Hamiltonian groupoid ac-
tions [77], which was later established by Zung [87]. The key assumption on the groupoid
in this theorem is that it is proper (which generalizes the assumption of compactness on
the Lie group in the convexity theorem for Hamiltonian Lie group actions). Weinstein’s
and Zung’s work on this theorem in turn was an instigator for the development of the
theory of Poisson manifolds of compact types (those Poisson manifolds corresponding to
proper symplectic groupoids) by Crainic, Fernandes and Martínez Torres [14–16]. These
works have led to new insights, even regarding the classical theory. Good illustrations
of this are, for instance, the newly gained understanding of the role of integral affine
structures, both in the convexity theorem (see [87]) and in the work of Duistermaat and
Heckman mentioned above (see [15]).
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In this thesis we continue the study of Hamiltonian actions of proper symplectic groupoids,
focusing on two topics. The main body of this text is divided accordingly, into two parts.
In the first part we focus on the orbit spaces of such actions. The content of that part is
closely related to the symplectic reduction theorems mentioned before. The second part
concerns a generalization of Delzant’s classification theorem, which in particular unifies
Delzant’s theorem and the classification of Lagrangian fibrations appearing (implicitly)
in the work of Duistermaat [25]. Below we further summarize the contents of these parts.
A more elaborate introduction is given at the beginning of each part.

On Part 1 "Stratification of the transverse momentum map":
Given a Hamiltonian action of a proper symplectic groupoid (for instance, a Hamiltonian
action of a compact Lie group), we show that the transverse momentum map admits a
natural constant rank stratification. To this end, we construct a refinement of the canon-
ical stratification associated to the Lie groupoid action (the orbit type stratification, in
the case of a Hamiltonian Lie group action) that seems not to have appeared before, even
in the literature on Hamiltonian Lie group actions. This refinement turns out to be com-
patible with the Poisson geometry of the Hamiltonian action: it is a Poisson stratification
of the orbit space, each stratum of which is a regular Poisson manifold that admits a nat-
ural proper symplectic groupoid integrating it. The main tools in our proofs (which we
believe could be of independent interest) are a version of the Marle-Guillemin-Sternberg
normal form theorem for Hamiltonian actions of proper symplectic groupoids and a no-
tion of equivalence between Hamiltonian actions of symplectic groupoids, closely related
to Morita equivalence between symplectic groupoids.

On Part 2 "Toric actions of regular and proper symplectic groupoids":
In this part we study toric actions in the context of Poisson manifolds of compact types.
More precisely, we consider a class of Hamiltonian actions by regular and proper symplec-
tic groupoids that we call toric actions. Examples of these include toric manifolds, proper
Lagrangian fibrations and proper isotropic realizations of Poisson manifolds of compact
types. Our main results concern the classification of such Hamiltonian actions in terms
of the image of the momentum map and in terms of a new invariant, that we call the
ext-invariant of the toric action. The theory of regular Poisson manifolds of compact
types, and in particular the integral affine orbifold structure on the leaf space, plays a
fundamental role here. The image of the momentum map of a toric action turns out to
be what we call a Delzant subspace of the leaf space – a generalization of the notion of
Delzant polytope appearing in Delzant’s classification of toric manifolds. Furthermore,
our classification involves the cohomology of orbifold sheaves for orbifold versions of the
sheaves in the papers of Duistermaat and Dazord-Delzant on Lagrangian and isotropic
fibrations. As is the case for proper isotropic realizations of Poisson manifolds of com-
pact types, the symplectic gerbe and the Lagrangian Dixmier-Douady class turn out to
encode the obstruction to the existence of toric actions of regular and proper symplectic
groupoids with momentum image equal to a prescribed Delzant subspace.

Conventions:
Throughout, we require smooth manifolds (with or without corners) to be both Hausdorff
and second countable and we require the same for both the base and the space of arrows
of a Lie groupoid (with or without corners). Furthermore, given a groupoid G ⇒ X we
use the notation X := X/G for its leaf space and we denote subsets of X as A, where A
denotes the corresponding invariant subset of X. As a more general principle, we usually
denote objects or maps on the level of leaf spaces with underlined symbols.
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PART 1

Stratification of the transverse momentum map
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Introduction

Traditionally, a Hamiltonian action is an action of a Lie group G on a symplectic manifold
(S, ω), equipped with an equivariant momentum map:

J : (S, ω)→ g∗,

taking values in the dual of the Lie algebra of G. Throughout the years, variations on this
notion have been explored, many of which have the common feature that the momentum
map:

(1) J : (S, ω)→ (M,π),

is a Poisson map taking values in a specified Poisson manifold (see for instance [49, 57,
58, 78]). In [60], such momentum map theories were unified by introducing the notion of
Hamiltonian actions for symplectic groupoids, in which the momentum map takes values
in the Poisson manifold integrated by a given symplectic groupoid. In this part, we
show that the transverse momentum map of such Hamiltonian actions admits a natural
stratification, provided the given symplectic groupoid is proper. To be more precise, let
(G,Ω) ⇒ (M,π) be a proper symplectic groupoid with a Hamiltonian action along a
momentum map (1). The symplectic groupoid generates a partition of M into symplectic
manifolds, here called the symplectic leaves of (G,Ω). On the other hand, the G-action
generates a partition of S into orbits. We denote the spaces of orbits and leaves as:

S := S/G & M :=M/G.
The momentum map (1) descends to a map:

(S, ω) (M,π)

S M

J

J

that we call the transverse momentum map. Because we assume G to be proper, by
the results of [18,69] (which we recall in Section 2.1) both the orbit space S and the leaf
space M admit a canonical Whitney stratification: SGp(S) and SGp(M), induced by the
proper Lie groupoids G ⋉ S (the action groupoid) and G. These, however, do not form a
stratification of the transverse momentum map, in the sense that J need not send strata
of SGp(S) into strata of SGp(M) (see Example 1 below). Our first main result is Theorem
2.53, which shows that there is a natural refinement SHam(S) of SGp(S) that, together
with the stratification SGp(M), forms a constant rank stratification of J . This means
that:

• J sends strata of SHam(S) into strata of SGp(M),
• the restriction of J to each pair of strata is a smooth map of constant rank.

Theorem 2.53 further shows that SHam(S) is in fact a Whitney stratification of the orbit
space. We call SHam(S) the canonical Hamiltonian stratification of S.

Example 1. Let G be a compact Lie group with Lie algebra g and let J : (S, ω) → g∗

be a Hamiltonian G-space with equivariant momentum map. In this case, (G,Ω) =
(T ∗G,−dλcan) (cf. Example 1.5), S = S/G, M = g∗/G, and SGp(S) and SGp(M) are
the stratifications by connected components of the orbit types of the G-actions. The
stratification SHam(S) can be described as follows. Let us call a pair (K,H) of subgroups
H ⊂ K ⊂ G conjugate in G to another such pair (K ′, H ′) if there is a g ∈ G such that
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gKg−1 = K ′ and gHg−1 = H ′. Consider the partition of S defined by the equivalence
relation:

(2) Op ∼ Oq ⇐⇒ (GJ(p), Gp) is conjugate in G to (GJ(q), Gq),

where Gp and Gq denote the isotropy groups of the action on S, whereas GJ(p) and GJ(q)

denote the isotropy groups of the coadjoint action on g∗. The connected components
of the members of this partition form the stratification SHam(S). When G is abelian,
SHam(S) and SGp(S) coincide, but in general they need not (consider, for example, the
cotangent lift of the action by left translation of a non-abelian compact Lie group G on
itself).

Our second main result is Theorem 2.91b, which states that SHam(S) is in fact a constant
rank Poisson stratification of the orbit space and gives a description of the symplectic
leaves in terms of the fibers of the transverse momentum map. To elaborate, let us first
provide some further context. The singular space S has a natural algebra of smooth
functions C∞(S): the algebra consisting of G-invariant smooth functions on S. This is a
Poisson subalgebra of:

(C∞(S), {·, ·}ω).
Hence, it inherits a Poisson bracket, known as the reduced Poisson bracket. Geometrically,
this is reflected by the fact that SGp(S) is a Poisson stratification of the orbit space (see
Definition 2.86 and Theorem 2.91a). In particular, each stratum of SGp(S) admits a
natural Poisson structure, induced by the Poisson bracket on C∞(S). Closely related to
this is the singular symplectic reduction procedure of Lerman-Sjamaar [46], which states
that for each symplectic leaf L of (G,Ω) in M , the symplectic reduced space:

(3) SL := J−1(L)/G

admits a natural symplectic Whitney stratification. Let us call this the Lerman-Sjamaar
stratification of (3). This is related to the Poisson stratification SGp(S) by the fact that
each symplectic stratum of such a reduced space (3) coincides with a symplectic leaf of a
stratum of SGp(S).

Remark 1. The facts mentioned above are stated more precisely in Theorems 2.91a,
2.54 and 2.91c. Although these theorems should be known to experts, in the literature
we could not find a written proof (that is, not in the generality of Hamiltonian actions
for symplectic groupoids; see e.g. [28, 46] for the case of Lie group actions). Therefore,
we have included proofs of these.

Returning to our second main result: Theorem 2.91b states first of all that, like SGp(S), the
canonical Hamiltonian stratification SHam(S) is a Poisson stratification of the orbit space,
the leaves of which coincide with symplectic strata of the Lerman-Sjamaar stratification
of the reduced spaces (3). In addition, it has the following properties:

• in contrast to SGp(S), the Poisson structure on each stratum of SHam(S) is regular
(meaning that the symplectic leaves have constant dimension),
• the symplectic foliation on each stratum Σ ∈ SHam(S) coincides, as a foliation,

with that by the connected components of the fibers of the constant rank map
J |Σ.

The reduced spaces (3) are, as topological spaces, the fibers of J . As stratified spaces
(equipped with the Lerman-Sjamaar stratification), these can now be seen as the fibers
of the stratified map:

J : (S,SHam(S))→ (M,SGp(M)).

12



Our third main result is Theorem 2.97, which says that, besides the fact that the Poisson
structure on each stratum of SHam(S) is regular, these Poisson manifolds admit natural
proper symplectic groupoids integrating them.

Example 2. Let (G,Ω) ⇒ (M,π) be a proper symplectic groupoid. Then (G,Ω) has a
canonical (left) Hamiltonian action on itself along the target map t : (G,Ω)→M . In this
case, (S, ω) = (G,Ω) and the orbit space S is M , with orbit projection the source map
of G. The stratification SHam(S) is the canonical stratification SGp(M) induced by the
proper Lie groupoid G (as in Example 2.5). So, Theorem 2.91 and 2.97 imply that each
stratum of SGp(M) is a regular, saturated Poisson submanifold of (M,π), that admits a
natural proper symplectic groupoid integrating it. This is a result in [16].

Regular proper symplectic groupoids have been studied extensively in [15] and have been
shown to admit a transverse integral affine structure. In particular, the proper symplectic
groupoids over the strata of the canonical Hamiltonian stratification admit transverse
integral affine structures. As it turns out, the leaf space of the proper symplectic groupoid
over any stratum of SHam(S) is smooth, and the transverse momentum map descends to an
integral affine immersion into the corresponding stratum of SGp(M). This is reminiscent
of the findings of [12, 87].

Remark 2. We expect (but have yet to verify) that our main theorems generalize to quasi-
Hamiltonian actions of proper twisted pre-symplectic groupoids in the sense of [10, 84]
(so as to include quasi-Hamiltonian Lie group actions [1]), essentially by means of [87,
Proposition 3.4].

Brief outline: In Part 1 we generalize the Marle-Guillemin-Sternberg normal form for
Hamiltonian actions of Lie groups, to those of symplectic groupoids (Theorem 1.1). From
this we derive a simpler normal form for the transverse momentum map (Example 1.54),
using a notion of equivalence for Hamiltonian actions that is analogous to Morita equiva-
lence for Lie groupoids (Definition 1.47). Part 1 provides the main tools for the proofs in
Part 2, where we introduce the canonical Hamiltonian stratification and prove the main
theorems mentioned above (Theorems 2.53, 2.54, 2.91 and 2.97). A more detailed outline
is given at the start of each of these parts.

Acknowledgements: I wish to thank Marius for suggesting to me to try to prove the
aforementioned normal form theorem by means of Theorem 1.39. I would further like
to thank him, Rui Loja Fernandes and David Martínez Torres for sharing some of their
unpublished work with me, and I am grateful to David and Rui for their lectures at the
summer school of Poisson 2018; all of this has been an important source of inspiration for
Theorem 2.97.
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1. The normal form theorem

In this chapter we prove a version of the Marle-Guillemin-Sternberg normal form theorem
for Hamiltonian actions of symplectic groupoids.

Theorem 1.1. Let (G,Ω) ⇒M be a symplectic groupoid and suppose that we are given a
Hamiltonian (G,Ω)-action along J : (S, ω)→M . Let O be the orbit of the action through
some p ∈ S and L the leaf of G through x := J(p). If G is proper at x (in the sense of
Definition 1.7), then the Hamiltonian action is neighbourhood-equivalent (in the sense of
Definition 1.20) to its local model around O (as constructed in Subsection 1.3).

Both the local model and the proof of this theorem are inspired on those of two exist-
ing normal form theorems: the MGS-normal form [37, 52] by Marle, and Guillemin and
Sternberg on one hand, and the normal form for proper Lie groupoids [19, 27, 80, 87] and
symplectic groupoids [14,16,17,87] on the other.

We split the proof of this theorem into a rigidity theorem (Theorem 1.21) and the con-
struction of a local model out of a certain collection of data that can be associated to any
orbit O of a Hamiltonian action. In Subsections 1.1 and 1.2 we introduce the reader to
this data and in Subsection 1.3 we construct the local model. To prove Theorem 1.1, we
are then left to prove the rigidity theorem, which is the content of Subsection 1.4. Lastly,
in Subsection 1.5 we introduce a notion of Morita equivalence between Hamiltonian ac-
tions that allows us to make sense of a simpler normal form for the transverse momentum
map. We then study some elementary invariants for this notion of equivalence, analogous
to those for Morita equivalence between Lie groupoids, which will lead to further insight
into the proof of Theorem 1.1. This will also be important later in our definition of the
canonical Hamiltonian stratification and our proof of Theorem 2.53 and 2.54.

1.1. Background on Hamiltonian groupoid actions.

1.1.1. Poisson structures and symplectic groupoids. Recall that a symplectic groupoid
is a pair (G,Ω) consisting of a Lie groupoid G and a symplectic form Ω on G which is
multiplicative. That is, it is compatible with the groupoid structure in the sense that:

(pr1)
∗Ω = m∗Ω− (pr2)

∗Ω,

where we denote by:
m, pr1, pr2 : G(2) → G

the groupoid multiplication and the projections from the space of composable arrows G(2)
to G. Given a symplectic groupoid (G,Ω) ⇒M , there is a unique Poisson structure π on
M with the property that the target map t : (G,Ω)→ (M,π) is a Poisson map. The Lie
algebroid of G is canonically isomorphic to the Lie algebroid T ∗

πM of the Poisson structure
π on M , via:

(4) ρΩ : T ∗
πM → Lie(G), ιρΩ(α)Ω1x = (dt1x)

∗α, ∀α ∈ T ∗
xM, x ∈M.

The symplectic groupoid (G,Ω) it said to integrate the Poisson structure π on M .

Example 1.2. The dual of a Lie algebra g is naturally a Poisson manifold (g∗, πlin),
equipped with the so-called Lie-Poisson structure. Given a Lie group G with Lie algebra
g, the cotangent groupoid (T ∗G,−dλcan) is a symplectic groupoid integrating (g∗, πlin).
The groupoid structure on T ∗G is determined by that fact that, via left-multiplication on
G, it is isomorphic to the action groupoid G⋉ g∗ of the coadjoint action.
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1.1.2. Momentum maps and Hamiltonian actions. To begin with, recall:

Definition 1.3 ([60]). Let (S, ω) be a symplectic manifold. A left action of a symplectic
groupoid (G,Ω) ⇒ M along a map J : (S, ω) → M is called Hamiltonian if it satisfies
the multiplicativity condition:

(5) (prG)
∗Ω = (mS)

∗ω − (prS)
∗ω,

where we denote by:

mS, prS : G ⋉ S → S, prG : G ⋉ S → G,
the map defining the action and the projections from the action groupoid to S and G.
Right Hamiltonian actions are defined similarly.

The infinitesimal version of Hamiltonian actions for symplectic groupoids are momentum
maps. To be more precise, by a momentum map we mean a Poisson map J : (S, ω)→
(M,π) from a symplectic manifold into a Poisson manifold. That is, for all f, g ∈ C∞(M)
it holds that:

J∗{f, g}π = {J∗f, J∗g}ω.
Every momentum map comes with a symmetry, in the form of a Lie algebroid action.
Indeed, a momentum map J : (S, ω) → (M,π) is acted on by the Lie algebroid T ∗

πM of
the Poisson structure π. Explicitly, the Lie algebroid action aJ : Ω1(M)→ X (S) along J
is determined by the momentum map condition:

(6) ιaJ (α)ω = J∗α, ∀α ∈ Ω1(M).

Hamiltonian actions integrate such Lie algebroid actions, in the following sense.

Proposition 1.4. Let (G,Ω) ⇒ M be a symplectic groupoid and let π be the induced
Poisson structure on M (as in Subsection 1.1.1). Suppose that we are given a left Hamil-
tonian (G,Ω)-action along J : (S, ω) → M . Then J : (S, ω) → (M,π) is a momentum
map and the Lie algebroid action:

(7) a : Ω1(M)→ X (S)
associated to the Lie groupoid action (via (117)) coincides with the canonical T ∗

πM-action
along J . In other words, (7) satisfies the momentum map condition (6). A similar
statement holds for right Hamiltonian actions.

An appropriate converse to this statement holds as well; see for instance [9].

Example 1.5. Continuing Example 1.2: as observed in [60], the data of a Hamiltonian
G-action with equivariant momentum map J : (S, ω) → g∗ is the same as that of a
Hamiltonian action of the symplectic groupoid (G⋉ g∗,−dλcan) along J .

Example 1.6. Any symplectic groupoid has canonical left and right Hamiltonian actions
along its target and source map, respectively.

1.2. The local invariants.

1.2.1. The leaves and normal representations of Lie and symplectic groupoids. To start
with, we introduce some more terminology. Let G ⇒ M be a Lie groupoid and x ∈ M .
By the leaf of G through x we mean the set Lx consisting of points in M that are the
target of an arrow starting at x. By the isotropy group of G at x we mean the group
Gx := s−1(x) ∩ t−1(x) consisting of arrows that start and end at x. In general, Gx is a
submanifold of G and as such it is a Lie group. The leaf Lx is an initial submanifold of
M , with smooth manifold structure determined by the fact that:

(8) t : s−1(x)→ Lx
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is a (right) principal Gx-bundle. Notice that a leaf of G may be disconnected. Given a
leaf L ⊂ M of G, we let GL := s−1(L) denote the restriction of G to L. This is a Lie
subgroupoid of G. In all of our main theorems, we assume at least that G is proper at
points in the leaves under consideration, in the sense below.

Definition 1.7 ([19]). A Hausdorff Lie groupoid G is called proper at x ∈M if the map
(t, s) : G →M ×M

is proper at (x, x), meaning that any sequence (gn) in G such that (t(gn), s(gn)) converges
to (x, x) admits a convergent subsequence.

If G is proper at some (or equivalently every) point x ∈ L, then L and the Lie subgroupoid
GL are embedded submanifolds of M and G respectively, and the isotropy group Gx is
compact. Returning to a general leaf L, the normal bundle NL to the leaf in M is
naturally a representation:

NL ∈ Rep(GL)
of GL, with the action defined as:
(9) g · [v] = [dt(v̂)] ∈ Nt(g), g ∈ GL, [v] ∈ Ns(g),
where v̂ ∈ TgG is any tangent vector satisfying ds(v̂) = v. We call this the normal
representation of G at L. It encodes first order data of G in directions normal to L
(see also [19]). Given x ∈ L, so that L = Lx, this restricts to a representation:
(10) Nx ∈ Rep(Gx)
of the isotropy group Gx on the fiber Nx of NL over x, which we refer to as the normal
representation of G at x. Without loss of information, one can restrict attention to the
normal representation at a point, which will often be more convenient for our purposes.
This is because the transitive Lie groupoid GL is canonically isomorphic to the gauge-
groupoid of the principal bundle (8), and the normal bundle NL is canonically isomorphic
to the vector bundle associated to the principal bundle (8) and the representation (10).

Example 1.8. For the holonomy groupoid of a foliation (assumed to be Hausdorff here),
the leaves are those of the foliation and the normal representation at x is the linear ho-
lonomy representation (the linearization of the holonomy action on a transversal through
x).

Example 1.9. For the action groupoid of a Lie group action, the leaves are the orbits of
the action and the normal representation at x is simply induced by the isotropy represen-
tation on the tangent space to x.

For a symplectic groupoid the basic facts stated below hold, which follow from mul-
tiplicativity of the symplectic form on the groupoid (see e.g. [10] for background on
multiplicative 2-forms).

Proposition 1.10. Let (G,Ω) ⇒ M be a symplectic groupoid and let π be the induced
Poisson structure on M . Let x ∈M , let L be the leaf of G through x and GL the restriction
of G to L.

a) There is a unique symplectic form ωL on L such that:

Ω|GL = t∗ωL − s∗ωL ∈ Ω2(GL).
The connected components of (L, ωL) are symplectic leaves of the Poisson manifold
(M,π).

b) The normal representation (10) is isomorphic (via (117)) to the coadjoint repre-
sentation:

g∗x ∈ Rep(Gx).
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1.2.2. The orbits, leaves and normal representations of Hamiltonian actions. Next, we will
study the leaves and the normal representations for the action groupoid of a Hamiltonian
action. Let (G,Ω) ⇒ M be a symplectic groupoid and suppose that we are given a left
Hamiltonian (G,Ω)-action along J : (S, ω) → M . Let p ∈ S, x := J(p) ∈ M , let (L, ωL)
be the symplectic leaf of (G,Ω) through x (as in Proposition 1.10) and let Gx be the
isotropy group of G at x. By the orbit of the action through p we mean:

Op := {g · p | g ∈ s−1(x)} ⊂ S,

and by the isotropy group of the G-action at p we mean the closed subgroup:

Gp := {g ∈ Gx | g · p = p} ⊂ Gx.

Note that these coincide with the leaf and the isotropy group at p of the action groupoid.
We let

(11) Np ∈ Rep(Gp)

denote the normal representation of the action groupoid at p. There are various rela-
tionships between the orbits, leaves and the normal representations at p and x. To state
these, consider the symplectic normal space to the orbit O at p:

(12) SNp :=
TpOω

TpO ∩ TpOω
,

where we denote the symplectic orthogonal of the tangent space TpO to the orbit through
p as:

(13) TpOω := {v ∈ TpS | ω(v, w) = 0, ∀w ∈ TpO}.

Further, consider the annihilator of gp in gx:

(14) g0p ⊂ g∗x.

Proposition 1.11. Let (G,Ω) ⇒ M be a symplectic groupoid and suppose that we are
given left Hamiltonian (G,Ω)-action along J : (S, ω) → M . Let O be the orbit of the
action through p ∈ S.

a) The map J restricts to surjective submersion JO : O → L from the orbit O onto a
leaf L of G. Moreover, the restriction ωO ∈ Ω2(O) of ω coincides with the pull-back
of ωL:

(15) ωO = (JO)
∗ωL.

b) The symplectic normal space (12) to O at p is a subrepresentation of the normal
representation (11) of the action at p. In fact, (12), (11) and (14) fit into a
canonical short exact sequence of Gp-representations:

(16) 0→ SNp → Np → g0p → 0.

c) The normal representation (10) of G at x := J(p) fits into the canonical short
exact sequence of Gp-representations:

(17) 0→ g0p → g∗x → g∗p → 0.

Proof. That J maps O submersively onto a leaf L follows from the axioms of a Lie
groupoid action. The equality (15) is readily derived from (5). Part c is immediate from
Proposition 1.10b. To prove part b and provide some further insight into part c, observe
that J induces a Gp-equivariant map:

dJp : Np → Nx.
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Therefore we have two short exact sequences of Gp-representations:

0→ Ker(dJp)→ Np → Im(dJp)→ 0(18)
0→ Im(dJp)→ Nx → CoKer(dJp)→ 0(19)

Using the proposition below, the short exact sequence (19) translates into the short exact
sequence (17), whereas (18) translates into (16). In particular, this proves part b. □

Proposition 1.12. Let (G,Ω) ⇒ M be a symplectic groupoid and suppose that we are
given a left Hamiltonian (G,Ω)-action along J : (S, ω)→M . Further, let p ∈ S.

a) The symplectic orthogonal (13) of the tangent space TpO to the orbit O through p
coincides with Ker(dJp).

b) The isotropy Lie algebra gp, viewed as subset of T ∗
xM via (117), is the annihilator

of Im(dJp) in TxM , where x = J(p).

This is readily derived from the momentum map condition (6).

1.2.3. The symplectic normal representation. Notice that the symplectic form ω on S
descends to a linear symplectic form ωp on the symplectic normal space (12).

Proposition 1.13. (SNp, ωp) is a symplectic Gp-representation.

Proof. We ought to show that ωp is Gp-invariant. Note that, for any v ∈ Ker(dJp) and
g ∈ Gp:

g · [v] = [dm(g,p)(0, v)].

So, using Proposition 1.12a we find that for all v, w ∈ TpOω and g ∈ Gp:
ωp(g · [v], g · [w]) = (m∗ω)(g,p)((0, v), (0, w)) = ωp([v], [w]),

where in the last step we applied (5). □

Definition 1.14. Given a Hamiltonian action as above, we call

(20) (SNp, ωp) ∈ SympRep(Gp)
its symplectic normal representation at p.

Given any symplectic representation (V, ωV ) of a Lie groupH, theH-action is Hamiltonian
with quadratic momentum map:

(21) JV : (V, ωV )→ h∗, ⟨JV (v), ξ⟩ =
1

2
ωV (ξ · v, v).

As we will now show, given a Hamiltonian (G,Ω)-action along J : (S, ω) → M , the
quadratic momentum map:

(22) JSNp : (SNp, ωp)→ g∗p

of the symplectic normal representation at p can be expressed in terms of the quadratic
differential of J at p. Recall from [3] that the quadratic differential of a map F : S →M
at p ∈ S is defined to be the quadratic map:

d2Fp : Ker(dFp)→ CoKer(dFp), d2Fp(v) =

[
1

2

d2

d2t

∣∣∣∣
t=0

(ψ ◦ F ◦ φ−1)(tv)

]
,

where φ : (U, p) → (TpS, 0) and ψ : (V, x) → (TxM, 0) are any two open embeddings,
defined on open neighbourhoods of p and x := F (p) such that F (U) ⊂ V , with the
property that their differentials at p and x are the respective identity maps. Returning
to the momentum map J , by Proposition 1.12 its quadratic differential becomes a map:

(23) d2Jp : TpOω → g∗p.
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Proposition 1.15. Let J : (S, ω) → M be the momentum map of a Hamiltonian action
and p ∈ S. Then the quadratic differential (23) is the composition of the quadratic
momentum map (22) with the canonical projection TpOω → SNp:

TpOω g∗p

SNp

d2Jp

JSNp

For the proof, we use an alternative description of the quadratic differential. Recall that,
given a vector bundle E → S and a germ of sections e ∈ Γp(E) vanishing at p ∈ S, the
linearization of e at p is the linear map:

elinp : TpS → Ep, elinp := prEp
◦ (de)p,

where we view the differential (de)p of the map e at p as map into Ep ⊕ TpS, via the
canonical identification of (TE)(p,0) with Ep⊕TpS. With this, one can define the intrinsic
Hessian of F at p to be the symmetric bilinear map:

Hessp(F ) : Ker(dFp)×Ker(dFp)→ CoKer(dFp), (Xp, Yp) 7→
[
1

2
(dF (Y ))linp (Xp)

]
,

where Y ∈ Xp(S) is any germ of vector fields extending Yp and we see dF (Y ) as a germ
of sections of F ∗(TM). The quadratic differential is now given by the quadratic form:

d2Fp(v) = Hessp(F )(v, v), v ∈ Ker(dFp).

We will further use the following immediate, but useful, observation.

Lemma 1.16. Let Φ : E → F be a map of vector bundles over the same manifold,
covering the identity map. If e ∈ Γp(E) is a germ of sections that vanishes at p, then so
does Φ(e) ∈ Γp(F ) and we have:

Φ(e)linp = Φ ◦ elinp .

Proof of Proposition 1.15. Let αx ∈ gp ⊂ T ∗
xM and Xp ∈ Ker(dJp) = TpOω. We have to

prove:
⟨JSNp([Xp]), αx⟩ = ⟨αx, d2Jp(Xp)⟩.

This will follow by linearizing both sides of equation (6). Let α ∈ Ω1(M) and X ∈ X (S)
be extensions of αx and Xp, respectively. On one hand, we have:

⟨(ιa(α)ω)linp (Xp), Xp⟩ = ωp(a(α)
lin
p (Xp), Xp)

= 2⟨JSNp([Xp]), αx⟩.
Here we have first used that, given a k-form β and a vector field Y that vanishes at p, it
holds that

(ιY β)
lin
p (Xp) = ιY lin

p (Xp)βp,

as follows from Lemma 1.16. Furthermore, for the second step we have used that the Lie
algebra representation gp → sp(SNp, ωp) induced by the symplectic normal representation
is given by:

αx · [Xp] = [a(α)linp (Xp)].

On the other hand, linearizing the right-hand side of (6) we find (as desired):

⟨(J∗α)linp (Xp), Xp⟩ = (α(dJ(X))linp (Xp)

= 2⟨αx, d2Jp(Xp)⟩.

19



Here we have first used that, given a vector field Y and a k-form β that vanishes at p, it
holds that

(ιY β)
lin
p (Xp) = ιYp(β

lin
p (Xp)),

as follows from Lemma 1.16. Furthermore, for the second step we have again used Lemma
1.16. □

1.2.4. Neighbourhood equivalence and rigidity. We now turn to the notion of neighbour-
hood equivalence, used in the statement of Theorem 1.1. In view of Proposition 1.10, the
restriction of a symplectic groupoid (G,Ω) to a leaf L gives rise to the data of:

• a symplectic manifold (L, ωL)
• a transitive Lie groupoid GL ⇒ L equipped with a closed multiplicative 2-form
ΩL,

subject to the relation:

(24) ΩL = t∗GL
ωL − s∗GL

ωL.

Definition 1.17. We call a collection of such data a zeroth-order symplectic groupoid
data.

Further, using Proposition 1.11a, we observe that the restriction of a Hamiltonian (G,Ω)-
action along J : (S, ω) → M to an orbit O (with corresponding leaf L = J(O)) encodes
the data of:

• a zeroth-order symplectic groupoid data (GL,ΩL) ⇒ (L, ωL),
• a pre-symplectic manifold (O, ωO),
• a transitive Lie groupoid action of GL along a map JO : O → L,

subject to the relations:

(25) (prGL
)∗ΩL = (mO)

∗ωO − (prO)
∗ωO & ωO = (JO)

∗ωL.

where we denote by:

mO, prO : GL ⋉O → O, prGL
: GL ⋉O → GL,

the map defining the action and the projections from the action groupoid to O and GL.

Definition 1.18. We call a collection of such data a zeroth-order Hamiltonian data.

Next, we define realizations of such zeroth-order data and neighbourhood equivalences
thereof.

Definition 1.19. By a realization of a given zeroth-order symplectic groupoid
data:

(GL,ΩL)

(L, ωL)

(G,Ω)

(M,π)

i

we mean an embedding of Lie groupoids i : GL ↪→ G with the property that Ω pulls
back to ΩL and that GL embeds as the restriction of G to a leaf. Of course, (L, ωL) then
automatically embeds as a symplectic leaf of (G,Ω). We call two realizations i1 and i2
of the same zeroth-order symplectic groupoid data neighbourhood-equivalent if there
are opens V1 and V2 around L in M1 and M2 respectively, together with an isomorphism
of symplectic groupoids:
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(G1,Ω1)|V1

(V1, π1)

(G2,Ω2)|V2

(V2, π2)

∼=

that intertwines i1 with i2.

Definition 1.20. By a realization of a given zeroth order Hamiltonian data:

(GL,ΩL)

(L, ωL)

(O, ωO) (G,Ω)

(M,π)

(S, ω)

JO

(i, j)

J

we mean a pair (i, j) consisting of:
• a realization i of the zeroth-order symplectic groupoid data (GL,ΩL) ⇒ (L, ωL),
• an embedding j : O ↪→ S that pulls back ω to ωO and is compatible with i, in

the sense that i and j together interwine JO with J , and the actions along these
maps.

We call two realizations (i1, j1) and (i2, j2) of the same zeroth-order Hamiltonian data
neighbourhood-equivalent if there are opens V1 and V2 around L in M1 and M2 re-
spectively, a G1|V1-invariant open U1 and a G2|V2-invariant open U2 around O in J−1

1 (V1),
respectively J−1

2 (V2), together with:
• an isomorphism (G1,Ω1)|V1 ∼= (G2,Ω2)|V2 that intertwines i1 with i2,
• a symplectomorphism (U1, ω1) ∼= (U2, ω2) that intertwines j1 with j2 and is com-

patible with the above isomorphism of symplectic groupoids, in the sense that
together these intertwine J1 : U1 → V1 with J2 : U2 → V2, and the actions along
these maps.

In other words, we have an isomorphism of Hamiltonian actions:

(G1,Ω1)|V1

(V1, π1)

(U1, ω1)

A B

(G2,Ω2)|V2

(V2, π2)

(U2, ω2)

J1
∼= J2

that intertwines the embeddings of zeroth-order data. Usually the embeddings are clear
from the context and we simply call the two Hamiltonian actions neighbourhood-equivalent
around O.

We can now state the rigidity result mentioned in the introduction to this section.

Theorem 1.21. Suppose that we are given two realizations of the same zeroth-order
Hamiltonian data with orbit O and leaf L. Fix p ∈ O and let x = JO(p) ∈ L. If both
symplectic groupoids are proper at x (in the sense of Definition 1.7), then the realizations
are neighbourhood-equivalent if and only if their symplectic normal representations at p
are isomorphic as symplectic Gp-representations.

In the coming subsection, we give an explicit construction to show:

Proposition 1.22. For any zeroth-order Hamiltonian data with orbit O, any choice of
p ∈ O and any symplectic representation (V, ωV ) of the isotropy group Gp, there is a
realization of the zeroth-order data that has (V, ωV ) as symplectic normal representation
at p.
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Given a Hamiltonian action, we call the realization constructed from the zeroth-order
Hamiltonian data obtained by restriction to O and from the symplectic normal repre-
sentation at p: the local model of the Hamiltonian action around O (we disregard the
choice of p ∈ O, as different choices result in isomorphic local models). Applying Theorem
1.21 to the given Hamiltonian action on one hand and, on the other hand, to its local
model around O, Theorem 1.1 follows. Hence, after the construction of this local model,
it remains for us to prove Theorem 1.21.

1.3. The local model.

1.3.1. Reorganization of the zeroth-order Hamiltonian data. Before constructing the local
model, we rearrange the zeroth-order data (defined in the previous subsection) into a
simpler form. First, due to the relations (24) and (25), the triple of 2-forms ΩL, ωL
and ωO can be fully reconstructed from the single 2-form ωL. Therefore, a collection of
zeroth-order Hamiltonian data can equivalently be defined as the data of:

• a symplectic manifold (L, ωL),
• a transitive Lie groupoid GL ⇒ L,
• a transitive Lie groupoid action of GL along a map JO : O → L.

After the choice of a point p ∈ O, this can be simplified further to a collection consisting
of:

• a symplectic manifold (L, ωL),
• a Lie group G (corresponding to Gx),
• a (right) principal G-bundle P → L (corresponding to t : s−1(x)→ L),
• a closed subgroup H of G (corresponding to Gp).

To see this, fix a point p ∈ O and let x = JO(p) ∈ L. Since GL is transitive, the choice of
x ∈ L induces an isomorphism between GL and the gauge-groupoid:

(26) s−1(x)×Gx s
−1(x) ⇒ L,

of the principal Gx-bundle t : s−1(x) → L. In particular, GL is entirely encoded by this
principal bundle. Furthermore, due to transitivity the GL-action along JO is entirely
determined by this principal bundle and the subgroup Gp of Gx. Indeed, the map JO can
be recovered from this, for we have a commutative square:

s−1(x)/Gp s−1(x)/Gx

O L

∼ ∼

JO

where the left vertical map is defined by acting on p and the upper horizontal map is the
canonical one. Moreover, the action can be recovered as the action of the groupoid (26)
along the upper horizontal map, given by [p, q] · [q] = [p].

1.3.2. Construction of the local model for the symplectic groupoid. The construction pre-
sented here is well-known. For other (more Poisson geometric) constructions of this local
model, see [17,50]. The local model for the symplectic groupoid is built out of the zeroth-
order symplectic groupoid data, encoded as above by:

• a symplectic manifold (L, ωL),
• a Lie group G,
• a (right) principal G-bundle P → L.

To construct the local model, we make an auxiliary choice of a connection 1-form θ ∈
Ω1(P ; g) and define:

(27) θ̂ ∈ Ω1(P × g∗), θ̂(q,α) = ⟨α, θq⟩.
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Then, we use the symplectic structure ωL on L to define:

(28) ωθ = (prL)
∗ωL − dθ̂ ∈ Ω2(P × g∗),

where by prL we denote the composition P × g∗
pr1−−→ P → L. The 2-form ωθ is closed,

non-degenerate at all points of P × {0} and (P × g∗, ωθ)→ g∗ is a (right) pre-symplectic
Hamiltonian G-space. Therefore, the open subset Σθ ⊂ P × g∗ on which ωθ is non-
degenerate is a G-invariant neigbourhood of P ×{0}. Since the action is free and proper,
the symplectic form ωθ descends to a Poisson structure πθ on the open neighbourhood Mθ

of the zero-section L, defined as:

Mθ := Σθ/G ⊂ P ×G g∗.

This is the base of the local model. For the construction of the integrating symplectic
groupoid, notice first that the pair groupoid:

(29) (Σθ × Σθ, ωθ ⊕−ωθ)
is a symplectic groupoid and, furthermore, it is a (right) free and proper Hamiltonian
G-space (being a product of two). Therefore, the symplectic form ωθ ⊕−ωθ descends to
the symplectic reduced space at 0 ∈ g∗:

(30) (Gθ,Ωθ) := ((Σθ × Σθ) �G,Ωred) .

The pair groupoid structure on Σθ × Σθ descends to a Lie groupoid structure on (30),
making it a symplectic groupoid integrating (Mθ, πθ). This is the symplectic groupoid
in the local model. It is canonically a realization of the given zeroth-order symplectic
groupoid data: the gauge-groupoid of the principal G-bundle P → L (corresponding to
(26)) embeds into (30) via the zero-section.

1.3.3. Construction of the local model for Hamiltonian actions. The construction below
generalizes that in [37, 52]. The local model is built out of a zeroth-order Hamiltonian
data and a symplectic representation of an isotropy group of the action, encoded as in
Subsection 1.3.1 by:

• a symplectic manifold (L, ωL),
• a Lie group G,
• a (right) principal G-bundle P → L,
• a closed subgroup H of G,
• a symplectic H-representation (V, ωV ).

Choose an auxiliary connection 1-form θ ∈ Ω1(P ; g) and define ωθ, Σθ and Mθ as in
the construction of the local model for symplectic groupoids. To construct a Hamiltonian
action of the symplectic groupoid (30), consider the product of the Hamiltonian H-spaces:

prh∗ : (Σθ, ωθ)
prg∗−−→ g∗ → h∗ & JV : (V, ωV )→ h∗,

where JV is as in (101). This is another (right) Hamiltonian H-space:

JH : (Σθ × V, ωθ ⊕ ωV )→ h∗, (q, α, v) 7→ α|h − JV (v),
where the action is the diagonal one, which is free and proper. The symplectic manifold
in the local model is the reduced space at 0 ∈ h∗:

(31) (Sθ, ωSθ
) := ((Σθ × V ) �H,ωred) .

To equip this with a Hamiltonian action of (30), observe that, on the other hand, the
symplectic pair groupoid (29) acts along:

prΣθ
: (Σθ × V, ωθ ⊕ ωV )→ Σθ
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in a Hamiltonian fashion as: (σ, τ) · (τ, v) = (σ, v) for σ, τ ∈ Σθ and v ∈ V . This descends
to a Hamiltonian action of (30) that fits into a diagram of commuting Hamiltonian actions:

(Gθ,Ωθ)

Mθ

(Σθ × V, ωθ ⊕ ωV )

h∗

(T ∗H,−dλcan)

prMθ JH

with the property that the momentum map of each one is invariant under the action of
the other. It therefore follows that the left-hand action descends to a Hamiltonian action
along the map:

(32) Jθ : (Sθ, ωSθ
)→Mθ, [σ, v] 7→ [σ].

This is the Hamiltonian action in the local model. It is canonically a realization of the
given zeroth-order Hamiltonian data: as in the previous subsection the gauge-groupoid of
the principal G-bundle P → L embeds into (30) via the zero-section and similarly P/H
embeds into (31). This completes the construction of the local model. Finally, given
the starting data in Proposition 1.22, one readily verifies that the symplectic normal
representation at p of the resulting Hamiltonian action of (30) along (32) is isomorphic to
(V, ωV ) as symplectic Gp-representation. So, this also completes the proof of Proposition
1.22.

Remark 1.23. Under the assumption that the short exact sequence:

(33) 0→ h0 → g∗ → h∗ → 0

splits H-equivariantly (which holds if H is compact), the local model can be put in the
more familiar form of a vector bundle over O. Indeed, let p : h∗ → g∗ be such a splitting.
Then we have an open embedding:

(34) Sθ → P ×H (h0 ⊕ V ), [p, α, v] 7→ [p, α− p(JV (v)), v],

onto an open neighbourhood of the zero-section, which identifies the momentum map (32)
with the restriction to this open neighbourhood of the map:

(35) P ×H (h0 ⊕ V )→ P ×G g∗, [p, α, v] 7→ [p, α+ p(JV (v))].

To identify the action accordingly, observe that, as Lie groupoid, (30) embeds canonically
onto an open subgroupoid of:

(36) (P × P )×G g∗ ⇒ P ×G g∗,

which inherits its Lie groupoid structure from the submersion groupoid of prg∗ : P ×g∗ →
g∗, being a quotient of it. This identifies the action of (30) along (35) with (a restriction
of) the action of (36) along (35), given by:

[p1, p2, α+ p(JV (v))] · [p2, α, v] = [p1, α, v], p1, p2 ∈ P, α ∈ h0, v ∈ V.

1.3.4. Digression: a second order local model for Lie groupoid actions. To provide some
further insight into the local model and the map (35), we will now construct a second order
local model for Lie groupoid actions that, when starting from a Hamiltonian action of a
symplectic groupoid, recovers the Lie groupoid action underlying the local model for the
Hamiltonian action. This could serve as a local model for (not necessarily Hamiltonian)
Lie groupoid actions —for instance, smooth equivariant maps. A normal form theorem
with this as local model would include as special cases the submersion and immersion
theorems, the Morse Lemma and equivariant versions thereof. Currently, however, we are
not aware of conditions that ensure such a general normal form to hold.

Remark 1.24. The content of this subsection will not be used further on.
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Turning to the construction, suppose that we are given a Lie groupoid G ⇒ M acting
along a map J : S → M . Let O be an orbit of the action and let L = J(O) be the
corresponding leaf. Recall from (9) that NL and NO are canonical representations of GL
and GO := (G ⋉ S)O. Since GO = GL ⋉ O, the normal representation at O induces a
GL-action along the composition of the bundle projection NO → O with JO : O → L.
Notice that

(37) dJ : NO → NL

is a GL-equivariant map. Therefore we have an action:
GL ⋉NL

NL

NO

dJ

This action encodes the first order data of the given Lie groupoid action around O and
L. However, the local model for Hamiltonian actions encodes, in addition, second order
(or quadratic) data of the momentum map J (via the quadratic momentum map of the
symplectic normal representation, or equivalently, the quadratic differential of J —cf.
Proposition 1.15). This indicates to refine the map (37) by an equivariant map:

(38) dJ ⊕ d2J : CoIm(dJ)O ⊕Ker(dJ)O → Im(dJ)O ⊕ CoKer(dJ)O,

with the second component being some analogue of the quadratic differential in direction
normal to O and L. The codomain of this map, however, is well-defined only as vector
bundle over O (and not L), because Im(dJ) is well-defined only as subbundle of J∗

O(NL)
(and not of NL). To overcome this, let us make the following assumption. Consider the
short exact sequence:

(39) 0→ Im(dJ)O → J∗
O(NL)→ CoKer(dJ)O → 0

of vector bundles over O. By equivariance of (37), each of these has a canonical GL-action
along the composition of the bundle projection with JO. Now, the assumption is that
(39) splits GL-equivariantly.

Remark 1.25. There is a canonical bijection between GL-equivariant splittings of (39)
and Gp-equivariant splittings of the sequence (19). In the case of a Hamiltonian action,
the latter sequence is isomorphic to (17) (see Section 1.2). So, in that case, the above
assumption corresponds to the assumption in Remark 1.23 of (33) being split.

Let such a splitting be given and consider the induced map:

p : CoKer(dJ)O → NL.

Instead of (38) we can now consider:

(40) Jp : CoIm(dJ)O ⊕Ker(dJ)O → NL, (w, v) 7→ dJ(w) + p
(
d2J(v)

)
.

This does have the appropriate codomain. Of course, we still have to make sense of the
map:

(41) d2J : Ker(dJ)O → CoKer(dJ)O
and this is the content of the proposition below.

Proposition 1.26. Let an action of a Lie groupoid G along J : S → M and an orbit O
be given. Then, with the notation introduced above, the following hold.

a) The canonical map from Ker(dJ)O to Ker(dJ)O is a surjection and the one from
CoKer(dJ)O to CoKer(dJ)O is an isomorphism.

b) There is a unique map (41) that fits into a commutative square:
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Ker(dJ)O CoKer(dJ)O

Ker(dJ)O CoKer(dJ)O

d2J

d2J

c) The map (41) is GL-equivariant.

To prove this we use the following simple fact, which is complementary to Lemma 1.16.

Lemma 1.27. Let E →M be a vector bundle, J : S →M a smooth map. If e ∈ ΓJ(p)(E)
is a germ of sections that vanishes at J(p) ∈ M , then J∗e ∈ Γp(J

∗E) vanishes at p and
we have:

(J∗e)linp = elinJ(p) ◦ dJp.

Proof of Proposition 1.26. Part a follows from the fact that J restricts to a submersion
from O to L. For part b, let p ∈ O, Xp ∈ Ker(dJp) and Yp ∈ Ker(dJp) ∩ TpO. It suffices
to show that:

Hessp(J)(Xp, Yp) = 0.

To this end, note that since Yp ∈ TpO, there is a section α ∈ Γ(Lie(G)) such that Yp =
a(α)p, where a : Γ(Lie(G)) → X (S) denotes the Lie algebroid action induced by the Lie
groupoid action. Letting ρ : Lie(G) → TM denote the Lie algebroid anchor, it follows
that dJ(a(α)) = J∗(ρ(α)). Hence, by Lemma 1.27, we find that (as required):

Hessp(J)(Xp, Yp) = [dJ(a(α))linp (Xp)]

= [J∗(ρ(α))linp (Xp)]

= [ρ(α)linJ(p)(dJp(Xp))] = 0.

For part c, let p ∈ O, x = J(p), Xp ∈ Ker(dJp) and g ∈ s−1(x). Further, let X ∈ Xp(S)
be a germ of vector fields that extends Xp and let σ be the germ of a local bisection of G
at x such that σ(x) = g. Denote by σ̂ the induced germ of local bisections of G ⋉ S at p,
defined by σ̂(q) = (σ(J(q)), q). Then (as desired) we find:

d2Jg·p(g · [Xp]) = [dJ((m ◦ σ̂)∗(X))lin(m◦σ̂)(p)(d(m ◦ σ̂)p(Xp))]

= [d(J ◦m ◦ σ̂)(X)linp (Xp)]

= [d(t ◦ σ ◦ J)(X)linp (Xp)]

= [d(t ◦ σ)x(dJ(X)linp (Xp)] = g · d2Jp([Xp]),

where in the second step we applied Lemma 1.27 and in the fourth we used Lemma
1.16. □

It follows from part c of this proposition that (40) is GL-equivariant. Therefore we have
an action:

GL ⋉NL

NL

CoIm(dJ)O ⊕Ker(dJ)O

Jp

Now fix a point p ∈ O and let x = J(p) ∈ L. Then GL ⋉NL ⇒ NL can be canonically
identified with the Lie groupoid:

(s−1(x)× s−1(x))×Gx Nx ⇒ s−1(x)×Gx Nx,
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which inherits its Lie groupoid structure from the submersion groupoid of pr : s−1(x) ×
Nx → Nx, being a quotient of it (see also [19] and compare to 36). Furthermore, the
action above can be canonically identified with the action:

[g, h, Jp(v, w)] · [h, v, w] = [g, v, w], g, h ∈ s−1(x), v ∈ CoIm(dJp), w ∈ Ker(dJp),

along the map:

s−1(x)×Gp

(
CoIm(dJp)⊕Ker(dJp)

)
→ s−1(x)×Gx Nx, [g, v, w] 7→ [g, Jp(v, w)]

By the discussion in Section 1.2, if the given action is Hamiltonian then the above map
can be canonically be identified with the momentum map (35) of the local model, and
the same holds for the actions (or rather, for restrictions thereof to appropriate opens).

1.3.5. Relation to the Marle-Guillemin-Sternberg model. Let G be a Lie group and con-
sider a Hamiltonian G-space J : (S, ω) → g∗. As remarked in Example 1.5, this is the
same as a Hamiltonian action of the cotangent groupoid (G⋉ g∗,−dλcan) ⇒ g∗ along J .
Let p ∈ S, α = J(p) and suppose that G⋉g∗ is proper at α (in the sense of Definition 1.7).
In this case, our local model around the orbit O through p is equivalent to the local model
in the Marle-Guillemin-Sternberg (MGS) normal form theorem for Hamiltonian G-spaces
(recalled below). To see this, first note that, since the isotropy group Gα is compact, the
short exact sequence of Gα-representations:

(42) 0→ g0α → g∗ → g∗α → 0

is split. Let σ : g∗α → g∗ be a Gα-equivariant splitting of (42) and consider the connection
one-form θ ∈ Ω1(G; gα) on G (viewed as right principal Gα-bundle) obtained by composing
the left-invariant Maurer-Cartan form on G with σ∗ : g→ gα. The leaf L through α is a
coadjoint orbit and ωL is the KKS-symplectic form, which is invariant under the coadjoint
action. Therefore, the 2-form ωθ ∈ Ω2(G × g∗α), defined as in (28), is not only invariant
under the right diagonal action of Gα, but it also invariant under the left action of G by
left translation on the first factor. This implies that the open Σθ on which ωθ is non-
degenerate is of the form G×W for a Gα-invariant open W around the origin in g∗α. The
local model for the cotangent groupoid around L becomes:

(G⋉ (G×Gα W ),Ωθ) ⇒ G×Gα W,

the groupoid associated to the action of G by left translation on the first factor. To
compare this to the cotangent groupoid itself, consider the G-equivariant map:

φ : G×Gα W → g∗, [g, β] 7→ g · (α + σ(β)).

Since G ⋉ g∗ is proper at α, we can shrink W so that φ becomes an embedding onto
a G-invariant open neighbourhood of L. Then φ lifts canonically to an isomorphism of
symplectic groupoids:

(43) (G⋉ (G×Gα W ),Ωθ)
∼−→ (G⋉ g∗,−dλcan)|φ(G×GαW ),

and this is a neighbourhood equivalence around G ⋉ L (with respect to the canonical
embeddings). Our local model for (S, ω) around O is the same as that in the MGS local
model, and via (43) the Hamiltonian action in our local model is identified with the
Hamiltonian G-space in the MGS local model. In particular the momentum map (35) is
identified with:

JMGS : G×Gp (g
0
p ⊕ SNp)→ g∗, [g, β, v] 7→ g ·

(
α + σ

(
β + p

(
JSNp (v)

)))
.

Remark 1.28. As will be clear from the proof of Theorem 1.21, the conclusion of Theorem
1.1 can be sharpened for Hamiltonian Lie group actions: if we start with a Hamiltonian
G-space, then under the assumptions of Theorem 1.1 we can in fact find a neighbourhood
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equivalence in which the isomorphism of symplectic groupoids is the explicit isomorphism
(43). In particular, this neighbourhood equivalence is defined on G-invariant neighbour-
hoods of O in S and L in g∗.

1.4. The proof.

1.4.1. Morita equivalence of groupoids. To prove Theorem 1.21 (and hence Theorem 1.1),
we will reduce to the case where O ⊂ J−1

X (0) is an orbit of a Hamiltonian G-space
JX : (X,ωX) → g∗ (with G a compact Lie group), to which we can apply the Marle-
Guilleming-Sternberg theorem. The idea of such a reduction is by no means new —in
fact, it appears already in the work of Guillemin and Sternberg. To do so, we use the
fact that Morita equivalent symplectic groupoids have equivalent categories of modules.
In preparation for this, we will now first recall the definition, some useful properties and
examples of Morita equivalence.

Definition 1.29. Let G1 ⇒M1 and G2 ⇒M2 be Lie groupoids. A Morita equivalence
from G1 to G2 is a principal (G1,G2)-bibundle (P, α1, α2). This consists of:

• A manifold P with two surjective submersions αi : P →Mi.
• A left action of G1 along α1 that makes α2 into a principal G1-bundle.
• A right action of G2 along α2 that makes α1 into a principal G2-bundle.

Furthermore, the two actions are required to commute. We depict this as:
G1

M1

P

M2

G2
α1 α2

For every leaf L1 ⊂ M1, there is a unique leaf L2 ⊂ M2 such that α−1
1 (L1) = α−1

2 (L2);
such leaves L1 and L2 are called P -related. When (G1,Ω1) and (G2,Ω2) are symplectic
groupoids, then a symplectic Morita equivalence from (G1,Ω1) to (G2,Ω2) is a Morita
equivalence with the extra requirement that (P, ωP ) is a symplectic manifold and both
actions are Hamiltonian.

Morita equivalence is an equivalence relation that, heuristically speaking, captures the ge-
ometry transverse to the leaves. The simplest motivation for this principle is the following
basic result.

Proposition 1.30. Let (P, α1, α2) be a Morita equivalence from G1 ⇒M1 to G2 ⇒M2.
a) The map

(44) hP :M1 →M2, L1 7→ α2(α
−1
1 (L1))

that sends a leaf L1 of G1 to the unique P -related leaf of G2 is a homeomorphism.
b) Suppose that x1 ∈ M1 and x2 ∈ M2 belong to P -related leaves and let p ∈ P such

that α1(p) = x1 and α2(p) = x2. Then the map:

(45) Φp : (G1)x1 → (G2)x2
defined by the relation:

g · p = p · Φp(g), g ∈ (G1)x1 ,
is an isomorphism of Lie groups. Furthermore, the map:

(46) φp : Nx1 → Nx2 , [v] 7→ [dα2(v̂)],

where v̂ ∈ TpP is any tangent vector such that dα1(v̂) = v, is a compatible iso-
morphism between the normal representations at x1 and x2.
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Example 1.31. Any Lie groupoid G ⇒M is Morita equivalent to itself via the canonical
bimodule (G, t, s). The same goes for symplectic groupoids. Another simple example: any
transitive Lie groupoid is Morita equivalent to a Lie group (viewed as groupoid over the
one-point space); as a particular case of this, the pair groupoid of a manifold is Morita
equivalent to the unit groupoid of the one-point space.

Example 1.32. Morita equivalences can be restricted to opens. Indeed, let (P, α1, α2) be
a Morita equivalence between G1 ⇒M1 and G2 ⇒M2, and let V1 be an open in M1. Then
V2 := α2(α

−1
1 (V1)) is an invariant open in M2 and (α−1

1 (V1), α1, α2) is a Morita equivalence
between G1|V1 and G2|V2 . In particular, given a G ⇒M Lie groupoid and an open V ⊂M ,
letting V̂ := s(t−1(V )) denote the saturation of V (the smallest invariant open containing
V ), the first Morita equivalence in Example 1.31 restricts to one between G|V and G|V̂ .
The same goes for symplectic Morita equivalences.

Example 1.33. The following example plays a crucial role in our proof of Theorem
1.21. Consider the set-up of Subsection 1.3.2. There is a canonical symplectic Morita
equivalence:

(Gθ,Ωθ)

Mθ

(Σθ, ωθ)

Wθ

(G⋉ g∗,−dλcan)|Wθ

prMθ
prg∗

between (30) and the restriction of the cotangent groupoid to the G-invariant open Wθ :=
prg∗(Σθ) around the origin in g∗. This relates the central leaf L in Mθ to the origin in g∗.

1.4.2. Equivalence between categories of modules. Next, we recall how a Morita equiva-
lence induces an equivalence between the categories of modules. Given a Lie groupoid
G ⇒ M , by a G-module we simply mean smooth map J : S → M equipped with a left
action of G. A morphism from a G-module J1 : S1 → M to J2 : S2 → M is smooth map
φ : S1 → S2 that intertwines J1 and J2 and is G-equivariant. This defines a category
Mod(G).

Example 1.34. Let G ⇒ M be a Lie groupoid and let W be an invariant open in
M . Consider the full subcategory ModW (G) of Mod(G) consisting of those G-modules
J : S → M with the property that J(S) ⊂ W . There is a canonical equivalence of
categories between ModW (G) and Mod(G|W ).

Example 1.35. Let G be a Lie group and M a left G-space. Consider the category
HomG(−,M) of smooth G-equivariant maps from left G-spaces into M . A morphism
between two such maps J1 : S1 → M and J2 : S2 → M is a smooth G-equivariant map
φ : S1 → S2 that intertwines J1 and J2. There is a canonical equivalence of categories
between HomG(−,M) and Mod(G⋉M).

We now recall:

Theorem 1.36. A Morita equivalence (P, α1, α2) between two Lie groupoids G1 and G2
induces an equivalence of categories between Mod(G1) and Mod(G2), explicitly given by
(48).

Proof. To any G1-module J : S → M1 we can associate a G2-module, as follows. The Lie
groupoid G1 acts diagonally on the manifold P ×M1 S along the map α1 ◦ pr1, in a free
and proper way. Hence, the quotient:

P ∗G1 S :=
(P ×M1 S)

G1
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is smooth. Moreover, since the actions of G1 and G2 commute and α1 is G2-invariant, we
have a left action of G2 along:
(47) P∗(J) : P ∗G1 S →M2, [pP , pS] 7→ α2(pP ),

given by:
g · [pP , pS] = [pP · g−1, pS].

We call this the G2-module associated to the G1-module J . For any morphism of G1-
modules there is a canonical morphism between the associated G2-modules. So, this
defines a functor:

Mod(G1)→ Mod(G2)(48)
(J : S →M1) 7→ (P∗(J) : P ∗G1 S →M2).

An analogous construction from right to left gives an inverse to this functor. □

Next, we recall the analogue for symplectic groupoids. Given a symplectic groupoid
(G,Ω) ⇒ M , by a Hamiltonian (G,Ω)-space (called symplectic left (G,Ω)-module
in [83]) we mean a smooth map J : (S, ω)→M equipped with a left Hamiltonian (G,Ω)-
action. A morphism φ from J1 : (S1, ω1) → M to J2 : (S2, ω2) → M is a morphism of
G-modules satisfying φ∗ω2 = ω1. This defines a category Ham(G,Ω).
Example 1.37. Let (G,Ω) ⇒M be a symplectic groupoid and letW be an invariant open
in M . The equivalence in Example 1.34 restricts to an equivalence between the category
HamW (G,Ω), consisting of Hamiltonian (G,Ω)-spaces with the property that J(S) ⊂ W ,
and Ham((G,Ω)|W ).

Example 1.38. Let G be a Lie group and consider the category Ham(G) of left Hamil-
tonian G-spaces. Here, a morphism between Hamiltonian G-spaces J1 : (S1, ω1)→ g∗ and
J2 : (S2, ω2) → g∗ is a G-equivariant map φ : S1 → S2 that intertwines J1 and J2 and
satisfies φ∗ω2 = ω1. The equivalence in Example 1.35 restricts to one between Ham(G)
and Ham(G⋉ g∗,−dλcan). This refines the statement in Example 1.5.

Theorem 1.39 ([83]). A symplectic Morita equivalence (P, ωP , α1, α2) between two sym-
plectic groupoids (G1,Ω1) and (G2,Ω2) induces an equivalence of categories between Ham(G1,Ω1)
and Ham(G2,Ω2), explicitly given by (49).

Proof. Let (P, ωP , α1, α2) be a symplectic Morita equivalence between symplectic groupoids
(G1,Ω1) and (G2,Ω2) and let J : (S, ωS)→M1 be a Hamiltonian (G1,Ω1)-space. The sym-
plectic form (−ωP )⊕ ωS descends to a symplectic form ωPS on P ∗G1 S and the (G2,Ω2)-
action along the associated module P∗(J), as in (47), becomes Hamiltonian. As before,
this extends to a functor:

Ham(G1,Ω1)→ Ham(G2,Ω2)(49)
(J : (S, ωS)→M1) 7→ (P∗(J) : (P ∗G1 S, ωPS)→M2)

and an analogous construction from right to left gives an inverse functor. □

1.4.3. Proof of rigidity. The proof of Theorem 1.21 hinges on the following two known
results. The first is a rigidity theorem for symplectic groupoids.

Theorem 1.40 ([14]). Suppose that we are given two realizations of the same zeroth-order
symplectic groupoid data with leaf L. Fix x ∈ L. If both symplectic groupoids are proper
at x (in the sense of Definition 1.7), then the realizations are neighbourhood-equivalent.

Remark 1.41. The assumption appearing in [14, Thm 8.2] is that G is proper, which
is stronger than properness at x. However, if G is proper at x, then there is an open U
around the leaf L through x such that G|U is proper (see e.g. [21, Remark 5.1.4]).
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The second result that we will need is the following rigidity theorem for Hamiltonian
G-spaces.

Theorem 1.42 ([37, 51]). Let G be a compact Lie group and let J1 : (S1, ω1) → g∗ and
J2 : (S2, ω2) → g∗ be Hamiltonian G-spaces. Suppose that p1 ∈ J−1

1 (0) and p2 ∈ J−1
2 (0)

are such that Gp1 = Gp2. Then there are G-invariant neighbourhoods U1 of p1 and U2 of
p2, together with an isomorphism of Hamiltonian G-spaces that sends p1 to p2:

(U1, ω1, p1) (U2, ω2, p2)

g∗

∼

J1 J2

if and only if there is an equivariant symplectic linear isomorphism:

(SNp1 , ωp1) ∼= (SNp2 , ωp2).

The main step in proving Theorem 1.21 is to prove the following generalization of Theorem
1.42.

Theorem 1.43. Let (G,Ω) ⇒ M be a symplectic groupoid that is proper at x ∈ M .
Suppose that we are given two Hamiltonian (G,Ω)-spaces J1 : (S1, ω1) → M and J2 :
(S2, ω2) → M . Let p1 ∈ S1 and p2 ∈ S2 be such that J1(p1) = J2(p2) = x and Gp1 = Gp2.
Then there are G-invariant open neighbourhoods U1 of p1 and U2 of p2, together with an
isomorphism of Hamiltonian (G,Ω)-spaces that sends p1 to p2:

(U1, ω1, p1) (U2, ω2, p2)

M

∼

J1 J2

if and only if there is an equivariant symplectic linear isomorphism:

(SNp1 , ωp1) ∼= (SNp2 , ωp2).

To prove this we further use the lemma below.

Lemma 1.44. Let (P, ωP , α1, α2) be a symplectic Morita equivalence between (G1,Ω1)
and (G2,Ω2). Further, let J : (S, ωS) → M be a Hamiltonian (G1,Ω1)-space, let pS ∈ S
and fix a pP ∈ P such that α1(pP ) = J(pS). Then the isomorphism (45) restricts to an
isomorphism:

ΦpP : GpS
∼−→ G[pP ,pS ],

and there is a compatible symplectic linear isomorphism:

(SNpS , (ωS)pS) ∼=
(
SN[pP ,pS ], (ωPS)[pP ,pS ]

)
between the symplectic normal representation at pS of the Hamiltonian (G1,Ω1)-space
J and the symplectic normal representation at [pP , pS] of the associated Hamiltonian
(G2,Ω2)-space P∗(J) of Theorem 1.39.

Although this lemma can be verified directly, we postpone its proof to Section 1.5.4,
where we give a more conceptual explanation. With this at hand, we can prove the
desired theorems.

Proof of Theorem 1.43. The forward implication is straightforward. Let us prove the
backward implication. Throughout, let G := Gx denote the isotropy group of G at x. To
begin with observe that, since G is proper at x, there is an invariant open neighbourhood
V of the leaf L through x and a G-invariant open neighbourhood W of the origin in g∗,
together with a symplectic Morita equivalence:
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(G,Ω)|V

V

(P, ωP )

W

(G⋉ g∗,−dλcan)|W
α1 α2

that relates the leaf L to the origin in g∗. Indeed, this follows by first applying Theorem
1.40 to:

• the zeroth-order data of (G,Ω) at L,
• the canonical realization (G,Ω),
• the realization (30),

and then combining the neighbourhood-equivalence of symplectic groupoids obtained
thereby with Examples 1.32 and 1.33. Since V is G-invariant, so are J−1

1 (V ) and J−1
2 (V )

and we can consider the Hamiltonian (G,Ω)-spaces:

(50) JV1 : (J−1
1 (V ), ω1)→M & JV2 : (J−1

2 (V ), ω2)→M

obtained by restricting the given Hamiltonian (G,Ω)-spaces J1 and J2. By Theorem
1.39, combined with Examples 1.37 and 1.38, the above Morita equivalence induces an
equivalence of categories (with explicit inverse) between the category of Hamiltonian
(G,Ω)-spaces J : (S, ω) → M with J(S) ⊂ V and the category of Hamiltonian G-spaces
J : (S, ω)→ g∗ with J(S) ⊂ W . Consider the Hamiltonian G-spaces associated to (50):

P∗(J
V
1 ) : (P ∗(G|V ) J

−1
1 (V ), ωPS1)→ g∗ & P∗(J

V
2 ) : (P ∗(G|V ) J

−1
2 (V ), ωPS2)→ g∗,

and fix a p ∈ P such that α1(p) = x. We will show that these Hamiltonian G-spaces
satisfy the assumptions of Theorem 1.42 for the points [p, p1] and [p, p2]. First of all, since
the leaf L is P -related to the origin in g∗, it must be that α2(p) = 0. Therefore, we find:

P∗(J
V
1 )([p, p1]) = α2(p) = 0 & P∗(J

V
2 )([p, p2]) = α2(p) = 0.

Second, Lemma 1.44 implies that G[p,p1] = G[p,p2], as both coincide with the image of
Gp1 = Gp2 under Φp : Gx → G. Third, by the same lemma, there are symplectic linear
isomorphisms:

ψ1 : (SNp1 , (ω1)p1)
∼−→
(
SN[p,p1], (ωPS1)[p,p1]

)
& ψ2 : (SNp2 , (ω2)p2)

∼−→
(
SN[p,p2], (ωPS2)[p,p2]

)
,

that are both compatible with the isomorphism of Lie groups:

Gp1
Φp−→ G[p,p1] = Gp2

Φp−→ G[p,p2].

By assumption, there is an equivariant symplectic linear isomorphism:

ψ : (SNp1 , ωp1)
∼−→ (SNp2 , ωp2).

All together, the composition:

ψ2 ◦ ψ ◦ ψ−1
1 :

(
SN[p,p1], (ωPS1)[p,p1]

) ∼−→
(
SN[p,p2], (ωPS2)[p,p2]

)
becomes an equivariant symplectic linear isomorphism. So, the assumptions of Theorem
1.42 hold, which implies that there are G-invariant opens U[p,p1] around [p, p1] and U[p,p2]

around [p, p2], together with an isomorphism of Hamiltonian G-spaces that sends [p, p1]
to [p, p2]: (

U[p,p1], ωPS1 , [p, p1]
) (

U[p,p2], ωPS2 , [p, p2]
)

g∗

∼

P∗(JV
1 ) P∗(JV

2 )
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One readily verifies that, by passing back through the above equivalence of categories via
the explicit inverse functor, we obtain G-invariant opens U1 around p1 and U2 around p2,
together with an isomorphism of Hamiltonian (G,Ω)-spaces from J1 : (U1, ω1) → M to
J2 : (U2, ω2)→M that sends p1 to p2, as desired. □

Proof of Theorem 1.21. As in the previous proof, the forward implication is straightfor-
ward. For the backward implication, let (i1, j1) and (i2, j2) be two realizations of the
same zeroth-order Hamiltonian data (with notation as in Definition 1.20). Let p ∈ O and
x = JO(p) and suppose that their symplectic normal representations at p are isomorphic
as symplectic Gp-representations. By Theorem 1.40 there are respective opens V1 and V2
around L in M1 and M2, together with an isomorphism:

Φ : (G1,Ω1)|V1
∼−→ (G2,Ω2)|V2

that intertwines i1 with i2. Consider, on one hand, the Hamiltonian (G1,Ω1)|V1-space
obtained from the given Hamiltonian (G1,Ω1)-space J1 by restriction to V1 and, on the
other hand, the Hamiltonian (G1,Ω1)|V1-space Φ∗(J2) obtained from the given Hamiltonian
(G2,Ω2)-space J2 by restriction to V2 and pullback along Φ. These two Hamiltonian
(G1,Ω1)|V1-spaces meet the assumptions of Theorem 1.43 at the points j1(p) and j2(p).
So, there are (G1|V1)-invariant opens U1 ⊂ J−1

1 (V1) and U2 ⊂ J−1
2 (V2), together with an

isomorphism of Hamiltonian (G1,Ω1)|V1-spaces that sends j1(p) to j2(p):

(U1, ω1, j1(p)) (U2, ω2, j2(p))

V1

Ψ

J1 Φ∗(J2)

As one readily verifies, the pair (Φ,Ψ) is the desired neighbourhood equivalence. □

1.5. The transverse part of the local model.

1.5.1. Hamiltonian Morita equivalence. In order to define a notion of Morita equivalence
between Hamiltonian actions, we first consider a natural equivalence relation between Lie
groupoid maps (resp. groupoid maps of Hamilonian type, defined below). In the next
subsection we explain how this restricts to an equivalence relation between Lie groupoid
actions (resp. Hamiltonian actions).

Definition 1.45. Let J1 : H1 → G1 and J2 : H2 → G2 be maps of Lie groupoids. By a
Morita equivalence from J1 to J2 we mean the data consisting of:

• a Morita equivalence (P, α1, α2) from G1 to G2,
• a Morita equivalence (Q, β1, β2) from H1 to H2,
• a smooth map j : Q→ P that interwines Ji ◦ βi with αi and that intertwines the
Hi-action with the Gi-action via Ji, for both i = 1, 2.

We depict this as:
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H1

S1

Q

S2

H2

G1

M1

P

M2

G2

J1

J1

J2

J2

j

β1 β2

α1 α2

As an analogue of this in the Hamiltonian setting, we propose the following definitions
(more motivation for which will be given in the coming subsections).

Definition 1.46. Let (G,Ω) ⇒ M be a symplectic groupoid and let H ⇒ (S, ω) be a
Lie groupoid over a pre-symplectic manifold. We call a Lie groupoid map J : H → G of
Hamiltonian type if:

J ∗Ω = (tH)
∗ω − (sH)

∗ω.

Definition 1.47. Let J1 : H1 → G1 and J2 : H2 → G2 be of Hamiltonian type. By a
Hamiltonian Morita equivalence from J1 to J2 we mean: a Morita equivalence (in
the sense of Definition 1.45) with the extra requirement that (P, ωP , α1, α2) is a symplectic
Morita equivalence and that:

(51) j∗ωP = (β1)
∗ω1 − (β2)

∗ω2.

The same type of arguments as for Morita equivalence of Lie and symplectic groupoids (see
[83]) show that Hamiltonian Morita equivalence indeed defines an equivalence relation.

1.5.2. Morita equivalence between groupoid maps of action type. To see that the equiv-
alence relation(s) in the previous subsection induce an equivalence relation between Lie
groupoid actions (resp. Hamiltonian actions), the key remark is that a left action of a Lie
groupoid G along a map J : S →M gives rise to a map of Lie groupoids covering J :

(52) prG : G ⋉ S → G.

Further, notice that the groupoid map (52) is of Hamiltonian type precisely when the
action is Hamiltonian (that is, when (5) holds).

Definition 1.48. By a Morita equivalence between (left) Lie groupoid actions we
mean a Morita equivalence between their associated Lie groupoid maps (52). Similarly, by
a Morita equivalence between (left) Hamiltonian actions we mean a Hamiltonian
Morita equivalence between their associated groupoid maps (52).

In the remainder of this subsection, we further unravel what it means for to Hamiltonian
actions to be Morita equivalent. The starting point for this is the following example,
which concerns the modules appearing in Theorems 1.36 and 1.39.

Example 1.49. Let G1 ⇒ M1 be a Lie groupoid acting along J : S → M1 and sup-
pose that we are given a Morita equivalence (P, α1, α2) from G1 to another Lie groupoid
G2 ⇒ M2. Consider the associated G2-action along P∗(J) : P ∗G1 S → M2. The Morita
equivalence from G1 to G2 extends to a canonical Morita equivalence between these two
actions:
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G1 ⋉ S

S

P ×M1 S

P ∗G1 S

G2 ⋉ (P ∗G1 S)

G1

M1

P

M2

G2

prG1

J

prG2

P∗(J)

prP

prS prPS

α1 α2

Here the upper left action is induced by the diagonal G1-action, whereas the upper right
action is induced by the G2-action on the first factor. When (G1,Ω1) and (G2,Ω2) are
symplectic groupoids, the action along J1 : (S1, ω1)→M1 is Hamiltonian, and the Morita
equivalence (P, ωP , α1, α2) is symplectic, then the associated (G2,Ω2)-action along P∗(J) :
(P ∗G1 S, ωPS) → M2 is Hamiltonian. In this case, the above Morita equivalence is
Hamiltonian.

In fact, we will show that more is true:

Proposition 1.50. Every Morita equivalence between two Lie groupoid maps that are both
of action type is of the form of Example 1.49. The same holds for Hamiltonian Morita
equivalence.

Here, for convenience, we used the following terminology.

Definition 1.51. Let J : H → G be map of Lie groupoids covering J : S →M . We say
that J is of action type if there is a smooth left action of G along J and an isomorphism
of Lie groupoids from G ⋉ S to H that covers the identity on S and makes the diagram:

G ⋉ S H

G

∼

prG J

commute.

This has the following more insightful characterization.

Proposition 1.52. A Lie groupoid map J : H → G is of action type if and only if for
every p ∈ S the map J restricts to a diffeomorphism from the source-fiber of H over p
onto that of G over J(p).

This is readily verified. To prove Proposition 1.50 we use the closely related lemma below,
the proof of which is also left to the reader.

Lemma 1.53. Let J1 : H1 → G1 and J2 : H2 → G2 be maps of Lie groupoids and let a
Morita equivalence between them (denoted as Definition 1.45) be given. Let q ∈ Q, and
denote p = j(q), pi = βi(q) and xi = Ji(pi) for i = 1, 2. Then we have a commutative
square:

β−1
2 (p2) α−1

2 (x2)

s−1
H1
(p1) s−1

G1
(x1)

j

J1

mq mp
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in which all vertical arrows are diffeomorphisms. In particular, J1 is of action type if and
only if j restricts to a diffeomorphism between the β2- and α2-fibers. Analogous statements
hold for J2, replacing α2 and β2 by α1 and β1.

Proof of Proposition 1.50. Suppose that we are given Lie groupoids G1 ⇒ M1 and G2 ⇒
M2, together with a G1-module J1 : S1 →M1 and a G2-module J2 : S2 →M2 and a Morita
equivalence between the associated Lie groupoid maps (52), denoted as in Definition 1.45.
It follows from Lemma 1.53 that the map:

(53) (j, β1) : Q→ P ×M1 S1

is a diffeomorphism. The diagonal action of G1 along α1 ◦ prP : P ×M1 S1 → M1 induces
an action of G1 ⋉ S1 along prS1

: P ×M1 S1 → S1, which is the upper left action in
Example 1.49. The diffeomorphism (53) intertwines β1 with prS1

and is equivariant with
respect this action. In particular, by principality of the G1⋉S1-action, there is an induced
diffeomorphism:

(54) S2
∼−→ P ∗G1 S1.

One readily verifies that, when identifying Q with P ×M1 S1 via (53) and S2 with P ∗G1 S1

via (54), the given Morita equivalence is identified with that in Example 1.49. Fur-
thermore, when (G1,Ω1) and (G2,Ω2) are symplectic groupoids, (S1, ω1) and (S2, ω2) are
symplectic manifolds, the given actions along J1 and J2 are Hamiltonian and the Morita
equivalence between (G1,Ω1) and (G2,Ω2) is symplectic, then one readily verifies that (54)
is a symplectomorphism from (S2, ω2) to (P ∗G1 S1, ωPS1) if and only if the relation (51)
is satisfied. This proves the proposition. □

1.5.3. The transverse local model. In this thesis we will mainly be interested in Hamil-
tonian Morita equivalences between Hamiltonian actions, rather than between the more
general groupoid maps of Hamiltonian type (as in Definition 1.46). There is, however,
one important exception to this:

Example 1.54. This example gives a Hamiltonian Morita equivalence between the local
model for Hamiltonian actions and a groupoid map Jp that is built out of less data and is
often easier to work with. The use of this Morita equivalence makes many of the proofs
in Section 2.2 both simpler and more conceptual. Let (Gθ,Ωθ) be the symplectic groupoid
(30) and let Jθ : (Sθ, ωSθ

) → Mθ be the Hamiltonian (Gθ,Ωθ)-space (32). The Morita
equivalence of Example 1.33 extends to a Hamiltonian Morita equivalence between the
action along Jθ and a groupoid map of Hamiltonian type from H ⋉ (h0 ⊕ V ) to G ⋉ g∗

(restricted to appropriate opens). To see this, let p : h∗ → g∗ be anH-equivariant splitting
of (33). Consider the H-equivariant map:

(55) Jp : h
0 ⊕ V → g∗, (α, v) 7→ α + p(JV (v)),

where JV : V → h∗ is the quadratic momentum map (101). By H-equivariance, this lifts
to a groupoid map:

(56) Jp : H ⋉ (h0 ⊕ V )→ G⋉ g∗, (h, α, v) 7→ (h, Jp(α, v)).

This groupoid map is not of action type, but it is of Hamiltonian type with respect to
the pre-symplectic form 0 ⊕ ωV on h0 ⊕ V and there is a canonical Hamiltonian Morita
equivalence:
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Gθ ⋉ Sθ

(Sθ, ωSθ
)

Σθ ×prh∗ JV
V

(Uθ, 0⊕ ωV )

H ⋉ (h0 ⊕ V )|Uθ

(Gθ,Ωθ)

Mθ

(Σθ, ωθ)

Wθ

(G⋉ g∗,−dλcan)|Wθ

prGθ Jθ
JpJp

prΣθ

prSθ βp

prMθ
prg∗

that relates the central orbit in Sθ to the origin in h0 ⊕ V . Here Wθ := pr∗g(Σθ) and
Uθ := J−1

p (Wθ) are invariant open neighbourhoods of the respective origins in g∗ and
h0 ⊕ V . Furthermore, the map βp is defined as:

βp : Σθ ×prh∗ JV
V → U, (p, α, v) 7→ (α− p(JV (v)), v).

With this in mind, we think of the groupoid map Jp as a local model for the “transverse
part" of a Hamiltonian action near a given orbit.

1.5.4. Elementary Morita invariants. As will be apparent in the rest of this part, many
invariants for Morita equivalence between Lie groupoids have analogues for Morita equiv-
alence between Hamiltonian actions —in fact, the canonical Hamiltonian stratification
can be thought of as an analogue of the canonical stratification on the leaf space of a
proper Lie groupoid. In this subsection we give analogues of Proposition 1.30. We start
with a version for Lie groupoid maps.

Proposition 1.55. Let J1 : H1 → G1 and J2 : H2 → G2 be maps of Lie groupoids and
let a Morita equivalence between them (denoted as Definition 1.45) be given.

a) The induced homeomorphisms between the orbit and leaf spaces (44) intertwine the
maps induced by J1 and J2. That is, we have a commutative square:

S1 S2

M1 M2

J1

hQ

J2

hP

Further, suppose that p1 ∈ S1 and p2 ∈ S2 belong to Q-related orbits and let q ∈ Q such
that β1(q) = p1 and β2(q) = p2. Let p = j(q), x1 = J1(p1) and x2 = J2(p2).

b) The induced isomorphisms of isotropy groups (45) interwine the maps induced by
J1 and J2. That is, we have a commutative square:

(H1)p1 (H2)p2

(G1)x1 (G2)x2

J1

Φq

J2

Φp

c) The induced isomorphisms of normal representations (46) intertwine the maps
induced by J1 and J2. That is, we have a commutative square:

Np1 Np2

Nx1 Nx2

dJ1

φq

dJ2

φp
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The proof is straightforward.

Example 1.56. The Morita equivalence in Example 1.54 induces an identification (of
maps of topological spaces) between the transverse momentum map Jθ and (a restriction
of) the map:

Jp : (h
0 ⊕ V )/H → g∗/G.

We now turn to Morita equivalences between Hamiltonian actions.

Proposition 1.57. Let a Hamiltonian (G1,Ω1)-action along J1 : (S1, ω1)→M1, a Hamil-
tonian (G2,Ω2)-action along J2 : (S2, ω2) → M2 and a Hamiltonian Morita equivalence
between them (denoted as in Definitions 1.45 and 1.47) be given. Suppose that p1 ∈ S1

and p2 ∈ S2 belong to Q-related orbits and let q ∈ Q such that β1(q) = p1 and β2(q) = p2.
Let p = j(q), x1 = J(p1) and x2 = J(p2).

a) The isomorphism Φp : (G1)x1
∼−→ (G2)x2 restricts to an isomorphism:

(G1)p1
∼−→ (G2)p2 .

b) There is a compatible symplectic linear isomorphism:

(SNp1 , (ω1)p1)
∼= (SNp2 , (ω2)p2)

between the symplectic normal representations at p1 and p2.

Proof. Part a is immediate from Proposition 1.55b. For the proof of part b observe
that, by Proposition 1.55c, the isomorphism φq restricts to one between Ker(dJ1)p1 and
Ker(dJ2)p2 , so that we obtain an isomorphism of representations, compatible with part
a, and given by:

(57) SNp2 → SNp1 , [v] 7→ [dβ1(v̂)],

where v̂ ∈ TqQ is any vector such that dβ2(v̂) = v and dj(v̂) = 0. Note here (to see
that such v̂ exists) that, given v ∈ Ker(dJ2)p2 and ŵ ∈ TqQ such that dβ2(ŵ) = v,
we have dj(ŵ) ∈ Ker(dα2), hence by Lemma 1.53 there is a û ∈ Ker(dβ2)q such that
dj(û) = dj(ŵ), so that v̂ := ŵ − û has the desired properties. With this description of
(57) it is immediate from (51) that (57) pulls (ω1)p1 back to (ω2)p2 , which concludes the
proof. □

We can now give a more conceptual proof of Lemma 1.44.

Proof of Lemma 1.44. Apply Proposition 1.57 to Example 1.49. □

For Hamiltonian Morita equivalences as in Example 1.54 (where one of the two groupoid
maps is not of action type) it is not clear to us whether there is a satisfactory generalization
of Proposition 1.57. The arguments in the proof of that proposition do show the following,
which will be enough for our purposes.

Proposition 1.58. Let a Hamiltonian Morita equivalence (denoted as in Definitions 1.45
and 1.47) between groupoids maps J1 : H1 → (G1,Ω1) and J2 : H2 → (G2,Ω2) of Hamil-
tonian type be given. Suppose that p1 ∈ S1 and p2 ∈ S2 belong to Q-related orbits and let
q ∈ Q such that β1(q) = p1 and β2(q) = p2. Further, assume that J1 is of action type and
the canonical injection:

SNp2 :=
Ker(dJ2)p2

Ker(dJ2)p2 ∩ Tp2O
↪→ Ker(dJ2)p2

is an isomorphism. The form ω2 on the base S2 of H2 may be degenerate. Then:
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a) the form ω2 descends to a linear symplectic form (ω2)p2 on SNp2, which is invariant
under the (H2)p2-action defined by declaring the isomorphism with Ker(dJ)p2 to
be equivariant,

b) there is a symplectic linear isomorphism (SNp1 , ωp1) ∼= (SNp2 , ωp2) that is com-
patible with the isomorphism of Lie groups Φq : (H1)p1

∼−→ (H2)p2.
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2. The canonical Hamiltonian stratification

In this chapter we apply our normal form results to study stratifications on orbit spaces of
Hamiltonian actions. To elaborate: in section 2.1 we give background on Whitney stratifi-
cations of reduced differentiable spaces and we discuss the canonical Whitney stratification
of the leaf space of a proper Lie groupoid. A novelty in our discussion is that we point out
a criterion (Lemma 2.38) for a partition into submanifolds of a reduced differentiable space
to be Whitney regular, which may be of independent interest. Furthermore, we give a sim-
ilar criterion (Corollary 2.48) for the fibers of a map between reduced differentiable spaces
to inherit a natural Whitney stratification from a constant rank partition of the map. In
Subsection 2.2 we introduce the canonical Hamiltonian stratification and prove Theorem
2.53 and Theorem 2.54, by verifying that the canonical Hamiltonian stratification of the
orbit space and the Lerman-Sjamaar stratification of the symplectic reduced spaces meet
the aforementioned criteria, using basic features of Hamiltonian Morita equivalence and
the normal form theorem. In section 2.3 we study the regular (or principal) parts of these
stratifications. There we will also consider the infinitesimal analogue of the canonical
Hamiltonian stratification on S, because its regular part turns out to be better behaved.
Section 2.4 concerns the Poisson structure on the orbit space. The main theorem of this
section shows that the canonical Hamiltonian stratification is a constant rank Poisson
stratification of the orbit space, and describes the symplectic leaves in terms of the fibers
of the transverse momentum map. Finally, in section 2.5 we construct explicit proper
integrations of the Poisson strata of the canonical Hamiltonian stratification. Section 2.3
can be read independently of Section 2.4 and 2.5.

2.1. Background on Whitney stratifications of reduced differentiable spaces.

2.1.1. Stratifications of topological spaces. In this thesis, by a stratification we mean the
following.

Definition 2.1. Let X be a Hausdorff, second-countable and paracompact topological
space. A stratification of X is a locally finite partition S of X into smooth manifolds
(called strata), that is required to satisfy:

i) Each stratum Σ ∈ S is a connected and locally closed topological subspace of X.
ii) For each Σ ∈ S, the closure Σ in X is a union of Σ and strata of strictly smaller

dimension.
The second of these is called the frontier condition. A pair (X,S) is called a stratified
space. By a map of stratified spaces φ : (X,SX) → (Y,SY ) we mean a continuous map
φ : X → Y with the property that for each ΣX ∈ SX :

i) There is a stratum ΣY ∈ SY such that φ(ΣX) ⊂ ΣY .
ii) The restriction φ : ΣX → ΣY is smooth.

Due to the connectedness assumption on the strata, the frontier condition (a priori of a
global nature) can be verified locally with the lemma below.

Lemma 2.2. Let X be a topological space and S a partition of X into connected manifolds
(equipped with the subspace topology). Then S satisfies the frontier condition if and only
if for every x ∈ X and every Σ ∈ S such that x ∈ Σ and x /∈ Σ the following hold:

i) there is an open neighbourhood U of x such that U ∩ Σx ⊂ Σ,
ii) dim(Σx) < dim(Σ).
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Remark 2.3. Throughout, we will make reference to various texts that use slightly dif-
ferent definitions of stratifications. After restricting attention to Whitney stratifications
(Definition 2.32), the differences between these definitions become significantly smaller
(also see Remark 2.34). A comparison of Definition 2.1 with the notion of stratification
in [56,68] can be found in [18].

The constructions of the stratifications in this thesis follow a general pattern: one first
defines a partition P of X into manifolds (possibly disconnected, with connected compo-
nents of varying, but bounded, dimension) which in a local model forX have a particularly
simple description. This partition P is often natural to the given geometric situation from
which X arises. Then, one passes to the partition S := Pc consisting of the connected
components of the members of P , and verifies that S is a stratification of X.

Remark 2.4. When speaking of a manifold, we always mean that its connected com-
ponents are of one and the same dimension, unless explicitly stated otherwise (such as
above).

Example 2.5. The leaf space of a proper Lie groupoid admits a canonical stratification.
To elaborate, let G ⇒M be a proper Lie groupoid, meaning that G is Hausdorff and the
map (t, s) : G → M ×M is proper. This is equivalent to requiring that G is proper at
every x ∈M (as in Definition 1.7) and that its leaf space M is Hausdorff [21, Proposition
5.1.3]. In fact, M is locally compact, second countable and Hausdorff (so, in particular
it is paracompact). To define the stratifications of M and M , first consider the partition
PM(M) of M by Morita types. This is given by the equivalence relation: x1 ∼M x2 if
and only if there are invariant opens V1 and V2 around Lx1 and Lx2 , respectively, together
with a Morita equivalence:

G|V1 ≃ G|V2 ,
that relates Lx1 to Lx2 . Its members are invariant and therefore descend to a partition
PM(M) of the leaf space M . The partitions SGp(M) and SGp(M) obtained from PM(M)
and PM(M) after passing to connected components form the so-called canonical strat-
ifications of the base M and the leaf space M of the Lie groupoid G. These indeed form
stratifications. This is proved in [69] and [18], using the local description given by the
linearization theorem for proper Lie groupoids (see [19, 27, 80, 87]). There, the partition
by Morita types is defined by declaring that x, y ∈ M belong to the same Morita type if
and only if there is an isomorphism of Lie groups:

Gx ∼= Gy
together with a compatible linear isomorphism:

Nx ∼= Ny
between the normal representations of G at x and y, as in (10). This is equivalent to
the description given before, as a consequence of Proposition 1.30b and the linearization
theorem.

Often there are various different partitions that, after passing to connected components,
induce the same stratification. This too can be checked locally, using the following lemma.

Lemma 2.6. Let P1 and P2 be partitions of a topological space X into manifolds (equipped
with the subspace topology) with connected components of possibly varying dimension.
Then the partitions Pc1 and Pc2, obtained after passing to connected components, coincide
if and only if every x ∈ X admits an open neighbourhood U in X such that

P1 ∩ U = P2 ∩ U,
where P1 and P2 are the members of P1 and P2 through x.
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Example 2.7. Given a proper Lie groupoid G ⇒ M , there is a coarser partition of
M (resp. M) that yields the canonical stratification on M (resp. M) after passing to
connected components: the partition by isomorphism types. On M , this partition is
given by the equivalence relation: x ∼= y if and only if the isotropy groups Gx and Gy
are isomorphic (as Lie groups). We denote this partition as P∼=(M). Its members are
invariant and therefore descend to a partition of P∼=(M) of the leaf space M . The fact
that these indeed induce the canonical stratifications SGp(M) and SGp(M) follows from
Lemma 2.6 and the linearization theorem for proper Lie groupoids.

Example 2.8. The canonical stratification on the orbit space of a proper Lie group action
is usually defined using the partition by orbit types. To elaborate, let M be a manifold,
acted upon by a Lie group G in a proper fashion. The partition P∼(M) by orbit types
is defined by the equivalence relation: x ∼ y if and only if the isotropy groups Gx and
Gy are conjugate subgroups of G. Its members are G-invariant, and hence this induces
a partition P∼(M) of the orbit space M := M/G as well. The partitions obtained from
P∼(M) and P∼(M) after passing to connected components coincide with the canonical
stratifications SGp(M) and SGp(M) of the action groupoid G ⋉M (as in Example 2.5).
Another interesting partition that induces the canonical stratifications in this way is the
partition by local types, defined by the equivalence relation: x ∼= y if and only if there is
a g ∈ G such that Gx = gGyg

−1, together with a compatible linear isomorphism Nx ∼= Ny
between the normal representations at x and y. That these partitions induce the canonical
stratifications follows from Lemma 2.6 and the tube theorem for proper Lie group actions
(see e.g. [26]).

Remark 2.9. The discussion above is largely a recollection of parts of [18]. There the
reader can find most details and proofs of the claims made in this subsection. A further
discussion can be found in [16], where the canonical stratifications are studied in the
context Poisson manifolds of compact types.

2.1.2. Reduced differentiable spaces. Further interesting properties of a stratified space can
be defined when the space X comes equipped with the structure of reduced differentiable
space (a notion of smooth structure on X) and the stratification is compatible with this
structure. We now recall what this means. Throughout, a sheaf will always mean a sheaf
of R-algebras.

Definition 2.10. A reduced ringed space is a pair (X,OX) consisting of a topological
space X and a subsheaf OX of the sheaf of continuous functions CX on X that contains all
constant functions. We refer to OX as the structure sheaf . A morphism of reduced
ringed spaces:

(58) φ : (X,OX)→ (Y,OY )

is a continuous map φ : X → Y with the property that for every open U in Y and every
function f ∈ OY (U), it holds that f ◦ φ ∈ OX(φ−1(U)). Given such a morphism, we let

(59) φ∗ : OY → φ∗OX
denote the induced map of sheaves over Y and we use the same notation for the corre-
sponding map of sheaves over X:

(60) φ∗ : φ∗OY → OX .

Example 2.11. Let M be a smooth manifold and C∞M its sheaf of smooth functions. Then
(M, C∞M ) is a reduced ringed space. A map M → N between smooth manifolds is smooth
precisely when it is a morphism of reduced ringed spaces (M, C∞M )→ (N, C∞N ).
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Example 2.12. Let Y be a subspace of Rn. We call a function defined on (an open in) Y
smooth if it extends to a smooth function on an open in Rn. This gives rise to the sheaf
of smooth functions C∞Y on Y .

Example 2.13. The leaf space M of a Lie groupoid G ⇒M is naturally a reduced ringed
space, with structure sheaf C∞M given by:

C∞M (U) = {f ∈ CM(U) | f ◦ q ∈ C∞M (q−1(U))},
where q : M → M denotes the projection onto the leaf space. We simply refer to this
as the sheaf of smooth functions on the leaf space. Often we implicitly identify
C∞M with the (push-forward of) the sheaf of G-invariant smooth functions on M , via
q∗ : CM → q∗CM .

Definition 2.14 ([31]). A reduced differentiable space is a reduced ringed space
(X,OX) with the property that for every x ∈ X there is an open neighbourhood U ,
a locally closed subspace Y of Rn (where n may depend on x) and a homeomorphism
χ : U → Y that induces an isomorphism of reduced ringed spaces:

(U,OX |U) ∼= (Y, C∞Y ).

We call such a homeomorphism χ a chart of the reduced differentiable space. A mor-
phism of reduced differentiable spaces is simply a morphism of the underlying re-
duced ringed spaces.

Example 2.15. A reduced differentiable space (X,OX) is a n-dimensional smooth man-
ifold if and only if around every x ∈ X there is a chart for (X,OX) that maps onto an
open in Rn.

Example 2.16. The leaf space M of a proper Lie groupoid G ⇒ M , equipped with the
structure sheaf of Example 2.13, is a reduced differentiable space. The proof of this will
be recalled at the end of this subsection.

Remark 2.17. A reduced differentiable space (X,OX) is locally compact. So, if it is
Hausdorff and second countable, then it is also paracompact. Moreover, it then admits
OX-partitions of unity subordinate to any open cover (this can be proved as for manifolds,
see e.g. [31]).

To say what it means for a stratification to be compatible with the structure of reduced
differentiable space, we will need an appropriate notion of submanifold.

Definition 2.18. Let (Y,OY ) and (X,OX) be reduced ringed spaces and i : Y ↪→ X a
topological embedding. We call i an embedding of reduced ringed spaces if it is a
morphism of reduced ringed spaces and i∗ : OX |Y → OY is a surjective map of sheaves.
In other words, OY coincides with the image sheaf of the map i∗ : OX |Y → CY , meaning
that for every open U in Y :

OY (U) = {f ∈ CY (U) | ∀y ∈ U, ∃(f̂)i(y) ∈ (OX)i(y) : (f)y = (f̂ |Y )y}.

Remark 2.19. Let us stress that for any subspace Y of a reduced ringed space (X,OX)
there is a unique subsheaf OY ⊂ CY making i : (Y,OY ) ↪→ (X,OX) into an embedding of
reduced ringed spaces. We will call this the induced structure sheaf on Y . Note that,
if (X,OX) is a reduced differentiable space and Y is locally closed in X, then Y , equipped
with its induced structure sheaf, is a reduced differentiable space as well, because charts
for X restrict to charts for Y .

Example 2.20. Here are some examples of embeddings:
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i) For maps between smooth manifolds, the above notion of embedding is the usual
one.

ii) In Example 2.12, the inclusion i : (Y, C∞Y ) ↪→ (Rn, C∞Rn) is an embedding.
iii) Let (X,OX) be a reduced ringed space and U ⊂ X open. A homeomorphism

χ : U → Y onto a locally closed subspace Y of Rn is a chart if and only if
χ : (U,OX |U)→ (Rn, C∞Rn) is an embedding.

Remark 2.21. Let φ : (X1,OX1) → (X2,OX2) be a morphism of reduced ringed spaces
and let Y1 ⊂ X1 and Y2 ⊂ X2 be subspaces such that φ(Y1) ⊂ Y2. Then φ restricts to
a morphism of reduced ringed spaces (Y1,OY1) → (Y2,OY2) with respect to the induced
structure sheaves.

Definition 2.22. Let (X,OX) be a reduced differentiable space and Y a locally closed
subspace of X. We call Y a submanifold of (X,OX), when endowed with its induced
structure sheaf it is a smooth manifold.

Remark 2.23. Let (X,OX) be a reduced differentiable space. Let Y be a subspace of X.
Then Y is a d-dimensional submanifold of (X,OX) if and only if for every chart (U, χ) of
(X,OX) the image χ(U ∩ Y ) is a d-dimensional submanifold of Rn.

Example 2.24. Let G ⇒ M be a proper Lie groupoid. Each Morita type in M is a
submanifold of the leaf space (M, C∞M ). The same holds for each stratum of the canonical
stratification.

We end this subsection by recalling proofs of the claims in Example 2.16 and 2.24. The
following observation will be useful for this and for later reference.

Proposition 2.25. Let (Y,OY ) be a reduced ringed space, (X,OX) a Hausdorff and
second countable reduced differentiable space. Suppose that i : Y ↪→ X is both a topological
embedding and a morphism of reduced ringed spaces. Then i is an embedding of reduced
ringed spaces if and only if every global function f ∈ OY (Y ) extends to a function g ∈
OX(U) defined on some open neighbourhood U of i(Y ) in X. Moreover, if i(Y ) is closed
in X, then U can be chosen to be X.

Proof. For the forward implication, let f ∈ OY (Y ). Since i is an embedding of reduced
ringed spaces, for every y ∈ Y there is a local extension of f , defined on an open around
i(y) in X. By Remark 2.17, any open in X admits OX-partitions of unity subordinate to
any open cover. So, using the standard partition of unity argument we can construct, out
of the local extensions, an extension g ∈ OX(U) of f defined on an open neighbourhood
U of i(Y ) in X, which can be taken to be all of X if i(Y ) is closed in X. For the backward
implication, it suffices to show that every germ in OY can be represented by a globally
defined function in OY (Y ). For this, it is enough to show that for every y ∈ Y and every
open neighbourhood U of y in Y , there is a function ρ ∈ OY (Y ), supported in U , such
that ρ = 1 on an open neighbourhood of y in U . To verify the latter, let y and U be as
above. Let V be an open in X around i(y) such that V ∩ i(Y ) = i(U). Using a chart
for (X,OX) around i(y), we can find a function ρX ∈ OX(X), supported in V , such that
ρX = 1 on an open neighbourhood of i(y) in V . Now, ρ := i∗(ρX) ∈ OY (Y ) is supported
in U and equal to 1 on an open neighbourhood of y in U . This proves the proposition. □

Returning to Example 2.16: first consider the case of a compact Lie group G acting
linearly on a real finite-dimensional vector space V (that is, V is a representation of G).
The algebra P (V )G of G-invariant polynomials on V is finitely generated. Given a finite
set of generators {ρ1, ..., ρn} of P (V )G, one can consider the polynomial map:

(61) ρ = (ρ1, ..., ρn) : V → Rn.
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We call this a Hilbert map for the representation V . Any such map factors through an
embedding of topological spaces ρ : V/G→ Rn onto a closed subset of Rn. Furthermore:

Theorem 2.26 ([70]). Let G be a compact Lie group, V a real finite-dimensional repre-
sentation of G and ρ : V → Rn a Hilbert map. Then the associated map (61) satisfies:

ρ∗(C∞(Rn)) = C∞(V )G.

So, in view of Proposition 2.25, the morphism of reduced ringed spaces:

(62) ρ : (V/G, C∞V/G)→ (Rn, C∞Rn).

is in fact an embedding of reduced ringed spaces (Definition 2.18), and hence a globally
defined chart for the orbit space V/G (by Example 2.20). Next, we show how this leads
to charts for the leaf space of a proper Lie groupoid. Recall:

Proposition 2.27. The homeomorphism of leaf spaces (44) induced by a Morita equiva-
lence of Lie groupoids is an isomorphism of reduced ringed spaces:

hP : (M1, C∞M1
)

∼−→ (M2, C∞M2
).

Proof. Suppose we are given a Morita equivalence between Lie groupoids:

G1

M1

P

M2

G2
α1 α2

Then, given two P -related invariant opens U1 ⊂ M1 and U2 ⊂ M2, we have algebra
isomorphisms:

C∞M1
(U1)

G1 C∞M2
(U2)

G2

C∞P (α−1
1 (U1))

G1 ∩ C∞P (α−1
2 (U2))

G2

C∞M1
(U1) C∞M2

(U2)

α∗
1 α∗

2

q∗1 q∗2

h∗P

that complete to a commutative diagram via h∗P : CM2
→ (hP )∗CM1

. □

Now, the linearization theorem for proper Lie groupoids implies that, given a proper
Lie groupoid G ⇒ M and an x ∈ M , there is an invariant open neighbourhood U of
x in M and a Morita equivalence between G|U and the action groupoid Gx ⋉ Nx of the
normal representation at x, as in (10), that relates Lx to the origin in Nx. So, applying
Proposition 2.27 we find an isomorphism:

(63) (U, C∞M |U) ∼= (Nx/Gx, C∞Nx/Gx
),

which composes with the embedding (62) to a chart for (M, C∞M ), as desired. We conclude
that (X, C∞X ) is a reduced differentiable space, as claimed in Example 2.16. To see why
the claims in Example 2.24 hold true, let Σ ∈ PM(M) be a Morita type. Suppose that
Lx ∈ Σ. The isomorphism (63) identifies U ∩Σ with the Morita type of Gx⋉Nx through
the origin, which is the fixed point set N Gx

x —a submanifold of Nx/Gx. Therefore Σ is
a submanifold of M near Lx. This being true for all points in Σ, it follows that Σ is a
submanifold with connected components of possibly varying dimension. The dimension
of the connected component through Lx is dim(N Gx

x ), hence it follows from Proposition
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1.30b that all connected components of Σ in fact have the same dimension. So, the Morita
types are indeed submanifolds of the leaf space, and so are their connected components.

2.1.3. Whitney stratifications of reduced differentiable spaces.

Definition 2.28. Let (X,OX) be a Hausdorff and second countable reduced differentiable
space. A stratification S of (X,OX) is a stratification of X by submanifolds of (X,OX).
That is, S is a stratification of X with the property that the given smooth structure on
each stratum coincides with its induced structure sheaf. We call the triple (X,OX ,S) a
smooth stratified space. A morphism of smooth stratified spaces is a morphism
of the underlying stratified spaces that is simultaneously a morphism of the underlying
reduced ringed spaces.

Remark 2.29. As noted in [69], the notion of smooth stratified space is equivalent (up
to the slight difference pointed out in Remark 2.3) to the notion of stratified space with
smooth structure in [68], which is defined starting from an atlas of compatible singular
charts, rather than a structure sheaf.

On stratifications of reduced differentiable spaces, we can impose an important extra
regularity condition: Whitney’s condition (b). We now recall this, starting with:

Definition 2.30. Let R and S be disjoint submanifolds of Rn, and let y ∈ S. Then R is
called Whitney regular over S at y if the following is satisfied. For any two sequences
(xn) in R and (yn) in S that both converge to y and satisfy:

i) TxnR converges to some τ in the Grassmannian of dim(R)-dimensional subspaces
of Rn,

ii) the sequence of lines [xn − yn] in RP n−1 converges to some line ℓ,
it must hold that ℓ ⊂ τ .

Using charts, this generalizes to reduced differentiable spaces, as follows.

Definition 2.31. Let (X,OX) be a reduced differentiable space and let R and S be
disjoint submanifolds. Then R is called Whitney regular over S at y ∈ S if for every
chart (U, χ) around y, the submanifold χ(R∩U) of Rn is Whitney regular over χ(S ∩U)
at χ(y). We call R Whitney regular over S if it is so at every y ∈ S. Moreover, we
call a partition P of (X,OX) into submanifolds Whitney regular if every member of P is
Whitney regular over each other member.

Definition 2.32. A smooth stratified space (X,OX ,S) is called a Whitney stratified
space when the partition S of (X,OX) is Whitney regular.

To verify Whitney regularity of R over S at y, it is enough to do so in a single chart
around y. To see this, the key remark is the proposition below, combined with the fact
that Whitney regularity is invariant under smooth local coordinate changes of the ambient
space Rn.

Proposition 2.33. Let (X,OX) be a reduced differentiable space. Any two charts (U1, χ1)
and (U2, χ2) onto locally closed subsets of Rn are smoothly compatible, in the sense that:
for any y ∈ U1 ∩U2, there is a diffeomorphism H : O1 → O2 from an open neighbourhood
O1 of χ1(y) in Rn onto an open neighbourhood O2 of χ2(y) in Rn such that:

H|O1∩χ1(U1∩U2) = χ2 ◦ (χ−1
1 )|O1∩χ1(U1∩U2).

Proof. Although this is surely known, we could not find a proof in the literature. The
argument here is closely inspired by that of [68, Proposition 1.3.10]. Turning to the proof:

46



it is enough to show that, given two subspaces Y1, Y2 ⊂ Rn and an isomorphism of reduced
ringed spaces:

φ : (Y1, C∞Y1)
∼−→ (Y2, C∞Y2),

there are, for every y ∈ Y1, an open U1 in Rn around y and a smooth open embedding
φ̂ : U1 → Rn such that φ̂|U1∩Y1 = φ|U1∩Y1 . To this end, let us first make a general remark.
Given Y ⊂ Rn and y ∈ Y , let mY

y and mRn

y denote the respective maximal ideals in the
stalks (C∞Y )y and (C∞Rn)y, consisting of germs of those functions that vanish at y. Further,
let (IY )y denote the ideal in (C∞Rn)y consisting of germs of those functions that vanish on
Y . Notice that we have a canonical short exact sequence:

0→
(
(IY )y + (mRn

y )2
)
/(mRn

y )2 → mRn

y /(mRn

y )2
(iY )∗y−−−→ mY

y /(m
Y
y )

2 → 0.

Furthermore, recall that there is a canonical isomorphism of vector spaces:

mRn

y /(mRn

y )2
∼−→ T ∗

yRn, (f)y mod (mRn

y )2 7→ dfy.

It follows that, for any (h1)y, ..., (hk)y ∈ mRn

y that project to a basis of mY
y /(m

Y
y )

2, we
can find (hk+1)y, ..., (hn)y ∈ (IY )y such that d(h1)y, ..., d(hn)y ∈ T ∗

yRn form a basis, or
in other words, such that (h1, ..., hn)y is the germ of a diffeomorphism from an open
neighbourhood of y in Rn onto an open neighbourhood of the origin in Rn. Now, we
return to the isomorphism φ. Let k be the dimension of mY2

φ(y)/(m
Y2
φ(y))

2. Using the above
remark we can, first of all, find a diffeomorphism:

f = (f1, ..., fn) : U2
∼−→ V2

from an open U2 in Rn around φ(y) onto an open V2 in Rn around the origin, such that:

(f1)φ(y), ..., (fk)φ(y) ∈ mRn

φ(y)

project to a basis of mY2
φ(y)/(m

Y2
φ(y))

2 and such that fk+1, ..., fn vanish on U2 ∩ Y2. Since φ
is an isomorphism of reduced ringed spaces, it induces an isomorphism:

(φ∗)y : m
Y2
φ(y)/(m

Y2
φ(y))

2 ∼−→ mY1
y /(m

Y1
y )2,

which maps the above basis to a basis of mY1
y /(m

Y1
y )2. Using this and the remark above

once more, we can find a diffeomorphism:

g = (g1, ..., gn) : U1
∼−→ V1,

from an open U1 in Rn around y such that φ(U1∩Y1) ⊂ U2, onto an open V1 ⊂ V2 around
the origin in Rn, with the property that:

gj|U1∩Y1 = fj ◦ (φ|U1∩Y1), ∀j = 1, ..., k,

and that gk+1, ..., gn vanish on U1 ∩ Y1. Then, in fact g|U1∩Y1 = f ◦ (φ|U1∩Y1), so that the
smooth open embedding:

φ̂ := f−1 ◦ g : U1 → Rn,

restricts to φ on U1 ∩ Y1, as desired. □

Remark 2.34. Contuining Remark 2.3:
i) Let (X,OX) be a Hausdorff and second countable reduced differentiable space and

let P be a locally finite partition of (X,OX) into submanifolds. In the terminology
of [30], such a partition P would be called a stratification. If P is Whitney
regular, then the partition Pc (obtained after passing to connected components)
is locally finite and satisfies the frontier condition. Hence, Pc is then a Whitney
stratification of (X,OX). In the case that (X,OX) is a locally closed subspace
of Rn equipped with its induced structure sheaf, this statement is proved in [30]
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using the techniques developed in [55,56,73]. The general statement follows from
this case by using charts and Lemma 2.2.

ii) Combined with the discussion in [18, Section 4.1] and [68, Proposition 1.2.7], the
previous remark shows that the notion of Whitney stratified space used here is
actually equivalent to that in [68].

2.1.4. Semi-algebraic sets and homogeneity. For proofs of the facts on semi-algebraic sets
that we use throughout, we refer to [7]; further see [30] for a concise introduction. By a
semi-algebraic subset of Rn, we mean a finite union of subsets defined by real polynomial
equalities and inequalities. Semi-algebraic sets are rather rigid geometric objects. For
instance, any semi-algebraic set A ⊂ Rn has a finite number of connected components
and admits a canonical Whitney stratification with finitely many strata (in contrast: any
closed subset of Rn is the zero-set of some smooth function). As remarked in [30], there
is a useful criterion for stratifications in Rn to be Whitney regular, when the strata are
semi-algebraic. This criterion can be extended to smooth stratified spaces, as follows.

Definition 2.35. We call a partition P of a reduced differentiable space (X,OX) locally
semi-algebraic at x ∈ X if there is a chart (U, χ) around x that maps every member of
P|U onto a semi-algebraic subset of Rn. We call the partition locally semi-algebraic if it
is so at every x ∈ X.

Definition 2.36. We call a partition P of a topological space X homogeneous if for
any two x1, x2 ∈ X that belong to the same member of P , there is a homeomorphism:

h : U1
∼−→ U2

from an open U1 around x1 onto an open U2 around x2 in X, with the property that
h(x1) = x2 and for every Σ ∈ P :

h(U1 ∩ Σ) = U2 ∩ Σ.

If (X,OX) is a reduced differentiable space and the members of P are submanifolds, then
we call P smoothly homogeneous if the homeomorphisms h can in fact be chosen to
be isomorphisms of reduced differentiable spaces:

h : (U1,OX |U1)
∼−→ (U2,OX |U2).

Remark 2.37. Notice that:
i) Homogeneity of a partition P of X implies that P satisfies the topological part

of the frontier condition: the closure of any member Σ ∈ P is a union of Σ with
other members.

ii) If P is smoothly homogeneous, then a map h as above restricts to diffeomorphisms
between the members of P|U1 and P|U2 (by Remark 2.21).

Together the above conditions give a criterion for Whitney regularity.

Lemma 2.38. Let (X,OX) be a reduced differentiable space and let P be a partition of
(X,OX) into submanifolds. If P is smoothly homogeneous and locally semi-algebraic, then
it is Whitney regular.

Proof. Let R, S ∈ P be two distinct members. Since P is smoothly homogeneous, either
R is Whitney regular over S at all points in S, or at no points at all. Indeed, this follows
from the simple fact that Whitney regularity is invariant under isomorphisms of reduced
differentiable spaces. As P is locally semi-algebraic, the latter option cannot happen, and
hence the partition must be Whitney regular. In order to explain this, suppose first that
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R, S ⊂ Rn are semi-algebraic and submanifolds of Rn (also called Nash submanifolds of
Rn). Consider the set of bad points:

B(R, S),

which consists of those y ∈ S at which R is not Whitney regular over S. The key fact is
now that, because R and S are semi-algebraic, the subset B(R, S) has empty interior in
S (see [75] for a concise proof), hence it cannot be all of S. In general, we can pass to
a chart around any y ∈ S in which the strata R and S are semi-algebraic and the same
argument applies, because Whitney regularity can be verified in a single chart. □

To exemplify the use of Lemma 2.38, let us point out how it leads to a concise proof of:

Theorem 2.39 ([69]). The canonical stratification of the leaf space of a proper Lie
groupoid is a Whitney stratification.

To verify the criteria of Lemma 2.38, we use:

Proposition 2.40 ([5]). Let G be a compact Lie group and let V be a real finite-dimensional
representation of G. Then any Hilbert map ρ : V → Rn (see Subsection 2.1.2) identifies
the strata of the canonical stratification SGp(V/G) with semi-algebraic subsets of Rn.

See also [71, Theorem 1.5.2] for a more elementary proof.

Proof of Theorem 2.39. Let G ⇒M be a proper Lie groupoid. We return to the discussion
at the end of Subsection 2.1.2. As recalled there, for any x ∈M there is an open U around
the leaf Lx ∈ M and an isomorphism (63) that identifies U , as a reduced differentiable
space, with Nx/Gx. Furthermore, (63) identifies the partition PM(M)|U by Morita types
of G|U with the partition of Nx/Gx by Morita types of Gx⋉Nx. Recall that the canonical
stratification on the orbit space of a real, finite-dimensional representation of a compact
Lie group has finitely many strata (see e.g. [26, Proposition 2.7.1]). In combination
with Proposition 2.40, this implies that a Hilbert map ρ : Nx → Rn for the normal
representation Nx maps the Morita types in Nx/Gx onto semi-algebraic subsets of Rn.
This shows that PM(M) is locally semi-algebraic. Secondly, Proposition 2.27 implies that
the partition by Morita types is homogeneous. To see this, note that by the very definition
of the partition by Morita types on M , for any two leaves L1 and L2 in the same Morita
type, there are invariant opens V1 around L1, V2 around L2 in M and a Morita equivalence
G|V1 ≃ G|V2 relating L1 to L2. The homeomorphism of leaf spaces induced by this Morita
equivalence is an isomorphism of reduced differentiable spaces:

(V 1, C∞M |V 1
) ∼= (V 2, C∞M |V 2

)

that identifies L1 with L2 and V 1 ∩ Σ with V 2 ∩ Σ for every Morita type Σ. So, the
partition by Morita types is indeed smoothly homogeneous. In light of Lemma 2.38, it
follows that the partition by Morita types is Whitney regular. Hence, passing to connected
components, we find that SGp(M) is a Whitney stratification of the leaf space (M, C∞M )
(as in Remark 2.34). □

Remark 2.41. Being both homogeneous and Whitney regular, the partition of M by
Morita types satisfies the frontier condition. So, it satisfies all the axioms of a Whitney
stratification, except for connectedness of its members. The same holds for the partition
by local types of a proper Lie group action (contrary to what is claimed in [18, Remark
13]). The other partitions mentioned in Example 2.7 and 2.8 need not satisfy the frontier
condition (see e.g. [18, Example 17]).
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2.1.5. Constant rank stratifications of maps. Finally, we turn to constant rank stratifica-
tions of maps between reduced differentiable spaces. In this subsection, let (X,OX) and
(Y,OY ) be Hausdorff, second countable reduced differentiable spaces.

Definition 2.42. By a partition of a morphism f : (X,OX)→ (Y,OY ) into subman-
ifolds we mean a pair (PX ,PY ) consisting of a partition PX of (X,OX) and a partition
PY of (Y,OY ) into submanifolds, such that f maps every member of PX into a member
of PY . We call this a constant rank partition of f if in addition, for every ΣX ∈ PX
and ΣY ∈ PY such that f(ΣX) ⊂ ΣY , the smooth map f : ΣX → ΣY has constant rank.
Furthermore, by a constant rank stratification of f we mean a constant rank partition
for which both partitions are stratifications.

In the remainder of this subsection we focus on the partition induced on the fibers of
a morphism f : (X,OX) → (Y,OY ) by a constant rank partition. The fibers of such
a morphism are the reduced differentiable spaces (f−1(y),Of−1(y)), equipped with the
induced structure sheaf as in Remark 2.19. Given a constant rank partition (PX ,PY ) of
f , its fibers have an induced partition:

(64) PX |f−1(y) = {ΣX ∩ f−1(y) | ΣX ∈ PX},
the members of which are submanifolds, being the fibers of the constant rank maps ob-
tained by restricting f to the members of (PX ,PY ). The example below shows that the
connected components of the members of (64) need not form a stratification, even if PcX
and PcY are Whitney stratifications.

Example 2.43. Consider the polynomial map:

f : R3 → R, f(x, y, z) = x2 − zy2.
The fiber of f over the origin in R is the Whitney umbrella. Consider the stratification
of R3 by the five strata {y < 0}, {y > 0}, {y = 0, x < 0}, {y = 0, x > 0} and the z-axis
{x = y = 0}. Together with the stratification of R consisting of a single stratum, this
forms a constant rank stratification of f . The induced partition (64) of the fiber of f over
the origin consists of two connected surfaces and the z-axis. This does not satisfy the
frontier condition, because the negative part of the z-axis is not contained in the closure
of these surfaces.

We will now give a criterion that does ensure that the induced partitions (64) of the fibers
form stratifications. Recall that a map between semi-algebraic sets is called semi-algebraic
when its graph is a semi-algebraic set. Below, let f : (X,OX)→ (Y,OY ) be a morphism
and (PX ,PY ) a partition f into submanifolds.

Definition 2.44. We call (f,PX ,PY ) locally semi-algebraic at x ∈ X if there are
a chart (U, χ) around x and a chart (V, φ) around f(x) with f(U) ⊂ V , that map the
respective members of PX |U and PY |V onto semi-algebraic sets, and have the property
that the coordinate representation φ ◦ f ◦ χ−1 restricts to semi-algebraic maps between
the members of χ(PX |U) and φ(PY |V ). We call (f,PX ,PY ) locally semi-algebraic if it is
so at every x ∈ X.

Definition 2.45. We call (f,PX ,PY ) smoothly homogeneous if for any two x1, x2 ∈ X
that belong to the same member of PX , there are isomorphisms of reduced differentiable
spaces:

hX : (U1,OX |U1)
∼−→ (U2,OX |U2) & hY : (V1,OY |V1)

∼−→ (V2,OY |V2)
from an open U1 around x1 onto an open U2 around x2 in X, and from an open V1 around
f(x1) onto an open V2 around f(x2) in Y , that fit in a commutative diagram:
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(U1,OX |U1 , x1) (U2,OX |U2 , x2)

(V1,OY |V1 , f(x1)) (V2,OY |V2 , f(x2))

f

hX

f

hY

and have the property that for all ΣX ∈ PX , ΣY ∈ PY :

hX(U1 ∩ ΣX) = U2 ∩ ΣX & hY (V1 ∩ ΣY ) = V2 ∩ ΣY .

Remark 2.46. Notice that if (f,PX ,PY ) is smoothly homogeneous, then (PX ,PY ) is
necessarily a constant rank partition of f .

The following shows that, if both of these criteria are met, then the fibers of f meet the
criteria of Lemma 2.38.

Proposition 2.47. Let f : (X,OX) → (Y,OY ) be a morphism and (PX ,PY ) a constant
rank partition of f . If (f,PX ,PY ) is smoothly homogeneous and locally semi-algebraic,
then so are the induced partitions (64) of the fibers of f .

The proof of this is straightforward. Appealing to Lemma 2.38 and Remark 2.34 we
obtain:

Corollary 2.48. Let f : (X,OX) → (Y,OY ) be a morphism and (PX ,PY ) a constant
rank partition of f . Suppose that PX is locally finite and that (f,PX ,PY ) is smoothly
homogeneous and locally semi-algebraic. Then the partitions of the fibers of f obtained
from (64) after passing to connected components are Whitney stratifications of the fibers.

2.2. The stratifications associated to Hamiltonian actions.

2.2.1. The canonical Hamiltonian stratification and Hamiltonian Morita types. Through-
out, let (G,Ω) be a proper symplectic groupoid and suppose that we are given a Hamil-
tonian (G,Ω)-action along J : (S, ω) → M . Let S := S/G denote the orbit space of the
action and M := M/G the leaf space of the groupoid. The construction of the canonical
Hamiltonian stratifications on S and S is of the sort outlined in Section 2.1.1. To begin
with, we give a natural partition that, after passing to connected components, will induce
the desired stratification.

Definition 2.49. The partition PHam(S) of S by Hamiltonian Morita types is defined
by the equivalence relation: p1 ∼ p2 if and only if there are invariant opens Vi around
LJ(pi) in M , invariant opens Ui around Opi in J−1(Vi), together with a Hamiltonian Morita
equivalence (as in Definition 1.48) that relates Op1 to Op2 :

(G,Ω)|V1

V1

(U1, ω)

A B

(G,Ω)|V2

V2

(U2, ω)

J
≃

J

The members of PHam(S) are invariant with respect to the G-action, so that PHam(S)
descends to a partition PHam(S) of S.

Remark 2.50. Let us point out some immediate properties of these partitions.
i) They are invariant under Hamiltonian Morita equivalence, meaning that the home-

omorphism of orbit spaces induced by a Hamiltonian Morita equivalence (Propo-
sition 1.55a) identifies the partitions by Hamiltonian Morita types.

ii) The transverse momentum map sends each member of PHam(S) into a member of
PM(M) (the partition of M by Morita types of G; see Example 2.5).
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In analogy with Example 2.5, the partition by Hamiltonian Morita types has the following
alternative characterization.

Proposition 2.51. Two points p, q ∈ S belong to the same Hamiltonian Morita type if
and only if there is an isomorphism of pairs of Lie groups:

(GJ(p),Gp) ∼= (GJ(q),Gq)

together with a compatible symplectic linear isomorphism:

(SNp, ωp) ∼= (SNq, ωq).

Proof. The forward implication is immediate from Proposition 1.57. For the converse,
notice the following. Let p ∈ S, write G = GJ(p), H = Gp and (V, ωV ) = (SNp, ωp),
and let p : h∗ → g∗ be any choice of H-equivariant splitting of (33). Then from the
normal form theorem, Example 1.54 and Example 1.32, it follows that there are invariant
opens W around Lx in M and U around Op in J−1(W ), together with a Hamiltonian
Morita equivalence between the Hamiltonian (G,Ω)|W -action along J : (U, ω) → W and
(a restriction of) the groupoid map of Hamiltonian type (56) (to invariant opens around
the respective origins in h0 ⊕ V and g∗), that relates Op to the origin in h0 ⊕ V . With
this at hand the backward implication is clear, for (56) is built naturally out of the pair
(G,H), the symplectic representation (V, ωV ) and the splitting p. □

We now turn to the stratifications induced by the Hamiltonian Morita types.

Definition 2.52. Let SHam(S) and SHam(S) denote the partitions obtained from the
Hamiltonian Morita types on S and S, respectively, by passing to connected components.
We call SHam(S) and SHam(S) the canonical Hamiltonian stratifications.

The main aim of this section will be to prove:

Theorem 2.53. Let (G,Ω) ⇒ M be a proper symplectic groupoid and suppose we are
given a Hamiltonian (G,Ω)-action along J : (S, ω)→M .

a) The partition SHam(S) is a Whitney stratification of the orbit space (S, C∞S ).
b) The pair consisting of the canonical Hamiltonian stratification of the orbit space

S and the canonical stratification of the leaf space M of G:

(SHam(S),SGp(M))

is a constant rank stratification (as in Definition 2.42) of the transverse momentum
map:

(65) J : (S, C∞S )→ (M, C∞M ).

The fiber of (65) over a leaf L of (G,Ω), is (as topological space) the quotient J−1(L)/G.
This is the reduced space at L appearing in the procedure of symplectic reduction.
Throughout, we will denote this as:

SL := J−1(L),

and we will simply denote the induced structure sheaf on the fiber space as C∞SL
. As we

will show, (PHam(S),PM(M)) is a constant rank partition of the transverse momentum
map (65), so that (as discussed in Subsection 2.1.5) the fiber (SL, C∞SL

) has a natural
partition into submanifolds:

(66) PHam(SL) := {P ∩ SL | P ∈ PHam(S)}.

Besides Theorem 2.53, in this section we will prove:
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Theorem 2.54. The fibers (SL, C∞SL
) of the transverse momentum map, endowed with

the partition SHam(SL) obtained from (66) after passing to connected components, are
Whitney stratified spaces.

In the case of a Hamiltonian action of a compact Lie group, the stratification SHam(SL)
coincides with that in [46] (see also Remark 2.58).

The partition SHam(S) of the smooth manifold S turns out to be a Whitney stratification
as well. Furthermore, in contrast to the stratification SGp(S) associated to the action
groupoid, it is a constant rank stratification of the momentum map J : S →M . This can
be proved using the normal form theorem. Here we will not go into details on this, but
rather focus on the proof of the theorems concerning the transverse momentum map. We
can already give an outline of this.

Outline of the proof of Theorem 2.53 and 2.54. In the coming subsection we will show
that the Hamiltonian Morita types are submanifolds of the orbit space. By part ii)
of Remark 2.50, it then follows that the pair (PHam(S),PM(M)) is a partition of the
transverse momentum map (65) into submanifolds (as in Definition 2.42). In complete
analogy with our proof of Theorem 2.39, Proposition 1.55a and 2.27 imply that the triple
(J,PHam(S),PM(M)) is smoothly homogeneous (as in Definition 2.45). In particular,
(PHam(S),PM(M)) is a constant rank partition of (65) (see Remark 2.46). In Subsec-
tion 2.2.3 we further prove that PHam(S) is locally finite and that (J,PHam(S),PM(M))
is locally semi-algebraic (as in Definition 2.44). Combining Lemma 2.38 with part i) of
Remark 2.34, it then follows that SHam(S) is indeed a Whitney stratification of the or-
bit space, completing the proof of Theorem 2.53. Furthermore, Theorem 2.54 is then a
consequence of Corollary 2.48. □

In the coming subsections we will address the remaining parts of the proof.

2.2.2. Different partitions inducing the canonical stratifications. In this and the next sub-
section we study various local properties of the partition by Hamiltonian Morita types.
To this end, it will be useful to consider the coarser partitions:

P∼=J
(S) := P∼=(S) ∩ J−1(P∼=(M)) & P∼=J

(S) := P∼=(S) ∩ J−1(P∼=(M)),

where we take memberwise pre-images and intersections. Explicitly: p, q ∈ S belong to
the same member of P∼=J

(S) if and only if Gp ∼= Gq and GJ(p) ∼= GJ(q).

Definition 2.55. We call P∼=J
(S) and P∼=J

(S) the partitions by J-isomorphism types.

In the remainder of this subsection, we will prove:

Proposition 2.56. Both on S and S, the following hold.
a) Each J-isomorphism type is a submanifold with connected components of possibly

varying dimension.
b) The J-isomorphism types and the Hamiltonian Morita types yield the same parti-

tion after passing to connected components.
c) Each Hamiltonian Morita type is (in fact) a submanifold with connected compo-

nents of a single dimension.
Moreover, the orbit projection S → S restricts to a submersion between the Hamiltonian
Morita types (respectively the J-isomorphism types).

To prove this proposition we will compute the Hamiltonian Morita types and the J-
isomorphism types in the local model for Hamiltonian actions. There are two important
remarks here that simplify this computation: first of all, the partitions by J-isomorphism
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types introduced above make sense for any groupoid map and, secondly they are invariant
under Morita equivalence of Lie groupoid maps. Therefore, the computation of these
reduces to that for the groupoid map Jp of Example 1.54, which is the content of the
lemma below.

Lemma 2.57. Let G be a compact Lie group, H ⊂ G a closed subgroup and (V, ωV ) a
symplectic H-representation. Fix an H-equivariant splitting p : h∗ → g∗ of (33). Consider
the groupoid map Jp defined in (56).

a) The Jp-isomorphism type through the origin in h0⊕V is equal to the linear subspace:

(h0)G ⊕ V H

where (h0)G and V H are the sets of points in h0 and V that are fixed by G and H.
b) The G-isomorphism type through the origin in g∗ is equal to (g∗)G.
c) The restriction of Jp to these isomorphism types is given by:

(67) (h0)G ⊕ V H → (g∗)G, (α, v) 7→ α.

d) Considered as subspace of the reduced differentiable space (h0⊕V )/H (resp. g∗/G),
the Jp-isomorphism type (h0)G⊕V H (resp. G-isomorphism type (g∗)G) is a closed
submanifold.

Proof. We use a standard fact: given a compact Lie group H and a closed subgroup K,
if K is diffeomorphic to H, then K = H. Since the origin is fixed by H it follows from
this fact that for (α, v) ∈ h0 ⊕ V we have:

(α, v) ∼= (0, 0) ⇐⇒ H(α,v)
∼= H

⇐⇒ H(α,v) = H

⇐⇒ α ∈ (h0)H & v ∈ V H .

Similarly, for α ∈ g∗, it follows that:
α ∼= 0 ⇐⇒ α ∈ (g∗)G.

Moreover, (101) implies that JV vanishes on V H and hence Jp(α, v) = α for v ∈ V H .
Therefore:

(α, v) ∼=J (0, 0) ⇐⇒ (α, v) ∼= (0, 0) & α ∼= 0,

⇐⇒ α ∈ (h0)G & v ∈ V H ,

and we conclude that both a and b hold. Since JV vanishes on V H , part c follows as well.
As for part d, it is clear that the canonical inclusion (h0)G⊕V H ↪→ (h0⊕V )/H is a closed
topological embedding and a morphism of reduced differentiable spaces with respect to
the standard manifold structure on the vector space (h0)G ⊕ V H . Furthermore, choosing
an H-invariant linear complement to (h0)G ⊕ V H , we can extend any smooth function
defined on an open in the vector space (h0)G ⊕ V H (by zero) to an H-invariant smooth
function defined on an open in h0 ⊕ V . So, (h0)G ⊕ V H is indeed a closed submanifold of
(h0 ⊕ V )/H. The argument for (g∗)G in g∗/G is the same. □

Proof of Proposition 2.56. Near a given orbit in S, we can identify the member of P∼=J
(S)

(resp. PHam(S)) through this orbit (via the normal form theorem) with the corresponding
member through the orbit O := P/H in the local model for the Hamiltonian action (in the
notation of Subsection 1.3.3). Using the Morita equivalence of Example 1.54, combined
with Lemma 2.57 and the Morita invariance of the partitions by isomorphism types, we
find that the Jθ-isomorphism type through the orbit O in Sθ is a submanifold, being an
open around O in:
(68) O ×

(
(h0)G ⊕ V H

)
.
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Therefore, the J-isomorphism types are submanifolds of S with connected components of
possibly varying dimension. Passing to the orbit space of the local model, we can again use
the Morita equivalence of Example 1.54 to identify the orbit space of the local model with
an open neighbourhood of the origin in (h0 ⊕ V )/H, as reduced differentiable spaces (see
Corollary 2.27). By Lemma 2.57 and Morita invariance of the partitions by isomorphism
types, the Jθ-isomorphism type through O is identified with an open neighbourhood of the
origin in the submanifold (h0)G⊕V H of (h0⊕V )/H. Therefore, the J-isomorphism types
are submanifolds of (S, C∞S ) with connected components of possibly varying dimension.
This proves part a. For part b, it suffices to prove that the Hamiltonian Morita type
through the orbit O in the local model coincides with the Jθ-isomorphism type computed
above (by Lemma 2.6 and the normal form theorem). That is, we have to verify that
all [p, α, v] ∈ Sθ such that (α, v) ∈ (h0)G ⊕ V H belong to the same Hamiltonian Morita
type. To this end, we again use the Hamiltonian Morita equivalence of Example 1.54. Let
[p, α, v] be as above. Then the Morita equivalence relates [p, α, v] to (α, v). Since v ∈ V H ,
it holds for all w ∈ V that:

(69) JV (w + v) = JV (w),

as follows from (101). This implies that SN(α,v) = V and therefore the conditions in
Proposition 1.58 are satisfied for the aforementioned Morita equivalence, at the points
[p, α, v] and (α, v). Moreover, we have H(α,v) = H, GJp(α,v) = G and, by linearity of
the H-action, SN(α,v) and V in fact coincide as H-representations. So, applying the
proposition, we obtain an isomorphism GJθ([p,α,v]) ∼= G that restricts to an isomorphism
G[p,α,v] ∼= H, and we obtain a compatible isomorphism of symplectic representations:

(SN[p,α,v], ω[p,α,v]) ∼= (V, ωV ).

So, all such [p, α, v] indeed belong to the same Hamiltonian Morita type. For part c it
remains to show for each Hamiltonian Morita type in S or S, the connected components
have the same dimension. This follows from Proposition 1.57 and a dimension count.
Finally, in the above description of the Hamiltonian Morita types and J-isomorphism
types in S and S through O, the orbit projection is identified (near O) with the projection
O× (h0)G⊕ V H → (h0)G⊕ V H . This shows that it restricts to a submersion between the
members in S and S. □

Remark 2.58. Let G be a compact Lie group and J : (S, ω)→ g∗ a Hamiltonian G-space.
The partition in Example 1, which is an analogue of the partition by orbit types for proper
Lie group actions (cf. Example 2.8), induces the canonical Hamiltonian stratification as
well after passing to connected components. Another interesting partition that induces the
canonical Hamiltonian stratification in this way can be defined by the equivalence relation:
p ∼ q if and only if there is a g ∈ G such that Gp = gGqg

−1 and GJ(p) = gGJ(q)g
−1,

together with a compatible symplectic linear isomorphism (SNp, ωp) ∼= (SNq, ωq). This is
an analogue of the partition by local types for proper Lie group actions. The fact that these
indeed induce the canonical Hamiltonian stratification follows from the same arguments
as in the proof above, using the normal form theorem with the explicit isomorphism of
symplectic groupoids (43) (see Remark 1.28). Similarly, the partition (66) of SL and
the partition used in [46] (given by: Op ∼ Oq if and only if there is a g ∈ G such that
Gp = gGqg

−1) yield the same partition after passing to connected components.

Example 2.59. Let G be a compact Lie group and J : (S, ω) → g∗ a Hamiltonian
G-space. The fixed point set MG is a member of the partition in Example 1 (provided
it is non-empty). From the above remark we recover the well-known fact that for any
two points p, q ∈ S belonging to the same connected component of MG, the symplectic
G-representations (TpM,ωp) and (TqM,ωq) are isomorphic.
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Example 2.60. Let T be a torus and J : (S, ω)→ t∗ a Hamiltonian T -space. In this case,
the partition in Example 1 coincides with the partition by orbit types of the T -action.
Furthermore, the above remark implies that for any two points p, q ∈ S belonging to the
same connected component of an orbit type with isotropy group H, the symplectic normal
representations at p and q are isomorphic as symplectic H-representations.

2.2.3. End of the proof. To complete the proof of Theorem 2.53 and 2.54, it remains to
show:

Proposition 2.61. The partition by Hamiltonian Morita types PHam(S) is locally finite
and the triple (J,PHam(S),PM(M)) is locally semi-algebraic (as in Definition 2.44).

Proof of Proposition 2.61. Let p ∈ S, let Op be the orbit through p and let Lx = J(Op)
be the corresponding leaf through x = J(p). Further, let G = Gx denote the isotropy
group of G at x, H = Gp the isotropy group of the action at p, and let (V, ωV ) = (SNp, ωp)
denote the symplectic normal representation at p. As in the proof of Proposition 2.51,
there are invariant opens W around Lx in M and U around Op in J−1(W ), together with
a Hamiltonian Morita equivalence between the action of (G,Ω)|W along J : U → W and
a restriction of the groupoid map (56), that relates Op to the origin in h0 ⊕ V . Here,
we can arrange the opens in h0 ⊕ V and g∗ to which (56) is restricted to be invariant
open balls Bg∗ ⊂ g∗ and Bh0⊕V ⊂ J−1

p (Bg∗) (with respect to a choice of invariant inner
products) centered around the respective origins. Let ρ : h0 ⊕ V → Rn and σ : g∗ → Rm

be Hilbert maps (see Subsection 2.1.2). By the same reasoning as in [46, Example 6.5],
since Jp : h0 ⊕ V → g∗ is an H-equivariant and polynomial map, there is a polynomial
map P : Rn → Rm that fits into a commutative square:

(h0 ⊕ V )/H Rn

g∗/G Rm

Jp

ρ

P

σ

In view of Proposition 1.55a, Corollary 2.27 and the discussion at the end of Subsection
2.1.2, we obtain a diagram of reduced differentiable spaces:(

U, C∞S |U
) (

Bh0⊕V , C∞(h0⊕V )/H |Bh0⊕V

) (
ρ(Bh0⊕V ), C∞ρ(Bh0⊕V )

)
(
W, C∞M |W

) (
Bg∗ , C∞g∗/G|Bg∗

) (
σ(Bg∗), C∞σ(Bg∗ )

)
∼

J Jp

∼

P

∼ ∼

in which all horizontal arrows are isomorphisms. Due to Morita invariance of the partitions
by isomorphism types, the partition of U by J-isomorphism types is identified with the
partition of ρ(Bh0⊕V ) consisting of the subsets of the form:

ρ(Bh0⊕V ) ∩ ρ(Σh0⊕V ) ∩ P−1(σ(Σg∗)), Σh0⊕V ∈ P∼=(h
0 ⊕ V ), Σg∗ ∈ P∼=(g

∗).

Recall from the proof of Theorem 2.39 that the canonical stratification of the orbit space of
a real, finite-dimensional representation of a compact Lie group has finitely many strata,
each of which is mapped onto a semi-algebraic set by any Hilbert map. The same must
then hold for the partition by isomorphism types of such a representation. The above
partition of ρ(Bh0⊕V ) therefore also has finitely many members, each of which is semi-
algebraic, for P is polynomial and ρ(Bh0⊕V ) is semi-algebraic (being the image of a semi-
algebraic set under a semi-algebraic map). The same then holds for the partition obtained
after passing to connected components, because any semi-algebraic set has finitely many
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connected components, each of which is again semi-algebraic. By Proposition 2.56b, the
members of PHam(S)|U are unions of the connected components of the J-isomorphism
types in U . So, PHam(S)|U has finitely many members, each of which is mapped onto a
semi-algebraic set by the above chart for (S, C∞S ), the image being a finite union of semi-
algebraic sets. By similar reasoning, the above chart for (M, C∞M ) maps the members of
PM(M)|W onto semi-algebraic sets. Since P is polynomial, it restricts to semi-algebraic
maps between the images of these members under the above charts. So, this proves the
proposition. □

We end this section with a concrete example, similar to that in [2].

Example 2.62. Let G = SU(2)× SU(2) and consider the circle in G given by the closed
subgroup:

H =

{((
eiθ 0
0 e−iθ

)
,

(
eiθ 0
0 e−iθ

))
∈ SU(2)× SU(2)

∣∣∣∣ θ ∈ R
}
.

The cotangent bundle T ∗(G/H) of the homogeneous space G/H is naturally a Hamil-
tonian G-space, and the canonical Hamiltonian strata can be realized as concrete semi-
algebraic submanifolds of R5, as follows. The orbit space of the G-action on T ∗(G/H)
can be canonically identified with the orbit space of the linear H-action on h0 induced
by the coadjoint action of G on g∗, and the transverse momentum map becomes the map
J : h0/H → g∗/G induced by the inclusion h0 ↪→ g∗. To find Hilbert maps for g∗ and h0,
consider the SU(2)-invariant inner product on su(2) given by:

(70) ⟨A,B⟩su(2) = −Trace(AB) ∈ R,
and notice that under the identification of su(2) with R× C obtained by writing:

su(2) =

{(
iθ −z̄
z −iθ

)
∈ gl(2,C)

∣∣∣∣ θ ∈ R, z ∈ C
}
,

(70) corresponds (up to a factor) to the standard Euclidean inner product. Using the
induced G-invariant inner product on g = su(2)× su(2), we identify g∗ with g. The orbits
of the adjoint SU(2)-action on su(2) are the origin and the concentric spheres centered at
the origin. Using this, one readily sees that the algebra of SU(2)-invariant polynomials
on su(2) is generated by the single polynomial given by the square of the norm induced
by (70). So, the algebra of G-invariant polynomials on g∗ is generated by:

σ1(θ1, z1, θ2, z2) = θ21 + |z1|2, σ2(θ1, z1, θ2, z2) = θ22 + |z2|2, θ1, θ2 ∈ R, z1, z2 ∈ C.
On the other hand, h0 is identified with the orthogonal complement:

h⊥ =

{((
iθ −z̄1
z1 −iθ

)
,

(
−iθ −z̄2
z2 iθ

))
∈ su(2)× su(2)

∣∣∣∣ θ ∈ R, z1, z2 ∈ C
}
.

Identifying h⊥ with R × C2 accordingly, the H-orbits are identified with those of the
S1-action:

λ · (θ, z1, z2) = (θ, λz1, λz2), λ ∈ S1, (θ, z1, z2) ∈ R× C2.

In light of this, the algebra of H-invariant polynomials on h0 is generated by:

ρ1(θ,z1, z2) = θ, ρ2(θ, z1, z2) =|z1|2, ρ3(θ, z1, z2) = |z2|2,
ρ4(θ, z1, z2) = Re(z1z̄2), ρ5(θ, z1, z2) = Im(z1z̄2).

Now, consider the polynomial map:

P : R5 → R2, P (x1, ..., x5) =
(
x21 + x2, x

2
1 + x3

)
.

Then we have a commutative square:
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h0/H R5

g∗/G R2

ρ

J P

σ

The image of h0/H under ρ is the semi-algebraic subset of R5 given by:

{x2 ≥ 0, x3 ≥ 0, x24 + x25 = x2x3},
whereas the image of g∗/G under σ is the semi-algebraic subset of R2 given by:

{y1 ≥ 0, y2 ≥ 0}.
The canonical stratification of the orbit space of the G-action on T ∗(G/H) has two strata,
corresponding to the semi-algebraic submanifolds of R5 given by:

{x2 = x3 = x4 = x5 = 0},(71)

{x24 + x25 = x2x3} ∩ ({x2 > 0} ∪ {x3 > 0}).(72)

On the other hand, the canonical stratification of g∗/G has four strata, corresponding to
the semi-algebraic submanifolds of R2 given by:

{y1 = y2 = 0}, {y1 > 0, y2 = 0}, {y1 = 0, y2 > 0}, {y1 > 0, y2 > 0}.
From this we see that the canonical Hamiltonian stratification of the orbit space of the
Hamiltonian G-space T ∗(G/H) has six strata, three of which correspond to the semi-
algebraic submanifolds of (71) given by the respective intersections of (71) with {x1 < 0},
{x1 = 0} and {x1 > 0}, and the other three of which correspond to the semi-algebraic
submanifolds of (72) given by:

{x1 = 0, x2 > 0, x3 = x4 = x5 = 0}, {x1 = x2 = 0, x3 > 0, x4 = x5 = 0},
{x21 + x2 > 0, x21 + x3 > 0, x24 + x25 = x2x3} ∩ ({x2 > 0} ∪ {x3 > 0}).

The restriction of P to any of the first five strata is injective, hence its fibers are points.
The restriction of P to the last stratum has 2-dimensional fibers. In fact, given y1, y2 > 0
the fiber of this restricted map over (y1, y2) ∈ R2 is projected diffeomorphically onto the
semi-algebraic submanifold of R3 given by:

{(x1, x4, x5) ∈ R3 | x24 + x25 = (y1 − x21)(y2 − x21), x21 < max(y1, y2)},
which is semi-algebraically diffeomorphic to a 2-sphere if y1 ̸= y2, whereas it is semi-
algebraically diffeomorphic to a 2-sphere with two points removed if y1 = y2.

2.3. The regular parts of the stratifications.

2.3.1. The regular part of a stratification. To start with, we give a reminder on the regular
part of a stratification, mostly following the exposition in [18]. A stratification S of a space
X comes with a natural partial order given by:

(73) Σ ≤ Σ′ ⇐⇒ Σ ⊂ Σ′.

We say that a stratum Σ ∈ S is maximal if it is maximal with respect to this partial
order. Maximal strata can be characterized as follows.

Proposition 2.63. Let (X,S) be a stratified space. Then Σ ∈ S is maximal if and only
if it is open in X. Moreover, the union of all maximal strata is open and dense in X.

Definition 2.64. The union of all maximal strata of a stratified space (X,S) is called
the regular part of the stratified space.
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Given a stratification S, an interesting question is whether it admits a greatest element
with respect to the partial order (73). This is equivalent to asking whether the regular
part of S is connected.

Example 2.65. Let G be a Lie group acting properly on a manifold M . The partition
by orbit types P∼(M) (see Example 2.8) comes with a partial order of its own. Namely,
if Mx and My denote the orbit types containing the respective orbits Ox and Oy, then
by definition:

Mx ≤My ⇐⇒ Gy is conjugate in G to a subgroup of Gx.

The principal orbit type theorem states that, if M is connected, then there is a greatest
element with respect to this partial order, called the principal orbit type, which is con-
nected, open and dense in M . In this case, the regular part of SGp(M) coincides with the
principal orbit type; in particular, it is connected. On the other hand, the regular part of
SGp(M) need not be connected, even if M is connected.

Example 2.66. Let G ⇒M be a proper Lie groupoid. We denote the respective regular
parts of SGp(M) and SGp(M) as Mprinc and Mprinc. From the linearization theorem it
follows that a point x in M belongs to Mprinc if and only if the action of Gx on Nx is trivial.
From this it is clear that Mprinc and Mprinc are unions of Morita types. The analogue of
the principal orbit type theorem for Lie groupoids [18, Theorem 15] states that, if M is
connected, then Mprinc is connected.

The lemma below gives a useful criterion for the regular part to be connected.

Lemma 2.67. Let M be a connected manifold and S a stratification of M by submanifolds.
If S has no codimension one strata, then the regular part of S is connected.

Proof. As in the proof of [26, Theorem 2.8.5], by a transversality principle [33, pg. 73]
any smooth path γ that starts and ends in the regular part is homotopic in M to a path
γ̃ that intersects only strata of codimension at most 1 and starts and ends at the same
points as γ. □

Example 2.68. Although SGp(M) may have codimension one strata, the base M of
a proper Lie groupoid G admits a second interesting Whitney stratification that does
not have codimension one strata: the infinitesimal stratification S inf

Gp(M). As for
the canonical stratification, the infinitesimal stratification is induced by various different
partitions of M . Indeed, each of the partitions mentioned in Subsection 2.1.1 has an
infinitesimal analogue, obtained by replacing the Lie groups in their defining equivalence
relations by the corresponding Lie algebras. Yet another partition that induces the infin-
itesimal stratification on M is the partition Pdim(M) of M by dimension types, defined
by the equivalence relation: x ∼ y if and only if dim(Lx) = dim(Ly), or equivalently,
dim(gx) = dim(gy). The members of each of these partitions are invariant. Therefore,
each of these descends to a partition of M . However, the members of S inf

Gp(M) may fail to
be submanifolds of the leaf space. For this reason we only consider the stratification on
M . We let M reg denote the regular part of the infinitesimal stratification S inf

Gp(M). As for
the canonical stratification, this has a Lie theoretic description: a point x in M belongs
to M reg if and only if the action of gx on Nx is trivial. Since the infinitesimal stratification
has no codimension one strata, Lemma 2.67 applies. Therefore, M reg is connected if M
is connected.

2.3.2. The infinitesimal Hamiltonian stratification. In the remainder of this section we
will study the regular part of both the canonical Hamiltonian stratification and of a
second stratification associated to a Hamiltonian action of a proper symplectic groupoid,
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that we call the infinitesimal Hamiltonian stratification. We include the latter
in this section, because a particularly interesting property of this stratification is that
its regular part is better behaved than that of the canonical Hamiltonian stratification.
To introduce the infinitesimal Hamiltonian stratification, let (G,Ω) ⇒ M be a proper
symplectic groupoid and suppose that we are given a Hamiltonian (G,Ω)-action along
J : (S, ω) → M . Each of the partitions of S defined in Section 2.2 has an infinitesimal
counterpart, obtained by replacing the role of the isotropy Lie groups by the corresponding
isotropy Lie algebras. For example, by definition two points p, q ∈ S belong to the same
infinitesimal Hamiltonian Morita type if there is an isomorphism of pairs of Lie
algebras:

(gJ(p), gp) ∼= (gJ(q), gq)

together with a compatible symplectic linear isomorphism:

(SNp, ωp) ∼= (SNq, ωq),

where compatibility is now meant with respect to the Lie algebra actions. These partitions
induce, after passing to connected components, one and the same Whitney stratification
S inf

Ham(S) of S: the infinitesimal Hamiltonian stratification. There is in fact an even simpler
partition that induces this stratification, obtained from the partitions by dimensions of
the orbits on S and the leaves of M (see Example 2.68):

(74) PdimJ
(S) := Pdim(S) ∩ J−1(Pdim(M)),

where we take memberwise intersections. Explicitly, two points p, q ∈ S belong to the
same member of (74) if and only if dim(Op) = dim(Oq) and dim(LJ(p)) = dim(LJ(q)). That
the members of the above partitions are submanifolds of S (with connected components of
possibly varying dimension) and that all of these partitions indeed yield one and the same
partition S inf

Ham(S) after passing to connected components follows from the same type of
arguments as in the proof of Proposition 2.56. From the normal form theorem it further
follows that S inf

Ham(S) is a constant rank stratification of the momentum map.

2.3.3. Lie theoretic description of the regular parts. Given a proper symplectic groupoid
(G,Ω) and a Hamiltonian (G,Ω)-action along J : (S, ω) → M , we will use the following
notation for the regular parts of the various stratifications that we consider.

• For the canonical Hamiltonian stratifications SHam(S) and SHam(S), and the in-
finitesimal Hamiltonian stratification S inf

Ham(S) of the Hamiltonian (G,Ω)-action:

Sprinc
Ham , Sprinc

Ham , Sreg
Ham.

• For the canonical stratifications SGp(S) and SGp(S) and the infinitesimal stratifi-
cation S inf

Gp(S) of the G-action:

Sprinc, Sprinc, Sreg.

• For the stratification SHam(SL) on the reduced space over a leaf L:

Sprinc
L .

Remark 2.69. Proposition 2.63, together with the fact that the orbit projection q is
open, implies:

Sprinc = q−1(Sprinc) & Sprinc
Ham = q−1(Sprinc

Ham ).

Furthermore, there are obvious inclusions:
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Sprinc

Sprinc
Ham Sreg

Sreg
Ham

We have the following Lie theoretic description of the regular parts.

Proposition 2.70. Let p ∈ S and denote x = J(p) ∈M . Then the following hold.
a) p ∈ Sprinc if and only if the actions of Gp on both g0p and on SNp are trivial.
b) p ∈ Sreg if and only if the actions of gp on both g0p and on SNp are trivial.
c) p ∈ Sprinc

Ham if and only if p ∈ Sprinc and Gx fixes g0p.
d) p ∈ Sreg

Ham if and only if p ∈ Sreg and gx fixes g0p.
e) Op ∈ Sprinc

L if and only if the action of Gp on (JSNp)
−1(0) is trivial.

Proof. We will only prove statement c, as the other statements follow by entirely similar
reasoning. In view of the above remark, we may as well work on the level of S. Let
G = Gx, H = Gp and V = SNp. As in the proof of Proposition 2.56, near Op we can
identify the orbit space S with an open neighbourhood of the origin in (h0 ⊕ V )/H, in
such a way that Op is identified with the origin and the stratum Σ ∈ SHam(S) through Op
is identified (near Op) with an open in (h0)G⊕V H . By invariance under scaling, the origin
lies in the interior of (h0)G ⊕ V H in (h0 ⊕ V )/H if and only if (h0)G = h0 and V = V H .
So, statement c follows. □

Proposition 2.70 has the following direct consequence.

Corollary 2.71. The canonical Hamiltonian stratification SHam(S
princ) of the restriction

of the Hamiltonian (G,Ω)-action on S to Sprinc consists of strata of SHam(S). In particular,
the regular part of SHam(S

princ) coincides with Sprinc
Ham . The same goes for the stratifications

on S and the infinitesimal counterparts on S.

2.3.4. Principal type theorems. Next, for each of the stratifications listed before, we ad-
dress the question of whether the regular part is connected. As in [26, Section 2.8], our
strategy to answer this will be to study the occurence of codimension one strata. First of
all, we have:

Theorem 2.72. The infinitesimal Hamiltonian stratification S inf
Ham(S) has no codimension

one strata. In particular, if S is connected, then Sreg
Ham is connected as well.

The following will be useful to prove this.

Lemma 2.73. Let H be a compact Lie group and W a real one-dimensional representation
of H. Then H acts by reflection in the origin. In particular, if H is connected, then H
acts trivially.

Proof. By compactness of H, there is an H-invariant inner product g on W . Therefore the
representation H → GL(W ) takes image in the orthogonal group O(W, g) = {±1}. □

Proof of Theorem 2.72. We will argue by contradiction. Suppose that p ∈ S belongs to a
codimension one stratum. Let H and G denote the respective identity components of Gp
and GJ(p), and let V = SNp. The normal form theorem and a computation analogous to
the one for Lemma 2.57 show that (h0)G⊕V H must have codimension one in h0⊕V . Since
H is compact, V H ⊂ V is a symplectic linear subspace, and so it has even codimension.
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Therefore, it must be so that V H = V and (h0)G has codimension one in h0. Appealing to
Lemma 2.73, we find that H acts trivially on any H-invariant linear complement to (h0)G

in h0. By compactness of H we can always find such a complement, hence H fixes all of
h0. Therefore, h is a Lie algebra ideal in g. Since G is connected, this means that h0 is
invariant under the coadjoint action of G. As for H, it now follows that G must actually
fix all of h0, contradicting the fact that (h0)G has positive codimension in h0. □

The situation for SHam(S) and SHam(S) is more subtle. Indeed, the regular parts of the
canonical Hamiltonian stratification on both S and S can be disconnected, even if both
S, as well as the source-fibers and the base of G are connected. This is shown by the
example below.

Example 2.74. Consider the circle S1, the real line R and the 2-dimensional torus T2

equipped with the Z2-actions given by:

(±1) · eiθ = e±iθ, (±1) · x = ±x, (±1) · (eiθ1 , eiθ2) = (±eiθ1 , eiθ2).

Now, consider the proper Lie groupoid:

(75) (T2 × T2)×Z2 (S1 × R) ⇒ T2 ×Z2 R

with source, target and multiplication given by:

s([eiθ1 , eiθ2 , eiθ3 , eiθ4 , eiθ, x]) = [eiθ3 , eiθ4 , x],

t([eiθ1 , eiθ2 , eiθ3 , eiθ4 , eiθ, x]) = [eiθ1 , eiθ2 , x],

m([eiθ1 , eiθ2 , eiθ3 , eiθ4 , eiθ, x], [eiθ3 , eiθ4 , eiθ5 , eiθ6 , eiφ, x]) = [eiθ1 , eiθ2 , eiθ5 , eiθ6 , ei(θ+φ), x].

This becomes a symplectic groupoid when equipped with the symplectic form induced by:

dθ1 ∧ dθ2 − dθ3 ∧ dθ4 − dθ ∧ dx ∈ Ω2(T2 × T2 × S1 × R).

Furthermore, this symplectic groupoid acts in a Hamiltonian fashion along:

J : (T2 × S1 × R, dθ1 ∧ dθ2 − dθ ∧ dx)→ T2 ×Z2 R, (eiθ1 , eiθ2 , eiθ, x) 7→ [eiθ1 , eiθ2 , x],

with the action given by:

[eiθ1 , eiθ2 , eiθ3 , eiθ4 , eiθ, x] · (eiθ3 , eiθ4 , eiφ, x) = (eiθ1 , eiθ2 , ei(θ+φ), x).

This action is free and its orbit space is canonically diffeomorphic to R. The canonical
Hamiltonian stratification on the orbit space consists of three strata: {x > 0}, {x < 0}
and the origin {x = 0}, because the isotropy groups of (75) at points in T2 ×Z2 R with
x ̸= 0 are isomorphic to S1, whilst those at points with x = 0 are isomorphic to Z2 ⋉ S1.
So, we see that its regular part is disconnected.

The following theorem provides a criterion that does ensure connectedness of the regular
part.

Theorem 2.75. Let (G,Ω) ⇒ M be a proper symplectic groupoid and suppose that we
are given a Hamiltonian (G,Ω)-action along J : (S, ω) → M . The following conditions
are equivalent.

a) For every p ∈ S that belongs to a codimension one stratum of the canonical Hamil-
tonian stratification SHam(S), the action of Gp on g0p is non-trivial.

b) The regular part Sprinc of SGp(S) (as in Subsection 2.3.3) does not contain codi-
mension one strata of SHam(S).

Furthermore, if S is connected and the above conditions hold, then Sprinc
Ham is connected as

well. If in addition the orbits of the action are connected, then Sprinc
Ham is also connected.
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Proof. As in the proof of Theorem 2.72 it follows that if p ∈ S belongs to a codimension
one stratum of SHam(S), then the action of Gp on SNp is trivial. So, by Proposition 2.70a,
for such p ∈ S the action of Gp on g0p is trivial if and only if p ∈ Sprinc. From this it is clear
that the two given conditions are equivalent. Furthermore, if S is connected, then by the
principal type theorem for proper Lie groupoids (see Example 2.66), Sprinc is connected.
So, in light of Corollary 2.71 and Lemma 2.67, Sprinc

Ham will be connected if in addition
Sprinc does not contain codimension one strata of SHam(S), or equivalently, if in addition
condition b holds. □

The proposition below gives a criterion for the conditions in the previous theorem to hold.

Proposition 2.76. If p ∈ S belongs to a codimension one stratum of SHam(S) and the
coadjoint orbits of GJ(p) are connected, then the action of Gp on g0p is non-trivial.

Proof. The same reasoning as in the proof of Theorem 2.72 shows that if the action of
Gp on g0p would be trivial, then the identity component of GJ(p) would fix all of g0p. By
connectedness of its coadjoint orbits, the entire group GJ(p) would then fix all of g0p, which,
as in the aforementioned proof, leads to a contradiction. □

Corollary 2.77. Let G be a compact and connected Lie group and let J : (S, ω)→ g∗ be
a connected Hamiltonian G-space. Then Sprinc

Ham is connected.

Proof. For G compact and connected, the isotropy groups of the coadjoint G-action are
connected. So, the previous proposition ensures that condition a in Theorem 2.75 is
satisfied. □

Example 2.78. Let G be a compact and connected Lie group and let J : (S, ω)→ g∗ be
a connected Hamiltonian G-space. We return to the partition in Example 1. This comes
with a partial order, defined as follows. If Sp and Sq denote the members through the
respective orbits Op and Oq, then by definition:

Sp ≤ Sq ⇐⇒ (GJ(q), Gq) is conjugate in G to pair of subgroups of (GJ(p), Gp).

In analogy with the principal orbit type theorem (see Example 2.65), this partial order has
a greatest element, namely Sprinc

Ham . To see this, notice that from the normal form theorem
as in Remark 1.28 it follows that every Op ∈ S admits an open neighbourhood U with
the property that Sp ≤ Sq for all Oq ∈ U . From this and the fact that Sprinc

Ham is connected
and dense in S, it follows that it is indeed a member of the partition in Example 1, and
that it is the greatest element with respect to the above partial order.

To end with, we note that the following generalization of [46, Theorem 5.9, Remark 5.10]
holds.

Theorem 2.79. Let L be a leaf of G and suppose that SL is connected. Then the regular
part Sprinc

L of SHam(SL) is connected as well.

Proof. Since Sprinc
L is dense in SL and SL is connected, it is enough to show that every

point in SL admits an open neighbourhood that intersects Sprinc
L in a connected subspace.

To this end, let Op ∈ SL, let H = Gp and V = SNp. Consider a Hamiltonian Morita
equivalence as in the proof of Proposition 2.61, so that the induced homeomorphism of
orbit spaces identifies an open U around Op in S with an open Bh0⊕V around the origin
in (h0 ⊕ V )/H. Let B be the intersection of Bh0⊕V with V and consider the Hamiltonian
H-space:

JB = JV |B : (B,ωV )→ h∗.

Then U ∩ SL is identified with J−1
B (0)/H, and U ∩ Sprinc

L is identified with the principal
part of J−1

B (0)/H (as follows from Morita invariance of the partitions by isomorphism
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types). Since J−1
B (0) is star-shaped with respect to the origin, J−1

B (0)/H is connected and
hence, by [46, Theorem 5.9, Remark 5.10], so is its principal part. So, we have found the
desired neighbourhood of Op. □

2.3.5. Relations amongst the regular parts. In this last subsection we discuss another
relationship between the regular parts of the various stratifications, starting with the
following observation.

Proposition 2.80. Suppose that J is a submersion on Sreg. Then the various regular
and principal parts on S, M , S and M are related as:

Sreg
Ham = Sreg∩J−1(M reg), Sprinc

Ham = Sprinc∩J−1(Mprinc), Sprinc
Ham = Sprinc∩(J)−1(Mprinc).

Proof. We prove the equality for Sreg
Ham; the others are proved similarly. Let p ∈ S, x = J(p)

and consider the strata ΣHam
p ∈ S inf

Ham(S), ΣGp
p ∈ S inf

Gp(S) and ΣGp
x ∈ S inf

Gp(M) through p
and x. Then

(76) ΣHam
p ⊂ ΣGp

p ∩ J−1
(
ΣGp
x

)
is open in the right-hand space. This, combined with the fact that J : Sreg →M is open
and continuous, implies that ΣHam

p is open at p in S if and only if ΣGp
p is open at p in S

and ΣGp
x is open at x in M . In light of Proposition 2.63 this means that:

Sreg
Ham = Sreg ∩ J−1(M reg),

as claimed. □

In general (that is, if J is not submersive on Sreg) one would hope for a similar result. Since
the image of J need not intersect M reg, one however needs an appropriate replacement
for it. The proposition below gives a sufficient condition for the existence of such a
replacement.

Proposition 2.81. Suppose that Sreg
Ham is connected. Then there is a unique stratum

Σ ∈ S inf
Gp(M) with the property that Σ ∩ J(S) is open and dense in J(S). Moreover, it

holds that:
Sreg

Ham = Sreg ∩ J−1(Σ),

and J−1(Σ) is connected, open and dense in S. Similar conclusions hold for the principal
part on S (resp. S), under the assumption that Sprinc

Ham (resp. Sprinc
Ham ) is connected.

Proof. Again, we prove the result only for Sreg
Ham since the other proofs are analogous. We

use the notation introduced in the proof of the previous proposition. Consider R ⊂ J(S)
defined as:

R := {x ∈ J(S) | ΣGp
x ∩ J(S) is open in J(S)}.

We claim that Sreg
Ham = Sreg ∩ J−1(R), that R is connected, open and dense in J(S) and

that J−1(R) is connected, open and dense in S. The desired stratum Σ is then the unique
stratum containing R. To see that our claim holds, notice first R is clearly open in
J(S), and so J−1(R) is open in S. Moreover, by continuity of J and (76) we find that
Sreg ∩J−1(R) is a union of strata of S inf

Ham(S) contained in Sreg
Ham. So, if Sreg

Ham is connected,
then Sreg∩J−1(R) must coincide with Sreg

Ham. Then since Sreg
Ham is dense in S, so is J−1(R),

and furthermore, R must be dense in J(S). Finally, because Sreg
Ham is connected and dense

in J−1(R), it follows that J−1(R) is connected and hence R is connected as well. This
proves our claim. □

Example 2.82. Let G be a compact and connected Lie group and let J : (S, ω)→ g∗ be
a connected Hamiltonian G-space. Let T ⊂ G be a maximal torus, t∗+ a choice of closed
Weyl chamber in t∗ and J+(S) := J(S) ∩ t∗+, where t∗ is canonically identified with the
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T -fixed point set (g∗)T in g∗. According to [45, Theorem 3.1], there is a unique open face
of the Weyl chamber (called the principal face) that intersects J+(S) in a dense subset of
J+(S). Combining Corollary 2.77 with Proposition 2.81, we recover the existence of the
principal face.

2.4. The Poisson structure on the orbit space.

2.4.1. Poisson structures on reduced differentiable spaces and Poisson stratifications. In
this section we discuss the Poisson structure on the orbit space of a Hamiltonian action
and discuss basic Poisson geometric properties of the various stratifications associated to
such an action. First, we give some more general background.

Definition 2.83. A Poisson reduced ringed space is a reduced ringed space (X,OX)
together with a Poisson bracket {·, ·} on the structure sheafOX . A morphism of Poisson
reduced ringed spaces is a morphism of reduced ringed spaces:

φ : (X,OX)→ (Y,OY )
with the property that for every open U in Y :

φ∗ : (OY (U), {·, ·}U)→
(
OX(φ−1(U)), {·, ·}φ−1(U)

)
is a Poisson algebra map. We will also call such φ simply a Poisson map. When
(X,OX) is a reduced differentiable space, we call (X,OX , {·, ·}) a Poisson reduced
differentiable space.

Remark 2.84. The Poisson reduced ringed spaces in this thesis will all be Hausdorff and
second countable reduced differentiable spaces. For such reduced ringed spaces (X,OX)
the data of a Poisson bracket on the sheaf OX is the same as the data of a Poisson bracket
on the R-algebra OX(X), so that when convenient we can restrict attention to the Poisson
algebra of globally defined functions. This follows as for manifolds, using bump functions
in OX(X) (cf. Remark 2.17).

Next, we turn to subspaces and stratifications of Poisson reduced differentiable spaces.

Definition 2.85. Let (X,OX , {·, ·}X) be a Poisson reduced differentiable space. A locally
closed subspace Y of (X,OX) is a Poisson reduced differentiable subspace if the
induced structure sheaf OY admits a (necessarily unique) Poisson bracket for which the
inclusion of Y into X becomes a Poisson map. If Y is also a submanifold of (X,OX),
then we call it a Poisson submanifold.

As in [28], we use the following definition.

Definition 2.86. Let (X,OX , {·, ·}X) be a Hausdorff and second countable Poisson re-
duced differentiable space. A Poisson stratification of (X,OX , {·, ·}X) is a stratification
S of (X,OX) with the property that every stratum is a Poisson submanifold. We call
(X,OX , {·, ·}X ,S) a Poisson stratified space. A Symplectic stratified space is a
Poisson stratified space for which the strata are symplectic. A morphism of Poisson
stratified spaces is a morphism of the underlying stratified spaces that is simultaneously
a morphism of the underlying Poisson reduced ringed spaces.

As for manifolds, we have the following useful characterization.

Proposition 2.87. Let (X,OX , {·, ·}X) be a Hausdorff and second countable Poisson
reduced differentiable space and let Y be a locally closed subspace. Then Y is a Poisson
reduced differentiable subspace if and only if the vanishing ideal IY (X) in OX(X) (consist-
ing of f ∈ OX(X) such that f |Y = 0) is a Poisson ideal (meaning that: if f, h ∈ OX(X)
and h|Y = 0, then {f, h}X |Y = 0).
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Proof. The forward implication is immediate. For the backward implication the same
argument as for manifolds applies: given f, h ∈ OY (Y ), by Proposition 2.25 we can
choose extensions f̂ , ĥ ∈ OX(U) of f and h defined on some open neighbourhood U of Y
and set:

{f, h}Y := {f̂ , ĥ}U |Y .
This does not depend on the choice of extensions, because for any open U in X the ideal
IY (U) in OX(U), consisting of functions that vanish on U ∩Y , is a Poisson ideal. Indeed,
this follows from the assumption that IY (X) is a Poisson ideal in OX(X), using bump
functions (cf. Remark 2.17). By construction, {·, ·}Y defines a Poisson bracket on OY (Y )
(and hence on OY , by Remark 2.84) for which the inclusion of Y into X becomes a Poisson
map. □

2.4.2. The Poisson algebras of invariant functions. Next, we turn to the definition of the
Poisson bracket on the orbit space of a Hamiltonian action, starting with the following
observation.

Proposition 2.88. Let (G,Ω) be a symplectic groupoid and suppose that we are given
a Hamiltonian (G,Ω)-action along J : (S, ω) → M . The algebra of invariant smooth
functions:

C∞(S)G = {f ∈ C∞(S) | f(g · p) = f(p), ∀(g, p) ∈ G ×M S}.

is a Poisson subalgebra of (C∞(S), {·, ·}ω).

Proof. Although this is surely known, let us give a proof. Let f, h ∈ C∞(S)G and let Φf

denote the Hamiltonian flow of f . Using the lemma below we find that for all (g, p) ∈
G ×M S:

{f, h}ω(g · p) =
d
dt

∣∣∣∣
t=0

h(Φt
f (g · p))

=
d
dt

∣∣∣∣
t=0

h(g · Φt
f (p))

=
d
dt

∣∣∣∣
t=0

h(Φt
f (p)) = {f, h}ω(p),

so that {f, g}ω ∈ C∞(S)G, as required. □

Here we used the following lemma, which will also be useful later.

Lemma 2.89. Let f ∈ C∞(S)G and let Φf denote its Hamiltonian flow. Then, for every
t ∈ R, the domain Ut and the image Vt of Φt

f are G-invariant and Φt
f is an isomorphism

of Hamiltonian (G,Ω)-spaces:

(Ut, ω) (Vt, ω)

M

Φt
f

J J

Proof. Invariance of f implies that Xf (p) ∈ TpOω for all p ∈ S. From this and Proposition
1.12a it follows that J(Φt

f (p)) = J(p) for any p ∈ S and any time t at which the flow
through p is defined. So, for any (g, p) ∈ G ×M S we can consider the curve:

t 7→
(
g,Φt

f (p)
)
∈ G ×M S.
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Given such (g, p), let v ∈ Tg·pS and take a tangent vector v̂ to G ×M S at (g, p) such that
dm(v̂) = v. Then we find:

ω

(
d
dt

∣∣∣∣
t=0

g · Φt
f (p), v

)
= (m∗

Sω)

(
d
dt

∣∣∣∣
t=0

(
g,Φt

f (p)
)
, v̂

)
.

Using (5) this is further seen to be equal to:

ω (Xf (p), d(prS)(v̂)) = d(f ◦ prS)(v̂) = df(v),

where in the last step we used invariance of f . As this holds for all such v, we deduce
that:

Xf (g · p) =
d
dt

∣∣∣∣
t=0

g · Φt
f (p).

This being true for all p in the fiber of J over s(g), and in particular for all points on a
maximal integral curve of Xf starting in this fiber, it follows that the maximal integral
curve of Xf through g · p is given by t 7→ g · Φt

f (p). The lemma readily follows from
this. □

Given a proper symplectic groupoid (G,Ω) and a Hamiltonian (G,Ω)-action along J :
(S, ω)→M , the Poisson bracket {·, ·}ω on the algebra C∞(S)G in Proposition 2.88 gives
the orbit space (S, C∞S ) the structure of a Poisson reduced differentiable space, with Pois-
son bracket determined by the fact that the orbit projection becomes a Poisson map.
Moreover, for each leaf L of G in M , the reduced space SL is a Poisson reduced differen-
tiable subspace. Indeed, identifying the algebra of globally defined smooth functions on S
with C∞(S)G, the vanishing ideal of SL is identified with the ideal IGL of invariant smooth
functions that vanish on J−1(L), which is a Poisson ideal by the proposition below. This
observation is due to [2] in the setting of Hamiltonian group actions.

Proposition 2.90. The ideal IGL is a Poisson ideal of (C∞(S)G, {·, ·}ω).

Proof. If f ∈ C∞(S)G and h ∈ IGL then by Lemma 2.89 the Hamiltonian flow of f
starting at p ∈ J−1(L) is contained in a single fiber of J , and hence in J−1(L), so that
{f, h}ω(p) = 0. □

We will denote the respective Poisson structures on (S, C∞S ) and (SL, C∞SL
) by {·, ·}S and

{·, ·}SL
.

2.4.3. The Poisson stratification theorem. Now, we move to the main theorem of this
section.

Theorem 2.91. Let (G,Ω) ⇒ M be a proper symplectic groupoid and suppose that we
are given a Hamiltonian (G,Ω)-action along J : (S, ω)→M . Then the following hold.

a) The stratification SGp(S) is a Poisson stratification of the orbit space:

(S, C∞S , {·, ·}S).

b) The stratification SHam(S) is a Poisson stratification of the orbit space:

(S, C∞S , {·, ·}S),

the strata of which are regular Poisson submanifolds.
c) For each leaf L of G in M , the stratification SHam(SL) is a symplectic stratification

of the reduced space at L:

(SL, C∞SL
, {·, ·}SL

).
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These are related as follows. First of all, the inclusions of smooth stratified spaces:(
SL, C∞SL

, {·, ·}SL
,SHam(SL)

)
↪→
(
S, C∞S , {·, ·}S,SHam(S)

)
↪→
(
S, C∞S , {·, ·}S,SGp(S)

)
are Poisson maps that map symplectic leaves onto symplectic leaves. Moreover, for each
stratum ΣS ∈ SHam(S), the symplectic leaves in ΣS are the connected components of the
fibers of the constant rank map J : ΣS → ΣM , where ΣM ∈ SGp(M) is the stratum such
that J(ΣS) ⊂ ΣM .

Proof of Theorem 2.91. Let Σ ∈ SHam(S) be a stratum and let Σ := q−1(Σ) where q :
S → S denotes the orbit projection. Identifying the algebra of globally defined smooth
functions on S with C∞(S)G, the vanishing ideal of Σ is identified with the ideal:

IGΣ = {f ∈ C∞(S)G | f |Σ = 0}.

This is a Poisson ideal of C∞(S)G, for if f ∈ C∞(S)G and h ∈ IGΣ, then as an immediate
consequence of Lemma 2.89, the Hamiltonian flow of f leaves Σ invariant and therefore:

{f, h}ω|Σ = (LXf
h)|Σ = 0.

By Proposition 2.87 this means that Σ is a Poisson submanifold (in the sense of Definition
2.85). So, SHam(S) is a Poisson stratification of the orbit space. By the same reasoning
it follows that the stratifications in statements a and c are Poisson stratifications. From
the construction of the Poisson brackets on the orbit space and the reduced spaces, it is
immediate that the inclusions given in the statement of the theorem are Poisson. Hence,
each stratum of SGp(S) is partitioned into Poisson submanifolds by strata of SHam(S) and
each stratum of SHam(S) is partitioned into Poisson submanifolds by strata of SHam(SL),
for varying L ∈ M . If (N, π) is a Poisson manifold partitioned by Poisson submanifolds,
then the symplectic leaves of each of the Poisson submanifolds in the partition are sym-
plectic leaves of (N, π). This follows from the fact that each symplectic leaf of a Poisson
submanifold is an open inside a symplectic leaf of the ambient Poisson manifold. There-
fore, each of the inclusions given in the statement of the theorem indeed maps symplectic
leaves onto symplectic leaves.

It remains to see that for each stratum ΣS ∈ SHam(S) the foliation by symplectic leaves
of the Poisson structure πΣS

on ΣS coincides with that by the connected components of
the fibers of the constant rank map J : ΣS → ΣM , because the claims on regularity and
non-degeneracy made in statements b and c follow from this as well. To this end, we
have to show that for every orbit O ∈ ΣS the tangent space to the symplectic leaf at O
coincides with Ker(dJ |ΣS

)O. Here the language of Dirac geometry comes in useful. We
refer the reader to [11, 13] for background on this. Let ΣS = q−1(ΣS) and consider the
pre-symplectic form:

ωΣS
:= ω|ΣS

∈ Ω2(ΣS).

We claim that the orbit projection:

(77) q : (ΣS, ωΣS
)→ (ΣS, πΣS

)

is a forward Dirac map. To see this, we will use the fact that a map φ : (Y, ωY )→ (N, πN)
from a pre-symplectic manifold into a Poisson manifold is forward Dirac if for every
f ∈ C∞(N) there is a vector field Xφ∗f ∈ X (Y ) such that:

ιXφ∗fωY = d(φ∗f) & φ∗(Xφ∗f ) = Xf .

Given an f ∈ C∞(ΣS), choose a smooth extension f̂ defined an open U around ΣS in S.
Because q∗f̂ is G-invariant, its Hamiltonian flow leaves ΣS invariant (as before). Therefore,
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we can consider:
Xq∗f := (Xq∗f̂ )|ΣS

∈ X (ΣS)

and as is readily verified this satisfies:

ι(Xq∗f )ωΣS
= d(q∗f) & q∗(Xq∗f ) = Xf .

So (77) is indeed a forward Dirac map. From the equality of Dirac structures LπΣS
=

q∗(LωΣS
) we read off that the tangent space to the symplectic leaf at an orbit O through

p ∈ S is given by:

(78)
TpO(ωΣS

)

TpO ∩ TpO(ωΣS
)
⊂ TpΣS

TpO
= TO(ΣS).

It follows from Proposition 1.12a that TpO(ωΣS
) = Ker(dJ |ΣS

)p. This implies that (78)
equals:

Ker(dJ |ΣS
)p

TpO ∩Ker(dJ |ΣS
)p

= Ker(dJ |ΣS
)O ⊂ TO(ΣS),

as we wished to show. □

From the proof we also see:

Corollary 2.92. For every stratum ΣS ∈ SHam(S), the orbit projection (77) is forward
Dirac. The same holds for the strata of SGp(S).

2.4.4. Dimension of the symplectic leaves. In the remainder of this section we make some
further observations on the Poisson geometry of the orbit space, starting with:

Proposition 2.93. Let (G,Ω) ⇒ M be a proper symplectic groupoid and suppose that
we are given a Hamiltonian (G,Ω)-action along J : (S, ω) → M . The dimension of the
symplectic leaves in the orbit space S is locally non-decreasing. That is, every O ∈ S
admits an open neighbourhood U in S such that any symplectic leaf intersecting U has
dimension greater than or equal to that of the symplectic leaf through O.

Proof. First, let us make a more general remark. Let p ∈ S, let ΣS ∈ SHam(S) be the
stratum through Op and let ΣM ∈ SGp(M) be such that J(ΣS) ⊂ ΣM . From a Hamil-
tonian Morita equivalence as in the proof of Proposition 2.51 we obtain (via Proposition
1.55a) an identification of smooth maps between J : ΣS → ΣM near Op and the map
(67) near the origin. Therefore, the dimension of the fibers of the former map is equal to
that of the latter, which is dim(SN Gp

p ), or equivalently: dim(Ker(dJp)Gp) (see the proof
of Proposition 1.11b). In view of Theorem 2.91, this is also the dimension of the sym-
plectic leaf through Op. To prove the proposition, it is therefore enough to show that
each p ∈ S admits an invariant open neighbourhood U with the property that Ker(dJp)Gp

has dimension less than or equal to that of Ker(dJq)Gq for each q ∈ U . To this end,
given p ∈ S, choose an invariant open neighbourhood U for which there is a Hamiltonian
Morita equivalence as in the proof of Proposition 2.51. Then U has the desired property.
Indeed, in light of Proposition 1.55c, it suffices to show (using the notation of the proof
of Proposition 2.51) that for each α ∈ h0 and v ∈ V :

dim(V H) ≤ dim(Ker(dJp)
H(α,v)

(α,v) ).

To this end, consider the linear map:

(79) V H → Ker(dJp)
H(α,v)

(α,v) , w 7→
[

d
dt

∣∣∣∣
t=0

(α, v + tw)

]
.
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Note here that this indeed takes values in Ker(dJp)(α,v), because for all w ∈ V H :

d
dt

∣∣∣∣
t=0

v + tw ∈ Ker(dJV )v,

as follows from (69). To complete the proof, we will now show that (79) is injective.
Suppose that:

d
dt

∣∣∣∣
t=0

(α, v + tw) ∈ T(α,v)O.

Then:
d
dt

∣∣∣∣
t=0

v + tw ∈ TvO ∩ Tv(v + V H).

Because H is compact, V H admits an H-invariant linear complement in V , which implies
that:

TvO ∩ Tv(v + V H) = 0.

Therefore w = 0, proving that (79) is indeed injective. □

Remark 2.94. In the above proof we have seen that the dimension of the symplectic leaf
(L, ωL) through Op is dim(SN Gp

p ). In fact, there is a canonical isomorphism of symplectic
vector spaces:

(TOpL, (ωL)Op)
∼= (SN Gp

p , ωp).

2.4.5. Morita invariance of the Poisson stratifications. We end this section with:

Proposition 2.95. Each of the stratifications in Theorem 2.91 is invariant under Hamil-
tonian Morita equivalence, as Poisson stratification.

Proof. Suppose we are given a Morita equivalence between two Hamiltonian actions of
two proper symplectic groupoids; we use the notation of Definition 1.45 and 1.47. It is
immediate that the induced homeomorphism hQ (see Proposition 1.55a) maps strata of
SHam(S1) onto strata of SHam(S2), and the same goes for SGp(S1) and SGp(S2). So, in
view of Proposition 2.27 hQ is an isomorphism of smooth stratified spaces, for both of
these stratifications. By Proposition 1.55a, hQ identifies the reduced space at a leaf L1

with the reduced space at the leaf L2 := hP (L1) (these being the fibers of J1 and J2) and
it is clear that it maps strata of SHam(SL1

) onto strata of SHam(SL2
). So, by Remark 2.21

it restricts to an isomorphism of smooth stratified spaces between these reduced spaces.
To prove the proposition we are left to show that hQ is a Poisson map, for it will then
restrict to a Poisson map between the reduced spaces and between the strata as well.
To this end, let U1 and U2 be Q-related invariant opens in S1 and S2. By the proof of
Proposition 2.27, the Hamiltonian Morita equivalence induces isomorphisms:

C∞S1
(U1)

G1 C∞S2
(U2)

G2

C∞Q (β−1
1 (U1))

G1 ∩ C∞Q (β−1
2 (U2))

G2

β∗
1 β∗

2

and to prove that hQ is a Poisson map we have to show that (β∗
2)

−1 ◦β∗
1 is an isomorphism

of Poisson algebras. To see this, let f1, h1 ∈ C∞S1
(U1)

G1 and f2, h2 ∈ C∞S2
(U2)

G2 such that
β∗
1f1 = β∗

2f2 and β∗
1h1 = β∗

2h2. Let p1 ∈ U1, p2 ∈ U2 and q ∈ Q such that p1 = β1(q) and
p2 = β2(q). As we have seen in Lemma 2.89 it holds that Xf1(p1) ∈ Ker(dJ1). So, as in
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the proof of Proposition 1.57 we can find v̂ ∈ Ker(djq) such that dβ1(v̂) = Xf1(p1). It
follows from (51) that:

ω2(Xf2(p2), dβ2(·)) = d(β∗
2f2)q

= d(β∗
1f1)q

= (β∗
1ω1)(v̂, ·)

= (β∗
2ω2)(v̂, ·) = ω2(dβ2(v̂), dβ2(·)),

so that, since β2 is a submersion, we find that dβ2(v̂) = Xf2(p2). Using this we see that:

{f1, h1}ω1(p1) = dh1(Xf1(p1))

= d(β∗
1h1)(v̂)

= d(β∗
2h2)(v̂)

= dh2(Xf2(p2)) = {f2, h2}ω2(p2),

which proves that (β∗
2)

−1 ◦ β∗
1 is indeed an isomorphism of Poisson algebras. □

Remark 2.96. From the above proposition it follows that PHam(S) and PHam(SL) are in
fact Poisson homogeneous, meaning that they are smoothly homogeneous as in Definition
2.36, with the extra requirement that the isomorphisms h can be chosen to be Poisson
maps. This gives another proof of the fact that the Poisson structures on the strata of
SHam(S) must be regular.

2.5. Symplectic integration of the canonical Hamiltonian strata.

2.5.1. The integration theorem. The main theorem of this section is:

Theorem 2.97. Let (G,Ω) be a proper symplectic groupoid and suppose that we are given
a Hamiltonian (G,Ω)-action along J : (S, ω) → M . Let ΣS ∈ SHam(S) and let πΣS

be
the Poisson structure on ΣS of Theorem 2.91. There is a naturally associated proper
symplectic groupoid (the symplectic leaves of which may be disconnected) that integrates
(ΣS, πΣS

).

Our proof consists of two main steps: first we prove the theorem for Hamiltonian actions
of principal type (defined below), and then we show how to reduce to actions of this type.

2.5.2. Hamiltonian actions of principal type.

Definition 2.98. We say that:
i) a proper Lie groupoid G ⇒ M of principal type if Mprinc = M (see Example

2.66),
ii) a Hamiltonian action of a proper symplectic groupoid (G,Ω) along J : (S, ω)→M

is of principal type if Sprinc
Ham = S and Mprinc =M (see Subsection 2.3.3).

Remark 2.99. Notice that:
i) a proper Lie groupoid G ⇒M with connected leaf space M is of principal type if

and only if Gx is isomorphic to Gy for all x, y ∈M .
ii) a Hamiltonian action of a proper symplectic groupoid (G,Ω) along J : (S, ω)→M

with connected orbit space S and connected leaf space M is of principal type if
and only if Gp is isomorphic to Gq for all p, q ∈ S and Gx is isomorphic to Gy for
all x, y ∈M .

For the rest of this subsection, let (G,Ω) ⇒ M be a proper symplectic groupoid and
suppose that we are given a Hamiltonian (G,Ω)-action of principal type along J : (S, ω)→
M , for which both the orbit space S and the leaf space M are connected. Then both
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S and M are smooth manifolds and J : S → M , as well as J : S → M , is of constant
rank. If the action happens to be free, then J is a submersion and the gauge construction
([83, Theorem 3.2]) yields a proper symplectic groupoid integrating (S, πS). This groupoid
is obtained as quotient of the submersion groupoid:

S ×M S ⇒ S

by the diagonal action of G on S×MS along J◦pr1. As we will now show, this construction
can be generalized to arbitrary Hamiltonian actions of principal type (for which the action
need not be free). To this end, we consider to the subgroupoid:

R = {(p1, p2) ∈ S × S | J(p1) = J(p2) and Gp1 = Gp2}
of the pair groupoid S × S.

Theorem 2.100. The groupoid R has the following properties.
a) It is a closed embedded Lie subgroupoid of the pair groupoid S × S.
b) It is invariant under the diagonal action of G on S ×M S, the restriction of the

action to R is smooth, R := R/G is a smooth manifold and the orbit projection
R → R is a submersion.

c) The symplectic pair groupoid (S×S, ω⊕−ω) descends to give a proper symplectic
groupoid:

(R,ΩR) ⇒ S,

that integrates (S, πS).

Proof of Theorem 2.100; part a. We will first use the normal form to study the subspace
S ×M S. To this end, let (p1, p2) ∈ S ×M S and let x := J(p1) = J(p2). Then, as
in the proof of Theorem 1.21, we can find two neighbourhood equivalences (Φ,Ψ1) and
(Φ,Ψ2) between the given Hamiltonian action and the two local models for it around the
respective orbits Op1 and Op2 through p1 and p2, using one and the same isomorphism
of symplectic groupoids Φ for both neighbourhood equivalences. Using this, the subset
S ×M S of S × S is identified near (p1, p2) with the subset Sθ,1 ×Mθ

Sθ,2 of the product
Sθ,1×Sθ,2 of the local models around Op1 and Op2 (using the notation of Subsection 1.3.3)
near (Ψ1(p1),Ψ2(p2)). Since we assume the Hamiltonian action to be of principal type,
the coadjoint Gx-action and the actions underlying the symplectic normal representations
at p1 and p2 are trivial (cf. Proposition 1.10b, Example 2.66 and Proposition 2.70). So,
denoting by P the source-fiber of G over x, the momentum maps Jθ,i : Sθ,i → Mθ in the
local model become:

(80) P/Gpi × (g0pi ⊕ SNpi)→ P/Gx × g∗x, ([q], α, v) 7→ ([q], α),

(or rather, a restriction of this to an open neighbourhood of the central orbit P/Gpi) for
i ∈ {1, 2}. From this we see that Sθ,1×Mθ

Sθ,2 is a submanifold of Sθ,1×Sθ,2 with tangent
space given by all pairs of tangent vectors (v1, v2) satisfying dJθ,1(v1) = dJθ,2(v2). Passing
back to S×S via (Ψ1,Ψ2), we find that S×M S is an embedded submanifold of S×S at
(p1, p2) with tangent space:

(81) {(v1, v2) ∈ Tp1S × Tp2S | dJp1(v1) = dJp2(v2)}.
We now turn to R. As we will show in a moment, R is both open and closed in S ×M S.
Together with the above, this would show that R is a closed embedded submanifold of
S × S (with connected components of possibly varying dimension), the tangent space of
which is given by (81). To then show that R is an embedded Lie subgroupoid (with con-
nected components of one and the same dimension), it would be enough to show the two
projections R → S are submersions. In view of the description (81) of the tangent space
of R this is equivalent to the requirement that Im(dJp1) = Im(dJp2) for all (p1, p2) ∈ R,
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which is indeed satisfied, as follows from Proposition 1.12b. So, to prove part a it remains
to show that R is both open and closed in S ×M S.

To prove that R is closed in S ×M S, we will show that every (p1, p2) ∈ S ×M S admits
an open neighbourhood that intersects R in a closed subset of this neighbourhood. Given
such (p1, p2), as before, we pass to the local models around Op1 and Op2 using (Φ,Ψ1) and
(Φ,Ψ2). From the description (80) we find that Sθ,1 ×Mθ

Sθ,2 is the subset of Sθ,1 × Sθ,2
consisting of pairs:

(([q1], α1, v1), ([q2], α2, v2))

satisfying:
[q1] = [q2] ∈ P/Gx & α1 = α2 ∈ g∗x.

Furthermore, a straightforward verification shows that (Ψ1,Ψ2) identifies R near (p1, p2)
with the subset of those pairs that in addition satisfy:

(82) [q1 : q2] ∈ NGx(Gp1 ,Gp2) := {g ∈ Gx | gGp1g−1 = Gp2}.
Notice thatNGx(Gp1 ,Gp2) is closed in Gx and invariant under left multiplication by elements
of Gp2 and under right multiplication by elements of Gp1 , so that it corresponds to a closed
subset of:

Gp2\Gx/ Gp1 .
Hence, by continuity of the map:

(P/Gp1)×P/Gx (P/Gp2)→ Gp2\Gx/ Gp1 , ([q1], [q2]) 7→ [q1 : q2] mod Gp2 × Gp1
it follows that (82) is a closed condition in Sθ,1×Mθ

Sθ,2. So, R is indeed closed in S×M S.

To show that R is open in S×M S we can argue in exactly the same way, now restricting
attention to pairs (p1, p2) ∈ R, so that the condition (82) becomes:

[q1 : q2] ∈ NGx(Gp1),
where NGx(Gp1) denotes the normalizer of Gp1 in Gx, and we are left to show that NGx(Gp1)
is open in Gx. To this end, recall from before that the coadjoint action of Gx on g∗x is trivial.
So, the action by conjugation of Gx on its identity component G0x is trivial. This can be
rephrased as saying that the action by conjugation of G0x on Gx is trivial. In particular,
G0x is contained in NGx(Gp1) and therefore the Lie subgroup NGx(Gp1) is indeed open in Gx.
This concludes the proof of part a. □

For the proof of part b we recall the lemma below, which follows from the linearization
theorem for proper Lie groupoids (see e.g. the proof of [18, Proposition 23] for details).

Lemma 2.101. Let G ⇒ M be a proper Lie groupoid with a single isomorphism type,
meaning that Gx is isomorphic to Gy for all x, y ∈ M (see Example 2.7). Then the leaf
space (M, C∞M ) is a smooth manifold and the projection M →M is a submersion.

Proof of Theorem 2.100; parts b and c. It is readily verified that R is invariant under the
diagonal G-action along J ◦ pr1 : S ×M S → M and that the restricted action is smooth.
Since G is proper, so is the action groupoid G ⋉R. Furthermore, the isotropy group of
the G-action at (p, q) ∈ R is the isotropy of the G-action on S at p. So, since the isotropy
groups of the action on S are all isomorphic (by Remark 2.99), the same holds for the
isotropy groups of the action onR. In view of Lemma 2.101, we conclude that part b holds.

We turn to part c. One readily verifies that R inherits the structure of a Lie groupoid
over S from the Lie groupoid R⇒ S. To see that the Lie groupoid R is proper, suppose
that we are given a sequence of [pn, qn] ∈ R with the property that tR([pn, qn]) = [pn] and
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sR([pn, qn]) = [qn] converge in S as n → ∞. We have to show that the given sequence
in R admits a convergent subsequence. Since the orbit projection S → S is a surjective
submersion, it admits local sections around all points in S. Using this, we can (for n
large enough) find gn, hn ∈ G in the source fiber over J(pn) = J(qn) such that gn · pn and
hn · qn converge in S as n→∞. Then tG(gnh−1

n ) = J(gn · pn) and sG(gnh−1
n ) = J(hn · qn)

both converge in M as n→∞. By properness of G, it follows that there is a subsequence
gnk

h−1
nk

that converges in G as k → ∞. Together with convergence of hnk
· qnk

, this im-
plies that gnk

· qnk
converges in S as well. So, since R is closed in S × S, it follows that

gnk
· (pnk

, qnk
) converges in R. Therefore, [pnk

, qnk
] converges in R. This shows that the

required subsequence exists and hence proves properness of the Lie groupoid R.

To complete the proof of c, we are left to show that the symplectic structure on the
pair groupoid S × S descends to a symplectic structure ΩR on R, and that (R,ΩR)
integrates (S, πS). To see that the restriction ΩR ∈ Ω2(R) of ω ⊕ −ω to R descends
to a 2-form on R, recall that this is equivalent to asking that ΩR is basic with respect
to the G-action on R (in the sense of [69, 76, 85]), which means that: m∗

RΩR = pr∗RΩR,
where mR, prR : G ⋉R → R denote the target and source map of the action groupoid.
This equality is readily verified. So, ΩR indeed descends to a 2-form ΩR on R. Further
notice that ΩR is closed (because ω is closed) and it inherits multiplicativity from the
multiplicative form ω ⊕−ω on the pair groupoid S × S. Moreover, using the momentum
map condition (6), Proposition 1.12 and the description (81) of the tangent space to R,
it is straightforward to check that ΩR is non-degenerate. So, (R,ΩR) is a symplectic
groupoid. We leave it to the reader to verify that (R,ΩR) integrates (S, πS). □

2.5.3. Reduction to Hamiltonian actions of principal type. The aim of this subsection is to
show that the restriction of a given Hamiltonian action (by a proper symplectic groupoid)
to any stratum of SHam(S) can be reduced to a Hamiltonian action of principal type.
More precisely, we prove:

Theorem 2.102. Let (G,Ω) be a proper symplectic groupoid and suppose that we are
given a Hamiltonian (G,Ω)-action along J : (S, ω) → M . Let ΣS ∈ SHam(S) and let
ΣM ∈ SGp(M) be such that J(ΣS) ⊂ ΣM . Finally, let qS : S → S and qM : M → M
be the orbit and leaf space projections, and consider ΣS = q−1

S (ΣS) and ΣM = q−1
M (ΣM).

Then the following hold.
a) The restriction ωΣS

∈ Ω2(ΣS) of the symplectic form ω to ΣS has constant rank.
Moreover, the null foliation integrating Ker(ωΣS

) is simple, meaning that its leaf
space admits a smooth manifold structure with respect to which the leaf space pro-
jection is a submersion.

Let SΣ denote this leaf space and let ωSΣ
denote the induced symplectic form on SΣ.

b) The restriction of Ω to G|ΣM
has constant rank and the leaf space of its null foliation

is naturally a proper symplectic groupoid (GΣM
,ΩΣM

) over ΣM .
c) The map J descends to a map:

JSΣ
: (SΣ, ωSΣ

)→ ΣM

and the Hamiltonian (G,Ω)-action along J descends to a Hamiltonian (GΣM
,ΩΣM

)-
action along JSΣ

, which is of principal type.
d) There is a canonical Poisson diffeomorphism:

(ΣS, πΣS
) ∼= (SΣ, πSΣ

).

Together with Theorem 2.100, this would prove Theorem 2.97. To prove Theorem 2.102,
we use the following Lie theoretic description of the null foliation of ωΣS

. Recall that,
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given a real finite-dimensional representation V of a compact Lie group G, the fixed-point
set V G has a canonical G-invariant linear complement cV in V , given by the linear span
of the collection:

{v − g · v | v ∈ V, g ∈ G}.
To see that cV is indeed a linear complement to V G, note that for any choice of G-invariant
inner product on V , cV coincides with the orthogonal complement to V G in V . We will
call cV the fixed-point complement of V . For the dual representation V ∗, it holds that:

(83) (V ∗)G = (cV )
0,

the annihilator of cV in V . Of particular interest will be the adjoint representation.

Proposition 2.103. Let G be a compact Lie group. The fixed-point complement cg of the
adjoint representation is a Lie subalgebra of g, given by:

cg = cZ(g) ⊕ gss,

where Z(g) is the center (viewed as G-representation) and gss = [g, g] is the semi-simple
part of g.

Proof. This follows from the observation that Z(g) is the fixed-point set for the adjoint
action of the identity component of G and [g, g] is the orthogonal complement to Z(g) in
g with respect to any invariant inner product. □

We now give the aforementioned description of the null foliation.

Lemma 2.104. Let p ∈ ΣS and x = J(p) ∈ ΣM , with notation as in Theorem 2.102. Let

aJ : J∗(T ∗M)→ TS

be the bundle map underlying the infinitesimal action (7) associated to the Hamiltonian
action. Further, let cgx denote the fixed-point complement of the adjoint representation of
Gx. Then:

Ker(ωΣS
)p = (aJ)p(cgx),

where we view gx ⊂ T ∗
xM via (117).

Proof. Because (by Corollary 2.92) the orbit projection (77) is a forward Dirac map from
the pre-symplectic manifold (ΣS, ωΣS

) into a Poisson manifold, it must hold that:

Ker(ωΣS
)p ⊂ TpO.

Since TpO ⊂ TpΣS, it also holds that:

Ker(ωΣS
)p ⊂ TpOω.

For any Hamiltonian action, we have the equality:

TpO ∩ TpOω = (aJ)p(gx),

as is readily derived from the momentum map condition (6). So, we conclude that:

Ker(ωΣS
)p ⊂ (aJ)p(gx).

Now consider the composition of maps:

(84)
TpΣS

TpO
↪→ Np

dJp−−→ Nx
∼−→ g∗x,

where the third map is dual to the canonical isomorphism between gx (which via (117) we
view as the annihilator of TxL in T ∗

xM) and N ∗
x . Using a Hamiltonian Morita equivalence

as in the proof of Proposition 2.51, together with Proposition 1.11b, Proposition 1.55c,
Lemma 2.57 and Morita invariance of the J-isomorphism types, it is readily verified that
the image of (84) is (g0p)

Gx . From this and the momentum map condition (6) it follows
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that, given α ∈ gx, the tangent vector (aJ)p(α) belongs to Ker(ωΣS
)p if and only if α

belongs to the annihilator of (g0p)Gx . This annihilator equals gp+ cgx , as (83) implies that:

(g0p)
Gx := g0p ∩ (g∗x)

Gx = (gp + cgx)
0.

So, all together it follows that:

Ker(ωΣS
)p = (aJ)p(gp + cgx) = (aJ)p(cgx),

which proves the lemma. □

We can interpret this as follows: the T ∗
πM -action associated to the momentum map J

restricts to an infinitesimal action of the bundle of Lie algebras:⊔
x∈ΣM

cgx ⊂ T ∗M |ΣM

and the orbit distribution of this infinitesimal action coincides with the distribution
Ker(ωΣS

). The proof of Theorem 2.102 therefore boils down to showing that this in-
finitesimal action integrates to an action of a bundle of Lie groups in G, the orbit space
of which is smooth.

Proposition 2.105 ([16]). Let (G,Ω) ⇒ M be a proper symplectic groupoid, let Σ ∈
SGp(M) and let Σ = q−1(Σ), for q : M → M the leaf space projection. Consider the
family of Lie groups: ⊔

x∈Σ

Cgx ⊂ G|Σ

where Cgx is the unique connected Lie subgroup of Gx that integrates cgx. This defines a
closed, embedded and normal Lie subgroupoid of G|Σ and the quotient of G|Σ by this bundle
of Lie groups is naturally a proper symplectic groupoid over Σ of principal type.

Proof. First, observe that for any compact Lie group G, the connected Lie subgroup Cg

of G with Lie algebra cg is compact. To see this, let Gss be the connected Lie subgroup of
G with Lie algebra the compact and semisimple Lie subalgebra gss = [g, g] of g, let G0 be
the identity component of G and let Z(G0)0 denote the identity component of the center
of G0. Fix g1, ..., gn ∈ G such that G/G0 = {[g1], ..., [gn]}. It follows from Proposition
2.103 that Cg is the image of the morphism of Lie groups:(

Z(G0)0
)n ×Gss → G, (h1, ..., hn, g) 7→ [h1, g1] · ... · [hn, gn] · g,

where [hi, gi] = higih
−1
i g−1

i is the commutator (which again belongs to Z(G0)0). So, since
both Gss and Z(G0)0 are compact, Cg is compact as well. Using this and the linearization
theorem for proper Lie groupoids (see Subsection 1.3.2 for the local model) one sees that
the family of the Lie groups Cgx is a closed embedded Lie subgroupoid of G|Σ over Σ.
Furthermore, for every g ∈ G|Σ starting at x and ending at y, it holds that:

gCgxg
−1 = Cgy .

This follows from the observation that an isomorphism of compact Lie groups G1 → G2

maps Cg1 onto Cg2 . So, the family of Lie groups is also a normal subgroupoid of G|Σ.
Therefore, the quotient of the proper Lie groupoid G|Σ by this bundle of Lie groups is
again a proper Lie groupoid. It follows from Lemma 2.104, applied to the Hamiltonian
action of Example 2, that the pre-symplectic form Ω|(G|Σ) on G|Σ has constant rank and
its null foliation coincides with the foliation by orbits of the action on G|Σ of this bundle
of Lie groups. So, the quotient groupoid inherits a symplectic form. This symplectic form
inherits multiplicativity from Ω. Hence, the quotient is a symplectic groupoid. Finally, in
light of Remark 2.99 the quotient groupoid is of principal type, because for any x, y ∈ Σ
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there is an isomorphism between Gx and Gy, and any such isomorphism descends to one
between the isotropy groups Gx/Cgx and Gy/Cgy of the quotient groupoid. □

We are now ready to complete the proof of the reduction theorem.

Proof of Theorem 2.102. Consider the family of Lie groups:

HΣM
:=

⊔
x∈ΣM

Cgx ⊂ G|ΣM

of Proposition 2.105. Being a closed embedded Lie subgroupoid of the proper Lie groupoid
G|ΣM

, the Lie groupoid HΣM
is proper as well. Hence, so is any smooth action of HΣM

.
It acts along J : ΣS → ΣM via the action of G. Proposition 2.51 implies that for any
p, q ∈ ΣS, writing x = J(p) and y = J(q), there is an isomorphism of pairs of Lie groups:
(85) (Gx,Gp) ∼= (Gy,Gq).
Such an isomorphism restricts to an isomorphism between the isotropy groups of the
HΣM

-action:
(HΣM

)p = Cgx ∩ Gp ∼= Cgy ∩ Gq = (HΣM
)q.

So, appealing to Lemma 2.101, we find that the orbit space admits a smooth manifold
structure for which the orbit projection is a submersion. It follows from Lemma 2.104
that the orbits of this action are the leaves of the null foliation of ωΣS

, so this proves part
a of the theorem. Part b of the theorem is proved in Proposition 2.105. For part c, notice
that J factors through to a map JSΣ

(since the source and target of any element in HΣM

coincide) and the action of G along J descends to an action of GΣM
along JSΣ

. As the
action of (G,Ω) along J is Hamiltonian, the same follows for the action of (GΣM

,ΩΣM
)

along JSΣ
. By the previous proposition, GΣM

is of principal type. Furthermore, for any
two [p], [q] ∈ SΣ there is, as before, an isomorphism of pairs (85), and this descends to an
isomorphism between the Lie groups:

Gp/(Cgx ∩ Gp) ∼= Gq/(Cgy ∩ Gq),
which are canonically isomorphic to the respective isotropy groups of the GΣM

-action at
[p] and [q]. In view of Remark 2.99 we conclude that the Hamiltonian (GΣM

,ΩΣM
)-action

is of principal type. This completes the proof of parts a − c. For the final statement,
consider the diagram:

(ΣS, ωΣS
) (SΣ, ωSΣ

)

(ΣS, πΣS
) (SΣ, πSΣ

)

All arrows are surjective submersions and by construction (in particular, Corollary 2.92)
each is forward Dirac. Evidently, the left vertical map factors through the composition of
the other two, and vice versa. Hence, by functoriality of the push-forward construction for
Dirac structures, the diagram completes to give the desired Poisson diffeomorphism. □
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PART 2

Toric actions of regular and proper symplectic groupoids
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Introduction

This part concerns the classification of toric actions of regular and proper symplectic
groupoids. To elaborate, recall that the notion of Hamiltonian action for symplectic
groupoids (introduced in [60]) unifies various momentum map theories appearing in Pois-
son geometry, with the common feature that in each case the momentum map is a Poisson
map:

J : (S, ω)→ (M,π)

from a symplectic manifold into a specified Poisson manifold (M,π), equipped with a
Hamiltonian action of a natural symplectic groupoid integrating (M,π) (see e.g. [79, 87]
and the references therein). Here we focus on such actions for which the Poisson structure
is regular and the symplectic groupoid is proper, using the framework developed in [15]
for such symplectic groupoids and their associated Poisson structures. The main point of
this part is to provide a classification of a class of such actions that we call toric.

To explain this classification we first focus on actions of symplectic torus bundles, which
form a class of symplectic groupoids analogous to the class of Lie groups formed by tori.
Like tori, these admit a particularly concrete description in terms of lattices. Indeed,
a symplectic torus bundle (T ,Ω) induces an integral affine structure on its base M ,
encoded by a Lagrangian lattice bundle Λ in the cotangent bundle T ∗M , and (T ,Ω) is
entirely encoded by Λ. More precisely, it is canonically isomorphic to the symplectic
torus bundle (TΛ,ΩΛ) over M , where TΛ := T ∗M/Λ denotes the bundle of tori associated
to Λ (a groupoid over M with multiplication given by fiberwise addition) and ΩΛ is
the symplectic form induced by the canonical symplectic form dλcan on the cotangent
bundle T ∗M (see e.g. [15, Proposition 3.1.6]). The starting point for our classification of
toric (T ,Ω)-spaces (Theorem 1 below) was to find the connection between two important
classical results: the classification of toric manifolds in terms of Delzant polytopes (due to
Delzant [22]) and the classification of proper Lagrangian fibrations via their Lagrangian
Chern class (implicit in Duistermaat’s work [25]), recalled in Example 3 and Example 4
below. As in these classical results, the integral affine structure Λ plays a key role in our
classification. Inspired by the types of actions studied by Delzant and Duistermaat, we
call a Hamiltonian (T ,Ω)-space J : (S, ω)→M toric if it has the three properties below.

i) The T -action is free on a dense subset of S.
ii) The T -orbits coincide with the fibers of J .
iii) The map S/T →M induced by J is a topological embedding.

The last condition here is purely topological, as the second condition means that the
induced map S/T →M is injective. An equivalent set of conditions consists of i) together
with the two conditions below (cf. Appendix A).

ii’) dim(S) = 2dim(M) and the fibers of J are connected.
iii’) The momentum map J : S →M is proper as a map onto its image.

As for toric manifolds, the momentum map J of a toric (T ,Ω)-space is an integrable
system in local coordinates for M .

Theorem 1 (Classification of toric actions by symplectic torus bundles). Let (T ,Ω) be a
symplectic torus bundle over M with induced integral affine structure Λ on M .

a) For any toric (T ,Ω)-space J : (S, ω) → M , the image of the momentum map J
is a Delzant subspace of the integral affine manifold (M,Λ) (Definition 3.19; cf.
Example 3).
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b) For any Delzant subspace ∆ in (M,Λ), there is a canonical bijection:
Isomorphism classes of
toric (T ,Ω)-spaces

with momentum image ∆

←→ Ȟ1(∆,L),

that associates to a toric (T ,Ω)-space its ‘Lagrangian Chern class’ (cf. Example
4). Here the right-hand side denotes the degree one Čech cohomology of the sheaf
L∆ consisting of Lagrangian sections of the symplectic torus bundle (T ,Ω) over ∆
(Definition 4.12).

So, there is a canonical bijection:

(86)
{Isomorphism classes of

toric (T ,Ω)-spaces

}
←→

{
Pairs (∆, κ) of a Delzant subspace ∆

of (M,Λ) and a class κ in Ȟ1(∆,L)

}
.

This theorem is an amalgam of the classifications in the work of Delzant and Duister-
maat mentioned before. The Delzant subspaces appearing in part a are codimension zero
submanifolds with corners that are ‘fully compatible with the integral affine structure’.
Delzant polytopes are examples of these (see Example 3 below). On the other hand, the
idea behind the bijection in part b is the same as that in the classification in Duistermaat’s
work (briefly recalled in Example 4 below).

Example 3. Delzant’s classification of toric manifolds can be recovered from Theorem
1, as follows. Let T be a torus with Lie algebra t and character lattice Λ∗

T in t∗. Recall
that a Delzant polytope in the integral affine vector space (t∗,Λ∗

T ) is a convex polytope
∆ in t∗ with the property that at each vertex x the polyhedral cone Cx(∆) spanned by
the edges meeting at x is generated by a Z-basis of Λ∗

T . Delzant showed that there is a
canonical bijection:{ Isomorphism classes of compact,

connected toric T -spaces

}
←→

{
Delzant polytopes in (t∗,Λ∗

T )
}
,

defined by assigning to such a toric T -space the image of its momentum map. This can
be recovered from the theorem above, applied to the coadjoint action groupoid (see e.g.
[60, Section 3]):

(T ,Ω) = (T ⋉ t∗,Ωcan),

by means of the following two observations:
• {Delzant polytopes in (t∗,Λ∗

T )} = {Compact, connected Delzant subspaces of (t∗,Λ∗
T )},

• for any Delzant polytope ∆ the cohomology Ȟ1(∆,L) vanishes, due to convexity
of ∆.

Example 4. For any integral affine manifold (M,Λ), ∆ :=M itself is a Delzant subspace.
In this case Theorem 1 recovers the aforementioned classification of proper Lagrangian
fibrations. To explain this, recall that a proper Lagrangian fibration is a symplectic man-
ifold (S, ω) together with a proper surjective submersion J : (S, ω)→M with Lagrangian
fibers. We will always assume such fibrations to have connected fibers, without further
notice. Any such fibration over M induces an integral affine structure Λ on M . Duister-
maat implicitly showed that, given any fixed integral affine manifold (M,Λ), there is a
canonical bijection:

(87)


Isomorphism classes of

proper Lagrangian fibrations over M
with induced integral affine structure Λ

←→ Ȟ1(M,L)
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that associates to [J : (S, ω)→M ] its so-called Lagrangian Chern class (called Lagrangian
class in [72,86]). The key insight leading to (87) is that fibrations as in (87) can be viewed
as certain principal TΛ-bundles, called symplectic (TΛ,ΩΛ)-torsors in [15,72]. Indeed, any
such fibration is a Poisson map into (M, 0) that admits a (necessarily unique) Hamiltonian
(TΛ,ΩΛ)-action along it, which turns it into a symplectic (TΛ,ΩΛ)-torsor (cf. [15, pg. 23,
pg. 88]). From that point of view the construction of the bijection (87) is analogous to
that in the usual classification of principal G-bundles in terms of Čech cohomology. For
a given symplectic torus bundle (T ,Ω) over M , the notion of a symplectic (T ,Ω)-torsor
coincides with that of a toric (T ,Ω)-space with momentum image M . So, in the setting
of Theorem 1 there is a canonical bijection:

Isomorphism classes of
proper Lagrangian fibrations over M

with induced integral affine structure Λ

←→


Isomorphism classes of
toric (T ,Ω)-spaces

with momentum image M

 .

In this way Theorem 1 recovers the classification of proper Lagrangian fibrations above.

Next, we explain our classification for toric actions of general regular and proper sym-
plectic groupoids. Throughout this thesis, we use the following as a working definition
for such actions.

Definition. Let (G,Ω) ⇒ M be a regular and proper symplectic groupoid and let T be
the torus bundle over M with fibers the identity components of the isotropy groups of G
(also see Subsection 3.2.4). We call a Hamiltonian (G,Ω)-action along J : (S, ω) → M
toric if:

i) The induced T -action is free on a dense subset of S.
ii) The T -orbits coincide with the fibers of J .
iii) The transverse momentum map J : S →M is a topological embedding.

In this case, we refer to J : (S, ω)→M as a toric (G,Ω)-space. Here and throughout:
• S := S/G, which we refer to as the orbit space of the G-action,
• M :=M/G, which we refer to as the leaf space of G,
• J denotes the map induced by J , which we refer to as the transverse momentum

map.

The last condition here is purely topological, as J is injective by the second condition.
In Proposition A.1 we give a more Poisson geometric characterization of toric (G,Ω)-
spaces. That characterization shows that the momentum map of a toric (G,Ω)-space is a
non-commutative integrable system (e.g. in the sense of [44]) in local Darboux-Weinstein
coordinates for (M,π), with π the Poisson structure induced by the symplectic groupoid.

For the rest of this introduction, let (G,Ω) ⇒ M and T be as in the above definition.
The fact that symplectic torus bundles induce an integral affine structure on their base
generalizes as follows. The symplectic groupoid (G,Ω) induces an integral affine structure,
not on M , but on its leaf space M , which has the structure of an orbifold encoded by the
orbifold groupoid B := G/T ⇒ M . The induced integral affine structure on this orbifold
is encoded by a B-invariant lattice bundle Λ in the co-normal bundle N ∗F to the leaves of
G. This is shown in [15] and recalled in Subsection 3.2.4. Part a of Theorem 1 generalizes
as follows.

Theorem 2. Let (G,Ω) be a regular and proper symplectic groupoid. For any toric (G,Ω)-
space J : (S, ω)→M , the image of the transverse momentum map:

J(S) ⊂M
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is a Delzant subspace of the leaf space M (in the sense of Definition 3.23, with respect to
the integral affine orbifold structure mentioned above).

Here, intuitively, one can think of Delzant subspaces as codimension zero ‘suborbifolds
with corners’ that are ‘fully compatible with the integral affine structure’. We split the
generalization of part b of Theorem 1 into two theorems. The first explains to which extent
the momentum image determines the isomorphism class of a given toric (G,Ω)-space.

Theorem 3 (First structure theorem). Let (G,Ω) ⇒M be a regular and proper symplectic
groupoid, let ∆ be a Delzant subspace of the leaf space M (in the same sense as in Theorem
2) and let ∆ be the corresponding invariant subspace of M . If:

(88)


Isomorphism classes of

toric (G,Ω)-spaces
with momentum image ∆

 ̸= ∅,
then it is a torsor with abelian structure group:

(89) Ȟ1(B|∆,L),

the degree one Čech cohomology of the B|∆-sheaf L∆ of Lagrangian sections of T over ∆
(defined in Subsection 4.3.6). This action is natural with respect to Morita equivalences
(in the sense of Proposition 4.38).

The second addresses the condition (88).

Theorem 4 (Splitting theorem). In the setting of Theorem 3: the condition (88) holds if
and only if (G,Ω)|∆ is Morita equivalent to (B 1 T , pr∗T ΩT )|∆ (as pre-symplectic groupoid
with corners over ∆; see Remark 3.24 and Definition B.22).

Here B 1 T denotes the semi-direct product groupoid over M associated to the B-action
along T →M via conjugation in G and ΩT is the restriction of the symplectic form Ω on
G.

Remark 3. Theorem 3 and the proof of Theorem 4 lead to a sharper conclusion in the
setting of Theorem 1. Indeed, Theorem 4.1 shows that for any Delzant subspace ∆ of
(M,Λ) there is a canonically associated toric (T ,Ω)-space J∆ : (S∆, ω∆) → M with
momentum image ∆. So, there is a canonical section of the map:{Isomorphism classes of

toric (T ,Ω)-spaces

}
−→ {Delzant subspaces of (M,Λ)}

that assigns to a toric (T ,Ω)-space its momentum image. Combined with Theorem 3
this leads to the bijection (86), where a pair (∆, κ) corresponds to the isomorphism class
obtained by letting κ act on the isomorphism class of J∆. More generally, Theorem
3 leads to such a bijection when (G,Ω) is a semi-direct product symplectic groupoid
(B 1 T , pr∗T ΩT ), with B an etale orbifold groupoid acting on a symplectic torus bundle
(T ,ΩT ) as in Subsection 4.4.2 (by the same reasoning, using Proposition 4.55 in addition
to Theorem 4.1).

Remark 4. We believe (but have yet to verify) that there is a natural cohomology class
that encodes the obstruction to the existence of a toric (G,Ω)-space with momentum image
a prescribed ∆ (i.e. a class that vanishes if and only if (88) holds). To be more precise,
we expect that one can construct (essentially as in [15]) a ‘Lagrangian Dixmier-Douady
class relative to ∆’:

(90) c2(G,Ω,∆) ∈ Ȟ2(B|∆,L),
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and this should be the class obstructing (88). Here the ambient group denotes the de-
gree two Čech cohomology of the transversal B|∆-sheaf L∆ appearing in the Theorem 3.
Furthermore, we expect that the Lagrangian Dixmier-Douady class c2(G,Ω,M) defined
in [15] will be mapped to c2(G,Ω,∆) under the natural restriction map:

Ȟ2(B,L)→ Ȟ2(B|∆,L).

Example 5. Let G be an infinitesimally abelian compact Lie group, meaning that its
Lie algebra g is abelian. For toric G-spaces, the outcome of theorems 3 and 4 can be
rephrased in terms of the group G. To be more precise, recall that Hamiltonian G-spaces
correspond to Hamiltonian (G,Ω)-spaces for the coadjoint action groupoid:

(G,Ω) := (G⋉ g∗,Ωcan)

over g∗ (see e.g. [60]). Via this correspondence, a compact and connected Hamiltonian
G-space J : (S, ω) → g∗ is toric in our sense if and only if J : (S, ω) → g∗ is a toric T -
space in the classical sense with respect to the induced action of the identity component
T of G (a torus). So, these are classical toric manifolds with additional symmetry, which
is reflected by the fact that the Delzant polytope corresponding to such a toric T -space
(its momentum image) is invariant with respect to the induced action of the finite group
Γ := G/T on g∗. Our theorems lead to the following conclusions, which (somewhat
surprisingly) we could not find in the literature. Let ∆ be a Γ -invariant Delzant polytope
in (g∗,Λ∗

T ) and let J : (S, ω) → g∗ be a toric T -space with momentum image ∆. The
latter is unique up to T -equivariant symplectomorphism and any isomorphism class of
toric G-spaces with momentum image ∆ can be represented by a toric G-action on (S, ω)
with momentum map J (cf. Example 3).

• The condition (88) can be rephrased as requiring that the symplectic T -action on
(S, ω) extends to such an action of G that is compatible with the Γ -action on ∆.
It follows from Theorem 4 that this holds if and only if the short exact sequence
of groups:

(91) 1→ T → G→ Γ → 1

admits a right splitting (i.e. the extension is trivial up to isomorphism).
• Theorem 3 explains in which different ways (up to isomorphism of toric G-spaces)

the T -action on (S, ω) extends to a G-action as above. Namely: if the T -actions
extends, then the set of isomorphism classes of toric G-spaces is a torsor with
structure group H1(Γ, T ), the degree one group cohomology of the Γ -module T ,
equipped with the Γ -action induced by the action of G on T by conjugation.
This is because the structure group (89) is naturally isomorphic to H1(Γ, T ) (see
Proposition 4.53a). Explicitly, the H1(Γ, T )-action associates to a group 1-cocycle
c : Γ → T and a toric G-space with momentum map J the toric G-space with the
same momentum map, but with G-action twisted by c:

g ·c p = gc([g]) · p, g ∈ G, p ∈ S.

So, the T -action extends in different ways, each corresponding to an automorphism
of the extension (91), modulo automorphisms given by conjugation by elements of
T .

Remark 5. Of course, there is a natural class in H2(Γ, T ) that encodes the obstruction
to the existence of a right splitting of (91). We expect this to be recovered by the class
in Remark 4.
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Example 6. Example 4 generalizes as follows: for source-connected (G,Ω) ⇒ M , toric
(G,Ω)-spaces with momentum image ∆ = M correspond to certain proper isotropic fi-
brations over M . To elaborate, recall that proper isotropic fibrations are defined by
replacing ‘Lagrangian’ by ‘isotropic’ in Example 4, with the additional requirement that
the symplectic orthogonal Ker(dJ)ω is an involutive distribution (these are symplectically
complete isotropic fibrations in the sense of [20]). Any such fibration J : (S, ω) → M
induces a regular Poisson structure π on M , uniquely determined by the property that
J : (S, ω) → (M,π) is a Poisson map (as a consequence of Libermann’s theorem [48]).
Moreover, as shown in [20], such a fibration induces a transverse integral affine struc-
ture to the foliation Fπ on M by symplectic leaves of π, encoded by a lattice bundle Λ
in the co-normal bundle N ∗Fπ. Suppose now that Fπ is of proper type, meaning that
its holonomy groupoid Hol(M,Fπ) is proper. It is shown in [15] that there is a natural
source-connected proper symplectic groupoid:

(92) (HolJ(M),ΩJ) ⇒M

associated to J : (S, ω)→M , with the following properties.
• It integrates (M,π).
• The (transverse) integral affine structure induced by (HolJ(M),Ω) is that induced

by J .
• The associated orbifold structure on M is that encoded by Hol(M,Fπ), because

the associated orbifold groupoid is the integration Hol(M,Fπ) of Fπ.
The map J : (S, ω) → M admits a canonical Hamiltonian (HolJ(M),Ω)-action, which
is makes it a toric (HolJ(M),Ω)-space. More generally, for any orbifold groupoid B
integrating Fπ, there is a natural integration (G,Ω) of (M,π) associated to J , for which
the associated orbifold groupoid G/T is the integration B of Fπ. This is called the B-
integration of (M,π) relative to J ([15, pg. 82]). It also induces the same (transverse)
integral affine structure as J and acts canonically along J , making it a toric (G,Ω)-
space. This explains how such proper isotropic fibrations can naturally be viewed as
toric spaces. For the converse, let (G,Ω) be any source-connected, regular and proper
symplectic groupoid, let B = G/T and let π be the induced Poisson structure on its base
M . Then for any toric (G,Ω)-space J : (S, ω)→M with J(S) =M , the momentum map
is a proper isotropic fibration that induces this same Poisson structure on M . In fact,
(G,Ω) is the B-integration of (M,π) relative to J . An isomorphism of two such proper
isotropic fibrations:

(S1, ω1) (S2, ω2)

M

∼

J1 J2

is automatically G-equivariant, or in other words, it is an isomorphism of toric (G,Ω)-
spaces. Hence, there is a canonical bijection:

Isomorphism classes of
proper isotropic fibrations over (M,π)

with B-integration (G,Ω)

←→


Isomorphism classes of
toric (G,Ω)-spaces

with momentum image M

 .

This explains the relationship between toric (G,Ω)-spaces with momentum image ∆ =M
and proper isotropic fibrations over M . Finally, let us point out: by the splitting theorem,
(G,Ω) is the B-integration relative to some proper isotropic fibration if and only if (G,Ω)
is Morita equivalent to (B 1 T , pr∗T ΩT ). This recovers a result of [15].
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Our final two main theorems provide an alternative way of listing the elements of (88),
by means of an additional invariant of toric (G,Ω)-spaces that we call the ext-invariant
(Definition 3.47). This invariant is a global section of what we call the ext-sheaf (Defi-
nition 3.43):

(93) I1 = I1(G,Ω,∆).

This is a sheaf of sets on ∆ naturally associated to (G,Ω). Its stalk at a leaf Lx of G
through a point x ∈ ∆ is the set:

I1(Gx, Tx),
consisting of equivalence classes of right-splittings of the short exact sequence of isotropy
groups:

(94) 1→ Tx → Gx → Bx → 1

modulo the Tx-action by conjugation (cf. Definition 3.4 and Proposition 3.11).

Theorem 5 (Second structure theorem). Suppose that we are in the setting of Theorem
3 and let e be a global section of the ext-sheaf (93). If:

(95)


Isomorphism classes of
toric (G,Ω)-spaces

with momentum image ∆

and with ext-invariant e

 ̸= ∅,
then it is a torsor with abelian structure group:

(96) Ȟ1(∆,L),

the first degree Čech cohomology of the sheaf L∆ on ∆ associated to L∆ by considering
B-invariant sections (see Subsection 4.2.1). This action is natural with respect to Morita
equivalences (in the sense explained in Subsection 4.3.2).

The structure groups in the first and second structure theorem are related by a natural
injective group homomorphism (defined in Subsection 4.3.6):

(97) Ȟ1(∆,L) ↪→ Ȟ1(B|∆,L),
which is compatible with the actions in these theorems. This leads to:

Theorem 6 (Third structure theorem). In the setting of Theorem 3: if (88) holds, then
the image of the map:

(98)


Isomorphism classes of
toric (G,Ω)-spaces

with momentum image ∆

 −→ I1(∆),

that associates to an isomorphism class of a toric (G,Ω)-space its ext-invariant, is a torsor
with abelian structure group the quotient:

(99)
Ȟ1(B|∆,L)
Ȟ1(∆,L)

.

This action is natural with respect to Morita equivalences.

Remark 6. The action of (99) on the image of (98) in this theorem is inherited from
the action of (89) appearing in the first structure theorem. In Subsection 4.3.8 we give a
more direct and insightful description of this action on the image of (98).
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Together, the second and third structure theorem provide a way of listing the isomorphism
classes of toric (G,Ω)-spaces different from that in the first structure theorem.

Example 7. To illustrate this difference we return to Example 5. From the second and
third structure theorem and the splitting theorem we obtain a canonical bijection:

(100)
{ Isomorphism classes of compact,

connected toric G-spaces

}
←→

{
Γ -invariant Delzant
polytopes in (g∗,Λ∗

T )

}
× I1(G, T ),

that associates to a class [J : (S, ω) → g∗] the pair consisting of the image ∆ of the
momentum map J and the germ of its ext-invariant at any Γ -fixed point in ∆. This is
because for any Γ -invariant Delzant polytope ∆ in (g∗,Λ∗

T ) the following hold.
• The structure group (96) is trivial, due to convexity of ∆ (see Proposition C.1).
• As mentioned before: the structure group (89) is naturally isomorphic to the

degree one group cohomology H1(Γ, T ).
• The set of global sections of (93) is naturally in bijection with the set I1(G, T )

consisting of equivalence classes of right splittings of the short exact sequence of
groups (91) modulo the T -action by conjugation. Moreover, under this and the
previous identification the action of (89) on the set of global section of (93) is
identified with the free and transitive action of H1(Γ, T ) on I1(G, T ) obtained by
viewing H1(Γ, T ) as the group of automorphisms of the extension (91) modulo
the subgroup of those automorphisms given by conjugation by elements of T (see
Proposition 4.53b).

This classification seems to be a novelty (for G ̸= T ).

Another interesting class that our results apply to is that of toric G-spaces with regular
momentum image (meaning that the image of the momentum map is contained in the
regular part of g∗), for compact Lie groups G. This yields a subclass of the so-called
multiplicity-free Hamiltonian G-spaces. For connected compact Lie groups G, there is
a classification of all multiplicity-free Hamiltonian G-spaces [23, 42, 82], not restricted
to those with regular momentum image. Having this in mind, we hope to extend our
classification results to actions of non-regular proper symplectic groupoids in the future.
Nonetheless, for disconnected compact Lie groups G our results do seem to give new in-
sights (as illustrated by the examples above). We expect that our classification will read-
ily generalize to quasi-Hamiltonian actions of regular and proper twisted pre-symplectic
groupoids (in the sense of [10, 84]), so as to include toric quasi-Hamiltonian G-spaces (in
the sense of [1]) with regular momentum image, for compact Lie groups G. In the current
classification results for quasi-Hamiltonian G-spaces [43] the Lie group G is assumed to
be simply-connected. We hope that extending our results to the quasi-Hamiltonian set-
ting will provide new insight in the case in which G is not simply-connected. Another
interesting direction in which we believe that our results can be stretched is that of [40],
where the topological assumptions on the momentum map are dropped. The cost of this
is that the classification is no longer just in terms of the transverse momentum image,
but in terms of the entire transverse momentum map. We expect that our classification
can be extended similarly.

Brief outline: In Chapter 3 we introduce Delzant subspaces of integral affine orbifolds
and prove that the momentum image of a toric (G,Ω)-space is such a subspace (Theorem
2). Furthermore, we introduce the ext-invariant of a toric (G,Ω)-space and the sheaf (93).
Most of the proofs in Chapter 3 are based on a normal form theorem similar to Theorem
1.1. The normal form and these proofs are presented in the last two sections of Chap-
ter 3, which (except for Subsection 3.4.5) could be skipped at a first read. In Chapter
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4 we prove the three structure theorems and the splitting theorem stated above. For a
more detailed outline the reader may wish to read the introductions to each of the sections.

Acknowledgements: I wish to thank Marius for suggesting this project to me and for
useful discussions on the cohomology of orbifold sheaves. Furthermore, I would like to
thank Rui Loja Fernandes for sharing a private note on proper isotropic fibrations with
me. This short note contains a statement similar to the outcome of the first structure
theorem above when applied to the particular case of Example 6, which was a source of
inspiration for the statement of the first structure theorem.

87



3. The momentum image and the ext-invariant

In this chapter we introduce the notion of Delzant subspaces of integral affine orbifolds,
the ext-invariant of a toric action and the ext-sheaf. We also prove Theorem 2 and a
local version of Theorem 5 (namely Theorem 3.39) that will be used Chapter 4 to prove
Theorem 5.

In Section 3.1 we formulate and prove linear versions of the classification results in Exam-
ple 5 and Example 7. The content of this section forms the foundation for the construction
of the ext-invariant and the proofs of Theorem 2 and Theorem 3.39, and can be viewed
as a primer for all of the classification results in this part. In Section 3.2 we introduce
Delzant subspaces and recall the necessary background on integral affine orbifolds. The
ext-invariant and ext-sheaf are introduced in Section 3.3, where we also formulate The-
orem 3.39. Section 3.4 serves as preparation for the proofs of Theorem 2, Theorem 3.39
and of some results stated without proof in the previous sections (Proposition 3.35 and
Remark 3.46), which all involve a normal form theorem (a slight variation of Theorem
1.1) that we present in this section. In Section 3.5 we give these proofs.

3.1. Toric representations of infinitesimally abelian compact Lie groups.

3.1.1. Introduction. Let us first introduce some terminology.

Definition 3.1. By a symplectic representation (V, ω) of a Lie group H we mean
finite-dimensional real symplectic vector space (V, ω) together with a morphism H →
Sp(V, ω) into the Lie group of linear symplectic automorphisms of (V, ω).

For any such representation (V, ω), the H-action is Hamiltonian with equivariant momen-
tum map:

(101) JV : (V, ω)→ h∗, ⟨JV (v), ξ⟩ =
1

2
ω(ξ · v, v).

Definition 3.2. We call a Lie group H infinitesimally abelian if its Lie algebra is
abelian. Given an infinitesimally abelian compact Lie group H, we call a symplectic
representation H → Sp(V, ω) toric if the underlying Hamiltonian action of H on (V, ω)
is toric.

As will be clarified in Section 3.4, the local properties of Hamiltonian actions by proper
symplectic groupoids are largely encoded by their symplectic normal representations,
which are certain symplectic representations of the isotropy groups of the action. The
symplectic normal representations of the toric actions in this thesis turn out to be toric
representations (Proposition 3.35a). Therefore, the theorem below is important for un-
derstanding the local properties of toric actions.

Theorem 3.3. Let H be an infinitesimally abelian compact Lie group with identity com-
ponent T and let Γ := H/T be the group of connected components of H. There is a
canonical bijection:{ Isomorphism classes of

toric H-representations

}
←→

{ Smooth & Γ -invariant
pointed polyhedral cones in (t∗,Λ∗

T )

}
× I1(H,T )

defined by sending the class of a toric H-representation (V, ω) to the pair consisting of
the image ∆V of its momentum map (101) and its ext-class e(V, ω) (see Definition 3.13).
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In this section we explain and prove this statement, which is a modest extension of a well-
known result for representations of tori (Proposition 3.9 recalled below). Along the way,
we recall the necessary background on representations of tori and we fix some terminology
that will be used throughout. First, we elaborate on the set I1(H,T ). Notice that T is
a torus and the quotient Γ = H/T is a finite group. Furthermore, we have a canonical
short exact sequence of Lie groups:

(102) 1→ T → H → Γ → 1,

via which we view H as an extension of Γ by the abelian group T and we view T both
as an H-module and as a Γ -module, equipped with the actions by conjugation in H.
The set I1(H,T ) appearing in Theorem 3.3 is a subset of the degree one group coho-
mology H1(H,T ). Recall here that H1(H,T ) is the abelian group of 1-cocycles modulo
1-coboundaries, where a map c : H → T is a 1-cocycle if it satisfies:

c(h1h2) = (c(h1) · h2)c(h2), h1, h2 ∈ H,

whereas it a 1-coboundary if there is a t ∈ T such that c is given by:

c(h) = (t · h)t−1, h ∈ H.

Definition 3.4. Let H be an infinitesimally abelian compact Lie group with identity
component T . We let I1(H,T ) denote the subset of H1(H,T ) consisting of cohomology
classes whose representatives restrict to the identity map on T .

Remark 3.5. If I1(H,T ) is non-empty, then it is naturally a torsor with abelian structure
group H1(Γ, T ) (the degree one group cohomology), which makes it amenable to compu-
tation in explicit examples. Here, the action is defined by assigning to [κ] ∈ H1(Γ, T ) and
[σ] ∈ I1(H,T ) the class [κ] · [σ] represented by the 1-cocycle H → T that maps h ∈ H to
κ([h])σ(h) ∈ T .

The set I1(H,T ) is non-empty if and only if H is split (by Proposition 3.11), in the sense
below.

Definition 3.6. We will say that an infinitesimally abelian compact Lie group H is split
if the short exact sequence of groups (102) admits a right-splitting.

In Subsection 3.1.4 we will prove the proposition below, which is a linear version of the
forward implication in the Theorem 4. In view of this proposition, the statement of
Theorem 3.3 is trivially true when H is not split, since in this case both sets in the
bijection are empty.

Proposition 3.7. Let H be an infinitesimally abelian compact Lie group. If H admits a
toric representation, then it is split.

The proof of this will reveal the group cohomology class (113). In the coming subsections
we will explain the remaining parts of the statement and give a proof of Theorem 3.3.

3.1.2. Isomorphism versus equivalence of symplectic representations. Throughout, we will
use the following notions of equivalence between symplectic representations.

Definition 3.8. An isomorphism of symplectic H-representations is an H-equivariant
symplectic linear isomorphism. Given two Lie groups H1 and H2, by an equivalence be-
tween a symplectic H1-representation (V1, ω1) and a symplectic H2-representation (V2, ω2)
we mean a pair of maps:

(103) (φ, ψ) : (H1, (V1, ω1))→ (H2, (V2, ω2))
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consisting of an isomorphism of Lie groups φ : H1 → H2 and a symplectic linear isomor-
phism ψ : (V1, ω1)→ (V2, ω2) that are compatible with the actions, in the sense that:

φ(h) · ψ(v) = ψ(h · v), h ∈ H1, v ∈ V1.

Notice that the momentum map (101) is an invariant of a symplectic representation, in
the sense that an equivalence (103) induces an identification:

(V1, ω1) (V2, ω2)

h∗1 h∗2

ψ

JV1 JV2

φ∗

3.1.3. Toric representations of tori. If an infinitesimally abelian abelian compact Lie
group is connected, then it is simply a torus. In this case, Theorem 3.3 boils down
to:

Proposition 3.9 ([22]). Let T be an n-dimensional torus. Then:
a) A symplectic representation of T is toric if and only if its weight-tuple forms a

basis of the character lattice Λ∗
T in t∗.

b) The map that associates to each unordered basis {α1, ..., αn} of Λ∗
T the polyhedral

cone generated by (α1, ..., αn) is a bijection from the set of such n-tuples to the set
of smooth pointed polyhedral cones in (t∗,Λ∗

T ).
Therefore we have a bijection:{ Isomorphism classes of

toric T -representations

}
←→

{ Smooth pointed polyhedral cones
in (t∗,Λ∗

T )

}
that associates to a toric T -representation (V, ω) the image ∆V of the momentum map
(101).

Let us briefly recall the meaning of the various notions appearing in this statement. The
character lattice Λ∗

T of T in t∗ is the dual of the full rank lattice ΛT := Ker(expT ) in t.
This gives t∗ the structure of an integral affine vector space, by which we mean a pair
(V,Λ) consisting of a finite-dimensional real vector space V and a full rank lattice Λ in V .
Any such lattice Λ admits a basis (that is, a basis of V consisting of vectors that Z-span
Λ).

Recall that symplectic T -representations are classified by their weight-tuples, as follows.
Associated to α ∈ Λ∗

T is the irreducible symplectic representation T → Sp(C, ωst) defined
via the character:

(104) χα : T → S1, χα(expT (ξ)) = e2πi⟨α,ξ⟩,

and the S1-action on C by complex multiplication. Here (C, ωst) is viewed as real vector
space equipped with the standard linear symplectic form:

ωst(w, z) =
1

2πi
(wz − wz) ∈ R, w, z ∈ C.

We denote this symplectic T -representation associated to α ∈ Λ∗
T as:

(Cα, ωst).

The weight-tuple of a symplectic T -representation (V, ω) is the unique unordered tuple
(α1, ..., αn) such that:

(105) (V, ω) ∼= (Cα1 , ωst)⊕ ...⊕ (Cαn , ωst)
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as symplectic T -representation (for details on this, see for instance the appendices of
[40, 47]). This explains the terminology in part a of the proposition. Turning to part b,
by a polyhedral cone in a finite-dimensional real vector space V , we mean a subset of
the form:

Cone(v1, ..., vk) :=

{
k∑
i=1

sivi | si ≥ 0

}
,

with v1, ..., vk ∈ V . The tuple (v1, ..., vk) is said to generate the polyhedral cone. We call
a polyhedral cone pointed if it does not contain a line through the origin in V . Finally,
we call a polyhedral cone C in an integral affine vector space (V,Λ) smooth if there is a
basis {v1, ..., vn} of the lattice Λ in V and a k ≤ n such that:

C = Cone(v1, ..., vk, vk+1,−vk+1, ..., vn,−vn).
This explains the terminology in part b. For the remainder, notice that under an identi-
fication of symplectic T -representations (105) the momentum map JV is identified with:

(106) JV (z1, ..., zn) =
n∑
i=1

|zi|2αi,

where zi denotes the standard complex linear coordinate on Cαi
. Therefore, the image

∆V of JV is the polyhedral cone in t∗ generated by the weight-tuple (α1, ..., αn), which is
smooth and pointed if the symplectic T -representation is toric.

Remark 3.10. Let H be an infinitesimally abelian compact Lie group with identity
component T and let (V, ω) be a symplectic H-representation. Let us further point out
that the following are equivalent.

a) The representation H → Sp(V, ω) is toric.
b) The induced representation T → Sp(V, ω) is toric.
c) The induced representation T → Sp(V, ω) is faithful and dim(V ) = 2dim(T ).
d) The map of Lie groups induced by the weights of the induced representation T →

Sp(V, ω):

(107) (χα1 , ..., χαn) : T → Tn

is an isomorphism.
Furthermore, if the H-representation is toric, then the momentum map JV is in fact
proper. This is readily verified, using an identification of symplectic T -representations as
above.

3.1.4. Splittings of abelian group extensions. The main point of this subsection will be
to prove Proposition 3.7. It will be useful to have some alternative descriptions of right
splittings of abelian group extensions. Let A and K be groups and suppose that A is
abelian. Recall the following.

• An extension of K by A is a short exact sequence of groups:

1→ A→ G→ K → 1.

When the maps are clear, we simply refer to G as an extension of K by A. Given
any such extension, conjugation yields an action of G on A by group automor-
phisms, which descends to an action of K on A.
• A morphism of two extensions of K by A:

1→ A→ G1 → K → 1

1→ A→ G2 → K → 1

is a morphism of groups φ : G1 → G2 that makes the diagram:
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1 A G1 K 1

1 A G2 K 1

φ

commute. By a version of the five-lemma, any such morphism φ must be an
isomorphism.
• A right splitting σ : K → G of an extension as above is a group homomorphism

that is a section of the map G→ K.
• Given an action of K on A by group automorphisms, the semi-direct product
K ⋉ A is canonically an extension of K by A.
• Given an extension as above, a 1-cocycle (with respect to the right action of G on
A by conjugation) is a map c : G→ A satisfying:

c(g1g2) = (c(g1) · g2)c(g2), g1, g2 ∈ G.
We can now give the desired characterizations of right splittings.

Proposition 3.11. Consider an extension

1→ A→ G→ K → 1

of a group K by an abelian group A. There are natural bijections between:
i) The set of right splittings K → G.
ii) The set of isomorphisms of extensions:

K ⋉ A→ G,

where K acts on A via conjugation in G.
iii) The set of 1-cocycles G→ A that restrict to the identity map on A.
iv) The set of subgroups KG in G such that the composite KG ↪→ G → K is an

isomorphism.

Proof. We will define a square of maps:

(i) (ii)

(iv) (iii)

Firstly, given a right splitting σ : K → G, the corresponding isomorphism of extensions
is:

(108) K ⋉ A→ G, (k, a) 7→ σ(k)a.

Secondly, given an isomorphism of extensions φ : K⋉A→ G, the corresponding 1-cocycle
is the composition:

G
φ−1

−−→ K ⋉ A
prA−−→ A.

Thirdly, given a 1-cocycle c : G→ A that restricts to the identity map on A, the subset:

(109) Kc := {g ∈ G | c(g) = 1}
is a subgroup of G and, because c restricts to the identity map on A, the composite
Kc ↪→ G → K is an isomorphism. Finally, given a subgroup KG of G with the property
that the composite KG ↪→ G→ K is an isomorphism, the inverse to this map yields the
corresponding right splitting:

K → KG ↪→ G,
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which completes the square. We leave it to the reader to verify that each of the four maps
in this triangle is inverse to the composition by the other three, so as to complete the
proof. □

With this and the lemma below, we are ready to prove Proposition 3.7 .

Lemma 3.12. A toric representation of a torus has a unique decomposition into irre-
ducible symplectic subrepresentations.

Proof. The existence of such a decomposition holds for all symplectic representations of
tori. Now suppose T → Sp(V, ω) is a toric representation of an n-dimensional torus.
Let V = Vα1⊕ ...⊕Vαn be a decomposition into irreducible symplectic subrepresentations
indexed by the corresponding weights (α1, ..., αn). By Proposition 3.9a the weights are lin-
early independent. So, since after identifying Vαi

with Cαi
as symplectic T -representations

the momentum map is given by (106), each subspace Vαi
coincides with (JV )

−1(R+ · αi).
Hence, the decomposition is indeed unique. □

Proof of Proposition 3.7. Let H → Sp(V, ω) be a toric representation. After a choice of
isomorphism of symplectic T -representations, we can assume that:

(110) (V, ω) = (Cα1 , ωst)⊕ ...⊕ (Cαn , ωst),

as symplectic T -representations. Let h ∈ H. The pair of maps:

(Ch,mh) : (T, (V, ω))→ (T, (V, ω)),

consisting of conjugation and multiplication by h, is a self-equivalence of the induced
symplectic representation of T on (V, ω). Therefore, [h] ∈ Γ (which acts on t∗ via the
coadjoint H-action) permutes the weights (α1, ..., αn) and, by uniqueness of the decompo-
sition into irreducibles, it follows that h acts as a symplectic R-linear map Cαi

→ C[h]·αi

for each i. Since JV is given by (106) and is H-equivariant, any h maps the unit circle
(JV )

−1(αi) to the unit circle (JV )
−1([h] · αi), and it follows that h : Cαi

→ C[h]·αi
acts by

a rotation determined by an element hi ∈ S1. So, we can associate to every h ∈ H an
element (h1, ..., hn) ∈ Tn. Via the isomorphism (107) we obtain a map c : H → T . This
is a 1-cocycle for the extension (102) that restricts to the identity map on T . So, in view
of Proposition 3.11, H is split. □

3.1.5. The classification of toric representations. We will now address the associated
group cohomology class appearing in Theorem 3.3. Let (V, ω) be a toric H-representation.
As in the proof of Proposition 3.7, the choice of an isomorphism of symplectic T -representations:

(111) ψ : (V, ω)
∼−→ (Cα1 , ωst)⊕ ...⊕ (Cαn , ωst)

induces a 1-cocycle cψ : H → T , determined by the fact that for each h ∈ H, v ∈ V and
each αi:

(112) χαi
(cψ(h)) · ψ(v)αi

= ψ(h · v)[h]·αi
.

This 1-cocycle restricts to the identity map on T and for different choices of ψ the resulting
cocycles are cohomologous. Hence, the class:

(113) e(V, ω) := [cψ] ∈ I1(H,T )
is independent of the choice of ψ.

Definition 3.13. We call (113) the ext-class of the toric H-representation (V, ω).

In fact, this class is the same for any two toric representations that are isomorphic as sym-
plectic H-representations. This explains the remaining part of the statement of Theorem
3.3. We now turn to its proof.
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Proof of Theorem 3.3. For injectivity, let (V1, ω1) and (V2, ω2) be toric H-representation
such that ∆V1 = ∆V2 and e(V1, ω1) = e(V2, ω2). Then since ∆V1 = ∆V2 , it follows from
Proposition 3.9 that the two symplectic representations have the same weight-tuple, say
(α1, ..., αn). Hence, there are isomorphisms of symplectic T -representations:

(V1, ω1)
ψ1−→ (Cα1 , ωst)⊕ ...⊕ (Cαn , ωst)

ψ2←− (V2, ω2).

Since e(V1, ω1) = e(V2, ω2), there is a t ∈ T such that for each h ∈ H:

(114) cψ1(h) = (t · h)t−1cψ2(h).

Consider:

ψt : (V1, ω1)→ (Cα1 , ωst)⊕ ...⊕ (Cαn , ωst), ψt(v) = t−1 · ψ1(v),

which is again an isomorphism of symplectic T -representations. As one readily verifies, it
follows from (114) that ψ−1

2 ◦ ψt : (V1, ω1)→ (V2, ω2) is H-equivariant, and hence it is an
isomorphism of symplectic H-representations. This proves injectivity.

For surjectivity, let ∆ be a Γ -invariant and smooth pointed polyhedral cone in (t∗,ΛT ),
and let c : H → T be a 1-cocycle that restricts to the identity on T . Let (α1, ..., αn) be a
tuple that generates ∆ and forms a basis of Λ∗

T . Consider the toric T -representation:

(V, ω) := (Cα1 , ωst)⊕ ...⊕ (Cαn , ωst).

Since Γ leaves both ∆ and Λ∗
T invariant, by Proposition 3.9b it must permute the ordered

tuple (α1, ..., αn). This induces an action of Γ on V by permuting the components indexed
by this tuple. Using this, the T -representation extends to a representation r : Γ ⋉ T →
Sp(Cn, ωst) by setting (γ, t) · z = γ · (t · z). By construction, this representation is toric
and has momentum image ∆. Next, consider the map:

φc : H → Γ ⋉ T, φc(h) = ([h], c(h)).

This is the isomorphism of extensions of Γ by T corresponding to c via the bijection in
Proposition 3.11. Composing φc with r, we obtain a toric H-representation for which
∆ is the momentum image. Moreover, the cohomology class associated to this toric H-
representation is represented by the 1-cocycle cψ where we may pick ψ to be the identity
map on Cn. Using (112), this 1-cocycle is readily seen to coincide with the given 1-
cocycle c. So we have constructed a toric H-representation with momentum image ∆ and
associated group cohomology class [c], which proves surjectivity. □

Remark 3.14. The analogue of Example 5 holds as well in this linear setting: by The-
orem 3.3 and Remark 3.5 the set of isomorphism of class of toric H-representations with
momentum image a prescribed ∆ is a torsor with structure group H1(Γ, T ), provided H
is split, and (using the lemma below) it is readily verified that this action can be de-
scribed more explicitly, as follows. Consider the isomorphism between the abelian group
of 1-cocycles c : Γ → T and the group of automorphisms of the extension (102) (with
group structure given by composition of maps), that associates to a 1-cocycle c the auto-
morphism:

φc : H → H, h 7→ hc([h]).
This descends to an isomorphism between H1(Γ, T ) and the group of automorphisms of
(102) modulo the subgroup of automorphisms given by conjugation by elements of T .
Now, the H1(Γ, T )-action on the set of isomorphism classes of toric H-representations is
given by:

[c] · [(V, ω)] := [(Vc, ω)],
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where (Vc, ω) is equal to (V, ω) as symplectic vector space, but equipped with the linear
symplectic action given by h ·c v = φc(h) · v, for h ∈ H and v ∈ V , where the right-hand
dot denotes the original action of H on V .

In the above remark we referred to:

Lemma 3.15. Suppose that we are given an equivalence of toric representations of in-
finitesimally abelian compact Lie groups:

(φ, ψ) : (H1, (V1, ω1))→ (H2, (V2, ω2)).

Then the induced isomorphism:

φ∗ : I
1(H1, T1)

∼−→ I1(H2, T2)

sends e(V1, ω1) to e(V2, ω2).

This lemma is straightforward to verify. It will also be useful for later reference, as will
be:

Proposition 3.16. Let H be an infinitesimally abelian compact Lie group and suppose
that (V, ω) is a toric H-representation. The Γ -action on t∗ is effective if and only if the
action of H on V is free on a dense subset.

Proof. Fix an isomorphism of symplectic T -representations ψ as in (111). Let σ : Γ → H
be the splitting corresponding (as in Proposition 3.11) to the 1-cocycle cψ given by (112).
First suppose that the H-action is free on a dense subset of V . If γ ∈ Γ acts trivially
on all of t∗, then by construction of σ it follows that σ(γ) acts trivially on all of V and
hence, by our assumption on the H-action, σ(γ) is the identity in H. Therefore γ is the
identity in Γ , which shows that the Γ -action on t∗ is effective. Conversely, suppose that
Γ acts effectively. Consider the open and dense subset ψ−1(U) of V , where:

U := {(zα1 , ..., zαn) ∈ Cα1 ⊕ ...⊕ Cαn| zαi
̸= 0 ∀i and |zαi

| ≠ |zαj
| ∀i ̸= j}.

Let v ∈ ψ−1(U). If h · v = v, then from (112) it follows that |ψ(v)αi
| = |ψ(v)[h]·αi

| for
each i. So, [h] ∈ Γ must act trivially on the entire weight-tuple, and hence on all of t∗,
so that h ∈ T by effectiveness of the Γ -action. Since the T -representation is toric, the
T -action is free at all points with only non-zero components. It therefore follows that h is
the identity in H, which shows that the H-action is free on the dense subset ψ−1(U). □

3.2. Delzant subspaces of integral affine orbifolds.

3.2.1. Introduction. In this section (in particular Subsection 3.2.5), we will define Delzant
subspaces and present some of their basic properties. We will first provide some back-
ground on integral affine orbifolds in the coming three subsections (see [15] for further
details).

3.2.2. Orbifolds. Following [15], we use the terminology below for orbifolds.
• An orbifold groupoid is a proper foliation groupoid (that is, a proper Lie

groupoid with discrete isotropy groups).
• By an orbifold atlas on a topological space B we mean an orbifold groupoid
B ⇒M , together with a homeomorphism p between the leaf space M and B.
• By an orbifold we mean a pair consisting of a topological space B together with

an orbifold atlas (B, p) on B.
• We call two orbifold atlases on B equivalent if there is a Morita equivalence

between the given orbifold groupoids that intertwines the respective homeomor-
phisms between their leaf spaces and B.
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This approach to orbifolds (using groupoids instead of atlases of charts) is in the spirit of
[61].

3.2.3. Integral affine structures on orbifolds. An integral affine atlas on a manifold M is
one for which the coordinate changes are (restrictions of) integral affine transformations
of Rn. A maximal such atlas is called an integral affine structure on M . Such a
structure can be encoded globally, as follows. Given a vector bundle E → M , a smooth
lattice in E is a subbundle Λ with the property that, for each x0 ∈ M , there is a local
frame e of E defined on an open neighbourhood U of x0, such that for all x ∈ U :

Λx = Z(e1)x ⊕ ...⊕ Z(en)x.
In particular, Λx is a full rank lattice in Ex for each x ∈ M . The data of an integral
affine structure on M is equivalent to that of a smooth lattice Λ in the cotangent bundle
T ∗M satisfying the integrability condition that Λ is locally spanned by closed 1-forms, or
equivalently, that Λ is Lagrangian as submanifold of (T ∗M,Ωcan).

This global description is well-suited for a generalization of integral affine structures to
orbifolds. First of all, the notion of vector bundle generalizes: a vector bundle over an
orbifold (B,B, p) is a representation of B, meaning that it is a vector bundle E → M
(in the sense of manifolds) equipped with a fiberwise linear action of B. For example,
the tangent bundle of an orbifold (B,B, p) is the canonical representation of B on the
normal bundle NF to the foliation F on M by connected components of the leaves of B.
Explicitly, this representation is given by:

(115) g · [v] = [dt(v̂)], g ∈ B, v ∈ Ns(g)F ,
where v̂ ∈ TgB is any choice of tangent vector such that ds(v̂) = v. If B is source-
connected, then this coincides with the linear holonomy representation. The cotangent
bundle of the orbifold is the dual representation of B on the co-normal bundle:

N ∗F = TF0 ⊂ T ∗M.

Now, the definition of an integral affine structure generalizes to orbifolds, as follows.

Definition 3.17. An integral affine structure on an orbifold (B,B, p) is a smooth lattice
Λ in N ∗F with the property that Λ is Lagrangian as submanifold of (T ∗M,Ωcan) and Λ
is invariant with respect to the co-normal representation of B. We call (B,B, p,Λ) an
integral affine orbifold.

Given a foliated manifold (M,F), the data of a smooth Lagrangian lattice in N ∗F is the
same as that of a transverse integral affine structure on (M,F). If an orbifold groupoid
B ⇒ M is source-connected, then every smooth Lagrangian lattice in N ∗F is automati-
cally B-invariant, so that in this case the data of an integral affine structure on (B,B, p)
is simply that of a transverse integral affine structure on the associated foliation F on M .

3.2.4. The integral affine orbifold associated to a regular and proper symplectic groupoid.
Let (G,Ω) ⇒M be a regular and proper symplectic groupoid. Let F denote the foliation
of M by connected components of the leaves of G, and let M := M/G denote the leaf
space of G. It follows from [62, Proposition 2.5] that there is a canonical short exact
sequence of Lie groupoids over M :

(116) 1→ T → G → B → 1

where T is the bundle of Lie groups with fiber Tx the identity component of the isotropy
group Gx of G at x ∈ M , and B = G/T is an orbifold groupoid over M . The fibers of T
are in fact tori and the orbifold (M,B, IdM) comes with a natural integral affine structure.
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To see this, recall first that, as for any symplectic groupoid, the conormal space N ∗
xF at

x ∈ M can be canonically identified with the isotropy Lie algebra gx of G at x via the
isomorphism of Lie algebroids:

(117) ρΩ : T ∗
πM → Lie(G), ιρΩ(α)Ω1x = (dt1x)

∗α, α ∈ T ∗
xM, x ∈M,

where T ∗
πM denotes the cotangent bundle equipped with the Lie algebroid structure as-

sociated to the Poisson structure π on M induced by (G,Ω). Since the Poisson structure
π is regular, its isotropy Lie algebras are abelian. Hence, so are the isotropy Lie algebras
of G. Since G is proper, its isotropy groups are compact. Therefore, T is a bundle of tori
and the kernel of each exponential map gx → G0x = Tx determines a full rank lattice Λx
in N ∗

xF . All together, this yields a map of Lie groupoids:

(118) N ∗F → T

with kernel the desired smooth lattice Λ in N ∗F .

Remark 3.18. The map (118) factors through an isomorphism of Lie groupoids:

(119) TΛ := N ∗F/Λ ∼−→ T ,

and the co-normal representation of B on N ∗F descends to an action of B on TΛ, which
under the above isomorphism is identified with the action of B on T by conjugation. The
symplectic form Ω on G restricts to a pre-symplectic form ΩT on T , which makes:

(120) (T ,ΩT )→M

into a pre-symplectic torus bundle. On the other hand, the canonical symplectic form
on T ∗M restricts to a pre-symplectic form on N ∗F , which in turn descends to a pre-
symplectic form ΩΛ on TΛ. The map (119) identifies ΩT with ΩΛ. So, (120) is fully
encoded by the integral affine orbifold associated to (G,Ω).

3.2.5. Delzant subspaces. We define Delzant subspaces of integral affine manifolds as fol-
lows.

Definition 3.19. A Delzant subspace ∆ of an integral affine manifold (M,Λ) is
a subset of M with the property that for every x ∈ ∆ and every (or equivalently some)
integral affine chart (U, χ) around x into Rn, there is a smooth polyhedral cone Cχ

x (∆) in
(Rn,Zn) (in the sense of Subsection 3.1.3) such that the germ of χ(U ∩∆) at χ(x) in Rn

is that of χ(x) + Cχ
x (∆) at χ(x).

To extend this definition to orbifolds (in the sense of Subsection 3.2.2) it is convenient
to have a coordinate-free description of Delzant subspaces of integral affine manifolds.
To this end, notice that around each point in an integral affine manifold (M,Λ) there is
one natural choice of integral affine ‘chart’. More precisely, around each x ∈ M there is
unique map germ:

logx ∈ Germx(M ;TxM)

induced by an integral affine isomorphism ι from (U,Λ) onto an open in (TxM,Λ∗
x), that

maps x to the origin in TxM and the derivative of which at x is the identity map on
TxM . Given a subset ∆ of M and an x ∈ ∆, there is an associated set germ logx(∆) at
the origin in TxM , defined as the germ of ι(U ∩∆) at the origin, which is independent of
the choice of ι as above. Now, ∆ is a Delzant subspace of (M,Λ) if and only if for every
x ∈ ∆ the set germ logx(∆) is the germ of a smooth polyhedral cone in the integral affine
vector space (TxM,Λ∗

x) (in the sense of Subsection 3.1.3). To define Delzant subspaces of
integral affine orbifolds we will now generalize this characterization, starting with:
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Proposition 3.20. Let (M,F ,Λ) be a foliated manifold with a transverse integral affine
structure and let x ∈M . There is a unique map germ:

logx ∈ Germx(M ;NxF)
induced by a submersion ν defined on an open U around x in M , with the following
properties.

i) The tangent distribution to the fibers of ν coincides with that of the foliation F
over U .

ii) It maps x to the origin in NxF and its differential at x is the projection TxM →
NxF .

iii) It is compatible with the integral affine structure, in the sense that for each y ∈ U :

dνy : (NyF ,Λ∗
y)→ (NxF ,Λ∗

x)

is an isomorphism of integral affine vector spaces.

Proof. First, we prove existence. Since Λ is a smooth lattice in N ∗F , we can choose a
local frame α of N ∗F , defined on an open U around x, such that:

Λ|U = Z α1 ⊕ ...⊕ Z αn.

Since Λ is Lagrangian in T ∗M , all of its local sections are closed 1-forms. So, by the
Poincaré Lemma, we can (after shrinking U) arrange that αi = dfi for some fi ∈ C∞(U)
such that fi(x) = 0. Consider:

f = (f1, ..., fn) : U → Rn.

Then (df)x : NxF → Rn is a linear isomorphism, so that we can define

ν = (df)−1
x ◦ f : U → NxF .

As is readily verified, this has the desired properties. To prove uniqueness, let ν1 : U1 →
NxF and ν2 : U2 → NxF be two submersions as above. Since both ν1 and ν2 satisfy
property i), we can find an open neighbourhood U of x in U1 ∩ U2, together with a
connected transversal Σ to F through x, with the property that:

• Σ is contained in U and every leaf of the foliation on U induced by F intersects
Σ,
• both ν1|Σ and ν2|Σ are open embeddings into NxF .

The transversal Σ inherits an honest integral affine structure ΛΣ from the transverse
integral affine structure Λ, and by property iii) both ν1|Σ and ν2|Σ are isomorphisms of
integral affine manifolds onto their image in (NxF ,Λ∗

x) with respect to ΛΣ. Therefore,
ν1|Σ ◦ (ν2|Σ)−1 is a morphism of integral affine manifolds between connected opens in the
integral affine vector space (NxF ,Λ∗

x). By the lemma below, this means that it must be
the restriction of an integral affine transformation of (NxF ,Λ∗

x). So, it is determined by
its value and its derivative at the origin in NxF . By property ii), ν1|Σ ◦ (ν2|Σ)−1 fixes the
origin and its derivative at the origin is the identity map. Hence, ν1|Σ ◦ (ν2|Σ)−1 must
be the restriction of the identity map on NxF to ν2(Σ), so that ν1|Σ = ν2|Σ. It follows
from this and property i) that in fact ν1|U = ν2|U , because every leaf of the foliation
on U induced by F intersects Σ. So, ν1 and ν2 have the same germ at x, as was to be
shown. □

Lemma 3.21. Let (V1,Λ1) and (V2,Λ2) be integral affine vector spaces. Then every
morphism of integral affine manifolds from a connected open in (V1,Λ1) into (V2,Λ2) is
of the form v 7→ Av+ b for some linear map A : V1 → V2 that maps Λ1 into Λ2 and some
b ∈ V2.
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Proof. After a choosing bases for Λ1 and Λ2 we can assume that (V1,Λ1) = (Rn1 ,Zn1) and
(V2,Λ2) = (Rn2 ,Zn2). Let f be a morphism of integral affine manifolds from a connected
open U1 in (Rn1 ,Zn1) into (Rn2 ,Zn2), meaning that its partial derivatives take values in
Z. Since U1 is connected and Z is a discrete subspace of R, the Jacobian of f must be
constant. Fix a u1 ∈ U1. Since any two points in U1 can be connected to u1 by a smooth
path, it follows by integrating along such paths that f(v) = A(v)+ b for all v ∈ U1, where
A is the constant value of the Jacobian of f and b = f(u1)− A(u1). □

Now, let (M,F ,Λ) be a foliated manifold with a transverse integral affine structure, let
∆ be a subset of M and let x ∈ ∆. Then, as for integral affine manifolds, there is an
associated set germ logx(∆) at the origin in NxF . To define this, let us call a submersion
ν : U → NxF representing logx ∆-adapted if:

ν−1(ν(U ∩∆)) = U ∩∆.

The set-germ of ν(U ∩∆) at the origin in NxF is independent of the choice ∆-adapted
submersion ν : U → NxF representing logx. Moreover, if ∆ is F -invariant, we can
always find a small enough open U around x in M that admits a ∆-adapted submersion
ν : U → NxF representing logx. Therefore, it makes sense to define:

Definition 3.22. Let (M,F ,Λ) be a foliated manifold with a transverse integral affine
structure, let ∆ be an F -invariant subset of M and let x ∈ ∆. We define logx(∆) to be the
set germ of ν(U ∩∆) at the origin in NxF , for any ∆-adapted submersion ν : U → NxF
representing logx.

We are now ready to define Delzant subspaces of integral affine orbifolds.

Definition 3.23. Let (B,B, p,Λ) be an integral affine orbifold. A Delzant subspace ∆
is a subset of B with the property that for every x ∈ ∆ (the corresponding invariant subset
of M), the set germ logx(∆) is the germ of a smooth polyhedral cone in the integral affine
vector space (NxF ,Λ∗

x) (in the sense of Subsection 3.1.3). For each x ∈ ∆, we denote this
polyhedral cone in NxF (which is necessarily unique) by Cx(∆) and call it the cone of
∆ at x.

Remark 3.24. Let (B,B, p,Λ) be an integral affine orbifold and let ∆ be a Delzant
subspace. Then ∆ is an embedded submanifold with corners of M of codimension zero (as
in Definition B.11), with tangent cone Cx(∆) the pre-image of Cx(∆) under the projection
TxM → NxF . The restriction B|∆ is a Lie groupoid with corners (as in Definition B.18;
cf. Example B.14). If M is the leaf space of a regular and proper symplectic groupoid
(G,Ω) (equipped with the associated integral affine orbifold structure), then (G,Ω)|∆ is a
symplectic groupoid with corners (as in Definition B.22).

We think of a Delzant subspace as what should be an integral affine suborbifold with
corners, without making this precise. In particular, these objects should be well-behaved
with respect to equivalences of the ambient integral affine orbifold that respect the integral
affine structure. The latter we will make precise, for besides its conceptual value it will
be of use throughout.

Definition 3.25. By an integral affine orbifold groupoid B ⇒ (M,Λ) we mean an
orbifold groupoid B ⇒M with an integral affine structure Λ on the orbifold (M,B, IdM)
(its leaf space). We call a Delzant subspace ∆ of this integral affine orbifold simply a
Delzant subspace of M .

Definition 3.26. By an integral affine Morita equivalence between integral affine
orbifold groupoids B1 ⇒ (M1,Λ1) and B2 ⇒ (M2,Λ2) we mean a Morita equivalence:
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B1

M1

P

M2

B2
α1 α2

with the additional property that α∗
1(Λ1) = α∗

2(Λ2) as subbundles of α∗
1(N ∗F1) = α∗

2(N ∗F2).

Remark 3.27. A Morita equivalence as above is integral affine if and only if for each
p ∈ P , writing x1 = α1(p) and x2 = α2(p), the induced linear isomorphism:

(121) ψp : Nx1F1
∼−→ Nx2F2, [v] 7→ [dα2(v̂)],

where v̂ ∈ TpP is any tangent vector with the property that dα1(v̂) = v, is an isomorphism
of integral affine vector spaces:

ψp : (Nx1F1, (Λ1)
∗
x1
)

∼−→ (Nx2F2, (Λ2)
∗
x2
).

In particular, for each such p ∈ P there is an induced an isomorphism of tori:

(ψp)∗ : (TΛ1)x1
∼−→ (TΛ2)x2 .

Remark 3.28. Given a Morita equivalence between orbifold groupoids B1 ⇒ M1 and
B2 ⇒ M2, and an integral affine structure Λ1 on the orbifold (M1,B1, IdM1

), there is a
unique integral affine structure Λ2 on the orbifold (M2,B2, IdM2

) with respect to which
the given Morita equivalence becomes integral affine.

Example 3.29. Let B ⇒ (M,Λ) be an integral affine orbifold groupoid and Σ a transver-
sal to B, by which we mean an (embedded) submanifold Σ ⊂M that is transverse to the
leaves of B and of complementary dimension. There is a canonical Morita equivalence:

B|Σ̂

Σ̂

s−1
B (Σ)

Σ

B|Σ

tB sB

where Σ̂ := t(s−1(Σ)) denotes the saturation of Σ with respect to B (which is open in M).
The manifold Σ inherits an honest integral affine structure ΛΣ from Λ, B|Σ ⇒ (Σ,ΛΣ)
is an etale integral affine orbifold groupoid and the above Morita equivalence becomes
integral affine.

Example 3.30. Let (G1,Ω1) ⇒M1 and (G2,Ω2) ⇒M2 be regular and proper symplectic
groupoids and let B1 ⇒ (M1,Λ1) and B2 ⇒ (M2,Λ2) be the associated integral affine
orbifold groupoids (as in the previous subsection). A symplectic Morita equivalence:

(G1,Ω1)

M1

(P, ωP )

M2

(G2,Ω2)

α1 α2

induces an integral affine Morita equivalence:
B1

(M1,Λ1)

P

(M2,Λ2)

B2
α1 α2

where P = P/T1 = P/T2. To see this, let p ∈ P and denote x1 = α1(p) and x2 = α2(p).
The given Morita equivalence induces an isomorphism of Lie groups:

(122) φp : (G1)x1 → (G2)x2 ,
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uniquely determined by the property that for each g ∈ (G1)x1 :
g · p = p · φp(g).

Since φ is an isomorphism of Lie groups, it identifies the identity component of (G1)x1
with the identity component of (G2)x2 . In other words, it identifies (T1)x1 with (T2)x2 and
hence it follows that the T1-orbit through p coincides with the T2-orbit through p. This
shows that P/T1 = P/T2. From the lemma below, it is clear that the induced Morita
equivalence is integral affine.

Lemma 3.31. Suppose that we are given a symplectic Morita equivalence:

(G1,Ω1)

M1

(P, ωP )

M2

(G2,Ω2)

α1 α2

For each p ∈ P , writing x1 = α1(p) and x2 = α2(p), we have a commutative square:

Nx2L2 Nx1L1

(g2)
∗
x2

(g1)
∗
x1

ψ−1
p

ρ∗Ω2

(φp)∗

ρ∗Ω1

with horizontal arrows defined as in (121), respectively (122), and vertical arrows defined
as in (117).

Proof. Notice (by dualizing and unravelling the definition of the upper horizontal map)
that we ought to prove the commutativity of the diagram:

N ∗
pF

N ∗
x1
F1 N ∗

x2
F2

(g1)x1 (g2)x2

(dα1)∗ (dα2)∗

(ρΩ1
)−1

(φp)∗

(ρΩ2
)−1

First notice that for all ξ ∈ (g1)x1 :

(123) exp(ξ) · p = p · exp((φp)∗(ξ)).
Now consider the respective Lie algebroid actions:

aL : α∗
1(T

∗M1)→ TS & aR : α∗
2(T

∗M2)→ TS

induced by the (G1,Ω1)-action via ρΩ1 and by the (G2,Ω2)-action via ρΩ2 . By definition
of aL and aR, for every ξ ∈ (g1)x1 and η ∈ (g2)x2 we have:

aL
(
(ρΩ1)

−1(ξ)
)
=

d
dt

∣∣∣∣
t=0

exp(tξ) · p & aR
(
(ρΩ2)

−1(η)
)
=

d
dt

∣∣∣∣
t=0

p · exp(−tη),

which combined with (123) gives:

(124) aL
(
(ρΩ1)

−1(ξ)
)
= −aR

(
(ρΩ2)

−1((φp)
∗(ξ))

)
.

Since the (left) (G1,Ω1)-action and the (right) (G2,Ω2)-action are Hamiltonian, aL and
aR satisfy the momentum map condition. This means that for all β1 ∈ Ω1(M1) and
β2 ∈ Ω1(M2):

ιaL(β1)ωP = α∗
1(β1) & ιaR(β2)ωP = −α∗

2(β2).
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Combined with (124) this implies the desired commutativity, which concludes the proof.
□

Below we give a precise meaning to the statement that Delzant subspaces are well-behaved
with respect to integral affine Morita equivalences of the ambient integral affine orbifold.

Proposition 3.32. Suppose that we are given an integral affine Morita equivalence:
B1

M1

P

M2

B2
α1 α2

that relates a given subset ∆1 of M1 to a subset ∆2 of M2. Then for each p ∈ P such
that x1 := α1(p) ∈ ∆1, and x2 := α2(p) ∈ ∆2, it holds that:

ψp(logx1(∆1)) = logx2(∆2),

where ψp is defined as in (121).

Corollary 3.33. In the setting of Proposition 3.32, ∆1 is a Delzant subspace of M1 if
and only if ∆2 is a Delzant subspace of M2. In this case, for each p ∈ P such that
x1 := α1(p) ∈ ∆1, and x2 := α2(p) ∈ ∆2, their cones at x1 and x2 are related as:

ψp(Cx1(∆1)) = Cx2(∆2),

where ψp is defined as in (121).

Proof of Proposition 3.32. First notice that the respective foliations F1 and F2 pull back
along α1 and α2 to the same foliation F on P . Moreover, since the Morita equivalence
is integral affine, the smooth lattices Λ1 and Λ2 pull back to the same smooth lattice
Λ in N ∗F . One readily verifies that this lattice Λ is Lagrangian in (T ∗P,Ωcan). So,
it defines a transverse integral affine structure on the foliated manifold (P,F). Being
related by the Morita equivalence, the respective invariant subsets ∆1 in M1 and ∆2 in
M2, corresponding to ∆1 and ∆2, have the same pre-image ∆ in P under α1 and α2. Let
p ∈ ∆. Notice that, to prove the proposition, it is enough to show that for both i ∈ {1, 2}
the linear isomorphism (dαi)p : NpF → NxiFi identifies the set germ logp(∆) with the
set-germ logxi(∆i). To see that this is indeed the case, observe that if νi : Ui → NxiFi
is a ∆i-adapted submersion as in Proposition 3.20, with respect to (Mi,Fi,Λi), then the
composition:

α−1
i (Ui)

νi◦αi−−−→ NxiFi
(dαi)

−1
p−−−−→ NpF

is a ∆-adapted submersion as in Proposition 3.20, with respect to (P,F ,Λ). □

Finally, let us point out:

Corollary 3.34. Let (B,B, p,Λ) be an integral affine orbifold and let ∆ be a Delzant
subspace. For each x ∈ ∆ the cone Cx(∆) of ∆ at x is Bx-invariant.

Proof of Corollary 3.34. Apply Corollary 3.33 to the identity equivalence. □

3.2.6. On the momentum image of a toric action. The objects in this and the previous
section are related via the following proposition, which we prove in Subsection 3.5.2 along
with Theorem 2.

Proposition 3.35. Let (G,Ω) be a regular and proper symplectic groupoid and let J :
(S, ω)→M be a toric (G,Ω)-space. Further, let p ∈ S and x := J(p).

a) The symplectic normal representation (SNp, ωp) at p is toric (as in Definition 3.2).
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b) The inclusion of the isotropy group Gp of the action into the isotropy group Gx of
G induces an isomorphism between their groups of connected components:

(125) ΓGp

∼−→ ΓGx .

c) The cone at x of ∆ := J(S) (which is a Delzant subpace by Theorem 2) is given
by:

(126) Cx(∆) = (ρΩ)
∗
x(π

−1
g∗p
(∆JSNp

)),

where:
– (ρΩ)x : N ∗

xF → gx is defined as in (117),
– πg∗p : g

∗
x → g∗p denotes the canonical projection (dual to the inclusion gp ↪→ gx),

– JSNp : (SNp, ωp)→ g∗p denotes the quadratic momentum map of the symplectic
normal representation at p, as defined in (101), and ∆JSNp

denotes its image.

Recall here that, given a Hamiltonian (G,Ω)-space J : (S, ω) → M (where (G,Ω) can
be any symplectic groupoid), for each p ∈ S there is a naturally associated symplectic
representation:

(SNp, ωp) ∈ SympRep(Gp),
of the isotropy group Gp of the action at p. We call this the symplectic normal rep-
resentation at p. Explicitly, this consists of the symplectic normal space to the G-orbit
O ⊂ (S, ω) through p:

SNp :=
TpOω

TpO ∩ TpOω
,

equipped with the linear symplectic form induced by ω and with the Gp-action:

g · [v] = [dm(g,p)(0, v)], g ∈ Gp, v ∈ TpOω,
where m : G ⋉ S → S denotes the action map. Here TpOω denotes the ω-orthogonal to
the tangent space TpO of the orbit at p. This generalizes the so-called symplectic normal
(or slice) representations for Hamiltonian Lie group actions. For further details on this
definition in the generality of symplectic groupoid actions we refer to Subsection 1.2.3.
The symplectic normal representations also play an important role in the construction of
the ext-invariant, which we will give next.

3.3. The ext-invariant and the ext-sheaf.

3.3.1. Construction of the point-wise ext-invariant. Let (G,Ω) be a regular and proper
symplectic groupoid and suppose that we are given a toric (G,Ω)-space J : (S, ω) → M .
For x ∈M and p ∈ J−1(x), consider the canonical extensions:

1→ Tp → Gp → ΓGp → 1,(127)
1→ Tx → Gx → ΓGx → 1.(128)

Any 1-cocycle cp : Gp → Tp that restricts to the identity map on Tp extends uniquely to
a 1-cocycle cx : Gx → Tx that restricts to the identity map on Tx. Indeed, let Γc be the
subgroup of Gp corresponding to cp via the bijection in Proposition 3.11, applied to (127).
Then Γc → ΓGp is an isomorphism. So, since ΓGp → ΓGx is an isomorphism (Proposition
3.35b), Γc is also a subgroup of Gx with the property that Γc → ΓGx is an isomorphism.
Therefore Γc corresponds to a 1-cocycle cx : Gx → Tx via the bijection in Proposition 3.11,
applied to (128). This is the desired cocycle extending cp. The association of cp to cx
descends to a map:

(129) I1(Gp, Tp)→ I1(Gx, Tx),
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as is readily verified. Since the symplectic normal representation (SNp, ωp) is toric (Propo-
sition 3.35a), we can consider its ext-class (as in Definition 3.13):

(130) e(SNp, ωp) ∈ I1(Gp, Tp).

Proposition 3.36. For any p1, p2 ∈ J−1(x), the ext-classes e(SNp1 , ωp1) and e(SNp2 , ωp2)
are mapped to the same class in I1(Gx, Tx).

Definition 3.37. Let (G,Ω) be a regular and proper symplectic groupoid and suppose
that we are given a toric (G,Ω)-action along J : (S, ω) → M with momentum image
∆ := J(S). The ext-class of the toric action at a point x ∈ ∆:

e(J)x ∈ I1(Gx, Tx),
is the image under the map (129) of the ext-class (130) at any point p ∈ S in the fiber of
J over x.

Proof of Proposition 3.36. Since the fibers of J coincide with the T -orbits, it holds that
p2 = t · p1 for some t ∈ Tx. Writing p := p1, we have Gt·p = tGpt−1 and the pair:

(Ct, ψ) : (SNp, ωp)→ (SNt·p, ωt·p), [v] 7→ [d(mS)(t,p)(0, v)],

is an equivalence of symplectic representations, where Ct : Gp → Gt·p denotes conjugation
by t. This one can verify directly (alternatively, the existence of such a ψ is guaranteed
by Remark 3.57 below, applied to the identity equivalence). Appealing to Lemma 3.15,
it follows that:

e(SNt·p, ωt·p) = (Ct)∗(e(SNp, ωp)).
As is readily verified, the square:

I1(Gp, Tp) I1(Gt·p, Tt·p)

I1(Gx, Tx) I1(Gx, Tx)

(Ct)∗

(Ct)∗

commutes. By Lemma 3.38 below the lower arrow is the identity map. So, the respective
images of e(SNp, ωp) and e(SNt·p, ωt·p) under the vertical maps are equal. □

Here we used the lemma below, which is readily verified.

Lemma 3.38. Let H be an infinitesimally abelian compact Lie group with identity com-
ponent T . For any h ∈ H, conjugation by h induces the identity map in H1(H,T ).

The ext-classes naturally arise when trying to answer the local version of the question:
when are two toric (G,Ω)-spaces with the same momentum image isomorphic? This leads
to a local version of Theorem 5, stated below, that will be proved in Subsection 3.5.3.

Theorem 3.39. Let (G,Ω) be a regular and proper symplectic groupoid and suppose that
we are given a toric (G,Ω)-actions along J1 : (S1, ω1) → M and J2 : (S2, ω2) → M .
Further, let x ∈ J1(S1) ∩ J2(S2). Then there is a G-invariant open neighbourhood U of
x ∈M and a G-equivariant symplectomorphism:

(J−1
1 (U), ω1) (J−1

2 (U), ω2)

M

∼=

J1 J2

if and only if both of the following hold.
i) The germs at x of J1(S1) and J2(S2) are equal.
ii) The ext-classes e(J1)x and e(J2)x at x are equal.
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3.3.2. The ext-invariant as global section of the ext-sheaf. Let (G,Ω) ⇒ M be a regular
and proper symplectic groupoid, together with a Delzant subspace ∆ ⊂M . Let ∆ be the
corresponding invariant subspace of M . Consider the set-theoretic bundle:

(131)
⊔
x∈∆

I1(Gx, Tx)→ ∆.

The groupoid B = G/T acts on this bundle: a given [g] ∈ B with source x and target y
acts as the bijection:

I1(Gx, Tx)
∼−→ I1(Gy, Ty),

induced by the conjugation map Cg : Gx
∼−→ Gy (cf. Lemma 3.38). Given a toric (G,Ω)-

space with momentum image ∆, we can regard the collection of its ext-classes as a section
of (131). By an argument similar to that for Proposition 3.36 it follows that this section
is B-invariant. That is, for every [g] ∈ B with g : x→ y it holds that:

e(J)y = [g] · e(J)x.

With Theorem 3.39 and this in mind, it is natural to consider (at least locally) the problem
of existence of toric actions with momentum image ∆ and with collection of ext-classes
a prescribed B-invariant section of (131). Below we introduce a necessary and sufficient
property that such a section must have for there to exist local solutions to this problem
(see Theorem 3.45). The sections with this property – which we call flat sections – turn
out to form a sheaf on ∆ – the ext-sheaf (93) – and the ext-invariant will be the global
section e(J) of this sheaf (see Definition 3.47). To define the notion of flatness, first
consider:

Definition 3.40. Let (G,Ω) be a regular and proper symplectic groupoid and let ∆ ⊂M
be a Delzant subspace. We let I1Set = I1Set,(G,Ω,∆) denote the sheaf on ∆ consisting of
B-invariant set-theoretic local sections of (131). That is, I1Set(U) consists of set-theoretic
sections σ of (131) defined on U ⊂ ∆, with the property that for every [g] ∈ B|U with
g : x→ y:

σ(y) = [g] · σ(x),
with respect to the B-action along (131) defined above.

Lemma 3.41. A Morita equivalence between regular and proper symplectic groupoids
(G1,Ω1) ⇒M1 and (G2,Ω2) ⇒M2 that relates a Delzant subspace ∆1 ⊂M1 to a Delzant
subspace ∆2 ⊂M2 induces an isomorphism of sheaves:

(132) I1Set,1 := I1Set,(G1,Ω1,∆1)
∼−→ I1Set,(G2,Ω2,∆2)

=: I1Set,2

covering the induced homeomorphism between ∆1 and ∆2. This is functorial with respect
to composition of Morita equivalences.

Proof. Let a Morita equivalence:

(G1,Ω1)

M1

(P, ωP )

M2

(G2,Ω2)

α1 α2

be given. Given an open U1 in ∆1, let U2 be its image under the induced homeomorphism
between ∆1 and ∆2. This means that the respective invariant opens U1 and U2 in M1 and
M2 satisfy:

α−1
1 (U1) = α−1

2 (U2).
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Given σ1 ∈ I1Set,1(U1) and x2 ∈ U2, choose a p ∈ P such that α2(p) = x2 and define:

σ2(x2) := (φp)∗(σ1(x1)) ∈ I1(Gx2 , Tx2),

where x1 = α1(p) and φp : Gx1
∼−→ Gx2 is the isomorphism of Lie groups determined by the

property that, for all g ∈ Gx1 , it holds that g ·p = p ·φp(g). It follows from B1-invariance of
σ1 that this does not depend on the choice of p. Indeed, any other element of p̃ ∈ α−1

2 (x2)
is of the form g · p for some g ∈ G1, and it holds that φg·p = φp ◦ Cg−1 , from which it
follows that:

(φp̃)∗(σ1(x̃1)) = (φp)∗(Cg−1)∗(σ1(x̃1)) = (φp)∗(σ1(x1)),

where x̃1 = α1(p̃). A similar argument shows that σ2 is B2-invariant. Hence, this defines
a section σ2 ∈ I1Set,2(U2). In this way we obtain a map:

(133) I1Set,1(U1)→ I1Set,2(U2).

This is functorial with respect to composition of Morita equivalences, since the isomor-
phisms φp are. A completely analogous construction gives an inverse to (133). Moreover,
(133) is compatible with restrictions to smaller opens. So, we have constructed the desired
isomorphism of sheaves. □

As a consequence of the linearization theorem for proper symplectic groupoids [14,16,17,
87], for every leaf L of G in M , there is an invariant open neighbourhood U of L together
with an infinitesimally abelian compact Lie group G, a G-invariant open neighbourhood
W of the origin in g∗ and a symplectic Morita equivalence:

(G,Ω)|U

U

(P, ωP )

W

(G⋉ g∗,−dλcan)|W
α1 α2

that relates L to the origin in g∗. Let ∆g∗ denote the invariant subspace of g∗ related
to U ∩ ∆ by this Morita equivalence. Then, via the induced isomorphism of sheaves of
Lemma 3.41, to each local section of I1Set,(G,Ω,∆)|U∩∆ corresponds an invariant local section
of the set-theoretic bundle:

(134)
⊔

α∈∆g∗

I1(Gα, T )→ ∆g∗ .

This is because the isotropy group of G ⋉ g∗ at α ∈ g∗ is the isotropy group Gα of the
coadjoint action and (since G is infinitesimally abelian) the identity component of Gα is
the identity component T of G. Further notice that for each α ∈ g∗ there is a restriction
map I1(G, T )→ I1(Gα, T ).

Definition 3.42. We will call a local section σ of (134) centered if the origin belongs
to its domain and for each α in its domain it holds that:

σ(α) = σ(0)|Gα ∈ I1(Gα, T ).

Definition 3.43. Let (G,Ω) ⇒M be a regular and proper symplectic groupoid together
with a Delzant subspace ∆ ⊂ M . Given an open V in ∆ and a leaf L ∈ V , we call a
section:

(135) σ ∈ I1Set(V )

flat at L if there is an open neighbourhood U of L in M and a symplectic Morita
equivalence as above, such that the invariant local section of (134) corresponding to σ|U∩V
(via the induced isomorphism of sheaves of Lemma 3.41) is centered. We call a section
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(135) flat if it is so at all L ∈ V . The flat sections form a subsheaf of I1Set on ∆, that we
denote as:

(136) I1 = I1(G,Ω,∆)

and call the ext-sheaf of (G,Ω) on ∆.

Remark 3.44. Given x ∈ ∆, evaluation at x defines a bijection between the stalk of
(136) at the leaf Lx and the set I1(Gx, Tx). In particular, it holds that:

I1(G,Ω,∆) = I1(G,Ω,M)|∆.

The theorem below addresses our claim concerning the local existence problem.

Theorem 3.45. Let (G,Ω) ⇒ M be a regular and proper symplectic groupoid with asso-
ciated orbifold groupoid B = G/T . Further, let ∆ ⊂M be a Delzant subspace and let σ be
a B-invariant section of the set-theoretic bundle (131). Then there is an invariant open
U in M around x ∈ ∆ and a toric (G,Ω)-space J : (S, ω)→ M such that J(S) = U ∩∆
and the collection of its ext-classes is σ|U∩∆ if and only if σ is flat at x.

Remark 3.46. From Theorem 3.45 one can derive that if a section (135) is flat at L,
then for every symplectic Morita equivalence as above the invariant local section of (134)
corresponding to σ|U∩V (via the induced isomorphism of sheaves of Lemma 3.41) is cen-
tered on some neighbourhood of the origin. A proof of this will be given in Subsection
3.5.4.

Finally, we define the ext-invariant of a toric (G,Ω)-space.

Definition 3.47. Let (G,Ω) ⇒ M be a regular and proper symplectic groupoid. The
ext-invariant e(J) of a toric (G,Ω)-space J : (S, ω) → M with momentum image ∆ is
the global section of (136) given by the collection of its ext-classes (which is indeed flat
by Theorem 3.45).

3.4. A normal form on invariant neighbourhoods.

3.4.1. Introduction. In this section we introduce the key tool for the proofs of Theorem 2,
Proposition 3.35, Theorem 3.39 and Theorem 3.45: a normal form theorem for Hamilton-
ian actions on neighbourhoods of orbits. This differs slightly from Theorem 1.1, for here
we use a local model for symplectic groupoids on invariant neighbourhoods of symplectic
leaves, which as in [19] can be achieved at the cost of using a local model that is no longer
‘linear’.

3.4.2. Reminder: the gauge construction. Before turning to local model, it will be useful
to recall the so-called gauge construction for principal Hamiltonian actions of symplectic
groupoids, introduced in [83]. Suppose that we are given a right principal G-action along
a surjective submersion α : P → M . Let q : P → P/G be the canonical projection.
Then G acts diagonally on P ×M P along the map α ◦ pr1, in a free and proper fashion.
Therefore, the orbit space:

Gaugeα(P ) :=
(P ×M P )

G
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is smooth. In fact, this is a Lie groupoid over P/G, called the gauge groupoid of the
principal G-action, with structure maps inherited from the pair groupoid P × P :

s([p1, p2]) = [p2],

t([p1, p2]) = [p1],

m([p1, p2], [p2, p3]) = [p1, p3],

i([p1, p2]) = [p2, p1],

u([p]) = [p, p].

The pair groupoid P × P acts along idP : P → P from the left, by (p1, p2) · p2 = p1 and
this descends to a free and proper action of Gaugeα(P ) along q : P → P/G. All in all, we
have obtained a bibundle (P, q, α) between Gaugeα(P ) and G.

Proposition 3.48. The bibundle (P, q, α) defined above is a Morita equivalence between
G and Gaugeα(P ).

Conversely, every Morita equivalence is of this form:

Proposition 3.49. If (P, α1, α2) is a Morita equivalence between G1 and G2, then the map

(137) Gaugeα2
(P )→ G1, [p1, p2] 7→ [p1 : p2].

is an isomorphism of Lie groupoids covering α1 : P/G2 → M1, that intertwines the left
action of Gaugeα2

(P ) with that of G1.

The following proposition extends the gauge construction to a version for symplectic
groupoids.

Proposition 3.50. Suppose we are given a right principal Hamiltonian (G,Ω)-action
along a surjective submersion α : (P, ωP ) → M . Then the multiplicative symplectic
form ωP ⊕−ωP on the pair groupoid P × P descends to a multiplicative symplectic form
ΩP on Gaugeα(P ). With this symplectic structure, the left action of Gaugeα(P ) along
q : (P, ωP )→ P/G becomes Hamiltonian. So, the symplectic bibundle (P, ωP , q, α) defined
above is a symplectic Morita equivalence between (G,Ω) and (Gaugeα(P ),ΩP ).

The analogue of Proposition 3.49 in the symplectic setting holds as well:

Proposition 3.51. If (P, ωP , α1, α2) is a symplectic Morita equivalence between (G1,Ω1)
and (G2,Ω2), then (137) is an isomorphism of symplectic groupoids from (Gaugeα2

(P ),ΩP )
to (G1,Ω1).

Of course, similar statements hold when starting from a left principal bundle.

3.4.3. The invariant local model for Hamiltonian actions. We will now give the construc-
tion of the local model, which is inspired on the Marle-Guillemin-Sternberg local model
for Hamiltonian Lie group actions [37, 52] and on the local model of [19] for proper Lie
groupoids on invariant open neighbourhoods of leaves. For notational convenience, first
consider:

Definition 3.52. Given a Lie group G, we denote by HamBun(G) the collection of free
and proper (right) Hamiltonian G-spaces (P, ωP )

α−→ g∗ with the property that the origin
in g∗ belongs to the image of α.

The data for the local model consists of:
• a Lie group G,
• a triple (P, ωP , α) ∈ HamBun(G),
• a closed subgroup H of G,
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• a symplectic H-representation (V, ωV ).
Since the data of a (right) HamiltonianG-space with momentum map α is the same as that
of a (right) Hamiltonian action of the symplectic groupoid (G⋉ g∗,−dλcan) along α, the
data for the invariant local model is equivalent to that of a (right) principal Hamiltonian
(G ⋉ g∗,−dλcan)|W -action (P, ωP )

α−→ W , where W is an invariant open neighbourhood
of the origin in g∗. By Proposition 3.50 this principal Hamiltonian action completes to a
symplectic Morita equivalence:

(Gaugeα(P ),ΩP )

P/G

(P, ωP )

W

(G⋉ g∗,−dλcan)|W
α

that relates the central leaf LP := α−1(0)/G with the origin in g∗. The local model will
be a Hamiltonian (Gaugeα(P ),ΩP )-space. To construct it, consider the product of the
(right) Hamiltonian H-spaces:

(P, ωP )
α−→ g∗ → h∗ & JV : (V, ωV )→ h∗,

with JV as in (101). This is another (right) Hamiltonian H-space:

JH : (P × V, ωP ⊕ ωV )→ h∗, (p, v) 7→ α(p)|h − JV (v),
with the diagonal action. This is free and proper, so we can consider the reduced space
at 0 ∈ h∗:

(138) (SP , ωSP
) := ((P × V ) �H,ωred),

which will be the symplectic manifold in the local model. Observe that the symplectic
pair groupoid (P × P, ωP ⊕−ωP ) acts (from the left) along:

prP : (P × V, ωP ⊕ ωV )→ P

in a Hamiltonian fashion, as: (p, q) · (q, v) = (p, v), for p, q ∈ P and v ∈ V . This
descends to a Hamiltonian (Gaugeα(P ),ΩP )-action that fits into a diagram of commuting
Hamiltonian actions:

(Gaugeα(P ),ΩP )

P/G

(P × V, ωP ⊕ ωV )

h∗

(H ⋉ h∗,−dλcan)

prP/G JH

with the property that the momentum map of each one is invariant under the action of the
other. Therefore, the left-hand action action descends to a Hamiltonian (Gaugeα(P ),ΩP )-
action along:

(139) JP : (SP , ωSP
)→ P/G, [p, v] 7→ [p].

Definition 3.53. We call the Hamiltonian (Gaugeα(P ),ΩP )-space (139) the invariant
local model associated to the data listed above. Furthermore, we call OP := α−1(0)/H
—viewed canonically as a subspace of (138) —the central orbit of the local model.

Remark 3.54. For any p ∈ α−1(0), there is a natural equivalence of symplectic repre-
sentations:

(φ, ψ) : (H, (V, ωV ))
∼−→ (Gaugeα(P )[p,0], (SN[p,0], (ωSP

)[p,0]),

between (H, (V, ωV )) and the symplectic normal representation at [p, 0] of the invariant
local model, in which φ is given by:

H → Gaugeα(P )[p,0], h 7→ [p · h, p].
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3.4.4. The local normal form theorem and the proof of Theorem 2. We now turn to the
normal form theorem.

Theorem 3.55. Let (G,Ω) be a proper symplectic groupoid and let J : (S, ω) → M be a
Hamiltonian (G,Ω)-space. Let pS ∈ S and x = J(pS). There are:

• a triple (P, ωP , α) ∈ HamBun(Gx)
• invariant opens: V around x in M , U around p in J−1(V ) and UP around the

central orbit OP in SP , where SP denotes the local model associated to the above
triple and the symplectic normal representation at pS (as in Subsection 3.4.3),
• an isomorphism of symplectic groupoids:

Φ : (G,Ω)|V
∼−→ (Gaugeα(P ),ΩP )

covering a diffeomorphism φ : V
∼−→ P/G that maps Lx onto the central leaf LP ,

• a symplectomorphism:

Ψ : (U, ω)
∼−→ (UP , ωSP

)

that maps Op onto OP , intertwines φ ◦ J with JP and that intertwines the actions
via Φ.

Moreover, Φ can be chosen such that there is a pP ∈ α−1(0) such that φ(x) = [pP ] and
for which the restriction of Φ to the isotropy group of G over x is given by the canonical
isomorphism:

(140) Gx → Gaugeα(P )[pP ], g 7→ [pP · g, pP ].

This is straightforward to deduce from Theorem 1.43 and the theorem below, combined
with Remark 3.54.

Theorem 3.56 ([16]). Let (G,Ω) be a proper symplectic groupoid and x ∈M . There are:
• a triple (P, ωP , α) ∈ HamBun(Gx) ,
• an invariant open V around x in M ,
• an isomorphism of symplectic groupoids:

Φ : (G,Ω)|V
∼−→ (Gaugeα(P ),ΩP )

covering a diffeomorphism φ : V
∼−→ P/G that maps Lx onto the central leaf LP .

Moreover, Φ can be chosen such that there is a pP ∈ α−1(0) such that φ(x) = [pP ] and
for which the restriction of Φ to the isotropy group of G at x is given by (140).

Proof of Theorem 3.56. Both the statement and the proof are analogous to that of [19,
Prop 4.7]. It follows from the linearization theorem for proper symplectic groupoids
([14, 17, 87]) that there is an invariant open neighbourhood U of x, together with an
invariant open neighbourhood W of the origin in g∗x and a symplectic Morita equivalence
(P, ωP , α1, α2) between (G,Ω)|U and (Gx ⋉ g∗x,−dλcan)|W that relates Lx to the origin in
g∗x. So, appealing to Proposition 3.51 we obtain an isomorphism Φ between (G,Ω)|U and
the symplectic gauge groupoid of the triple (P, ωP , α2) ∈ Ham(Gx), that maps the leaf Lx
of G through x onto the central leaf LP . To see that we can always arrange for there to
be a pP ∈ α−1(0) for which the map Φ restricts to the map (140), notice first that this
requirement is equivalent to the requirement that the isomorphism of isotropy groups φpP :
Gx → Gx, induced by the Morita equivalence (P, ωP , α1, α2) as in (122), is the identity map
of Gx. So, by composing a given symplectic Morita equivalence (P, ωP , α1, α2) as above
with an automorphism of (Gx ⋉ g∗x,−dλcan) induced by an appropriate automorphism of
the Lie group Gx, we can always arrange for this requirement to be met. □
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3.4.5. Hamiltonian Morita equivalence. In this subsection we recall the notion of Morita
equivalence between Hamiltonian actions of symplectic groupoids that was introduced
Section 1.5 and list certain features of Hamiltonian actions that are preserved under such
equivalences. These will be useful when working with the local model.

Recall that, given symplectic groupoids (G1,Ω1) ⇒M1 and (G2,Ω2) ⇒M2, a Hamiltonian
(G1,Ω1)-space J1 : (S1, ω1)→M1 and a Hamiltonian (G2,Ω2)-space J2 : (S2, ω2)→M2, a
Hamiltonian Morita equivalence between these Hamiltonian actions consists of:

• a symplectic Morita equivalence (P, ωP , α1, α2) from (G1,Ω1) to (G2,Ω2),
• a Morita equivalence (Q, β1, β2) from the action groupoid G1 ⋉ S1 to G2 ⋉ S2,
• a smooth map j : Q → P that interwines Ji ◦ βi with αi, that intertwines the
Gi ⋉ Si-action with the Gi-action via prGi

, for both i = 1, 2 (in other words, j is a
map of bibundles), and that satisfies:

j∗ωP = (β1)
∗ω1 − (β2)

∗ω2.

We depict this as:

G1 ⋉ S1

(S1, ω1)

Q

(S2, ω2)

G2 ⋉ S2

(G1,Ω1)

M1

(P, ωP )

M2

(G2,Ω2)

prG1

J1

prG2

J2

j

β1 β2

α1 α2

If there is a Morita equivalence as above, we say that the Hamiltonian (G1,Ω1)-action and
the Hamiltonian (G2,Ω2)-action are Morita equivalent.

Remark 3.57. Given a Hamiltonian Morita equivalence as above, the following hold.

i) The induced homeomorphisms hQ and hP between the orbit and leaf spaces (that
identify Q-related orbits and P -related leaves) fit into a commutative square:

S1 S2

M1 M2

hQ

J1 J2

hP

Below, let q ∈ Q, p = j(q), p1 = β1(q) and p2 = β2(q), x1 = α1(p) and x2 = α2(p).

ii) The isomorphism of Lie groups φp : Gx1 → Gx2 defined as in (122) maps Gp1 onto
Gp2 .

iii) There is a linear symplectic isomorphism ψq between the symplectic normal rep-
resentations at p1 and p2, that is compatible with φp in the sense that:

(φp, ψq) : (Gp1 , (SNp1 , ωp1))
∼−→ (Gp2 , (SNp2 , ωp2))

is an equivalence of symplectic representations (see Definition 3.8)

The proofs of these claims are straightforward (see Subsection 1.5.4).
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Remark 3.58. Let (P, ωP , α1, α2) be a symplectic Morita equivalence between symplectic
groupoids (G1,Ω1) and (G2,Ω2). As shown in [83], this induces an equivalence of categories:

Ham(G1,Ω1)→ Ham(G2,Ω2)

J 7→ P∗(J)

between the category of Hamiltonian (G1,Ω1)-spaces and that of Hamiltonian (G2,Ω2)-
spaces. In Subsection 1.5.2 it is shown that:

i) The symplectic Morita equivalence (P, ωP , α1, α2) can be completed (canonically)
to a Hamiltonian Morita equivalence between J and P∗(J).

ii) Conversely, given a Hamiltonian (G1,Ω1)-space J1 and a Hamiltonian (G2,Ω2)-
space J2, any Hamiltonian Morita equivalence between them that completes (P, ωP , α1, α2)
induces an isomorphism of Hamiltonian (G2,Ω2)-spaces between J2 and P∗(J1).

Turning to toric actions, as mentioned before we have:

Proposition 3.59. If two Hamiltonian actions are Morita equivalent, then one is toric
if and only if the other is toric.

Proof. Let a Morita equivalence between Hamiltonian actions, with notation as above, be
given. As is well-known, both properness and regularity are Morita invariant properties
of Lie groupoids. To complete the proof, we will show that the (G1,Ω1)-action satisfies
the conditions of Proposition A.1 if and only if the (G2,Ω2)-action does so. For the
first condition, notice that given a Hamiltonian action of a regular and proper symplectic
groupoid (G,Ω) along J : (S, ω)→M , the set on which the T -action is free is G-invariant.
So, this set corresponds to a subset of the orbit space S, and is dense in S if and only
if the corresponding subset of S is dense in S (as follows from the fact that the orbit
projection S → S is open). Since the T -action is free at p ∈ S if and only if G0x ∩ Gp
is trivial, it follows from the remarks above that the homeomorphism hQ induced by a
Morita equivalence between two Hamiltonian actions relates the set of orbits at which the
T1-action is free with the set of orbits at which the T2-action is free. Hence, one is dense
if and only if the other is so. For the second condition, it is enough to show that for any
q ∈ Q (writing p = j(q), x1 = α1(p) and x2 = α2(p) as above) the fiber of J1 over x1
coincides with a (T1)x1-orbit if and only the fiber of J2 over x2 coincides with a (T2)x2-orbit.
Let us prove the implication from left to right; the other is proved analogously. Write
p2 = β2(q) and let p̃2 ∈ J−1

2 (x2). As for any Morita equivalence between Hamiltonian
actions, the map j restricts to a diffeomorphism between β−1

2 (p̃2) and α−1
2 (x2). Therefore,

there is a q̃ ∈ Q such that β2(q̃) = p̃2 and j(q̃) = p. Then, writing p̃1 = β1(q̃), both p1
and p̃1 belong to J−1

1 (x1). So, by assumption there is a t1 ∈ (T1)x1 such that p̃1 = t1 · p1.
Since φp : Gx1 → Gx2 is an isomorphism of Lie groups, it maps the identity component
Tx1 onto the identity component Tx2 , so that φp(t1) ∈ Tx2 . Moreover, one readily verifies
that p̃ = φp(t1) · p. This shows that J−1

2 (x2) coincides with the (T2)x2-orbit, as was to
shown. To complete the proof of the proposition, notice that since J1 and J2 fit into a
commutative square as in the first remark above, one is a topological embedding if and
only if the other is so. □

When working with the local model, we will often use the following.

Example 3.60. The local model constructed in Subsection 3.4.3 is Morita equivalent to
a simpler Hamiltonian action that is built only out of part of the starting data. This
observation makes it simpler to understand the properties of the local model. Turning to
the details, suppose we are given the data of:

• a Lie group G,
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• a closed subgroup H,
• a symplectic H-representation (V, ωV ).

This can be completed to a collection of data for the local model in Subsection 3.4.3 by
the triple:

(G× g∗,−dλcan, prg∗) ∈ HamBun(G),
where λcan is the 1-form corresponding the Liouville 1-form on the cotangent bundle T ∗G,
via the diffeomorphism between T ∗G and G × g∗ induced by left multiplication on G,
and the Hamiltonian G-action is given by the right diagonal G-action. In this case, the
associated gauge-groupoid is canonically isomorphic to (G⋉g∗,−dλcan). Accordingly, the
momentum map is identified with:

JG : (SG, ωSG
)→ g∗, [g, α, v] 7→ g · α,

and the resulting Hamiltonian (G⋉ g∗,−dλcan)-action along JG is that corresponding to
the Hamiltonian G-action by left multiplication on the first component. Given any other
triple:

(P, ωP , α) ∈ HamBun(G),
there is a canonical Morita equivalence between the two associated local models:

Gaugeα(P )⋉ SP

(SP , ωSP
)

P ×g∗ J
−1
G (W )

(J−1
G (W ), ωSG

)

(G× g∗)|W ⋉ J−1
G (W )

(Gaugeα(P ),ΩP )

P/G

(P, ωP )

W

(G× g∗,−dλcan)|W
JP JG

prP

β prSG

α

where:
β : P ×g∗ J

−1
G (W )→ SP , (p, [g, α, v]) 7→ [p · g, v].

3.5. The remaining proofs.

3.5.1. Introduction. In this section we give proofs of the remaining claims made in this
chapter using the normal form theorem presented in the previous section.

3.5.2. On the momentum image. In this subsection we prove Theorem 2 and Proposition
3.35. The arguments for this are mostly variations of those in [22, 47]. First, we address
parts a and b of Proposition 3.35.

Proof of Proposition 3.35a. Let (G,Ω) ⇒M be a proper and regular symplectic groupoid
and let J : (S, ω) → M be a toric (G,Ω)-space. Further, let p ∈ S and let us denote
x = J(p), H = Gp, T = H0, G = Gx and (V, ωV ) = (SNp, ωp). By Remark 3.10 it suffices
to show that the induced representation T → Sp(V, ω) is faithful and dim(V ) = 2dim(T ).
To this end, note that by combining Theorem 3.55 with Example 3.60, we find invariant
opens:

• W around Lx in M ,
• U around Op in S contained in J−1(W ),
• WG around the origin in g∗x
• UG around the central orbit in SG contained in J−1

G (WG),
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together with a Hamiltonian Morita equivalence between the Hamiltonian (G,Ω)|W -action
along J : (U, ω) → W and the Hamiltonian (G ⋉ g∗,−dλcan)|WG

-action along JG :
(UG, ωSG

)→ WG, that relates Op to the central orbit in SG. So, it follows from Proposi-
tion 3.59 that JG : (UG, ωSG

)→ WG is a toric (G⋉ g∗,−dλcan)|WG
-space. Therefore, the

induced G0-action is free on an open and dense subset of UG and G0-orbits coincide with
the fibers of JG|UG

. Notice that, if G0 acts freely at [g, α, v] ∈ SG, then G0 ∩H acts freely
at v ∈ V . So, since the projection UG → V is a submersion (and hence an open map)
there is an open subset in V around the origin that contains a dense subset on which
G0∩H acts freely. Using linearity of the H-action on V it follows that G0∩H in fact acts
freely on a dense subset of V . In particular, the induced representation T → Sp(V, ω) is
faithful. To see that dim(V ) = 2dim(T ), fix a [g, α, v] ∈ UG such that G0 acts freely at
[g, α, v]. Then G0∩H acts freely at v, so that JV is a submersion at v. Since the G0-orbit
through [g, α, v] coincides with a fiber of JG|UG

, the G0 ∩H-orbit through v is open in a
JV -fiber. Using this, a dimension count at the point v shows that dim(V ) = 2dim(T ). □

Proof of Proposition 3.35b. Given g ∈ Gx, both p and g−1 · p belong to the same fiber of
J over x. So, since the J-fibers coincide with the T -orbits, there is a t ∈ Tx such that
g−1 · p = t · p. Then gt ∈ Gp, and [gt] ∈ ΓGp is send to [g] ∈ ΓGx , which shows that (125) is
surjective. To prove injectivity, notice that the kernel of (125) is (G0x ∩Gp)/G0p , or in other
words, it is ΓG0

x∩Gp
. The proof of Proposition 3.35a shows that the induced representation

G0x ∩ Gp → Sp(V, ω) is toric and that G0x ∩ Gp acts freely on a dense subset of V . So, from
Proposition 3.16 it follows that the action of ΓG0

x∩Gp
on g∗p is effective. On the other hand,

since G0x ∩ Gp is abelian, the action of ΓG0
x∩Gp

on g∗p is trivial. Therefore, the group ΓG0
x∩Gp

is trivial, so that (125) is indeed injective. □

Next, we turn to the proof of Theorem 2 and Proposition 3.35c. The following will be
useful.

Proposition 3.61. The symplectic gauge groupoid in the local model of Subsection 3.4.3
is regular if and only if G is infinitesimally abelian, whilst it is proper if and only if G is
compact. Moreover, if G is infinitesimally abelian and compact, then the local model is
toric if and only if:

• the symplectic H-representation (V, ωV ) is toric,
• ΓH → ΓG is surjective.

In this case, ΓH → ΓG is in fact bijective.

Proof. By applying Proposition 3.59 to Example 3.60, we see that it is enough to treat
the case in which (P, ωP , α) = ((G × g∗)|W ,−dλcan, prg∗) for some G-invariant open W
around the origin in g∗. For this case, first notice that (G ⋉ g∗,−dλcan)|W is regular if
and only if G is infinitesimally abelian, whereas it is proper if and only if G is compact.
Indeed, both of these facts readily follow from the fact that the origin in g∗ is a fixed
point of the coadjoint G-action.

If the Hamiltonian (G ⋉ g∗,−dλcan)|W -space JG : (J−1
G (W ), ωG) → W is toric, then an

application of parts a and b of Proposition 3.35 at the point [1, 0, 0] ∈ SG shows that
(V, ωV ) is toric and ΓH → ΓG is surjective (or, in fact, bijective). Alternatively (and more
directly), the fact that (V, ωV ) is toric follows from the proof of Proposition 3.35a.

For the reverse implication, suppose that ΓH → ΓG is surjective and (V, ωV ) is a toric
H-representation. It is enough to treat the case W = g∗. First, observe that if F is the
dense and H-invariant subset of V on which the T -action is free, the G0-action is free
on the dense subset ((G × g∗) ×h∗ F )/H of SG. For the second condition, suppose that
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[g1, α1, v1], [g2, α2, v2] ∈ SG belong to the same JG-fiber. Then g1 · α1 = g2 · α2. Since we
assume ΓH → ΓG to be surjective, there are h1, h2 ∈ H and t1, t2 ∈ G0 such that g1 = t1h1
and g2 = t2h2. Then h1 ·α1 = h2 ·α2, and so h1 ·v1 and h2 ·v2 belong to the same JV -fiber.
Since we assume the H-action on (V, ωV ) to be toric, there must then be a t ∈ T such
that t · (h1 · v1) = h2 · v2. Now, one readily verifies that [g2, α2, v2] = (t2tt

−1
1 ) · [g1, α1, v1].

This shows that the JG-fibers indeed coincide with the G0-orbits. In particular, JG is
injective. So, to verify that JG is a topological embedding, it is enough to show that JG
is proper. To this end, recall that JV is proper since the H-representation (V, ωV ) is toric
(see Remark 3.10). Together with compactness of G this implies that JG is proper as well,
which proves the proposition. □

To prove Theorem 2 we will also use:

Lemma 3.62. Let (G,Ω) be a proper and regular symplectic groupoid and let J : (S, ω)→
M be a toric (G,Ω)-space. Then for each p ∈ S, the polyhedral cone on the right-hand
side of (126) is smooth.

Proof. The polyhedral cone ∆SNp in (g∗p,ΛTp) is smooth by Propositions 3.35a and 3.9.
Since g0p ∩ Λ∗

Tx is a full-rank lattice in g0p (because gp is the Lie algebra of a subtorus of
Tx), it follows that the polyhedral cone π−1

g∗p
(∆JSNp

) is smooth in (g∗x,Λ
∗
Tx). So, since (ρΩ)x

is an isomorphism of integral affine vector spaces (by definition of the lattice Λx in N ∗
xF),

the polyhedral cone on the right-hand side of (126) is smooth as well. □

Proof of Theorem 2 and Proposition 3.35c. Let (G,Ω) be a regular proper symplectic groupoid
and J : (S, ω) → M a toric (G,Ω)-space. Further, let p ∈ S and let us denote x = J(p),
H = Gp, G = Gx and (V, ωV ) = (SNp, ωp). We can find invariant opens W around Lx in
M and WG around the origin in g∗, together with a Hamiltonian Morita equivalence:

G|W ⋉ J−1(W )

(J−1(W ), ω)

Q

(J−1
G (WG), ωSG

)

(G× g∗)|WG
⋉ J−1

G (WG)

(G,Ω)|W

W

(P, ωP )

WG

(G× g∗,−dλcan)|WG
J JG

j

β1 β2

α1 α2

that relates Op to the central orbit in SG. Moreover, this can be chosen such that there
exists a pP ∈ α−1

2 (0) for which the isomorphism of isotropy groups φpP : G→ G, induced
by the symplectic Morita equivalence (P, ωP , α1, α2) as in (122), is the identity map. To
see this, note that by parts a and b of Proposition 3.35, followed by the backward impli-
cation in Proposition 3.61, JG : (SG, ωG)→ g∗ is a toric (G⋉ g∗,−dλcan)-space. Since for
a toric action the transverse momentum map is a topological embedding, any invariant
open neighbourhood in the domain of the momentum map is the pre-image of an invariant
open in the codomain of the momentum map. Combining this with Theorem 3.55 and
Example 3.60, we find a Morita equivalence as above.

The symplectic Morita equivalence (P, ωP , α1, α2) relates W ∩ J(S) to WG ∩ JG(SG),
hence so does the induced integral affine Morita equivalence (as in Example 3.30). Now,
combining Proposition 3.32 and Lemma 3.31 with the observations that:
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• JG(SG) = π−1
h∗ (∆V ) (which follows from surjectivity of ΓH → ΓG),

• (ρ−dλcan)
∗
0 : g∗ → T0g

∗ represents the map germ log0 (it is the canonical isomor-
phism of the vector space g∗ with its tangent space at the origin),

it follows that logx(J(S)) is the germ of the polyhedral cone on the right-hand side of
(126), which is smooth by the lemma above. This completes the proof of Theorem 2 and
Proposition 3.35. □

3.5.3. On the local version of the second structure theorem. Below we derive Theorem
3.39 from Theorem 1.43.

Proof of Theorem 3.39. To begin with, the implication from left to right is straightforward
to verify. For the other implication, let x ∈ J1(S1) ∩ J2(S2) such that the germs at x of
J1(S1) and J2(S2) coincide and such that e(J1)x = e(J2)x. Since J : S → M is a
topological embedding, every invariant G-invariant open in S is of the form J−1(U) where
U is some G-invariant open in M . So, in light of Theorem 1.43, it remains to show
that there are p1 ∈ J−1

1 (x) and p2 ∈ J−1
2 (x) such that Gp1 = Gp2 and the symplectic

representations (SNp1 , ωp1) and (SNp2 , ωp2) are isomorphic. Fix any p ∈ J−1
1 (x) and

q ∈ J−1
2 (x). Since the germs at x of J1(S1) and J2(S2) coincide, Proposition 3.35 implies

that:

(141) (πg∗p)
−1(∆SNp) = (πg∗q )

−1(∆SNq).

Since the Tp-representation (SNp, ωp) and the Tq-representation (SNq, ωq) are toric (Propo-
sition 3.35a), the polyhedral cones ∆SNp and ∆SNq are pointed. Therefore, (141) means
that:

Ker(πg∗p) = Ker(πg∗q ) & ∆SNp = ∆SNq .

Seeing as Ker(πg∗p) is the annihilator of gp = Lie(Tp) in g∗x and Ker(πg∗q ) is the annihilator
of gq = Lie(Tq) in g∗x, it follows from the first equality that gp = gq, and hence that
Tp = Tq. Now let Γp and Γq be the respective subgroups of Gp and Gq corresponding
(as in Proposition 3.11) to a choice of 1-cocycles representing e(SNp, ωp) and e(SNq, ωq).
By assumption, e(SNp, ωp) and e(SNq, ωq) are mapped to the same cohomology class in
I1(Gx, Tx). So, there is a t ∈ Tx such that:

(142) tΓpt
−1 = Γq.

Since any element of Gp can be written as a product of an element of Γp and an element
of Tp, while any element of Gq can be written as an element of Γq and an element of Tq,
it follows that:

Gt·p = tGpt−1

= (tΓpt
−1)Tp

= ΓqTq
= Gq.

Moreover, as in the proof of Proposition 3.36, we find that Gt·p = tGpt−1 and the subgroup
tΓpt

−1 of Gt·p corresponds to the 1-cocycle representing the cohomology class e(SNt·p, ωt·p).
In light of (142), this is the same as the 1-cocycle representing the class e(SNq, ωq), hence:

e(SNt·p, ωt·p) = e(SNq, ωq).
In combination with the fact that:

∆SNt·p = ∆SNp = ∆SNq .

we conclude from Theorem 3.3 that (SNt·p, ωt·p) and (SNq, ωq) are isomorphic as symplec-
tic representations. Thus, p1 := t · p ∈ J−1

1 (x) and p2 := q ∈ J−1
2 (x) are as required. □
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3.5.4. On the local existence problem. Finally, we turn to the proofs of Theorem 3.45 and
Remark 3.46. First, we single out a particular case of the forward implication in Theorem
3.45.

Proposition 3.63. Let G be an infinitesimally abelian compact Lie group, let H be a
closed subgroup of G such that ΓH → ΓG is bijective, so that as for (129) there is an
induced map:

(143) I1(H,TH)→ I1(G, TG),

where TH and TG denote the respective identity components of H and G. Further, let
(V, ωV ) be a toric H-representation and consider the associated toric (G ⋉ g∗,−dλcan)-
space JG : (SG, ωSG

) → g∗ of Example 3.60 (also see Proposition 3.61). The following
hold.

a) The image of JG is π−1
h∗ (∆V ), where ∆V is the image of the momentum map (101)

and πh∗ : g∗ → h∗ is the canonical projection.
b) The map (143) sends e(V, ωV ) ∈ I1(H,TH) to the ext-invariant e(JG)0 ∈ I1(G, TG)

of JG at the origin in g∗.
c) The ext-invariant of JG is centered (in the sense of Definition 3.42).

Proof. Part a readily follows from surjectivity of ΓH → ΓG. For the remainder, let:

q : (G× g∗)×h∗ V → SG

denote the quotient map. Part b follows from the observation that the symplectic nor-
mal representation at [1, 0, 0] ∈ J−1

G (0) is canonically isomorphic to (V, ωV ), via the H-
equivariant linear symplecticomorphism:

(V, ωV )
∼−→ (SN[1,0,0], (ωSG

)[1,0,0]), v 7→ [dq(1,0,0)(0, 0, v)].

We turn to part c. Fix an isomorphism of symplectic TH-representations:

ψ : (V, ω)
∼−→ (Cα1 , ωst)⊕ ...⊕ (Cαn , ωst),

and let W = {α1, ..., αn} denote the set of weights. First notice that (by part b) the class
(cJG)0 is represented by the unique 1-cocycle c0 : G → TG that restricts to the identity
map on TG and that restricts to cψ on H. Next, let α ∈ JG(SG). Then α|h ∈ ∆V by part
a. From the description (106) it is clear that:

α|h =
∑
αi∈W

tαi
αi

for unique tαi
∈ R≥0. Let Wα = {αi ∈ W | tαi

= 0} and let p ∈ J−1
V (α|h) be the element

with component ψ(p)αi
∈ Cαi

equal to
√
tαi

for each αi ∈ W . Consider [1, α, p] ∈ J−1
G (α).

As is readily verified, the map:

(SNp, ωp)→ (SN[1,α,p], (ωSG
)[1,α,p]), [v] 7→ [dq(1,α,p)(0, 0, v)],

is a symplectic linear isomorphism. Furthermore, it is equivariant with respect to the
action of H[1,α,p] = Hα ∩ Hp. As the identity component of Hα ∩ Hp is the identity
component THp of Hp, it follows that:

e
(
SN[1,α,p], (ωSG

)[1,α,p]
)
= [cψp |Hα∩Hp ] ∈ I1(Hα ∩Hp, THp).

Therefore, e(JG)α is represented by the unique 1-cocycle cα : Gα → TG that restricts to
the identity map on TG and to cψp |Hα∩Hp on Hα∩Hp. To complete the proof, we will now
show that:

(144) c0|Gα = cα.
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Using (106) one computes that:

ψ(Ker(dJV )p) =

( ⊕
αi∈Wα

Cαi

)
⊕

( ⊕
αi∈W−Wα

√
−1 · Rαi

)
.

On the other hand, it is clear that:

ψ(TpO) =
⊕

αi∈W−Wα

√
−1 · Rαi

.

It follows from this that ψ induces a (TH)p-equivariant symplectic linear isomorphism:

ψp : (SNp, ωp)
∼−→
⊕
αi∈Wα

Cαi
, ψp([v])αi

= ψ(v)αi
.

Hence, the weights of the symplectic normal representation at p are given by αi|tp ∈ t∗p
for αi ∈ Wα and from (112) it follows that the 1-cocycle cψp : Hp → THp representing
e(SNp, ωp) ∈ I1(Hp, THp) has the property that for each h ∈ Hp, v ∈ ψ−1(

⊕
αi∈Wα

Cαi
)

and each αi ∈ Wα:
χαi

(cψp(h)) · ψ(v)αi
= ψ(h · v)[h]·αi

.

The same property is satisfied by the 1-cocycle cψ : H → TH representing e(V, ω) ∈
I1(H,TH). Therefore, we conclude that:

(145) χαi
◦ cψp = χαi

◦ cψ|Hp , ∀ αi ∈ Wα.

On the other hand, it holds that:

(146) χαi
◦ cψp = 1 = χαi

◦ cψ|Hp , ∀ αi ∈ W −Wα.

Indeed, the first equality in (146) follows from the observation that, because cψp takes
values in (TH)p, for all h ∈ Hp and αi ∈ W we have:

χαi
(cψp(h)) · ψ(p)αi

= (cψp(h) · ψ(p))αi
= ψ(p)αi

.

For the latter equality, notice first that, since each h ∈ Hp fixes α (as JV is H-equivariant),
it holds that t[h]·αi

= tαi
, and so ψ(p)[h]·αi

= ψ(p)αi
for each αi ∈ W . Using this and (112),

we find that for such h and αi:

χαi
(cψ(h)) · ψ(p)αi

= ψ(h · p)[h]·αi
= ψ(p)[h]·αi

= ψ(p)αi
,

from which we conclude that the second equality in (146) holds. Together, (145) and
(146) imply that:

(147) cψp = cψ|Hp .

We conclude from this that (144) indeed holds, since c0|Gα : Gα → TG is a 1-cocycle that
restricts to the identity on TG, and that restricts to cψp |Hα∩Hp on Hα ∩Hp by (147). □

To prove Theorem 3.45, we will extend the above result using the local normal form
theorem. For this, the following observation will be convenient.

Lemma 3.64. Suppose we are given a Morita equivalence between two toric actions of
regular and proper symplectic groupoids. Then the collections of their ext-classes are
related by the induced isomorphism of sheaves (132).

Proof. Let such a Morita equivalence be given, denoted as in Subsection 3.4.5. First of
all, part i) of Remark 3.57 implies that the induced homeomorphism between M1 and M2

relates J1(S1) to J2(S2), so that α−1
1 (J1(S1)) = α−1

2 (J2(S2)). It is enough to show that,
for each x1 ∈ J1(S1) and x2 ∈ J2(S2), there is a p ∈ P such that α1(p) = x1, α2(p) = x2
and such that:

(148) e(J2)x2 = (φp)∗ (e(J1)x1) .
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To this end, let p1 ∈ S1 and p2 ∈ S2 such that J1(p1) = x1 and J2(p2) = x2. Since both
J1 and J2 are injective, it follows from part i) of Remark 3.57 that p1 and p2 belong to
Q-related orbits. So, there is a q ∈ Q such that β1(q) = p1 and β2(q) = p2. Then taking
p = j(q), it follows from part iii) of Remark 3.57 and Proposition 3.15 that:

e(SNp2 , ωp2) = (φp)∗ (e(SNp1 , ωp1)) ,
from which (148) readily follows. □

Proof of Theorem 3.45. First suppose that there is an invariant open U in M around
x ∈ ∆ and a toric (G,Ω)-space J : (S, ω)→M such that J(S) = U ∩∆ and the collection
of its ext-invariants is σ|U∩∆. Let p ∈ S. Denote x = J(p) and G = Gx. Consider a
Hamiltonian Morita equivalence as in the proof of Theorem 2 for which W ⊂ U . Then
by Lemma 3.64 the invariant local section corresponding to σ|W∩∆ via (132) is the re-
striction of the ext-invariant of the toric (G ⋉ g∗,−dλcan)-space JG : (SG, ωSG

) → g∗ to
WG ∩ JG(SG), which is centered (Proposition 3.63c). So, σ is flat at x.

Conversely, suppose that σ is flat at x ∈ ∆. Let us denote G = Gx. By flatness, there is
an invariant open W in M around x, together with a G-invariant open WG around the
origin in g∗ and a symplectic Morita equivalence:

(G,Ω)|W

W

(P, ωP )

WG

(G⋉ g∗,−dλcan)|WG

α1 α2

that relates the leaf through x to the origin in g∗, with the property that the invariant local
section corresponding to σ|∆∩W via (132) is centered. As in the proof of Theorem 3.56,
this can always be chosen such that there exists a p ∈ α−1

1 (x) for which the isomorphism of
isotropy groups φp : G→ G, induced by the Morita equivalence as in (122), is the identity
map of G. The set-germ at the origin of the invariant subset of WG corresponding to
W ∩∆ then is that of the smooth polyhedral cone Cg∗ := ((ρΩ)

∗
x)

−1(Cx(∆)). This follows
by combining Proposition 3.32, Lemma 3.31 and the earlier observation that (ρ−dλcan)

∗
0 :

g∗ → T0g
∗ represents the map germ log0. So, after possibly shrinking W and WG, we

can arrange ∆ ∩W to be related to the invariant subset Cg∗ ∩WG. Note here that the
polyhedral cone Cg∗ is G-invariant, as follows from Remark 3.34 and G-equivariance of
(ρΩ)

∗
x : g∗ → NxL with respect to the coadjoint action of G on g∗ (which follows from

Lemma 3.31, applied to the identity equivalence). With this set up, we will now construct
a toric (G,Ω)-space with momentum image W ∩ ∆ and ext-invariant c|W∩∆ using the
construction of the invariant local model in Subsection 3.4.3. More precisely, we will
construct:

• a closed subgroup H of G with the property that ΓH → ΓG is bijective,
• a toric H-representation (V, ωV ) with the property that π−1

h∗ (∆V ) = Cg∗ and the
property that e(V, ωV ) ∈ I1(H,TH) is mapped to σ(x) ∈ I1(G, TG) by the map
(143).

By Proposition 3.61, it would then follow that the associated Hamiltonian (Gaugeα(P ),ΩP )-
space:

JP : (SP , ωSP
)→ P/G

is toric. Moreover, the symplectic Morita equivalence above induces an isomorphism
between (G,Ω)|W and (Gaugeα(P ),ΩP ) (as in Proposition 3.51), so that we obtain a toric
(G,Ω)-space:

(149) α1 ◦ JP : (SP , ωSP
)→M.
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By Example 3.60, the above symplectic Morita equivalence completes to a Morita equiv-
alence:

G|W ⋉ SP

(SP , ωSP
)

P ×g∗ J
−1
G (WG)

(J−1
G (WG), ωSG

)

(G× g∗)|WG
⋉ J−1

G (WG)

(G,Ω)|W

W

(P, ωP )

WG

(G× g∗,−dλcan)|WG
α1 ◦ JP JG

j

β prSG

α1 α2

and by combining parts a and b of Proposition 3.63 with part i) of Remark 3.57 and
Proposition 3.64 it follows from this that (149) has momentum image ∆ ∩W and ext-
invariant σ|∆∩W , as desired.

So, to complete the proof it remains to constructH and (V, ωV ) satisfying the requirements
listed above. For this, let c : G → TG be a 1-cocycle such that [c] = σ(x) ∈ I1(G, TG).
Further, let us (suggestively) denote by h0 the largest linear subspace of g∗ that is con-
tained in Cg∗ and let h ⊂ g be the annihilator of h0. Since the polyhedral cone Cg∗ is
smooth in (g∗,Λ∗

TG
), the lattice h ∩ ΛTG has full rank in h and so TH := expG(h) is a

subtorus of TG with Lie algebra h. Since Cg∗ is invariant under the coadjoint action of
G, TH is invariant under conjugation by elements of G. From this it readily follows that
ΓG × TH is a subgroup of ΓG ⋉ TG. Now, let H be the subgroup of G corresponding to
ΓG × TH under the isomorphism of Lie groups:

G
∼−→ ΓG ⋉ TG, g 7→ ([g], c(g)).

Then H is a closed Lie subgroup of G with Lie algebra h and ΓH → ΓG is bijective.
Further notice that the 1-cocycle c restricts to a 1-cocycle c|H : H → TH , that restricts
to the identity map on TH . Next, we construct the desired representation of H. Let us
(suggestively) denote by ∆V the image of Cg∗ under the projection πh∗ : g∗ → h∗. By
construction, ∆V is a smooth and pointed polyhedral cone in the integral affine vector
space (h∗,Λ∗

TH
). Furthermore, ∆V is ΓH-invariant, because πh∗ is H-equivariant and

Cg∗ is ΓG-invariant. Hence, by Theorem 3.3 there is a toric H-representation (V, ωV )
with momentum image ∆V and e(V, ωV ) = [c|H ] ∈ I1(H,TH). As is clear from their
construction, H and (V, ωV ) satisfy the requirements. □

Proof of Remark 3.46. Using restriction to opens, inversion and composition of symplectic
Morita equivalences, the proof boils down to showing that if we are given:

• an infinitesimally abelian compact Lie group G,
• G-invariant opens W1 and W2 around the origin in g∗ and a symplectic Morita

equivalence:

(G⋉ g∗,−dλcan)|W1

W1

(P, ωP )

W2

(G⋉ g∗,−dλcan)|W2

α1 α2

that relates the origin in g∗ to itself,
• P -related Delzant subspaces ∆1 and ∆2 of g∗ that contain the origin,
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• P -related invariant sections:
σ1 ∈ I1Set,(G⋉g∗,−dλcan,∆1)

(∆1 ∩W 1),

σ2 ∈ I1Set,(G⋉g∗,−dλcan,∆2)
(∆2 ∩W 2),

such that σ1 is centered, then there is an invariant open V around the origin in g∗ such that
σ2|∆2∩V is centered. To prove this we can (as in the previous proof) assume without loss
of generality that there is a p ∈ α−1

1 (0) such that the induced isomorphism φp : G→ G is
the identity map on G, and such that ∆1 and ∆2 are one and the same smooth polyhedral
cone Cg∗ in (g∗,Λ∗

T ). As in the previous proof, we can construct a closed subgroup H of G
such that ΓH → ΓG is bijective, together with a toric H-representation (V, ωV ) with the
property that Cg∗ = π−1

h∗ (∆V ) and the property that e(V, ωV ) ∈ I1(H,TH) is mapped to
σ1(0) ∈ I1(G, TG) by the map (143). Consider the associated toric (G⋉g∗,−dλcan)-space:
(150) JG : (SG, ωSG

)→ g∗,

as in Example 3.60. By part i) of Remark 3.58 there is a Hamiltonian (G⋉ g∗,−dλcan)-
space P∗(JG) such that the above symplectic Morita equivalence can be completed to a
Morita equivalence between JG : (J−1

G (W1), ωSG
)→ W1 and P∗(JG). Then P∗(JG) is toric

by Proposition 3.59 and from part i) of Remark 3.57 it follows that the image of P∗(JG) is
Cg∗∩W2. Furthermore, it follows from Proposition 3.64 that the ext-invariant of P∗(JG) is
σ2, which by our choice of symplectic Morita equivalence has the same value as σ1 at the
origin in g∗. By our choice of H and (V, ωV ), it follows from parts a and b of Proposition
3.63 that the momentum image of JG is Cg∗ and its ext-invariant at the origin is σ1(0) as
well. So, in light of Theorem 3.39 there is an invariant open V ⊂ W2 around the origin
in g∗ and an isomorphism of toric (G ⋉ g∗,−dλcan)|V -spaces between the restriction of
P∗(JG) to V and the restriction of JG to V . Therefore, the ext-invariant of P∗(JG) (which
is σ2) has the same value as that of JG at every point in Cg∗ ∩ V . In view of Proposition
3.63c, we conclude from this that σ2|Cg∗∩V is centered, as was to be shown. □
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4. The structure theorems and the splitting theorem

In this chapter we address the structure theorems (Theorem 3, Theorem 5 and Theorem
6) and the splitting theorem (Theorem 4).

In Section 4.1 we construct, out of a given Delzant subspace of an integral affine manifold,
a natural toric space with this Delzant subspace as momentum image (Theorem 4.1).
This theorem is used later to prove the backward implication of the splitting theorem.
On the other hand, it is used to prove Lemma 4.26, which is key in our proof of the first
structure theorem and the forward implication of the splitting theorem. In Section 4.2.1
we introduce the sheaves appearing in the three structure theorems and we prove Theorem
4.10, which explains the relationship of these sheaves with the sheaf of automorphisms
of a toric space. This theorem is essential for the proofs of the three structure theorems,
which are given in Section 4.3. In Section 4.3 we also define and give background on
the cohomology groups appearing in the structure theorems. Furthermore, in Subsection
4.3.8 we provide more insight into the action in the third structure theorem (Remark 6)
and in Subsection 4.3.9 we give proofs of the claims made in Example 5 and Example 7.
Finally, in Section 4.4 we prove the splitting theorem.

4.1. Constructing a natural toric (T ,Ω)-space out of a Delzant subspace.

4.1.1. Introduction. The aim of this section is to prove:

Theorem 4.1. Let (M,Λ) be an integral affine manifold. For each Delzant subspace ∆
of (M,Λ), there is an associated toric (TΛ,ΩΛ)-space:

J∆ : (S∆, ω∆)→M

with momentum image ∆, which depends naturally and locally on (M,Λ,∆) with respect
to locally defined isomorphisms, in the sense explained below.

Here, by the statement that this depends naturally and locally on (M,Λ,∆) with
respect to locally defined isomorphisms we mean the following. If (M1,Λ1) and (M2,Λ2)
are integral affine manifolds with respective Delzant submanifolds ∆1 and ∆2, then for
any two opens U1 in ∆1 and U2 in ∆2, and any diffeomorphism of manifolds with corners
φ : U1 → U2 such that φ∗Λ2 = Λ1|U1 , there is an associated symplectomorphism:

(151) φ∗ : (J
−1
∆1

(U1), ω∆1)→ (J−1
∆2

(U2), ω∆2)

that fits into a commutative square:

(J−1
∆1

(U1), ω∆1) (J−1
∆2

(U2), ω∆2)

U1 U2

φ∗

J∆1
J∆2

φ

and that is compatible with the actions, in the sense that for every p ∈ S∆1 and every
[α] ∈ (TΛ1)x with x = J∆1(p) it holds that:

φ∗([α] · p) = [(dφ−1)∗α] · φ∗(p).

Furthemore, this association satisfies the following.
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i) It is natural: given another integral affine manifold (M3,Λ3) with a Delzant
submanifold ∆3 and a diffeomorphism of manifolds with corners ψ : U2 → U3 onto
an open U3 in ∆3 such that ψ∗Λ3 = Λ2|U2 , it holds that:

(ψ ◦ φ)∗ = ψ∗ ◦ φ∗.

ii) It is local: if V1 is another open in ∆1 such that V1 ⊂ U1, then:

(φ|V1)∗ = (φ∗)|J−1
∆1

(V1)
,

where φ|V1 : V1 → φ(V1) denotes the restriction of φ : U1 → U2.
In the remainder of this section we give the construction behind Theorem 4.1. The
essential idea behind this construction is the same as that behind the proof of [40, Theorem
1.3.1].

4.1.2. The topology and the action. Throughout this and the next subsection, let (M,Λ)
be a fixed integral affine manifold with a fixed Delzant subspace ∆. As topological space,
we define S∆ as follows. Let F∆ be the set-theoretic bundle of groups over ∆ with isotropy
group at x the torus:

(F∆)x :=
Fx(∆)0

Λx ∩ Fx(∆)0
,

where Fx(∆)0 denotes the annihilator in T ∗
xM of the tangent space Fx(∆) to the open

face of ∆ through x ∈ ∆ (see Example B.12). The groupoid F∆ includes canonically into
TΛ|∆ as a set-theoretic wide normal subgroupoid and as such it acts along the bundle
projection of TΛ|∆. We let S∆ be the orbit space of this action:

S∆ :=
TΛ|∆
F∆

,

equipped with the quotient topology. The bundle projection descends to a continuous
map:

(152) J∆ : S∆ →M,

with image ∆. Since it commutes with the F∆-action defined above, the canonical
left TΛ|∆-action along the bundle projection of TΛ|∆ descends to a continuous left TΛ-
action along (152). This defines the topological space and the action underlying the toric
(TΛ,ΩΛ)-space in Theorem 4.1.

Proposition 4.2. The TΛ-action along (152) defined above has the following properties.

a) The action is free on the open and dense subset J−1
∆ (∆̊) of S∆, with ∆̊ as in

Example B.12.
b) The orbits coincide with the J∆-fibers.
c) The transverse momentum map J∆ : S∆ →M is a homeomorphism onto ∆.

Proof. Parts a and b follow from straightforward verifications. It follows from part b that
J∆ a continuous injection so that to prove part c it remains to show that it is closed as
map into its image ∆. To this end, notice that the bundle projection TΛ →M is proper,
because it is a fiber bundle with compact fibers. This implies that J∆ is proper as map
into ∆. Since ∆ is an embedded submanifold with corners of M , it is locally compact and
Hausdorff. Therefore, any proper continuous map into ∆ is closed, and so J∆ is indeed
closed as map into ∆. □
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4.1.3. The smooth and symplectic structure. Next, we define a structure of symplectic
manifold on S∆ that is compatible with the TΛ-action along J∆ : S∆ → M . First, we
construct a local model for this. By a ∆-admissible triple we will mean a triple (x0, U, χ)
consisting of a point x0 ∈ ∆ and an integral affine chart (U, χ) for (M,Λ) around x0 with
the property that χ(x0) = 0, U is connected and:

(153) χ(U ∩∆) = χ(U) ∩ Rn
k ,

where n = dim(M) and k = depth∆(x0). Every x0 ∈ ∆ belongs to such a triple. For each
such triple, the symplectic torus bundle:

(154) (Tn × Rn,

n∑
j=1

dθj ∧ dxj)|χ(U)
prRn−−→ χ(U)

comes with an associated toric action with momentum image (153), obtained via the
construction in Example 3.60 with starting data:

• the Lie group Tn (the standard n-torus inside Cn),
• the closed subgroup Tk = {(e2πiθ1 , ..., e2πiθk , 1, ..., 1) ∈ Tn | θ1, ...θk ∈ R},
• the standard symplectic Tk-representation (Ck, ωst), given by:

(e2πiθ1 , ..., e2πiθk , 1, ..., 1) · (z1, ..., zk) = (e2πiθ1z1, ..., e
2πiθkzk), (z1, ..., zk) ∈ Ck.

We denote the momentum map of this symplectic torus bundle action as:

(155) J(x0,U,χ) : (S(x0,U,χ), ω(x0,U,χ))→ χ(U).

Viewed as Hamiltonian Tn-space, this is the standard local model for toric Tn-spaces.
Explicitly, S(x0,U,χ) is the orbit space of the induced diagonal (right) Tk-action on the
fiber product:

(156) (Tn × χ(U)) ×prRk JCk
Ck,

where by (106) the momentum map JCk is given by:

JCk : (Ck, ωst)→ Rk, (z1, ..., zk) 7→ (|z1|2, ..., |zk|2).

Here we identify the dual of the Lie algebra of Tn with Rn via the covering:

Rn → Tn, (θ1, ..., θn) 7→ (e2πiθ1 , ..., e2πiθn),

and we identify that of Tk with Rk accordingly. The proposition below shows that (155)
is a local model for the topological TΛ-space J∆.

Proposition 4.3. The map:

h(x0,U,χ) : J
−1
∆ (U)→ S(x0,U,χ),(157) [

n∑
j=1

θjdχjx mod Λx

]
7→
[(
e2πiθ1 , ..., e2πiθn , χ(x),

√
χ1(x), ...,

√
χk(x)

)]
,

is a homeomorphism and it is compatible with the TΛ-action along J∆ in the sense that it
intertwines (155) with:

χ ◦ J∆ : J−1
∆ (U)→ χ(U),

and for each p ∈ J−1
∆ (U) and t ∈ (TΛ)x with x = J(p) it satisfies:

h(x0,χ,U)(t · p) = Φχ(t) · h(x0,χ,U)(p),
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where Φχ is the isomorphism of symplectic torus bundles given by:

Φχ : (TΛ,ΩΛ)|U
∼−→ (Tn × Rn,

n∑
j=1

dθj ∧ dxj)|χ(U),(158)

n∑
j=1

θjdχjx mod Λx 7→ (e2πiθ1 , ..., e2πiθn , χ(x)).

Proof. The bijectivity and the compatibility of (157) with the TΛ-action follow from a
straightforward verification. Furthermore, (157) is continuous and closed, since its com-
position with the canonical map TΛ|U → J−1

∆ (U) (which is a topological quotient map) is
continuous and closed (because it factors as the composition of a continuous and closed
map into (156) with the orbit projection from (156) onto S(x0,U,χ), which is closed due to
compactness of Tk) . So, (157) is indeed a homeomorphism. □

Corollary 4.4. The space S∆ is Hausdorff and second countable.

Proof. By Proposition 4.3, for each ∆-admissible triple (x0, U, χ) the open subspace
J−1
∆ (U) of S∆ is Hausdorff and second countable. In view of this, the fact that B is

Hausdorff implies that S∆ is Hausdorff and the fact that B is second countable implies
that S∆ is second countable. □

Next, we show that the local smooth and symplectic structures obtained via the homeo-
morphisms (157) patch to a smooth and symplectic structure on all of S∆.

Proposition 4.5. The topological space S∆ admits a smooth and symplectic structure,
both uniquely determined by the property that for each ∆-admissible triple (x0, U, χ) the
induced homeomorphism (157) is a symplectomorphism onto the symplectic manifold
(S(x0,U,χ), ω(x0,U,χ)) defined above.

Proof. We ought to show that any two given ∆-admissible triples (x0, U, χ) and (y0, V, φ)
induce the same smooth and symplectic structure on the intersection of J−1

∆ (U) and
J−1
∆ (V ) (via the homeomorphisms h(x0,U,χ) and h(y0,V,φ)). Throughout, let k = depth∆(x0)

and l = depth∆(y0).

First we address the smooth structure, starting with the case in which (x0, U) = (y0, V ).
In this case, χ ◦ φ−1 is the restriction of an element of A ∈ GLn(Z) that maps Rn

k onto
Rn
k (because any linear map that maps an open neighbourhood of the origin in Rn

k to
another such open must map Rn

k onto Rn
k , as Rn

k is invariant under scaling by positive real
numbers). So, A is of the form:

A =

(
Ak,k 0
An−k.k An−k,n−k

)
, Ak,k ∈ GLk(Z), An−k,k ∈ Mn−k,k(Z), An−k,n−k ∈ GLn−k(Z),

where Ak,k maps [0,∞[k onto [0,∞[k. Any element of GLk(Z) that maps [0,∞[k onto
[0,∞[k must permute the standard basis of Rk (this is a version of Proposition 3.9b and
is readily verified). Therefore, there is a permutation σ of {1, ..., k} such that χj = φσ(j)

for all j ∈ {1, ..., k}. The map h(x0,U,χ) ◦ h−1
(x0,U,φ)

is given by:

S(x0,U,φ) → S(x0,U,χ), [(t, x, z1, ..., zk)] 7→ [(A∗(t), A(x), ..., A(x), zσ(1), ..., zσ(k))],

which is smooth. The inverse of this map is obtained by reversing the roles of χ and φ.
So, it is a diffeomorphism, which means that (x0, U, χ) and (x0, U, φ) indeed induce the
same smooth structure on J−1

∆ (U).

125



Next, we address the smooth structure in general, by reducing to the previous case. It is
enough to show that for every w0 ∈ U ∩V ∩∆ there is an open neighbourhood W of w0 in
U ∩ V such that the smooth structures on J−1

∆ (U) and J−1
∆ (V ) induced by the respective

triples (x0, U, χ) and (y0, V, φ) restrict to the same smooth structure on J−1
∆ (W ). To do

so, let such w0 be given and let m = depth∆(w0). After possibly permuting the first k
components χ and the first l components of φ, we may assume without loss of generality
that χj(w0) = 0 if j ≤ m, χj(w0) > 0 if m < j ≤ k, φj(w0) = 0 if j ≤ m and φj(w0) > 0 if
m < j ≤ l. Indeed, by the previous case, changing the given ∆-admissible triples by such
permutations leaves the induced smooth structures invariant. Now, choose a connected
open neighbourhood W of w0 in U ∩ V such that for every x ∈ W :

χj(x) > 0 if m < j ≤ k,(159)

φj(x) > 0 if m < j ≤ l.(160)

Consider the charts χ̃ := χ|W −χ(w0) and φ̃ := φ|W −φ(w0). By construction, the triples
(w0,W, χ̃) and (w0,W, φ̃) are ∆-admissible and by the previous case these induce the
same smooth structure on the open J−1

∆ (W ). The smooth structure on J−1
∆ (U) induced

by h(x0,U,χ) restricts to that on J−1
∆ (W ) induced by h(w0,W,χ̃), since the homeomorphism:

h(x0,U,χ) ◦ h−1
(w0,W,χ̃)

: S(w0,W,χ̃) → J−1
(x0,U,χ)

(W )

is a diffeomorphism, for this map is given by:

[(t, x, z1, ...zm)] 7→
[(
t, x, z1, ..., zm,

√
χm+1(x), ...,

√
χk(x)

)]
,

and its inverse is given by:[(
t1, ..., tm, tm+1

(
zm+1√
χm+1(x)

)
, ..., tk

(
zk√
χk(x)

)
, tk+1, ..., tn, x, z1, ..., zm

)]
←[ [(t, x, z1, ..., zk)],

which are both smooth by (159). Similarly, it follows from (160) that the smooth struc-
ture on J−1

∆ (V ) induced by h(y0,V,φ) restricts to that on J−1
∆ (W ) induced by h(w0,W,φ̃). All

together, this shows that the smooth structures on J−1
∆ (U) and J−1

∆ (V ) induced by the
respective triples (x0, U, χ) and (y0, V, φ) indeed restrict to the same smooth structure on
J−1
∆ (W ). This proves the part of the proposition regarding the smooth structure.

For the part regarding the symplectic structure, it is enough to show (by continuity) that
the symplectic forms induced by h(x0,U,χ) and h(y0,V,φ) coincide on the open J−1

∆ (U ∩ V )∩
J−1
∆ (∆̊), which is dense in J−1

∆ (U ∩ V ). To see that these indeed coincide, notice that the
quotient map TΛ|∆ → S∆ restricts to a diffeomorphism:

(161) TΛ|∆̊ → J−1
∆ (∆̊)

and the symplectic forms on the open J−1
∆ (U ∩ V ) ∩ J−1

∆ (∆̊) induced by h(x0,U,χ) and
h(y0,V,φ) both coincide with the push-forward of the symplectic form ΩΛ along (161). □

Remark 4.6. This proof shows that (161) is a symplectomorphism:

(TΛ|∆̊,ΩΛ)
∼−→ (J−1

∆ (∆̊), ω∆).

In particular, (S∆, ω∆) is simply (TΛ,ΩΛ) when ∆ =M .

Next, we show that this structure of symplectic manifold on S∆ is compatible with the
TΛ-action.
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Proposition 4.7. The TΛ-action along (152) (defined in the previous subsection) is
smooth and Hamiltonian with respect to the smooth and symplectic structure in Proposi-
tion 4.5.

Proof. This follows from the part of Proposition 4.3 on compatibility of (157) with the
TΛ-action. □

Henceforth, we consider S∆ as smooth manifold with the smooth structure in Proposition
4.5 and we let ω∆ denote the symplectic structure in this proposition. Combining Propo-
sition 4.2 and Proposition 4.7, we conclude that (equipped with the TΛ-action defined in
the previous subsection):

J∆ : (S∆, ω∆)→M

is a toric (TΛ,ΩΛ)-space.

4.1.4. Natural and local dependence. To complete the proof of Theorem 4.1 it remains
to address the natural and local dependence of the construction given in the previous
subsections. Let (M1,Λ1) and (M2,Λ2) be integral affine manifolds with respective Delzant
submanifolds ∆1 and ∆2, and let φ : U1 → U2 be a diffeomorphism of manifolds with
corners between respective opens U1 in ∆1 and U2 in ∆2, such that φ∗(Λ2) = Λ1|U1 . Then
φ induces a map:

(162) TΛ1|U1 → TΛ2|U2 , [α] 7→ [(dφ−1)∗α].

Since φ is a diffeomorphism of manifolds with corners between opens in ∆1 and ∆2, it
holds that:

dφx(Fx(∆1)) = Fφ(x)(∆2),

for all x ∈ U1. Therefore, (162) descends to a map:

J−1
∆1

(U1)→ J−1
∆2

(U2).

Definition 4.8. We define (151) to be the map induced by (162).

Proposition 4.9. This map is indeed a symplectomorphism (J−1
∆1

(U1), ω∆1)
∼−→ (J−1

∆2
(U2), ω∆2).

Proof. Let x0 ∈ U1 and let k = depth∆1
(x0) and n = dim(M1). Since φ is a diffeomor-

phism of manifolds with corners from an open in ∆1 onto an open in ∆2, it holds that
depth∆2

(φ(x0)) = k and dim(M2) = n. Now, fix integral affine charts (V1, χ1) around x0
and (V2, χ2) around φ(x0) with the following properties:

• (x0, V1, χ1) is ∆1-admissible and (φ(x0), V2, χ2) is ∆2-admissible, as in (153),
• V1 ∩∆1 ⊂ U1, V2 ∩∆2 ⊂ U2 and φ(V1 ∩∆1) ⊂ V2 ∩∆2,
• χ1(V1) is an open ball around the origin in Rn,

and consider the coordinate representation:

(163) χ2 ◦ φ ◦ χ−1
1 : χ1(V1) ∩ Rn

k → χ2(V2) ∩ Rn
k .

Using the same arguments as in the proof of Lemma 3.21, the fact that φ∗Λ2 = Λ1|U1 ,
the fact that any point in χ(V1) ∩ Rn

k can be connected to the origin by a smooth path
in χ(V1) ∩ Rn

k and the fact that (163) maps the origin to itself, it follows that (163)
is the restriction of an element A ∈ GLn(Z). Since A is a linear map that maps an
open neighbourhood of the origin in Rn

k to another such open, it must map Rn
k onto Rn

k .
Therefore, (x0, V1, A ◦ χ1) is another ∆1-admissible triple. To conclude the proof, notice
that:

h(φ(x0),V2,χ2) ◦ (φ)∗ ◦ h−1
(x0,V1,A◦χ1)

: (S(x0,V1,A◦χ1), ω(x0,V1,A◦χ1))→ (S(φ(x0),V2,χ2), ω(φ(x0),V2,χ2))

is given by the inclusion:
[(t, x, z)] 7→ [(t, x, z)],
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which is clearly smooth and symplectic. Since x0 ∈ U1 was arbitrary, this shows that φ∗
is smooth and symplectic. Since φ−1

∗ = (φ−1)∗, the inverse of φ∗ is smooth and symplectic
as well. □

Seeing as the remaining properties listed in Subsection 4.1.1 are clearly satisfied, this
concludes the construction behind (and hence the proof of) Theorem 4.1.

4.2. The sheaf of automorphisms and the sheaf of invariant Lagrangian sec-
tions.

4.2.1. Introduction. To prove the structure theorems we will use Čech cohomology (and
an orbifold version thereof) much like in the classical classification theorems of principal
bundles. In this section we introduce the relevant sheaves and prove the theorem below,
which will be key in the proofs of the structure theorems.

Theorem 4.10. Let (G,Ω) be a regular and proper symplectic groupoid with associated
orbifold groupoid B = G/T and let J : (S, ω)→M be a toric (G,Ω)-space with associated
Delzant subspace ∆ := J(S). There is an isomorphism of sheaves on ∆ —induced by
the map (166) below —between the sheaf AutG(J, ω) of automorphisms of the (G,Ω)-space
J : (S, ω) → M and the sheaf L∆ of B-invariant Lagrangian sections of T |∆ (as in
Definition 4.12 below).

Remark 4.11. As will be clear from its definition: L is a sheaf of abelian groups. So, it
follows from the above theorem that automorphisms of a toric (G,Ω)-space commute.

In the remainder of this subsection, we will introduce the sheaves appearing in the state-
ment of Theorem 4.10 and take a first step towards its proof.

Definition 4.12. Let (B,B, p,Λ) be an integral affine orbifold and ∆ a Delzant subspace.
We let C∞∆ (TΛ) denote the sheaf of abelian groups on ∆ that assigns to an open U ⊂ ∆
the group of sections σ : U → TΛ that are:

i) smooth as map between manifolds with corners,
ii) B-invariant, in the sense that for every arrow γ : x→ y in B|U :

γ · σ(x) = σ(y).

Furthermore, we let L∆ denote the subsheaf of C∞∆ (TΛ) that assigns to an open the sub-
group of sections that in addition are:

iii) Lagrangian, meaning that σ∗ΩΛ = 0.
Sometimes we will omit the subscript ∆ in our notation for these sheaves.

Remark 4.13. When the integral affine orbifold is that associated to a regular and
proper symplectic groupoid (G,Ω), we will usually view the sheaves in Definition 4.12 as
consisting of sections σ : U → T via the isomorphism (119), without further notice.

Remark 4.14. Let U be an open in ∆. The condition that σ : U → TΛ is smooth can
be rephrased as: for every x ∈ U there is an open neighbourhood Ux of x in M and a
smooth section Ux → TΛ that restricts to σ on Ux ∩ U . This can be taken as a working
definition. More generally, given a submersion f : M → N between manifolds without
corners and an embedded submanifold with corners Z in N (see Definition B.11), a local
section σ : U →M of f defined on an open U in Z is smooth as map into M if and only
if for every x ∈ U there is a smooth local section Ux →M of f defined on an open Ux in
N around x, that coincides with σ on U ∩ Ux (also see Remark B.9).
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Remark 4.15. The sheaves in Definition 4.12 are naturally associated to B|∆-sheaves
(i.e. ‘orbifold sheaves’ on the ‘suborbifold with corners’ ∆), as follows. Recall that for a
topological groupoid G ⇒ X: a G-sheaf of abelian groups is a sheaf of abelian groups
on X equipped with a continuous action of G along its etale map, by fiberwise group
homomorphisms. Such G-sheaves form an abelian category Sh(G) with enough injectives.
There is a canonical additive functor to the usual abelian category of sheaves on the
topological space X:

(164) Sh(G)→ Sh(X),

the push-forward along the canonical map of topological groupoids G → Unit(X). Ex-
plicitly, (164) associates to a G-sheaf S the sheaf S on X that assigns to an open U the
subgroup of S(U) consisting of G-invariant sections. The sheaves C∞∆ (TΛ) and L∆ arise
like this. Indeed, if the given integral affine orbifold atlas is etale, then the sheaf C∞∆ (TΛ)
of smooth sections of TΛ|∆ is naturally a B|∆-sheaf and the subsheaf L∆ of Lagrangian
sections is a sub-B|∆-sheaf, which are mapped to C∞∆ (TΛ) and L∆ by (164). This extends
to the non-etale setting by considering ‘F -basic’ smooth sections of TΛ|∆ instead.

To explain the definition of the isomorphism in Theorem 4.10, let (G,Ω) be a regular
and proper symplectic groupoid together with a Delzant subspace ∆ of M and let J :
(S, ω)→M be a toric (G,Ω)-space such that J(S) = ∆. Given an open U in ∆, consider
the group:

(165) AutT (J)(U)

consisting of T -equivariant diffeomorphisms:

J−1(U) J−1(U)

U

∼=

J J

This assignment defines a sheaf of groups AutT (J) on ∆. Furthermore, we use the nota-
tion:

• AutG(J), for the sheaf on ∆ that assigns to an open U the subgroup of AutT (J)(U)
consisting of G-equivariant diffeomorphisms,
• AutG(J, ω), for the subsheaf of AutG(J) that assigns to such an open the subgroup

of G-equivariant symplectomorphisms.
To relate these to the sheaves defined before, consider the map of sheaves (of groups) on
∆:

(166) C∞∆ (T )→ AutT (J), σ 7→ ψσ,

where, for a section of C∞∆ (T ) over U (i.e. a smooth section σ : U → T ), we define:

ψσ : J−1(U)→ J−1(U), ψσ(p) = σ(J(p)) · p,

using the induced T -action along J . Notice that (because the T -action is free on a dense
subset):

Proposition 4.16. The map of sheaves (166) is injective.

Furthermore, we have:

Proposition 4.17. A section σ : U → T is B-invariant if and only if ψσ is G|U -
equivariant.
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Proof. Notice that, for any arrow g : x→ y in G|U and any p ∈ J−1(y):

(167) ([g] · σ(x)) · p = g · ψσ(g−1 · p).
It is clear from this that if σ is B-invariant, then ψσ is G|U -equivariant. On the other
hand, the converse follows from (167) by a density argument. Indeed, suppose that ψσ
is G|U -equivariant. Then by (167): if T acts freely at p, then [g] · σ(x) = σ(y). Now,
let an arrow g as above be given and pick p ∈ J−1(y). Let τ be a smooth section of
t : G → M , defined on an open neighbourhood V of y in M , such that τ(y) = g. Since
T acts freely on a dense subset, there is a sequence of pn ∈ J−1(U ∩ V ) at which T acts
freely, such that pn → p. Set gn = τ(J(pn)) : xn → yn. By the discussion above we have
[gn] · σ(xn) = σ(yn). So, taking n→∞, we find that [g] · σ(x) = σ(y). □

Proposition 4.18. A section σ : U → T is Lagrangian if and only if ψσ is a symplecto-
morphism.

Proof. Using that the (G,Ω)-action is Hamiltonian, we deduce:

(ψσ)
∗ω = (σ ◦ J, idS)∗(mS)

∗ω

= (σ ◦ J, idS)∗ ((prS)
∗ω + (prG)

∗Ω)

= ω + J∗(σ∗Ω).

Therefore, ψσ is a symplectomorphism if and only if J∗(σ∗Ω) = 0. If the T -action is free
at a point p ∈ J−1(U), then J is a submersion at p, so that J∗(σ∗Ω)p = 0 if and only
if (σ∗Ω)J(p) = 0. As the set of points where T acts freely is dense in S, it follows from
continuity that J∗(σ∗Ω) if and only if σ∗Ω = 0. This proves the proposition. □

In view of these propositions, the map (166) induces injective maps of sheaves:

C∞∆ (T )→ AutG(J),(168)
L∆ → AutG(J, ω).(169)

Now, Theorem 4.10 can be rephrased as saying that (169) is in fact an isomorphism of
sheaves. To prove this, by Proposition 4.18 it is enough to show:

Theorem 4.19. The map (168) is an isomorphism of sheaves.

This will be proved in the remainder of this section.

4.2.2. Invariance under integral affine Morita equivalence. The following will be useful to
prove Theorem 4.19 and to construct the injection (97) later on.

Proposition 4.20. An integral affine Morita equivalence between two integral affine
orbifold groupoids B1 ⇒ (M1,Λ1) and B2 ⇒ (M2,Λ2) that relates a Delzant subspace
∆1 ⊂M1 with ∆2 ⊂M2 induces an isomorphism of sheaves:

C∞∆1
(TΛ1)

∼−→ C∞∆2
(TΛ2)

covering the induced homeomorphism between ∆1 and ∆2. This restricts to an isomor-
phism:

L∆1

∼−→ L∆2
.

Proof. Suppose that we are given an integral affine Morita equivalence:

B1

(M1,Λ1)

P

(M2,Λ2)

B2
α1 α2
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and a section τ1 ∈ C∞∆1
(TΛ1)(U1) defined over an invariant open U1 in ∆1. Let U2 be

P -related invariant open in ∆2. We define τ2 ∈ C∞∆2
(TΛ2)(U2) as follows. Given x2 ∈ U2,

let p ∈ P be such that α2(p) = x2 and set:

τ2(x2) := (ψp)∗(τ1(x1)),

where x1 := α1(p) and (ψp)∗ : (TΛ1)x1 → (TΛ2)x2 denotes the isomorphism of tori induced
by the dual of the isomorphism of integral affine vector spaces (121). It follows from
B1-invariance of τ1 that this does not depend on the choice of such p (so that τ2 is well-
defined) and that τ2 is B2-invariant. To show that τ2 is smooth, let x2 ∈ U2. Choose a
smooth local section σ2 : V2 → P of α2 defined on an open in M2 around x2. Then for
each y2 ∈ U2 the differential d(α1 ◦ σ2)y2 descends to the map ψ−1

σ2(y2)
: Ny2F2 → Ny1F1,

as in (121). In view of Remark 3.27, this shows that α1 ◦ σ2 : V2 → P induces a (smooth)
bundle isomorphism:

(170) TΛ2|V2
∼−→ (α1 ◦ σ2)∗(TΛ1), [α] 7→ [d(α1 ◦ σ2)∗α].

Since τ2|V2∩∆2 is the local section corresponding to (α1 ◦ σ2)∗(τ1) via this isomorphism, it
follows that τ2 is smooth at x2. So, τ2 is indeed smooth and we obtain a map of sheaves
(of groups):

C∞∆1
(TΛ1)→ C∞∆2

(TΛ2) τ1 7→ τ2.

In an entirely analogous way (reversing the roles of left and right) one can define its
inverse. Hence, this is an isomorphism of sheaves. If τ1 is Lagrangian, then using local
sections as in the argument for smoothness of τ2 and noting that for each such section σ2
the composition of (170) with the canonical map:

(α1 ◦ σ2)∗(TΛ1)→ TΛ1

pulls the symplectic form ΩΛ1 back to ΩΛ2 , it readily follows that τ2 is Lagrangian as well.
By analogous reasoning (reversing the roles of left and right), it follows as well that if τ2 is
Lagrangian, then τ1 is Lagrangian. So, the above isomorphism of sheaves indeed restricts
to an isomorphism between the sheaves of invariant Lagrangian sections. □

Example 4.21. In Example 3.29 there is a B|Σ-equivariant isomorphism:

(TΛ,ΩΛ)|Σ
∼−→ (TΛΣ

,ΩΛΣ
), [(x, α)] 7→ [(x, α|TxΣ)],

The isomorphisms of sheaves in Proposition 4.20 are given by restriction of sections.

Example 4.22. This example concerns integral affine Morita equivalences arising from
symplectic Morita equivalences, as in Example 3.30. In this case, via (119) we obtain an
isomorphism:

C∞∆1
(T1)

∼−→ C∞∆2
(T2)

that restricts to an isomorphism:

L∆1

∼−→ L∆2
.

This associates to τ1 ∈ C∞∆1
(T1)(U1) the section τ2 ∈ C∞∆2

(T2)(U2) given by:

τ2(x2) = φp(τ1(x1)),

where p ∈ P is any choice of element such that α2(p) = x2, x1 := α1(p) and φp is as in
(122).
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4.2.3. Proof of Theorem 4.19. First, we will prove Theorem 4.19 for actions of symplectic
torus bundles. After this, we will reduce the full proof to this case.

Proof of Theorem 4.19; case of symplectic torus bundles. Suppose that (G,Ω) is a sym-
plectic torus bundle (T ,Ω). Let x ∈ ∆ and let ψ ∈ AutT (J)(U) for some open U around
x in ∆. We have to show that there is a smooth section σ, defined in an open neighbour-
hood of x in ∆, such that the germ ψσ at x coincides with that of ψ. After identifying
(T ,Ω) with the symplectic torus bundle (TΛ,ΩΛ) via (119) and then passing to suitable
integral affine coordinates for (M,Λ) around x, the proof reduces to the case in which:

• (T ,Ω) is the symplectic torus bundle (154),
• x is the origin in Rn,
• the given toric action is that constructed in Subsection 4.1.3, with momentum

map (155).
Indeed, this is readily seen using the isomorphism (158) and Theorem 3.39. In this case,
the torus bundle action corresponds to a toric Tn-action with momentum map (155).
The domain of (155) is Tn-equivariantly diffeomorphic to an open in Tn−k × Rn−k × Ck

equipped with the Tn-action:

(λ1, ..., λn)·(t1, ..., tn−k, x1, ..., xn−k, z1, ..., zk) = (λk+1t1, ..., λntn−k, x1, ..., xn−k, λ1z1, ..., λkzk),

in such a way that (155) becomes the restriction of the map:

J0 : Tn−k × Rn−k × Ck → Rn,

(t1, ..., tn−k, x1, ...., xn−k, z1, ..., zk) 7→ (|z1|2, ..., |zk|2, x1, ..., xn−k).

For a suitable choice of chart domain this open can be arranged to be of the form Tn−k×
Bn−k ×Bk, where Bn−k and Bk are open balls in Rn−k and Ck, respectively, of the same
radius and centered around the respective origins. By composing with ψ, we obtain a
Tn-equivariant diffeomorphism:

Tn−k ×Bn−k ×Bk Tn−k ×Bn−k ×Bk

Rn

Ψ

J0 J0

To conclude the proof we will show that there is map σ : ∆0 → Tn, defined on the image
∆0 of Tn−k ×Bn−k ×Bk under J0, such that Ψ is given by:

(171) Ψ(t, x, z) = σ(J0(t, x, z)) · (t, x, z), (t, x, z) ∈ Tn−k ×Bn−k ×Bk,

and such that σ extends to a smooth map from an open in Rn into Tn. For this we use
a variation of the argument used to prove [22, Lemma 2.6]. Let φj and ψj denote the jth

component of Ψ in Tn−k and Ck, respectively. Using equivariance of Ψ and the fact that
Ψ preserves J0, we find:

(172) Ψ(t, x, z) = (t1 · φ1(1, x, z), ..., tn−k · φn−k(1, x, z), x, ψ1(1, x, z), ..., ψk(1, x, z)).

Using equivariance of Ψ once more, it further follows that for all (x, z) ∈ Bn−k ×Bk and
λ ∈ Tk:

φj(1, x, λ · z) = φj(1, x, z),

ψj(1, x, z) = λjψj(1, x, z).

In particular, (x, u) 7→ ψj(1, x, u) restricts to a smooth function on Bn−k× (Bk∩Re(Ck)),
which is odd in the uj variable and even in the other u-variables, while (x, u) 7→ φj(1, x, u)
restricts to a smooth function on this domain as well, but is even in all u-variables.
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Therefore, a theorem due to Whitney [81] (a particular case of Schwarz’ theorem for finite
groups [6, 70]) implies that there are continuous functions:

fj, gj : ∆0 → C

that satisfy:

φj(1, x, u) = fj(u
2
1, ..., u

2
k, x)

ψj(1, x, u) = ujgj(u
2
1, ..., u

2
k, x),

for all (x, u) ∈ Bn−k × (Bk ∩ Re(Ck)), and extend to smooth functions on some open
neighbourhood of ∆0 in Rn. The fact that Ψ preserves J0 implies that:

u2j |gj(u21, ..., u2k, x)|2 = |ψj(1, x, u)|2 = u2j

for all (x, u) ∈ Bn−k × (Bk ∩ Re(Ck)). Therefore gj takes values in S1 on the interior of
∆0 in Rn, hence it must do so on all of ∆0 by a density argument. Note that fj does so
as well, since φj does. Finally, observe that for (x, z) ∈ Bn−k × Bk, writing zj = eiθj |zj|
one finds:

ψj(1, x, z) = eiθjψj(1, x, |z1|, ..., |zk|)(173)

= zjgj(|z1|2, ..., |zk|2, x),

by equivariance of Ψ. Similarly:

(174) φj(1, x, z) = fj(|z1|2, ..., |zk|2, x).

Now define:
f : ∆0 → Tn−k & g : ∆0 → Tk

to have jth component fj and gj, respectively, and consider:

σ := (g, f) : ∆0 → Tk × Tn−k.

Combining (172), (173) and (174) we find that (171) holds. Moreover, by construction of f
and g, σ extends to a smooth map into Cn on an open neighbourhood of ∆0 in Rn. Since
none of its components vanish on a small enough such neighbourhood, by normalizing
them we can find such an extension that maps smoothly into Tn. So, σ has the desired
properties. □

Next, we will deduce Theorem 4.19 (in full generality) from the previous case. For this
we will use:

Lemma 4.23. Let B ⇒ M be a proper etale Lie groupoid. Every x ∈ M admits a
connected open neighbourhood U such that for each γ ∈ Bx there exists a (necessarily
unique) smooth local section σγ : U → B|U of the source-map that sends x to γ, and such
that the map:

Bx × U → B|U , (γ, y) 7→ σγ(y)

is surjective. This defines an isomorphism of Lie groupoids between the action groupoid
Bx ⋉ U of the Bx-action on U given by γ · y := t(σγ(y)) and B|U . In particular, B|U is
source-proper.

Proof. See [63, Proposition 5.30]. □

Lemma 4.24. Let (G,Ω) be regular and proper symplectic groupoid and let J : (S, ω)→M
be a toric (G,Ω)-space. If the associated orbifold groupoid B is etale, then J : (S, ω)→M
is a toric (T ,ΩT )-space with respect to the induced T -action.
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Proof. Note that if B is etale, then (T ,ΩT ) is symplectic. To see that the induced Hamil-
tonian (T ,ΩT )-action is toric, the only thing to show is that the map JT : S/T → M
is a topological embedding. This map clearly being a continuous injection, it remains to
show that JT : S/T → ∆ is closed, or equivalently, that J : S → ∆ is closed. For this,
it suffices to show that every x ∈ ∆ admits an open neighbourhood U in ∆ such that
J : J−1(U)→ U is closed. Let x ∈ ∆, take UM to be an open in M around x as Lemma
4.23 and let U = UM ∩ ∆. Then B|UM

is source-proper, hence so is G|UM
and so is the

action groupoid of the restriction of the G-action to UM . Therefore, the quotient map
qS : S → S restricts to a proper map from J−1(U) onto its image in S. Combined with
the fact that J : S → M is a topological embedding, it follows that J : J−1(U) → U is
proper. Because any continuous proper map into a first-countable and Hausdorff space is
closed (see e.g. [67]), we conclude that J−1(U)→ U is indeed closed. □

Proof of Theorem 4.19. Let x0 ∈ ∆ and let ψ ∈ AutG(J)(U) for some G-invariant open U
around x0 in ∆. We have to show that there is a B-invariant smooth section σ, defined
in a G-invariant open neighbourhood of x0 in ∆, such that the germ ψσ at x0 coincides
with that of ψ. To find such a section, choose a transversal Σ for B through x such that
∆∩Σ ⊂ U . Then Σ is a Poisson transversal in (M,π), where π is the Poisson structure on
M induced by (G,Ω). Therefore, any Poisson map from a symplectic manifold into (M,π)
is transversal to Σ and the pre-image of Σ is a symplectic submanifold of the domain. So,
J−1(Σ) is a symplectic submanifold of (S, ω) and (G,Ω)|Σ is a symplectic subgroupoid of
(G,Ω) (the two of which are canonically Morita equivalent). The (G,Ω)-action along J
restricts to a Hamiltonian (G,Ω)|Σ-action along:

(175) JΣ : (J−1(Σ), ω|J−1(Σ))→ Σ.

This action is again toric, as can be verified directly or by appealing to Proposition
3.59. After possibly shrinking U , we can assume that U is the G-saturation of Σ ∩ ∆.
Combining Example 4.22 and Example 4.21, we find that any smooth B|Σ-invariant section
σΣ : ∆∩Σ→ T extends uniquely to a smooth B-invariant section σ : U → T , defined by
the property that for any arrow g : x→ y in G|U with x ∈ Σ:

σ(t(g)) = [g] · σΣ(s(g)).

Further, notice that if ψ|J−1(Σ) = ψσΣ , then ψ = ψσ. So, to conclude the proof of the
theorem it remains to find (after possibly shrinking Σ) a smooth B|Σ-invariant section
σΣ : ∆ ∩ Σ → T with the property that ψ|J−1(Σ) = ψσΣ . Since (T ,ΩT )|Σ is a symplectic
torus bundle and (by the lemmas above) its action along (175) is toric, it follows from
the case treated before that, after possibly shrinking Σ, we can find a smooth section
σΣ : ∆ ∩ Σ→ T with the property that ψ|J−1(Σ) = ψσΣ . In light of Proposition 4.17, this
section must also be B|Σ-invariant. So, the proof is complete. □

4.3. Proof of the structure theorems.

4.3.1. Conventions on Čech cohomology of sheaves. Let X be a topological space, S a
sheaf of abelian groups on X and U an open cover of X (that we require to be an actual
subset of the set of opens in X). Recall that the Čech cochain complex (ČU(X,S), ď) is
the complex with n-cochains the group:

Čn
U(X,S) :=

∏
(U0,...,Un)∈Un+1

S(U0 ∩ ... ∩ Un),
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and with differential given by:

ď : Čn
U(X,S)→ Čn+1

U (X;S),

ď(c)(U0, ..., Un+1) =
n+1∑
k=0

(−1)kc(U0, ..., Ûk, ..., Un+1)|U0∩...∩Un+1 .

We let Ȟn
U(X,S) denote the degree n cohomology group of this complex. Given an open

cover V of X that refines U , there is a canonical group homomorphism:

ρUV : Ȟn
U(X,S)→ Ȟn

V(X,S).
This yields a direct system of abelian groups indexed by the directed set of open covers
of X (directed by refinement). The direct limit:

Ȟn(X,S) := lim
U
Ȟn

U(X,S)

of this system is the Čech cohomology of the sheaf S in degree n. As per usual, we
realize this as the quotient:

Ȟn(X,S) =
(⊔

U Ȟ
n
U(X,S)

)
∼

where the disjoint union runs through all open covers of the topological space X and the
equivalence relation is given by ([c1],U1) ∼ ([c2],U2) if and only if there is a common
refinement V of U1 and U2 such that ρU1

V [c1] = ρU2
V [c2].

4.3.2. The second structure theorem. We first give the proof of the second structure the-
orem.

Proof of Theorem 5. To define the action, let λ be a cocycle with respect to an open
cover U , representing a given class [λ] ∈ Ȟ1(∆,L). Write ψUV := ψλ(U,V ) as in (166).
Furthermore, let J : (S, ω) → M be a toric (G,Ω)-space with momentum image ∆ and
ext-invariant e. Then we can define another (G,Ω)-space Jλ : (Sλ, ωλ) → M , as follows.
As topological space, define:

Sλ :=

(⊔
U∈U J

−1(U)
)

∼λ
where (p, U) ∼λ (q, V ) if and only if J(p) = J(q) and p = ψUV (q). This indeed de-
fines an equivalence relation, because λ is a 1-cocycle. Furthermore, because ψUV ∈
AutG(J, ω)(U ∩ V ) for all U, V ∈ U , there is a unique smooth structure on Sλ, a unique
symplectic structure ωλ on Sλ and a unique G-action along the canonical map Jλ : Sλ →M
such that, for each U ∈ U , the canonical inclusion:

(J−1(U), ω) (Sλ, ωλ)

M
J Jλ

is a smooth, symplectic and G-equivariant embedding. Clearly, Jλ : (Sλ, ωλ) → M is a
toric (G,Ω)-space with momentum image equal to ∆ and ext-invariant equal to e. Now,
define:

[λ] · [J : (S, ω)→M ] := [Jλ : (Sλ, ωλ)→M ].

As one readily verifies, this does not depend on the choice of representative λ and defines
an action of Ȟ1(∆,L). To see that this action is free, suppose that:

[λ] · [J : (S, ω)→M ] = [J : (S, ω)→M ].

Then there is an isomorphism of (G,Ω)-spaces:
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(Sλ, ωλ) (S, ω)

M

ψ

Jλ J

For each U ∈ U , consider:

ψU := ψ|J−1(U) ∈ AutG(J, ω)(U).

Since ψ is well-defined, for each q ∈ J−1(U ∩ V ) it must hold that ψV (q) = ψU(ψUV (q)).
Hence:

ψUV = ψ−1
U ◦ ψV .

Letting σ(U) : U → T be the B-invariant Lagrangian section such that ψσ(U) = ψU (which
exists by Theorem 4.10), we find that:

λ(U, V ) = σ(V )− σ(U),
hence λ is a 1-coboundary. This shows that the action is indeed free. To verify transitivity,
let J1 : (S1, ω1)→M and J2 : (S2, ω2)→M be toric (G,Ω)-spaces with momentum image
∆ and ext-invariant c. By Theorem 3.39 we can find a cover U of M by G-invariant opens,
with for each U ∈ U an isomorphism of (G,Ω)-spaces:

(J−1
1 (U), ω1) (J−1

2 (U), ω2)

M

ψU

J1 J2

Due to Corollary 4.10, there are unique B-invariant and Lagrangian sections λ(U, V ) :
U ∩ V → T satisfying ψλ(U,V ) = ψU ◦ψ−1

V on J−1
2 (U ∩ V ). Then λ defines a 1-cocycle and

[J1 : (S1, ω1)→M ] = [λ] · [J2 : (S2, ω2)→M ],

as is readily verified. Hence, the action is indeed transitive.

We are left with addressing the naturality of this action with respect to symplectic Morita
equivalences. To explain what this means, let (G1,Ω1) ⇒ M1 and (G2,Ω2) ⇒ M2 be
regular and proper symplectic groupoids with Delzant subspaces ∆1 and ∆2 and with
global sections e1 and e2 of the respective ext-sheaves (136) associated to these. Further,
suppose that ((P, ωP ), α1, α2) is a symplectic Morita equivalence between them that relates
∆1 to ∆2 and e1 to e2 via (132). Then for any [λ] ∈ Ȟ1(∆1,L1) and any toric (G1,Ω1)-
space J : (S, ω)→M1 with momentum image ∆1 and ext-invariant e1, it holds that:

(176) P∗([λ] · [J : (S, ω)→M1]) = P ∗([λ]) · P∗[J : (S, ω)→M1].

Here P∗ denotes the bijection:
Isomorphism classes of

toric (G1,Ω1)-spaces with
momentum image ∆1 and ext-invariant e1

 ∼−→


Isomorphism classes of

toric (G2,Ω2)-spaces with
momentum image ∆2 and ext-invariant e2


induced by the symplectic Morita equivalence (cf. Remark 3.58 and Lemma 3.64), and

P ∗ : Ȟ
1(∆1,L1)

∼−→ Ȟ1(∆2,L2)

denotes the isomorphism induced by the associated Morita equivalence (P , α1, α2) of Ex-
ample 3.30 (also see Example 4.22). The validity of (176) is straightforward to verify and
left to the reader. □
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4.3.3. Bisections and the embedding category. In this subsection we collect some back-
ground on bisections of groupoids. Recall that a continuous bisection of a topological
groupoid G ⇒ X is a continuous section σ : U → G of the source-map of G, defined on
an open U in X, with the property that t ◦ σ : U → X is an open topological embedding.
For the image of this open embedding we use the notation:

σ · U := (t ◦ σ)(U).
Given two continuous bisections σ1 : U1 → G and σ2 : U2 → G such that σ2 · U2 ⊂ U1, we
can consider their composition:
(177) σ1σ2 : U2 → G, (σ1σ2)(x) = σ1((t ◦ σ2)(x))σ2(x),
which is again a continuous bisection of G. In the smooth and symplectic setting we
consider the following variations of this.

• By a smooth bisection of a Lie groupoid with corners G ⇒ X (see Definition
B.18) we mean a continuous bisection σ : U → G with the property that σ is
smooth as map between manifolds with corners and t ◦σ is a diffeomorphism onto
its image.
• By a Lagrangian bisection of a symplectic groupoid with corners (G,Ω) ⇒ X

(see Definition B.22) we mean a smooth bisection σ : U → G with the property
that σ∗Ω = 0.

The composition of two smooth (resp. Lagrangian) bisections is again smooth (resp.
Lagrangian).

Remark 4.25. Continuous bisections of etale Lie groupoids with corners are automati-
cally smooth.

Closely related to bisections is the so-called embedding category [62]. To recall this, let
E ⇒ X be a topological etale groupoid. Given a basis U of the topological space X, the
embedding category EmbU(E) is the category with objects the opens in U and arrows
V ← U the continuous bisections σ : U → E with σ · U ⊂ V . We denote such an arrow
as V σ←− U . The composition of two arrows U0

σ1←− U1
σ2←− U2 is the arrow U0

σ1σ2←−− U2 with
underlying bisection the composition (177) of σ1 and σ2.

4.3.4. Lifting to a Lagrangian cocycle. The aim of this subsection is to prove the lemma
below, which will be key in the proofs of both the first structure theorem and the splitting
theorem.

Lemma 4.26. Let (G,Ω) be a regular and proper symplectic groupoid for which the as-
sociated orbifold groupoid B = G/T is etale, let ∆ be a Delzant subspace of M and let
U be a good enough basis for L∆ (by which we mean a basis of ∆ with the property that
Ȟ1(U,L∆) = 0 for each U ∈ U). If ∆ is the momentum image of a toric (G,Ω)-space,
then for each arrow V

σ←− U in EmbU(B|∆) there is a Lagrangian bisection:

(178) g(V
σ←− U) : U → (G,Ω)|∆

lifting σ : U → B|∆, and these lifts can be chosen so as to satisfy the cocycle condition:

(179) g(U0
σ1σ2←−− U2) = g(U0

σ1←− U1)g(U1
σ2←− U2)

for any two composable arrows U0
σ1←− U1

σ2←− U2.

To prove this, the following observation will be key.

Proposition 4.27. Let (G,Ω) be as in Lemma 4.26, let J : (S, ω)→M be a toric (G,Ω)-
space and let ∆ := J(S). Further, suppose that we are given a continuous (or equivalently,
smooth) bisection σ : U → B|∆ defined on an open U in ∆. Then the following hold.
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a) For any Lagrangian bisection gσ : U → (G,Ω) lifting σ, the map:

ψgσ : (J−1(U), ω)→ (J−1(σ · U), ω), ψgσ(p) = gσ(J(p)) · p,

is a symplectomorphism that fits into a commutative square:

(180)
(J−1(U), ω) (J−1(σ · U), ω)

U σ · U

ψgσ

J J

t◦σ

and is compatible with the T -action in the sense that for each p ∈ J−1(U) and
t ∈ TJ(p):

ψgσ(t · p) = (σ(J(p)) · t) · ψgσ(p).
b) Conversely, for any symplectomorphism ψ : (J−1(U), ω)→ (J−1(σ ·U), ω) that fits

into a commutative square and is compatible with the T -action as above, there is a
unique Lagrangian bisection gσ : U → (G,Ω) that lifts σ and is such that ψ = ψgσ .

Proof. Notice first that, given a smooth bisection gσ : U → G lifting σ, the associated map
ψgσ is a diffeomorphism, fits into a commutative square as above and is compatible with
the T -action. As in Proposition 4.18 one can prove that ψgσ is a symplectomorphism if and
only if the smooth bisection gσ : U → (G,Ω) is Lagrangian. This proves a and shows that,
to prove b, it is enough to prove that for any diffeomorphism ψ : J−1(U)→ J−1(σ ·U) that
fits into a commutative square like (180) and is compatible with the T -action as above,
there is a unique smooth bisection gσ : U → G that lifts σ and is such that ψ = ψgσ . For
uniqueness, suppose that gσ, hσ : U → G are two such smooth bisections. Let p ∈ J−1(U)
such that T acts freely at p. Then (g−1

σ hσ)(J(p)) belongs to T (since both gσ and hσ lift
σ) and it fixes p (since ψgσ = ψhσ). Hence, gσ(J(p)) = hσ(J(p)) for all p ∈ J−1(U) at
which T acts freely. Since the set of such p ∈ S is dense in S, it follows by continuity that
gσ = hσ, as claimed. In view of this uniqueness, to prove existence it is enough to show
that for every x ∈ U there is an open neighbourhood Ux of x in U and a smooth section
gσ : Ux → G of the source map such that ψ(p) = gσ(J(p)) · p for all p ∈ J−1(Ux). To
this end, let x ∈ U and let hσ : Ux → G be any smooth bisection, defined on some open
neighbourhood Ux of x in U . Then ψ−1

hσ
◦ (ψ|J−1(Ux)) belongs to AutT (J)(Ux), as in (165).

Hence, it follows from Theorem 4.19 (applied to the toric (T ,ΩT )-space J : (S, ω)→M)
that there is a smooth section τ ∈ C∞(∆; T )(Ux) with the property that:

ψ−1
hσ
(ψ(p)) = τ(J(p)) · p

for every p ∈ J−1(Ux). The smooth bisection gσ = hστ : Ux → G has the desired
property. □

Proof of Lemma 4.26. Since Ȟ1(U,L∆) = 0 for each U ∈ U , it follows from Theorem 5
that there is an isomorphism of toric (T ,ΩT )-spaces:

(J−1
∆ (U), ω∆) (J−1(U), ω)

M

ψU

J∆ J

where T acts along J∆ via the TΛ-action in Theorem 4.1 and (119). Fix such an isomor-
phism for each U ∈ U . Now, let V σ←− U be an arrow in EmbU(B|∆). It follows from
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B-invariance of the lattice Λ in T ∗M that (t ◦ σ)∗Λ = Λ|U . So, since t ◦ σ is a diffeomor-
phism of manifolds with corners from U onto an open in ∆, by Theorem 4.1 we have an
induced symplectomorphism:

(J−1
∆ (U), ω)

(t◦σ)∗−−−→ (J−1
∆ (σ · U), ω).

Now notice that:

ψV ◦ (t ◦ σ)∗ ◦ ψ−1
U : (J−1(U), ω)→ (J−1(σ · U), ω)

meets the assumptions of Proposition 4.27b (as is readily verified using Lemma 3.31), so
that there is a unique Lagrangian bisection:

g(V
σ←− U) : U → (G,Ω)|∆

that lifts σ and satisfies:

g(V
σ←− U)(J(p)) · p = (ψV ◦ (t ◦ σ)∗ ◦ ψ−1

U )(p)

for all p ∈ J−1(U). Using the natural and local dependence in Theorem 4.1, it is readily
verified that these choices of lifts satisfy the cocycle condition (179). □

4.3.5. The Čech cohomology of a good enough E-sheaf. Let E ⇒ X be a topological etale
groupoid and let S be an E-sheaf of abelian groups (as in Remark 4.15). For each basis U
of X, there is a contravariant functor EmbU(E)→ Ab associated to the E-sheaf S (where
EmbU(E) denotes the embedding category, as in Subsection 4.3.3) that assigns to a U ∈ U
the abelian group S(U) and to an arrow V

σ←− U the map S(V ) → S(U) that sends
ς ∈ S(V ) to ς · σ ∈ S(U), given by:

[ς · σ]x := [ς](t◦σ)(x) · σ(x) ∈ Sx, x ∈ U.

Associated to this contravariant functor is a cochain complex (ČU(E ,S), ďE), with n-
cochains:

Čn
U(E ,S) =

l

U0

σ1←−... σn←−Un

S(Un)

where the product runs through all n-strings of composable arrows in EmbU(E). So, an
element c ∈ Čn

U(E ,S) assigns to each such string U0
σ1←− ...

σn←− Un an element:

c(U0
σ1←− ...

σn←− Un) ∈ S(Un).
The differential ďE : Čn

U(E ,S)→ Čn+1
U (E ,S) is given by:

ďE(c)(U0
σ1←− ...

σn+1←−−− Un+1) = c(U1
σ2←− ...

σn+1←−−− Un+1)

+
n∑
i=1

(−1)ic(U0
σ1←− ...

σi−1←−− Ui−1
σiσi+1←−−− Ui+1

σi+2←−− ...
σn+1←−−− Un+1)

+ (−1)n+1c(U0
σ1←− ...

σn←− Un) · σn+1.

We denote the associated cohomology groups as Ȟn
U(E ,S).

Example 4.28. If E = Unit(X) is the unit groupoid over X, then any sheaf S on
X is trivially an E-sheaf and Ȟ1

U(E ,S) is naturally isomorphic to the Čech cohomology
group Ȟ1

U(X,S) of the sheaf S, provided U is a basis of X. To see this, note that since
E = Unit(X), the cochain complex (ČU(E ,S), ď) becomes the cochain complex with n-
cochains the group:

Čn
U(Unit(X),S) =

∏
(U0,...,Un)∈Un+1, U0⊃...⊃Un

S(Un),
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and with differential given by the same formula as that of the Čech complex of the sheaf
S. Notice that restriction of cochains defines a map of cochain complexes:

(ČU(X,S), ď)
r−→ (ČU(Unit(X),S), ď).

Since U is a basis of X, the induced group homomorphism:

Ȟ1
U(X,S)

r∗−→ Ȟ1
U(Unit(X),S)

is an isomorphism.

For our purposes it will be convenient to define a similar cohomology group Ȟ1(E ,S) that
does not depend on a choice of basis and that recovers the usual Čech cohomology groups
if E = Unit(X). This can be done as follows, provided that the opens U in X with the
property that Ȟ1(U,S) = 0 form a basis of X, or equivalently, that X admits a basis U
with the property that Ȟ1(U,S) = 0 for all U ∈ U .

Definition 4.29. Such a basis U will be called a good enough basis for S.

Notice that, if U is such a basis of X and V ⊂ U is a subbasis, then EmbV(E) ⊂ EmbU(E)
and restriction of cochains yields an isomorphism:

Ȟ1
U(E ,S)

∼−→ Ȟ1
V(E ,S).

Given two good enough bases U1 and U2 for S, their union U1 ∪U2 is again such a basis,
so that restriction of cochains yields isomorphisms:

(181) Ȟ1
U1
(E ,S) ∼←− Ȟ1

U1∪U2
(E ,S) ∼−→ Ȟ1

U2
(E ,S).

This makes the set of groups Ȟ1
U(E ,S) a directed system indexed by the trivially di-

rected set of good enough bases U for S. We define the desired cohomology group as the
associated limit:

(182) Ȟ1(E ,S) := lim
U
Ȟ1

U(E ,S).

Definition 4.30. We call (182) the degree one Čech cohomology group of the E-sheaf
S.

Example 4.31. Continuing Example 4.28: if E = Unit(X) is the unit groupoid over X
and if S a sheaf onX with the property that the opens U inX for which Ȟ1(U,S) = 0 form
a basis of X, then Ȟ1(E ,S) is naturally isomorphic to the Čech cohomology Ȟ1(X,S).
Indeed, for any good enough basis U for S the composite group homomorphism:

(183) Ȟ1
U(Unit(X),S) (r∗)−1

−−−→ Ȟ1
U(X,S)→ Ȟ1(X,S)

is an isomorphism, since both maps are. Given any two good enough bases U1 and U2

for S, the isomorphisms (181) commute with the maps (183) into H1(X,S), so that we
obtain an isomorphism:

(184) Ȟ1(Unit(X),S) ∼−→ Ȟ1(X,S),

as claimed.

Remark 4.32. Consider the functor (164) of Example 4.15. Suppose that the set of
opens U in X such that both Ȟ1(U,S) = 0 and Ȟ1(q(U),S) = 0 forms a basis of X.
Then the Čech cohomology of the sheaf S on X and that of the E-sheaf S are related by
a natural injective group homomorphism:

(185) q∗ : Ȟ1(X,S)→ Ȟ1(E ,S),
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defined as follows. Given a basis U of X, let q(U) denote the basis of X consisting of
opens of the form q(U) for U ∈ U . For each n, consider the map:

q∗U : Čn
q(U)(X,S)→ Čn

U(E ,S), q∗U(c)(U0
σ1←− ...

σn←− Un) := c(q(U1), ..., q(Un))|Un ∈ S(Un).

Note that this is well-defined, since as for any string of composable arrows U0
σ1←− ...

σn←− Un
it holds that q(U0) ⊃ q(U1) ⊃ ... ⊃ q(Un). Furthermore, it is readily verified that these
maps define a map of cochain complexes. Hence, for each n this descends to a group
homomorphism in cohomology. The group homomorphism in degree n = 1:

(186) Ȟ1
q(U)(X,S)→ Ȟ1

U(E ,S)

is readily verified to be injective. If Ȟ1(U,S) = 0 and Ȟ1(q(U),S) = 0 for all U ∈ U ,
then the left-hand group in (186) is naturally isomorphic to Ȟ1(X,S) (cf. Example 4.31),
whereas the right-hand group is naturally isomorphic to Ȟ1(E ,S). So, we then indeed
obtain an injective group homomorphism (185). This turns out not to depend on the
choice of such U .

The proposition below ensures that (if B is etale) the B|∆-sheaf L∆ in Remark 4.15 satisfies
the conditions in Remark 4.32, so that there is a natural injective group homomorphism:

(187) q∗ : Ȟ1(∆,L)→ Ȟ1(B|∆,L∆).

Proposition 4.33. Let B ⇒ (M,Λ) be an etale integral affine orbifold groupoid with a
Delzant subspace ∆. Let ∆ be the invariant subspace of M corresponding to ∆ and let
q : ∆ → ∆ denote the orbit projection. The connected opens U in ∆ with the property
that:

Ȟ1(U,L∆) = 0 & Ȟ1(q(U),L∆) = 0

form a basis of ∆.

Proof. This follows from Proposition C.1 and the lemma below. □

Lemma 4.34. Let B ⇒ (M,Λ) be an etale integral affine orbifold groupoid with a Delzant
subspace ∆. For every x ∈ ∆ there is an open U around x in M , together with an integral
affine vector space (V,ΛV ) equipped with a linear integral affine action of a finite group
Γ , a Γ -invariant open W around the origin in V and an isomorphism of integral affine
orbifold groupoids:

B|U

(U,Λ)

(Γ ⋉ V )|W

(W,ΛV )

∼=

that maps x to the origin in V and identifies U ∩∆ with a convex subset of V .

Proof. Because ∆ is a Delzant subspace, every x ∈ ∆ admits an open neighbourhood U
together with an integral affine isomorphism ι from (U,Λ) onto an open neighbourhood
W of the origin in (TxM,Λ∗

x), that sends x to the origin and U ∩∆ onto a convex subset of
TxM , and the derivative of which at x is the identity map of TxM . Appealing to Lemma
4.23, we can shrink U so that it also satisfies the properties in that lemma. We claim that
ι is then automatically Bx-equivariant with respect to the linear integral affine action on
(TxM,Λ∗

x) given by:

γ · v = d(t ◦ σγ)x(v), γ ∈ Bx, v ∈ TxM.

Indeed, given γ ∈ Bx, the map d(t ◦ σγ)−1
x ◦ ι ◦ (t ◦ σγ) ◦ ι−1 is an integral affine morphism

between connected opens in an integral affine vector space that maps the origin to itself
and has derivative the identity at the origin. Hence, it must be the identity map (as follows
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from Lemma 3.21). So, ι is indeed Bx-equivariant and therefore it lifts to an isomorphism
of integral affine orbifold groupoids between Bx ⋉ U ⇒ (U,Λ) and the restriction of
Bx ⋉ TxM ⇒ (TxM,Λ∗

x) to W . □

4.3.6. The cohomology group in the first structure theorem. In this subsection we will
define the cohomology group appearing in the first structure theorem, which is entirely
encoded by the integral affine orbifold groupoid associated to (G,Ω). Let B ⇒ (M,Λ)
be an integral affine orbifold groupoid and ∆ a Delzant subspace. For any complete
transversal Σ to B (see Example 3.29), the restriction B|Σ ⇒ (Σ,ΛΣ) is an etale integral
affine orbifold groupoid, so that we can consider the associated B|Σ∩∆-sheaf LΣ∩∆ (as in
Remark 4.15) and its degree one Čech cohomology:

(188) Ȟ1(B|Σ∩∆,LΣ∩∆).

Since for any two such complete transversals Σ1 and Σ2 the restricted integral affine
orbifold groupoids are canonically Morita equivalent, the proposition below implies that
up to canonical isomorphism (188) does not depend on the choice of Σ.

Proposition 4.35. An integral affine Morita equivalence between etale integral affine
orbifold groupoids:

B1

(M1,Λ1)

P

(M2,Λ2)

B2
α1 α2

that relates a Delzant subspace ∆1 to a Delzant subspace ∆2 induces an isomorphism:

Ȟ1(B1|∆1 ,L1) ∼= Ȟ1(B2|∆2 ,L2).

This is functorial with respect to composition of integral affine Morita equivalences.

Proof. Choose a good enough basis U2 for L∆2 such that each U ∈ U2 admits a smooth
local section ζU : UM2 → P of α2, defined on an open UM2 in M2 satisfying U = UM2 ∩∆2,
with the property that:

fU := α1 ◦ ζU : UM2 →M1

is a smooth open embedding. Fix such a collection {ζU | U ∈ U2}. Given U ∈ U , for each
x ∈ UM2 the differential of fU at x coincides with ψ−1

ζU (x), as defined in Remark 3.27, so
that it pulls (Λ1)fU (x) back to (Λ2)x. Therefore, fU induces an isomorphism of symplectic
torus bundles:

(fU)
∗ : (TΛ1 ,ΩΛ1)|fU (UM2

)
∼−→ (TΛ2 ,ΩΛ2)|UM2

.

Seeing as, moreover, fU(U) is open in ∆2 (for it coincides with fU(UM2) ∩∆2, as follows
from the fact that ∆1 and ∆2 are related by the Morita equivalence), fU induces an
isomorphism of sheaves:

(fU)
∗ : L∆1|fU (U)

∼−→ L∆2|U
covering the homeomorphism fU : U → fU(U). This shows, in particular, that for each
U ∈ U2:

Ȟ1(fU(U),L∆1)
∼= Ȟ1(U,L∆2) = 0.

In view of this, we can extend {fU(U) | U ∈ U2} to a good enough basis U1 for L∆1 .
Now, for each n consider the map:

Čn
U1
(B1|∆1 ,L1)→ Čn

U2
(B2|∆2 ,L2),

that associates to an n-cochain c1 the n-cochain c2 given by:

(189) c2(U0
σ1←− ...

σn←− Un) = (fUn)
∗c1(fU0(U0)

f(σ1)←−−− ...
f(σn)←−−− fUn(Un)),
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where denote by f(σj) the unique continuous bisection of B1|∆1 on fUj
(Uj) satisfying:

f(σj)(fUj
(x)) · ζUj

(x) = ζUj−1
((t ◦ σj)(x)) · σj(x),

for each x ∈ Uj. This defines a map of complexes and so, in particular, we obtain a map:

Ȟ1
U1
(B1|∆1 ,L1)→ Ȟ1

U2
(B2|∆2 ,L2).

One readily verifies that this in turn descends to a map:

Ȟ1(B1|∆1 ,L1)→ Ȟ1(B2|∆2 ,L2),

which does not depend of the choice of U1, U2 or {ζU | U ∈ U2} made above. It is
straightforward to verify that this construction is functorial with respect to composition
of Morita equivalences. In particular, from the inverse Morita equivalence one obtains the
inverse map in cohomology. □

Consider the isomorphisms:

φΣ1,Σ2 : Ȟ
1(B|Σ1∩∆1 ,LΣ1∩∆1)

∼−→ Ȟ1(B|Σ2∩∆2 ,LΣ2∩∆2)

induced by the canonical integral affine Morita equivalence:

B|Σ1

(Σ1,ΛΣ1)

t−1
B (Σ1) ∩ s−1

B (Σ2)

(Σ2,ΛΣ2)

B|Σ2

tB sB

These make the set of groups Ȟ1(B|Σ∩∆,LΣ∩∆) a directed system indexed by the trivially
directed set of complete transversals Σ to B in M .

Definition 4.36. Let B ⇒ (M,Λ) be an integral affine orbifold groupoid and ∆ a Delzant
subspace. We define:

Ȟ1(B|∆,L) := lim
Σ
Ȟ1(B|Σ∩∆,LΣ∩∆).

Of course, for each complete transversal Σ to B there is a canonical isomorphism:

(190) Ȟ1(B|Σ∩∆,LΣ∩∆)
∼−→ Ȟ1(B|∆,L∆),

but the group Ȟ1(B|∆,L) itself is independent of such a choice.

Remark 4.37. For any two complete transversals Σ1 and Σ2 for B we have a commutative
square:

Ȟ1(Σ1 ∩∆,LΣ1∩∆) Ȟ1(B|Σ1∩∆,LΣ1∩∆)

Ȟ1(Σ2 ∩∆,LΣ2∩∆) Ȟ1(B|Σ2∩∆,LΣ2∩∆)

(187)

∼ ∼

(187)

in which the vertical arrows are the isomorphisms induced by the integral affine Morita
equivalence in Definition 4.36 (via Proposition 4.20 and Proposition 4.35). Therefore,
there is an injective group homomorphism:

(191) Ȟ1(∆,L) ↪→ Ȟ1(B|∆,L),
determined by the property that for every complete transversal Σ we have a commutative
square:

Ȟ1(∆,L) Ȟ1(B|∆,L)

Ȟ1(Σ ∩∆,LΣ∩∆) Ȟ1(B|Σ∩∆,LΣ∩∆)

(191)

(187)

∼ ∼
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in which the left vertical arrow is the isomorphism induced by the integral affine Morita
equivalence in Example 3.29 and the right vertical arrow is the canonical isomorphism.

4.3.7. The first and third structure theorem. In this section we prove the first and third
structure theorem. We start with a proof of the first structure theorem for the case in
which B is etale, excluding naturality with respect to symplectic Morita equivalences.
The general case and naturality will be addressed afterwards. Then, at the end of this
subsection, we prove the third structure theorem.

Proof of Theorem 3; definition of the action in the etale case. Let (G,Ω) ⇒ M be a reg-
ular and proper symplectic groupoid for which the associated orbifold groupoid B = G/T
is etale and let ∆ ⊂M be a Delzant subspace. To define the action, let

(192) [τ ] ∈ Ȟ1(B|∆,L),
represented by a 1-cocycle:

τ ∈ Č1
U(B|∆,L)

with respect to some good enough basis U for L∆, and let J : (S, ω) → M be a toric
(G,Ω)-space with momentum image ∆. First consider the topological space:

(193)
⊔
U∈U

J−1(U).

Given two elements (p1, U1) and (p2, U2) of (193), we write (p1, U1)←↩ (p2, U2) if U2 ⊂ U1

and:
τ(U1 ←↩ U2)(J(p2)) · p2 = p1,

where U2 ←↩ U1 denotes the arrow in EmbU(B|∆) with underlying bisection the unit map.
This relation is reflexive and transitive (as follows from the fact that τ is a 1-cocycle),
but not necessarily symmetric. The equivalence relation generated by this relation is
given by: (p1, U1) ∼ (p2, U2) if and only if there is a pair (p12, U12), with U12 ∈ U and
p12 ∈ U12 ⊂ U1 ∩ U2, such that (p1, U1) ←↩ (p12, U12) and (p12, U12) ↪→ (p2, U2). Indeed,
this relation is clearly reflexive, symmetric and contains the first relation. To prove
transitivity, suppose that (p1, U1) ∼ (p2, U2) and (p2, U2) ∼ (p3, U3). Then there are
(p12, U12) and (p23, U23) with U12, U23 ∈ U , p12 ∈ U12 ⊂ U1 ∩ U2 and p23 ∈ U23 ⊂ U2 ∩ U3,
such that:

(p1, U1) (p2, U2) (p3, U3)

(p12, U12) (p23, U23)

Let U123 ∈ U be such that J(p2) ∈ U123 ⊂ U12 ∩ U23 and consider the element

p123 := τ(U2 ←↩ U123)(J(p2))
−1 · p2 ∈ J−1(U123),

which is well-defined since the source and target of τ(U2 ←↩ U123)(J(p2)) coincide. It
follows from the cocycle condition (179) that (p12, U12)←↩ (p123, U123) and (p123, U123) ↪→
(p23, U23), and hence that (p1, U1) ←↩ (p123, U123) and (p123, U123) ↪→ (p3, U3). This shows
that (p1, U1) ∼ (p3, U3), which proves transitivity. Now, consider the quotient space:

Sτ :=

(⊔
U∈U J

−1(U)
)

∼
.

From the above description of the equivalence relation it is clear that for each U ∈ U the
map:

(194) jU : J−1(U)→ Sτ , p 7→ [p, U ]
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is an injection. Since for each inclusion V ←↩ U the map:

(J−1(U), ω)→ (J−1(U), ω), p 7→ τ(V ←↩ U)(J(p)) · p
is a symplectomorphism (which follows from Proposition 4.18), there is a unique structure
of symplectic manifold on Sτ with the property that for each U ∈ U the injection (194) is a
symplectomorphism onto an open in Sτ (with respect to the symplectic form ω on J−1(U)).
Let ωτ be the corresponding symplectic form on Sτ . Next, note that J : (S, ω) → M
induces a smooth map:

Jτ : (Sτ , ωτ )→M, [p, U ] 7→ J(p),

along which (G,Ω) acts in a Hamiltonian fashion, as follows. Given g ∈ G and pτ ∈ Sτ
such that s(g) = Jτ (pτ ), let (p, U) be a representative of pτ with U ∈ U small enough
such that there is an arrow V

σ←− U in EmbU(B|∆) with the property that σ(s(g)) = [g],
and set:

g · pτ = [g · τ(V σ←− U)(s(g)) · p, V ].

It follows from the fact that τ is a 1-cocycle that this is independent of the choice of
representative (p, U) and the choice of arrow V

σ←− U , and that this defines a G-action.
Furthermore, the fact that τ(V σ←− U) is Lagrangian implies that this action is Hamilton-
ian. It is readily verified that the Hamiltonian (G,Ω)-space Jτ : (Sτ , ωτ ) → M is toric,
with momentum image ∆, and that its isomorphism class only depends on the cohomology
class (192). So, we can define:

[τ ] · [J : (S, ω)→M ] := [Jτ : (Sτ , ωτ )→M ]

to be the isomorphism class of the toric (G,Ω)-space Jτ : (Sτ , ωτ ) → M . We leave it for
the reader to check that this defines an action of Ȟ1(B|∆,L). □

Proof of Theorem 3; freeness and transivity of the action in the etale case. To see that the
action is free, let τ be a 1-cocycle as above and suppose that:

[τ ] · [J : (S, ω)→M ] = [J : (S, ω)→M ].

Then there is an isomorphism of toric (G,Ω)-spaces:

(Sτ , ωτ ) (S, ω)

M

ψ

Jτ J

Then for each U ∈ U we have an automorphism of toric (T ,ΩT )-spaces:

(195) ψ ◦ jU ∈ AutT (J, ω)(U),

and it follows from G-equivariance of ψ that the 0-cochain:

c ∈ Č0
U(B|∆,L),

that assigns to an open U ∈ U the Lagrangian section corresponding to (195) is a primitive
for the 1-cocycle τ . So, the class (192) is trivial, which proves that the action is free. For
transitivity, suppose that J1 : (S1, ω1)→M and J2 : (S2, ω2)→M are toric (G,Ω)-spaces
with momentum image ∆. Let U be a good enough basis for L∆ (in the sense of Definition
4.29). By Theorem 5 there is, for each U ∈ U , an isomorphism of toric (T ,ΩT )-spaces:

(J−1
1 (U), ω1) (J−1

2 (U), ω2)

M

ψU

J1 J2
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Furthermore, by Lemma 4.26 we can find, for each arrow V
σ←− U in EmbU(B|∆), a

Lagrangian bisection (178) lifting σ, chosen so as to satisfy the cocycle condition (179).
By Proposition 4.27, this choice provides us with symplectomorphisms:

ψ
i,V

σ←−U : (J−1
i (U), ωi)→ (J−1

i (σ · U), ωi), ψ
i,V

σ←−U(p) = g(V
σ←− U)(Ji(p)) · p,

for each i ∈ {1, 2} and each arrow V
σ←− U . Now, consider the 1-cochain:

τ ∈ Č1
U(B|∆,L)

that assigns to an arrow V
σ←− U the Lagrangian section corresponding to the automor-

phism of the toric (T ,ΩT )-space J2 : (J−1
2 (U), ω2)→M given by the composition:

(J−1
2 (U), ω2) (J−1

1 (U), ω1)

(J−1
2 (σ · U), ω2) (J−1

1 (σ · U), ω1)

ψ−1
U

ψ
1,V

σ←−U
ψ−1

2,V
σ←−U

ψV

From the cocycle condition (179) it follows that τ is a 1-cocycle. Now, consider the unique
map ψ : S1 → S2,τ defined by the property that ψ|J−1

1 (U) = j2,U ◦ ψU for each U ∈ U ,
with j2,U as in (194). To see that this is well-defined, notice first that (since U is a basis)
this boils down to showing that if V, U ∈ U such that U ⊂ V , then j2,V ◦ ψV restricts to
j2,U ◦ψU on J−1

1 (U), and this in turn readily follows from the fact that ψU is T -equivariant
and g(V ←↩ U) takes values in T , being a lift of the unit bisection of B. Clearly, ψ is
a symplectomorphism that intertwines J1 and J2,τ . Furthermore, it is G-equivariant. To
see this, let g ∈ G with source x ∈ M and target y ∈ M , and let p ∈ S1 be such that
J1(p) = x. Let V σ←− U be an arrow in EmbU(B|∆) such that x ∈ U and σ(x) = [g]. Then
J1(p) = x ∈ U and J1(g · p) = y ∈ V , so that:

g · ψ(p) = g · [ψU(p), U ] = [g · τ(V σ←− U)(x) · ψU(p), V ],

whereas:
ψ(g · p) = [ψV (g · p), V ].

To see that these are equal, notice that:

g · τ(V σ←− U)(x) · ψU(p) = (g · g(V σ←− U)(x)−1) · ψV (g(V
σ←− U)(x) · p) = ψV (g · p),

where the first step follows by spelling out the definition of τ(V σ←− U) and the second
step follows from T -equivariance of ψV and the observation that:

g · g(V σ←− U)(x)−1 ∈ T ,

since both g and g(V
σ←− U)(x) project to [g] ∈ B. So, ψ is an isomorphism of toric

(G,Ω)-spaces, leading us to conclude that:

[J1 : (S1, ω1)→M ] = [τ ] · [J2 : (S2, ω2)→M ],

which proves transitivity of the action. □

Next, we treat the general (non-etale) case.

Proof of Theorem 3; the torsor structure in the general case. Let (G,Ω) ⇒ M be a regu-
lar and proper symplectic groupoid. To define the action of Ȟ1(B|∆,L), choose a complete
transversal Σ. By the etale case, we have a free and transitive action of Ȟ1(B|Σ∩∆,LΣ∩∆)
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on the set of isomorphism classes of toric (G,Ω)|Σ-spaces with momentum image Σ ∩∆.
Via the isomorphism (190) and the bijection:

Isomorphism classes of
toric (G,Ω)|Σ-spaces

with momentum image Σ ∩∆

 ∼−→


Isomorphism classes of

toric (G,Ω)-spaces
with momentum image ∆


induced (as in Remark 3.58) by the canonical symplectic Morita equivalence between
(G,Ω) and its restriction to Σ, we obtain a free and transitive action of Ȟ1(B|∆,L) on
the right-hand set. In Proposition 4.38 we show that this does not depend on the choice
of complete transversal. □

To conclude the proof of the first structure theorem, it remains to address the naturality.
Let (G1,Ω1) ⇒ M1 and (G2,Ω2) ⇒ M2 be regular and proper symplectic groupoids with
respective Delzant subspaces ∆1 and ∆2. Suppose that we are given a symplectic Morita
equivalence ((P, ωP ), α1, α2) between these that relates ∆1 to ∆2. By Remark 3.58 this
induces a bijection:

(196) P∗ :


Isomorphism classes of

toric (G1,Ω1)-spaces
with momentum image ∆1

 ∼−→


Isomorphism classes of

toric (G2,Ω2)-spaces
with momentum image ∆2


Furthermore, by restricting to respective complete transversals Σ1 and Σ2 and appealing
to Proposition 4.35, the integral affine Morita equivalence associated to ((P, ωP ), α1, α2)
(see Example 3.30) induces a group isomorphism:

(197) P ∗ : Ȟ
1(B1|∆1 ,L1)

∼−→ Ȟ1(B2|∆2 ,L2),

that turns out not to depend on the choice of complete transversals.

Proposition 4.38. The action of Ȟ1(B|∆,L) defined above is natural, in the following
sense.

a) It does not depend on the choice of complete transversal Σ.
b) For any symplectic Morita equivalence as above, it holds that:

P∗([τ ] · [J : (S, ω)→M1]) = P ∗([τ ]) · P∗([J : (S, ω)→M1])

for every [τ ] ∈ Ȟ1(B1|∆1 ,L1) and every toric (G1,Ω1)-space J : (S, ω)→ M1 with
momentum image ∆1.

Proof. First, we suppose that B is etale. In this case, we defined the action for the choice
of complete transversal Σ :=M , and it suffices to prove part b for this action with B1 and
B2 etale. To this end, let [τ1] ∈ Ȟ1(B1|∆1 ,L1) and let J : (S, ω)→M1 be a toric (G1,Ω1)-
space with momentum image ∆1. Choose a good enough basis U2 for L∆2 together with
a collection of smooth local sections {ζU | U ∈ U2} of α2 : P → M2 and a good enough
basis U1 for L∆1 as in the proof of Proposition 4.35, with the additional property that
each ζU admits a smooth local section ζ̂U : UM2 → P of α2 lifting it. From (189) and
Lemma 3.31 it follows that P ∗([τ1]) is represented by the unique 1-cocycle τ2 with the
property that:

(198) τ2(V
σ←− U)(x) = φp

(
τ1(fV (V )

f(σ)←−− fU(U))(fU(x))
)

for each arrow V
σ←− U in EmbU2(B2|∆2), each x ∈ U and each p ∈ P such that [p] =

ζU(x) ∈ P . Here φp : (T1)fU (x)
∼−→ (T2)x denotes the group isomorphism given by (122).
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Consider the map:

ψ : ((P ∗G1 S)τ2 , (ωPS)τ2)→ (P ∗G1 Sτ1 , ωPSτ1
),

[[pP , pS], U ] 7→
[
ζ̂U(α2(pP )), [[ζ̂U(α2(pP )) : pP ] · pS, fU(U)]

]
,

where [ζ̂U(α2(pP )) : pP ] ∈ G1 denotes the unique element satisfying:

[ζ̂U(α2(pP )) : pP ] · pP = ζ̂U(α2(pP )).

Using (198) a somewhat tedious, but straightforward verification shows that ψ is well-
defined, G-equivariant and bijective. Moreover, ψ is readily verified to be smooth and
symplectic (and hence immersive), so that for dimensional reasons it must be a symplec-
tomorphism. So, it is an isomorphism of toric (G2,Ω2)-spaces. Therefore:

P∗([τ1] · [J : (S, ω)→M1]) = [P∗(Jτ1) : (P ∗G1 Sτ1 , ωPSτ1
)→M2]

= [P∗(J)τ2 : ((P ∗G1 S)τ2 , (ωPS)τ2)→M2]

= P ∗([τ1]) · P∗([J : (S, ω)→M1]),

as claimed. This concludes the proof of the etale case. In the general setting both parts a
and b readily follow from the case treated above by using the fact that the bijection (196)
only depends on the isomorphism class of the Hamiltonian bibundle ((P, ωP ), α1, α2) and
the fact that (196) and (197) are both functorial with respect to composition of symplectic
Morita equivalences. □

Next, we address the third structure theorem. For this we will use:

Proposition 4.39. The injection (97) – defined as in (191) – is compatible with the
actions in the first and second structure theorems.

Proof. After restricting to a complete transversal, the proof reduces to the case in which
B is etale. To prove the proposition in that case, let U be a basis of ∆ and let q(U) be
the basis of ∆ consisting of the opens of the form q(U) for U ∈ U , where q : M → M
denotes the orbit projection. Further, let

λ ∈ Č1
q(U)(∆,L)

be a 1-cocycle, let τ = q∗U(λ) and let J : (S, ω) → M be a toric (G,Ω)-space with
momentum image ∆. To prove the proposition, we ought to give an isomorphism of toric
(G,Ω)-spaces:

(Sτ , ωτ ) (Sλ, ωλ)

M

ψ

Jτ Jλ

To this end, consider the map ψ : Sτ → Sλ given by ψ([p, U ]) = [p, Û ], where Û denotes
the G-saturation of U . A straightforward verification shows that this is well-defined,
bijective and intertwines the maps Jτ and Jλ. Further notice that, for each U ∈ U , the
pre-composition of ψ with the inclusion (194) coincides with the composition:

(J−1(U), ω) ↪→ (J−1(Û), ω) ↪→ (Sλ, ωλ),

which is a symplectomorphism onto an open in (Sλ, ωλ). Therefore, ψ is a symplectomor-
phism. Finally, the fact that λ(q(U), q(V )) is B-invariant for all U, V ∈ U implies that ψ
is G-equivariant. So, ψ is indeed an isomorphism of toric (G,Ω)-spaces. □
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Proof of Theorem 6. Since the image of Ȟ1(∆,L) under the injection (191) is a normal
subgroup of Ȟ1(B|∆,L) (these groups being abelian), the second structure theorem, to-
gether with Proposition 4.39, implies that the action in the first structure theorem de-
scends to an action of the quotient group (99) on the image of (98), uniquely determined
by the fact that (98) becomes equivariant with respect to the Ȟ1(B|∆,L)-action on its
image corresponding to the quotient group action. It follows by combining the first and
second structure theorem with Proposition 4.39 that this action is free and transitive. □

4.3.8. On the action in the third structure theorem. In this subsection we give a more
direct description of the action in the third structure theorem, in terms of a canonical
action of the group Ȟ1(B|∆,L) on the set of global sections of the ext-sheaf (93). This is
mainly meant to provide more insight and is not used in Section 4.4. We will first show
that the ext-sheaf comes with a free and transitive action of a sheaf of abelian groups:

(199) H1 = H1
(B,T ,∆),

defined in a way similar to the ext-sheaf itself (Proposition 4.46 below). To define this
sheaf, first consider the sheaf of abelian groups on ∆ consisting of set-theoretic local
sections of the discrete bundle of abelian groups:

(200)
⊔
x∈∆

H1(Bx, Tx)→ ∆,

with fiber over x the first degree group cohomology of the Bx-module Tx. Note that it
acts on the sheaf of set-theoretic local sections of (131), with action defined by setting for
each x in the common domain of local sections κ of (200) and σ of (131):

(201) (κ · σ)(x) := κ(x) · σ(x) ∈ I1(Gx, Tx),

where the action on the right-hand side denotes theH1(Bx, Tx)-action on I1(Gx, Tx) defined
in Remark 3.5. This action is free and transitive (by which we mean that for each open U
in ∆ the associated group action is free and transitive). As for (131), B acts along (200):
a given [g] ∈ B with source x and target y acts as the group isomorphism:

H1(Bx, Tx)
∼−→ H1(By, Ty),

induced by the conjugation map Cg : Gx
∼−→ Gy, or more precisely, by the equivalence of

modules:
(C[g], [g]·) : (Bx, Tx)

∼−→ (By, Ty).
In analogy with the sheaf I1Set in Definition 3.40, we let H1

Set = H1
Set,(B,T ,∆) denote the

sheaf on ∆ consisting of B-invariant set-theoretic local sections of (200). Since the B-
action along (200) is compatible with the B-action along (131), the action of the sheaf
of abelian groups defined above restricts to an action of the sheaf H1

Set on the sheaf I1Set.
Next, we will define the sheaf (199) as the subsheaf of H1

Set consisting of flat sections,
where the notion of flatness will be analogous to that in Definition 3.43, although instead
of symplectic Morita equivalences we will only use the induced integral affine Morita
equivalences between the associated integral affine orbifold groupoids (see Example 3.30).
This is natural because the sheaf H1

Set is fully encoded by the integral affine orbifold
groupoid B ⇒ (M,Λ) and the Delzant subspace ∆, via (119). In particular, this sheaf
can be defined starting with any integral affine orbifold groupoid and a Delzant subspace
thereof. To define flatness, note first that (in analogy with Lemma 3.41) we have:

Lemma 4.40. An integral affine Morita equivalence:
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B1

(M1,Λ1)

P

(M2,Λ2)

B2
α1 α2

that relates a Delzant subspace ∆1 ⊂M1 to ∆2 ⊂M2 induces an isomorphism of sheaves
(of abelian groups):

H1
Set,1 := H1

Set(B1, TΛ1 ,∆1)
∼−→ H1

Set(B2, TΛ2 ,∆2) := H1
Set,2,

covering the induced homeomorphism between ∆1 and ∆2. This is functorial with respect
to composition of integral affine Morita equivalences.

Proof. The isomorphism is given by associating to κ1 ∈ H1
Set,1(U1) the section κ2 ∈

H1
Set,2(U2) given by:

κ2(x2) := (φp, (ψp)∗)∗(κ1(x1)),

where p ∈ P is any choice of element such that α2(p) = x2, x1 := α1(p) and

(φp, (ψp)∗)∗ : H
1(Bx1 , (TΛ1)x1)

∼−→ H1(Bx2 , (TΛ2)x2)

is the isomorphism induced by the equivalence of modules:

(φp, (ψp)∗) : (Bx1 , (TΛ1)x1)
∼−→ (Bx2 , (TΛ2)x2),

consisting of the induced isomorphism of Lie groups φp : Bx1
∼−→ Bx2 given by γ·p = p·φp(γ)

for γ ∈ Bx1 , and (ψp)∗ : (TΛ1)x1 → (TΛ2)x2 is the isomorphism of tori induced by (121). It
follows from arguments similar to those in the proof of Lemma 3.41 that this is independent
of the choice of such p and defines an isomorphism of sheaves. The same goes for the
functoriality. □

Besides this, to define flatness we need:

Proposition 4.41. Let B ⇒ (M,Λ) be an integral affine orbifold groupoid. For every leaf
L of B in M there is an invariant open neighbourhood U of L, together with an integral
affine vector space (V,ΛV ) equipped with a linear integral affine action of a finite group Γ ,
a Γ -invariant open W around the origin in V and an integral affine Morita equivalence:

B|U

(U,Λ)

P

(W,ΛV )

(Γ ⋉ V )|W
α1 α2

that relates L to the origin in V .

Proof. Restrict to a transversal through L and apply Lemma 4.34. □

Now, let an integral affine Morita equivalence as in this proposition be given, let ∆V denote
the invariant subspace of W related to U ∩∆ by this Morita equivalence and let T denote
the torus V ∗/Λ∗

V equipped with the induced Γ -action. Via the induced isomorphism
of sheaves of Lemma 4.40, to each local section of H1

Set,(B,TΛ,∆)|U there corresponds an
invariant local section of the set-theoretic bundle:

(202)
⊔
x∈∆V

H1(Γx, T )→ ∆V .

This is because for each x ∈ V the canonical isomorphism between (TΛ)x and T respects
the Γx-action. Further notice that for each x ∈ V there is a restriction map H1(Γ, T )→
H1(Γx, T ).
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Definition 4.42. We will call a local section κ of (202) centered if the origin belongs
to its domain and for each x in its domain it holds that:

κ(x) = κ(0)|Γx ∈ H1(Γx, T ).

Definition 4.43. Let B ⇒ (M,Λ) be an integral affine orbifold groupoid and let ∆ ⊂M
be a Delzant subspace. Given an open V in ∆ and a leaf L ∈ V , we call a section:

(203) κ ∈ H1
Set(V )

flat at L if there is an open neighbourhood U of L in M and an integral affine Morita
equivalence as in Proposition 4.41, such that the invariant local section of (202) corre-
sponding to κ|U∩V (via the induced isomorphism of sheaves of Lemma 4.40) is centered.
We call a section (203) flat if it is so at all L ∈ V .

The analogue of Remark 3.46 holds as well:

Proposition 4.44. If a section (203) is flat, then for every integral affine Morita equiva-
lence as in the above definition the invariant local section of (202) corresponding to κ|U∩V
(via the induced isomorphism of sheaves of Lemma 4.40) is centered on some neighbour-
hood of the origin.

Proof. Notice that by using restriction to opens, inversion and composition of integral
affine Morita equivalences, the proof boils down to showing that if we are given:

• an integral affine vector space (V,Λ) equipped with a linear integral affine action
of a finite group Γ ,
• Γ -invariant opens W1 and W2 around the origin in V and an integral affine Morita

equivalence:

(Γ ⋉ V )|W1

(W1,Λ1)

P

(W2,Λ2)

(Γ ⋉ V )|W2

α1 α2

that relates the origin in V to itself,
• P -related Delzant subspaces ∆1 and ∆2 of V that contain the origin,
• P -related invariant sections:

κ1 ∈ H1
Set,(Γ⋉V,T×V,∆1)

(∆1 ∩W 1),

κ2 ∈ H1
Set,(Γ⋉V,T×V,∆2)

(∆2 ∩W 2),

such that κ1 is centered, then there is an invariant open U2 around the origin in V such that
κ2|∆2∩U2

is centered. Given p ∈ P , we will denote φp : Γx1 → Γx2 and (ψp)∗ : T → T as in
the proof of Lemma 4.40, where x1 := α1(p) and x2 := α2(p) and we canonically identified
(TΛ)x1 and (TΛ)x2 with T . Since Γ ⋉ V is etale, α1 and α2 are local diffeomorphisms. So,
because moreover Γ is finite and acts linearly, we can find a convex and Γ -invariant open
neighbourhood U1 ⊂ W1 of the origin in V that admits a smooth section ζ : U1 → P of
α1 with the property that α2 ◦ ζ : U1 → U2 is a diffeomorphism onto an open in U2 in
V . Since the Morita equivalence relates the origin to itself, α2 ◦ ζ must map the origin
to itself. For each x ∈ U1, the derivative of α2 ◦ ζ at x is the map ψζ(x). It follows from
this that α2 ◦ ζ is an integral affine diffeomorphism (by Remark 3.27) and (using Lemma
3.21) that for each x ∈ U1:

(204) (ψζ(x))∗ = (ψζ(0))∗ : T → T.

Next, we will show that for each x ∈ U1:

(205) φζ(x) = φζ(0)|Γx : Γx → Γ(α2◦ζ)(x).
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To this end, consider the map:
φ : Γ × U1 → Γ × U2,

determined by:
(γ, x) · ζ(x) = ζ(γ · x) · φ(γ, x)

for each x ∈ U1. Since the division map of a principal bundle is smooth, so is the map φ.
Hence, seeing as Γ is discrete, it follows that for each γ ∈ Γ the Γ -component of the map
φ(γ, ·) on U1 is constant with value φζ(0)(γ). This implies that (205) holds, and that for
all x ∈ U1 and γ ∈ Γ :

(α2 ◦ ζ)(γ · x) = φζ(0)(γ) · (α2 ◦ ζ)(x),
so that U2 is indeed Γ -invariant. Using (204), (205) and the fact that κ1 is centered, one
readily verifies that κ2|∆2∩U2

is centered as well. □

As a consequence of this, for each open V in ∆ the flat sections over V form a subgroup
of H1

Set(V ). Hence, the flat sections form a subsheaf of abelian groups of H1
Set, that we

denote by:
H1 = H1

(B,TΛ,∆).

Given a regular and proper symplectic groupoid (G,Ω) ⇒ M with associated integral
affine orbifold groupoid B ⇒ (M,Λ), together with a Delzant subspace ∆, we define (199)
to be the subsheaf of H1

Set,(B,T ,∆) corresponding to H1
(B,TΛ,∆) via (119).

Remark 4.45. Given x ∈ ∆, evaluation at x defines an isomorphism between the stalk
of H1 at the leaf Lx and the group H1(Bx, (TΛ)x). This indicates that H1 is in fact
a realization of a more familiar sheaf: the first right-derived functor of the left-exact
functor Sh(B|∆) → Sh(∆) as defined in (164) (cf. [64, Corollary 4.12] and Lemma 4.50a
below). We have yet to verify this.

Using Example 3.30 and Proposition 4.44, it follows that:

Proposition 4.46. The action of H1
Set on I1Set defined before restricts to an action of the

sheaf H1 on the ext-sheaf I1, which is free and transitive (i.e. for each open the associated
group action is free and transitive).

In the remainder of this subsection we show that there is a canonical group homomor-
phism:
(206) Ȟ1(B|∆,L)→ H1(∆),

into the group of global sections of the sheaf H1 on ∆. Furthermore, we prove:

Theorem 4.47. The action in Theorem 6 factors through the H1(∆)-action on I1(∆)
(of Proposition 4.46) via (206).

To define (206), first suppose that B ⇒ (M,Λ) is an etale integral affine orbifold groupoid
and let
(207) [τ ] ∈ Ȟ1(B|∆,L).
Since B is a proper etale groupoid, such a class can be represented by a 1-cocycle:
(208) τ ∈ Č1

U(B|∆,L),
with respect to a good enough basis U for L∆ such that for every x ∈ M there is a
connected open U ∈ U around x that satisfies the properties in Lemma 4.23 with respect
to x. Let us call such an open (B, x)-adapted. Given x ∈ ∆ and a choice of such a U ∈ U
around x, consider:

(209) κ(τ,U,x) : Bx → (TΛ)x, γ 7→ τ(U
σγ←− U)(x).
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The fact that τ is a 1-cocycle implies that (209) is a group 1-cocycle whose cohomology
class inH1(Bx, (TΛ)x) does not depend on the choice of U or on the choice of representative
of (207) made above. In view of this, we have a well-defined map:

(210) Ȟ1(B|∆,L)→ H1
Set(∆), [τ ] 7→ {[κ(τ,U,x)] ∈ H1(Bx, (TΛ)x) | x ∈ ∆}.

Clearly, this is a group homomorphism. Moreover:

Proposition 4.48. The map (210) takes values in H1(∆).

We postpone the proof of Proposition 4.48 until the end of this subsection. When B is
etale, we define (206) to be the group homomorphism given by (210). In general, we
proceed as usual:

Definition 4.49. We define (206) to be the unique group homomorphism fitting into the
commutative square:

Ȟ1(B|∆,L) H1
(B,TΛ,∆)(∆)

Ȟ1(B|Σ∩∆,LΣ∩∆) H1
(B|Σ,TΛΣ

,Σ∩∆)(Σ ∩∆)
(210)

∼ ∼
where Σ is any choice of complete transversal Σ, the left vertical map is the canonical
isomorphism and the right vertical map is the isomorphism induced (as in Lemma 4.40)
by the integral affine Morita equivalence of Example 3.29.

We now turn to the remaining proofs.

Proof of Theorem 4.47. We ought to show that the map (98) is Ȟ1(B|∆,L)-equivariant
with respect to the action in the first structure theorem and the action on the set of global
sections of the ext-sheaf induced by the group homomorphism (206). In view of Remark
3.58 and Lemma 3.64, after restricting to a complete transversal the proof reduces to the
case in which B is etale.

To treat this case, suppose that B is etale and we are given a class (207) and a toric
(G,Ω)-space J : (S, ω)→ M with momentum image ∆. Pick a representative (208) with
respect to a basis U which (as above) has the property that for each x ∈ ∆ there is a
(B, x)-adapted open U ∈ U around x. Let x ∈ ∆ and fix a such an open U ∈ U around
x. We ought to show that:

(211) [κ(τ,U,x)] · e(J)x = e(Jτ )x.

Consider the map:

φτ : (G,Ω)|U → (G,Ω)|U , g 7→ gτ(U
σ←− U)(s(g))−1,

where σ : U → B|∆ is the unique smooth bisection that maps s(g) to [g]. This is an
automorphism of symplectic groupoids with corners. To see this, let γ ∈ B and let
σ : U → B|∆ be the unique continuous bisection that maps s(γ) to γ. The image σ(U)
in B|∆ is open, hence the pre-image of this under the projection G|∆ → B|∆ is an open
in G|U on which the map φτ is given by the smooth map g 7→ gτ(U

σ←− U)(s(g))−1. Since
G|U can be covered by such opens, φτ is smooth. Furthermore, it follows from the fact
that each τ(U σ←− U) is Lagrangian that φτ is symplectic, and it follows from the fact that
τ is a 1-cocycle that φτ a morphism of groupoids. Moreover, φ−τ is inverse to φτ . So, φτ
is indeed an automorphism of symplectic groupoids. The pair (φτ , jU) consisting of φτ

153



and the symplectomorphism (194) is compatible with the G|U -actions, in the sense that
for all g ∈ G|U and p ∈ J−1(U) such that s(g) = J(p) it holds that:

jU(g · p) = φτ (g) · jU(p).
Consequently, this pair induces an equivalence of symplectic representations:

(φτ , (djU)p) : (Gp, (SNp, ωp))
∼−→ (G[p,U ], (SN[p,U ], (ωτ )[p,U ]))

for each p ∈ S such that J(p) = x. Using Lemma 3.15 and the observation that φτ
restricts to the identity on T , (211) readily follows from this. □

Proof of Proposition 4.48. We ought to show that each class (207) maps to a B-invariant
and flat global section of the set-theoretic bundle (200). For B-invariance, let γ ∈ B|∆
with source x and target y. Fix an arrow (σ · U) σ←− U in EmbU(B|∆) between connected
opens, such that x ∈ U , σ(x) = γ and U is (B, x)-adapted (in the sense introduced before).
Then, since for each γ̃ ∈ By the continuous bisection σσγ−1γ̃γσ

−1 : (σ · U)→ B maps y to
γ̃, the open σ ·U is (B, y)-adapted and, using the fact that τ is a 1-cocycle, it follows that
for each such γ̃:

κ(τ,σ·U,y)(γ̃) = γ · κ(τ,U,x)(γ−1γ̃γ).

Hence, taking cohomology classes we find that:

[κ(τ,σ·U,y)] = γ · [κ(τ,U,x)],
which shows that the image of [τ ] under (210) is indeed B-invariant. For flatness, fix an
x ∈ ∆. By using an isomorphism as in the proof of Lemma 4.34, with the open U in M

chosen such that ι(U ∩∆) is convex, and pushing τ(U ∩∆ σγ←− U ∩∆) forward along ι for
each γ ∈ Bx, it follows from Lemma 4.50 below that the associated invariant section of
(202) is centered. So, the image of (207) under (210) is indeed flat and B-invariant. □

In the proof of Proposition 4.48 we used:

Lemma 4.50. Let (V,ΛV ) be an integral affine vector space equipped with a linear integral
affine action of a finite group Γ . Consider the associated integral affine orbifold groupoid
Γ ⋉ V ⇒ (V,Λ) and let T denote the torus V ∗/Λ∗

V , equipped with the induced Γ -action.
Suppose that ∆ is a Delzant subspace of V for which the corresponding Γ -invariant subset
∆ in V is convex. Then (canonically identifying (TΛ)x with T for each x ∈ V ) the following
hold.

a) Evaluation at a Γ -fixed point x0 ∈ ∆:

evx0 : L(∆)→ T

induces an isomorphism in group cohomology in each degree p > 0:

(212) (evx0)∗ : H
p(Γ,L(∆))

∼−→ Hp(Γ, T ),

where L(∆) denotes the Γ -module of global sections of L∆, with action given by:

(τ · γ)(x) = τ(γ · x) · γ ∈ TΛ, τ ∈ L(∆), γ ∈ Γ, x ∈ ∆.

b) If ∆ contains the origin, then for any group 1-cocycle τ : Γ → L(∆) the associated
invariant section κτ of (202), defined by mapping x ∈ ∆ to the class in H1(Γx, T )
represented by the 1-cocycle:

(213) Γx → T, γ 7→ τ(γ)(x),

is centered (in the sense of Definition 4.42).

Proof. For the first statement, observe that we have a commutative diagram of Γ -modules:
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0 C∞(∆,Λ) Ω1
cl(∆) L(∆) 0

0 Λ∗
V V ∗ T 0

evx0 evx0 evx0

in which both rows are exact. Here the first two groups in the top-row denote the smooth
global sections of Λ|∆ and closed differential 1-forms on ∆ (in the sense of manifold with
corners). The Γ -actions on these two groups are defined in the same way as that on
the third group. The exactness is clear for the second row and it is clear at the first
and second term of the first row. For exactness of the third term of the first row, notice
that any Lagrangian section of TΛ over ∆ lifts to a Lagrangian section of T ∗V over ∆
along the universal covering map T ∗V → TΛ, because ∆ is simply-connected. So, the
rows are indeed exact. By naturality, the evaluation morphisms induce maps between the
resulting long exact sequences in group cohomology. Since Γ is finite, group cohomology
with coefficients in any linear representation of Γ vanishes in degree greater than zero.
So, since both Ω1

cl(∆) and V ∗ are linear representations of Γ , the long exact sequences
yield a commutative square for each p > 0:

Hp(Γ,L(∆)) Hp+1(Γ, C∞(∆,Λ))

Hp(Γ, T ) Hp+1(Γ,Λ∗
V )

∼

(evx0 )∗ (evx0 )∗

∼

in which the horizontal maps are isomorphisms. Since ∆ is connected and smooth sections
of Λ|∆ = Λ∗

V ×∆ have locally constant Λ∗
V -component, the map evx0 : C∞(∆,Λ)→ Λ∗

V is
an isomorphism of Γ -modules. Hence, so is the induced map in group cohomology. We
therefore conclude that the map:

(214) (evx0)∗ : H
p(Γ,L(∆))→ Hp(Γ, T )

is indeed an isomorphism for each p > 0.

For the second statement, let τ : Γ → L(∆) be a group 1-cocycle. The canonical identi-
fication of TΛ with T × V induces a map of Γ -modules:

T → L(∆), t 7→ τt,

where τt(x) ∈ Tx corresponds to (t, x) ∈ T ×V . Composing this with the group 1-cocycle:

Γ → T, γ 7→ τ(γ)(0),

we obtain another group 1-cocycle Γ → L(∆), the cohomology class of which is mapped
to the same as that of τ by evaluation (212) at the origin. So, there is a Lagrangian
section τ̃ ∈ L(∆) such that:

τ(γ)(x) = τ(γ)(0) + τ̃(x) · γ − τ̃(x) ∈ T,
for every γ ∈ Γ and x ∈ ∆. Therefore, κτ is indeed centered. □

4.3.9. Proof of the claims in examples 5 and 7. The point of this subsection is to provide
the details missing in examples 5 and 7. This is the content of the three propositions
below. Before we turn to these, let us point out:

Corollary 4.51. Let B ⇒ (M,Λ) be an integral affine orbifold groupoid and ∆ a Delzant
subspace. Then the sequence:

(215) 0→ Ȟ1(∆,L) (191)−−−→ Ȟ1(B|∆,L)
(206)−−−→ H1(∆)
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is exact.

Proof. We are left to prove exactness at the domain of (206). After restricting to a
complete transversal, we may assume that B is etale. Then B ⇒ (M,Λ) is the inte-
gral affine orbifold groupoid associated to the semi-direct product symplectic groupoid
(B 1 TΛ, pr∗TΛΩΛ). By Proposition 4.55 there exists a toric (B 1 TΛ, pr∗TΛΩΛ)-space with
momentum image ∆. So, exactness follows by applying Theorem 6 to this symplectic
groupoid. □

Remark 4.52. Continuing Remark 4.45, we expect the short exact sequence (215) to be
part of the exact sequence in low degrees associated to the Grothendieck spectral sequence
[32] of the commutative triangle of left-exact functors:

Sh(B|∆) Ab

Sh(∆)

Γ(·)inv

(164)
Γ(·)

We now turn to the claims made in the aforementioned examples.

Proposition 4.53. In the setting of examples 5 and 7, the following hold.
a) The first structure group Ȟ1(B|∆,L) is isomorphic to H1(Γ, T ).
b) There is a bijection between the set I1(∆) of global sections of the ext-sheaf (93)

and I1(G, T ), which together with the above group isomorphism is compatible with
the action of Ȟ1(B|∆,L) on the former set and the canonical action of H1(Γ, T )
on the latter.

Proof. Note that, since ∆ is convex, Γ -invariant and non-empty, and since Γ acts linearly
on g∗, by averaging over this finite group it follows that ∆ contains a Γ -fixed point, say
x0 ∈ ∆Γ . Consider the sequence of group homomorphisms:

(216) Ȟ1(B|∆,L)
(206)−−−→ H1(∆)

evx0−−→ H1(Γ, T ).

To prove part a, we will show that both maps in this sequence are isomorphisms. The
map (206) is injective due to exactness of (215) and the vanishing of the second structure
group. To conclude both maps are isomorphisms, we will further show that the evaluation
map is injective and that the composite map is surjective.

For the injectivity, suppose that κ is a global section of (199) such that κ(x0) = 0 ∈
H1(Γ, T ). Let x ∈ ∆. Then (1 − t)x0 + tx ∈ ∆ for all t ∈ [0, 1], by convexity. Seeing
as x0 is fixed by Γ and the action is linear, it holds that Γ(1−t)x0+tx = Γx for all t ∈]0, 1].
Hence, the interval ]0, 1] is partitioned by the sets:

S([c]) := {t ∈]0, 1] | κ((1− t)x0 + tx) = [c]}, [c] ∈ H1(Γx, T ).

From flatness of κ it follows that S(0) is non-empty (since κ(x0) = 0) and that S([c]) is
open in ]0, 1] for each [c] ∈ H1(Γx, T ). So, by connectedness of ]0, 1] it must hold that
κ(x) = 0. This shows that κ = 0, proving that the evaluation map is indeed injective.

For the surjectivity, let [c] ∈ H1(Γ, T ). Fix a good enough cover U for L∆ consisting of
connected opens and consider ĉ ∈ C0

U(B|∆,L∆) given by:

ĉ(V σ←− U)(x) = (c(γσ), x) ∈ T × g∗,

where we canonically identify (TΛ,ΩΛ) with (T × g∗,−dλcan) and where γσ ∈ Γ denotes
the constant value of the Γ -component of σ. This section is Lagrangian because its T -
component is constant. Furthermore, ĉ a 1-cocycle because c is a group 1-cocycle. This
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defines a class in the first structure group that is mapped to [c] under the composition of
the maps in (216), which shows that this composition is indeed surjective.

To prove part b, consider the evaluation map:

(217) evx0 : I1(∆)→ I1(G, T ).

By arguments similar to the above, this map is bijective. Furthermore, this map and
the composition of the maps in (216) are clearly compatible with the action of the first
structure group on I1(∆) and the action of H1(Γ, T ) on I1(G, T ). This proves the propo-
sition. □

The proposition below ensures that the map (100) is well-defined.

Proposition 4.54. The evaluation map (217) does not depend on the choice of fixed point
x0.

Proof. This follows from the observation that the inverse of (217) is independent of x0,
because it is given by mapping a class [c] ∈ I1(G, T ) to the global section of the ext-sheaf
corresponding to the section of (131) with value at x ∈ ∆ the class [c]|Gx ∈ I1(Gx, T )
(which is indeed an invariant section, as follows from Lemma 3.38). □

To conclude: from the vanishing of the second structure group and the proof of Proposition
4.53, it is now clear that the second and third structure theorem and the splitting theorem
indeed imply that the map (100) is bijective, as claimed.

4.4. Proof of the splitting theorem.

4.4.1. Introduction. In this section we give a proof of the splitting theorem (Theorem
4). To begin with, in Subsection 4.4.2 we show that, if B is etale, then for any Delzant
subspace the semi-direct product groupoid appearing in the splitting theorem admits a
toric action with momentum image the given Delzant subspace. In Subsection 4.4.3 we
will prove that a symplectic Morita equivalence between the restrictions of two proper and
regular symplectic groupoids to Delzant subspaces induces an equivalence between their
categories of toric spaces with momentum image equal to the respective Delzant subspaces.
Together with the result of Subsection 4.4.2, this leads to the backward implication in
the splitting theorem. After this we turn to the proof of the forward implication, which
is the content of Subsection 4.4.4.

4.4.2. Existence of a toric (B 1 T , pr∗T Ω)-space. The aim of this subsection is to prove:

Proposition 4.55. Let B ⇒ (M,Λ) be an etale integral affine orbifold groupoid and ∆ a
Delzant subspace. Consider the corresponding invariant subspace ∆ of (M,Λ) (which is a
Delzant submanifold) and a toric (TΛ,ΩΛ)-space J∆ : (S∆, ω∆) → M as in Theorem 4.1.
This action extends to a toric action along J∆ : (S∆, ω∆)→M of the semi-direct product
symplectic groupoid (B 1 TΛ, pr∗TΛΩΛ) (where we view TΛ as B-space, as in Remark 119).

For this we will use the following lemma, the proof of which is straightforward.

Lemma 4.56. Let (T ,ΩT ) ⇒M be a symplectic torus bundle equipped with a symplectic
action of an etale Lie groupoid B ⇒ M by fiberwise group automorphisms, where by
the action being symplectic we mean that (mB

T )
∗ΩT = pr∗T ΩT . Given a smooth map

J : (S, ω)→M from a symplectic manifold into M , there is a bijection between:
i) left Hamiltonian (B 1 T , pr∗T ΩT )-actions along J : (S, ω)→M ,

157



ii) pairs consisting of a left Hamiltonian (T ,ΩT )-action along J : (S, ω)→M and a
left symplectic B-action along J : (S, ω)→M satisfying:

(218) γ · (t · p) = (t · γ−1) · (γ · p),
for all γ ∈ B, t ∈ T and p ∈ S such that sB(γ) = πT (t) = J(p),

via which the two actions are related as:

(γ, t) · p = γ · (t · p),
for all γ ∈ B, t ∈ T and p ∈ S such that sB(γ) = πT (t) = J(p). The same holds in the
setting of symplectic groupoids with corners.

Proof of Proposition 4.55. First, we define an action of B along J∆, as follows. Given a
γ ∈ B and p ∈ S∆ such that sB(γ) = J∆(p), choose a smooth bisection σ : U → B defined
on an open U in M around J∆(p) such that σ(J∆(p)) = γ. Then t◦σ : U∩∆→ (σ ·U)∩∆
is a diffeomorphism of manifolds with corners such that (t ◦ σ)∗Λ = Λ|U∩∆. So, we can
consider the associated symplectomorphism (as in Theorem 4.1.1):

(219) (t ◦ σ)∗ : (J−1
∆ (U), ω∆)→ (J−1

∆ (σ · U), ω∆),

and set:
γ · p := (t ◦ σ)∗(p).

It follows from the local dependence in Theorem 4.1.1 that this does not depend on the
choice of bisection, because the germ of the bisection chosen above is uniquely determined
by the fact that it maps J∆(p) to γ (since B is etale). Moreover, natural dependence and
the compatibility of (t ◦ σ)∗ with J∆ imply that this indeed defines an action, and from
the fact that a bisection σ as above is an open embedding and the fact that (219) is a
symplectomorphism it follows that this action is smooth and symplectic. The compatibilty
of (219) with the TΛ-action implies that this B-action and the TΛ-action along J∆ satisfy
the compatibility condition (218). So, in view of Lemma 4.56 these actions define a
Hamiltonian (B 1 TΛ,ΩΛ)-action along J∆. Because the (TΛ,ΩΛ)-action is toric, so is the
(B 1 TΛ, pr∗TΛΩΛ)-action. □

4.4.3. Morita equivalences between pre-symplectic groupoids with corners. Next, we will
prove:

Proposition 4.57. Let (G1,Ω1) ⇒ M1 and (G2,Ω2) ⇒ M2 be regular and proper sym-
plectic groupoids and let ∆1 and ∆2 be Delzant subspaces of M1 and M2, respectively. A
symplectic Morita equivalence (P, ωP , α1, α2) between the restriction of (G1,Ω1) to ∆1 and
the restriction of (G2,Ω2) to ∆2 induces an equivalence of categories:

Tor(G1,Ω1,∆1)
∼= Tor(G2,Ω2,∆2),

between the category of toric (G1,Ω1)-spaces with momentum image ∆1 and the category
of toric (G2,Ω2)-spaces with momentum image ∆2.

Proof. When ∆1 = M1 and ∆2 = M2, the equivalence of categories is obtained by com-
bining Remark 3.58 with Proposition 3.59. This argument extends to general Delzant
subspaces, as follows. To define the functor from left to right, let J : (S, ω) → M be a
toric (G1,Ω1)-space. In view of Corollary B.16c, the fiber product P ×∆1 S is an embed-
ded submanifold of P × S without corners, since S has no corners. So, since the diagonal
G1-action along the smooth map α1 ◦prP : P ×∆1 S →M1 is smooth, free and proper, the
quotient:

P ∗G1 S :=
(P ×∆1 S)

G1
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is naturally a manifold without corners. Consider the left action of G2 along:

P∗(J) : P ∗G1 S →M2, [pP , pS] 7→ α2(pP ),

given by:

g · [pP , pS] = [pP · g−1, pS].

The symplectic form (−ωP )⊕ ωS descends to a symplectic form ωPS on P ∗G1 S and the
(G2,Ω2) action along P∗(J) is Hamiltonian with respect to this. The arguments used to
prove Remark 3.58 and Proposition 3.59 readily extend to the setting of this proposition
and show that this (G2,Ω2)-space action is in fact toric. This construction is clearly
functorial. So, it yields a functor:

P∗ : Tor(G1,Ω1,∆1)→ Tor(G2,Ω2,∆2).

By an entirely analogous construction from right to left we obtain the inverse functor. □

With this at hand, we can prove one implication in the splitting theorem.

Proof of Theorem 4; backward implication. The restriction of the pre-symplectic groupoid:

(B 1 TΛ, pr∗TΛΩΛ)

to a complete transversal Σ for G is canonically isomorphic to the symplectic groupoid:

(B|Σ 1 TΛΣ
, pr∗TΛΣ

ΩΛΣ
)

associated to the integral affine etale orbifold groupoid B|Σ ⇒ (Σ,ΛΣ) (cf. Example
3.29). Hence, it follows from Proposition 4.55 that there exists a toric (B⋉TΛ, pr∗TΛΩΛ)|Σ-
space. If (G,Ω)|∆ is pre-symplectic Morita equivalent to (B 1 TΛ, pr∗TΛΩΛ)|∆, it follows
from Proposition B.24 and Remark B.23 that (G,Ω)|∆ is symplectic Morita equivalent to
(B 1 TΛ, pr∗TΛΩΛ)|∆∩Σ. In view of Proposition 4.57, there then exists a toric (G,Ω)-space
as well. □

4.4.4. End of the proof: constructing a principal Hamiltonian bundle out of a Lagrangian
cocycle. To prove the forward implication in the splitting theorem, we first show the
following.

Proposition 4.58. Let (G,Ω) ⇒ M be a regular and proper symplectic groupoid for
which the associated orbifold groupoid B = G/T is etale and let ∆ be a Delzant space of
M . Further, let U be a basis of the corresponding invariant subspace ∆ of M and suppose
that for each arrow V

σ←− U in EmbU(B|∆) there is a Lagrangian bisection (178) lifting
σ, such that the collection of these Lagrangian bisections satisfies the cocycle condition
(179). Then there is a principal Hamiltonian (G,Ω)|∆-bundle ‘fibered over B|∆’. That is,
there are:

• a (G|∆,B|∆)-bibundle (P, β1, β2) (of Lie groupoids with corners),
• a symplectic form ωP on P ,
• a smooth map j : P → B|∆,

that form a map of bibundles:
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(G,Ω)|∆

∆

(P, ωP )

∆

B|∆

B|∆

∆

B|∆

∆

B|∆

pr

Id

Id

Id

j

β1 β2

tB sB

in which the lower Morita equivalence is the identity equivalence, the upper left bundle
is principal and the action is Hamiltonian, whereas the upper right action is free and
symplectic (meaning that (mP )

∗ωP = (prP )∗ωP , where mP , prP : P ⋊B|∆ → P denote the
action and projection maps).

Proof. Consider the topological space:

(220)
⊔
U∈U

s−1
G (U)

where sG : G → M denotes the source map. Given two elements (g1, U1) and (g2, U2) of
(220), we write (g1, U1)←↩ (g2, U2) if U2 ⊂ U1 and:

g(U1 ←↩ U2)(J(p2)) · g2 = g1,

where U2 ←↩ U1 denotes the arrow in EmbU(B|∆) with underlying bisection the unit
map. This relation is reflexive and transitive (by the cocycle condition (179)), but not
necessarily symmetric. The equivalence relation generated by this relation is given by:
(g1, U1) ∼ (g2, U2) if and only if there is a pair (g12, U12), with U12 ∈ U and sG(g12) ∈ U12 ⊂
U1 ∩ U2, such that (g1, U1)←↩ (g12, U12) and (g12, U12) ↪→ (g2, U2). Indeed, this relation is
clearly reflexive, symmetric and contains the first relation. To prove transitivity, suppose
that (g1, U1) ∼ (g2, U2) and (g2, U2) ∼ (g3, U3). Then there are (g12, U12) and (g23, U23)
with U12, U23 ∈ U , sG(g12) ∈ U12 ⊂ U1 ∩ U2 and sG(g23) ∈ U23 ⊂ U2 ∩ U3, such that:

(g1, U1) (g2, U2) (g3, U3)

(g12, U12) (g23, U23)

Let U123 ∈ U be such that sG(g2) ∈ U123 ⊂ U12 ∩ U23 and consider the element

g123 := g(U2 ←↩ U123)(sG(g2))
−1 · g2 ∈ s−1

G (U123),

which is well-defined since the source and target of g(U2 ←↩ U123)(sG(g2)) coincide, being
a lift of the unit map of B. It follows from the cocycle condition (179) that (g12, U12)←↩
(g123, U123) and (g123, U123) ↪→ (g23, U23), and hence that (g1, U1) ←↩ (g123, U123) and
(g123, U123) ↪→ (g3, U3). This shows that (g1, U1) ∼ (g3, U3), which proves transitivity.
Now, consider the quotient space:

P :=

(⊔
U∈U s

−1
G (U)

)
∼

.

From the explicit description of the equivalence relation it is clear that for each U ∈ U
the map:

(221) s−1
G (U)→ P, g 7→ [g, U ]
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is an injection. Since for each inclusion V ←↩ U the map:

(s−1
G (U),Ω)→ (s−1

G (U),Ω), h 7→ g(V ←↩ U)(sG(h)) · h

is a symplectomorphism (which follows from the same type of arguments as for Proposition
4.27a), there is a unique structure of symplectic manifold with corners on the topological
space P with the property that for each U ∈ U the injection (221) is a symplectomorphism
onto an open in P (with respect to the symplectic form Ω on s−1

G (U)). Let ωP be the
corresponding symplectic form on P . Next, notice that the projection pr : G → B and
the target and source map of G induce tame submersions:

j : P → B|∆, β1, β2 : P → ∆.

Furthermore, the canonical left Hamiltonian action of (G,Ω) along its target maps induces
a left Hamiltonian (G,Ω)|∆-action along β1 : (P, ωP )→ ∆, given by:

g · [h, U ] = [g · h, U ].

On the other hand, B acts along β2 from the right, as follows. Given [h, V ] ∈ P and γ ∈ B
such that β2([h, V ]) = tB(γ), let V σ←− U be an arrow in EmbU(B|∆) such that s(γ) ∈ U
and σ(sB(γ)) = γ, and set:

[h, V ] · γ = [h · g(V σ←− U)(sB(γ)), U ].

It follows from the cocycle condition (179) that this depends neither on the choice of
arrow V

σ←− U nor on that of the representative of [h, V ] ∈ P , and that this defines an
action. Furthermore, the fact that g(V σ←− U) is Lagrangian implies that this B-action
is symplectic. These two actions and the map j : P → B|∆ define a fibered principal
Hamiltonian (G,Ω)|∆-bundle over B|∆. □

Proof of Theorem 4; forward implication. Restricting to a complete transversal for G re-
duces the proof to the case in which (G,Ω) is infinitesimally abelian. In that case, by
combining Lemma 4.26 and Proposition 4.58 we conclude that there is a fibered prin-
cipal Hamiltonian (G,Ω)|∆-bundle over B|∆. From this we can construct the desired
Morita equivalence, as follows. Consider the left Hamiltonian (T ,ΩT )|∆-action along
β2 : (P, ωP )→ ∆ given by:

t ∗ p = (j(p) · t) · p,
where the second action on the right denotes the T -action induced by the G-action on P ,
and the left symplectic B-action along β2 : (P, ωP )→ ∆ given by:

γ · p = p · γ−1.

These form a pair as in Lemma 4.56. So, they encode a left Hamiltonian (B 1 T , pr∗T ΩT )|∆-
action along β2. This commutes with the left G-action since both of the above actions do
so. Furthermore, the action is free and its orbits coincide with the β1-fibers. Passing to
a right action along β2 via the groupoid inversion of B 1 T and the groupoid automor-
phism of B 1 T that maps (γ, t) to (γ, t−1) (which are both anti-symplectic with respect
to pr∗T ΩT ) we obtain a right Hamiltonian (B 1 T , pr∗T ΩT )|∆-action along β2, which com-
pletes the left principal Hamiltonian (G,Ω)|∆-bundle β2 : (P, ωP ) → ∆ to the desired
symplectic Morita equivalence. □

Remark 4.59. This proof shows that, in the language of [15], the existence of a toric
(G,Ω)-space with momentum image ∆ is also equivalent to the condition that the sym-
plectic gerbe represented by the symplectic central extension:

(222) 1→ (T ,ΩT )|∆ → (G,Ω)|∆ → B|∆ → 1
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is trivial. This means that (222) is Morita equivalent as pre-symplectic central extension
to the trivial such extension:

1→ (T ,ΩT )|∆ → (B 1 T , pr∗T ΩT )|∆ → B|∆ → 1.

Here Morita equivalence of pre-symplectic extensions is meant in the sense of [15], ex-
tended to the setting with corners using Definition B.22.
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A. Poisson geometric characterization of toric actions

In this appendix we use results on the Poisson geometry of the orbit space of a Hamiltonian
action to derive the following (in the same spirit as [82, Proposition A.1]).

Proposition A.1. Let (G,Ω) ⇒ M be a regular and proper symplectic groupoid. A
Hamiltonian (G,Ω)-action along J : (S, ω)→ M is toric if and only if the following four
conditions hold.

i) The induced action of T is free on a dense subset of S.
ii) The equality:

(223) dim(S) = 2dim(M)− rank(π)

holds, where π is the Poisson structure on M induced by (G,Ω).
iii) The momentum map J has connected fibers.
iv) The transverse momentum map J : S →M is closed as a map into its image.

To prove Proposition A.1, let us recall some facts on the Poisson geometry of Hamiltonian
actions. Let (G,Ω) be a proper symplectic groupoid and let J : (S, ω) → M be a
Hamiltonian (G,Ω)-space.

• The sheaf of smooth functions C∞S on the orbit space S := S/G is the sheaf of
R-algebras consisting of G-invariant smooth functions on invariant opens in S.
This can naturally be viewed as a subsheaf of the sheaf of continuous functions on
S. For each invariant open U in S, the subalgebra C∞S (U) of C∞S (U) is a Poisson
subalgebra with respect to the Poisson bracket associated to the symplectic form
ω on S. These Poisson brackets make C∞S into a sheaf of Poisson algebras, and
as for smooth manifolds these brackets are uniquely determined by the single
Poisson bracket on the algebra of global smooth functions on S. The stratification
SGp(S) of S induced by the G-action has the property that each stratum Σ admits
a natural structure of Poisson manifold, uniquely determined by the fact that
restriction along the inclusion i : Σ ↪→ S induces a surjective map of sheaves
i∗ : C∞S |Σ → C∞Σ that respects the Poisson brackets.
• The complexity C(J) of the Hamiltonian (G,Ω)-action is, by definition, half of

the maximum of the dimensions of the symplectic leaves on all of these strata.
Hamiltonian actions of complexity zero are also called multiplicity free, after [36].
The dimension of the symplectic leaves in S is locally non-decreasing (Proposition
2.93). Therefore, the union of the symplectic leaves in S of maximal dimension is
open in S. This can be used to deduce (using for instance Proposition 2.70 and
Remark 2.94) that, if the set of points in S at which the momentum map J is a
submersion is dense in S, then the complexity of the Hamiltonian action is:

(224) C(J) =
1

2

(
dim(S)− 2dim(M) + max

x∈J(S)
rank(πx)

)
,

where π is the Poisson structure on M induced by (G,Ω).
• The symplectic leaves of the orbit space S can be described in terms of the symplec-

tic reduced spaces of the Hamiltonian action. As topological spaces, the reduced
spaces are the subspaces of S of the form:

J−1(L)/G = J−1(L),
where L is a leaf of G in M . The reduced spaces can naturally be stratified into
symplectic manifolds (generalizing the main result of [46]) and the symplectic
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leaves of the orbit space S coincide with the symplectic strata of the reduced
spaces.

The facts mentioned above are probably well-known for Hamiltonian actions of compact
Lie groups, as is the proposition below.

Proposition A.2. Let (G,Ω) be a proper symplectic groupoid and let J : (S, ω)→ M be
a Hamiltonian (G,Ω)-space. Then the following are equivalent.

a) The induced Poisson bracket on C∞(S) is the zero bracket.
b) The Hamiltonian action has complexity zero.
c) All of the reduced spaces are discrete topological subspaces of S.

Proof. As mentioned above, the Poisson brackets on the algebras associated to the sheaf of
Poisson algebras C∞S are uniquely determined by the single Poisson bracket on the algebra
C∞(S). So, if a holds, then the Poisson bracket on C∞S (U) is zero for each invariant open
U in S. The Poisson structure on each stratum of SGp(S) must then also be zero, so that
b holds. Conversely, from b it is immediate that the Poisson bracket on each stratum is
zero. Since the inclusion of each stratum is a Poisson map, the bracket on C∞(S) is zero
as well, as follows from pointwise evaluation. So, b implies a. This proves the equivalence
between a and b. The equivalence between b and c is clear from the description of the
symplectic leaves as strata of the symplectic reduced spaces. □

We now turn to the proof of the main result of this appendix.

Proof of Proposition A.1. First notice that both sets of conditions contain the assumption
that the induced T -action is free on a dense subset of S. The momentum map J is a
submersion at all points in S at which the T -action is free. Therefore, under both sets of
conditions, the set of points in S at which J is a submersion is dense in S, which implies
that the complexity of the Hamiltonian action is given by (224). Since (G,Ω) is regular,
this means that:

C(J) =
1

2
(dim(S)− 2dim(M) + rank(π)) .

Now, suppose that all properties in Proposition A.1 are satisfied. By the above equa-
tion for the complexity of the Hamiltonian action, the second condition in Proposition
A.1 means that the action has complexity zero, which by Proposition A.2 means that
for every x ∈ M , the subspace J−1(Lx) of S is discrete. Since J−1(Lx) is (canonically)
homeomorphic to the quotient J−1(x)/Gx and the J-fibers are assumed to be connected,
it follows that both J−1(x)/Gx and J−1(Lx) consist of a single point. Firstly, it follows
from this that the Gx-orbit (which is embedded, seeing as Gx is compact) is the subspace
J−1(x) of S. Since J−1(x) is connected, the Tx-orbit must then also be the entire space
J−1(x). Secondly, it follows that J is injective (its fibers being points). So, since it is
assumed to be closed as map into its image, it must be a topological embedding. This
proves that the Hamiltonian action is toric.

Next, suppose that the action is toric. Then clearly the transverse momentum map is
closed as map into its image. Furthermore, since the J-fibers coincide with the T -orbits,
they are connected and for each x ∈ M the quotient J−1(x)/Gx consists of a single
point. So, for every x ∈ M the set J−1(Lx) consists of a single point as well, which by
Proposition A.2 implies that the Hamiltonian action has complexity zero. By the above
equation for the complexity, this proves that the Hamiltonian action satisfies all conditions
in Proposition A.1. □
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B. Background on manifolds with corners

Let X be a topological space. Given integers n ≥ 0 and k ∈ {0, ..., n}, we use the notation:

Rn
k := [0,∞[k×Rn−k.

By an n-dimensional chart with corners for X we mean a pair (U, χ) consisting of an
open U in X and a homeomorphism χ from U onto an open in Rn

k , for some k ∈ {0, ..., n}.
Given two subsets A ⊂ Rn and B ⊂ Rm, we say that a map f : A → B is smooth if
for every x ∈ A there is an open Ux in Rn around x and a smooth map Ux → Rm that
coincides with f on Ux ∩ A. Two charts with corners (U, χ) and (V, φ) on X are called
smoothly compatible if both transition maps between them are smooth maps in this sense.
Just as for manifolds without corners, this leads to a notion of smooth atlas consisting of
charts with corners for X (that we require to consist of charts of a fixed dimension) and
every such atlas is contained in a unique maximal one. We refer to a maximal such atlas
as a smooth structure with corners on X.

Definition B.1. A smooth manifold with corners is a second countable and Hausdorff
space X together with a smooth structure with corners on X. Henceforth, by a manifold
with corners we always mean a smooth manifold with corners and we omit the smooth
structure from the notation. Furthermore, we use the following terminology and notation.

• The common dimension of the charts for X is called the dimension of X, denoted
dim(X).
• By a smooth map f : X → Y between two manifolds with corners we will mean

a continuous map with the property that for any chart with corners (U, χ) for X
and any chart with corners (V, φ) for Y , the coordinate representation:

φ ◦ f ◦ χ−1 : χ(U ∩ f−1(V ))→ φ(V )

is smooth in the sense above.
• A homeomorphism f : X → Y between manifolds with corners is called a diffeo-

morphism if f and f−1 are smooth.

Remark B.2. The above definition of smooth map coincides with that used in [40,65,66].
For a further comparison to the literature on manifolds with corners and maps between
them, see [39] (where a smooth map in the above sense is called weakly smooth).

Remark B.3. Any open subspace of a manifold with corners X inherits a smooth struc-
ture with corners and the R-valued smooth functions on these opens form a sheaf of al-
gebras C∞X on X. Two smooth structures with corners coincide if their associated sheaves
of smooth functions coincide.

Remark B.4. A manifold with corners X is a reduced differentiable space with structure
sheaf C∞X , in the sense of [31] (also see Subsection 2.1.2 for a more direct introduction
to these). Furthermore, a continuous map f : X → Y between manifolds with corners
is smooth if and only if it is a morphism of the underlying reduced differentiable spaces
(meaning that for every smooth function on an open in Y , the pull-back along f is again
smooth). As for any second countable and Hausdorff reduced differentiable space, there
exist C∞X -partitions of unity subordinate to any open cover.

Let X be an n-dimensional manifold with corners. Given x ∈ X, let Chartsx(X) denote
the set of charts for X around x. As for manifolds without corners, one can define the
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tangent space TxX of X at x as the n-dimensional real vector space of maps:

Chartsx(X)→ Rn

that are compatible with coordinate changes (so that any such map is determined by its
value on a single chart), and for every smooth map f : X → Y between manifolds with
corners one can define its differential dfx : TxX → Tf(x)Y at x. The composition of two
smooth maps is again smooth, and the chain rule still holds.

Remark B.5. The tangent space TxX is naturally isomorphic to the vector space of
derivations at x of the stalk of C∞X at x, and to that of the algebra of global smooth
functions on X.

Remark B.6. On manifolds with corners one can define smooth vector fields and differ-
ential forms, the pull-back of differential forms along smooth maps, their wedge-product
and their exterior derivative, as for manifolds without corners. The Poincaré Lemma still
holds: every closed differential form is locally exact, by arguments as in the case without
corners (e.g. as in [8]).

Unlike for manifolds without corners, there may be tangent vectors that cannot be realized
as the derivative of a smooth curve in X. A tangent vector v ∈ TxX is called inward
pointing if there is an ε > 0 and a smooth curve γ : [0, ε[→ X such that v = γ̇(0). The
inward pointing tangent vectors form a polyhedral cone CxX in TxX, that we call the
tangent cone of X at x. We let FxX denote the largest linear subspace of TxX that
is contained in CxX. This consists of those v ∈ TxX for which there is an ε > 0 and a
smooth curve γ :] − ε, ε[→ X such that v = γ̇(0). For any smooth map f : X → Y and
x ∈ X, it holds that:

(225) dfx(CxX) ⊂ Cf(x)Y & dfx(FxX) ⊂ Ff(x)Y.

For any chart (U, χ) for X onto an open in Rn
k that sends x ∈ U to the origin, the

differential dχx : TxX
∼−→ Rn identifies CxX with Rn

k and FxX with {0} × Rn−k. The
depth of x ∈ X is:

depthX(x) := dim(X)− dim(FxX).

For any chart (U, χ) for X around x mapping onto an open in Rn
k , the depth of x equals

the number of j ∈ {1, ..., k} such that χj(x) = 0.

Next, we turn to embeddings. Following [40], we use the definition below.

Definition B.7. We call a topological embedding i : X → Y between manifolds with
corners a smooth embedding if it is smooth and at each point in X its differential is
injective.

Example B.8. Given manifolds with corners X and Y , the product X × Y inherits a
natural structure of smooth manifold with corners. For any smooth map f : X → Y , the
graph map:

X → X × Y, x 7→ (x, f(x)),

is a smooth embedding.

Remark B.9. A topological embedding i : X → Y between manifolds with corners is
a smooth embedding if and only if i : (X, C∞X ) → (Y, C∞Y ) is an embedding of reduced
differentiable spaces, meaning that i is smooth and for every smooth function g on an
open U in X and every x ∈ U there is a smooth function ĝ on an open Ux in Y around
i(x) such that ĝ ◦ i coincides with g on U ∩ i−1(Ux). Here, the forward implication follows
using the immersion theorem for smooth maps between opens in Euclidean spaces, while
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the backwards implication is clear from Remark B.5. In view of Remark B.4 we conclude
from this characterization that: if i : X → Y is a smooth embedding of manifolds with
corners, then a map f : Z → X from another manifold with corners into X is smooth if
and only if i ◦ f is smooth.

Remark B.10. In view of Remark B.3 and Remark B.9 it holds that: given a topological
embedding i : X → Y from a topological space X into a manifold with corners Y , there
is at most one smooth structure with corners for X that makes i : X → Y a smooth
embedding.

Definition B.11. We call a subspace of a manifold with corners an embedded sub-
manifold if it admits a (necessarily unique) smooth structure with corners that makes
the inclusion map a smooth embedding.

Example B.12. Each of the subspaces:
Xk := {x ∈ X | depthX(x) = k}

is an embedded submanifold of X without corners, with tangent space at x ∈ Xk equal
to FxX. Their connected components – called the open faces – form a stratification of
X. The open and dense subset X0 of X is the regular part of this stratification (that is,
the union of all open strata). We usually denote X0 as X̊.

We now turn to submersions. Following [65,66], we use the notion below.

Definition B.13. By a submersion f : X → Y between manifolds with corners we mean
a smooth map with the property that, for each x ∈ X, the differential dfx : TxX → Tf(x)Y
is surjective. Such a submersion is called tame if in addition, for each x ∈ X it holds
that:

df−1
x (Cf(x)Y ) = CxX.

In other words: if v ∈ TxX and dfx(v) is an inward pointing, then v is inward pointing.

Note here that tame submersions are simply called submersions in [66].

Example B.14. The prototypical example of a tame submersion is the following. Let
f :M → N be a submersion between smooth manifolds without corners and let Z be an
embedded submanifold with corners in N . Then it follows from the submersion theorem
that the pre-image f−1(Z) is an embedded submanifold with corners in M , with tangent
space and tangent cone:

Txf
−1(Z) = df−1

x (Tf(x)Z) & Cxf
−1(Z) = df−1

x (Cf(x)Z), x ∈ f−1(Z),

and the restriction f : f−1(Z)→ Z is a tame submersion.

The following shows that tame submersions behave much like submersions between man-
ifolds without corners.

Proposition B.15. Let f : X → Y be a submersion between manifolds with corners.
The following are equivalent.

a) The submersion f is tame.
b) The submersion f preserves depth. That is, for each x ∈ X it holds that:

depthY (f(x)) = depthX(x).

c) For each x ∈ X, there is a chart (U, χ) around x onto an open in Rn
k that sends

x to the origin and there is a chart (V, φ) around f(x) onto an open in Rm
k that

sends f(x) to the origin, such that f(U) = V and the coordinate representation of
f is:

φ ◦ f ◦ χ−1 : χ(U)→ φ(V ), (x1, ..., xn) 7→ (x1, ..., xm).
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Here n = dim(X), m = dim(Y ) and k is the depth of x and f(x).

Proof. For the implication from a to b notice that, since f is tame, the linear subspace
df−1

x (Ff(x)Y ) of TxX is contained in CxX and hence it must be contained in the largest
such subspace FxX. Combining this with (225), we conclude that df−1

x (Ff(x)Y ) =
FxX. Using this and surjectivity of dfx, it follows from the rank-nullity theorem that
depthY (f(x)) = depthX(x).

For the implication from b to c, we essentially follow the proof of [65, Lemma 1.3]. To this
end, suppose that f preserves depth and let x ∈ X. Since depthX(x) = depthY (f(x)), we
can assume (after fixing appropriate charts with corners for X and Y around x and f(x))
that f is a depth-preserving submersion between opens U in Rn

k and V in Rm
k around

the respective origins, and that x and f(x) are the respective origins. After possibly
further shrinking U , we can assume that there is an open W in Rn and a smooth map
f̂ : W → Rm such that U = W ∩Rn

k and f̂ coincides with f on U . Then the differential of
f̂ at the origin coincides with that of f , so that it is surjective. Hence, by the submersion
theorem for maps between opens in Euclidean spaces, we can (after possibly shrinking
U and W ) further arrange for there to be a diffeomorphism χ : W →] − ε, ε[n, for some
ε > 0, that maps the origin to the origin and is such that f̂ ◦ χ−1 :] − ε, ε[n→ Rm is the
projection onto the first m coordinates. To prove part b, it is now enough to show that
χ(U) =] − ε, ε[n∩Rn

k . The inclusion from left to right is clear. For the other inclusion,
suppose that y ∈] − ε, ε[n∩Rn

k . To show that χ−1(y) ∈ Rn
k , we fix an x̃ ∈ Ů = U ∩ R̊n

k

(meaning that its first k components are strictly positive; cf. Rem B.12) and we show
that the curve:

γ : [0, 1]→ W, γ(t) = χ−1((1− t)χ(x̃) + ty).

takes values in Rn
k . For this, by continuity of γ it is enough to show that γ(t) ∈ Rn

k for
all t ∈ [0, 1[. The set of t ∈ [0, 1[ such that γ(t) ∈ Rn

k is non-empty (for γ(0) ∈ Rn
k) and

is clearly closed in [0, 1[. Next, we will show that for t ∈ [0, 1[: γ(t) ∈ Rn
k if and only if

γ(t) ∈ R̊n
k , so that the set of t ∈ [0, 1[ such that γ(t) ∈ Rn

k is open in [0, 1[ as well (R̊n
k

being open in Rn) and hence it must be all of [0, 1[, by connectedness. To this end, let
t ∈ [0, 1[ such that γ(t) ∈ Rn

k . Then γ(t) ∈ U , and so:

f(γ(t)) = f̂(γ(t)) = (1− t)(χ1(x̃), ..., χm(x̃)) + t(y1, ..., ym).

Since f preserves depth, the first k components of (χ1(x̃), ..., χm(x̃)) = f(x̃) are strictly
positive. So, because y ∈ Rn

k , the first k components of f(γ(t)) are strictly positive as well.
Therefore, the depth of f(γ(t)) in V is zero, hence so is the depth of γ(t) in U , meaning
that γ(t) indeed belongs to R̊n

k . This proves that b implies c. Furthermore, the implication
from c to a is clear and so we conclude that a, b and c are indeed equivalent. □

Corollary B.16. Every tame submersion f : X → Y has the following properties.
a) The map f : X → Y is open and for every x ∈ X there is a smooth local section

of f , defined on an open around f(x) in Y , that maps f(x) to x.
b) For each y ∈ Y the fiber f−1(y) is an embedded submanifold of X without corners,

with tangent space:
Txf

−1(y) = Ker(dfx).
c) For every smooth map g : Z → Y from another manifold with corners into Y ,

the set-theoretic fiber product X ×Y Z is an embedded submanifold with corners of
X × Z, with tangent space:

T(x,z)(X ×Y Z) = {(v, w) ∈ TxX × TzZ | dfx(v) = dgz(w)},
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and tangent cone:

C(x,z)(X ×Y Z) = {(v, w) ∈ CxX × CzZ | dfx(v) = dgz(w)}
= {(v, w) ∈ TxX × CzZ | dfx(v) = dgz(w)}.

The analogous statement holds when interchanging the roles of X and Z.

Proof. We leave it to the reader to derive property a from Proposition B.15 and b from c.
To verify property c, let g : Z → Y be a smooth map from another manifold with corners
into Y . By Remark B.10 it is enough to show that every point (x, z) ∈ X ×Y Z admits
an open neighbourhood in X ×Y Z that is an embedded submanifold of X × Z, with the
prescribed tangent space and tangent cone at (x, z). To this end, let (x, z) ∈ X×Y Z and
for this x ∈ X consider charts (U, χ) and (V, φ) as in Proposition B.15, such that:

χ(U) = [0, ε[k×]− ε, ε[m−k×]− ε, ε[n−m,
φ(V ) = [0, ε[k×]− ε, ε[m−k,

for some ε > 0. Then U ×Y g−1(V ) is an open in X ×Y Z around (x, z) and the map:

i :]− ε, ε[n−m×g−1(V )→ X × Z, (p, q) 7→ (χ−1(φ(g(q)), p), q)

is a smooth embedding (it is essentially a graph map, cf. Example B.8) with image
U ×Y g−1(V ). Therefore U ×Y g−1(V ) is an embedded submanifold of X × Z, with
tangent space:

T(x,z)(U ×Y g−1(V )) = di(0,z)(T0Rn−m ⊕ TzZ),
= {(v, w) ∈ TxX × TzZ | dfx(v) = dgz(w)}

and tangent cone:

C(x,z)(U ×Y g−1(V )) = di(0,z)(T0Rn−m ⊕ CzZ),
= {(v, w) ∈ CxX × CzZ | dfx(v) = dgz(w)},
= {(v, w) ∈ TxX × CzZ | dfx(v) = dgz(w)},

where the last equality follows from (225) (applied to g) and the equality df−1
x (Cf(x)Y ) =

CxX. This concludes the proof of property c. □

Example B.17. Unlike for manifolds without corners, for the conclusion of Proposition
B.15c to hold at a given point x ∈ X, it is not enough to require the conditions in
Definition B.13 just at that point. To see this, consider for instance the map:

f : [0,∞[2→ [0,∞[2, (x, y) 7→ (x, y + x2).

This is a submersion that satisfies the tameness condition in Definition B.13 at the origin,
but does not satisfy the conclusion of Proposition B.15c there.

Now, we turn to Lie groupoids with corners.

Definition B.18 ([66]). A (Hausdorff) Lie groupoid with corners G ⇒ X is a
groupoid for which G and X are manifolds with corners, the source and target map
are tame submersions and all structure maps are smooth as maps between manifolds with
corners.

Note here that, because the source and target of G are tame submersions, by Corollary
B.16c the space of composable arrows G(2) is an embedded submanifold with corners of
G × G, so that (as usual) the requirement for the multiplication map of G to be smooth
makes sense.
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Remark B.19. Let G ⇒ X be a Lie groupoid with corners. In view of Proposition B.15,
for each integer 0 ≤ k ≤ dim(X), the embedded submanifold Gk of G (as in Example B.12)
coincides with both s−1(Xk) and t−1(Xk), so thatXk is G-invariant and the structure maps
of G restrict to give Gk the structure of Lie groupoid without corners over Xk. From this
and the standard theory of Lie groupoids without corners we conclude that for each x ∈ X
the following hold.

a) The isotropy group Gx of G is an embedded submanifold of G without corners and,
as such, it is a Lie group.

b) The source-fiber s−1(x) is an embedded submanifold of G without corners, and the
leaf Lx is an initial submanifold of Xk without corners, for k = depthX(x), with
smooth manifold structure uniquely determined by the fact that:

t : s−1(x)→ Lx,
is a (right) principal Gx-bundle.

As in the case without corners, we can define Morita equivalences.

Definition B.20. Let G1 ⇒ X1 and G2 ⇒ X2 be Lie groupoid with corners. A Morita
equivalence from G1 to G2 is a principal (G1,G2)-bibundle (P, α1, α2). This consists of:

• A manifold with corners P with two surjective tame submersions αi : P → Xi.
• A smooth left action of G1 along α1 that is free and the orbits of which coincide

with the α2-fibers.
• A smooth right action of G2 along α2 that is free and the orbits of which coincide

with the α1-fibers.
Furthermore, the two actions are required to commute.

Here, smoothness of the actions means that the action maps G1×X1P → P and P×X2G2 →
P are smooth as maps between manifolds with corners (which makes sense in view of
Corollary B.16c). As in the case without corners, the following holds.

Proposition B.21. The respective conditions on the left and right action above are equiv-
alent to the requirement that the respective maps:

G1 ×X1 P → P ×X2 P, (g, p) 7→ (g · p, p),(226)
P ×X2 G2 → P ×X1 P, (p, g) 7→ (p, p · g),(227)

are well-defined diffeomorphisms of manifolds with corners.

Proof. The respective conditions on the left and right action above mean that the respec-
tive maps (226) and (227) are well-defined, smooth and bijective. So, we ought to show
that if (226) respectively (227) is a smooth bijection, then it is in fact a diffeomorphism.
In view of Corollary B.16a it is enough to show for each of the respective maps that if it
is a smooth bijection, then at every point its differential is bijective and it is tame. Bijec-
tivity of the differential follows as in the case without corners and tameness is immediate
from the second description of the tangent cone in Corollary B.16c. □

As in the case without corners, Morita equivalences can be adapted to the (pre-)symplectic
setting [10,83,84]. Explicitly:

Definition B.22. A pre-symplectic form ω on a manifold with corners P is a closed dif-
ferential 2-form. Such a pre-symplectic form is called symplectic if it is non-degenerate.
We call (P, ω) a (pre-)symplectic manifold with corners. A pre-symplectic groupoid
with corners (G,Ω) ⇒ X is a Lie groupoid with corners equipped with a pre-symplectic
form Ω on G, satisfying:
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i) dim(G) = 2dim(X),
ii) the form Ω is multiplicative, in the sense that:

m∗Ω = (pr1)
∗Ω + (pr2)

∗Ω,

where we denote by:
m, pr1, pr2 : G(2) → G

the multiplication and projection maps from the space of composable arrows G(2)
to G,

iii) the form Ω satisfies the non-degeneracy condition:

Ker(Ω)1x ∩Ker(ds)1x ∩Ker(dt)1x = 0, ∀x ∈ X.
This is called a symplectic groupoid with corners if Ω is symplectic. A Morita
equivalence (P, ωP , α1, α2) between (pre-)symplectic groupoids with corners (G1,Ω1) ⇒
X1 and (G2,Ω2) ⇒ X2 consists of:

• a (pre-)symplectic manifold with corners (P, ωP ),
• a Morita equivalence (P, α1, α2) between the underlying Lie groupoids with cor-

ners, with the additional property that both actions are Hamiltonian, in the sense
that:

(mL
P )

∗ωP = (prG1
)∗Ω1 + (prLP )

∗ωP & (mR
P )

∗ωP = (prG2
)∗Ω2 + (prRP )

∗ωP

where we denote by:

mL
P , prLP : G1 ×X1 P → P, prG1

: G1 ×X1 P → G1,
mR
P , prRP : P ×X2 G2 → P, prG2

: P ×X2 G2 → G2,
the maps defining the actions and the projections onto P , G1 and G2.

Remark B.23. A pre-symplectic Morita equivalence ((P, ωP ), α1, α2) between two sym-
plectic groupoids with corners is automatically symplectic.

Proposition B.24. Morita equivalence between Lie or (pre-)symplectic groupoids with
corners is an equivalence relation.

Proof. This proposition follows from the observation that, as in the case without corners,
for Lie and pre-symplectic groupoids with corners there is the identity Morita equivalence
and Morita equivalences can be inverted and composed. The only extra technicality
arising here is in the construction of composition of two Morita equivalences, for it involves
quotients by actions of Lie groupoids with corners. To be more precise, suppose that we
are given two Morita equivalences between Lie groupoids with corners:

G1

X1

P

X2

G2 G2

X2

Q

X3

G3
α1 α2 β2 β3

Consider the induced left anti-diagonal G2-action along α2 ◦prP : P ×X2 Q→ X2. We will
show that the topological quotient space (which is second countable and Hausdorff):

(228) P ∗G2 Q :=
P ×X2 Q

G2
admits a unique smooth structure with corners with respect to which the quotient map:

(229) P ×X2 Q→ P ∗G2 Q

is a tame submersion. As for Lie groupoids without corners, one can then define the
composite Morita equivalence:
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G1

X1

P ∗G2 Q

X3

G3

α1 ◦ pr
P

β
3
◦ pr

Q

Moreover, if the given groupoids and Morita equivalences are (pre-)symplectic with cor-
ners, with (pre-)symplectic forms ωP and ωQ, then as for (pre-)symplectic groupoids
without corners (see [83,84]) the form ωP ⊕ωQ on P ×X2Q descends to a (pre-)symplectic
form on P ∗G2 Q that makes the composite Morita equivalence (pre-)symplectic.

To prove that (228) indeed admits a unique smooth structure with corners with respect
to which (229) is a tame submersion, we give an adaptation of the proof of [74, Lemma
B.1.4] (in fact, we believe that Lie groupoids with corners fall into the much more general
framework developed in that thesis). Uniqueness follows from Corollary B.16a. By this
uniqueness, to prove existence it is enough to show that every [p, q] ∈ P ∗G2 Q admits
an open neighbourhood with a smooth structure with corners, with respect to which the
restriction of (229) is a tame submersion. To this end, let [p, q] ∈ P ∗G2 Q. By Corollary
B.16a there is a smooth local section σ : U → Q of β3, defined on an open neighbourhood
U of β3(q) in X3, that maps β3(q) to q. This induces a diffeomorphism:

Φσ : G2 ×X2 U → β−1
3 (U), (g, x) 7→ g · σ(x),

where the fiber-product G2 ×X2 U is taken with respect to the source-map of G2 and the
map β2 ◦ σ : U → X2. To see that the inverse of this map is indeed smooth, consider the
division map:

Q×M3 Q→ G2, (q1, q2) 7→ [q1 : q2],

that assigns the unique element of G2 satisfying [q1 : q2] · q2 = q1. This is smooth, as a
consequence of Proposition B.21. Therefore, so is Φ−1

σ , for it is given by:

Φ−1
σ : β−1

3 (U)→ G2 ×X2 U, q 7→ ([q : (σ ◦ β3)(q)], β3(q)).
Now consider the composition:

(230) P×X2β
−1
3 (U)

IdP×Φ−1
σ−−−−−→ P×X2G2×X2U

(227)×IdU−−−−−−→ P×X1P×X2U
prP,2×IdU−−−−−−→ P×X2U,

where the last fiber-product is taken with respect to α2 : P → X2 and β2 ◦ σ : U → X2.
This being a composition of two diffeomorphisms and a tame submersion, the composite
(230) is a tame submersion. It factors through a homeomorphism from P ∗G2 β

−1
3 (U) to

P ×X2 U , with inverse:
(231) P ×X2 U → P ∗G2 β

−1
3 (U), (p, x) 7→ [p, σ(x)].

Since the composite (230) is a tame submersion, this homeomorphism induces a smooth
structure with corners on the open P ∗G2 β

−1
3 (U) around [p, q], with respect to which the

restriction of (229) to P ×X2 β
−1
3 (U) is a tame submersion, as was to be constructed. □

172



C. A vanishing result for the second structure group

The point of this appendix is to prove:

Proposition C.1. Let (V,ΛV ) be an integral affine vector space equipped with a linear
integral affine action of a finite group Γ . Consider the integral affine orbifold groupoid
Γ ⋉ V ⇒ (V,Λ) and let ∆ ⊂ V be a Delzant subspace. If the corresponding Γ -invariant
subset ∆ of V is convex, then:

Ȟ1(∆,L) = 0 & Ȟ1(∆,L) = 0.

Our proof will use the following.

Lemma C.2. Let (C, dI, dII) be a positive double complex (with vertical differential dI and
horizontal differential dII). Suppose that:

i) H0,1
I (HII(C)) vanishes,

ii) the map:

(232) H1,0
I (HII(C))→ H1,0

II (HI(C)),

induced by the identity map on C1,0, is injective.
Then H0,1

II (HI(C)) vanishes.

This lemma is readily verified directly. A more conceptual way to prove it, involving
the two exact sequences in low degree of the spectral sequences associated to the vertical
and horizontal filtrations of the double complex, is by noting that the map (232) is the
composition of the first map in the first of these exact sequences with the second map in
the second of these exact sequences.

We will apply this lemma to a Čech-Group double complex. To be more precise, let Γ
be a finite group equipped with the discrete topology, let X be a topological Γ -space and
let S be a (Γ ⋉ X)-sheaf of abelian groups. Note that the data of a (Γ ⋉ X)-sheaf is
the same as that of a sheaf together with a continuous Γ -action on its etale space, with
respect to which the etale map into X is Γ -equivariant. For every invariant open U in X,
Γ acts on S(U). Indeed, thinking of σ ∈ S(U) as a continuous section of the etale map
corresponding to S, we can define:

(σ · γ)(x) = σ(x · γ−1) · γ,

using the actions of Γ on X and on the etale space of S. This action turns each S(U)
into a Γ -module. Furthermore, the restriction maps of S are Γ -equivariant. So, for each
γ ∈ Γ , the action by γ defines an automorphism of the sheaf STop on X, where STop is the
sheaf on X that assigns to an open U the group S(U) (the push-forward along the orbit
projection of the sheaf S, viewed simply as sheaf on the topological space X). Hence, for
any open cover U of X, we have an action of Γ on the Čech complex (Č∗

U(X,STop), ď),
induced by the functor into the category of positive chain complexes:

(Č∗
U(X,−), ď) : Sh(X)→ Ch+(Ab).

As for any positive chain complex with a Γ -action, there is an associated positive double
complex:

(233) (C(Γ,U ,S), dΓ , ď∗).
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Here the column in horizontal degree q, equipped with the vertical differential, is the
complex: (

C∗
(
Γ, Čq

U(X,STop)
)
, dΓ
)

of group cochains with coefficients in the Γ -module Čq
U(X,STop). On the other hand,

because
ď : Čq

U(X,STop)→ Čq+1
U (X,STop)

is a map of Γ -modules, it induces a map of complexes:

ď∗ : (C
∗,q(Γ,U ,S), dΓ )→ (C∗,q+1(Γ,U ,S), dΓ )

for each q, which defines the horizontal differential. We can make the following identifi-
cations.

• For each (p, q) we have a canonical isomorphism:

(234) Hp,q
I (HII(C(Γ,U ,S)))

∼−→ Hp(Γ, Ȟq
U(X,STop)),

with on the right-hand side the group cohomology with coefficients in the Γ -module
Ȟq

U(X,STop). Indeed, for each q, we have an isomorphism of complexes:

(H∗,q
II (C(Γ,U ,S)), dΓ )

∼−→ (C∗(Γ, Ȟq
U(X,STop)), dΓ ), [c] 7→ ĉ,

where, given c ∈ Ker(ďp,q∗ ) we define ĉ ∈ Cp
(
Γ, Ȟq

U(X,STop)
)

to be the group
cochain:

ĉ : Γ p → Ȟq
U(X,STop)

(g1, ..., gp) 7→ [c(g1, ..., gp)].

• In particular, for each p, we have a canonical isomorphism:

(235) Hp,0
I (HII(C(Γ,U ,S)))

∼−→ Hp(Γ,S(∆)).

• For each (p, q), we have a canonical isomorphism:

(236) Hp,q
II (HI(C(Γ,U ,S)))

∼−→ Ȟq
U(X,H

p(Γ,STop)),

where we let Hp(Γ,STop) denote the pre-sheaf on X given by the composition:

Op(X)op STop−−→ Γ -Mod
Hp(Γ,−)−−−−−→ Ab.

Indeed, for each p we have an isomorphism of complexes:(
Hp,∗

I (C(Γ,U ,S)), ď
) ∼−→

(
Č∗

U(X,H
p(Γ,STop)), ď

)
, [c] 7→ c,

where, given c ∈ Ker(dp,qΓ ) and (i0, ...., iq) ∈ Iq+1, we define:

(c)(i0,...,iq) ∈ Hp(Γ,STop)(U(i0,...,ip))

to be the group cohomology class represented by the cocycle:

c(i0,...,iq) : Γ
p → S(U(i0,...,iq)),

(g1, ..., gp) 7→ c(g1, ..., gp)(i0,...,iq).

• In particular, for each q we have a canonical isomorphism:

(237) H0,q
II (HI(C(Γ,U ,S)))

∼−→ Ȟq
U(X,S),

where S is the subsheaf of STop of (Γ ⋉X)-invariant sections (as in Remark 4.15).
• Accordingly, the map (232) is identified with the canonical map:

(238) H1(Γ,S(X))→ Ȟ0
U(X,H

1(Γ,STop)),
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These observations, together with Lemma C.2, lead to the vanishing criterion stated
below.

Corollary C.3. Let Γ be a finite group equipped with the discrete topology, let X be a
topological Γ -space and let S be a (Γ ⋉X)-sheaf of abelian groups. Let U be an open cover
of X. Suppose that:

i) Ȟ1
U(X,STop) vanishes,

ii) the map (238) is injective.
Then Ȟ1

U(X,S) vanishes.

With this at hand, we turn to the proof of the desired vanishing result.

Proof of Proposition C.1. First, we show that if (V,ΛV ) is an integral affine vector space
and ∆ is a convex Delzant subspace of (V,ΛV ), then for every p > 0:

(239) Ȟp(∆,L) = 0.

Since ∆ is paracompact and Hausdorff, Čech and sheaf cohomology of sheaves on ∆
coincide. So, we may as well show that the sheaf cohomology Hp(∆,L) vanishes. By the
Poincaré lemma for manifolds with corners we have a short exact sequence:

0→ (C∞∆ )Λ → C∞∆
d−→ L∆ → 0,

where (C∞∆ )Λ is the sheaf on ∆ of smooth functions f with the property that df takes
value in Λ. Secondly, we have a short exact sequence:

0→ R∆ → (C∞∆ )Λ
d−→ C∞∆ (Λ)→ 0,

where R∆ denotes the sheaf on ∆ of locally constant functions with values in R and C∞∆ (Λ)
denotes the sheaf of smooth sections of Λ|∆. Since C∞ is a fine sheaf and H∗(∆,R∆)
vanishes in degree greater than zero (∆ being contractible), we derive from the resulting
long exact sequences in sheaf cohomology that:

Hp(∆,L) ∼= Hp+1(∆, (C∞∆ )Λ) ∼= Hp+1(∆, C∞∆ (Λ)).

for all p > 0. Since Λ = Λ∗
V × V , it follows that C∞∆ (Λ) is the sheaf of locally constant

functions with values in Λ∗
V . Hence, Hp(∆, C∞∆ (Λ)) vanishes for p > 0 (∆ being con-

tractible). This shows that (239) indeed holds, which proves that the right-hand group in
the proposition vanishes.

To prove the vanishing of the other group, let (V,ΛV ), Γ and ∆ be as in the proposition.
Let us call an open cover U of ∆ of convex type if for each open U ∈ U the corresponding
Γ -invariant open U in ∆ is a finite disjoint union of convex opens in ∆. The argument
above shows that if U is a Γ -invariant finite disjoint union of convex opens in ∆, then
Hp(U,L) = 0 for p > 0 (since each open in ∆ is also a Delzant subspace). Hence, using
Leray’s theorem we conclude that:

Ȟp
U(∆,LTop) = Ȟp

U(∆,L) = Ȟp(∆,L) = 0.

for p > 0. So, the first criterion in Corollary C.3 is satisfied. To verify the second criterion,
we show that for every p > 0, the canonical map:

(240) Hp (Γ,L(∆))→ Ȟ0
U
(
∆, Hp(Γ,LTop)

)
is injective. To this end, suppose that [c] ∈ Hp(Γ,L(∆)) such that [c]|U = 0 ∈ Hp(Γ,LTop)(U)
for each U ∈ U . Consider a Γ -fixed point x0 ∈ ∆ (which exists, as argued in the proof of
Proposition 4.53) and let U ∈ U such that x0 ∈ U . Then:

(evx0)∗([c]) = (evx0)∗([c]|U) = 0,
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so that [c] = 0, by injectivity (212). This shows that both criteria in Corollary C.3 are
satisfied, which leads us to conclude that Ȟ1

U(∆,L) = 0 for any open cover U of convex
type. Therefore:

Ȟ1(∆,L) = 0,

because every open cover of ∆ can be refined by an open cover of convex type (Γ being
finite). □
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Index

(B, x)-adapted, 152
∆-adapted, 99
∆-admissible, 124
G-sheaf, 129

Action type, 35

Bisection
continuous, 137
Lagrangian, 137
smooth, 137

Centered, 106, 151
Chart

with corners, 165
Cohomology

Čech, 135, 140
group, 89

Complexity, 163
Cone

of ∆, 99
pointed, 91
polyhedral, 91
smooth, 91
Tangent, 166

Convex type, 175

Delzant polytope, 80, 83, 86
Delzant subspace, 97, 99, 122
Depth, 166

Embedding
category, 137
of manifolds with corners, 166
of reduced ringed spaces, 43

Ext-
class, 93, 104
invariant, 85, 107
sheaf, 85, 107

Fibration
isotropic, 84
Lagrangian, 80

Flat, 106, 151

Frontier condition, 40, 47

Good enough, 140
Groupoid

gauge, 108
integral affine orbifold, 99
Lie with corners, 169
orbifold, 81, 95, 96
pre-symplectic with corners, 170
regular and proper symplectic, 13, 79
symplectic, 14
symplectic with corners, 171

Hamiltonian
G-space, 11, 55, 64, 83, 86
action, 11, 15
space, 30
type, 34

Hilbert map, 45
Homogeneous, 48

smoothly, 48, 50, 71

Infinitesimally abelian, 88
Integral affine

manifold, 96
orbifold, 96
vector space, 90

Intrinsic Hessian, 19
Inward pointing, 166
Isotropy group, 15

of the action, 17

Lattice basis, 90
Leaf, 15

space, 11, 43, 81
symplectic, 12, 16, 68, 69, 163

Local model, 14, 23, 24, 27
Hamiltonian action, 22
invariant, 109
symplectic groupoid, 22
transverse, 36

Manifold with corners, 165
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MGS, 14, 27
Module

groupoid, 29
symplectic, 30

Momentum map, 15
condition, 15
quadratic, 18
transverse, 11, 52, 81

Morita equivalence
Hamiltonian, 34, 111
integral affine, 99
of (pre-)symplectic groupoids with

corners, 171
of Hamiltonian actions, 34
of Lie groupoid actions, 34
of Lie groupoid maps, 33
of Lie groupoids, 28
of Lie groupoids with corners, 170
symplectic, 28, 101

Multiplicative, 14

Neighbourhood equivalent, 20, 21

Open faces, 167
Orbifold, 95

atlas, 95
sheaf, 9, 129

Orbit, 17
central, 109
space, 11, 67, 81, 163

Partition
by J-isomorphism types, 53
by dimension types, 59
by Hamiltonian Morita types, 51
by infinitesimal Hamiltonian Morita

types, 60
by isomorphism types, 42
by local types, 42
by Morita types, 41
by orbit types, 42
constant rank, 50
of a morphism, 50

Principal type, 71, 74
Proper

at a point, 16, 30

Quadratic differential, 18

Reduced
ringed space, 42

Regular part, 58
Representation

normal, 16, 28
symplectic, 88, 89
symplectic normal, 18, 38, 103
toric, 88, 90

Semi-algebraic
locally, 48, 50
set, 48

Space
Poisson reduced differentiable, 65
Poisson reduced ringed, 65
Poisson stratified, 65
reduced, 67
reduced differentiable, 43
smooth stratified, 46
symplectic reduced, 12
Symplectic stratified, 65
Whitney stratified, 46

Split, 89
Stratification, 40, 46

canonical, 41
canonical Hamiltonian, 11, 52
constant rank, 50, 52
infinitesimal, 59
infinitesimal Hamiltonian, 60
Lerman-Sjamaar, 12
Poisson, 12, 65, 67
symplectic, 67
Whitney, 12, 46, 47

Structure sheaf, 42
induced, 43

Submanifold, 44
Poisson, 65
with corners, 167

Tame submersion, 167
Toric, 79, 81, 112, 122, 163

manifold, 80

Weight tuple, 90

Zeroth-order data, 22
Hamiltonian, 20
realization, 20, 21
symplectic groupoid, 20
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Samenvatting (ook voor niet-wiskundigen)

In dit proefschrift worden symmetrieën van (klassieke Hamiltoniaanse) mechanische sys-
temen bestudeerd. Dit worden ook wel Hamiltoniaanse acties genoemd (vernoemd naar
William Rowan Hamilton). Bij zulke mechanische systemen kun je denken aan objecten
die zich door een ruimte bewegen. Met ruimtes bedoelen we hier zogenaamde gladde
variëteiten, zoals een bolschil (het oppervlak van een bol) of een torus (het oppervlak van
een donut). Gladheid betekent grofweg dat de ruimte er lokaal uitziet als een plat vlak.

Klassiek gezien is een symmetrie een manier waarop we een ruimte kunnen bewegen zonder
de algehele vorm van de ruimte te veranderen. Bijvoorbeeld: wanneer we de bolschil of de
torus om hun centrale hoogte-as draaien (waarbij we ons de torus horizontaal voorstellen)
blijft hun vorm behouden. Intuïtief gezien zijn deze symmetrieën van de bolschil en de
torus duidelijk van dezelfde soort, namelijk rotatiesymmetrie rond één as. Het concept
van een ‘groep’ maakt dit intuïtieve begrip van ‘symmetriesoort’ precies. Een groep is
grofweg een collectie van ‘operaties’, met de eigenschap dat de operatie verkregen door
een tweetal operaties na elkaar uit te voeren ook weer tot de collectie behoort. Dit laatste
wordt de samenstelling van de twee operaties genoemd. Daarnaast moet de collectie een
identiteitsoperatie (een operatie die ‘niets doet’) bevatten, moet er voor iedere operatie
ook een inverse operatie in de collectie zitten, en moet de samenstelling van operaties aan
een associativiteitsregel voldoen. De groep behorende bij rotatiesymmetrie is bijvoorbeeld
de collectie van alle draaiingen van de cirkel rond zijn middelpunt.

De symmetrieën die centraal staan in dit proefschrift zijn van een nog algemenere soort,
namelijk de symmetrieën beschreven door groepoïden. Het concept van een groepoïde is
algemener dan dat van een groep: iedere groep is in het bijzonder een groepoïde, maar
niet andersom. Het voornaamste verschil is dat niet ieder tweetal objecten in de groe-
poïde meer samenstelbaar hoeft te zijn en dat symmetrieën beschreven door groepoïden
niet per se de gehele ruimte bewegen. In plaats daarvan is slechts een voorgeschreven deel
van tweetallen van operaties samenstelbaar, en hoeven de symmetrieën beschreven door
groepoïden slechts een voorgeschreven deel van de ruimte te bewegen.

In dit proefschrift bestuderen we de algemenere symmetrieën van mechanische systemen
beschreven door groepoïden, die in vergelijking met groepssymmetrieën van zulke sys-
temen nog relatief weinig bestudeerd zijn. Zowel de wiskundige formulering van deze
algemenere soort symmetrieën van mechanische systemen, als veel van de technieken die
we gebruiken om ze te bestuderen, hebben hun oorsprong in het vakgebied genaamd Pois-
son meetkunde (vernoemd naar Siméon Denis Poisson). Dit verklaart grotendeels de titel
van dit proefschrift. De inhoud van dit proefschrift is opgedeeld in twee delen, waar ik
hieronder een idee van zal proberen te geven.

Het eerste deel gaat over zogenaamde ‘baanruimtes’ van symmetrieën van mechanische
systemen. Een ruimte met symmetrieën beschreven door een groepoïde wordt op een
natuurlijke manier opgedeeld in banen: de deelruimtes gevormd door een beginpunt van
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de ruimte te kiezen en daarbij alle andere punten te nemen die te bereiken zijn door het
beginpunt te bewegen met een symmetrie beschreven door de groepoïde. Bijvoorbeeld:
de banen van de bovengenoemde rotatiesymmetrie van de bolschil zijn de cirkels in de
bolschil waarvan de punten op constante hoogte liggen (deze delen de bolschil dus op
in cirkels, met één cirkel op iedere hoogte). De banen van de rotatiesymmetrie van de
torus zijn ook cirkels met constante hoogte, maar nu één bovenaan, één onderaan, en
twee cirkels op iedere andere hoogte. De baanruimte van een ruimte met symmetrieën is
de ruimte verkregen door iedere baan als een enkel punt te beschouwen (of beter gezegd:
tot een punt ineen te klappen). In het voorbeeld van de bolschil is de baanruimte een
lijnstuk van eindige lengte (zo lang als de hoogte van de bolschil), terwijl de baanruimte
in het voorbeeld van de torus een cirkel is. Het vervangen van een ruimte met symme-
trie door de bijbehorende baanruimte wordt ook wel symmetriereductie genoemd. Dit
proces is erg behulpzaam bij het bestuderen van mechanische systemen met symmetrie,
omdat de baanruimte een kleinere dimensie heeft dan de oorspronkelijke ruimte, waar-
door mechanische systemen in deze ruimte makkelijker te begrijpen zijn (omdat er minder
vrijheidsgraden zijn, of anders gezegd: omdat er minder ‘bewegingsruimte’ is). Een moei-
lijkheid aan deze methode is echter dat de baanruimte vaak geen gladde ruimte meer is,
maar singulariteiten heeft, en dat we mechanische systemen in ruimtes met singulariteiten
een stuk minder goed begrijpen dan die in gladde ruimtes. Bijvoorbeeld: de baanruimte
van de bolschil met rotatiesymmetrie is niet meer glad aan de uiteinden, waar het twee
eindpunten heeft. Als de symmetrie wordt beschreven door een groepoïde van ‘compact
type’, dan is er een welbekende en natuurlijke manier om de baanruimte op te delen in
gladde ruimtes (een zogenaamde ‘stratificatie’ van de baanruimte). In het voorbeeld van
de bolschil is dit de opdeling van het lijnstuk (de baanruimte) in drie delen: de twee
eindpunten en de rest. Deze stratificatie stelt ons in staat om zo toch de singuliere ruimte
te kunnen bestuderen met ons goede begrip van gladde ruimtes. In dit proefschrift con-
strueren we een verfijning van deze stratificatie (dat wil zeggen: een nieuwe stratificatie
verkregen door de oude stratificatie verder op te delen) voor baanruimtes van symmetrieën
van mechanische systemen, met (grof gezegd) betere eigenschappen ten aanzien van het
mechanische systeem. Ook hierbij nemen we aan dat de groepoïde van compact type is.
Deze verfijning is de ‘canonieke Hamiltoniaanse stratificatie’ in de titel van hoofdstuk twee.

Het tweede deel gaat over de classificatie van mechanische systemen. Met classificatie
bedoelen we hier min of meer het construeren van een lijst met berekenbare eigenschappen
van het systeem, aan de hand waarvan we precies kunnen bepalen welk systeem dit is.
Over het algemeen is dit erg lastig, maar hoe meer symmetrie het systeem heeft, hoe
behapbaarder dit probleem wordt. Ook hier beschouwen we weer enkel symmetrieën van
‘compact type’, omdat we symmetrieën van dit type beter begrijpen.
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