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1 Introduction 

Introduction 

Even in the most futuristic science-fiction, people tend to talk to computers much like we 
currently command our voice assistants; but surely humankind can do better! Why not 
interface directly with the brain?! The field of Brain-Computer Interfaces (BCI), although still 
in its infancy, attempts to achieve exactly that: to have a machine directly interpret the 
neuronal signals from the brain in order to utilize mental intent or brain states and control the 
world around us. 

The first steps in this direction have already been made, both in knowledge and as 
proofs-of-concept. Examples include, but are not limited to, controlling an effector like a 
robotic arm or cursor on a screen using brain activity, or “deciphering” what is visually 
perceived from brain activity. Unfortunately, many such brain interfaces are not yet reliable 
enough, offer limited control, and are restricted to patients in a clinical or research setting for 
technical and ethical reasons. Should BCIs develop further — and potentially beyond use by 
patients alone — we could operate a computer, phone, car or drone with intentive thoughts, 
as natural and automatic as we currently exert manual or voice control. Even “reading” a 
mental image to convey a view or graphical design could belong to the possibilities, efficiently 
conveying complex information as “a picture is worth more than a thousand words”. And so, 
much progress is still to be made. 

1.1 Interfacing with brain activity 

When interfacing with the human brain, we need to consider: (1) the technique with which 
brain activity is measured, (2) the brain function used to generate interpretable brain activity, 
and (3) the brain areas that are most involved when using a brain function, so where the most 
informative brain activity is located. Although not exhaustive, this section will mention the 
techniques, brain functions and brain areas that are currently the most relevant in the field of 
BCI and relate to my research. 

Measurement techniques 

Several techniques can be used to measure and digitize the activity from the human brain. 
Some of the most common techniques are functional Magnetic Resonance Imaging (fMRI), 
Magnetoencephalography (MEG), Electroencephalography (EEG), Electrocorticography 
(ECoG), Stereo-electroencephalography (SEEG) and microelectrode arrays (MEAs). While 
most of these techniques are well suited for research towards brain interfacing, only very few 
options are sensible when it comes to practical implementation and realistic daily use of a 
BCI. My research focuses on ECoG and fMRI for reasons explained in the following 
paragraphs. 
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ECoG has been proposed as one of the most suitable measurement techniques for a 
BCI solution to a patient at home. ECoG measurements come from strips or grids of 
electrodes placed subdurally or epidurally on the brain surface. Typical ECoG electrodes 
have an exposed diameter of a few millimeters, where each electrode measures the 
combined electrical potential from the ensembles of neurons underneath, providing a 
relatively direct measurement of brain activity. From a clinical perspective, permanent ECoG 
implants are aesthetically pleasing because the electrodes are placed underneath the skull 
with a small amplifier and transmitter device can be embedded within the chest or on the 
skull underneath the skin. Moreover, the signals are of exceptional quality and are reliable 
over an extended period [1,2], have less of an inverse problem, and require very little time to 
set up or calibrate. From a technical perspective, ECoG has the advantage of a high temporal 
resolution and can — depending on the ECoG electrode array that is used — have a good 
spatial resolution. In particular the direct high temporal resolution measurement of neuronal 
activity allows for the extraction of features (e.g. different frequency bands amplitudes) that 
provide reliable input to a BCI. Specifically changes in the high-frequency band (HFB; > 65Hz) 
power are understood to reflect the underlying firing of local neuron populations [3–7] and have 
shown to be highly informative for motor representations in the sensorimotor cortex [8–15]. The 
disadvantage of ECoG is that it is an invasive technique and therefore requires brain surgery. 
As a result, ECoG measurements are limited to a clinical or patient setting with comparatively 
little opportunity to answer fundamental questions on a broader range of brain functions, 
brain areas, and their properties for exploitation in a BCI. 

In contrast to ECoG, fMRI is non-invasive, can capture the whole brain, is safe and 
widely used, and over recent decades has provided a large quantity of information on the 
workings of several brain functions [16]. fMRI measurements are made in an MRI scanner and 
rely on changes in oxygenation and blood volume in the cortical microvasculature [17,18], which 
in turn are driven by neurovascular coupling (i.e. regional changes in blood flow and oxygen 
consumption following local neural and glial activity). Due to the differential magnetic 
properties of oxyhemoglobin versus deoxyhemoglobin, these local haemodynamic 
responses and the concentration of deoxyhemoglobin during task performance can be 
quantified in a so-called Blood Oxygenation Level Dependent (BOLD) signal. fMRI is capable 
of reliably capturing activity over the entire brain at a high spatial resolution (on the scale of 
mm) but, being dependent on the relatively slow haemodynamic response, has a poor
temporal resolution (on the scale of seconds). Owing to the low temporal resolution and non-
portability, fMRI is not a realistic candidate for a practical everyday BCI. However, much of
the (fundamental) research on brain activity in fMRI has shown to be a good approximation
of ECoG measurements.

The electrophysiology measured in ECoG and the BOLD signal changes in fMRI have 
shown to be correlated both temporally [19,20] and spatially given the matching of HFB power 
and BOLD on peak activity [13,21–24], successful prediction of non-linearities in BOLD based on 
HFB power [25] and matching increases of BOLD response and HFB power across conditions 
[26–28]. As such, the research on brain functions and the properties of the brain signals in fMRI 
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research can be, and are, utilized in ECoG-based BCIs. For example, fMRI is used pre-
operatively in patients with amyotrophic lateral sclerosis (ALS) or paraplegia to localize the 
functional region of interest (ROI) and placement of electrodes in and on the sensorimotor 
cortex [1,29–31]. 

I focus on fMRI and ECoG because I believe these techniques are complementary in 
the development of BCIs, such that fMRI allows me to investigate the utilization of brain 
functions, brain areas and their features for use in an ECoG-based BCI. Other techniques 
have their own advantages in different settings, which I will briefly mention to sketch a more 
general field of BCI. Scalp-EEG, for example, while safer than implanted electrodes, has a low 
spatial resolution, a low signal-to-noise ratio, is susceptible to signal contamination and 
requires much effort and time to be set up by a caregiver before each use. Despite minor 
improvements in spatial resolution and attempts to provide a home BCI using flickering 
screens and P300 error potentials [32], this technique has limited utility for a practical BCI and 
has little to no adoption by the medical BCI field. Another technique worth mentioning is the 
use of intracortical MEAs (also known as micro-electrodes, micro-arrays or Utah arrays), 
where an array of tiny needles is pushed into a small piece of the cortex. By doing so, sites 
along the needles or at the needle tips can measure extracellular action potentials from 
neurons, providing information at a very high spatial and temporal resolution. However, the 
movement of electrode sites relative to neurons results in a daily or sometimes even hourly 
need for recalibration. In addition, the loss of detected action potentials, impedance [33,34] and 
amplitude [35–37] over time due to material degradation or tissue reactions cause the quality of 
BCI control to degrade gradually [38,39], rending the period of usability short. Therefore this 
measurement technique is less suited for a sustainable everyday BCI. Still, research using 
intracortical MEAs is often aimed towards BCI applications and has led to many valuable 
insights and proofs-of-concept [29,30,40–48]. 

Brain functions and regions 

A number of brain functions would allow for voluntary control, where brain signals can be 
deliberately regulated to provide interpretable and utilizable input to a BCI. Research has 
been done mainly on (the properties of) brain activity associated with the sensorimotor 
system, executive cognitive functions, auditory representations and the visual system. 
Although multiple brain functions could be used simultaneously to control a BCI, most 
research focuses on a single brain function. Using multiple brain functions could have several 
benefits, one of which is to provide alternative options of control over a BCI or increase the 
degrees of freedom of a BCI (extending from 1D to 2D or more). Another benefit may be to 
prevent false positives during the use of other brain functions. 

The sensorimotor system is — by far — the most extensively researched and used brain 
system for brain-computer interfacing. This choice is motivated by a number of reasons: First, 
the primary motor area (M1) and primary sensory area (S1) offer a topographical 
representation of the body [49]. Second, particularly in ECoG, sensorimotor areas are often 
covered with electrodes for clinical purposes during (epilepsy) surgery. Third, only very little 
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co-activity related to other brain functions (such as the working memory or visual system) 
occurs in the sensorimotor cortex. 

Since sensorimotor areas are largely dedicated to the voluntary movement and 
sensory input of specific body parts [49], we can easily distinguish and utilize the neural activity 
generated by the voluntary movement of those different body parts. Due to their relatively 
large representation within the sensorimotor cortex, two functional brain areas in particular 
stand out as a target for BCI research and utilization: (1) the hand/arm sensorimotor areas 
associated with finger/hand/arm movement or imagery [15,42,50], and (2) the mouth/face 
sensorimotor areas associated with executed or imaged articulator movements [51–54]. 

An alternative, primary and extensively investigated system is the visual system. Most 
research on the visual system naturally focuses on visual input and the processing thereof. 
The visual system is typically bottom-up driven and the brain activity is less voluntarily 
controlled. However, the act of mental visual imagery can be voluntary and its cortical activity 
has shown to be interpretable for low-level features such as motion [55], orientation [56–58], 
location [59] and shape [60,61]. Like the motor system, early visual areas have a specific mapping 
and are retinotopically organized [62–65]. This retinotopic organization may allow for the 
extraction of distinct neural activity related to different spatial areas of the visual field, making 
it possible to control a BCI. Interestingly, almost all patients who have lost or are losing their 
ability to speak (e.g. people with locked-in syndrome) already use computerized eye-tracking 
to spell characters and speak words or sentences. Given the widespread use by patients and 
the full dedication of the eyes for communication, the utilization of mental imagery could be 
a fast and more intuitive alternative. 

Higher cognitive functions are seldom used directly to control a BCI. Such functions 
are often too complex, involve multiple (subcortical) brain areas and/or can be difficult to 
control voluntarily. While these factors apply to the cognitive function of working memory as 
well, some working memory areas can still be considered. The left dorsolateral prefrontal 
cortex (DLPFC) is an area that is involved in mental manipulations in human working memory. 
Interestingly, activity in the DLPFC can be voluntarily regulated [66,67] and therefore provides 
for a degree of control (i.e. less or more activity depending on the mental effort). As such, 
working memory activity could be utilized to control a BCI, either as an input signal directly 
(in ECoG [67,68]) or indirectly to prevent false positives. As of now, at least two patients are 
known to have permanent brain implants that cover the DLPFC with the purpose of BCI [1,68]. 
Studies with these patients confirm that a high degree of DLPFC-based control is possible, 
with participants reporting it as less tiring and requiring less mental effort than sensorimotor-
based control [68], and that the DLPFC can provide a usable error-related potential [69].  
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1.2 BCI applications 

Types of BCI control 

The measurements from the brain, either the electrical potentials in ECoG or the oxygen 
levels in fMRI, can serve as the input needed to control a BCI application. Spatial, temporal 
and/or spatiotemporal features are extracted from the raw measurements, so that irrelevant 
input (noise) is reduced to a minimum and the most relevant input (signal) remains. The 
relevant — and in most cases voluntary regulated — features can then be utilized in a variety 
of ways.  

One type of control translates input feature(s) to continuous output control, where the 
incoming feature(s) results in a value on a scale or dimension (e.g. translate the degree of 
activity in a specific brain area to control the position of a cursor on the screen). Such an 
approach has been applied in several ECoG studies, in 2D reaching and pointing [70], 2D 
cursor trajectory [71,72], grasp aperture [73] and individual finger flexion [10,74,75]. A similar type of 
output converts a continuous value, based on a threshold, into a binary “on” or “off” value 
(e.g. a brain click is produced by imagining the movement of a paralyzed hand when the 
brain activity crosses a specific threshold [1]).  

Yet another type of control takes the input features and, based on a (pre-trained) 
model, classifies it as a discrete output class (e.g. imagining a particular hand gesture 
produces a specific spatiotemporal activity pattern in the brain, which then is interpreted as 
a character to be spelled). One or more input features can control one or more dimensions, 
and different types of controls can be combined in a BCI to provide more reliable input and/or 
more degrees of freedom to control a BCI application. 

It is worth mentioning that some generative decoding models (e.g. linear gaussian or 
convolution neural networks) are capable of producing, instead of just discrete output, output 
with a significant level of detail. For example, they can generate an image of what people see 
based on their brain activity [76–81]. Such models mainly involve advanced engineering and 
require large amounts of spatially detailed brain data to work, and are therefore almost 
exclusively in the domain of fMRI. 

Current state-of-the-BCI 

Based on the available brain functions, brain areas and techniques, several BCIs have 
already been realized in humans. Most BCIs are currently proofs-of-concept at a research 
location, while only very few are being applied in a home setting. 

As described above (1.1), neural representations of hand and arm movements 
measured from sensorimotor areas are often used in BCIs. Since these BCIs target patients 
who have lost a limb (e.g. amputees) or their ability to control limbs (e.g. quadriplegics), it 
intuitively makes sense to restore these functionalities by providing a relay to the limb’s 
muscles [43] or control over prosthetic limbs (e.g. a robotic arm or an exoskeleton [29,31,47,82]). 
While some patients may have remaining functionality in the periphery (spine, remaining part 
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of limb) that could be utilized, we focus on prosthesis controlled by signals measured from 
the brain. As an example, a recent study [31] implanted a patient with quadriplegia with two 64 
electrode ECoG arrays over the upper-limb sensorimotor areas of both hemispheres. The 
patient performed various tasks, building from generating a single brain click (that would start 
a pre-programmed leg-walking sequence of the exoskeleton) towards 8-dimensional 
continuous control over the arms (four dimensions on each arm; x, y, z translation + wrist 
rotation). Another study [29] implanted a patient with two intracortical MEAs in the motor cortex 
of the hand, allowing for robust control of a robotic arm to perform reach-and-grasp 
movements. While fascinating and responsible for drawing me into the field of BCI, 
neuroprosthetic limbs that are controlled by brain signals are often limited to a research 
setting due to their current lack of mobility (e.g. a robotic arm is a large device standing next 
to a participant, to be used only in a research/hospital location). 

Another broadly pursued type of BCI aims to facilitate communication by translating 
brain signals to letters, words, sentences and (generated) speech. Communication BCIs often 
target locked-in patients (LIS) who have lost or are losing their ability to speak, such as 
patients with ALS or brainstem stroke. These patients often rely on eye-tracking as their last 
means of communication with the outside world. By sequentially gazing at letters on a screen 
(i.e. a virtual keyboard), they spell words and sentences, which are then spoken aloud by 
assistive software. Communication BCIs can complement or in-time replace eye-tracker 
communication, and because they can be portable (e.g. a small receiver on the chest and a 
tablet computer to spell on), they are one of the few implanted BCIs that are used 
independently by patients at home [1,2] and therefore directly benefit the patient. The Utrecht 
NeuroProsthesis [1], a fully implanted communication BCI for which I programmed the signal 
translation and patient software, currently serves several locked-in patients at home by means 
of a permanent ECoG brain implant over the hand-knob area in the motor cortex. Other 
studies use multi-dimensional virtual keyboard control [41,42,45], decode (imagined) speech 
articulators (i.e. tongue, lip, jaw and larynx) [51,53,54,83–91], or envision a BCI that allows for 
communication by decoding (sign language) gestures [14,92–95]. While promising, these efforts 
either require further development, have not been deployed in a home setting, or cannot yet 
be used independently for daily activities. 
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1.3 Outline of this thesis 

The research presented in this thesis pursues the advancement of BCIs by exploring the 
optimal utilization of controlled brain activity in a variety of directions. 

Most research on the electrophysiological properties and decoding of hand 
movements has been done in patients with a healthy moving hand. At the same time, BCIs 
often aim towards helping long-term amputees or patients who no longer have control over 
their muscles (e.g. ALS or brainstem stroke). The question remains how much of the hand 
representation remains intact in these patient groups. In Chapter 2, we were presented with 
a unique opportunity to investigate the motor physiology of the brain in a patient with an 
amputated hand using ECoG and show that the physiology is retained even in attempted 
movement of non-existent fingers. 

Chapter 3 deepens further into the utilization of sensorimotor representations and 
investigates how different resolutions/scales of neuronal measurement (i.e. ECoG electrode 
grid configurations) would influence the acquisition of optimal information for decoding hand 
gestures using fMRI. In addition, a data-driven method is presented to pre-operatively assist 
in finding the optimal grid configuration and placement on the cortex.  

While the bulk of BCI research focuses on the sensorimotor system, visual mental 
imagery is an underexplored avenue in the context of controlling a BCI. Chapter 4 
investigates the decoding of visual imagery from the early visual cortex and the properties of 
prolonged imagery using fMRI, exploring and evaluating the usability, opportunities and 
implications for visual imagery-driven BCIs. 

Alternatively, DLPFC activity can be utilized for BCI-control, particularly in cases where 
motor cortex functioning is impaired due to stroke [96], injury [97], neurodegenerative disease 
[98,99], or when motor imagery is mentally too demanding [68]. However, in contrast to motor 
movement where brain activity is generated “automatically” by an intention to move limbs or 
otherwise contract muscles, working memory activity can be less intuitive to produce 
voluntarily. Instead, specialized tasks are often used to generate and control brain activity 
(e.g. counting backward in steps of 7). Suppose a BCI would rely on such a cognitive function 
and specific task for direct control, then there is the risk of a practice effect, meaning the 
automatization of cognitive processing over time [100,101]. A shift from controlled to automatic 
cognitive processing on a task could lead to less activity, resulting in less reliable control of 
a BCI. We hypothesize that continuous closed-loop feedback on brain activity could prevent 
this from happening. Chapter 5 explores the degree to which we can voluntarily self-regulate 
brain activity when provided with closed-loop feedback on the left dorsolateral prefrontal 
cortex. 

Taken together, these chapters contribute to the foundation of at-home BCIs with the 
potential to help patients. 
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Abstract  

Electrophysiological signals in the human motor system may change in different ways after 
deafferentation, with some studies emphasizing reorganization while others propose retained 
physiology. Understanding whether motor electrophysiology is retained over longer periods of 
time can be invaluable for patients with paralysis (e.g. ALS or brainstem stroke) when signals from 
sensorimotor areas may be used for communication or control over neural prosthetic devices. In 
addition, a maintained electrophysiology can potentially benefit the treatment of phantom limb 
pains through prolonged use of these signals in a brain-machine interface (BCI).  

Here, we were presented with the unique opportunity to investigate the physiology of the 
sensorimotor cortex in a patient with an amputated arm using electrocorticographic (ECoG) 
measurements. While implanted with an ECoG grid for clinical evaluation of electrical stimulation 
for phantom limb pain, the patient performed attempted finger movements with the contralateral 
(lost) hand and executed finger movements with the ipsilateral (healthy) hand. 

The electrophysiology of the sensorimotor cortex contralateral to the amputated hand 
remained very similar to that of hand movement in healthy people, with a spatially focused increase 
of high-frequency band (65–175 Hz; HFB) power over the hand region and a distributed decrease 
in low-frequency band (15–28 Hz; LFB) power. The representation of the three different fingers 
(thumb, index and little) remained intact and HFB patterns could be decoded using support vector 
learning at single-trial classification accuracies of >90%, based on the first 1–3 s of the HFB 
response. 

These results indicate that hand representations are largely retained in the motor cortex. 
The intact physiological response of the amputated hand, the high distinguishability of the fingers 
and fast temporal peak are encouraging for neural prosthetic devices that target the sensorimotor 
cortex.  
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Chapter 2 

2.1 Introduction 

Deafferentation from the loss of a limb affects the inputs and outputs to and from 
sensorimotor areas in the brain. However, it is not yet clear what happens to the physiology 
of these cortical regions when a limb is amputated. Using electrocorticography (ECoG) 
measurements in humans, it has been well established that hand movements cause a 
spatially focal increase in high frequency amplitude in the sensorimotor cortex and a spatially 
distributed decrease in low frequency amplitude [3–5,22]. Furthermore, the individual finger 
movements can be distinguished topographically using the high frequency signals [9,13]. It is 
unknown whether these basic physiological changes are maintained after the amputation of 
a limb. 

Several studies have reported that sensorimotor areas reorganize after amputation in 
humans using transcranial magnetic stimulation [102,103] and fMRI [104–106], and in macaque 
monkeys using electrical stimulation [107] or after lesioning [108]. These studies suggest that 
areas previously related to the amputated limb can associate with other muscle groups. 
However, there are several fMRI studies on upper arm amputations that show that some form 
of hand [106,109–111] and finger [112,113] representation are preserved in both the motor and 
sensory cortex, even over longer periods of time. In addition, sensory representations of the 
hand have been shown to be preserved in patients with tetraplegia using microstimulation of 
the somatosensory cortex [114,115] and EEG studies have shown that ERP responses related to 
motor inhibition remain intact [116].  

Preserved motor physiology would be invaluable for specific clinical purposes such 
as Brain Computer Interfacing (BCI). Using BCIs, people with paralyses can use the 
electrophysiological signal from the brain, generated by attempted hand movement, to 
control communication devices [1] or other assistive devices [31]. Furthermore, establishing 
BCI control could potentially help reduce phantom limb-pain [117], it is therefore important to 
understand the extent to which motor physiology is preserved.  

In this study we were provided with a unique opportunity to investigate sensorimotor 
physiology with ECoG measurements in a patient with an amputated arm. The patient was 
implanted with an ECoG array for clinical evaluation of phantom limb pain and we measured 
ECoG signals during attempted finger movements of the contralateral, lost, hand. We 
investigated whether the typical spatiotemporal organization of hand-movement physiology 
was preserved and whether information of separate finger representations was retained. 

2.2 Methods 

Participant 

A 62-year-old male with a left above-elbow amputation secondary to a snowmobile accident 
underwent temporary placement of a subdural electrode array for a trial treatment of phantom 
limb pain by electrical subdural cortical stimulation [118]. Experimental data were collected 
during breaks in trials of different electrical stimulation parameters over a period of 10 days. 
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The patient was righthanded and had his left-arm amputated 3 years and 11 months before 
ECoG grid implantation. The patient reported waking from his initial left mid-forearm 
amputation with phantom arm and hand pain, and that his pain has persisted since that time. 
He underwent two additional surgeries, ultimately completing a shoulder disarticulation and 
full humeral amputation. His pain has resulted in functional impairment and reduced quality 
of life despite trials of opiate medications, mirror therapy, an intensive pain rehabilitation 
program, and treatment with an implanted spinal cord stimulator. After the monitoring period, 
the patient was equipped with a cortical stimulator. At a six months follow up, he reported 
that the phantom limb pain dropped from 8 to 9/10 severity to a typical range of 5–6/10, and 
no side effects were reported. 

The study was approved by the Institutional Review Board of Mayo Clinic (IRB 15-
006530) and the patient provided informed consent to participate in the study, in accordance 
with the declaration of Helsinki (2013). 

Recordings 

An electrode array of 36 circular platinum contacts (AdTech, 6 × 6 electrodes, 2.3 mm 
exposed diameter, 10 mm inter-electrode distance) embedded in a silastic sheet was 
surgically placed over the frontoparietal region, including the sensorimotor cortex (figure 1A). 
Electrodes were localized using a high-resolution CT-scan and projected (Hermes et al., 
2010) onto a cortical surface rendering generated from the preoperative anatomical T1 
weighted MRI scan (GE 3T Discovery). During recording, all electrodes were referenced to 
an inactive subgaleal electrode with the recording surface facing away from the brain. The 
signals were amplified and digitalized at 2048 Hz. Upon inspection of the electrode signals, 
two channels that contained severe noise were excluded from analysis. 

Tasks 

The subject was presented with two tasks: an attempted and executed movement task. 
During the attempted movement task, the subject was asked to attempt finger movements 
with the (left, contralateral) amputated hand; During the executed movement task the subject 
was asked to perform finger movement with the (right, ipsilateral) hand on the healthy arm. 
Both tasks featured the exact same design with 5 s of finger movement and 3 s of rest. The 
subject was cued via a bedside monitor with a picture of a hand and asked to (attempt to) 
move one of three fingers: the thumb, index or little finger. Finger movement involved the 
repeated flexion and extension of the cued finger for the duration of the trial, while no specific 
instruction was given in regard to the speed of the movement. Each run of a task featured 15 
movement cues for each finger, which were presented at random, resulting in 45 randomized 
trials per run. The subject performed two runs of attempted movement and two runs of 
executed movement.  
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Analysis 

The analysis and classification routines were implemented using custom MATLAB 
(Mathworks inc.) code that is provided alongside this article at: https://osf.io/vmxdn/. Before 
analysis, the two runs of each task were concatenated and a small number of trials, that 
showed large artifacts in the signal or in which the patient was distracted, were excluded (2 
trials were excluded for attempted movement and 4 trials were excluded for executed 
movement). The data were re-referenced to the common average by regressing the common 
average out from each channel.  

Since hand and finger movements are known to be controlled by the contralateral 
hemisphere, the focus of our analyses is mainly on the attempted/phantom movements. 
However, because there is research that shows that ipsilateral activity does occur during 
unilateral movement of the hand [119–123] and ipsilateral representations may become more 
apparent after deafferentation [124], we have - for the sake of completeness - also performed 
analyses on the ipsilateral executed movements. Furthermore, the behavioral measurements 
on the intact hand provide a reference for the performance of the invisible hand. 

Spectral power change 

The contralateral power changes during attempted hand movement were investigated by 
extracting an epoch of 1–4 s after cue onset as movement. During executed movement 
(ipsilateral), the movement epoch was set to start 100 ms before the actual movement of the 
healthy hand to the end of the actual hand movement based on the concurrent video; 100 
ms was subtracted to account for the delay between the cortical signal and initiation of the 
movement [9,125,126]. An epoch of 2 s before cue onset was considered as rest in both 
attempted and executed movements. The power spectral density of each epoch was 
calculated every 1 Hz by Welch’s method [127] with a 250 ms window and an overlap of 125 
ms. A Hann window [128] was applied to each epoch to attenuate the edge effects. Per channel, 
the resulting power spectra were log10 transformed and normalized to the mean power over 
all epochs at each frequency. Based on previous ECoG studies into executed and attempted 
movement we expected frequencies below 30 Hz and above 65 Hz to be most informative 
[5,9–13,22,93,129]. The high frequency band (HFB) power was obtained by calculating the average 
power over 65 Hz to 175 Hz, whereas low frequency band (LFB) power was the average over 
15 Hz to 28 Hz. The alpha range (8–13 Hz) has been included in supplementary figure 1 for 
the sake of completeness.  

In order to plot the spectral power changes on the rendered brain surface, we 
calculated the T-statistics for both the HBF and the LFB per channel by testing the power of 
movement trials against the rest trials. A Bonferroni correction was applied while testing the 
T-values for significance (p < .05).

To visualize the electrophysiological response over time, we filtered each electrode 
signal using a third-order Butterworth filter for either the high frequencies (HFB, 65–175 Hz), 
or the low frequencies (LFB, 15–28 Hz). After filtering, the power of the amplitude was 
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calculated using a Hilbert transformation. Trial-epochs, of 2 s before to 7 s after cue onset, 
were extracted and normalized by subtracting the signal mean power of the 2 s before cue 
onset from each individual trial. An average across each condition was calculated and 
smoothed with a moving average window of 1 s. 

Temporal window for finger movement classification 

In order to investigate to what degree spatial finger-representations were preserved and 
distinguishable, single-trial classification was performed on the individual fingers. For 
executed hand movement, we used the signal when the patient was moving the finger on the 
healthy hand. However, during attempted finger-movement there is no external behavioral 
measurement available to assess when (after cue onset) the patient started to attempt the 
movements, where in time the strongest decodable response occurs and whether such a 
response is transient or sustained. In order to address these factors, we split the data in two 
halves. One half was used to explore decodability of the response over time and find the 
optimal time-window parameters for decoding. Next, these time-window parameters were 
used in the other half for further decoding analysis. The data was split at random after 
concatenating the attempted movement runs, while balancing the finger conditions evenly 
over the two halves. Details on the classification procedure can be found below (under 
“Classification”); the same procedure was used on both halves of the data. 

We explored the response over time and optimized it for decoding by applying several 
different time-windows while decoding the finger movement, thereby restricting the 
information available to the classifier. These time-windows differed in size from 250 ms to 
5000 ms and in placement from cue onset, ranging from the beginning to the end of the trial. 

An optimal time-window for classification was determined by first applying Gaussian 
smoothing to the classification accuracies over the window size (σ: 2.5) and offset (σ: 0.5) 

dimensions. Smoothing prevents the selection of parameters with local classification 
accuracy peaks in the parameter optimization half of the data, and allows for the selection of 
temporal parameters that are optimal in general. After smoothing, the time-window with the 
highest classification score was selected, and its offset and size were used for further 
classification analyses.  

Classification  

For classification, the HFB power of the different channels at the trial-epochs were used as 
features in a Support Vector Machine (SVM) with a linear kernel [130]. The HFB power was 
calculated per epoch in the same way as described above (i.e. using Welch’s method, log10 
transformed and averaged over 65–175 Hz), except that the spectra were not normalized. 
The unnormalized HFB power was used since the SVM maps each input feature to its own 
(scaled) dimension, and allows us to classify on the movement-epochs alone. We achieved 
multi-class classification (3 fingers) by applying a one-versus-all classification scheme in 
which every class is classified against the data of the other classes together and the winner 
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(that is furthest from the hyperplane) takes all. A leave-one-out cross validation was used and 
resulted in a classification accuracy score, which is the percentage of trials predicted 
correctly. 

Comparisons to a significance threshold only apply to the half of the data that was 
used to further investigate the decodability, after applying the optimal time parameters. 
Classification scores were empirically tested for significance using a Monte Carlo distribution 
based on 100.000 permutations [131]. Estimates of the P values were obtained using the 
equation p = (r + 1)/(n + 1), where n is the number of simulations and r is the number of 
simulations that produce a classification accuracy greater than or equal to the actual 
classification accuracy [132].  

Spatial analyses 

Searchlight analyses were performed to establish which area on the cortex was most 
informative for attempted finger movement and how many electrodes (i.e. which grid 
configurations) would be needed to reliably classify the individual fingers. 

The most informative cortical regions to decode attempted finger movements were 
identified using a random search procedure. During the random search procedure, a subset 
of 1–36 electrodes was selected at random to classify from. This procedure was repeated 
10.000 times and, for each electrode, the average accuracy over all iterations was calculated 
and z-scored. 

Searchlight analyses were performed to identify which anatomical scale of coverage 
would provide the most information for classification. During the searchlight analyses, a 
searchlight (i.e. a block of electrodes) was used for classification. The searchlight, with a fixed 
block size (e.g. 2 × 2 electrodes) was placed at every possible position within the grid. 
Afterwards, for each electrode, the average over all the iterations in which that particular 
electrode was involved was calculated. Searchlight analyses were performed with all possible 
searchlight sizes and shapes, representing grids of all different sizes (1 × 6/6 × 1–6 × 6 
electrodes).  

2.3 Results 

A typical electrophysiological motor response occurred upon attempted movement 

In order to investigate to what extent the sensorimotor cortex showed typical physiology after 
deafferentation, we measured ECoG responses in a patient with an amputated arm. The 
patient reported vivid movements of the amputated hand and could describe in clear fashion 
how well the different fingers moved during the task. Figure 1A and B show the 
electrophysiological differences between attempted movement of the missing hand and rest. 
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Figure 1. The electrophysiological response during attempted movement versus rest. (A). The changes in HFB 
(top, 65–175 Hz) and LFB (bottom, 15–28 Hz) for each grid electrode. Electrodes with a red or blue color had 
a significant change in band-power, whereas electrodes with an insignificant change in band-power are shown 
in grey; the two excluded electrodes are shown in white. (B) The power spectra of movement (solid line) and 
rest (dashed line) for a single electrode. (C) The HFB power changes over time, each graph represents one 
electrode. The black line represents all fingers, whereas the colored lines represent individual fingers. The two 
vertical dotted lines indicated the cue on- and offset. (D) The HFB power changes over time were averaged 
across those electrodes that showed a significant increase for a condition (blue: little, red: index, yellow: 
thumb, black: all fingers). The black trace has a lower amplitude because a different set of significant 
electrodes contributed to each trace, with more significant, but lower amplitude electrodes contributing to the 
black trace. 

During attempted movement, a spatially distributed decrease of LFB power occurred in 91% 
of electrodes (t-test, pcorr. < 0.05). Simultaneously, significant focal increases of HFB power 
were found in 56% of electrodes (t-test, pcorr. < 0.05), most notably around the primary 
sensorimotor hand-areas. Strong decreases in power were observed in a narrow range of the 
lower frequencies (β band, 15–28 Hz), for completeness, supplementary figure 1 also 

illustrates the responses in the alpha range (8–13 Hz). High frequency power increases were 
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distributed over a broad range of higher frequencies (>65 Hz; figure 1B). During attempted 
movement there was no behavioral measurement available to determine when – after cue 
onset – the patient actually starts attempting the movement, nor where in time to expect the 
physiological response. Figure 1C and D present the changes in HFB power over time for 
each of the individual electrodes and the power averaged over all significant electrodes for 
each condition. A clear peak in HFB power is visible around 1 s second after the cue onset 
for all fingers. 

Differential electrophysiological responses occur for the three individual fingers 

Although each of the individual fingers provided a spatially different electrophysiological 
response, as shown in figure 2, it is difficult to distinguish a clear topographical order. 
 

 

 

Figure 2. The HFB power changes upon attempted movement of each individual finger. Electrodes with a 
significant change in HFB band-power are shown in red, whereas electrodes with an insignificant HFB change 
are shown in grey, the two electrodes that were excluded are shown in white. The yellow line represents the 
central sulcus. 

To investigate whether the representations of the individual fingers were preserved 
and sufficiently distinguishable we wanted to perform single-trial classification of the 
individual fingers. However, since there was no behavioral movement information available, 
we first needed to establish where in time the most information on attempted finger movement 
was present. By restricting the classification to the information within specific time-windows 
we could explore where in time the most information about attempted finger movement 
resided. Figure 3 shows the classification accuracies based on the HFB power within a 
specific window of time, ranging from 250 ms to 5000 ms, placing the window at different 
moments between the cue onset (t = 0 ms) and offset (t = 5000 ms). 
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Figure 3. The classification accuracies at different window sizes (y-axes) and offsets from cue onset (x-axes), 
based on half of the data (~45 trials). (A) The x-axis indicates the center of each window. (B) The same plot 
shown, but with the x-axis indicating the right of each window, such that each time point includes the 
information present before that time. (C) Shows the classification accuracies smoothed with a Gaussian filter 
(offset σ: 0.5, size σ: 2.5). The white-shaded regions in each graph indicate the classification accuracies in 

which the window included information unrelated to the trial (i.e. rest before or after the trial). 

Smaller time windows (<750 ms) seem to provide less good decoding accuracies (0-50%) in 
comparison to medium (750–2500 ms) or larger time-windows. Medium-sized windows can 
perform reasonably well (60-80%) depending on their offset in time. Window sizes of about 
2500 ms to 5000 ms performed well overall (>~70%). In terms of window offset, the highest 
classifying windows take information from the beginning of the trial, regardless of window 
size. After Gaussian smoothing (figure 3C) of the classification results, the optimal window 
(i.e. the highest classification score) was found at a width of 3000 ms at 1950 ms (window 
center) after cue onset, which converts to an epoch window from 450 ms to 3450 ms after 
cue onset. The remainder of the results are based on this epoch and are performed on the 
half of the data that was not used for parameter optimization. 

The second half of the data showed that the classification accuracy of attempted 
finger movements based on the spatial features of the HFB power was significant at 93% 
(above 45% chance level calculated with Monte-Carlo simulation; one-sided, p < .05). The 
sensitivity values for each of the individual fingers (Little: 87%, Index: 93% and Thumb: 100%), 
shown in figure 4, were also significantly above chance (one sided, each p < .05). 
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Figure 4. Confusion matrix with the classification 
scores of the individual fingers. Each column 
represents the finger of which movement was 
attempted. The rows represent how each of those 
finger movements was classified. 
 

 
Topographical organization of attempted hand movement information 

For all of the finger movements we investigated where on the cortex the related activity was 
located. Figures 1 and 2 already showed that most of the HFB power changes related to 
attempted movement occur around the hand and arm region of the pre and post central 
gyrus. Significant HFB changes extended beyond pre and post central gyrus to more anterior 
premotor regions as well. The random search classification results in figure 5C confirm that 
most information indeed resides in S1 and M1, specifically in areas of the pre and post central 
gyrus that are well known to represent hand and finger movements [49]. 

To test the spatial extent of finger movement information, searchlight analyses with 
different types of grid configurations were performed (figure 5A and B). Grid configurations 
with one or two electrodes tended to perform more poorly (~60%) compared to grids that 
include at least 3 electrodes (>60%). For electrodes strips (i.e. grids that have multiple 
electrodes only in one dimension), the orientation of the grid becomes important. Grids with 
3–6 electrodes that are placed along the superior-inferior axis perform much better at >70% 
than grids are oriented on the anterior-posterior axis (at ~60%). This coincides with the 
topographical organization of the different fingers on the cortex, which is more superior-
inferior oriented than anterior-posterior [9,13,133–135]. In accordance with the most informative 
area in figure 5C, grids perform best when 2–3 electrodes wide and at least 2–3 electrodes 
high, in order to cover enough area of the brain to include the most informative electrodes. 
Given the inter-electrode distance of 10 mm, the minimum required grid size to obtain a good 
(>=80%) classification would be around 13 mm × 13 mm (2 × 2 electrodes). 
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Figure 5. The spatial distribution of information. (A) Searchlight classification maps of searchlight with 2 × 2 
(top) and 3 × 3 electrodes (bottom). (B) The classification results of the different searchlights, ranging from 1 
× 6 to 6 × 6 grids in two directions (superior-inferior, anterior-posterior). Each violin plot represents the 
searchlight results with a specific grid configuration. The violin represents the distribution of the classification 
accuracies at the different searchlight positions within the grid, with a black horizontal bar to indicate the 
searchlight position that classified the highest. The lower dotted blue line shows the chance level at 33%, while 
the upper blue line indicates the threshold of 45% above which the decoding accuracy was significant. Note 
that, for the larger searchlight grids, virtual placements were limited or not possible due to overlap with the 
bad electrodes. (C) Most informative electrodes, identified by a random search classification on 10.000 
subsets of electrodes. 

Ipsilateral finger representations 

In addition to attempted movement, the patient also performed runs of executed hand 
movements with the healthy, ipsilateral, hand. Frame perfect video annotations were used to 
quantify the movement of the healthy hand. An average delay of 0.44 s (std: 0.09) occurred 
between the cue onset and actual start of the movement. The patient moved his hand for 
about 3.69 s (std: 0.53) on average over all trials, with about 3–5 flexions of the finger per 
trial. 

Only a few channels on the hand-area showed a strong ipsilateral increase in HFB 
power during executed movement, whereas some other channels showed a smaller, yet 
significant, ipsilateral decrease in HFB power (figure 6). An ipsilateral distributed decrease in 
LFB was found, but was less spread out over the cortex compared to attempted movement. 
The HFB power for executed movement showed a transient response with a temporal peak 
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between 0.5 s and 1 s, in line with the behavioral start of the hand movement and slightly 
earlier than the HFB peak in attempted movement at 1 s. 

 

Figure 6. The, ipsilateral, electrophysiological response of executed movement versus rest. (A) The changes 
in HFB (top, 65–175 Hz) and LFB power (bottom, 15–28 Hz) for each grid electrode. Electrodes with a red or 
blue color showed a significant change in band-power, whereas electrodes with an insignificant change in 
band-power are shown in grey; the two excluded electrodes are shown in white. (B) HFB power changes over 
time averaged across those electrodes that showed a significant positive increase. The black line represents 
all fingers, whereas the colored lines represent individual fingers. The two vertical dotted lines indicated the 
cue on- and offset. (C) The HFB power changes over time, each graph represents one electrode. 

Classification was performed on the ipsilateral response to the movement of the 
healthy hand. Based on the HFB power of all electrodes, finger movements could be 
classified with an accuracy of 56%.  

2.4 Discussion 

In order to understand whether somatomotor physiology is preserved after deafferentation, 
we investigated the contralateral electrophysiological responses of attempted finger 
movements in a single patient with an upper-arm amputation. With attempted movement, a 
spatially-focal increase was found in broadband high-frequency ranges (65–175 Hz) over the 
hand-area of the primary sensorimotor cortex. A spatially distributed decrease was found in 
the lower frequency bands (15–28 Hz). 

The electrophysiological response in our patient with an amputated arm is similar to 
what is seen in many previous studies that have investigated ECoG spectral power changes 
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during finger movements. These studies show typical physiological responses, with a 
localized high frequency increase and a distributed low frequency decrease [3–5]. Finger 
somatotopy is represented in both the M1 and S1 and can be decoded from high frequency 
activity [9,10,13,14]. The similarity between our results and those in healthy people suggests that 
the motor physiology of the hand is retained. Still, it is important to understand whether this 
typical physiology is retained in different patient populations. 

Studies that investigated the motor electrophysiology in patients with locked-in-
syndrome (i.e. ALS, PLS or brainstem-stroke) using EEG, MEG or permanent ECoG implants 
found similar results. In these patients, a robust HFB response was retained [136]. Whether 
and/or how the LFB response was affected varied between studies. Some studies observed 
robust low frequency power decreases in patients with ALS and/or PLS [137–139]. Other studies 
reported reduced power decreases in ALS [140], or more variability between patients with ALS, 
tetraplegia and brainstem stroke, with only some patients showing robust low frequency 
power decreases [136,141]. These studies suggest that whether low frequency power decreases 
are retained depends on the disease (progression) and the influence of closed-loop feedback 
training. Here we have observed that there are strong and significant low frequency power 
decreases during attempted movement in a patient with an amputated arm. 

The HFB response of attempted movement was both transient and sustained, similar 
to what was found in research on continuous/repeated executed finger movements [25,142]. 
For attempted movement, the HFB power peaked at ~1 s after cue onset and returned 
gradually back to baseline during the remainder of the trial. Part of the latency between the 
cue onset and the peak of the cortical response can be explained by the lag between the 
interpretation of the cue and movement initiation, which in the executed movements of the 
patient already accounted for ~0.5 s. Another factor that could have contributed to this ~1 s 
latency may be related to the fact that motor imagery can be demanding in terms of mental 
fatigue and effort [143,144]. In terms of decoding, both the transient and the sustained responses 
contained information about finger movements. The classifications of attempted finger 
movement over time confirmed that most information (i.e. the highest classification 
accuracies) was found around the peak of the response at 1 s after cue presentation. The 
classification accuracies were more variable when including only the sustained response. 
However, larger time-windows (>2500 ms) that included both the transient and sustained 
responses yielded higher classification accuracies than smaller windows (<2500 ms), 
implying that the inclusion of (part of) the sustained response can contribute to the 
decodability. 

Each individual finger resulted in a strong HFB response in the hand-region of the 
sensorimotor cortex. Although each of the fingers elicited a different HFB response pattern, 
no clear topographical representation of the fingers was found. Regardless, using support 
vector machine learning, we were able to decode the attempted movement of three individual 
fingers significantly at a classification accuracy of 93% (well above the 33% chance level). 
Which is similar to the decoding accuracies of executed movement of the fingers [10,11]. 
Attempted movements of the thumb could be decoded at 100% accuracy, however the index 
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and little finger were less discriminable with sensitivity values of respectively 93% and 87%. 
Such decoding accuracies confirm that individual finger representations in the cortex are 
retained and can be distinguished in a patient with an amputated arm. These results align 
with earlier fMRI research on patients with long term upper arm amputations [112,113,145], while 
other fMRI studies have shown displacement of the cortical activation into the deafferented 
motor and somatosensory areas during lip [106], chin [104] and face/shoulder movement [105]. It 
is possible that the cortical representations of other body parts invade the cortical regions of 
an amputated limb, which would warrant further investigation. However, studies in the visual 
cortex have shown only a limited ability for the primary cortex to reorganize [146]. Our research 
similarly demonstrates that, while it is possible that representations co-exist, the 
electrophysiological signals related to finger representation of the missing hand are at least 
largely retained and not replaced by other functions.  

In contrast to tetraplegic or locked-in-patients, there are several important aspects to 
consider in patients with an amputated limb. For one, attempted movements by patients with 
an amputated arm could be considered as phantom movements, where potential residual 
output to muscles and input from nerve endings in the stump may play a role. In addition, this 
patient experienced phantom pain, and there may be a link between this pain and the 
neurophysiological responses we observed. Phantom pains are believed to arise from 
maladaptive cortical reorganization invading the cortical region of the missing limb [147,148], 
which is supported by several studies that show a (positive) relation between the 
displacement of cortical activity and phantom pains [105,106,149–152]. As such, various mirror or 
hand imagery therapies aimed towards the reengagement of the invaded cortical areas have 
been developed and shown to reduce phantom pains [153–157]. However, recent studies have 
shown that people with chronic pain can also exhibit greater activity during phantom 
movement [158,159]. Also, a study with a large sample of phantom limb patients did not report a 
relationship between phantom pain and cortical reorganization [160]. It appears that the 
relation between the chronic phantom pain and retained physiology is more complex and the 
exact workings are still debated [161,162]. Based on our experiment, it is not possible to draw 
conclusions on the effect of phantom pains on the representations of the missing hand. 
However, taking into account that, first, there are a number of fMRI studies that include 
patients with upper arm amputations that still have representations of their missing hand 
upon attempted/phantom movement while having no phantom limb pains [152] or low to 
medium phantom limb pains [145,159]. Second, studies into tetraplegia and stroke patients have 
shown that even without these “phantom” factors and without any peripheral information, 
finger and hand representations are preserved in primary sensory and motor areas [82,114,115]. 
Therefore, it seems likely that the increased high frequency activity, decreased low frequency 
activity and decodable finger movements are not merely driven by the stump or phantom limb 
pains. In addition, previous MEG research that uses a (virtual) prosthesis [117,163], suggests 
that the intact hand representations in the phantom cortex may be actively used in a BCI and 
could potentially reduce phantom limb pain.  
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In BCI applications, devices are often controlled with signals from the sensorimotor 
cortex using attempted movements [1,29–31]. Our data showed that we could decode finger 
movements after deafferentation, suggesting that these motor programs are retained by 
some degree and these signals can also be used to control a BCI. Understanding which 
signal properties allow for reliable decoding and BCI control is essential for these 
applications. Temporally, different parts of the electrophysiological signals can be included, 
but a tradeoff can occur between the speed of decoding and classification accuracy. A 
smaller window could allow for faster and more subsequent classifications, but could go at 
the expense of classification accuracy. Our data suggest that shorter (e.g. 1000 ms) time 
windows may already provide a good accuracy (~80%) for decoding 3 fingers, while larger 
windows (e.g. 3000 ms) will further improve accuracy (>90%). Patients may be able to use 
such short time windows, as one study in a patient with ALS already showed that movement 
versus rest can be decoded using a 1 sec window [1]. Understanding how well movement 
activity is retained after deafferentation may have implications for BCIs in patients with 
paralysis, as well as an amputated limb, as BCIs may reduce phantom limb pain [117]. 

Attempted movement after loss of function is different from imagined movements in 
healthy people, a distinction that is of particular importance for implanted BCIs. It has been 
debated whether motor imagery representation overlaps with overt movement in brain 
surface recordings [164,165], and whether motor imagery is a good approximation of attempted 
movement after limb loss or paralysis. One would intuitively expect that, in the case of a lost 
limb, the native map of representation would either be retained, or generally degrade. This 
patient’s map shows that somatotopic distinction is retained several years after limb loss. 
Some types of motor imagery in healthy individuals may thus not be a good general 
approximation or motor representations after limb loss or paralysis for implanted BCIs. 

An additional point of importance for BCIs is the electrode grid design and extent of 
cortical coverage, which can have a strong influence on BCI performance [1,94]. Our results 
show that most information about attempted movement is located on the hand-region of the 
primary motor and sensory cortex. In terms of cortical coverage, considering an inter-
electrode distance of 10 mm, a good (>80%) classification accuracy can already be achieved 
with as little as 2x2 electrodes (13 mm × 13 mm) placed over the primary sensorimotor cortex. 
More electrodes could provide up to ~90% classification accuracy. 

Finger movement activity on the ipsilateral cortex of the intact hand could be decoded, 
but less accurately compared to decoding the contralateral attempted finger movements, 
suggesting that the contralateral, phantom limb, still has a stronger representation compared 
to the ipsilateral hand. Only a few channels showed power increases during ipsilateral 
movements, while some electrodes also showed significant high frequency power decreases. 
Whether previous ECoG studies show similar ipsilateral high frequency power decreases 
during executed hand movements is less clear [166]. However, ipsilateral decreases in 
sensorimotor activity during hand movement in healthy subjects have been observed in the 
fMRI BOLD signal [121,123]. TMS studies similarly show evidence for contralateral inhibition 
[167,168]. The ipsilateral decreases in high frequency power we observed with ECoG may thus 
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potentially be related to inhibition resulting from activity of the contralateral hemisphere, or 
to some reorganization of function after the injury (as has been seen with patients after 
perinatal hemispheric stroke [164]).  

2.5 Conclusion 

This case study shows that the electrophysiology of attempted hand movement is preserved 
in the sensorimotor cortex after deafferentation of an amputated hand, with a typical focal 
increase of HFB power over the hand region and a more distributed decrease in LFB. 
Attempted finger movements provided a transient HFB peak around 1 s after cue onset, 
followed by a sustained HFB response. Classification analyses confirm that most decodable 
information on the finger movement can be found around this peak. Furthermore, HFB power 
can be used to decode finger movements with high (>90%) accuracy. Optimal decoding 
could be achieved based on the first 1–3 s of the signal and would only require 13–13 mm 
of cortical coverage. Our results demonstrate that the sensorimotor electrophysiology 
remains largely intact after long term (3 years and 11 months) amputation and therefore 
remains a viable region for BCIs that use the decoding of hand-gestures for control. 
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2.7 Supplementary material 

Supplementary Figure 1. The electrophysiological responses in the spatial and time domain for both the 15-
28Hz and 8-13Hz low-frequency bands during attempted movement (contralateral) and executed movement 
(ipsilateral). Electrodes with a red or blue color showed a significant change in band-power power, whereas 
electrodes with an insignificant change are shown in grey; the two excluded electrodes are shown in white. 
The time traces show the LFB power changes averaged across those electrodes that showed a significant 
decrease. The black line represents all fingers, whereas the colored lines represent individual fingers. The two 
vertical dotted lines indicated the cue on- and offset. 
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Abstract  

In electrocorticography (ECoG), the physical characteristics of the electrode grid determine which 
aspect of the neurophysiology is measured. For particular cases, the ECoG grid may be tailored 
to capture specific features, such as in the development and use of brain–computer interfaces 
(BCI). Neural representations of hand movement are increasingly used to control ECoG based 
BCIs. However, it remains unclear which grid configurations are the most optimal to capture the 
dynamics of hand gesture information. Here, we investigate how the design and surgical 
placement of grids would affect the usability of ECoG measurements. 

High resolution 7T functional MRI was used as a proxy for neural activity in ten healthy 
participants to simulate various grid configurations, and evaluated the performance of each 
configuration for decoding hand gestures. The grid configurations varied in number of electrodes, 
electrode distance and electrode size.  

Optimal decoding of hand gestures occurred in grid configurations with a higher number 
of densely-packed, large-size, electrodes up to a grid of ~5 × 5 electrodes. When restricting the 
grid placement to a highly informative region of primary sensorimotor cortex, optimal parameters 
converged to about 3 × 3 electrodes, an inter-electrode distance of 8 mm, and an electrode size 
of 3 mm radius (performing at ~70% three-class classification accuracy).  

Our approach might be used to identify the most informative region, find the optimal grid 
configuration and assist in positioning of the grid to achieve high BCI performance for the 
decoding of hand-gestures prior to surgical implantation. 
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3.1 Introduction 

The human brain can be explored at many different spatial scales, from (sub)millimeter to 
centimeter resolution. Each scale of measurement provides a unique window into the 
underlying neuronal activity [169]. As a result, research is often bound by the resolution at 
which information is captured. An empirical understanding of which resolution provides the 
most information for the interpretation of a particular brain function is essential for the 
development of brain–computer interfaces (BCI). Electrocorticography (ECoG)-based BCIs 
utilize properties of intracranial electrode grids to record the electrical field potential from 
neuronal populations [1,4,6,31,66,82,170]. The ECoG signals are translated or interpreted to 
understand brain activity or to control external devices. ECoG grids can be configured in a 
number of ways: spanning small or large areas of cortex with different electrode sizes and 
densities. Currently, several different grid configurations are used in research, varying from 
traditional clinical electrode grids and strips with 1 cm inter-electrode distance to high-density 
research grids [171]. The configuration of an ECoG electrode grid determines the resolution 
and scale with which the underlying neuronal activity is measured, and therefore which 
information is conveyed to a BCI. Therefore, it is essential to know which configuration 
provides the most useful information for control. In practice, comparing different electrode 
configurations on the same brain region in human subjects is not possible given the invasive 
nature of ECoG recordings and the fact that this is done in a clinical setting. Given the 
limitations in experimental testing and the need for regulatory approval of implanted BCI 
systems in humans [1,31,172], it is essential to understand which scale provides most information 
about brain functions used in BCIs.  

Hand-representations are a promising target for use in BCIs [50,92]. During hand 
movement, a robust neurophysiological response occurs in the contralateral sensorimotor 
cortex [4,5] with a focal increase of high-frequency band (HFB) power and a more distributed 
decrease in low-frequency band/ power [22]. Subsequent ECoG research showed that the 
representations of different fingers can be distinguished in the primary sensorimotor cortex 
using a HFB component [9]. Given the increased interest in the use of hand-representations 
in BCI solutions [1,11,29,50,93,173] it is essential to understand which grid configuration would 
optimally capture hand movement information. Recent research has shown that the ECoG 
HFB signal correlates well with the BOLD response at the standard clinical scale [22], that the 
millimeter scale finger representations found in ECoG HFB activity are well matched with 7T 
fMRI [13] and that even non-linearities in 7T fMRI match the ECoG HFB responses [25]. 
Therefore, even though fMRI is a less direct measure of neuronal activity than electrode 
recordings, the two modalities do correlate well across multiple spatial scales, suggesting 
that we can leverage 7T fMRI to simulate different grid configurations and estimate the 
electrode scale and density that would provide the most information to decode hand 
movement. 

In this study, we specifically investigate which ECoG scale captures the most 
information about hand-gestures. Using 7T fMRI measurements, we simulated the placement 
of different grid configurations on the exposed brain surface, varying the number of 
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electrodes, inter-electrode (center-to-center) distance and size in a similar manner to 
variations found in commercially-available ECoG implants.  

3.2 Methods 

Participants 

Ten healthy subjects (age 23.9 ± 5.1 years, six female) participated in the experiment. All 
participants had normal or corrected-to-normal vision. The study was approved by the ethics 
committee of the University Medical Center Utrecht (ref 13-585) and participants gave written 
informed consent to participate, in accordance with the Declaration of Helsinki (2013). 
According to the Edinburgh Inventory [174], all were right-handed. 

Task 

Participants were asked to execute three hand gestures taken from the American Sign 
Language alphabet (the letters S, F, and L), shown in figure 1. The gestures were chosen to 
maximize the difference between flexion and extension of the finger combinations. All 
participants were naïve to sign language and were trained prior to the experiment on the 
three letter-gesture combinations. While in the scanner, one of the three letters was presented 
each trial. Each letter was shown for either 3, 5 or 7 s, followed by a fixation cross shown for 
12 s. Participants were instructed to perform the corresponding gesture upon appearance of 
the letter and hold the gesture until the letter disappeared. A total of 45 letters were presented 
at random, ensuring 15 trials per letter. The different durations were equally balanced over 
the letter conditions. 

Figure 1. Hand gestures used in this 
study. The three hand gestures were 
taken from the American Sign Language 
alphabet and involved the S, F and L. 
Note that during the task only a letter was 
presented, while the participant 
performed the corresponding gesture. 
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MRI data acquisition 

MRI data were acquired using a 7T Philips Achieva MRI system with a 32-channel head coil. 
Functional MRI data were recorded using an EPI sequence (TR/TE = 1600/27 ms, FA = 70◦, 

26 slices centered around the motor cortex, acquisition matrix 144 × 144, slice thickness 
1.60 mm with no gap, 1.47 mm in plane resolution); shared datasets can be found on OSF: 
https://osf.io/z6j3x/. A T1- weighted image (TR/TE: 7/3.05 ms; FA: 8; resolution 0.78 × 0.78 
mm in-plane, slice thickness 0.8 mm, no gap) was acquired for anatomical reference. The 
cues were visually projected onto a mirror attached to the head coil. Each participant 
performed a single functional run of the task with 481 volumes (five dummy volumes) which 
took about 13 min. 

Preprocessing 

Preprocessing of the imaging data was performed with the use of SPM12, FSL and custom 
MATLAB (Mathworks Inc.) scripts. The anatomical image was skull-stripped using the white 
and grey matter segmentation output and converted to a 3D brain surface [175] using 
Freesurfer (http://surfer.nmr.mgh.harvard.edu/). Functional images were slice-time 
corrected, realigned to correct for motion and corrected for geometric distortions [176]. The 
corrected functional images were aligned to the anatomical scan by transformation of their 
affine matrices. No reslicing/resampling was done at this stage to prevent a potential loss of 
decodable information. 

Grid simulation 

In order to investigate which different ECoG grid configurations would capture hand-gesture 
information best, we simulated different grid configurations on the exposed (unwarped) brain 
surface convexity to assess how different grid configuration parameters influence decoding 
performance of the three gestures from fMRI data. To achieve the most realistic simulations, 
all analyses were done in the subject’s native space. The process of simulation involved three 
steps: positioning the centers of the virtual grids (figure 2A), placement of different grid 
configurations around this center (figure 2B) and the decoding of gestures based on the 
underlying voxels from the functional volumes to evaluate the information that is captured by 
each grid (figure 2C). 
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Figure 2. The grid simulation procedure (subject 7). (A) The centers of the virtual grids were positioned over 
an empirically-identified cortical hand-gesture area. A searchlight classification evaluated 200 000 potential 
center positions for underlying hand-gesture information. Positions that yielded classification above the 95% 
percentile were kept (~17 000 positions). A subset of 2000 positions were selected at random and served as 
the centers for the simulation of different grid configurations. (B) Different grid configurations were simulated 
at each of the 2000 positions. The center of each simulated grid is shown as a red triangle, the white discs 
indicate the placement of virtual electrodes given different grid configurations. Grid configurations varied in 
number of electrodes (2 × 2 … 8 × 8), inter-electrode distance (4 mm, 6 mm, 8 mm, 10 mm center-to-center) 
and electrode size (radius of 1 mm, 2 mm, 3 mm). A total of 84 grid configurations were simulated per position. 
(C) All of the 2000 center positions, with each 84 grid placements, were evaluated by the classification of the 
hand-gestures. Classification was performed using a support vector machine (SVM), where each electrode 
represents one input feature. The signal for each electrode was the average BOLD amplitude of the gray 
matter voxels in the functional volumes that fell inside of the electrode cylinder. 

The centers of the grids were positioned over an area in the brain that has meaningful 
information related to the hand motor task. In order to find that meaningful area, a convex 
brain surface hull was produced for each participant, covering the dorsal and lateral side of 
the frontal- and parietal lobe. Next, 200 000 potential grid positions were generated on the 
hull at random. Decoding performance for each position was evaluated by performing 
multivariate searchlight classification [177] using the voxels in the functional volumes within a 
7 mm radius as features to classify on. A searchlight approach was preferred over the use of 
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activity amplitude as it provides a more qualitative estimation of the local information [177]. 
After the classification of all potential positions, only the positions with a classification 
accuracy score above the 95th percentile were kept and used as centers for the simulated 
grids. For every participant, this procedure resulted in a cluster of positions over the 
sensorimotor cortex roughly overlapping the hand-knob area, shown in supplement figure 1. 
For five participants, several smaller clusters of positions were identified in addition to the 
large cluster around primary sensorimotor areas. In such cases, only the largest sensorimotor 
cluster was kept. On average, a sensorimotor cluster contained ~17 000 positions. To limit 
the number of calculations, 2000 positions were picked at random for grid 
simulation (figure 2A).  

During grid placement, each of the 2000 positions received a random rotation and 
served as the center for multiple grid projections, as demonstrated for a single position in 
figure 2B. Grid configurations varied in number of electrodes (2 × 2, 3 × 3, 4 × 4, 5 × 5, 6 × 
6, 7 × 7, 8 × 8), inter-electrode distance (4 mm, 6 mm, 8 mm and 10 mm center-to-center) 
and electrode size (radius 1 mm, 2 mm, 3 mm). As a result, a total of 84 (7 × 4 × 3) virtual 
grids were ‘placed’ per position. 

After placement, each grid was used to classify the three executed hand gestures by 
taking the signal from the grey matter fMRI voxels underneath each virtual grid electrode, 
shown in figure 2C. For each electrode, a cylinder with the radius of the electrode was 
projected perpendicular to the convex hull of the cortical surface reaching 5 mm downward 
and 5 mm upward. Only the gray matter voxels (according to the Freesurfer segmentation) 
from the functional volumes within each electrode cylinder were used for classification. 
Because the virtual electrodes were positioned onto a hull of the brain, it is possible that they 
fell slightly inside of the gyri; The inclusion of voxels upward from the electrode made certain 
that no gray matter voxels were excluded, which in reality would be underneath the 
electrodes. We required a minimum of two features (i.e. electrodes) in each grid 
configuration. In addition, to prevent grids with a large surface (i.e. high number of electrodes 
and/or inter-electrode distance) from covering and classifying from regions far outside of the 
primary sensorimotor, only voxels within 15 mm of the sensorimotor cortex (as defined by the 
Desikan-Killiany atlas [178]) were used during classification. The MATLAB scripts that were 
used to implement the grid simulations are publicly available through the open science 
framework (OSF: https://osf.io/z6j3x/). 

Classification procedure 

The classification procedure was implemented using custom MATLAB (Mathworks Inc.) code 
provided alongside this article (OSF: https://osf.io/z6j3x/). Before classification, the raw 
BOLD signal of each voxel was normalized (division by its mean and multiplication by 100) 
to reflect the percentage signal change, and detrended (linear, quadratic and cubic). 
Classification was performed using a SVM and a linear kernel [130]. 

The voxels or combination of voxels that were used as features in the SVM differed 
per step of the simulation procedure. During the step of grid positioning, a searchlight was 
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used, where each grey matter voxel within the searchlight served as a feature in the SVM. 
During the step of decoding grids, the gray matter voxels within each virtual electrode (i.e. 
cylinder) were averaged and each electrode average served as a feature in the SVM. 

The BOLD response that we used in the SVM was determined as follows. For each 
trial, we took the time-period around the expected peak of the hemodynamic response (tstartHRF 

- tendHRF) based on the trial’s duration (3, 5, or 7 s). Within that time-period, we calculated the
average over all features 𝑋(𝑡)and determined the time tmax that yielded the highest BOLD

peak (where 𝑋(𝑡)was maximum). The BOLD signal of each virtual electrode at that scan time

X (tmax) served as a feature in the classification. Multiclass classification (three gestures) was
achieved by applying a one-versus-all classification scheme, where every class is classified
against the data of all other classes together, and the winner (furthest from the hyperplane)
takes all. The decodability of the three gestures was determined using a leave-one out cross
validation and is expressed as a classification accuracy score, which is the percentage of
trials that were predicted correctly.

Two ways to position grids 

In the first analyses, we placed the center of the simulated grid in the area with meaningful 
information about the gestures (figure 2A). However, as the number of simulated electrodes 
increases, grids become larger than the informative region and extend beyond it. To 
investigate whether classification could be optimized by restricting all electrodes in the 
stimulated grids to the informative region, we also ran the simulations while limiting the grids 
to entirely fall within the region of interest indicated by the searchlight. 

Statistics 

To determine whether a classification score was significantly above chance, we used the 
cumulative binomial distribution. Given 45 trials, a chance level of 33% and a cumulative 
probability of 95% (one-sided, α = .05), classification scores above 44% were considered 

significant. 
The effects of the variations in grid configuration were evaluated by a full factorial 

analysis of variance (ANOVA). For each of the ten participants and each grid configuration 
(7 × 4 × 3 = 84), the average over the 2000 classification accuracy scores was used as the 
dependent variable. The ANOVA evaluated the effects of three properties (as independent 
variables): the number of electrodes (seven categories), the interelectrode distance (four 
categories) and electrode size (three categories). 
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3.3 Results 

The effect of grid configuration on hand gesture classification accuracy 

A total of 84 grid configurations were simulated with variations in the number of electrodes 
(seven variations: 2 × 2, 3 × 3, 4 × 4, 5 × 5, 6 × 6, 7 × 7, 8 × 8), distance between electrodes 
(four variations: 4 mm, 6 mm, 8 mm, 10 mm) and electrode size (three variations in  
radius: 1 mm, 2 mm, 3 mm). Different configurations produced different classification 
accuracies, shown for a typical subject (subject 7) in figure 3 and for all subjects in 
supplementary figure 2. 

In each individual subject, the changes in number of electrodes, distance and size 
showed several effects: first, more electrodes resulted in a better classification accuracy. The 
largest increase in classification accuracy was observed when the number of electrodes 
increased from smaller (e.g. 2 × 2) to medium sized grids (e.g. 5×5), beyond which accuracy 
barely improved. Second, an increase of distance between the electrodes resulted in a 
decrease in classification accuracy in grids with a larger number of electrodes  
(more than ~5 × 5). Third, increasing the electrode size resulted in a better classification 
accuracy in all situations. These effects were highly robust across individual subjects 
(supplementary figure 2). 

 

 
 
Figure 3. Classification accuracy as a function of grid configuration in a typical subject (subject 7). Each graph 
represents one variation in the number of electrodes. Each column in each graph represents a different inter-
electrode distance (center-to-center) and electrode-size (radius) combination. Every violin reflects the 
distribution across the 2000 scores, with a horizontal black line in every column to indicate the median. The 
lower blue dotted line indicates the chance level at 33%, while the upper blue line indicates the threshold (at 
44%) above which the accuracy was significantly above chance. 
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The effects seen in the individual subject can also be observed in the average group 
classification accuracies for each of the 84 simulations (figure 4) and the averages of the 
classification accuracies per significant factor (number, space, size; figure 5). Firstly, more 
electrodes result in a significantly higher classification accuracy (figure 5A, three-way ANOVA 
across all ten participants: F(6, 711) = 47.42, p < .01). Secondly, an increase in 
distance between the electrodes significantly lowers the classification accuracy (figure 5B, 
F(3, 711) = 23.81, p < .01). Thirdly, a larger electrode radius causes a significant increase in 
classification accuracy (figure 5C, F(2, 711) = 162.02, p < .01). The second effect, where an 
increase in inter-electrode distance caused a decrease in classification accuracy, was 
stronger for larger numbers of electrodes, shown in a significant interaction between the 
number of electrodes and electrode distance (figure 5D, F(17, 711) = 2.52, p < .01). The 
model accounted for a total of 47% of the variance in classification accuracy. 

Figure 4. Classification accuracies for each grid configuration across the group. Each graph represents one 
variation in the number of electrodes. Each column in each graph represents a different inter-electrode 
distance (center-to-center) and electrode-size (radius) combination. The red dots indicate the average 
classification accuracy for every participant, with a horizontal black line in every column to indicate the average 
over all participants. The lower blue dotted line indicates the chance level at 33%, while the upper blue line 
indicates the threshold (at 44%) above which the accuracy was significantly above chance. 
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Figure 5. The average classification accuracy per grid 
configuration factor across the group. Group results showing 
the means for the three grid configuration parameters and the 
significant interaction effect. The error bars in the top three plots 
represent a 95% confidence interval. The blue dotted line at 44% 
indicates the threshold above which the accuracy was 
significantly above 33% chance level. 

The effect of grid configuration on hand gesture classification accuracy with placement of 
the entire grid within the most informative area 

To investigate whether classification could be optimized by restricting all electrodes in the 
stimulated grids to the informative region, we ran the simulations while limiting the grids to 
fall only within the region of interest indicated by the searchlight (figure 6). Some of the larger 
grids, with more electrodes and/or increased distances between electrodes, could not be 
simulated as they exceeded the region’s boundaries (supplement figure 1). Increasing the 
number of electrodes up to 5 × 5 electrodes on the informative region significantly increased 
the classification accuracy (figure 6B, F(3, 222) = 67.43, p < .01). The effect of 
inter-electrode distance no longer reached significance, but became a trend (figure 6C, 
F(3, 222) = 2.50, p = .06) where more distance increased the classification accuracy (figure 
6). Interestingly, within this area, a larger electrode radius still significantly increased the 
classification accuracy (figure 6D, F(2, 222)=39.39, p < .01).  

Note that while the number of electrodes improved classification accuracy (figure 6B), 
grids with less electrodes could also reach classification performance within the same range. 
Electrode grids of 5 × 5 electrodes, 4 mm inter-distance and 3 mm radius provided a 
classification accuracy of 73% (range 59–88) (figure 6A, bottom right); grids of 3 × 3 
electrodes, 8 mm inter-distance, 3 mm radius provided a classification accuracy of 68% 
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(range 58– 80) (figure 6A, top right). Much smaller grids of 2 × 2 electrodes, however, showed 
a much lower range of classification accuracies and reached a mean accuracy of 52% (range 
40–68) at 10 mm inter-distance, 3 mm radius. 
 

 
 
Figure 6. Classification accuracy as a function of grid configuration when limiting the grids to an informative 
region. (A) The classification accuracies on all grid configuration parameters. Each graph represents one 
variation in the number of electrodes, the columns represent variations in inter-electrode distance and 
electrode-size. Each red dot indicates a single participant, the horizontal black line indicates the average over 
participants. The two dotted lines indicate 33% chance level and the threshold above which the accuracy was 
significantly above chance at 44%. (B)–(D) The group means for the variation in number of electrodes (B), 
inter-electrode distance (C) and electrode size (D) are shown when the grid is placed in the informative area 
(red lines). For comparison, the data from figure 5 are also displayed in black. Note that the direction of the 
trend in electrode space (C) might be misleading, the higher inter-electrode distances are biased to grids with 
a low number of electrodes, because only these grids would fit in the informative region, and therefore might 
result in a lower average score. The error bars represent a 95% confidence interval. The blue dotted line 
indicates the threshold (at 44%) above which the accuracy was significantly above 33% chance level. 
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Optimal grid placements can be identified to improve hand gesture classification 
performance 

The simulation results may be used to predict grid configurations with high classification 
accuracy in individual subjects for BCI purposes. In addition, some grids can exceed the 
average classification accuracy of that configuration when positioned in the correct way. As 
a proof of concept, we performed an agglomerative cluster analysis on the 2000 grid 
placements within three specific grid configurations (3 × 3, 8 mm inter-distance, 3 mm radius; 
4 × 4, 8 mm inter-distance, 2 mm radius; 5×5, 4 mm inter-distance, 1 mm radius). Within each 
configuration, the 2000 grids were spatially clustered based on the 3D positions of two corner 
electrodes, while limiting the Euclidean clustering distance to 2 mm. This results in clusters 
of grids that have similar position and angle. Figure 7 shows, for three of the grid 
configurations, the cluster that provided the highest average classification accuracy (over the 
grids in that cluster) for a single subject (subject 7). Grid placement suggestions for all 
participants are shown in supplementary figure 3. We required clusters to have at least three 
grids. As demonstrated in supplementary figure 4, different Euclidean clustering distances 
will provide different clusters, which consist of different numbers of grids. The clustering 
method and parameters we have used here for this proof of concept is just one of the ways 
to find the optimal position based on the simulated data. In terms of grid placement, the 
simulated grids and clustering can be used to find a balance between the spatial margin of 
error in placement (i.e. the number of grids in the simulation and their clustering distance) 
and the expected classification performance. 

Figure 7. Proof of concept for the optimal placement of three different grid configurations in subject 7. The 
leftmost image shows a heat-map of the brain that indicates the presence of hand-gesture information based 
on searchlight classification. The three images on the right show an optimal placement within three different 
grid configurations. Each of the suggestions is based on an agglomerative cluster analysis on the 3D positions 
of two corner electrodes of the 2000 grid placements within that grid configuration. Grids, limited to a 
Euclidean distance of 2 mm, were clustered together. The grid-cluster with the highest average classification 
accuracy (over all grids) is shown for each of the three grid configurations, the individual grids in that cluster 
are shown in grey and their average position in blue. The average classification accuracies over the grids in 
the cluster is shown underneath the image. 
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3.4 Discussion 

This study investigated how different simulated ECoG grid configurations capture information 
on executed hand-gestures from the brain surface. To this end, 7T fMRI data were used as a 
proxy for neural activity, allowing for virtual placement of a range of grid configurations and 
parameterized assessment of electrode number, size and distance. Our simulations show 
that increasing the number of electrodes improves hand-gesture decoding accuracy, with the 
largest improvement seen up to 5 × 5 electrodes. Reducing inter-electrode distance and 
increasing electrode size (to 3 mm in radius) improved hand gesture decoding accuracy. 

Decoding accuracy was further optimized when grids were restricted to an informative 
region for hand-gestures as identified in individual subjects by searchlight classification. We 
found good classification scores (68%, with chance at 33%) for grids with 3 × 3 electrodes, 8 
mm inter-electrode distance and a 3 mm electrode radius. Adding electrodes up to 5 × 5 at 
4 mm inter-distance and 3 mm size provided small increases in classification accuracy (73%). 
These grid resolutions are commensurate with the reported resolution of finger 
representations in human sensorimotor areas. Within the sensorimotor hand area, detailed 
finger representations have been demonstrated with electrical stimulation [49], fMRI [133,134,179–

181] and ECoG [9,13]. Within these sensorimotor hand areas, clinical ECoG grids with a standard 
resolution (mostly 4 × 8 – 8 × 8 electrodes, spaced 10 mm center-to-center with ~2.3 mm 
exposed surface diameter) have been used to differentiate between finger representations 
[9], decode separate finger movements [8,10], decode five distinct hand postures [11], two 
different grasp types [173], decode reaching movements [182] and simple hand/elbow 
movements [82] using the changes in the high frequency band. One study [13] found that the 
activation foci of the different fingers (thumb to little finger) span ~10 mm in both fMRI and 
ECoG, with an estimated distance of 3–4 mm between thumb, index and little finger. Another 
study [133] found a similar span in the center-of-mass distance estimates in fMRI, ranging from 
6.6 mm to 16.8 mm. With regard to the distance between finger representations, the distance 
between centers of mass does not necessarily mean those yield optimal decoding 
performance, since overlapping finger representations between centers [134] may not affect 
center of mass location but it does affect discriminability of separate finger movements. As a 
result, one may expect optimal distance to be larger for decoding than for mapping. A study 
that decoded facial expressions from the sensorimotor cortex showed that only part of a high-
density grid surface (15 × 15 mm to 20 × 20 mm based on 6 × 6 electrodes having 3 mm or 
4 mm interelectrode distance) was enough to provide good decoding accuracy [183]. This 
supports the idea that a limited number of electrodes with optimal inter-electrode distance on 
the most essential area is enough to provide high decoding performance. 

Grids with more electrodes at denser interelectrode distances (e.g. 5 × 5 electrodes, 
4 mm distance, 3 mm size) provided only small increases in classification accuracies in 
comparison to smaller grids with a higher inter-electrode distance (e.g. 3 × 3 electrodes with 
8 mm distance, 3 mm size). Similar to ECoG studies with standard grids, studies using high-
density grids on sensorimotor cortex (4×8 and 8 × 8 electrodes, distanced 3 mm apart with 
1.3 mm exposed surface diameter) were able to distinguish finger representations [13] and 
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decode four hand-gestures [14,93] using HFB changes. However, it remains difficult to directly 
compare the performance between low and high-density grids in individual subjects. We can 
only speculate on how an even denser grid would perform. A spatio-spectral analysis using 
64 electrode-strips with an inter-electrode distance of 0.5 mm indicated an optimal distance 
of 1.25 mm [184]. A study combining spatio-spectral analyses from rat recordings and a dipole 
model suggested a minimal spacing of 1.7–1.8 mm for subdural and 9–13 mm for epidural 
grids to minimize signal overlap between electrodes [185]. However, current levels of fMRI voxel 
resolution are not likely to be accurate enough to simulate such electrode distances, given a 
certain point-spread due to non-discrete anatomical properties of the microvasculature that 
gives rise to the BOLD effect. Still, the decoding of more gestures, movements, or more 
complex behaviors [51,83,90,186] may benefit from denser grids. The methods we share here can 
be used by others to evaluate the decoding of more complex behaviors for BCI purposes.  

Larger electrodes (up to 3 mm in radius) decoded better. There are two aspects that 
may play a role in this optimal simulated size: the averaging of fMRI signals across voxels, 
and the averaging across neuronal populations. First, fMRI BOLD signals contain noise that 
is reduced by averaging across voxels [187,188]. In our simulation, the electrodes with a larger 
radius included more underlying voxels. For classification, each virtual electrode served as 
an input feature to the classifier based on the average signal of all the voxels underneath the 
electrode. Therefore, larger electrodes average over a higher number of voxels, increasing 
the signal-to-noise ratio of every feature in the classifier. The increase in signal-to-noise ratio 
has likely contributed to classification accuracy. Second, field potential studies have shown 
that sampling neurophysiological signals from a larger patch of cortex can be highly 
informative [89,189,190]. A recent study [190] showed that ECOG recordings can provide more 
relevant information and higher decodability than microelectrode recordings. ECoG 
electrodes could effectively average over a neural population, negating the noise in the signal 
while preserving the common relevant information. Since the BOLD signal in a voxel is a 
representation of a neural population, the increase in classification accuracy that comes with 
larger electrode size (i.e. more voxels) might not be solely due to fMRI specific vascular noise, 
but could also be attributed to a reduction of noise by sampling from a larger neuronal 
population. 

Although the fMRI BOLD signal is a more indirect measure of neuronal activity, it may 
serve as a good approximation of ECoG measurements. Several studies have shown that 
electrophysiology and BOLD signal changes correlate across time [19,20], that HFB power and 
BOLD correlate spatially with matching peak activity [21–23], that the non-linearities observed 
in fMRI can be predicted by ECoG HFB signal [25] and that the level of BOLD increase matches 
the level of ECOG HFB power increase across conditions [26–28]. One study [13] specifically 
combined fMRI measurements (voxel size of ~1.5 mm) and high-density ECoG 
measurements (8 × 4 electrodes, spaced 3 mm with a diameter of 1 mm) and found 
distinguishable finger representations that matched between the two techniques. The 
simulations based on the BOLD responses are likely to be indicative for what would be found 
with ECOG measurements. 
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The optimal grid resolution and placement is important for intracranial BCI 
applications that target patient populations. While our study included healthy participants, 
previous research suggests that hand representations are maintained in patients with an 
amputated arm [145]. Moreover, ECoG based BCI applications can benefit from fMRI localizer 
tasks to provide non-invasive identification of the informative region prior to surgical 
implantation [1]. Several BCI systems in patients with ALS or paraplegia have used fMRI to 
place grids on sensorimotor cortex [1,29–31] and visual cortex [191]. While fMRI is normally used 
only to identify the relevant region, the method described in this article can also advise on 
the optimal placement and configuration of a grid. 

 When an ECoG grid is implanted for BCI purposes, it is important to consider a 
reduced number of electrodes, given practical considerations such as the cost and 
complexity of high channel-count implantable amplifiers and real time signal processing 
[192,193]. In addition, the surgical procedure and implant could potentially carry a risk to the 
patient. Implanting a larger grid requires a larger surgical exposure, which may impose a 
slight risk for complication [194]. As our results suggest, the grid should be focused on the 
region of the brain that contains the most hand-gesture information. Our results provide a 
principled way of computing the tradeoff between grid size, density and decoding 
performance. The pipeline that we used for simulation could be used pre-surgically to locate 
the most informative area, find the grid configuration that would lead to the best performance 
and suggest one or more optimal positions on top of the most informative area for individual 
patients.  

3.5 Conclusion 

Most of the information encoding hand gestures is densely packed within a small area of the 
sensorimotor cortex. Our results show that optimal decoding of hand-gestures is achieved by 
placing a grid within this informative region. Grids of 3 × 3 electrodes with an inter-electrode 
distance of 8 mm and electrode size radius of 3 mm provided good classification accuracy. 
It has been assumed that densely-packed, small diameter, electrodes will provide the best 
resolution of functional representation. Based upon this fMRI-modeling approach, we might 
reassess this assumption. These densely spaced configurations might provide only a 
marginal benefit while being less practical in terms of complexity and cost of high channel-
count implantable amplifiers, real-time processing and clinical invasiveness. As one might 
expect, positioning of the electrodes on the most informative area has a strong influence on 
the classification accuracy. The simulation techniques outlined in this article can be used 
more generally in clinical and research settings to identify optimal grid configurations and 
placements for neural prosthetics. 
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3.7 Supplementary material 

Supplementary Figure 1. fMRI BOLD activity, information-mapping and most informative region during 
performance of hand-gestures per participant. The top row shows significant activation (based on a GLM with 
a single regressor, gesture vs rest, Bonferroni corrected). The middle row shows the averaged classification 
result of 200,000 searchlights that were placed at random dorsolateral over the frontal and parietal lobes. The 
bottom row shows only the positions of the searchlights with a classification accuracy above the 95th 
percentile, limited to the largest cluster. Together, these positions empirically identify the cortical hand-gesture 
area and were used as the centers for the placement of the grids that were simulated. 
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Supplementary Figure 2. Violin plots showing the classification accuracy scores for all grid configurations in 
all subjects. Placement was not limited to the most informative region. Rows represent the 10 subjects, 
columns the number of electrodes. Each column in each graph represents a different inter-electrode distance 
(4mm, 6mm, 8mm, 10mm) and electrode-size (1mm, 2mm, 3mm) combination. The violin reflects the 
distribution of scores, with a horizontal black line in every column to indicate the median. The lower blue dotted 
line indicates the chance level at 33%, while the upper blue line indicates the threshold (at 44%) above which 
an accuracy score is significantly above chance. 
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Supplementary Figure 3. 
Suggestions for the 
placement of three 
different grid confi-
gurations in all subjects. 
Each row represents one 
subject. The first column 
shows the presence of 
hand-gesture information 
over the brain based on 
searchlight classification. 
The other three  
columns suggest an 
optimal placement of 
three different grid 
configurations. Each of 
the suggestions is based 
on an agglomerative 
cluster analysis on the 3D 
positions of two corner 
electrodes of the 2,000 
grid placements within a 
grid configuration. Grids 
were clustered together 
by euclidean distance 
with a cutoff distance of 
2mm. Each image 
 shows the grid-cluster 
that - within one grid 
configuration for a 
specific subject - had  
the highest average 
classification accuracy. 
The individual grids in 
that cluster are shown in 
grey and their average 
position in blue. The 
average classification 
accuracies over the grids 
in the cluster are shown 
in the bottom-left of each 
image, the number of 
grids that make up a 
cluster is noted on the 
bottom-right. 
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Supplementary Figure 4. Different euclidean clustering distances, number of electrodes and inter-electrode 
distances result in different clusters. The rows represent three different grid configurations that vary in number 
of electrodes and inter-electrode distance, for subject 10. The columns represent the three euclidean distance 
clustering parameters (1mm, 2mm and 3mm). For each image, the cluster with the highest number of grids 
was selected; each color represents a single grid in that cluster. The images illustrate how the resulting cluster 
will differ depending on the clustering method and parameters in combination with the grid configuration. 
Choices should be made, taking into account the margin of error in placement and the predicted classification 
performance. 
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Chapter 4 - Towards an intuitive communication-BCI: 

decoding visually imagined characters from the early visual 
cortex using high-field fMRI 
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Abstract 

In electrocorticography (ECoG), Brain-computer interfaces aim to provide people with paralysis 
with the possibility to use their neural signals to control devices. For communication, most BCIs 
are based on the selection of letters from a (digital) letter board to spell words and sentences. 
Visual mental imagery of letters could offer a new, fast and intuitive way to spell in a BCI-
communication solution. Here we provide a proof of concept for the decoding of visually imagined 
characters from the early visual cortex using 7 Tesla functional MRI. Sixteen healthy participants 
visually imagined three different characters for 3, 5 and 7 s in a slow event-related design. Using 
single-trial classification, we were able to decode the characters with an average accuracy of 54%, 
which is significantly above chance level (33%). Furthermore, the imagined characters were 
classifiable shortly after cue onset and remained classifiable with prolonged imagery. These 
properties, combined with the cortical location of the early visual cortex and its decodable activity, 
encourage further research on intracranial interfacing using surface electrodes to bring us closer 
to such a visual imagery based BCI communication solution. 



50 Chapter 4 

4.1 Introduction 

People with locked-in syndrome (LIS) are locked into their own body due to severe paralysis. 
LIS is characterized by intact cognition, but a nearly complete loss of voluntary muscle 
control, including the ability to speak [195]. Typically, voluntary control over the eyes is retained, 
and eye movements or blinking are used in combination with a (digital) letter board to select 
letters and construct words to communicate. However, in certain situations (e.g. outside [1]) 
and for certain people (e.g. in cases of oculomotor impairment due to ALS [196]), eye control 
is not adequate or feasible. A promising alternative approach for communication in LIS is a 
brain-computer interface (BCI). BCIs record neural signals from the brain using dedicated 
sensors and translate features of the neural signals into control signals for a computer or 
other type of assistive technology [197].  

Over the past decades, several BCI solutions for communication have been 
developed and tested, employing popular paradigms such as P300 evoked potentials, 
steady-state visually evoked potentials, sensorimotor rhythms and slow cortical potentials 
[197,198]. Similar to devices controlled by eye movements or blinking, these BCI systems often 
rely on a digital letter board, but instead of eye gaze, use a neural control signal to select the 
letters on the screen and spell words. A completely different and conceptually intuitive 
concept for controlling a communication-BCI could be based on visual mental imagery. Visual 
mental imagery is the experience of perceptual information in the absence of the appropriate 
retinal input; in other words: seeing a mental image. Using a visual imagery-based 
communication system, a user could imagine a character and thereby generate a unique 
brain activity pattern. Based on the recorded neural activity pattern, the BCI would be able to 
identify which character was imagined. The user would spell out words and sentences by 
sequentially imagining characters. 

The early visual cortex is a logical source of signals for the decoding of visual imagery. 
It is known to be retinotopically organized [62–65] and is, therefore, likely to show 
distinguishable activation patterns. Indeed, it is possible to reliably reconstruct the BOLD 
response pattern for visually perceived characters from this area [76,77]. Moreover, several 
studies suggest that visual imagery involves the same neural mechanisms as visual 
perception [199–201] and generates similar retinotopically organized activity in the early visual 
cortex [202–205]. Research on the cortical representation of visual imagery confirms that aspects 
of scenes [206,207] and object-categories [59,208] are represented in extra-striate and higher-order 
visual areas, whereas the low-level features of the scenes are encoded in (pre-)striate visual 
areas V1 and V2. Research on the imagery of low-level features shows that motion [55], 
orientation [56–58], location [59] and shape [60,61] are represented in visual areas V1, V2, V3 and 
V4. Together, these data indicate that ample imagery-related information should be 
presented in the early visual cortex for the decoding of characters. 

As a first step towards using visual mental imagery for communication-BCIs, we 
investigated whether it is possible to decode imagined characters from the early visual cortex. 
We used data acquired with a 7 T fMRI scanner, which allows for high spatial specificity 
(beneficial to decode neural activity patterns [13]) and a high signal-to-noise ratio [209]. We 
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measured the BOLD activation patterns associated with the visual imagery of three different 
characters and applied multivoxel pattern analysis (MVPA) to discriminate between these 
patterns. 

4.2 Method 

Participants 

Sixteen healthy participants (14 female, age 24 ± 2.9 years) participated in the study. Four of 
the participants (3 female, age 26 ± 2.6 years) were asked to repeat the experiment in a 
second session. Participants gave written informed consent to participate, in accordance with 
the World Medical Association Declaration of Helsinki (2013) . 

MRI data acquisition 

Functional MRI scans were acquired using a 7 T Philips Achieva MRI system with a 32-
channel head coil. Functional data was recorded using an EPI sequence (TR/TE 1500/25 
ms, FA 70 degrees adjusted for the B1 transmit field in the visual cortex, 25 slices, acquisition 
matrix 96 × 96, slice thickness 2.00 mm, no gap, 1.98mm in-plane resolution). A T1-weighted 
image (TR/TE 7/2.76 ms, FA 8 degrees, resolution 0.98 × 0.98mm in-plane, slice thickness 
1.0 mm, no gap) was acquired for anatomical reference. Participants were provided with in-
ear headphones through which auditory cues were presented. Additional hearing protection 
covered both the ears and headphones. Computer tasks were projected onto a mirror 
attached to the head coil. 

Tasks 

Two tasks were administered during the experiment: a visual mental imagery task (‘imagery 
task’) and a visual perception task (‘perception task’). During both tasks the participants were 
presented with a grey screen that contained the outline of a black square (∼11 degrees visual 
angle) with a black dot in the middle. Participants were asked to keep their eyes open and to 
look at the dot at all times. During every trial of the perception task, one of three characters 
was shown in white, full size inside the black square (figure 1). During the imagery task, 
participants were asked to imagine the character inside the black square (figure 1). We used 
three characters: the letter ‘x’, the plus sign ‘+’ and the letter ‘o’. The characters ‘x’ and ‘+’ 
were chosen for their strong visual-topographical contrast (i.e. horizontal versus diagonal). 
The ‘o’ character was added as it cannot be rotated to another character. 
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Figure 1. Schematic overview of the imagery task (A) and perception task (B). A spoken audio cue indicated 
whether the letter ‘x’, the plus sign ‘+’ or the letter ‘o’ should be perceived or imagined inside the square while 
fixating on the black dot. The requested symbol had to be imagined or perceived until a soft click sound was 
played. 

Each task consisted of 45 trials and took approximately 12 min to complete. In both 
tasks, at the beginning of each trial, an audio cue indicated which character would be 
presented or should be imagined. A click sound indicated the end of the trial, when the 
character would disappear or a person would have to stop imagining. In the imagery task, 
the duration of each trial (i.e. the time between cue and click sound) was either 3, 5 or 7 s, 
with an inter-trial-interval (ITI) of 10 s. In the perception task, the duration of each trial was 
either 1, 3 or 6 s for the first 8 participants; and was later changed to a constant of 5 s for the 
remaining participants as the task proved to be reliable regardless of duration variations. An 
ITI of 12 s was used for all participants in the perception task. 

The three characters and their different durations were presented at random within 
each task. Due to technical reasons, datasets of four tasks spread over three participants 
were incomplete. However, a bias towards any of the characters or durations was prevented 
by randomization and the data could still be used. 
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Procedure 

Before entering the scanner, participants were instructed on both tasks, which included a 
short presentation of the perception task. The experiment started with a first run of the 
imagery task, followed by one run of the perception task, the T1 weighted anatomical scan, 
and a second run of the imagery task. We deviated from this task order in two participants: 
for one participant, the anatomical scan was acquired first, and another participant first 
performed the perception task. For another two participants, logistic reasons prohibited the 
acquisition of the second imagery run. 

Based on their decoding performances in the first session, the two worst and the two 
best scoring subjects were invited and repeated the experiment in a second session to 
assess the reproducibility of the performance difference. 

Preprocessing 

All preprocessing steps were performed using SPM12. Anatomical scans were segmented 
to produce MNI-to-native deformation fields, which were used to map an early visual cortex 
mask to native space (see below in Signal selection). Functional scans were realigned to 
correct for motion, and activation t-maps were generated for each character using a GLM 
analysis where each of the three characters was taken as a separate regressor. All analyses 
were carried out in native space without smoothing since spatial transformations or averaging 
could result in the loss of decodable information. 

Signal selection 

Signal processing, analysis and classification procedures were implemented using custom 
MATLAB (Mathworks Inc.) scripts. In order to limit the region of interest (ROI) to the early 
visual cortex (i.e. V1, V2 and V3), a mask was created in MNI space using a probability map 
that reflected the likelihood of a voxel being assigned to a specific visual area [210]. All voxels 
with a likelihood of 20% or higher to be V1, V2 and V3 were included in the mask. The mask 
was manually edited to include missing voxels that were completely surrounded by included 
voxels and was extended posteriorly to ensure that all V1 voxels would be included after 
transformation into native space. For every subject, the early visual cortex mask was 
converted from MNI space to the native anatomy, coregistered and applied to the aligned 
functional scans. 

Feature reduction for classification was performed by selecting for each participant, 
the 105 voxels with the highest t-values of each character per task. The number of 105 voxels 
was chosen based on the mean decoding performance of the perception task over all 
participants. The union of the voxel selections per character was used as feature set in further 
analyses. The raw BOLD signal of each feature was subsequently detrended (linear, 
quadratic and cubic) and normalized (division by it’s mean and multiplication by 100) to 
reflect the percentage signal change. In most analyses, the two imagery runs were combined 
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(see classification below) and the union of the voxels from the t-maps of both runs (i.e. six t-
maps with 105 voxels each) were used as features. 

Analysis 

Decoding the characters in both the perception task and imagery task(s) was performed 
using the same classification method and parameters. The perception task was used to 
establish an optimal number of voxels for feature reduction, to be used over all participants 
for both tasks. 

For classification, the first five volumes of each run were discarded to exclude a task-
onset BOLD response. In the time-domain, for each trial, the functional volume with the 
highest average BOLD signal over voxels in the ROI was selected under the assumption that 
this timepoint would be the most informative. Since it is not known at which moment in time 
the peak of the neuronal response would occur, we limited the search for the highest average 
BOLD signal per trial to the period between the predicted HRF peak assuming a transient 
response and the theoretical HRF peak assuming a sustained response (given the duration 
of the trial). This time window was then extended to include one additional volume before and 
after the window, to cope with potential variation in the behavioral onset. Per trial, only the 
timepoint with the highest average BOLD signal was selected and used in a Support Vector 
Machine (SVM) with a linear kernel for training and classification. Multi-class classification 
was achieved by applying a one-versus-all classification scheme, where every class is 
classified against the data of all other classes together and the winner (furthest from the 
hyperplane) takes all. The decodability was determined using a leave-one-out cross-validation 
and is expressed as a classification accuracy score, which is the percentage of trials 
predicted correctly. 

Before concatenating the data of the two imagery runs, we first classified the runs 
separately and tested their performances using a two-tailed paired sample t-test to ensure no 
systematic difference existed between the runs. The decodability of the three characters from 
the early visual cortex was tested by classifying the characters from the unified imagery runs. 
In the two cases where participants performed just one imagery run, we based the 
decodability on that single run. Classification scores were tested for significance using a 
Monte Carlo distribution based on 20.000 permutations per dataset [131,211]. 

To investigate the variance in classification accuracy, we considered the scores on 
both the perception and imagery task. Perception requires no action from the participant and 
should be perfectly decodable [76,77]. A lower classification accuracy on the perception task 
would imply the influence of factors unrelated to the visual system, such as mental fatigue or 
head motion. Therefore, we investigated whether there was a correlation (across subjects) 
between head movement in the scanner and the classification scores in the perception and 
imagery tasks. This is relevant, since no smoothing was applied and even small motions are 
known to influence the prediction accuracy of supervised learning models used for 
classification [212]. To quantify head movement, the motion correcting values produced by 
SPM12 in the realignment of the imagery runs were used. As a measure of translational 
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movement, we took the (x, y and z) motion correction values between time points and 
averaged their Euclidean distances. A head rotation measure was obtained by taking the 
mean over the absolute (pitch, yaw and roll) rotational corrections between time points. 

The classification performance of imagery was further evaluated by focusing on the 
individual characters. Confusion matrices were produced to provide detail on the 
classification accuracy per character and classification errors. For each character, the 
sensitivity was used to indicate how well that character was classified. We performed chi-
square tests on each character combination per participant to test whether the classifier was 
able to distinguish the correct character from each of the other characters. The chi-square 
tests were corrected for multiple comparisons using the false discovery rate method [213]. 

Decodability over time and the effect of imagery duration on classification 
performance was investigated by grouping trials with the same duration (3, 5 or 7 s) together. 
Only the participants for whom classification of imagined characters was significantly above 
chance were included in these analyses to prevent non-imagery related noise. For each 
subject, each group of trials was classified at sequential time points from trial onset. To test 
whether a specific trial duration would result in a higher score, we performed a within-subject 
ANOVA on the scores in the different duration groups, taking for each duration the point in 
time at which (on average over participants) the classification accuracy was maximal. To test 
the decodability over time, a repeated-measures ANOVA was performed, taking both the trial 
duration and time from trial onset as within-subject factors. Since the first time-points after 
trial onset cannot contain decodable information yet and their accuracy scores will only add 
noise to the ANOVA’s mean, we included only the time-points in the analysis from the point 
where the averages of all trial durations are above chance level. 

4.3 Results 

For all participants, the classification accuracy on the perception task was significantly above 
chance level with an average of 94% (N: 16, SD: 6%, range: 80–100%). For the imagery task, 
most participants scored significantly above chance level (figure 2) with significant averages 
of 54% in the first imagined run (N: 16, SD: 19%, range: 30–93%) and 52% in the second 
imagined run (N: 14, SD: 18%, range: 30–77%). The performance between the two imagery 
runs was consistent (r = .54, p = .024; table 1) and did not differ significantly (paired t-test, 
t(13) = .180, ns). Therefore, we combined the first and second imagery runs for further 
analyses. Classification of the combined imagery runs resulted in a significant average 
accuracy of 54% (N: 14, SD: 23%, range: 25–95%).  
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Figure 2. Classification 
accuracies of the perception 
run and the imagery runs. The 
grey lines represent the 
accuracy scores of individual 
participants, the black line the 
average over participants. The 
lower red line shows the 
chance level at 33%, while the 
upper red line indicates the 
threshold above which the 
decoding accuracy was 
significant (46% for single runs 
and 44% for the combined 
imagery runs). 

 
 

 

 

 

Table 1. Correlations between the classification accuracies in the perception and imagery runs. 

 Imagery run 1 Imagery run 2 Imagery run 1 & 2 

Perception r = .45, n = 16 
p = .041 * 
 

r = .44, n = 14 
p = .058 
 

r = .51, n = 14 
p = .031 * 
 

Imagery run 1  r = .54, n = 14 
p = .024 * 

r = .78, n = 14 
p < .001 ** 

 
Imagery run 2   r = .89, n = 14 

p < .001 ** 
    

** Correlation is significant at the 0.01 level (1-tailed) 
  * Correlation is significant at the 0.05 level (1-tailed) 

   

Classification accuracies on the perception task displayed a modest variance (SD: 
6%), while the imagery task showed a relatively large variance (SD: 23%). The significant 
positive correlation (r = .51, p = .031; table 1) between the scores on the perception task and 
imagery task suggest that there are subject or session-specific factors which influence the 
performance on both tasks. Head-motion inside the scanner was considered as one. 
However, only in the imagery runs did head-motion have a significant negative influence on 
classification scores (translation: r = −0.41, p = 0.025; rotation: r = −0.58, p = 0.001; figure 3). 
In the perception task, there was no significant correlation between head-movement and the 
classification scores. 
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Figure 3. Classification accuracies plotted against the head motion parameters. The left panel shows the 
relation of accuracy against the average head translation over time in millimeters (r = −0.41, p = 0.025). The 
right panel shows the relation to average head rotation degrees (r = −0.58, p = 0.001). The black lines indicate 
the trends in the data. 

The classification accuracy per imagined character was investigated using a 
confusion matrix (figure 4). The matrix demonstrated that all three characters showed 
moderate, yet significant, sensitivity values (54%, 51% and 56%). There was no significant 
difference between the classification accuracy of the three characters (ANOVA, F(2, 39) = 
.132, ns). 

Figure 4. Confusion matrix with the average classification 
scores of the separate characters for imagery. Each row 
represents the imagined character. The cells in each row 
represent how that character was predicted by the classifier. 

Chi-square tests on the classification scores for each character combination (x+, xo 
and +o; figure 5) per subject showed that it was only possible in a subset of six participants 
to significantly distinguish all characters from each of the others; while in six participants 
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none could be distinguished significantly. The ‘x’ and the ‘+’ were classified wrongly 
(confused) in slightly more participants than the other combinations. 

Participants 

x  + 

x  o 

+  o

Figure 5. Discriminability between characters for each participant. Each column represents one participant. 
The rows indicate the results of chi-square tests between the different characters; each cell indicates whether 
a character pair was significantly distinguishable (blue) or not (white) for each participant. 

To examine the classification accuracies over time, we included seven participants 
who showed significant classifications on the combined imagery runs and two participants 
who classified significantly but had only a single imagery run. Figure 6(a) shows the average 
BOLD responses on each of the trial lengths over the voxels used for classification, showing 
that the BOLD response of each trial length peaks 6 to 7 s after trial onset. 

The classification accuracies over time (figure 6b) show that 6 s after trial onset the 
BOLD signal carries enough information to decode imagined characters above chance level 
for all trial lengths (3, 5 and 7 s). Comparing only the timepoint that held the maximum score 
for each duration showed that there was no significant difference (F(2, 16) = 1.62, ns) in 
maximum classification accuracy between the durations. 
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Figure 6. (a) The BOLD response patterns to visual imagery over time for different trial durations over the 
voxels used for classification (n = 9, best performing subjects). The black line indicates the amplitude of the 
BOLD signal in the voxels, averaged over trials. The shaded area indicates the standard deviation of the data. 
The vertical orange lines indicate the maximum. (b) Classification accuracies of imagery durations (trial 
lengths) classified at sequential times from trial onset. The significant threshold is shown as a dotted black 
line. The vertical orange lines indicate the trial offsets for 3, 5 and 7 s. Bars denote the standard error. 

To test the decodability over time, a repeated measures ANOVA was performed taking 
the scores on four points in time into account (from 6 s after onset, to 10.5 s after onset). Trial 
duration was not a significant determinant of classification accuracy (F(2, 16) = 1.827, ns), 
whereas the moment of classification after trial onset was a significant factor (F(3, 24) = 5.503, 
p < .01).More importantly, a significant interaction existed between trial duration and time of 
classification (F(6, 48) = 3.519, p < .01); contrasts revealed that when comparing 3 s trials to 
7 s trials, the 7 s trials performed significantly better 10.5 s after trial onset, in contrast to 6 s 
after trial onset where this was not the case (F(1, 8) = 12.479, p < .01, r = .61). 

Four participants were invited to repeat the experiment in a second session and 
showed consistent performance on the imagery task (figure 7). 



60 Chapter 4 

Figure 7. Classification accuracies of the 
imagery tasks for the participants who 
performed the experiment a second time. 

4.4 Discussion 

This study investigated whether visually imagined characters can be decoded from the early 
visual cortex. Using support vector machine learning, we were able to classify single trials of 
three imagined characters significantly above chance level for the majority of the participants. 
On average, each of the imagined characters could be classified equally well, with accuracies 
ranging between 51% and 56%. Within subjects, the classifier seemed less able to 
discriminate between ‘x’ and ‘+’ in slightly more participants than other character 
combinations. Although speculative, this may be explained by the fact that both the ‘x’ and 
‘+’ cross the center of the retina, whereas the ‘o’ does not; or because they are rotated 
versions of each other. Given the retinotopical organization of imagery [202–205] people might 
imagine a version closer to the other, resulting in less distinguishable neural activity patterns. 

The classification accuracy results showed a considerable variation between 
participants, particularly of the imagined runs (between 25% and 95%). To explain the 
variance in the imagery task, we first investigated the performance on the perception task. 
Since perception should be highly decodable [76,77] without an effort from the participant 
(except passive watching), each participant should score high on the perception task. 
However, our results showed that, while the average accuracy on the perception task was 
very high (95%), it still varied between 80% and 100%. The presence of lower than 100% 
scores could indicate an influence of factors unrelated to the visual system (e.g. mental 
fatigue or head motion). In addition, correlational analysis on the classification accuracies of 
the perception and imagery tasks revealed a moderate yet significant positive relation. 
Therefore, it is plausible that the same factors have a negative impact on the performance of 
both tasks. One of such factors was head-motion inside the scanner. A correlational analysis 
on the motion correction values and classification accuracies in the imagery task revealed a 
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significant negative relation, indicating a negative influence of head-motion on classification 
accuracy. Results of the perception task had no significant relation to head-motion. This 
suggests that there is either a ceiling effect in the scores of the perception task which 
precludes finding a clear relation between head motion and classification accuracy, or head-
motion is a factor that influences solely the imagery task. 

Although head-motion explains part of the variation in the imagery task, much is still 
unaccounted for and could be attributed to imagery specific factors such as vividness of 
visual imagery, which is known to be strongly related to early visual cortex activity [214,215]. In 
addition, physiological differences between the brains of the participants could be of 
influence. The cerebral blood flow in the primary visual cortex is related to the mental 
processing of imagery [216] and the size of area V1 is associated with the strength and 
precision of visual imagery [217]. Moreover, it is suggested that humans are capable of mentally 
representing visually imagined information in more than one way [218–220], which is likely to 
affect decodability. One approach to minimize this source of variance could be task practice. 
Participants in this study did not practice beforehand. A study that performed single-trial 
classification on complex hand movements showed that decoding accuracy is predominantly 
limited by the consistency between classes [92]. It is likely that a covert task, such as visual 
imagery, is bound to this limitation to an even larger extent, indicating that practice of the task 
could provide more consistency and better decodability. 

The results on decodability over time showed that all trial lengths - including the short 
3 s trials - were significantly decodable at 6 s after trial onset. Decodability did not seem to 
benefit from prolonged imagery, as longer trial lengths did not result in higher classification 
accuracy scores. However, the duration of the trial did significantly influence the decodability 
in time, in that longer trial durations remained significantly classifiable at time points later in 
time than shorter trial durations. Exploration of the BOLD signal in the voxels that responded 
to visual imagery showed that each of the trial durations resulted in a peak in the BOLD signal 
6 to 7 s after onset. This coincides with the first decodable timepoint, confirming the link 
between the neural activation and decodability. 

The neural characteristics of imagery and decodability over time are relevant for a 
BCI. The immediate neural responses and rapid decodability after trial onset on all trial 
lengths correspond with the typical timing of the BOLD response reported for visual 
stimulation experiments [221,222], suggesting that there was barely any delay in the visual 
imagery process and that the time difference between cue onset and the imagery related 
BOLD response is largely determined by the nature of the BOLD response itself, rather than 
by the cognitive aspects of the visual imagery task. This would provide a BCI with an 
immediately decodable response that conceptually allows for consecutive decoding (i.e. 
spelling) of imagined characters. The prolonged decodability over time can be used to find 
an optimal balance between spelling speed and reliability by using more or less timepoints 
in the decoding algorithm, however, this is not investigated in the present study.  

The most viable communication-BCI for locked-in patients would allow patients to spell 
consecutive letters in order to build words and sentences. Visual imagery would fit this 
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requirement in an intuitive way by allowing patients to simply visually imagine the letters. Yet, 
there are three issues to consider when translating our results into a visual imagery based 
BCI. First, our study uses the fMRI BOLD signal for decoding visual imagery, while the most 
practical option for a patient will most likely involve the measurement of electric potentials. 
Measuring electric potentials has the benefit of a higher temporal resolution and more mobile 
equipment. Importantly, it has been demonstrated that hemodynamic measurements in fMRI 
correlate well with electrical measurements of neuronal activity [19,22,223] and can be used to 
pre-surgically determine the location for subcranial electrode grids [1,67,165]. It is therefore 
probable that the ability to decode fMRI signals will translate to the ability to decode 
intracranial electrical potentials. Secondly, outside of the experimental setting, visual 
perception is likely to interfere with the decoding of visual imagery. One solution to this 
problem would require the patient to look at a plain black surface when using the BCI or 
close the eyes. The difference between high early visual cortical input during perception and 
low input during imagery (while looking at a black surface) could be used by a BCI solution 
to tell whether the patient actually intends to use the BCI solution to spell. And third, our 
experiment featured the decoding of three characters. For a BCI spelling device, it is essential 
to extend the number of characters to allow for the spelling of meaningful words. 

Our findings on decoding imagined characters from the early visual cortex are in line 
with earlier studies that demonstrated the decodability of visually imagined motion [55], 
orientation [56–58], location [59] and - by using an encoding model on low-level features - scenes 
[207]. Another study has tried to decode imagined shapes but reported only on decodability 
from the anterior and posterior subregions of the lateral occipital complex [60]. Notably, one 
study asked participants to imagine the sounds and scene corresponding to an auditory cue 
(either forest, people or traffic), and was able to decode the scene category from both the 
auditory cortex and the early visual cortex [224]. Recent work with six well-trained subjects 
using sophisticated methods gave promising results, where perception was used to train 
models that could predict the voxel activation patterns of imagery [225]. Our results extend on 
these earlier findings by showing that symbols can indeed be decoded from the early visual 
cortex without training and remain decodable with prolonged imagery. 

An important limitation of the study is the covert nature of visual imagery, in which 
there is no behavioral performance to monitor. Another potential source of performance 
variability in both the perception and imagery task is related to changes in eye gaze. If 
participants were to ignore the instruction of fixating their view on the dot in the middle of the 
screen during trials, then strategic eye movements might cause classification to be based on 
differential activation patterns elicited by eye movements. Unfortunately, due to the strong 
magnetic field and small bore size of the 7 T MRI scanner, it was not possible to perform eye-
tracking to control for eye-movements. 
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4.5 Conclusion 

Our study confirms that visually imagined characters can be distinguished from one another 
using the BOLD signal changes in the early visual cortex. The results indicate that maximum 
classification accuracy can be reached already shortly after the onset of mental imagery (i.e. 
it does not take much time to generate a mental image before it can be classified) and that 
the imagined character remains classifiable with prolonged imagery. Given the close 
relationship between the hemodynamic measurements in fMRI and electrical measurements 
of neuronal activity, the concept of visual imagery may be suited for techniques that measure 
from the cortical surface (e.g. ECoG) and therefore has the potential to be used as a BCI 
solution for patients. Future research should extend on the number of characters and 
investigate whether practice reduces the large variability in performance and improves the 
decoding accuracy. 

4.6 Acknowledgments 

The authors would like to thank Philippe Cornelisse for operating the MRI scanner and the 
subjects for their participation in the experiment.  

The authors were supported by funds from the European Union (ERC-Adv 320708). 
The funding source did not have any role in study design; in the collection, analysis and 
interpretation of data; in the writing of the report; and in the decision to submit the paper for 
publication. 



C h a p t e r   5  



 
65 

 
Dynamic control over DLPFC activity 

 
Chapter 5 - Rapid acquisition of dynamic control over 

DLPFC using real-time fMRI feedback  
 
Published Article: 
Max A. van den Boom, Johan M. Jansma, Nick F. Ramsey 
European Neuropsychopharmacology; 2018; 28(11), 1194-1205 

 

Abstract  

It has been postulated that gaining control over activity in the dorsolateral prefrontal cortex 
(DLPFC), a key region of the working memory brain network, may be beneficial for cognitive 
performance and treatment of certain psychiatric disorders. Several studies have reported that, 
with neurofeedback training, subjects can learn to increase DLPFC activity. However, improvement 
of dynamic control in terms of switching between low and high activity in DLPFC brain states may 
potentially constitute more effective self-regulation. Here, we report on feasibility of obtaining 
dynamic control over DLPFC, meaning the ability to both in- and decrease activity at will, within a 
single functional MRI scan session. Two groups of healthy volunteers (N = 24) were asked to 
increase and decrease activity in the left DLPFC as often as possible during fMRI scans (at 7 
Tesla), while receiving real-time visual feedback. The experimental group practiced with real-time 
feedback, whereas the control group received sham feedback. The experimental group 
significantly increased the speed of intentionally alternating DLPFC activity, while performance of 
the control group did not change. Analysis of the characteristics of the BOLD signal during 
successful trials revealed that training with neurofeedback predominantly reduced the time for the 
DLPFC to return to baseline after activation. These results provide a preliminary indication that 
people may be able to learn to dynamically down-regulate the level of physiological activity in the 
DLPFC, and may have implications for psychiatric disorders where DLPFC plays a role. 
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5.1 Introduction 

Working memory (WM) function is conceptually associated with temporary information 
storage and processing [226]. Many higher cognitive abilities such as reasoning, planning and 
problem solving are dependent on WM. A number of behavioral studies have shown that both 
the storage capacity and the ability to process information are limited [227–229]. With practice 
of certain WM tasks, performance improves, while brain activity in the associated network of 
regions declines [100], suggesting that brain activity adjusts to the need for cognitive control 
[101]. Various psychiatric disorders have been associated with WM dysfunction, in which the 
dorsolateral prefrontal cortex (DLPFC), a key region of the WM system, could play a role. 
Patients with schizophrenia show impaired WM performance, where the DLPFC responds 
differently to WM demands in comparison to healthy people [230–232]. Individuals with 
depression show increased DLPFC activity on WM tasks [233,234]. For Major Depression, 
neuromodulation of the DLPFC using rTMS is currently applied therapeutically [235,236]. 
Disruption of WM function has also been associated with drug dependence [237]. As such, the 
DLPFC can be regarded as a potential target for treatment of WM deficits associated with 
psychiatric disorders, where the ability to learn to self-regulate activity of the DLPFC is of 
interest for the development of novel treatment options.  

The results of neurofeedback studies suggest the possibility that WM function can be 
improved through the use of neurofeedback in real-time (rt-) fMRI experiments [238]. In such 
experiments, the blood oxygenation level-dependent (BOLD) signal or pattern in a specific 
region of interest (ROI) is translated into information that can be used by the subject in real 
time [239]. It has already been shown that self-regulation of activity through neurofeedback can 
be trained for brain areas such as the anterior cingulate cortex (ACC) [240], amygdala [241], 
premotor areas [242], visuospatial attention [243,244] and auditory cortex [245]. 

The DLPFC has been attributed a pivotal role in WM [66,246–248]. Neurofeedback studies 
that target the left DLPFC have predominantly focused on the possibility to increase activity 
[249–252]. However, WM function may also benefit from direct dynamic control of brain activity 
levels, in other words the capability to increase and decrease activity in brain regions when 
needed. 

In the current study, we used neurofeedback to examine the possibility to learn to 
dynamically control DLPFC activity. The magnitude of left DLPFC activity, generated during 
performance of a WM task in a 7T MRI scanner, was visually presented to healthy volunteers 
in real time. Training encompassed practice of control over a figurine in a game setting, where 
the level of activity in left DLPFC determined the vertical position of the figurine. A control 
group performed the identical task, but with sham instead of real feedback. We used a 7T 
MRI scanner to obtain a sufficiently accurate and strong measure of local neural activity to 
allow for real-time dynamic control learning.  

The DLPFC is part of the dorsolateral prefrontal circuit, which projects from the DLPFC 
to the dorsolateral caudate nucleus, the lateral dorsomedial globus pallidus and connects via 
the ventral anterior and mediodorsal thalamus back to the DLPFC. It is possible that 
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neurofeedback on the DLPFC influences other regions in this circuit. Therefore we perform 
a cluster analysis to see if other brain regions are affected. 

We hypothesized that subjects would be able to learn to regulate DLPFC activity using 
the information provided by the rt-fMRI neurofeedback. In order to understand how 
neurofeedback practice affected the ability to regulate activity, we analyzed the temporal 
characteristics of the BOLD signal before and after the practice periods. In addition, we 
explored whether other regions besides the DLPFC are affected as a result of the 
neurofeedback.  

5.2 Experimental procedures 

Participants 

Twenty-four healthy participants between the age of 19 and 30 years (11 male, 13 female; 
mean age 23.54; SD 2.81 years) were included in the study after giving written informed 
consent. Exclusion criteria were history of psychiatric illness, pregnancy, metal objects in or 
around the body or claustrophobia. The study was approved by the local medical ethics 
committee, in accordance with the Declaration of Helsinki (2013). One participant was 
excluded from analysis due to scanner failure. Participants were randomly assigned to an 
experimental or control group. Thirteen participants were included in the experimental group 
and eleven in the control group. The groups are not exactly equal due to dropout resulting 
from MRI scanner issues. 

MRI 

FMRI was performed using a 7T Philips Achieva system, with a 32-channel head-coil. 
Functional data was recorded using an EPI sequence (TR/TE: 2.0 s/25 ms, FA: 70, 39-axial 
slices, acquisition matrix 112 voxels × 112 voxels, slice thickness 2.2 mm no gap, 2.19 mm 
in plane resolution). A T1-weighted image was acquired for anatomy (TR/TE: 7/2.76 ms; FA: 
8; resolution 0.98 ×0.98 ×1.0 mm). Computer tasks were projected onto a mirror attached to 
the head coil. 

Tasks 

During the experiment a neurofeedback task and a count-back task were administered. Both 
tasks require mental calculation to reliably activate the left DLPFC [67]. 

The neurofeedback task consisted of a man on a ladder positioned against an apple 
tree. The position of the man on the ladder was controlled in real-time by the magnitude of 
DLPFC activation, allowing it to ascend or descend (see figure 1). By modulating DLPFC 
activity, participants were able to pick the apples at the top of the tree and bring them back 
down, requiring the crossing of a top and bottom threshold, respectively. To activate the 
DLPFC participants were to covertly count back in steps of 7, and to deactivate participants 
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were to let their mind wander freely. Instruction was to pick as many apples (alternately 
crossing the two thresholds) as possible in 2.5 min. The number of apples picked within each 
2.5 min run was used as a behavioral performance score. 

Figure 1. Neurofeedback task. The DLPFC normalized signal mean translated to a position on the ladder. 

The count-back task was used to assess the pattern of activity in the DLPFC. 
Participants alternated between 20s of rest and 20s of counting back for 3 min. To assist 
participants, a random number between 600 and 900 was displayed on the screen as a 
starting point during count-back blocks.  

Procedure 

Table 1 gives an overview of the runs and tasks in the experiment. The experiment was single 
blind with both groups receiving the same instructions. Participants were informed that during 
the neurofeedback tasks there would be a delay between their cognitive effort (rest vs 
counting backwards) and the visual representation of the brain signal due to the nature of 
the BOLD signal. With regard to the training tasks the participants were asked to experiment 
within the count back paradigm in order to improve their performance on the task. 
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Table 1. Experiment setup 

Scan run Duration Task Purpose 

0 3 min - Preparatory scans and setting the scan field 

1 (EPI) 3 min count-back Localization of ROI for neurofeedback tasks 

2 (T1) 5 min - Acquisition of anatomy image 

3 (EPI) 30 min count-back Determine subject specific range of activation in 
ROI 

Pre-test brain activity 

Neurofeedback Pre-test neurofeedback performance 

neurofeedback (5x) Training 

Neurofeedback Post-test neurofeedback performance 

- 5 min Rest 

4 (EPI) 3 min count-back Post-test brain activity 

After giving informed consent participants were positioned inside the scanner. 
Instructions were given between tasks. During the first (preparatory) scans the participants 
were asked to relax. They then performed the count-back task for the first time, followed by a 
5 minute rest period during which an anatomical scan was acquired. After the anatomical 
scan they were presented with eight more tasks which started with another count-back task, 
followed by the neurofeedback task seven times with half a minute of rest in-between each 
of the tasks. After the last run they would have 5 min of rest without scanning. Then finally 
they had to perform one more count-back task before being taken out of the scanner. 

Neurofeedback 

Feedback was based on BOLD levels in left DLPFC. The neurofeedback software was written 
in MATLAB (MathWorks) and integrates functions of SPM8. Since the exact location of brain 
activity within the DLPFC varies per person, the first count-back task served to localize the 
most active area in the DLPFC region. To limit the ROI to the DLPFC we used a global DLPFC 
mask converted from MNI space to native space after the first task. Immediately after the task 
– while the participant was still in the scanner –the functional scans from the task were
aligned, smoothed, a GLM including detrending was performed and a t-map was generated
online. Then, the 200 most active voxels within the global DLPFC mask constituted a subject-
specific ROI for the neurofeedback tasks.

To translate the BOLD signal within the ROI to a representation/position on the 
screen, the range of potential values needed to be determined. An additional problem is 
signal variation across persons, days and even scan runs [253,254]. For these reasons 
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neurofeedback related tasks were acquired in one single continuous run, starting with an 
initial count-back task that was used to determine the range of activation values, followed by 
the actual neurofeedback tasks. The neurofeedback tasks of 2.5 min each were interleaved 
with 30s periods of rest.  

During the neurofeedback tasks functional images were retrieved straight from the 
scanner with the use of the Philips “Drin Data Dumper” tool. As soon as the software running 
on the task computer would detect a new task image it would be registered to the first image 
from the first scan run and smoothed (FWHM = 12 mm) in real-time. Subsequently, the BOLD 
signal of the voxels within the subject specific ROI were isolated and detrended, removing 
linear, quadratic and cubic trend from the time-series [255]. The mean was then taken and 
translated to the vertical position on the ladder using the upper and lower BOLD boundaries 
as reference for the top and bottom of the ladder. 

Design 

The first and last of the neurofeedback tasks served as pre- and post-test, while the five 
neurofeedback tasks in-between served as training. Both the experimental and control group 
received feedback on their DLPFC activity during the pre-and post-test. During training only 
the experimental group continued to receive feedback on their DLPFC activity, while the 
control group would receive sham-feedback, effectively only practicing counting backwards. 
The sham-feedback for each participant in the control group was taken from a different and 
at random selected experimental participant. 

Each neurofeedback task resulted in a performance score (i.e. the number of apples 
picked). To test our hypothesis we used the scores on the neurofeedback tasks before and 
after training to test for differences within and between groups. Several characteristics of the 
BOLD signal were analyzed in order to examine the effect of practice on the ability to control 
DLPFC activity. 

The first count-back task was – besides being used to determine the ROI for 
neurofeedback –also utilized to determine clusters of activation, the subsequent count-back 
tasks before and after neurofeedback were used to test examine the effect of neurofeedback 
on brain activity in the DLPFC and other brain regions. 

Post-MRI analyses 

The fMRI data from the count-back tasks was processed using SPM8 software. Analysis on 
DLPFC activity was performed in native space, the scans were corrected for motion and 
spatially smoothed with a Gaussian filter yielding a full-width at half-maximum (FWHM) of 12 
mm in each direction. In order to investigate the effects on other brain regions, the motion-
corrected scans were normalized to MNI space using DARTEL and also smoothed at 12 mm 
FWHM. Individual statistical activation maps were generated using a general linear model 
analysis. A single regressor was used to model activity for the count-back condition against 
baseline using a block design (20 s on, 20 s off). To identify other task-relevant brain regions 
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over subjects, a second level analysis was performed on the normalized beta estimation 
maps of the first count-back task. The resulting group map was thresholded at p < .05 
(correcting for multiple comparisons using the false discovery rate method) to reveal a 
number of active clusters. 

The behavioral effect of the training was determined using a one-tailed paired t -test 
(α = 0.05), comparing the differences in pre and post-test apple pick scores within each 

group. To test for group differences we performed a mixed-design analysis of variance on the 
difference between the pre and post-test apple pick scores (one-tailed, α = 0.05). 

The influence of neurofeedback on brain activity in the DLPFC and other brain regions 
was tested using the regressor weights of the second and third count-back tasks, which were 
respectively before and after the neurofeedback. DLPFC effects were investigated in native 
space using the same ROI that was used for neurofeedback. The effect on other task-relevant 
brain regions was investigated in MNI space using the clusters defined by the first count-back 
task. To determine the direct effect of neurofeedback on the DLPFC we performed a two-
tailed paired t -test (α = 0.05) within each group and a mixed-design analysis of variance (two-

tailed, α = 0.05) to test between group differences. In order to investigate the interaction 

between the DLPFC and clusters we used a repeated measures ANOVA. 

Performance and relation to feedback signal parameters 

We calculated a number of parameters that describe the BOLD signal for each participant. 
These parameters reflect the activation velocity, the deactivation velocity, overshoot (over the 
upper boundary) and undershoot (under the lower boundary). Figure 2 (a) and (b) shows 
examples of such parameters. Every signal parameter was calculated separately for the pre- 
and post-test per participant. The signal elevation parameters were calculated by taking the 
BOLD signal’s lowest point as the beginning of the trial, up till and including the first point 
above the upper boundary (top of the ladder) or the highest BOLD value after going above 
the upper boundary. Vice versa was done for the signal decline parameters. A mean was 
calculated over the elevating or declining segments and a linear slope was fitted. Another 
activation/deactivation parameter was generated by taking the average number of 
measurement points over the segments, and yet another parameter divides the signal change 
by the number of measurement points. The resulting slope parameters were regarded as the 
velocity of the decline or elevation. 

To calculate the overshoot parameters we took the highest value, the AUC and the 
average of all points (i.e. scans) above the upper boundary (top of the ladder) of each trial 
and averaged these across trials. The same was done for the undershoot parameters but 
vice versa. 
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Figure 2. (a) Signal slopes, the signal is shown in blue, the upper and lower boundaries of the ladder in orange. 
The green indicates the part of the signal considered as decline, the red as elevation. (b) Signal over- and 
undershoots. The circles show measurement points which are used to calculate several over- or undershoot 
parameters. The red shaded area shows an example of an overshoot AUC, the green the undershoot. 

 
For each parameter we deleted outliers (more than 3 interquartile ranges below the 

1st quartile or above the 3rd quartile) pre–post pairwise. In some cases a parameter could 
not be calculated, for example when one of the runs held no successful apple pick trials or 
when no surface can be calculated from one overshoot point. In these cases, we also applied 
pre–post pair wise deletion for the missing parameter. Then, to validate each parameter we 
correlated the pre–post difference of the parameter to the pre–post difference in the task 
performance. Parameters that correlated highly to the apply pick performance were 
considered contributing factors and were used for further analysis. A two-tailed paired t -test 
(α = 0.05) was used on the pre and post-test signal parameters within each group and a 

mixed-design analysis of variance (two-tailed, α = 0.05) was used to test between group 

differences. 

5.3 Results 

Performance 

The apple pick task performance within the experimental group improved significantly from 
3.31 apples (SD: 1.44) before to 4.92 apples (SD: 2.49) after training (t(12) = −2.88, p = .007; 
see figure 3). In contrast, task performance within the control group did not change (t(10) = 
0.00, ns) from an average of 4.00 apples (pre SD: 2.24, post SD: 2.49) picked. The difference 
in training effect between groups was significant (F (1, 22) = 3.38, p = .040). 
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Figure 3. Neurofeedback behavioral results for the 
experiment (N = 14) and control (N = 11) group. The 
performance is measured in number of apples picked 
and shown for both the pre- and post-test run. (Bars 
denote the standard error; ∗ significant at 0.05 level 1-
tailed). 

Brain activity 

The DLPFC activity within the experimental group did not change after neurofeedback (pre 
vs post, t(12) = 1.669, ns), whereas the activity within the control group declined significantly 
(t(10) = 4.495, p = .001). However, this difference was not significant when comparing groups 
(F(1, 22) = 1.914, ns). 

Figure 4. Group-activity (N = 24) in the first count-back task (neurological view, left = left). Clusters of activity 
with Bordmann area and number of voxels in MNI space at 1.5 mm isotropic: Cluster 1 – right inferior frontal 
gyrus (1629 voxels); Cluster 2 – left inferior frontal gyrus and hippocampal area (6789 voxels); Cluster 3 – 
right inferior frontal gyrus (417 voxels); Cluster 4 – right inferior frontal gyrus/Broca’s (2101 voxels); Cluster 5 
– left inferior parietal lobule (6590 voxels); Cluster 6 – right inferior parietal lobule (6609 voxels); Cluster 7 – 
anterior cingulate gyrus (8653 voxels). 

A total of seven clusters were found in the first count-back task (see figure 4). A 
repeated measures ANOVA on ROIs (i.e. the DLPFC and clusters) before and after 
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neurofeedback comparing groups showed there is no 3-way interaction between the different 
ROIs, training and groups (F(4.13, 90.85) = 0.665, ns). 

Parameter correlations 

All four parameters describing the decline of the BOLD signal correlated with performance 
(p < .05, details in Table 2). Two of the signal elevation parameters –scans needed to pick 
apple and fitted slope till the highest point above the ladder – correlated with the task 
performance (r = 0.56, p = .015; r = 0.57, p = .022). Two of the under- and overshoot 
parameters – average value of undershoots and average value of overshoots – correlated 
with the apple pick performance (r = 0.42, p = .044; r = 0.47, p = .048). 

Table 2. Correlations between feedback signal parameters and apple pick performance. Only parameters that 
correlate highly to the performance are considered valid contributors 

Signal decline 

Slope of a linear fitted line based on trials mean (lowest point) r = -.61, n = 20, p = .004 ** 
Mean number of scans until apple picked over trials r = -.67, n = 21, p = .001 ** 
Slope based on the decrease (until below ladder) divided by the number of scans r = -.69, n = 23, p < .001 ** 
Slope of a linear fitted line based on trials mean (first below ladder). r = -.69, n = 18, p = .001 ** 

Signal elevation 

Slope of a linear fitted line based on trials mean (highest point) r = -.20, n = 22, p = .364 
Mean number of scans until apple picked over trials r = -.56, n = 18, p = .015 * 
Slope based on the decrease (until below ladder) divided by the number of scans r =  .29, n = 19, p = .226 
Slope of a linear fitted line based on trials mean (first above ladder). r =  .57, n = 16, p = .022 * 

Undershoot 

Average value of undershoots r =  .42, n = 23, p = .044 * 
Average of deepest undershoots r =  .31, n = 24, p = .138 
Average of undershoot area under curve r =  .02, n = 19, p = .941 

Overshoot 

Average value of overshoots r = .47, n = 18, p = .048 * 
Average of highest overshoots r = .28, n = 19, p = .252 
Average of overshoot area under curve r = .06, n = 16, p = .829 

** Correlation is significant at the 0.01 level (2-tailed) 
* Correlation is significant at the 0.05 level (2-tailed)

Parameter tests 

Tables 3 and 4 contain detailed statistics on all parameters that correlate to the performance. 
Three of the signal decline parameters –scans needed to pick apple, decrease divided by 
scans and the fitted slope till the first below ladder –show that the experimental group was 
able to decrease their BOLD signal significantly faster after practice (t(9) = 3.388, p = .008; 
t(11) = 2.861, p = 0.015; t(10) = 2.824, p = 0.018), while in the control group the same 
parameters showed no change (t (10) = −1.147, ns; t(10) = −1.106, ns; t(6) = −1.582, ns). The 
other signal decline parameter – fitted slope till the lowest point below ladder – showed no 
within-group effect in both the experimental group (t(11) = 2.099, ns) and control group 
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(t(7) = 0.708, ns). In the between-group analyses, three of the four signal decline parameters 
show a significant change in velocity for the experimental group when compared  
to the control group (F(1, 19) = 5.219, p = 0.034; F(1, 21) = 7.484, p = 0.012; F(1, 16) = 8.771, 
p = 0.009). These were the parameters based on the scans needed to pick apple, decrease 
divided by scans and the fitted slope till the first below ladder. 

 
 

Table 3. Averages and standard deviations of the signal parameters which relate to apple pick performance 

 Experimental 
group (N = 13) 

Control 
group (N = 11) 

 Pre Post Pre Post 

Signal decline 

Slope of a linear fitted line based on trials 
mean(lowest point) 

M: -0.54 
SD: 0.25  
N: 12  

M: -0.74 
SD: 0.33 
N: 13 

M: -0.45 
SD: 0.20  
N: 9 

M: -0.52 
SD: 0.13  
N: 10 

Mean number of scans until apple picked 
over trials 

M: 9.93 
SD: 1.98  
N: 13 

M: 6.54 
SD: 2.25  
N: 13 

M: 8.75 
SD: 4.23  
N: 11 

M: 11.49 
SD: 6.48  
N: 11  

Slope based on the decrease (until below 
ladder) divided by the number of scans 

M: -0.31 
SD: 0.16  
N: 13  

M: -0.50 
SD: 0.19  
N: 13  

M: -0.42 
SD: 0.14  
N: 11  

M: -0.34 
SD: 0.16  
N: 11  

Slope of a linear fitted line based on trials 
mean 
(first below ladder). 

M: -0.03 
SD: 0.03  
N: 11  

M: -0.22 
SD: 0.22  
N: 13  

M: -0.20 
SD: 0.14  
N: 9  

M: -0.10 
SD: 0.10  
N: 9  

Signal elevation 

Mean number of scans until apple picked 
over trials 

M: 11.27 
SD: 5.26  
N: 11 

M: 7.93 
SD: 3.78  
N: 13 

M: 5.81 
SD: 2.83  
N: 10 

M: 6.57 
SD: 3.01  
N: 9  

Slope of a linear fitted line based on trials 
mean 
(first above ladder). 

M: 0.06 
SD: 0.06  
N: 10 

M: 0.24 
SD: 0.17  
N: 13 

M: 0.31 
SD: 0.35  
N: 8 

M: 0.29 
SD: 0.32  
N: 8  

Undershoot 

Average value of undershoots M: 0.36 
SD: 0.19  
N: 13 

M: 0.37 
SD: 0.14  
N: 13 

M: 0.45 
SD: 0.23  
N: 11 

M: 0.34 
SD: 0.14  
N: 11  

Overshoot 

Average value of overshoots M: 0.35 
SD: 0.16  
N: 11 

M: 0.35 
SD: 0.15  
N: 13 

M: 0.44 
SD: 0.14  
N: 10 

M: 0.33 
SD: 0.20  
N: 9  
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Table 4. Test statistics on performance related feedback signal parameters. A paired t-test was used on the 
pre and post-test parameters within each group and a mixed-design analysis of variance was used to test 
between group differences 

Within group Between 
group Experimental Control 

Signal decline 

Slope of a linear fitted line based on trials mean 
(lowest point) 

t(11) = 2.099,  
p =.060 

t(7) = .708, 
p = .502 

F(1,18) = .960, 
p = .340 

Mean number of scans until apple picked over trials t(9) = 3.388,  
p =.008 ** 

t(10) = -1.147, 
p =.278 

F(1,19) = 5.219,  
p =.034 * 

Slope based on the decrease (until below ladder) 
divided by the number of scans 

t(11) = 2.861, 
p =.015 * 

t(10) = -1.106, 
p =.295 

F(1,21) = 7.484,  
p =.012 * 

Slope of a linear fitted line based on trials mean (first 
below ladder). 

t(10) = 2.824,  
p =.018 * 

t(6) = -1.582, 
p =.165 

F(1,16) = 8.771,  
p =.009 ** 

Signal elevation 

Mean number of scans until apple picked over trials t(10) = 1.687,  
p = .122 

t(6) = -.455, 
p = .665 

F(1,16) = 2.100, 
p =.167 

Slope of a linear fitted line based on trials mean (first 
above ladder). 

t(9) = -2.925, 
p =.017 * 

t(5) = .072, 
p =.945 

F(1,14) = .890, 
p =.361 

Undershoot 

Average value of undershoots t(12) = -.295, 
p = .773  

t(9) = 1.019,  
p = .335 

F(1,21) = 1.321, 
p =.263 

Overshoot 

Average value of overshoots t(10) = .106,  
p = .918 

t(6) = 2.249,  
p = .066 

F(1,16) = 3.043, 
p =.100  

** Significant at the 0.01 level (2-tailed) 
* Significant at the 0.05 level (2-tailed)

Within-group analysis on the signal elevation parameters show that the fitted slope till 
the highest point above the ladder parameter changes significantly for the experimental 
group (t(9) = −2.925, p = 0.017) and not in the control group (t(5) = 0.072, p = 0.945). The 
elevation parameter – scans needed to pick apple – showed no significant changes in the 
experimental (t(10) = 1.687, ns) nor the control group (t(6) = −0.455; ns). Between group 
analysis of the elevation parameters show no difference of the experimental group in 
comparison to the control group (F(1,14) = 0.890, ns; F(1, 16) = 2.100, ns). See figure 5 (a) 
and (b). 
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Both the undershoot parameter and the overshoot parameter showed no between-
group effect (F(1, 21) = 1.321, ns; F(1, 16) = 3.043, ns) and no within-group effect in the 
experimental (t(12) = 0.295, ns; t(10) = 0.106, ns) nor the control group, (t(9) = 1.019, ns; t(6) 
= 2.249, ns). 

Figure 5. (a) and (b). Feedback signal 
parameters related to performance. 
Experimental (N = 13) against control (N = 11), 
before and after neurofeedback training. Both 
were tested within group and between groups. 
(Bars denote the standard error; ∗ significant at 
the 0.05 level 2-tailed; ∗∗ significant at the 0.01 
level 2-tailed). 
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5.4 Discussion 

The goal of this fMRI study was to investigate whether people can learn to dynamically control 
activity of the DLPFC, a region that has been shown to be important for WM function [246–248], 
and has been associated with various psychiatric disorders. Results of this real-time 
neurofeedback study indicate that it is possible to acquire dynamic control of DLPFC after a 
15-min training period. In-depth examination of the effect of training on the dynamic
properties of the feedback signal showed a significant correlation between the speed of
returning to baseline and neurofeedback performance. In particular, we observed a clear
decline in the time needed to return DLPFC activity back to baseline levels, after training with
neurofeedback. Although there are overshoot and undershoot parameters that correlate with
the neurofeedback performance, they show no significant within- or between-group effect.
From this, it can be concluded that improved performance was not simply the result of
improved anticipation of the delay of the BOLD response. Other brain regions – including
part of the left dorsolateral caudate nucleus and the lateral part of the left dorsomedial globus
pallidus, both belonging to the dorsolateral prefrontal circuit – responded to the WM task,
but were unaffected by neurofeedback on the DLPFC.

The elevation phase of the feedback signal in the experimental group did not show a 
significant change after practice compared to the control group. The absence of a practice 
effect on the elevation phase suggests that control over this phase is relatively difficult to 
improve with neurofeedback. This phase is mostly linked to the start and execution of the 
WM task, which immediately activates the left DLPFC and results in a maximum increase in 
the BOLD signal. As a result, there may not be much room for improvement in the speed of 
increasing activity. Another explanation could be the (relatively) low number of samples in 
the control group for the elevation parameters. Theoretically, a larger sample would result in 
more power and could show a significant effect in signal elevation. However, this scenario is 
unlikely as the means of the pre- and post-elevation parameter show little difference for the 
control group. 

The training-induced reduction in the time to return to baseline suggests that it is 
possible to deliberately deactivate the DLPFC. Before training, DLPFC activity appears to 
linger on between the activity peak (top of the ladder) and dip (bottom of the ladder), which 
may be due to presence of context-irrelevant functions that cause the DLPFC to stay active. 
Through neurofeedback, subjects are able to discontinue such lingering and thereby reduce 
the time to return the DLPFC activity to baseline. In this context, it should be noted that DLPFC 
activity might not be the result of just manipulation and maintenance of information in WM, 
but could also be attributed to the selection of information [256] or an executive control network 
related to regulation itself [257,258]. This in turn raises the question how such a neurofeedback 
control mechanism would function: whether the DLPFC is (circularly) involved and learns to 
more efficiently switch off regulation (i.e. deactivate), or whether such a mechanism is more 
flexible and can function without DLPFC involvement to lower the activity faster. Regardless, 
it is conceivable that the neurofeedback enhances awareness of DLPFC activity and allows 
the trainee to acquire the skill to deactivate at will. This effect, we believe, warrants further 
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investigation into the potential benefits for therapeutic intervention where WM function is 
implicated. 

Our results may provide several new insights. WM is characterized by a capacity 
constraint, imposing limitations for information processing [228,229]. Therefore, it is important 
that the WM capacity is used efficiently in order to optimize cognitive performance. Improved 
control over DLPFC may well constitute (a degree of) control over the WM system, thereby 
influencing WM function [250–252]. Improved control over WM, specifically an improved ability 
to return to rest after WM engagement, may result in better cognitive performance in 
situations where several tasks have to be performed, in terms of a more efficient allocation 
to the most pertinent task at hand. Improved control may also affect levels of stress during 
sustained cognitive demand. Several studies have indicated that cognitive effort elicits a 
stress response, including a reduced heart rate variability (HRV) [259–261]. A more rapid 
termination of activity in the WM system would facilitate (brief) rest states, thereby allowing 
for physiological energy replenishment [262], and possibly limiting mental fatigue. 

In addition, although speculative, our results may have implications for treatment of 
brain disorders. In schizophrenia, for instance, WM function has been connected to cognitive 
deficits [230,232,263,264]. It has been shown that brain activity during WM tasks exhibits over-
activation during low-demand WM tasks, whereas WM function and brain activity collapse at 
high demand, suggesting that schizophrenic patients suffer from inefficient use of WM 
function [230,263,265,266]. The notion that even brief feedback-training for dynamic control over 
DLPFC may improve efficiency of WM use, seems to warrant further investigation. Other brain 
disorders such as Huntington’s disease and depression have also been associated with 
impaired WM [267–270] and the DLPFC, and could conceivably benefit from neurofeedback. For 
example, the left DLPFC is the target for a novel treatment of depression, involving repeated 
stimulation with transcranial magnetic stimulation [271]. 

The findings may also have implications for another emerging field, namely that of 
Brain Computer Interface (BCI) for people with severe communication disabilities (e.g. 
Locked-In Syndrome). Fora BCI, brain activity is detected and used to control external 
devices. Direct decoding from DLPFC activity has been shown to be feasible for this purpose 
[67], but it is unknown if DLPFC activity remains decodable after extensive use. Some WM 
studies have indicated that with practice of a WM task (no feedback), activity in the WM 
network can reduce substantially, even with very short periods of practice [100,101]. The 
repeated performance of a WM task to control a BCI could conceivably result in reduction of 
activity and consequently reduced BCI control. Our research shows that providing 
neurofeedback can in principle prevent this effect. A direct comparison with the controls, 
where DLPFC activity declined after sham feedback, was not significant, but it could be that 
the difference becomes more pronounced after longer training, given that WM activity is likely 
to continue to decline [101]. 

Multiple studies have shown that activity in a variety of brain areas can be influenced 
using neurofeedback and rt-fMRI [240–242,245,272–274], of which only a few studies addressed WM 
[250–252]. At least three studies [250–252] showed that it is possible to up-regulate activity in the left 
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DLPFC in a block-design neurofeedback task, and report an effect on subsequent WM 
function. One study [252] showed an improvement in verbal working memory, attributing it to 
the up-regulation of left DLPFC activation. On the same data, another study [251] showed 
changes in the functional connectivity due to the up-regulation of the left DLPFC as a new 
way to improve WM performance. Finally, a different study [250] showed improved performance 
on a custom-made WM task after neurofeedback training. In both studies the aim was to 
maximize self-induced velocity of DLPFC activation. The current study directly addresses the 
ability to control DLPFC activity dynamically, focusing on the ability to rapidly elevate and 
decline activity at will. 

While we did show improved control over activity in left DLPFC after neurofeedback, 
we did not look for improvement in WM performance in our subjects. Given the results, 
investigation of the relationship between controllability (i.e. state shifts) and performance 
seems worthwhile. Since we allowed only for one session of training, we cannot draw 
conclusions about the duration of the training effect over time. Neither can we provide 
information about transferability to other tasks. However, results of previous neurofeedback 
studies targeting WM and using multiple sessions spread over multiple days indicate that 
improvement in WM control is indeed transferable over time and over WM tasks [250,252]. 

Our results show that it is feasible to accomplish dynamic control over DLPFC activity 
using neurofeedback. Detailed BOLD signal analyses indicated that training with 
neurofeedback predominantly resulted in improved ability to return DLPFC activity to a 
baseline level after activation. The finding that subjects learned to regulate DLPFC activity 
after a neurofeedback training period of only 15 min, suggests that this skill can be rapidly 
acquired with a real-time dynamic feedback task, and encourages investigation of potential 
therapeutic applications for patients with psychiatric and neurological disorders that have 
been associated with WM deficits. 
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6.1 Summary 

Brain-computer interfaces (BCI) have the potential to improve and enhance our lives, 
enabling us to control devices with our thoughts and intentions. Currently, BCIs primarily aim 
to benefit a small patient population by, for example, providing an alternative communication 
channel for severely paralyzed people that are not able to speak, or enabling control over a 
prosthetic limb. While the current BCIs already deliver impressive results, the degree of 
control and the practical (daily) use is very limited. In terms of utilization of digitized brain 
activity, there is still much to explore and there are several challenges to overcome. This 
thesis aims to advance brain-computer interfacing by exploring the optimal utilization of brain 
activity in a diversity of brain functions and regions. Given the measurement techniques that 
are currently available, this thesis considers ECoG as the primary candidate for a daily home-
use BCI while leveraging fMRI measurements to perform fundamental research that is 
transferable to ECoG-based BCI.  

Most ECoG research on the decoding of finger movements or gestures is performed 
with patients who have a healthy moving hand [9,10,13,93,275]. However, BCIs are almost 
exclusively aimed at patients with paralysis or missing limbs. In chapter 2, we found that hand 
representations and their electrophysiological properties were retained in the sensorimotor 
cortex, even after long-term amputation of the contralateral arm. The physiological properties 
of attempted hand movement in this patient turned out to be almost identical to those of 
executed hand movement in people with a healthy hand, exhibiting a spatially focused 
increase of high-frequency band (HFB, 65–175 Hz) power over the hand region and a 
distributed decrease in low-frequency band (15–28 Hz) power. Representations of three 
different fingers (thumb, index and little) also proved to be distinguishable, with enough 
neural information present to differentiate the finger movements using machine learning 
algorithms at a classification accuracy of higher than 90%, based on the first 1–3 s of the 
HFB response. The distinguishability of finger representations, fast temporal onset and 
sustained decodability of attempted movements over time from just a small (13 x 13 mm) 
piece of the sensorimotor cortex, are encouraging for utilization in a BCI. These conclusions 
imply that despite potential deafferentation and plasticity of the brain, motor areas can 
continue to be used in a BCI over longer periods of time to drive neural prosthetic devices or 
communication devices. 

In chapter 3, we have shown that the design (i.e. physical characteristics) and precise 
surgical placement of the electrode grid determine, to a large extent, how well neural 
information on hand movements is captured. Capturing the most relevant information, in turn, 
translates to the degree and reliability of control over a BCI. Using fMRI data-driven grid 
simulations, our study confirmed that most of the information encoding hand gestures resides 
in a densely packed area of the sensorimotor cortex. Although (additional) decodable 
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information is present outside of this informative area, any measuring capacity (i.e. electrodes 
in the case of ECoG) is best spent to measure from this relatively small informative area. 
Given the limited size (~22mm x ~22mm) of the relevant cortical area, there is a spatial trade-
off between the number of electrodes, the spacing in-between electrodes, and the size of the 
electrodes. Having larger electrodes (up to 3mm in radius) improved decoding in fMRI 
models, which is likely the result of an increase in the signal-to-noise ratio (SNR) caused by 
averaging over more voxels per simulated electrode. A similar electrode size to SNR 
relationship likely applies to ECoG recordings [89,190]. In accordance with the widespread 
assumption that higher resolution sampling will provide more information, our simulations 
showed that a higher number (up to 5 x 5 electrodes) of densely-packed electrodes provides 
a more informative resolution for decoding hand gestures in general. However, very similar 
results can be achieved with fewer electrodes (e.g. 3 x 3) and an optimal inter-electrode 
distance (e.g. 8mm), which is more practical in terms of battery life, cost of implantable 
amplifiers, real-time processing and clinical invasiveness. Our simulations of electrode grid 
placements also show that the grid configuration and exact placement on the cortex can be 
more important than having more electrode sites. These results strongly argue in favor of 
fMRI data-driven simulations (such as described in the study) to be used pre-operatively to 
ensure the most optimal control over an implanted BCI. 

In the context of a communication BCI for locked-in patients, some researchers 
suggest decoding hand gestures (from sign language) to spell letters, words, and sentences. 
Instead of using hand gestures, Chapter 4 proposes visual imagery. We demonstrate that 
visually imagined characters (i.e. seeing a letter in the mind’s eye) can be decoded from the 
early (V1, V2, V3) visual cortex with minimum training, providing an intuitive way of per-letter 
spelling in a BCI. We showed that prolonged visual imagery (of 3, 5 and 7 seconds) does not 
result in better classification over time, implying that. allowing more time to visually imagine 
does not contribute to the quality of the information present in early visual areas. However, 
prolonged imagery did extend decodability over time, suggesting sustained neuronal activity 
that can be utilized for BCI purposes. While the research here aims specifically at decoding 
discrete characters and understanding the temporal properties of imagery, these kinds of 
endeavors do not need to be limited to just characters. Decoding more complex shapes with 
advanced decoding models might provide a way for patients to convey information more 
efficiently. 

Activity in the dorsolateral prefrontal cortex (DLPFC) can be voluntary controlled and 
provide input to a BCI when motor representations are impaired. In chapter 5, we showed 
that people can learn to dynamically control the activity in the left DLPFC, a working memory 
region, within a short period of time when provided with closed-loop neurofeedback. The 
neurofeedback predominantly improved the ability to return the activity in the DLPFC to 
baseline after peak activation. Speculatively, being able to control DLPFC activity might 
benefit patients with psychiatric or neurological disorders that are related to working memory 
deficits. In the context of BCIs, voluntary controlled DLPFC activity could be used directly as 
an input signal. However, a potential practice effect (i.e. automatization of the task) and the 
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associated decrease of activity in the WM network [100,101] might result in reduced control over 
a BCI. Our results suggest that by providing closed-loop feedback, we may be able to negate 
a practice effect over time and preserve the reliability of the DLPFC input signal. 

6.2 Discussion 

The BCI field has the collective goal to improve and enhance people’s daily lives. The 
research in this thesis contributes towards this goal by investigating and optimizing BCI 
approaches.  

We have shown that electrophysiological properties of hand representations in the 
sensorimotor cortex remain intact after long-term amputation of the contralateral arm, 
supporting the idea that conclusions from fundamental research in healthy participants are 
transferable to specific patient populations and vice versa. We investigated how to optimally 
extract hand gesture information from the brain and how (invasive) BCI performance can be 
improved by matching the grid design to the resolution of information within the cortex and 
more informed grid placement. We demonstrate the feasibility of using visual imagery, taking 
into account the temporal properties, to provide an intuitive way to control a BCI with an 
absolute minimum of prior training on behalf of the user. We show that DLPFC activity can 
be voluntarily controlled by providing closed-loop feedback and how feedback – at least in 
the DLPFC – negates a practice effect. 

Although each of the studies in this thesis focuses on a specific brain function and 
area, I believe some of the insights can be generalized and applied in a broader sense. I will 
attempt to put the studies in this thesis into the context of the current developments in the 
field of BCI given the possibilities and challenges: I focus on the optimization of 
measurements, the feasibility and integration of brain functions, and finally elaborate on how 
BCI applications should be controlled. 

6.3 Measurement optimization 

Obtaining optimal information with (custom shaped) data-fitted electrode grids 

As illustrated in chapters 2 and 3, only a small piece of the hand sensorimotor cortex is 
required to provide sufficient information for a BCI when sampled at an optimal resolution by 
a limited number of well-placed electrodes. In terms of coverage, the same applies to 
decoding of (motor) speech [51,89], facial expressions [183] and visual perception [276,277], and 
might be generalized to other primary systems. Considering the scale and resolution at which 
we want to extract information (e.g. separate fingers or wrist rotations, the visual field-of-view, 
articulator movements), the field of BCI is still in need of hardware that optimally matches 
neuronal representations. Large clinical ECoG grids with a typical electrode spacing of 1 cm 
center-to-center might not offer the optimal resolution to pick up the detailed information we 
need in a BCI application (as shown in chapter 3). On the other hand, intracortical MEAs 
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might have too high of a resolution for BCI purposes, retrieving information that could just as 
easily be obtained by measuring from small populations of neurons without precipitous loss 
of unit activity, heavy temporal resolution data processing and the need for regular 
recalibration due to electrode-tissue shifts. To solve the issues of intracortical MEAs and 
sparse sampling with clinical ECoG, the mesoscopic scale of high-density ECoG grids (with 
a typical spacing of 3 to 4 mm) might provide the required resolution, and are already being 
used in research where they are placed temporarily alongside clinical electrode grids.  

In terms of the electrode grid shape, grids might be produced to fit the relevant region, 
fit the optimal resolution of information and can be irregular in layout. For instance, grid 
electrodes do not have to be laid out in equally spaced arrays or with the same electrode 
size, but could have electrodes in irregular patterns that match the relevant spatial properties 
of the information in the brain. Preferably, the design of such (custom) grids is driven by pre-
operative fMRI measurements and simulations to optimally match the neuronal 
representation of the brain function that is to be decoded. In addition, distances between the 
electrodes could be optimized to take advantage of the temporal-spatial dynamics, in the 
same way that adding the temporal component increases hand decodability [14]. 

Acquisition of sulcal information 

fMRI is able to measure below the outer superficial cortex and can therefore include 
information from the cortical sulci. ECoG is limited in that capability and mainly measures the 
electrical potential from the gyri of the brain. Although the brain’s outer exposed surface 
already provides enough information for high decoding performances, there can be equally 
valuable information within the sulci, for example, on hand movements [13,134,163]. SEEG 
electrodes could be used to measure from those places where ECoG cannot. In the clinical 
setting, SEEG is used increasingly for the localization of epilepsy sources [278–280]. Like ECoG, 
SEEG also captures field potentials and – if placed strategically – can be used for control 
[281,282] or decoding [283]. Although the sparse, spatially in-line, sampling along each SEEG lead 
might pose some limitations for the purpose of BCI (i.e. a small ECoG grid on the surface 
might be more informative than having multiple depth electrodes covering a small 
sensorimotor area), there could be a benefit in combining surface and depth measurements 
to sample from both the gyri and sulci, possibly using a single (custom) implant. I propose 
that the placement of these types of BCI implants should be guided by fMRI imaging. 

Future 

Most of these technological optimizations depend on a small number of companies that are 
technologically capable to manufacture such custom electrode designs, certify them for in-
human use, and are willing to serve a currently very small market. Luckily, some initiatives 
have recently emerged that might move the field forward and might push others to follow. As 
of yet, given the current technology, ECoG remains one of the best candidates when aiming 
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for a practical BCI to be used daily by patients or perhaps — in the future — even by healthy 
people. 

6.4 Feasibility of brain function and the integration of multiple functions 

Research and BCI development will continue to progress for several brain functions, such as 
hand or arm motor representations, visual imagery, or working memory. When considering 
the feasibility of brain functions and areas for a BCI, it is important to not only consider the 
capabilities of a brain function for a BCI at this moment in time (i.e. the current stage of 
research, which is often less than envisioned) but also to take into account the future potential 
(how a function is envisioned to be used). Some brain functions can be utilized more easily 
and are being utilized for BCIs at home or in a lab setting, while other brain functions can 
only be employed theoretically and require additional research, but carry great promise with 
them. In this paragraph, I will first consider the feasibility of each brain function for a BCI 
separately, followed by a perspective on the integration of multiple functions. 

Hand/arm motor representations 

As mentioned, the motor areas that drive hand and arm movement have a relatively large 
topographical representation on the cortex, which can be utilized with a variety of 
measurement techniques. For this reason, utilizing hand or arm-related activity from the 
sensorimotor cortex has been a popular and relatively far developed line of research. 

Utilization of hand or arm movements to control a prosthetic hand or arm is feasible 
with a BCI. Finger movements can be decoded in patients with an amputated arm (see 
chapter 2; [145,284]), in a similar way as in healthy people [10,13]. In addition, research has shown 
that finger flexion can be decoded on a continuous scale in people with an intact hand 
[10,74,75,285], suggesting that gradual finger control is possible. In terms of equipment, compact 
and advanced prosthetic hands have already been developed and are being used. For upper 
arm amputees, the kinetics of the wrist and arm joints might still provide a challenge for 
reaching a target in 3D space. Much of the arm research aims to reach a 2D or 3D target 
using bulky robotic arms or exoskeletons, which can only be used in a laboratory setting. 
Implementation of this research for clinical purposes would have a high yield. A potential BCI 
driven by hand or arm motor activity would not only serve a small number of locked-in patients 
(est. prevalence of .73 per 100.000 in the Netherlands [286]) but could also benefit a much 
larger target population with limb amputation [287–289]. However, currently a myoelectric-
controlled prosthesis (i.e. a prosthesis driven by muscles in the residual limb) might be more 
practical and appealing than one controlled by brain signals. 

Utilizing hand or arm movements for a communication BCI might be less 
straightforward but still provides interesting opportunities. Hand or arm movement could be 
employed to control a cursor, but would in turn need to operate some form of a virtual letter, 
word or sentence board. Spelling by decoding sign-language hand gestures could provide a 
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fast and reliable alternative that better fits the purpose of communication. However, before 
such a communication BCI could be realized, more detailed decoding of finger movements 
is required, and the number of gestures would have to be scaled up. 

An alleged threat to the utilization of attempted hand or arm movement could lie in the 
deafferentation and plasticity of the brain, causing the usability of the signal in the 
sensorimotor cortex to degrade. However, as shown in Chapter 2, the physiological 
properties of the hand remain intact for utilization over time in amputees. And a similar 
conclusion could be reached for the locked-in population that already uses hand movement 
to control a BCI [1,42,45]. 

Visual 

The utilization of the visual system is relatively underexplored for the purpose of a BCI, 
especially given the extensive knowledge about this system. The activity in early visual areas 
(V1, V2, V3) could be used to control a BCI by a range of measurable visual properties in a 
very intuitive way. For instance, in paralyzed people, by decoding imagined characters 
(chapter 4), or attention [243,290]  on virtual letter grids. Promising research on the decoding of 
visual perception from brain activity [76–81], the neural overlap in visual imagery and perception 
[199,201,215,225], and generative imagery decoding models based on in-silico training [277] or prior 
perceived stimuli [225] implies that some degree of decoding imagined scenes or objects from 
“the mind’s eye” is not far off. When realized, this could provide a very efficient way to 
communicate information and is highly complementary to what can be decoded from the 
motor system.  

While early visual areas show promise in the decoding of visual imagery, there are two 
practical issues. First, interfacing with the primary and secondary areas that underlie the 
visual system using invasive measurement techniques is difficult because of poor 
accessibility to these occipital regions. Part of the early visual cortex cannot be reached from 
the brain surface (i.e. located in the calcarine fissure) or is obstructed by large cerebral veins 
(e.g. superior sagittal sinus and internal occipital vein). Second, changes in the visual 
perception (i.e. the input to the retina) will result in stronger neuronal activity in the early visual 
regions than imagery and will “interfere” with the — much weaker — neuronal activity 
generated with visual imagery. Visual imagery would have to be performed while gazing at a 
plain surface or having the eyes closed. Feedback on typing can be auditory or be provided 
outside of a spelling time window in the visual periphery. While the interference of visual 
perception might be an issue, the difference in neuronal activation and signal strength 
between visual imagery and perception could, in fact, be exploited in a BCI to detect whether 
the patient intends to spell or is just looking around.  

A different approach could decode visually imagined concepts or categories, like 
faces or houses, from higher-order visual areas (e.g. fusiform face area, lateral occipital 
cortex or the intraparietal sulcus). High-order visual areas have more frequent clinical 
coverage than early visual areas and can provide good decodability [208,291–296]. However, given 
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the abstraction of the representations and the large number of categories needed to provide 
communication, higher-order areas alone might not be suited for a communication BCI. 

Dorsolateral prefrontal cortex 

The DLPFC, one of the working memory areas, can be used directly as a voluntarily controlled 
input signal for a BCI. The closed-loop feedback that a BCI provides should negate a practice 
effect and allow a user to rapidly acquire dynamic control over DLPFC activity (Chapter 5). A 
DLPFC-based BCI can be a solution for when motor function is impaired [96–99] or when a 
mentally less fatiguing alternative to sensorimotor imagery is desired [68]. However, there is a 
good chance that performing another task (like remembering what to say or spelling a 
sentence in a communication BCI) would also evoke DLPFC activity and interfere with, or 
cause unwanted, BCI control. While such interference might make direct control of a BCI with 
the DLPFC impractical, DLPFC activity can still be invaluable when combined with other brain 
functions, as discussed later on. 

Mouth motor representations 

The research in this thesis on hand motor representations may also apply to mouth motor 
representations. Neural representations of mouth movements are preserved over time when 
people lose the ability to speak due to stroke [84] and it is believed that decoding articulator 
movements could restore speech in a communication BCI [54]. As such, an fMRI-based design 
of electrodes (Chapter 2) for decoding imagined speech may be equally valuable. Mouth 
motor representations could, in the same way as the hand motor, visual and working memory 
functions, be complementary to, and integrated with, other functions in a BCI. 

Integrating multiple brain functions 

While it is intuitive and tempting to tie one specific brain function to one specific purpose, it 
may be important to explore and integrate multiple brain functions. Motor representations of 
the hand or arm are relatively easy to utilize and could already in the near future provide a 
functional BCI, but the addition of other functions can prove beneficial. 

One reason to combine brain functions is to enhance control to make it faster and 
more reliable. For instance, an object in 3D space might be targeted better with a robotic arm 
when sensorimotor-control is combined with visual attention information from the early visual 
cortex. In the same way as the visual dorsal stream likely provides such a mechanism for 
object location and motor control [297,298]. 

Another reason to combine brain functions is to offer multimodal control, to create a 
BCI that is not driven just by a single function. As with a car, you don’t just want to be able to 
steer it in a particular direction, but also would like to have a gas pedal, a brake and the 
possibility to turn the car off. In the same way, when controlling a cursor on the screen, you 
also want to “click” or perhaps switch the control to something other than the cursor. When 
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considering the research in this thesis, the DLPFC activity in particular could be integrated 
with another brain function to detect the intention to use a BCI or prevent false positives. For 
example, the DLPFC could be used to detect whether a BCI user is passive or asleep [299,300] 
or whether a user is focusing on BCI control and should respond to the input of another brain 
function. Furthermore, it has been shown that an error-potential in the DLPFC can be used to 
detect unintended false positives in a hand motor-driven cursor control task [69], which could 
be translated to detection of misspelled letters in a communication BCI. A more extensive 
BCI could also allow for different functions to control several devices depending on the 
context. To speculate on future technology, people equipped with a BCI could choose to talk 
using speech motor representations, control a robotic arm with hand motor representations, 
control a wheelchair with leg representations, convey graphical concepts with visual imagery, 
and switch back to finger movement to control the cursor on their web-browser. 

Given the variety of ways in which brain functions and regions could be integrated, 
and the relatively limited brain coverage and opportunity to measure in ECoG, fMRI could 
play a vital role in investigating such integrations prior to their implementation using ECoG. 
In order to achieve the integration of multiple brain functions, I think it is necessary to have 
multiple (fMRI optimized) implants, similar to the Utrecht NeuroProsthesis [1] with grids placed 
on both the sensorimotor cortex and the DLPFC. 

6.5 Control and prior knowledge of BCI applications 

Balancing freedom, reliability, speed and the use case 

We can consider several types of BCI control. Translating brain input or features directly to 
one continuous dimension (like in Chapter 5) gives a BCI user a tremendous amount of 
control, where the degree of control and freedom can be increased significantly by simply 
having more dimensions. Two-dimensional continuous control is already enough to resemble 
how we use a mouse cursor on a screen, whereas three dimensions would resemble how we 
move our hand in space. In comparison, the type of BCI control that translates activity into a 
binary value (i.e. brain-clicks) or that classifies specific activity features into discrete classes 
might seem restrictive and limited in its possibilities. However, when we take into account the 
reliability of control and the use-case (i.e. the goal of a specific BCI), then a BCI that works 
with or includes brain-clicks or discrete brain states can turn out to be advantageous.  

Despite the reasonable reliability of continuous control (e.g. 53-73% on two 
dimensions [170]), it is not as reliable as what we expect in real life when, for example, we are 
moving our cursor to click a link on a webpage, typing on a keyboard or trying to pick up a 
coffee cup. In use-cases where a paralyzed person is trying to communicate or wants to 
control a robotic arm, it can be frustrating if a BCI keeps misclicking, mistyping, or knocks 
over a drink. In time, advancements in the measurement techniques (see Chapter 6.3), 
optimal sampling of relevant information (see Chapter 3) and signal processing will allow for 
continuous multi-dimensional control to become increasingly reliable. But until continuous 
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control reaches a degree close to perfect, brain-clicks or classification of discrete brain states 
could provide a more reliable solution. Precisely because the degrees of freedom for control 
are small and the output options are limited, the chance of error in the output decreases and 
higher reliability can be achieved. In addition, having limited options can benefit the speed of 
BCI output, especially in use-cases where the output priority lies in a small number of 
frequently required options rather than more freedom of control. 

Another reason to take different types of control into account is the use-case and 
specific (sub)goals of a BCI. Like in the example of the car in the ‘integrating multiple brain 
functions’ paragraph (in 6.4), two-dimensional control without a straightforward ability to click 
or select, or without the ability ever to switch the BCI off, might not be practical. 

An example is the Utrecht NeuroProsthesis (UNP) [1], which currently provides BCI 
control to several locked-in patients using a permanent ECoG brain implant over the 
sensorimotor cortex. I was involved in this project since the first patient was implanted and 
have adjusted the working of this BCI to fit the patient’s needs over a period of at least four 
years. The UNP provides the patient with an alarm function to call a caretaker (i.e. a nurse or 
relative) by keeping brain activity above a threshold (i.e. the brain-click “on”) for a longer 
period of time. To at least one of the patients, this simple control functionality was very 
reliable, highly valued and comforting. Only secondary comes the (less reliable and more 
slow) ability to spell sentences by picking letters from a virtual letter grid. To illustrate, when 
the patient is asleep, only the alarm function is available. Only after the alarm is noticed by a 
caretaker, can the program be switched to spelling. While this example does not entail 
different control types, it does illustrate the importance of mode switching, reliability and 
speed at the expense of control freedom in a real-life use case. 

In conclusion, at this point of BCI development, the type of control involves a balance 
between the degrees of freedom, reliability, speed, and use-case. While it is difficult enough 
to obtain reliable control over one feature, an approach where different types of BCI control 
and multiple brain functions are combined in a practical manner to satisfy the goals in a use-
case should still be considered. 

A-priori knowledge, training and neurofeedback 

Most BCIs possess a certain degree of prior knowledge — in the broadest sense — to function. 
Already, different output types and their reliability and speed are related to different degrees 
of prior knowledge; for example a classifier requires knowledge of activity patterns before it 
can function. BCIs can be given additional prior knowledge to become even more reliable 
and fast at the expense of degrees of freedom that are not required. In a communication BCI, 
the knowledge of grammar constructions and the Bayesian probability of the following letter 
or the next word can be added (e.g. a vocabulary language model [40]). During movement, the 
kinetic restrictions of the arm and hand [301] or constraints in finger flexion [74] can be used. 
And in decoding visual cortical activity, prior information from encoding models [76,77,80] or 
theories of visual processing [277] can be applied. Over recent years, BCI decoding models 
became more complex by prior training on big datasets, largely driven by developments in 
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artificial neural networks. Ironically, these neural networks often are black-boxes in which 
processing layers contain such abstract pieces of information that — for humans — it is difficult 
to follow and match with fundamental processes in the brain. Regardless, neural network 
models might improve decoding performances [15,302–305] and perhaps similar models could 
be generated based on large amounts of fMRI data and applied in an ECoG-BCI application. 

Finally, in the same way as (decoding) models can improve with considerable amounts 
of data, the quality of the data should be taken into account. In fMRI, head movements have 
a negative impact on the decodability of visual imagery (as shown in Chapter 4), and the 
classification accuracy of hand gestures from brain activity correlates significantly with the 
consistency of gesture execution [92]. In terms of consistency, a user might practice the 
execution of gestures beforehand to reinforce more similar neural representations, resulting 
in more reliable BCI control. Closed-loop feedback might have a similar effect in a more 
natural way because it provides the user with constant feedback on the “quality” or 
“correctness” of their neural representation. Therefore, it should be possible to learn and 
improve that representation and gain more reliable control. While we provided such feedback 
on a continuous dimension for DLPFC in Chapter 5, feedback can also be provided on 
categorical representations. Although I spent a lot of time and effort trying to achieve 
neurofeedback on visual imagery to reinforce more consistent neural representations during 
my PhD, these efforts did not become part of this thesis. The problem I encountered was that 
to investigate a positive effect of categorical neurofeedback, there has to be a very reliable 
classification model underlying the feedback; otherwise, the “wrong” neural representations 
on inaccurate classifications might get reinforced as well. For visual imagery, a reliable 
enough classification model proved too difficult at the time. Still, I believe this direction is 
worth pursuing, particularly because there is less activity during visual [277] and motor imagery 
[6,165,306] compared to actual perception and execution of movement, which leaves much 
opportunity for improvement. By bolstering neural representations of imagery either in 
amplitude or consistency, it is possible to take another next step towards more reliable, 
multifunctional BCI control. 

6.6 Conclusion 

In this thesis ECoG and fMRI were used to investigate the neural properties of sensorimotor, 
visual and working memory functions for utilization in a BCI. Each of these individual functions 
could provide control over a BCI, however, integration of multiple functions in the future is 
likely to offer a more complete, controllable and stable BCI. In addition, I recommend the use 
of electrode grids tailored specifically to optimally sample the most relevant information from 
the cortex, ideally driven by fMRI measurements. Given the current state of the field, ongoing 
research and pending initiatives, I see a bright future for brain-computer interfacing. 
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Brein-Computer Interfaces (BCI) hebben de potentie om onze levens te verbeteren door ons 
in staat te stellen om apparaten te bedienen met onze gedachten en intenties. Op dit moment 
richten BCIs zich voornamelijk op een kleine patiënt populatie. Bijvoorbeeld, op ernstig 
verlamde mensen die niet meer kunnen praten (b.v. mensen met ALS) en met ingebeelde 
handbewegingen een alternatief communicatiemiddel kunnen aansturen. Of op mensen met 
een missend ledenmaat, die met hersensignalen een prothese kunnen bedienen. Hoewel 
huidige BCIs al indrukwekkende resultaten geven, zijn ze beperkt in bediening en het 
praktisch (dagelijks) gebruik. Om gedigitizeerde hersenactiviteit handig aan te kunnen 
wenden is er nog veel te ontdekken met verschillende uitdagingen. Deze thesis richt zich op 
het bevorderen van brein computer koppelingen door de neuronale activiteit van 
verschillende hersenfuncties en gebieden optimaal te benutten. 

Deze thesis bouwt op twee – complementaire – technieken om de hersenactivatie te 
meten: electrocorticografie (ECoG) en functionele Magnetische Resonantie Imaging (fMRI). 
Bij ECoG wordt een strip of raster van elektroden onder het schedel op het hersenoppervlak 
geplaatst waarbij elke elektrode het gecombineerd elektrisch potentiaal van een groep 
onderliggende neuronen meet. Dit levert informatie met een hoge temporele resolutie en een 
stabiel signaal over de jaren heen. Daarnaast zijn ECoG-BCIs compact en esthetisch prettig 
(want geïmplanteerd). Om deze redenen wordt ECoG hier beschouwd als een van de weinige 
technieken die geschikt is voor een BCI die door patiënten dagelijks thuis gebruikt kan 
worden. Het nadeel van ECoG is dat het invasief is en een hersenoperatie vereist; mede 
hierdoor is ECoG onderzoek en zijn ECoG-BCIs relatief schaars. fMRI, daarentegen, meet op 
een niet-invasieve veilige manier het volledige brein en heeft ons de afgelopen decennia 
grote hoeveelheden informatie over de werking van het brein verschaft. Bij fMRI worden 
lokale hemodynamische veranderingen, welke gerelateerd zijn aan de activiteit van 
neuronen, in het brein gemeten. fMRI kan op een hoge spatiele resolutie indirect 
hersenactivatie meten, maar metingen kunnen alleen in een grote MRI scanner plaatsvinden. 
Als gevolg hiervan is fMRI niet geschikt voor een thuis-BCI, maar wel voor (fundamenteel) 
onderzoek dat weer bruikbaar en vertaalbaar is naar een ECoG-BCI. 

Onderzoek naar het decoderen vinger-bewegingen wordt voornamelijk uitgevoerd op 
mensen met een bewegende hand. Echter, BCIs richten zich bijna exclusief op mensen met 
verlamde of verloren ledenmaten. Hoofdstuk 2 laat zien dat, zelfs lang na amputatie van de 
contralaterale arm, hand representaties en de bijbehorende elektrofysiologische 
eigenschappen in de sensorimotor cortex behouden blijven. De fysiologische 
eigenschappen van gepoogde handbewegingen in een patiënt met een verloren arm bleken 
vrijwel identiek aan die van uitgevoerde handbewegingen bij mensen met een gezonde hand, 
met een spatiale lokale verhoging van de hoge-frequentie band (HFB, 65-175 Hz) power in 
de hand regio en een breed verspreidde verlaging in de lage-frequentie band (LFB, 15-28Hz) 
power. De representaties van drie verschillende vingers (duim, wijsvinger en pink) bleken 
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onderscheidbaar, met voldoende neuronale informatie om met meer dan 90% classificatie-
nauwkeurigheid vingerbewegingen te kunnen onderscheiden m.b.v. machine learning 
algoritmes op de eerste 1-3 s van de HFB respons. De onderscheidbaarheid van vinger 
representaties, de vroege mogelijkheid tot decoderen en voortdurende decodeerbaarheid 
vanaf slechts een klein (13 x 13 mm) stuk sensorimotor cortex zijn bemoedigend voor 
benutting in een BCI. Dit impliceert dat, ondanks mogelijke deafferatie en brein plasticiteit, 
motor gebieden nog altijd gebruikt kunnen worden, ver na amputatie of (mogelijk) 
verlamming, om neuronale prothese of communicatie apparaten aan te sturen. 

In hoofdstuk 3 laten we zien dat het ontwerp (i.e. fysieke eigenschappen) en precieze 
chirurgische plaatsing van ECoG-elektroden op het brein voor een groot deel bepalen hoe 
goed de neuronale informatie van handgebaren gemeten wordt. Het meten van de meest 
relevante informatie vertaalt zich naar de mate en betrouwbaarheid van sturing over een BCI. 
Door met fMRI electrode configuraties en plaatsingen te simuleren, bevestigt onze studie dat 
het meeste van de handgebaar informatie gecodeerd zit in een dicht opeengepakte regio in 
de sensorimotor cortex. Hoewel (extra) informatie aanwezig is buiten dit informatieve gebied, 
kan meet-capaciteit (i.e. elektrodes in het geval van ECoG) het best ingezet worden op dit 
gebied. Gegeven het beperkte oppervlakte (~22mm x ~22mm) van het relevante corticale 
gebied moet er een balans worden gevonden tussen het aantal elektroden, de ruimte tussen 
elektroden en de grootte van de elektroden. Grote elektroden (tot 3mm in radius) verbeterden 
de decodeerbaarheid in fMRI modellen, waarschijnlijk door een toename in de signaal-tot-
ruis verhouding (SNR) veroorzaakt door het middelen over meer voxels per gesimuleerde 
electrode. Een vergelijkbare relatie tussen electrode grootte en SNR is waarschijnlijk ook 
aanwezig in ECoG metingen. Over het algemeen, en in overeenstemming met de 
wijdverspreide aanname dat hoger resolutie metingen meer informatie verschaffen, lieten 
onze simulaties zien dat een hoger aantal (tot 5 x 5 elektroden) van dicht opeengepakte 
elektroden de meeste informatie resolutie geeft voor het decoderen van hand gebaren. 
Echter, vergelijkbare resultaten kunnen bereikt worden met minder elektroden (bv. 3 x 3) en 
een optimale inter-elektrode afstand (bv. 8mm), wat meer praktisch is in batterijduur, kosten 
van implanteerbare versterkers, real-time verwerking en klinische invasiviteit. Daarnaast laten 
onze simulaties van de elektroden-plaatsingen zien dat de configuratie en de exacte plaatsing 
op de cortex veel belangrijker kunnen zijn dan het hebben van meer elektroden. Deze 
resultaten pleiten dan ook sterk voor het gebruik van data-gedreven simulaties in fMRI (zoals 
beschreven in de studie) voorafgaand aan ECoG implantatie zodat de meest optimale 
controle over een BCI kan worden bereikt. 

In de context van een communicatie-BCI voor locked-in patiënten opperen sommige 
onderzoekers voor het decoderen van hand gebaren (uit de gebarentaal) om zo letters, 
woorden en zinnen te spellen. In plaats van handgebaren stelt hoofdstuk 4 visuele inbeelding 
voor. Wij demonstreren dat visueel ingebeelde karakters (die je in je geestesoog ziet) 
gedecodeerd kunnen worden van de vroege (V1, V2, V3) visuele cortex met minimale 
oefening, en zo een intuïtieve manier van per-letter spelling in een BCI kunnen bieden. Wij 
laten zien dat langdurige visuele inbeelding (van 3, 5 en 7 seconden) niet in beter classificatie 
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resulteert, wat impliceert dat meer tijd om visueel in te beelden niet bijdraagt aan de kwaliteit 
van informatie in de vroeg visuele gebieden. Echter, langdurige inbeelding verlengde wel de 
decodeerbaarheid. Dit suggereert een constante neuronale activatie, welke geëxploiteerd 
kan worden voor BCI doeleinden. Terwijl het onderzoek zich hier specifiek richt op het 
decoderen van discrete karakters en het begrijpen van de temporele eigenschappen van 
inbeelding, hoeven dit soort ondernemingen niet beperkt te worden tot karakters. Het 
decoderen van complexere vormen met geavanceerde modellen kan wellicht een pad bieden 
waarmee patiënten informatie meer efficiënt kunnen overdragen. 

De activatie in de dorsolaterale prefrontale cortex (DLPFC) kan vrijwillig gereguleerd 
worden, en zodanig fungeren als input voor een BCI wanneer motor representaties verzwakt 
of niet bruikbaar zijn. In hoofdstuk 5 laten we zien dat men de activiteit in de DLPFC, een 
werkgeheugen gebied, dynamisch kan leren te reguleren binnen een korte tijd met behulp 
van closed-loop neurofeedback. Neurofeedback verbetert voornamelijk het vermogen om de 
activatie in de DLPFC na een piek terug te brengen naar de basis activatie. Hoewel 
speculatief, kan het reguleren van DLPFC activatie ten goede komen aan patiënten met 
psychiatrische en neurologische aandoeningen die gerelateerd zijn aan stoornissen van het 
werkgeheugen. In de context van BCIs kan vrijwillig gereguleerde DLPFC activiteit direct 
gebruikt worden als een input signaal. Echter, een potentieel oefen-effect (waarbij de taak 
automatiseert) en de daaraan gerelateerde daling in activatie in het werkgeheugen-netwerk 
kan resulteren in verminderde controle over een BCI. Onze resultaten suggereren dat door 
closed-loop feedback te verschaffen, een mogelijk oefen-effect teniet gedaan kan worden en 
de betrouwbaarheid van het DLPFC signaal behouden blijft. 

Deze thesis onderzocht de neuronale eigenschappen van sensorimotor, visuele en 
werkgeheugen functies voor optimale benutting in een BCI. Samengenomen dragen deze 
hoofdstukken bij aan het fundament voor een thuis-BCIs met de potentie om levens te 
verbeteren. Elk van de individuele functies kan controle bieden over een BCI, echter, het 
integreren van meerdere functies in de toekomst kan leiden tot een meer complete, beter 
bestuurbaardere en stabielere BCI. Daarnaast pleit ik voor het gebruik van op maat gemaakt 
elektroden configuraties om zo optimaal de meest relevante informatie van de cortex te 
meten. Zulke ontwerpen zouden idealiter gedreven worden door fMRI metingen. Gegeven de 
huidige staat van het veld, de lopende onderzoeken en de komende initiatieven zie ik een 
glansrijke toekomst voor brein-computer interfaces tegemoet. 
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