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Introduction

fiNever say there is nothing beautiful in the world anymore. There is always something to
make you wonder in the shape of a tree, the tremblind o & RAlbert Sweitzer



1.1 Preface

Decision making in developmental systems is a highly dynamic and complex process, humerous
individual entities, be it genes, cells or tissues, need to somehow give a coordinated response. This
decision making starts from an embryonic state, when oneewv precursor cells proliferate and via
coordinated differentiation give rise to a funct
lifetime to ensure survival and ultimately reproduction. Developmental decision making requires an
intricate balane between robustness and flexibility. Organisms need robustness to avoid possible
detrimental effects of genetic or environmental perturbations that hamper fitness, yet simultaneously
require substantial plasticity to enable adaptation of phenotype ovibehan response to different

conditions.

1.1.1Robust development

Developmental robustness could be defined as the persistence of a phenotypic trait given a
perturbation, being either environmental fluctuations, gene expression, developmental noise or genetic
mutations. The evolution of multicellular organisms with iasiagly complex body plans has been
paralleled by an increasing complexity in the regulation of developmental genes ensuring complex yet
robust developmeniLevine and Tijian, 2003, Davidson, 2006peciphering the regulatory
mechanisms that drive the spatinporal gene expression patterns underlying developmental
programs and the causes for their robustness has been the aim of many studies. For example, in
mammals the direction of the body axdglietermined by a symmetry breaking patterning e\iear

and Loebel2007, Zhang and Hiiragi, 2018pat is later on in development followed by the patterning

of the somitegPanganiban et al., 1997¢8sho et al., 2003As originally proposed by Cooland
Zeeman(Cooke and Zeeman, 1976&omites fom through a cloclandwavefront mechanism in

which a cell autonomous gene oscillator combined with a morphogen gradient enables the sequential
translation of temporal oscillations into a spatially periodic pattern. In animals, symmetry, regularity
and scahg of somites and the structures that derive from it are crucial for motility and fitness, and
hence many mechanisms exist enhancing robustness of somitogenesis. As an example, it has been
shown that synchroni zati on oimporiam dneans @ uatiice cel | 6
developmental nois@Horikawa et al.,2006) Like animals, plants also use spaimnporal gene
expression to establish their main body axis and the subsequent patterning of the developing embryo
(Hardtke and Berleth, 1998, Hamann et al., 1999, Laux et al., 200d&theless, in contrast to most
animals that have completed their body plan after embryogenesis, plants continually add new body
parts throughout their life and hence continuously deploy major developmental patterning processes.
Next to growth and patterning of the main shoot and rataral shoots and roots will emerge from

the main organs in a spatiemporally repetitive pattern that particularly for roots bears some
resemblance to somitogenegisnsson et al., 2006, Prusinkiewicz and Lindenmayer, 2012, Biedron
and Banasiak, 2018Yhe continuous addition of modular structuneskesplants morphologically

robust, not per se in terms of exact symmetry or high regularity, yet in enabling repair or replacement
of chewed at wounded organs and the presence of a flexible outgrowth potential that can respond to
environmental conditions. The redundancy in plants is not limited to the morphological level as plants
are polyploid and have the unique ability to deal wdlge numbers of gene copies, through
hybridization or even whole genome duplication, enabled by a plant specific gene silencing
mechanisn{Ha et al., 2009, Ding and Chen, 201Bdlyploidy has been shown to not only positively
affect evolvability but also plasticity and the redundancy in plant morphology and genetics has been



suggested to be compensatory for their sessile life style and lack of mov@#aeper, 1980,
Dubcovsky and Dvorak, 2007, Wei et al., 2019, Fox et al., 2020)

1.1.2Yet a flexible body

Combining robust development with adaptive phenotypic plasticity is arguably the most complex in

plants due to their complete dependence on their local environment combined with an extensive post
embryonic development. Where animalgim adjust the size of their fixed number of somites based

on body height or available food sources, plants develop and adjust the numbers and growth rate of
their lateral outgrowths continuously throughout their Feor exampl e, for t he pl &
conditions do not only change globally but also locally; plant roots encounter patches of nutrients,
beneficial bacteria, water or repellent substarael are able to adjust their growth rate and direction

and branching pattern accordingly. As a case in point, gene expression downstream of nutrient level
signalling enables plant roots to adjust their growth rate and root hair d@visitgr and Schmidt,

2004, SalazaHenao et al., 2016)Jnderstanding the mechanisms of root growth and branching and

the integration of environmental signals into such programs that drive their phenotypic plasticity is of
crucial importance to improve future agricultural yield. In this thesis we study llowpl r oot s d&édec
where to grow and when to branch. We explore how plant roots integrate environmental signals yet
balance these signals with the need for a robust body plan in the context of lateral root branching and
growth direction of the root.

1.2 Plant roots

1.21 Evolution of plant roots

After colonising land, plants evolved rhizoids, root like structures, during Early Denovian Times (c.
400 million years ago) that facilitated attachment to the surface as an early adaptation to the land
environmeniRaven and Edwards, 200T)he single celled rhizoids exhibit root like functions such

as anchorage and uptake of water and nutrients, yet structurally most closely resemble modern root
hairs.Fossil evidence indicatéisat true roots, as known in current extant plants, with aae#éwing
meristem, gravitropic response and a root cap, emerged first in vasculaigtamisk and Strullu

Derrien, 2014) The roots of vascular plants appear to have acquired these traits that facilitate below
ground growth in a step wise manner, with growth towards the gravity vector andrensafng
meristematic region preceding the appearance of root hairs andaapgbietherington and Dolan,

2018) One of the initial acquired traits of roots, gravitropic growth is not only beneficial for anchorage
of the plant but is also essential for reaching nutrients and \{B¢ago Jr and Fernando, 2013)
Although all land plant roots exhibit a form of gravitropism, osdedbearingplants evolved a fast

and efficient gravitropic response while earlier diverging plant speciesatedewer and less efficient
response to gravity. The fast efficient gravitropic response thus specifically evolved in plants that
colonised dry land as part of their seed mediated independence of a water rich environment, further
underpinning the argumeat the importance of gravitropism for plant resource acquis{tiomkies

et al., 2010, Kenrick and StrullDerrien, 2014) A recent studyy (Zhang et al., 2019%9howed that

two main components are responsible for the fast gravitropic response: 1) root architecture with
gravity sensing starch cells in the root tip away from the elongation zone of the root, 2) efficient
transport of the plant hormone auxin in thetrtip(Zhang et al., 2019)nterestingly, the role of auxin
transport is not limited to the emergence of fast gravitropism, strbaently been shown that
evolutionary innovation in the auxin transporter family FIRRMED has been essential for the



evolutionary trajectory of flowering plants in facilitating developmental patterning and flowering
(Zhang et al., 2020Besides gravitropism vascular plant roots exhihiarage of tropic responses,
phototopism (Kutschera and Briggs, 2012hydrotropism(Shkolnik et al., 2016) halotropism
(GalvarAmpudia et al., 2013and thigmotropisniMassa and Gilroy, 2003) he evolutionary origin

of these responses remains thus far unknown. Nonetheless, most of these tropisms, except for
hydrotropismare auxin mediated indicating a possible coevolution with gravitropism and innovations

in auxin transport.

Another crucial transition in root evolution was the capacity to branch, and in this way provide optimal
anchorage and nutrient and water foraginteptial. The exact origin of root branching is debated,
however a similar trend as gravitropism towardhigher plasticity in later evolved plant lineages can

be observed. More ancient roots of the lycophyte clade can only form a lateral root bygghkiitin

main roots, ferns have a number of cells that can form a lateral root and finally angiosperms have
dedicated cell files that could potentially form lateral roots at all positions on the mafMuaite and
Beeckman, 2019)

During their conquest of land, plants not only evolved to become adapted to life on dry land, but their
close interaction with their environment also dr
cycle and oxygen statiigenrick and StrulleDerrien, 2014, Dahl and Arens, 2020he presence of

land plants also led to the formation of new habitats for other species and shaped landscapes and
weathering condition&ibling and Davies, 2012, Labandeira, 2013, Quirk et al., 20t®se strong

abiotic and biotic interaction of plants with thenvironment is believed to be a major driver of
evolution and biodiversity, as was already postulated by Charles D@patiwin, 1859) In addition

to shaping their environment, the body plan of individual plants themselves are strongly shaped by
their environment. Enabled by the evolution of more plastic root branching meobkaaixd
sophisticated tropisms, plant roots adapt their branching patterns and growth directions to the presence
of beneficial microbes, nutrients and abiotic stress conditions such as salt or drought.

1.2.3 Arabidopsis thaliana as a model organism

Undesstanding the basic developmental processes of plant roots and the adjustment of growth and
branching in response to changing environmental conditions have been an ongoing focus in plant
research. To gain insight in root developmental processes the madeAbidopsis thalianéhas

been extensively studied. Arabidopsis is a member oBthasicaceadamily, and although not a

crop species itself, insights from Arabidopsis research have been successfully applied to crop species
due to the close evolutionary relationship between all flowering pl8atgjuet et al., 2017) he root

of Arabidopsis is highly regular in organization and has a relatively simple structure, combined with
its short life cycle, up to 750 natural varieties and compatibility with laboratory growth conditions,
this has made Arabidopsis a very usefadel plant.

In the last decades studies on the Arabidopsis root have provided numerous insights on its radial
patterning into distinct cell type#ts longitudinal developmental zonation governing growth and
terminal differentiation of cells and tirmonaigenetic control of these process&gabidopsis has

a socalled taproot system, consisting of a persistently maintained main root with lateral roots
branching from this main root (Rige 1.1A). The individual roots are cone shaped and consist of
different tissues that are organised in a radial paffeotan et al., 1993, Scheres et al., 2002)the

middle of the root are multiple layers of vasculature cells surrounded by 4 layers of outer tissue,
pericycle, endodermis, cortex and epidermis, respectively@iglA). Finally, in the root tip the



epidermis is surrounded by multiple lagef lateral root cap cells that shed off when they mature,
leaving more shoot ward parts of the root with the epidermis as oute(Bayerett et al., 2010 he
root cap protects the stem cell region, columella and meristem, in the&listaspart of the root.

Research in Arabidopsis has shown that plant hormones play a critical role igrowdah,
developmentand adaptive responses. A critical player is the phytohormone auxin that influences
virtually all processes in growth and d@depment. The most wellnown auxin control pathway is via
nuclear signalling and encompasses a transduction network with 2 main classes of regulatory factors,
the Auxin Response Factors (AREE)masov et al., 1999a, Boerat, 2014)and the transcriptional
repressors Aux/IAAs(Causier et al., 2012)At low cellular auxin levels, activating ARFs
heterodimerize with Aux/IAA, preventing them from activating gene expressioh. &ligin levels
induce degradation of Aux/IAA via interaction with the TIR1/AFB complex, thus promoting the
release of ARFsand enabling induction of target gene expresgkepinski and Leyser, 2005,
Calderon Villalobos et al., 2012\part from AUX/IAA-auxin and AUX/IAA-ARF binding affinity,

auxin dosage sensitivity can be further tuned through the presence of negatigaximosensitive
ARFs competing with the positive regulatory ARM¢eijers and Jurgens, 2004/eijers et al., 2005,
Vernoux et al., 2011)in addition to AUX/IAA-ARF nuclear signallingadditional norcanonical
nuclear pathways have been identified, such as the ARF variant ETTIN, which lacks an AUX/IAA
binding domain but instead exhibits amxin dependent dimerization with the INDEHISCENT (IND)
transcription factor (Simonini et al., 2016).

Finally, only recently, using new technological advances, it has been possible to demonstrate that
auxin signalling is not limited to relatively slow flifential gene expression, but that cytoplasmic
auxin sensors exist enabling very fast (30s) respotizmsdrych et al., 2018)This rapid auxin
response pathway was shown to involve cytoplasmic TIR1henclyclic nucleotidgyated ion channel
CNGC14 which upon inducing Ca2+ influx leads to plasma membrane depolarization.

The spatietemporal distribution of auxin is impacted by active laagge transport by the PIN
FORMED family (PINs)YOkada et al., 1991, Bennett et al., 1995, Friml et al., 2002hAUX/LAX

family (Bennett et al., 1996)nterestingly, auxin itself, through a n@anonical pathway involving
kinases, has been shown to adjust the levels and activity of its own transpor{@aRiblsa et al.,

2014, Dubey et al., 202&nd also to influence the expression levels of AUX/L@dskowski et al.,

2006) Auxin transporters exhibit a tissue and developmeratiaation specific pattern. Additionally,
particularly in case of the exporting PINs they are localized on the cell membrane in a polar orientation
facilitating directional transport. Specifically, the PINs in the vasculature tissue are oriented mainly
downward, while the outer tissues have PINs with upward orientation and additionally above the
meristem also slightly inwards. Combined this causes a flow of auxin that can be described as a
reversed fountai(Grieneisen et al., 200.7)



B Differentation Zone:
No Growth

Elongation Zone:
Vacuolar expansion

Transition Zone:
Cytoplasmic growth

Meristematic Zone:
M Columella Transit amplifying cells
[7] Lateral root cap

B Quescent centre

[ | Epidermis

[] Cortex t T
B Endodermis 1 .I 1
= Pericycle

Stem cell niche:
Slow dividing stem cells

Figure 1.1. Overview of different root tissues and developmental zones in Arabidopsis thalfnédealized root
architecture with different root tissue, with in the root tip: root cap (grey), columella (blue), quiescent centre (muaple) a

in the upper part: lateral root cap (dark grey), epidermis (cyan), cortex (light green), endodermis (dark pesmycle

(yellow) and vasculature tissue (red). Inset shows different stages of a developing lateral root, ranging from a lateral root
founder cell (left) to an emerging lateral root (righB) Different root developmental zones, stem cell zone (oyange
meristematic zone (light blue), transition zone (dark green), elongation zone (yellow) and differentiation zone (dark blue).
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1.2.2 The many messages of auxin in root development and adaptation

The specific orientation of the auximansporters generate auxin maxima and gradients that are
instructive for developmenr{Grieneiseret al., 2007) First of all, auxin is involved in determining
cellular fate and shape, for example, in the outer epidermal tissue cell files some cell files form root
hairs while others do not. Although all epidermal files are derived from a few stisn spatial
patterning by auxin causes a highly regular pattern in hair anéhaiorcell with distinct gene
expression profilegJones et al., ZW). In the case of Arabidopsis, these hair and-main cells are
patterned into distinct cell files, but also other patterns éRmtta et al., 2011)Additionally, within

cells the position of thkairs dependsn the auxirgradient, anddjusting the gradient, Wiatting or
changing the orientation, will bias the root hair positionjiRigcher et al., 2006, Ikeda et al., 2009)
Similarly, in the longitudinal plane, auxin maxima and gradients determine the size and location of
developmental zones with the highest levels of auxin around the quiescent centre (QC) in the root tip
maintaining theundifferentiated state of the stem cells in and around thé3a@atini et al., 1999,



Blilou et al., 2005) The auxin gradiertapering off from the QC instructs the position and size of the
meristematic zone were cells divide upon doubling their size, and the transition zone where cells grow
but no longer divide. Size of the root meristem is a major determinant of root grosvtAlvave the
transition zone, auxin levels rise again and cells enter the elongation zone where they expand rapidly
via vacuolar growth after which they enter the differentiation zone:(&ify1B). The developmental
patterning of the main root is facdiied by transcription factors, such as the PLETHORZeinha

et al., 2007, Grieneisen et al., 2007, Tian et al., 2014, Mahonen et al., 2014, SalvR@2Q)l.,
Additionally the interaction with other phytohormones such as cytokbéllo loio et al., 2007,
Bielach et al., 2012)gibberellin (UbedaTomas et al., 2008)ethylene(Saini et al., 2013)and
brasinosteroidqHardtke et al., 200@re known to affect root developmental zonation either directly

or through impacting auxin.

Auxin is also a major player in the development of lateral roots. In Arabidopsis, lateral roots emerge
from a specific cell file of the pericycle, the xylgmle-pericycle (XPP) that exhibits long term cell
division potentia{Beeckman et al., 2001, Himanen et alQ£20The first step of lateral root formation

is the priming of competent cells for future lateral formation. Priming is characterised by regular
oscillations in auxin and auxin response genes, and occurs at the shootward boundary of the meristem
in the vasclature tissu¢De Smet et al., 2007, Laskowski and Ten Tusscher, 20&&)signal travels

then to adjacent pericycle cells where one or multiple cells bepoimed. It has previously been
shown that auxin produced in the lateral root cap is necessary to ensure an oscillation amplitude
sufficient for stable prebranch site formation, and also mutations in auxin transporters or biosynthesis
have been shown to haer prebranch site formatigPe Rybel et al., 2012, Xuan et al., 2015, Xuan

et al., 2016)The oscillatory nature of the priming signal was found to correlate to the shedding of the
lateral root caffXuan et al., 2016dnd several mechanisms, such as a etoakwavefront model and

a Turingtype patterning mechanism, have been proposed to pattern the primirjastesvski and

Ten Tuscher, 2017)Cells can become smlled prebranch sites competent of future lateral root
formation after being successfully primed in the early elongation zone, enabling them to form domains
with stably maintained auxin signallirfiylorenaRisueno et al., 2010, Xuan et al., 2015aKet al.,

2016) Prebranch sites are through growth displaced towards the differentiation zone and continue to
develop into lateral root founder cells (LRFC). During these first stages the auxin importer AUX1
facilitates an increase in auxin content in the prebranchaed LRF cellfMarchant etl., 2002,
Laskowski et al., 2008)The resulting increased level of auxin is necessary to guide the process of
nuclear migration and asymmetric divisions that form the new latera{DeoEmet et al., 2007, De

Rybel et al., 2010, Berckmans et al., 201dferestingly, even the reduction in endodermal volume to
relief the mechanical constraint on the developing lateral root in the neighbouring pericycle tissue is
auxin signalling dependefiWermeer et al., 2014)

The role of auxin is not limited to dictating developmental status and cell fate but also the rate at which
development and growth occurs. Mutations or environmental conditions impacting auxin levels may
influence the fraction of prebranch sites that degwahto fully emerged lateral roots within a certain

time window, implying an impact on lateral root developmental rate (reviewdé@doallari et al.,

2021) Indeedthe influence of auxin on cellular division, expansion and differentiation rates has been
reportedo be dosage dependé€htahonen et al., 2014and for example the effect of auxin on cellular
elongation rate is at the basis of most root tropic responses. Here, preferential accumulation of auxin
at 1 side of the root in the elongation zone, causes elongation rates to locally drop, resulting in
asymmetric growth and root bending towards the gidégh auxin and low growth rate. Root tropism

are mainly facilitated by changes in auxin transporters, for example, during gravitropism an orientation



away from gravity will induce movement of starch granwidgch cause the repolarisation of PIN
transprters(Kleine-Vehn et al., 2010)

In addition to aiding cell fate decisions, plants thus use auxin to decide at what rate to grow, in which
direction to grow, and where to branch, begging the question of how they decide what to ddtide on.
is these decisions questions that are at the careafork described in this thesis.

1.3 Dynamic modelling

Developmental systems can be studied at multiple spatial scales, ranging from organism, via tissues,
and cells down to the molecular level. The different scales of an organism are not only a matter of
zooming in and out, instead the activity of entitiea aertain level can drive behaviour of entities at

higher and lower levels. For example, cell level behaviour, whether a cell grows, divides or
differentiates is driven by the state of its gene regulatory network and vice versa growth and division
through diluting or stochastically distributing cell content affect gene regulatory network state.
Similarly,t i ssue | evel behaviour or O6decision makingé
within the tissue and the interaction between them, batfakds back on the conditions and hence
subsequent behaviour of these cells. In addition to this wide range of spatial scales, developmental
patterning processes also encompass a broad range of temporal scales. The separate, experimental,
study of structtes, be it molecules, cells or tissues in an organism will provide detailed insights in
their appearance and behaviour, yet is often unable to capture the overall dynamical interactions and
emergent behaviour of the system of interest as a whole as egptxiane typically limited to one or

two spatial and temporal scales.

Models have played a major role in unravelling complex rsglile patterning processes and the
mechanisms underlying their robustness. In animals a famous example is the prevanusgedi
clock-andwavefront driven somitogenegi€ooke and Zeeman, 1976)here computational models

have helped discover important roles for cell matility, -cell signalling and celtell adhesion in
enhancing patterning robustnékswis, 2003, Horikawa et al., 2006, Armstrong et al., 2009, Uriu et

al., 2010, Hester et al., 201Bimilarly, multiscale modelling has helped to understand how plants
decode temporal and spatial signals into a coherent response. For example, phyllosedgiethial
initiation of lateral organs at the apical shoot meristem has been extensive analysed using modelling
(Douady and Couder, 1996, Mitchison, 1977, Veen and Lindenmayer,RBylftaxis was found to

arise in aseltorganized manner from the interplay between tissue growth, polar auxin transport and
auxin biosynthesis together driving the patterning of auxin maxima guiding lateral organ outgrowth
(Reinhardt et al., 2003, Vernoux et al., 20R¢&cently, with improved experimental resolution for
measuring auxin dynamics, the role of auxin in providing spatial emgpdral cues was further
confirmed(GalvanrAmpudia efal., 2020), showing that cell fate changes respond to a-titegrated

rather than instantaneous auxin sigtalroots modelling has been used to elucidate how auxin can
simultaneously facilitate a direct effect on cellular develeptal rates and also affect the
developmental zonation via PLT. Using a model that explicitly incorporates space and time it was
shown how protein stability and the presence of plasmodesmata facilitate the seemingly contrastingly
dual role of auxin throdga separation of time scal@dahonen et al., 2014)n another study by
Laskowski et al. (2008), was shown that bendindyiven induction of lateral roots at the outer bend

can be explained from an increase in auxin levels resulting from the increased cell sizes at the outer
bend.The increased auxin subsequently drives a positive feedback that emti@cesuxin levels

in these cells thereby triggering lateral root formaticeskowski et al., 2008)



1.4 Thesis outline

In this thesis we study decision making in plant roots specifically for the cases of prepattering of lateral
root competent sites and directional root growth by using #awél computational model&lsing

these models we aim to understand how the coribimaf root architecture, developmental processes

and hormone production and transport can drive decision making in plant roots and furthermore how
environmental factors can impinge on the decision making process. To validate our model findings in
plantawe extensively collaborated with experimental groups. While the author of this thesis was
involved in the set up and data analysis of the experiments, the experimental work was performed by
members of the collaborating groups.

Both lateral root branchingnd directional growth have the plant hormone auxin as a major player.
Even more so it has been suggested that tropisms, specifically the auxin asymmetry occurring during
tropisms, influences the prepattering of lateral roots, suggesting potential ditvkseln these two
processes. Still, whether the effect of gravitropism is on sidedness or also frequency of lateral root
patterning is debate¢Kircher and Schopfer, 2016 he role of auxin in plant development is
sometimes seemingly conflicting, for example, the olaern that auxin can drive developmental

rates and thereby drive rdmending raisethe question how this can occur without disturbing the also
auxindependent developmental zonatiWlahonen et al., 2014)Additionally, auxin signalling

output is ofen more specific than can be explained by tissue or cell specific signalling cascade and
the involvement of auxin itself in setting up and regulating its own gene expression patterns and levels
makes it complex to understand how auxin specificity ariBlesrefore, inchapter 2 we first focus

on how the use of dynamical models and the additional consideration of spatial and temporal effects
can aid the understanding of how plant roots decide on what decision to make using the plant hormone
auxin.

In chapter 3 we study the prepatterning of lateral root branching with the aim to elucidate the
mechanism underlying the periodic auxin peaks observed during lateral root priming. Thus far, no
satisfactory mechanism explaining these auxin oscillations had bepaspd. Based on existing
knowledge on the importance of auxin product{®rader and Bartel, 2011, Xuan et al., 2015)
transport(De Smet etl., 2007, MorendRisueno et al., 2010, Xuan et al., 2015, Xuan et al., 2016)
signalling in he vasculaturéDe Smet et al2007)and strong correlations with root growflensen

et al., 1998, Xuan et al., 2016ye started with the hypothesis that both the auxin reflux loop and
growth are essential factors for lateral root priming. We used a multilevel model of plant root growth
and auxin dynamics to investigate this hypothesis and pin down how this mechanéms fdiifn
earlier proposed priming mechanisms, most importantly the -@odikvavefront model or a Turing
pattern. Afterwards we set out to confirm our findimgglantain collaboration with the groups of

Ben Scheres, Viola Willemsen and Tom Beeckman.

In chapter 4we then build upon our understanding of priming to study how dynamic changes induced
by development or environmental factors influence the priming rate and the spacing between
prebranch sites. Understanding the mechanisms of priming and themwiagnmental factors can
impinge on the processes can help to understand to what extent main and lateral root adjustments in
response to soil conditions might be coordinately caused by changes in main root growth and hence
the prepatterning of the laterabots and to what extent separate mechanisms are involved in
adjustment of main and lateral root growth. We aimed to map the available morphospace for lateral
roots in numbers and spacing and from there deduce how interdependencies between root meristem



size and cellular division rates might shape access to this morpho&peas;, we discuss how the
dynamic changes in priming and the resulting root system architecture could potentially affect RSA
during abiotic stresses and varying nutrient conditions

In chapter 5we shift our focus from decision making in lateral root branching to directional responses.
Previous research had demonstrated a reduction in auxin transporters at the root side facing a salt
gradient, followed by an auxin asymmetry and rbenhding away from a salt gradiefalvan

Ampudia et al., 2013)An open question remained whether the observed auxin transporter asymmetry
was causal and sufficient to explain the ebsd auxin asymmetry and root bending. By using root
models with different root architecture and auxin transporter dynamics we aimed to understand how a
salt gradient can be translated into a robust and timely directional auxin asymmetry able to drive
adapive root bending away from the salt. In both chapter 5 and 6 we tried to capture the dynamic
nature of a tropic response in plant roots, the effect of transient responses, feedback and how these
effects are translated into the timing and extent of thelibgnresponse in the plant root. We
collaborated with the group of Christa Testerink to experimentally validate model predictions and
build a realistic model of root halotropism.

The findings in chapter 5 elucidated how roots can temporally deviatettfimravity vector and
overrule the gravitropic response.dnapter 6 we further explore how plant roots integrated signals
of gravitropism and halotropisrasinga case study of the pid Inutant to study the effect of cellular
PIN2 levels and distributn on setting up an instructive auxin asymmetry and how PIN2 influences
the opposing effects of gravitropism and halotropism.

Finally in chapter 7 we integrated the findings of chapter 2 to 6 and discuss how the results of this
thesis are connected to each other, how the findings can aid the understanding of plant root
development and what future routes are there to explore. We extend our disbudsimking at the

role of models in plant biology and the interaction of models with experiments and finally summarize
the main conclusions of this thesis.
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Abstract

Auxin plays a major role in a variety of processes involved in plant developmental patterning and its
adaptation to environmental conditions. Therefore, an important question is how specificity in auxin
signalling is achieved, that is, how a single signalling molecule can carry so many different types of
information. In recent years, many studies on awgacificity have been published, unravelling
increasingly more details on differential auxin sensitivity, expression domains and downstream
partners of the auxin receptors (transport inhibitor response 1 (TIR1) and other auxin sigbabng F
proteins (AFB), transcriptional repressors that are degraded in response to auxin (AUX/IAA) and
downstream auxin response factors (ARF) that to
pathways. These data are critical to explain how, in the same cellsenliffeixin levels may trigger
different responses, as well as how in different spatial or temporal contexts similar auxin signals
converge to different responses. However, these insights do not yet answer more complex questions
regarding auxin specificityds an example, they leave open the question of how similar sized auxin
changes at similar locations result in different responses depending on the duration and spatial extent
of the fluctuation in auxin levels. Similarly, it leaves unanswered how, icethe of certain tropisms,

small differences in signal strength at both sides of a plant organ are converted into an instructive
auxin asymmetry that enables a robust tropic response. Finally, it does not explain how, in certain
cases, substantially diffareauxin levels become translated into similar cellular responses, while in
other cases similar auxin levels, even when combined with similar auxin response machinery, may
trigger different responses. In this review, we illustrate how considering that@guhetworks and
contexts in which auxin signalling takes place helps answer these types of fundamental questions.
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2.1 Introduction

The plant hormone auxin plays an important role in a wide range of developmental pr(fasses

et al., 2013)s well as in a wide range of adaptive responses to environmental congitioasd

Wang, 2011, Kazan, 2013)Vell known examples are the awdependent control of cell division

and differentiation rateello loio et al., 2008)as well as the auxin maxirtependent patterning of

stem cell niches in the main ro@rieneisen et al., 2007, Petersson et al., 2808)shoofVernoux

et al., 2000ms well as new lateral orga(Benkova et al., 2003, Heisler et al., 2005, De Smet et al.,
2007y)and t he prepatterning o {Sachd)k8lpSachs) 19dlkewigea sc ul at L
in most tropisms, the oriented growth of plant organs towards or away from a particular signal is
guided by arninstructive auxin asymmetriLiscum and Briggs, 1996, Friml et al., 200&Zawvarup et

al., 2005)and remodeling obverall plant root architecture in response to environmental conditions
involves changes in auxin distribution pattefdacry et &, 2005, Krouk et al., 2010T his knowledge

begs the question as to how a single hormone signal can convey so many different types of information.
A large body of research, aimed at answering how specificity in auxin signalling arises, focuses on the
different types of auxin recep®(TIR/AFB), Aux/IAA repressors and auxin response factors (ARFS)
(Tiwari et al., 2003, Strader and Zhao, 20l6h at t oget her f orm t he pl ant
pathway. In Arabidopsis, a tétaf 6 TIR/AFB auxin receptoréMockaitis and Estelle, 20089
AUX/IAA repressors and 23 ARFs have been identifiedcum and Reed, 20025uggesting that

part of the specificity in auxin signalling may depend on the specific auxin signalling molecules
applied in a specific context. Research in this direction has uncovered differential sensitivity of distinct
AUX/IAAs to auxin (Villalobos et al., 2012, ShimizMitao and Kakimoto, 2014}fpecialised
expression domains of different IAA®d ARFs(Weijers et al., 2005, Rademacher et 2011) as

well as specificity differences between ARFs in the binding of auxin response elements in the
promotors of downstream target geriBser et al., 2014)This knowledge enables one to answer
certain questions on auxin specificity. As an example, if distinct modules with distinct auxin
sensitivities are present within the same tissue, this explains how responses can vary with different
levels of auxin. Indeed, ¢hconsecutive activation of the IAA28/ARF5,6,7,8,19, the IAA14/ARF7,19

and the IAA12/ARF5 auxin response modules involved in lateral root form@dderRybel et al.,
2012)may be related to an increase in auxin levels generated by the currently active module as well
as feedbacks between the different mod(&sh et al., 2012, Lavenus et al., 2Q1Smilarly, the
expression of different auxin response modules with similar auxin sensitivity in different tissues
enables us to explain how an identical auxin signal convelgsetit information in different contexts
(Rademacher et al., 2012htriguingly, auxin itself appears to often be involved in setting up these
auxin response domaifBenkova et al., 2003)

However, the insights odifferential auxin sensitivity, expression domains, and downstream targets
of different TIR/AFB, AUX/IAA and ARF types are insufficient to answer more complicated
guestions on auxin specificity. As an example, similar changes in auxin levels, occutnaegame
tissues, may need to lead to different responses. To illustrate this, consider a cell at the proximal
boundary of the root meristem and the transition zone that experiences an elevation in auxin level.
How should this cell interpret this elevationauxin level?

Auxin, combined with PLETHORA (PLT) transcription factors and antagonized by cytokinin, is a
major determinant of meristem si@ello loio et al., 2008, Mahonen et al., 201#hus, the auxin
increase could imply that meristem size is expanding and hence that, rather than loosing meristematic
identity and starting to elongate and differentiate, the cell should stay meristematic. Or it could rather
imply that the plant organ is undergoing a tropic response and the cell should respond by reducing the
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elongation rate to support root bending. Alternatively, the elevated auxin level could also inform the
cell that it finds itself in the middle of the upvd phase of a lateral root priming event. Arguably,
gravity responses are likely to be primarily controlled by epidermal auxin asymmetries, while lateral
root priming involves auxin oscillations occurring specifically in the protoxylem and overlaying
pericycle, and only meristem expansion may be governed by a tissue wide expansion of the auxin
gradient. Still, this would require that an epidermal cell can at least distinguish between epidermis
dominated asymmetric or rather tissue wide auxin elevatiorike péricycle cells should be able to
determine whether auxin elevations are pericycle specific or not. Intuitively, for us humans with a
mind programmed for pattern recognition, it is clear that the response of the cell critically depends on
the duratiorof the auxin elevation as well as to what extent other cells are experiencing the same or
different changes in auxin levels. In the case of a meristem expansion, a persistent root wide change
in auxin occurs, whereas in the case of tropism a transientaestyimn change in auxin takes place,

while finally in the case of priming a transient more or less symmetric increase in auxin takes place
that may be limited to the vasculature (Fig@r&). However, it is far less clear how an individual

plant cell is toobtain and decode this information on temporal and spatial aspects of auxin dynamics.
Indeed, neither differential sensitivities nor differential expression domains of auxin response modules
are sufficient to explain this. As another example, differesgakitivities and domains also do not
enable us to explain how certain processes can be sensitive for relative rather than absolute changes
in auxin levels, eliciting similar responses for widely different auxin levels.

In this review, we argue that tonavel such more complex auxin specificity problems, it is critical to
consider the regulatory networks and functional context in which auxin signalling takes place. We will
discuss several example studies in which such an approach was successfully Bipglmmmmon
denominator between and central to the success of these studies is the combination of experiments
with computational modelling. Generally speaking, the power of computational models lies in their
capability to integrate knowledge obtained offedent types of processes, playing out at different
spatiotemporal scales, and investigate the types of feedback and emergent properties that these
processes together give rise to. In addition, models allow us to vary the processes taken into
consideratn, their interactions and their conditions, enabling us to narrow down the core processes
responsible for a biological property. Specifically, in the context of auxin sensitivity, by integrating
auxin controlled processes playing out at different spageimmescales, models enable, or even force

us to investigate how these processes may functionatgxisd. In addition, they enable us to
investigate the consequences of atd@pendent feedback and auxin concentration ranges.

In the following sections, we discuss how using a modelling approach, studies have found major roles
for feedback, differences in time scales, spatial patterning, auxin dependence of auxin transports and
players other than the TIR/AFB, AUX/IAA and ARF facs. For example, we illustrate how a recent
study demonstrated that auxin can simultaneously and without conflict control both stable
developmental zonation and transient tropisms, by applying a division of labour separating the long
developmental from #short tropism timescalé¢slahonen et al., 2014yVe end with the suggestion

that plants are likely to have an-yst uncharacterized machinery that enables them to respond
similarly to a change in auxin levels across a wide range of auxin concentrations, similar to the
maintained sensitivity of bacteliehemotaxigAdler, 1966)
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Figure 2.1. How can an individual plant cell deduce sufficient information from a locally perceived auxin increase? An
increase in auxin experienced by an individual cell may reflect atiemg, tissue wide increase in auxin that will result in
meristem expansiongper graph, perceived in both epidermal and vascular cells), alternatively it may represent the upward
phase of the oscillatory lateral root priming process (middle graph, predominantly perceived in vascular cells) and finally
it may arise from tropism (leer graph, perceived in epidermal and possibly vascular cells). Thus, for an individual
epidermal or vascular cell, a perceived auxin increase may arise from at least two of these three different situations, for
which a different response is required.

2.2 The Auxini Plethora Division of Labour; A Separation of Timescales

Two hallmarks of plant life are their lifelong continuation of growth and developmental programs and
their ability to alter their development in response to environmental conditions. @ogthiese two
characteristics requires dynamic adjustment of developmental programs to a changing environment,
yet at the same time stably maintain a meristematic zone and ordered differentiation. Intriguingly,
auxin is often involved in controlling bothf these seemingly contradictory demaifidiscum and

Briggs, 1996, Swarup et al., 2005, Dello loio et al., 2088)an example, in the plant root, a geandi

of auxin controls developmental zonation, with highest auxin levels corresponding to the quiescent
center (QC) and surrounding stem cell niche (SCN), and gradually declining levels occurring
throughout the rest of the meristem, elongation and diffiettésrt zonegGrieneisen et al., 2007,
Petersson et al., 2009, Ishida et al., 2010, R®echenmann, 2010\t the same time, auxin affects

the rates at which division, elongation and differentiation in these different zonegEcans et al.,

1994) For instance, during gravitropism, when roots grow towards gravity, an asymmetric auxin
accumulation leads to a single sided reduction in elongaties that causes bending of the root
towards the gravity vect¢gMullen et al., 1998)In terms of auxin specificity, the question thus is how

a transient auxin asymmetry can cause a growth asymmetry yet not perturb the developmental zonation
that also appears to be controlled by auxin levels. Assuming that auxin would both alone and directly
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dictate the developmental stage of a cell and at what rate processes involved in this stage are
conducted, implies that an auxin asymmetry involved initrop r esponses woul d per
developmental zonation. Therefore, it seems counterintuitive that auxin can control both stable
developmental zonation and fast, transient tropisms. It has already been known for a long time that a
family of transcripion factors called the PLETHORAs (PLT) transcription factors play an important
role in plant developmeriGalinha et al., 2007)nterestingly, thesBLT genes are induced by auxin

and expressed in a longitudinal gradient resembling the auxin grédiéaet al., 2004)furthermore,

these PLTs are a main determinant for root developmental zo@titinha et al., 2007)To unravel

the relatve roles of auxin and PLTs and how these may together enable specificity, Mahdnen et al.
combined experiments with modeling. First, they demonstrated that while auxin directly affects the
rates of division, expansion and differentiation, it appears totaf@nation only indirectlyMahonen

et al., 2014)Indeed, ectopic expression experiments demonstrated that PLT levelstoathmously

control whether cells behave as stem cells, transit amplifying or differentiating cells. In line with this,
increasing or reducing natiVL.T expression was shown texpand or reduce meristem size,
respectively. Furthermore, they demonstrated that only prolonged exposure to high auxin levels
inducesPLT expression. Incorporating these findings into a redéle model of root growth predicts
transcription close to th®C where auxin levels are high, thus resulting in a limited PLT protein
domain rather than a gradient. The observation that in clonal expression experiments PLT proteins are
present slightly outside their transcription domain led the authors to hypotthediB& T proteins can

move through the plasmodesmata that connect the cytoplasm of neighboring cells. Incorporating
plasmodesmatal movement into the model demonstrated that a significant expansion of the PLT
protein domain beyond its transcriptional domaould indeed arise, provided that PLT protein
turnover is sufficiently slow. This can be understood from the fact that movement of PLT proteins
through plasmodesmata is slow (order of magnitude of displacement of few cell diameters per 24 h);
consequemyl, proteins will travel only a small distance if they are degraded too fastlifbalf less

than 10 h). The authors subsequently experimentally confirmed this predicted importance of PLT
protein stability for gradient formation. Finally, by using the dmloto virtually close the
plasmodesmata, it was shown that stable proteins still formed a gradient beyond their transcriptional
domain, albeit with a shorter length scale. When cells grow and divide, they become pushed out of the
high auxin domain to whitPLT transcription is limited. However, as a result of high PLT protein
stability, protein levels do not immediately drop to very low levels in the absence of de novo
transcription and translation PLT levels will drop gradually over time, causing PLIB leveeflect

the amount of time or rather the number of cell divisions that have passed since the cell has left
the PLT transcriptional domain, a process called mitotic segregétiames et al., 2006 Again, this

finding was confirmed experimentally; this indicates that while auxin indat&dranscription, the

PLT protein gradient is not a simple readolithe auxin gradient. Instea@lT transcription shows a

slow response to high auxin levels, and the resulting spatially limited transcription domain is converted
into a protein gradient through the slow processes of mitotic segregation atmdosdlimovement.

As a consequence, the PLT gradient depends only on the root tip auxin maximum. In addition, the
auxin and PLT gradients have different temporal dynamics. Auxin patterns respond directly to changes
in expression levels, and the polar orientatdtheir cellular exporters, the PIN proteins. In contrast,

PLT patterns change only in response to prolonged changes in the auxin maximum. Mahonen et al.
demonstrated that this partial independence of the auxin and PLT gradients combined with their
different timescales is critical for enabling auxin to govern both fast adaptation to environmental
conditions and stable developmental zona{idahonen et al., 2014VJpon simulated gravitropism,

the change in columella PIN polarity leads to the rapid generation of an auxin asymmetry driving
gravitropic bending. At the same time, the PLT gradient remains constant, enabling it to maintain a
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stable boundary between tmeristem and elongation zone that is necessary for a temporally ordered,
and tissuavide coordinated progression of cell differentiation (FigRigs.

Auxin can thus fulfill two seemingly conflicting tasks by performing one directly, and the other
indiredly using a partner that only partly depends on auxin and has substantially slower dynamics.

Two parallel control routes:
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Figure 2.2. The auxiit PLETHORA (PLT) division of labofMahonen et al., 2014)f auxin were to directly control both

rates anddevelopmental zones, transient auxin asymmetries occurring during tropisms would perturb developmental
zonation (upper left panel). PLT gradients result from auxin gradients through slow induction for high auxin levels, slow
division and slow celto-cell movement (upper right panel). The control of rates by auxin and of zones by PLTs enables fast
adaptation to tropic cues while maintaining stable Fh&diated zonation (middle panel). Experiments confirmed the model
predictions of the division of labor blge partial independence of the auxin and PLT gradients (lower panel).

2.3 Halotropism as a Case Study of a Grade&ignal Tropism; Auxin
Computations in the Reflux Loop

Tropisms form an important aspect of plant adaptation, enabling individual plans eoggow away
or towards particular cues. In all tropisms but hydrotrop(Simkolnik et al., 2016)the bending of
plant organs is orchestrated through an asymmetric auxin pattern that causes asymmetric growth rates
(Friml et al., 2002b, Kutschera and Briggs, 2012, Galarpudia et al., 2013A major question in
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tropism research is thus how different environmental stimuli become translated into an instructive
auxin asymmetry.

For plant roots, the most studied tropism is gravitropism, the orientation of the root towards the gravity
vector. Specialised root tip columella cells containing starch granules, called statoliths, play a major
role in gravitropism. Upon rerientation ofthe root, the statoliths sediment on the new downward
face of the cell{Eshel and Beeckman, 2013ausing a change in the pattern of PiN®I PIN7
proteins from an apolar localisation at all membrane faces to a polar orientation on the now downward
face of the columella celldriml et al., 2002b, Klein&/ehn et al., 2010)As a consequence, auxin

flux is biased to the lower side of the root, causing an elevation of auxin at the lower side and a decrease
of auxin at the upper side of the r¢@ttenschlager et al., 2003, Monshausen et al., 20hpprtantly,

in gravitropism, indvidual cells, through statolith sedimentation and subsequent PIN repolarization,
can sense the direction of and respond directionally to the gravity signal. As a consequence, all
columella cells, independent of whether they are on the upward or downidarafsthe root,
coherently polarize their auxin transport towards the lower side, thereby directly generating a clear
and robust auxin asymmetry. In plant shoots, the most studied tropism is phototropism, the orientation
of the shoot towards light. At tHeght exposed side, plant cells respond by reducing-AifEing

casette B19 (ABCB19nediated downward auxin transport and enhancing fti@iated lateral

auxin transport, thus locally accumulating auxin, while at the shaded side no such respons&sccurs.

a consequence, an auxin asymmetry directly arises from the differential reception of and response to
the signal at the two sides of the plant hypoc(®yiristie and Murphy, 2IB).

A completely different situation arises in a recently discovered root tropism, halotropism, where roots
bend away from elevated salt concentrati(8isn et al., 2008, Galvadimpudia et al., 2013)Since

salt readily diffuses through the medivexperimental agar or seiloots will generally be exposed to

a relatively shallow gradient of salt, rather than experiencing salt only on one side. For example, in
the study of Galvarmpudia et al. across root salt concentration, differences are in the order of only
51 10% (GalvanAmpudia et al., 2013) A similar, graded signal distribution may occur in
hydrotropism(Cassab et al., 201.3)\s roots experience a salt gradient, this logically implies that cells

at the different sides of the root mount a similar response, albeit with cells at the side experiencing
more salt a slightly stronger one. Furtherm it seems unlikely that individual cells are capable of
detecting the direction of the salt gradient and responding to it directionally. Thus, the question then
is how relatively small differences in salt levels, and hence response strength at siaesaaf the

root, eventually become translated into a cladroverall asymmetry in auxin. To achieve this, cells

at different sides of the root should somehow communicate to integrate information from different
sides of the root and determine at whittessalt concentrations are highest.

While this specific question has thus far not been addressed, results of a recent study by Van den Berg
et al. provide interesting suggestiqman den Berg et al., 2018 this study, it was shown that the
earlier identified asymmetry in the PIN2 auxin expo(@alvarAmpudia et al., 2013} insufficient

to fully explain halotropisminduced root bending. The authors used a simulation model to
demonstrate that the auxin dependence of the auxin resistant 1 (AUX1) auxin importer and the PIN2
exporter are critical for amplifying the small amxasymmetry generated by the initial PIN2
asymmetry. Put simply, on the side with highest salt levels, less PIN2 leads to less auxin transport
upward on that side, thereby decreasing local auxin levels, which subsequently leads to a further
decrease in PIRlas well as AUX1, etc. As a consequence, increasingly less auxin is transported
upward on the more sadixposed side. The auxin not transported at the side with the highest salt levels
is subsequently rerouted to the other side. Initially, only small atacaf auxin will be rerouted,;
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nonetheless, the higher auxin levels, resulting from the rerouting, will amplify AUX1 and PIN2 levels
through positive feedback and subsequently increase in auxin rer(egimglen Berg et al., 2016)

While the study of Van den Berg et al. does not yet address what generates the initial PIN2 asymmetry,
it does point to the important role of auxin feedback on its own transporters as effective amplifiers of
initial auxin differences. This opens up the interegtpossibility that if the very first response to a
graded environmental signal involves qualitatively similar yet quantitatively slightly different changes

in auxin transport or signalling, the root tip reflux loop combined with the auxin feedback on auxi
transporters may suffice to amplify these initial differences into a full auxin asymmetry (Eigure
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Figure 2.3. Hypothetical model of ldftight sensing in plants during tropisms. A gradient of repellent, for example diffusing

NaCl, causes a stress response at both sides of the root, though somewhat stronger at one side than the other, causing
modulations in the rftux loop (middle panel). Subsequent positive feedback of auxin on its own transporters combined with
root tip architecture and reflux loop properties amplify initial differences into a clear instructive auxin asymmetryygenabli
bending(van den Berg et al., 201@)ght panel).
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24. Auxin Signalling in Phyllotaxis; Same yet Different

At the shoot apex, the regular formation of new leaf primordigdseded by the formation of auxin
maxima that arise in the vicinity of the shoot meristem where auxin levels are lower. It has long been
established that dynamic repolarization of the auxin exporting PIN1 proteins play a major role in the
repetitive genetion of these auxin maxim{@®kada et al., 1991However, for a long time, an open
guestion remained to what extent pattern formation involved only sigatiporal differences in auxin
concentrdabn levels between primordia and central meristem, and to what extent changes in auxin
sensitivity and/or downstream targets may also be involved. Ultimately, the impact of auxin signalling
on patterning is a product of the local auxin levels and the &dh sensitivity.

Interestingly, a largscale expression analysis of the AUX/IAA and ARF factors active in the shoot
apical meristem region revealed that similar factors are active across the meristem region albeit with
lower levels occurring in the central meristem thathie periphery and young primor@Mernoux et

al., 2011) Thus, neither differential sensitivity nor different domains of different players involved can
explan the distinct developmental trajectories of the central region that remains meristematic and the
peripheral regions that repetitively produce new leaf organs. This implies that these different
developmental fates solely rely on differences in auxin lesatssensing occurring in the different
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regions. As a consequence, robust patterning requires the persistent generation of significant
differences in auxin levels and sensing between these different regions.

Given the observed difference in AUX/IAA and KRevels between central meristem and periphery,
Vernoux et al(2011)applied a modelling approach to investigate the potential significance of these
concentration differences for robust audiiven patterning. A key aspect of the model is that it
incorporates gene expressiagtivating ARFs that can be repressed by AUX/IAA and derepressed by
auxin, but also the less frequently considered autonomously acting repressive ARFsABigure
Importantly, activating and repressive ARFs compete for the samte fiumber of binding sites
upstream of target gendd®Jimasov et al., 1999b)Finally, activating ARFs are assumed to
cooperatively affect gene expression. As a consequence, while gene expression linearly declines with
the number of repressive ARFs it supralinearly increases with the number of activating ARFs (Figure
24B). Usingthe model, the authors could thus demonstrate that if the number of activating and
repressive ARFs increases similarly, downstream gene expression increases ZBi@urel his
enabled them to explain how the lower levels of ARFs and AUX/IAA occurringercentre of the
meristem result in lower auxin sensitivity than the higher levels occurring in the periphery and the
primordia. This differential sensitivity was subsequently experimentally confirmed. Furthermore, the
spatial correlation between low auxigvels and low auxin sensitivity in the centre and high auxin
levels and auxin sensitivity in the periphery was shown to contribute to the robustness of phyllotactic
patterning(Vernoux et al., 2011 While not addressed in this study, one can imagine that by making
AUX/IAA and ARF levels auxin dependent, sensitivity to auxin becomes correlated with auxin levels.
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Figure 2.4. In phyllotaxis, different amounts of ARFs result in differential auxin sensifitésnoux et al., 2011JA) Auxin

response network, with auxite-repressing the AUX/IAA repressed activating ARFs (AREetivating and repressive ARFs

(ARF ) competing for the same auxin response elements (ARE) upstream of auxin responsive genes, and gene expression
levels (E) cooperatively depending on activatiARFs; Lines ending with arrowheads indicate positive regulatory
interactions, lines ending with a horizontal line indicate negative regulatory interactions; (B) Gene expression in response

to different levels of repressive and activating ARFs, for conatanunts of activating and repressive ARFs respectively.

The nonrlinear response to activating ARFs arises from their cooperative effects on gene expression; (C) Gene expression
levels in response to different amounts of activating and repressive AR&gdoistant ratio between the activating and
repressive ARFs.
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2.5 Pin Polarity in Gradients; Different yet Same

The ability to generate well defined auxin maxima, gradients and paths critically depends on the polar
localisation of the auxin exporting PIN protei(Blilou et al.,, 2005, Wisniwska et al., 2006,
Grieneisen et al., 2007} is generally assumed that, at least to a certain extent, the polar membrane
localisation of PIN proteins depends on auxin (Figus&\). Unfortunately, how exactly these polar
patterns arise remains unclear. Earlier hypotheses on the role of the auxin binding protein 1 (ABP1)
protein in sensing auxin leve(Xu et al., 2010)and the role of auxidependent cycling of PIN
proteins to and from the membrgRobert et al., 2010 setting up PIN polarity have become heavily
disputed due to recent studi@gSao et al., 2015, Jasik et al., 201Bpcause of this yet incomplete
understanding, models for PIN polarity dynamics have mostly been formulated in phenomenological
terms. Depending ontvether the aim was to explain patterns of shoot phyllotaxis or leaf veination,
up-the-gradient or withthe-flux feedbacks of auxin levels or transport on PIN levels have been
proposedHeisler and Jonsson, 2006, Stoma et al., 2008, Bayer et al., ROD®) former, PIN levels

are assumed to increase on membranes oriented to neighbouring cells with high auxin levels; in the
latter, PINlevels are assumed to increase in the direction of largest transport flux.
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Figure 2.5.In PIN polarisation, the cellular PIN pool size determines graded versusr-albne polarisation. (A) Gene

expression is a major determinant of over@llular PIN pool size. Individual membrane compartments derive their PINs

from this single shared PIN pool, and PINs not deposited on the membrane together constitute the remaining cytoplasmic

PIN pool; (B) The upper graph shows a hypothetical auxin gradicross a onrdimensional tissue. We assume arthg

gradient type of feedback on PIN localisation. If the overall cellular PIN pool is smadir-albne polarisation occurs and

all cells show the same polarity pattern with high amounts of PINs dmighest concentration facing membrane and low

or absent PINs on the lowest concentration facing membrane, and few PINs left in the cytoplasmic PIN pool (middle figure).

If the overall cellular PIN pool is large, PIN levels on each individual membranendeprethe auxin level they experience,

resulting in a graded polarity pattern with amount of polarity and amount of PINs on highest and lowest concentration facing

membranes increasing along the gradient, and amount of PINs remaining in the cytoplashentgtacreasing along the

gradient (lower figure); (C) The upper graph shows again a hypothetical auxin gradient that now induces a gradient in

overall cellular PIN pool sizes. For small PIN pools,-aitnone polarisation occurs; for larger PIN pools, lpagsation

becomes graded with auxin levels, while for very large PIN pools, apolar PIN patterns arise.

-t

. F’{N
localisation level

Detailed mathematical analysis of a large range of PIN polarity models showed that, independent of
assuming either witthe-flux or upthe-gradient fedback, the type of PIN polarisation patterns arising
strongly depended on the size of the cellular PIN pool and the extent to which all PIN proteins are
deposited on the membrafvan Berkel et al., 2013)f the amount of PIN proteins in a cell is assumed

to be large relative to the amount of PINs that will be localised on the membrane, PIN levels are not
limiting. As a consequence, different membranethefsame cell are not competing for PINs, and
each membrane can adapt its PIN levels to local auxin or auxin flux levels. Under these conditions,
graded PIN polarity patterns arise: if auxin levels or fluxes differ more across a cell, the cellular PIN
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paterns will polarise more strongly. Thus, along a4ioear auxin gradient, cellular polarisation
increases with the steepness of the gradient. Furthermore, as individual membranes respond to their
local auxin or flux level, even along a linear auxin gratdresulting in similar polarisation levels,
average PIN levels will follow auxin or flux levels. Indeed, if one adds to these models the realistic
assumption that membrane compartments can only contain a finite amount of PINs, large unlimiting
levels of PNs combined with very high auxin levels generate apolar PIN patterns (Rig&e If, in

contrast, we assume a finite pool of PIN proteins that for a large part will be positioned on the
membrane, PIN proteins become limiting. In this case, the different membrane compartments of the
cell compete for PINs; putting more PIN proteors one membrane automatically means that less
PINs will be available for other membranes. Due to positive feedback, more and more PINs will be
put on the membrane facing the highest auxin levels or auxin flux levels, and less and less on the other
membrans, resulting in fulblown polarisation, independent of the average levels or size of across
cell differences in auxin or auxin flux that the cells were experiencing. This-atine polarisation

allows cells in different parts of the tissue, experienatfifjerent average flux strengths or
concentrations, as well as different acrosB differences in fluxes or concentrations, to build a similar

PIN polarity patterr{van Berkel et al., 2013}rigure2.5B).

The above demonstrates two things relevant for auxin specificity. First, if the cellular PIN pool to a
large extent is localised on the membrane, different auxin levels or fluxes can produce similar PIN
polarity patterns. Second, by regulating PIN poot ss&milar gradients in auxin levels or fluxes can
generate different PIN patterns: all cells polarised similarly, or cellular polarisation changing along
the gradient (Figurg.5C). In this context, it is noteworthy that auxin, both directly and via atigygl

the PLT transcription factors, upregulateiiN expression levelgBlilou et al., 2005, Vieten et al.,
2005)

2.6 Conclusions and Outlook

The plant hormone auxin plays a critical role in a wide range of developmental and adaptive processes.
Understanding these processes, at an individual level as well as in relation to one another, requires that
we understand how auxin can regulate so many distinct processes. Logically speaking, a single signal,
such as auxin, can only convey distinct or even contradicting information by collaborating with other
factors. Traditionally, specificity of auxin signially is considered in terms of differential sensitivity,
expression domains or downstream targets of auxin signal transduction pathways. In this article, we
argued that other partnerships beyond these usual suspects as well as the context and regulatory
networks in which auxin signalling takes place are critical to consider. To support this argument, we
demonstrated a series of insights on auxin specificity obtained in recent studies.

While we discussed only a limited number of examples in this reviewxpecethat the type of
partnerships pointed out is more common. For instance, in the last example of PIN polarity, we
discussed how different auxin signals can generate similar responses. Because of the finiteness of
available PIN proteins, under certaionditions different tissuéevel auxin gradients can become
translated into similar patterns of PIN polarftsan Berkel et al., 2013We suspect that swething

similar should hold for temporal auxin changes; under certain conditions, different changes in auxin
levels are capable of eliciting the same response, provided that the temporal direction and relative
amount of auxin change, increase or decreasesimilar. As an example, while it is still debated
whether lateral root priming involves periodic changes in auxin levels or merely auxin responses
(Laskowski and TefMusscher, 2017)one would expect that different environmental conditions or
different root developmental ages affect root tip auxin levels as well as baseline and maximum levels
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of these auxin oscillations. Still, effective lateral root priming shoattur under all these conditions.

This requires a machinery capable of sensing relative changes in auxin levels rather than absolute
auxin levels. Sensitivity to relative changes is vkalbwn from bacterial chemotaxis, in which
bacteria are capable of sémg a directional relative difference in chemotactic cue across a wide range
of concentrations. The mechanistic basis of this capacity to sense relative differences lies in the
presence of a slow timescale negative feedback from average concentratientdepeoteins
responsible for sensitivity, resulting in a normalisation of sensitivity to average concentration levels
(Adler, 1966, Adler, 1969, Parkinson, 199@)e expect that for sensing relative auxin changes, the
TIR/AFB-AUX/IAA -ARF system may play an important. As the study by Vernoux et al. showed,
absolute levels of the AUX/IAAs, ARF repressors and ARF activators may impact the sensitivity for
auxin (Vernoux et al., 2011)Extrapolating from their results, one can imagine a system in which
AUX/IAA and ARF levels depend on lorgrm auxin levels, causing increasedstivity to changes

in auxin for persistently high auxin levels. Alternatively, auxin sensitivity could also be modulated by
affecting the levels of the more upstream TIR1/AFB factors, as was, for example, shown for bacterial
infections(Navarro et al., 2006

In this review, we solely focused on auxin as a critically important plant hormone; however, many
more hormoneéVert et al., 2008Antoniadi et al., 2015)peptidegMatsuzaki et al., 2010and small

RNAs (Yoon et al., 2010are involved in developmental patigng. Therefore, auxin specificity may

also arise from combining similar auxin signals with different types or levels of other signalling
molecules. A major factor to consider in this context is cytokinin, for which differential patterns have
been clearlyestablishedAntoniadi etal., 2015) Nevertheless, this will shift the question to what
causes these differential cytokinin patterns. Given the highly intertwined nature of auxin and cytokinin
signalling, production, degradation and transport, auxin itself is likely involved in controlling
cytokinin patterning{Chandler and Werr, 2015More general, many of the signalling molecules
involved in development, either directly or indirectly, have an effect on and are at theirsa@me t
affected by auxin(CruzRamirez et al., 2012, Whitford et al., 2012, Moubayidin et al., 2013)
Therefore, a complete anddepth understanding of auxin specificity will require a further elucidation

of the regulatory interactions and mutual patterning of auxin with other hormones and signalling
molecules. Similar to the studies described heregxpect a major role for computational modeling

in unraveling how such complex signalling and patterning networks endow the auxin signal with its
specificity.
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Abstract

Modular, repetitive structures are a key component of complex-calitilar body plans across the

tree of life. Typically, these structures are prepatterned by temporal oscillations in gene expression or
signaling. While for vertebrate somitogenesis arttirapod segmentation a cloekdwavefront
mechanism was identified and plant leaf phyllotaxis arises from a Tiyeg patterning, the
mechanism underlying lateral root patterning has remained elusive.

To resolve this enigma we combined computational modelling with in planta experiments.
Intriguingly, auxin oscillations automatically emeiigeour modefrom the interplay betweeamreflux

loop generateduxin loading zone, and stem cell driven growthadyits generating periodic cell size
variations. In contrast to cloekndwavefront and Turing patterning, the uncovered mechanism
predicts both frequency and spacing of lateral root forming sites to positively correlate with root
meristem growth. We validea this prediction experimentallZombined, our model and experimental
results support that a novel periodic patterning mechanism underlies lateral root priming.

28



3.1.Introduction

In multi-cellular organisms, developmental processes are not only responsible for generating a
multitude of cell types from genetically identical cells, but also for the spatial organization of cell
types, tissues and organs into functional body plarmealmy multicellular organisms, at least part of

the body plan is of modular, repetitive nature. Welbwn examples are the segments of annelids and
arthropodgDavis and Patel, 1999%he somitegConlon et al., 1995, Palmeirim et &997, Dubrulle

and Pourquié, 2002and appendages of vertebrgi®aunders, 1948, Dolle et al., 1989, McGinnis and
Krumlauf, 1992)as well as the phytomers of plarfReinhardt et al., 2003, Smith et al., 2006)
trichome patterning on plant leav@hn C. Larkin et al., 1999, Ishida et al., 2088) placement of

hair cells on root¢Galway et al., 1994, Ishida et al., 200B)ant root system architecture is also
repetitive, but on top of this, displays high plasticity, ensuring access to water and nutrients under a
wide range of different condition®kogers and Benfey, 2015, Eshel and Beeckman, 2@3n
conseguence, under natural conditions the regular nature of the root system architecture ne&y becom
obscuredGruber et al., 2013)in the model planArabidopsis thaliandt has been shown that the
earliest step in the formation of new lateral roots, essential for the formation of a branched root
architecture, is highly reguldDe Smet et al., 2007, MorefRRisueno et al., 2010} ateral root (LR)
formation starts with the priming of subsets of pericycle cells to gampetence for the future
formation of LRs(De Snet et al., 2007, MorenBisueno et al., 2010Priming is characterized by
temporaloscillations in auxin signaling and gene expression in the root transition zone with an as yet
unknown primary cause. Primed sites will through growth become transformed into a spatially
repetitive pattern of competent sites for LR formaiibe Smet et al., 2007, MorefRisueno et al.,

2010, Xuan et al., 2015, Xuan et 2016)

Mathematical modelling has played a key role in unravelling the mechanisms underlying periodic
developmental patterning processes. In 1952 Turing demonstrated that interactions between a slowly
diffusing activator and a more rapidly diffusing inhibitor stamce could give rise to regular periodic
patterning(Turing, 1952) In case of polar tissue outgrowth such Turing type patterning mechanisms
give rise to the periodic production of new pattern elements. While originally proposed for phyllotaxis
(Saunders, 1992and for a long time difficult to substantiate experimentally, Turing type patterns are
now generally acceptetb underly vertebrate appenda@idewman and Frisch, 1979nd digit
patterning(Raspopovic et al., 2014and hair(Sick et al., 2006, Plikus et al., 2008 ather(Jiang et

al., 1999, Shyer et al., 201&0d skin pigmentation patterniQgamaguchi et al., 2007)dditionally,

a Turinglike substrate depletion mechanism in whickthipgradient polarization of auxin exporting

PIN proteins locally enhances, and at a longer range depletes, auxin levetehahown to underly
phyllotaxis(Reinhardt et al., 2003, Jonsson et alQ&®ick et al., 2006)Of similar sigificance is

the clockandwavefront mechanism first proposed by Cooke and Zeeman in (®¥6ke and
Zeeman, 1976)This model proposes that underlying somitogenesis is-awglhomous oscillatory

clock combined with a wavefront dictating when and where these temporal oscillations become
translated into a periodic pattern. The clatidwavefront model has receivedubstantial
experimental support, identifying the clock as a set of genetically encoded negative feedbacks
resulting in gene expression oscillatigRenganiban et al., 1997, Bessho et al., 2003, Dequeant et al.,
2006, Sarrain et al., 2012) Based on the observation of periodic variations in gene expression
coinciding with variations in auxin signaling, MoreRisueno (2010) proposed that a claoid
wavefront mechanism analogous to that observed in vertebrate somitogertesigesirperiodic
priming (MorenoRisueno et al., 2010A\s an alternative possibility a Turifigpe mecharsm, similar

to that used in vertebrate appendage patterning and phyllotaxis has been p{oasisedaski and

Ten Tusscher, 2017Thus far, for neither mechanism surgtal proof has been provided.
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So far, no single lossf-function mutations have been identified that completely abolish LR formation

at or preceding the founder cell stage, while mutations blocking LR formation at later stages have been
identified (DiDonato et al., 2004)Interestingly, a strong repression of LR formation occurs in the
dark, known to affect sugar transport and consequently root growth dyn@emcsen et al., 1998)
Additionally, studies have demonstrated an important role for the synthesis of the auxin precursor
indole-3-butyric acid (IBA) in the lateral root cap (LRC) in detening the amplitude of priming
oscillations(Strader and Bartel, 2011, Xuan et al., 204r%) reported a reduced production of LRs for
mutations in auxin transporting proteins such as FMN@n et al., 20161 AX3 (Swarup et al., 2008,

Lewis et al., 2011and AUX1 (De Smet et al., 2007, Lewis et al., 2011, Xuan et al., 200Rin
perception in the vasculature was furthermore shown to be critical for LR fornitoBmet et al.,

2007) Findly, recent studies reported a strong sp#timporal coincidence of repetitive LRC
apoptosis and priming evenfguan et al., 2016as well as a key role for growth relateell-wall
remodeling (Wachsman et al.,, 2020Yogether, these studies indicate the importance of auxin
production, transport and perception while also hinting at a key role for growth dynamics.

Here we hypothesized that the interplay between the auxin reflux logp@mth dynamics gives rise

to regular auxin oscillations. To investigate this hypothesis we combined computational modelling
and in planta experiments. Excitingly, incorporatinggin transport and growth dynamics into a novel
multi-scale realistic root malel automatically led to the emergence of repetitive auxin peaks.
Moreover, these auxin oscillations originated in the elongation zone (EZ) protoxylem and were
subsequently transmitted to the pericycle, consistent with experimental obseryaéddset et al.,

2007) Specifically, we found that root tip anatomy and reflux loop properties result in an auxin loading
zone at the start of the EZ, with preferential loading in large narrow vasculature cells. Additionally,
we showed how root growth dynamics in the meristeyncausing alternations in the sizes of cells
arriving at the transition zone (TZ), causes substantial variation in auxin loading potential, resulting
in auxin level oscillations. In contrast to a Turing mechanism or a-@odkvavefront mechanism

t hefluwbandgr owt hé6 mechani sm di scovered here predict
spacing of priming events depend on meristem cell production and hence tissue growth rate. Our in
planta experiments confirmed these model predictions. Combinedindings support that a hitherto
undescribed mechanism for periodic pattern formation underlies LR priming. Our in planta
experiments uncovered similar correlations for actual formed LRs as for the priming sites, indicating
the importance of earlyriming events for actual root branching patterns
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3.2.Results

3.2.1Priming emerges from combined root auxin transport and growth dynamics

To investigate the role of root tip auxin reflux and growth dynamics in the generation of auxin
oscillations, we developed a novel computational model, incorporating an anatomically realistic root
topology and detailed auxin dynamics. The model incorpeit type and zone specific patterns of

the auxin exporting PIN membrane proteins as well as the auxin importing AUX/LAX membrane
proteins, as well as passive cellular auxin import, auxin production and degradation, and a shoot
derived influx of auxin. Aditionally the model incorporates realistic root growth dynamics consisting

of slow stem cell (SC) divisions near the quiescent centre (QC), subsequent clonal expansion of more
rapidly dividing transit amplifying (TA) cell§Bizet et al., 2015, Rahni and Birnbaum, 20a8)well

as expansion and differentiation dynamics (Fig 1A). As a consequence, after originating from a SC
division, individual cells sequentially transition these distinct zones as younger cells formeatdootw

of them push them away from the SC niche. Additionally, individual cells undergo dynamic cell size
changes. While growing in between divisiamdls gradually increase in size, halving their size upon
division, and when undergoing expansion they unal@rgiuch more rapid size increase that ends as
cells start their terminal differentiation.

Since we are focusing on LR priming, in which protoxylem and xylem pole pericycle play critical
roles, our twedimensional model represents a longitudinal csesgion through the protoxylem
poles. To include critical aspectsiofplantathree dimensionauxin fluxes(el-Showk et al., 2015)

in addition to the predominant bagabriented active auxin transport, we also incorporated outward
oriented, protoxylem directelIN transport in the vasculature (F&B.1A).
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Surprisingly, regular temporal variations in auxin levels automatically emerged in this model (Fig.
3.1B, Video S3.1). Even more noteworthy, these oscillations predominantly occur in the vasculature
(Fig. 3.1B) and pericycle (Fig. S3.1B) of the TZ and early EZ, precisely where priming is
experimentally found to occuyiDe Smet et al., 2007)ndeed, as is clear from the root tip auxin
patterns, highest auxin levels occur in the vascular tissues (Fig. S3.1B).

3.2.2Auxin availability can shape oscillation amplitude

Previous research indicated the importance of auxin production for priming amyphuwici®vsky et

al., 2008, Strader and Bartel, 2011, De Rybehlget2012, Xuan et al., 2015For example, LRC
specificproduction of the auxin precursor IBA was found to significantly enhance the amplitude of
priming oscillationg(Strader and Bartel, 2011, Xuan et al., 20T%) investigate the consistency of

the priming mechanism occurring in our model with these observations, simulations with reduced LRC
auxin production were performed. Consistent with experimental results, oscillation amplitude was
reduced (Fig3.1C) while frequency was unaffected (FB§3.1C). Importantly, similar reductions in

stem cell region auxin production or shoot auxin influx resulted in similar reductions in oscillation
amplitude (Fig3.1C,S3.1C), indicating that overall auxin availability ratttkan its location of origin

is relevant for oscillation amplitude. Furthermore, when normalizing auxin levels against total root tip
auxin content (Fig3.1D), we find that amplitude changes can be fully ascribed to changes in overall
auxin availability.

3.2.3Root tip reflux loop can define a TZ/EZ auxin loading domain

While shoot influx and local auxin production control root tip auxin availability, spetigoral auxin
patterning strongly depends on auxin transf@rieneisen et al., 2007, Band et al., 20R¥evious
experimental research has reported reduced LR production for mutations i(XREx2et al., 2016)

LAX3 (Swarup et al., 2008, Lewis et al., 20Hhd AUX1(De Smet et al., 2007, Lewis et al., 2011,
Xuan et al., 2015)To assess the importance of the root tip auxin reflux loop for the auxin oscillations
uncovered in our novel model, simulations with modified PIN and AUX/LAX expression patterns
were performed. First, we simulated auxin dynamics in the presence of asdylar localized,
rootward oriented PINs, representingia2 null mutant in absence of other PINs taking over upward
transport. This resulted in a nearly complete abolishment of auxin oscillations even when normalized
against the significantly reducedabroot auxin content (Fig3.1E, 8.1D). Next, we investigated

auxin patterning when PIN2 levels were reduced by 2/3, which caused (normalized) oscillation
amplitude to decrease with 33% (F&JLE, 3.1D). If instead we maintain PIN2 levels yet remove
lateral inward oriented PIN2 in the epidermis, oscillations decrease in amplitude and shift shootward
(Fig. 3.1E,S3.1D). Finally, we simulated amux1mutant, resulting in a 67% decrease of (normalized)
auxin oscillation amplitude (Fig8.1E, S3.1D), consstent with earlier observations that absence of
AUX1 expression in the LRC strongly reduces oscillation amplifldeSmet et al., 2007, Xuan et

al., 2016) Combined, these results sugghstt PIN2 and AUX1 mediated upward transport through

the LRC and epidermis, and subsequent inward transport towards the vasculature are essential for
auxin oscillations in the vasculature of the TZ and E@teworthy, the previously proposédRC
apoptosisdriven priming mechanism relies on a similar upward and inward auxin transport route
(Xuan et al., 2016).
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3.2.4Growth of vasculature and pericycle is a key component of the auxin oscillation
model

Previous experimental results demonstrated a strong correlation between periodic LRC apoptosis and
oscillatory LR priming(Xuan et al., 2016)To test the causal nature of this correlation in our model,
simulations mimicking defects in LRC growth dynamics were performed. Outcomes show that auxin
oscillations persist albeit at reduced amplitudénliw a simulatedombrera(smb mutant (Fig3.2A,

S3.2A), as well as in complete absence of LRC growth dynamics 824, S3.2A). These results
suggest that other coordinated growth processes may be responsible for the correlation between LRC
apoptosis and auxin oscillations but not LRC shedding itself. To further explore this, we systematically
simulated the consequences ofwgtio dynamics in a subset of tissues while not applying growth
elsewhere. Growth of vasculature and pericycle tissue was found necessary and sufficient for auxin
oscillations, while growth of other tissue layers merely contributes to oscillation amphkigdg.2B,

S3.2B). To further support our finding that only growth of the to be primed tissues is required we
performed simulation in a minimal 1D model with a single row of growing cells with si8taiche

driven growth dynamics as used in the full rebd he results show that mild auxin oscillations arise

that are augmented when adding an auxin loading zoneSFRL).

3.25 Growth induced cell size increases can drive auxin loading into vasculature cells

Auxin availability and a functional reflux loop explain how auxin becomes transported upward to the
TZ/early EZ, but do not yet explain why vascular and pericycle growtlessential for this process,

nor why auxin oscillations predominantly occur in these tissues. Indeed, while the lateral, outward
oriented vascular PIN pattern explains the withéisculature preference for the outermost,
protoxylem cell file, it does natxplain the preferential loading of auxin in the vasculature per se.
Particularly since this loading pattern implies that the auxin transported in the reflux loop passes from
the LRC, through epidermis and ground tissue, to the vasculatura@jlaitwith somewhat different
amplitude and location, still occurs in absence of inward oriented PIN2 in the epidermis, root cap and
cortex.
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We hypothesized that cell growth causes auxin inerdasugh an enhanced auxin influx/efflux ratio:
While the typically apolar active and passive auxin import increases with membrane surface area and
hence cell size, the predominant polar localization of PIN exporters egrommng rootward (PIN1)

and shotward (PIN2) membranes causes a relative decrease in auxin efflux with increasing cell sizes.
Notably, these effects will be more prominent for narrow vasculature cells that undergo the largest
increase in surface to volume ratio. Decreasing the widtimlgfvascular tissue in our model further
enhances auxin oscillation amplitud&ig. 3.2C), corroborating this hypothesis. Simulations
normalizing either active AUX1 mediated auxin influx, passive memHoased auxin influx or

active PIN mediateduxin efflux with cell height indicate that auxin oscillations are predominantly
driven by a sizelependent increase in passive auxin up(glig 3.2D).

3.2.6An explanation for progress of priming from vasculature to pericycle

In experiments, priming is initially observed in protoxylem cells, with the signal subsequently being
passed on, and in case of successful priming, maintained in pericycl®essnet et al., 2007)n

our default settings, priming occurs simultaneously in the protoxylem andoeigi pericycle, with

the two tissues experiencing only mildly different maximum auxin levels 8igB). However, in
planta, protoxylem, protophloem and metaphloem cells stop dividing closest to the root tip, while
neighboring pericycle cells do so ciderably further shootwar(lLavrekha et al., 2017)These
different dynamics will result in lasgprotoxylem cells next to smaller pericycle cells at the start of
the TZ. After incorporating these characteristics into our model we observed auxin elevations to first
occur in the vasculature, and subsequently being passed on to abutting pericy¢tecgIiE, 3.2F),

in line with experimental dat@e Smet et al., 2007Notably, the differential onset of cell expansion
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enhances vascular oscillation amplitude while reducing that of the pericycle and allows for a partial
maintenance of the priming signal (F®2E, 3.2F). Thus our model naturally produces the correct
location and order of events in LR priming, as an emergent property of incorporating increasingly
realistic root growth dynamics.

3.2.7Priming occurs in large cells followed by smaller cells

Our results thus far indicate that priming arises from the preferential loading of auxin in large, rapidly
expanding vascular cells, but do not yet explain what causes its periodic nature. To decipher the
mechanism underlying the periodic nature of theeold auxin oscillations, we first compared
kymographs depicting intracellular auxin levels with those showing cell size3(B4). Additionally,

we correlated cell size and auxin loading dynamics (88B). In both kymographs and plot we
observe a sting correlation between cell size upon entering the EZ and maximum attained auxin
levels, confirming our earlier results on the importance of cell size for auxin uptake. In addition to cell
height, we observed a weaker but significant correlation forlaeluxin levels with EZ residence

time. This can be understood from the fact that EZ residence time affects loading time as well as the
amount of cell size increase occurring inside this loading 2deéhpds, Fig. S3)6

Next, we focused on the periodicity in auxin loading and its predominant relation to cell size. In the
kymographs we see that maximum auxin loading occurs in the latest, largest arriving cells of a group
of incrementally larger and more auxin loading ¢eldth this group being terminated by newer,
smaller cells arriving (Fig3.3A). These smaller cells, which by growing slower cause a slower
displacement of shootward cells, enhance the EZ residence time of larger cells, thereby further
boosting their sizelependent auxin loadind/iethods Fig 3.3B).As maximum auxin loading thus
occurs on the boundary of large and small cells arriving at the EZ, we can effectively trace the temporal
dynamics of priming by focusing on the periodic occurrence of directlyiafplaargesmall cell pairs

(Fig. 3.3B: >1 ratio for cell height/cell height below cell).

The sequential increase in cell size terminating with a small cell starting of a new sequence observed
in our model was previously observed for cortical cells inetaited root tip tracking stugyon
Wangenheim et al., 201 @)nfortunately, direct validation of the priming mechanism uncovered here

by concurrently measuring detailed cell size and auxin dynamjaantais impossible with current
techniques, particularly for the narrovihaped and internallyocalized vasculature. Similarly,
validation through tracing back LR forming sites to earlier, only transiently present, cell size
differences or spatitemporally targeted interference with the formation of lagell cell pairs, or

their cellsize dependent auxin loading is technically unfeasible. Therefore, we decided to further
unravel how root growth dynamics determines priming characteristics in order to arrive at a series of
experimentally testable predictions on the relatiamben root growth and priming features.

3.2.8Priming arises from abutting clones in a defined spatiotemporal window

First, simulations were performed varying different components of overall root growth: TA cellular
division rate, meristem size (i.e. number of dividing cells), and cellular elongation rate. Results show
that both increases in TA division rate (for a giveeristem size) and meristem size (for a given TA
division rate) enhance priming frequency (Hd@A, 3.4B, S3.3A, S3.3B, VideoS3.2a, VideoS3.2b).

In contrast, increases in elongation rate enhance priming amplitude 4&y.VideoS3.2c) but not
frequency (Fig3.4D). Thus, overall meristem cell production, determined by both division frequency
and meristem size, dictates priming frequency.
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Next we set out to unravel how meristem cell production determines priming dynamics, i.e. the
periodic formation of largemall cell pairs. For this we need to consider that plant root growth is
directionally organized, with rootward oriented, slowly divglistem cells generating transit
amplifying (TA) daughter cells that enter the meris{&iet et al., 2015, Lavrekha et al., 2017, Rahni
and Birnbaum, 2019)These TA cells undergo multiple rounds of rapid, approximately synchronized
divisions, foming an expanding clone of sibling ce{lon Wangenheim et al., 2017, Rahni and
Birnbaum, 2019)Due to the formation of newer, eot-phase, clones, older clones move shootward
relative to the QC, out of thmeristem.

Formation of a largemall cell pair requires that for two abutting, -@itphase clones the rootward

clone divides once more after the last division of the top clone. The chances at any given meristem
location for two such abutting clones tacac depend on clone density. As a measure for the number

of clones fitting in the meristem, we take the number of divisions a cell can undergo before leaving
the meristem, given by leggmeristem size]Beemster and Baskin, 199@ig. 3.5A). Thus, clone
density scales with la¢meristem size)/ meristem size, indicating that as MZ size increases, clone
density decreases and clone size increases3big).

Additionally, to produce a largemall cell pair at the TZ, the final division in the top clone has to
occur sufficientlyearly for it to have time to grow large, yet not so early that it undergoes another
division and becomes small again. Thus this final division should occuimmted spatial window
defined by the position cells occupy when at a distance(@fQ cell cycle from the TZ, withU
sufficiently small. Indeed, tracing back primed cells to the position of their final divisions reveals a
restricted spatial window, with a value foiof 0.25 (Fig.3.5C). Larger meristems result in a faster
cumulative displacenmt of cells, translating this temporal window into a spatial window (in number
of cells) that increases linearly with meristem size (EigD) (seeMethods.

Given that per meristem position the chances for tweobphase clones scales with Jgmeristem
size)/meristem size, and priming requires the top clone to divide within a spatial window which size
scales with meristem size, priming frequency should scale witkntegistem size), consistent with

our simulations showing a sublinear increagte meristem size (Fig.4B, 3.5D). However, this only

takes into account the chance for two abutting clones to occur at a position at which this could
potentially lead to formation of a largenall cell pair. For this to actually occur, the topmost €lon
should divide at this position, which occurrence scales with TA division frequency3(@#g.3.5E).

Overall priming frequency thus depends on the product of division rate witmiegstem size).

By definition, the spacing between primed sites (Bqual to the number of cells passing by in
between priming events, and hence equals cell production divided by priming frequencylinkaub
dependence of priming frequency on meristem @g. 3.4B), implies that as meristem size (and
hence produain) increases, PS spacing should increase as well. Indeed, in our simwletises a
strong positive correlation between PS spacing and meristem siz8.6AYy. On the contrary, since
increases in division frequency almost fully translate to increases in priming rate3@4g.
(Methodg, we expect no significant correlation between PS spacing and division rate, Indeed
simulations confirm that this correlati was not significant (Fig.6B).

Summarizing, our model predicts a positive correlation between priming frequency and meristem size

as well as division rate (Fi§.4A, 34B), and between PS spacing and meristem size36ig). To
more compactly repgsent our findings we translate these predictions into a positive correlation
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between priming frequency and spacing with cell production (product of meristem size and cell
division rate) (Fig3.6C, 3.6D). Additional advantage of this compression is Wmatcan now display

all data points combined, rather than using only a subset of datapoints with similar meristem size when
plotting priming as a function of division rate, or vice veisa,([Fig. 34A, 34B).
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Figure 3.4 Priming frequency and amplitude as a function of growth parametéjsSimulation data of priming frequency

as a function of TA division rate for meristem sizes betwe&®25 3035 cells. Per meristem range and TA division rate,

SC division rates we varied between 0-0.67 times TA division rate. Data were fitted using linear regression. B) Simulation
data of priming frequency as a function of meristem size, for cell cycles of 12h, 9h or 8h (corresponding to divisibn rates o
0.083, 0.11 and 0.12%espectively). SC division rates were varied as in A. Data were fitted to a-eweistribution. C)
Simulation data of priming amplitude as a function of elongation time. D) Simulation data of priming frequency as a function
of elongation time for theame simulations as shown in C. See legend next to panel D for the elongation time corresponding
to the different line colors. See also Figure33

3.2.9Validation of the reflux-and-growth priming mechanism

Our refluxandgrowth model thus predicts a positive relationship between both priming frequency
and spacing and cell production (Fig 6E and 6F, green lines). As a next validation step, we compared
these predictions against those of alternative modelsjraegtigate which model predictions are
supported best by the experimental data. A first alternative model is theatidekavefront model
(MorenaRisueno et al., 2010yenerally accepted to underlie the segmentatitimeofertebrate body

axis into somite€Conlon et al., 1995, Palmeirim et al., 1997, Jiang et al., 2000, Dubrulle et al., 2001,
Baker et al., 2006)Following to the clockandwavefront paradigm, oscillation frequency (and thus
presumably priming frequency and LR production rate) depends on the frequency of the cell
autonomous clock,emerated by a delayed negative feedback motif, and would be independent of
meristematic cell production (Fi§.6E, black line). In contrast, wavelength (i.e. PS spacing) depends
on the amount of growth in between clock periods and would hence scaleadtitton (Fig.3.6F,

black line)
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Another theoretically possible mechanism that has been proposed for LR priming is the Turing
mechanisn(Turing, 1952, laskowski and Ten Tusscher, 201 a polarly growing tissue such as

the root, the continuous increase of tissue size would result in the periodic production of new peaks
each time tissue size has increased with the wavelength of the Turing pattern. This causes LR
production rate to linearly depend on growth rate and hence cell productioB.@Egred line). The
wavelength itself depends on the interaction and transport parameters together giving rise to the Turing
pattern, and are independent of cell production @&F, red line).

To investigate whethén plantapriming dynamics support thieflux-and-growth priming mechanism
uncovered here we set up experiments aimed at inducing a range of different meristem cell production
rates and resulting priming dynamics. To this end, we compared plants grown under control conditions
with plants treate with the growth hormones, gibberellic acid (GA), and two different levels of
brassinosteroids (BR), to induce variation in relevant growth parameters and thereby (uineidag

Tomas et al., 2008, Gonzal&arcia et al., 2011)importantly, while these hormonal treatments
through crosdalk may interferavith auxin levels and/osignaling both our model and experimental

data (Xuan et al., 2016, Perian€&ndriguez et al., 202lindicate that this only directly affects
oscillation amplitude, not frequency. This enables us to focus on the direct and indirect effects of these
hormone treatments on meristem growth dynamics and its relatib priming dynamics.
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Figure 3.5.Priming arises from asynchronous clones with final divisions in a limited spagmporal windowA) Clone
number as a function of le@MZ size). Data were fitted using linear regression. B) Clone size (blue) and density (red) as a
function of MZ size. Data were fitted using linear regression. C) Zoomed in kymograph showing that cells with a fimal divisio
in the indicated spatial windowrive large in TZ, and when followed by a small, recently divided cell obtain highest auxin
levels. Window is indicated as area between horizontal green lines. D) Size of window in which final divisions leadjto primin
for incrementally increasing MZ sigegfrom left to right 15, 25 and 35 cells in MZ. Cyan cells indicate cells divided in window
followed by a recently divided cell (indicated green). E) Number of divisions within window that lead to priming for
incrementally increasing TA division rateiin left to right 0.08 div/cell/h (cell cycle =12h), 0.11 div/cell/h (cell cycle =9h)
and 0.14 div/cell/h (cell cycle = 7h).
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To achieve this we designed an experimentalipdbllowing priming zone auxin oscillations in time
through recording activity oA DR5::LUC transgene (MorefRRisueno et al., 2010), while growth
parameters were tracked in parallel. Overall, sizes of actively dividing meristems range from ~12 to
~48 cortical cells (~4 fold range) (Fi§6G, S3.4A), cell production rates from 1.23 to 3.2 (~2.5 fold
range) (Fig3.6G, S3.4B), priming frequency from 0.2 to 0.87 events per hour (~4.5 fold range) (Fig.
3.6H, S3.4C) and priming site spacing from 1 to 8 cells (~8 fold range) &&H, S3.4D). Thus,
significant variations in growth parameters as well as priming characteristics were successfully
generated using the selected treatments.

Our experimental perturbation data show a significant positive correlation between both priming
frequency and PS spagimwvith cell production (Fig3.7A, 3.7B, S3.5A, S35B), as well as similar
relations between frequency and spacing with meristem size and division freq&enc$3(GC,

S3.5D, S3.5E, S3.5F). This enables us to falsify both Turing based elndk-andwave front driven
priming mechanisms and support the newly discovered raftabgrowth priming mechanism.

3.2.10Distinct vascular division dynamics significantly contribute to priming frequency

Interestingly, despite our model simulations covering active meristem sizes and division rates over a
range similar to those measured experimentally, priming frequencies and PS spacing distances
observed in our model differ approximately ~4 fold from thegperimentally measured (compare

Fig. 3.6C and3.6D with, 3.7A and3.7B). Given that the model does correctly simulate correlations
between priming frequency, PS spacing and meristem cell production, we reasoned that while the
priming mechanism found inuo model is correct, some quantitative aspect must differ frormthe
plantasituation.

Additionally to the aforementioned early onset of differentiation in the protoxylem relative to the
pericycle (Lavrekha et al., 2017)two recent studies measurigabidopsisroot cell division
dynamics found that transit amplifying division frequencies in stele cells are approximately 1.5 times
higher as compared to cortical cllsvrekha et al., 2017, Rahni and Birnbaum, 20T8)s implies

that our measured cortical cell production and division rates significantly underestimate the rate of
vascular divisions driving priming dynamics. Additionally, one of these studies reported that while
cellular division ra¢s were higher, the frequency of division events within the stele was lower and cell
length larger, indicating fewer, larger celleavrekha et al., 2017)Incorporating these three
vasculature specific features into our model resulted in a substantial increase in fpequegcy and
decrease in PS spacing (FR7C, 3.7D, red versus green dataaintaining the previously found
relationships while significantly improving the quantitative agreement between model and
experimental data (Fig3.5G andS3.5H).
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Figure 3.6. PS spacing and frequency as a function of division rate and MZ sixp Simulation data for priming site
spacing as a function of MZ size. Data were fitted using linear regression. B) Simulation data for PS spacing as a function
of division frequency. Dataere fitted using linear regression was performed. C) Simulation data for priming frequency as
a function of cell production for simulations with varying meristem size and division frequency. Data were fitted using linea
D) Simulation data for primingite spacing as a function of cell production for simulations with varying meristem size and
division frequency. Data were fitted using linear regressi&nPredicted relationship for priming frequency with cell
production for refluxand-growth, Turing paern and clockandwavefront models. F) Predicted relationship for PS spacing
with cell production for reflisand-growth, Turing pattern and cloekndwavefront models. G) Experimentally measured
cell production as a function of meristem size. Data pdinta both control and 3 different hormone treatments are shown,
with color indicating the treatmenH) Experimentally measurgatiming frequency as a function of priming site spacing,
from the same experiments as shown in G. To measure priming dyndamtscprrying a DR5:LUC construct were used.
See also Figure34.
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3.2.11Actual LR frequency and PS spacing scale in similar manner with cell production

For plant fitness, it is not the frequency and spacing of priming events, but the actual formation and
spacing of LRs that is relevant. A major question thus is to which extent our model is capable of
explaining LR patterning. To establish this, an addélseries of experiments was performed, using
similar perturbations as before, but now counting the numbers of and distances between LRs as well
as LR primordia, using the earbkpressed LR specific PLT3 repor(Blu and Scheres, 201 Bigure

7E and F shows that a similar positive correlation between LR formation frequency and LR spacing
and cell production was found as for PS frequency and spacing. Thus, with our unravelling of the
mechanisms underlying LR priming, also meaningfuldfmtions for actual LR patterning can be
made.
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Figure 3.7. Priming frequency and PS spacing as a function of cell productidnB) Experimentally measured priming
frequency (A) and PS spacing (B) as a function of cell produddata points fromboth the control and the three different
hormone treatments are shown, now without using different colors to differentiate treaffoentasure priming dynamics,

plants carrying a DR5::LUC construct were usé&D) Priming frequency (C) and PS spacing @ a function of cell
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three different hormone treatments are shown. To measure LR formation dynamics, plants carrying a PLT3::GUS construct
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3.3Discussion

At first glance, the root system of a plant does not necessarily appear highly (€gulzer et al.,

2013) yet the initial step of LR formation, LR priming, has been shown to have a repetitive nature.
During LR priming, periodic oscillations in the plant hormone auxin and its downstream effects
prepattern subsets of pericycle cells to become competent foe fluR formation(De Smet et al.,

2007, MoreneRisueno et al., 2010, Xuan &t, 2015, Xuan et al., 2018)ater stages of lateral root
formation havesuccessfullypeen unraveled. Amgexample the transition from 2 primed protoxylem
sites to a single sided stable founder cell has been shown to arise from a competition for auxin
(signaling (el-Showk et al., 2015}hat can be biased by environmental factorshsas water
availability promoting auxisignalingintensity(OrosaPuente et al., 2018yhus far the mechanistic

basis of lateral root priming has remained unclear.

In this study we aimed to uncover the mechanism underlying LR priming. Inspired by the reported
importance of auxin transport as well as the strong correlation with root cap apapiatsggowth

and cell wall remodelingJensen et al., 1998, Xuan et al., 2016, Wachsman et al., 2@20)
hypothesized it priming arises from an interplay between root tip auxin transport and growth
dynamics. To test this idea, we developed a novel +acdtie root growth model enabling us to
simultaneously track auxin and auxin signaling dynamics at the single ce#l,disduvhole root organ

level, while independently varying different aspects of auxin and growth dynamics. Analyzing our
novel growth model, we uncovered that the root tip auxin reflux loop creates an auxin loading domain
at the start of the EZ. Additiongl|lwe elucidated how their narrow shape and early onset of elongation
provides vasculature cells with the highest auxin loading potential, causing preferential auxin
accumulation in these cells. Next we showed how priming occurs in the final, largedtacskries

of increasingly large vasculature cells, and is followed by a significantly smaller cell. We then went
on to demonstrate how the typical root tip growth dynamics results in the periodic production-of large
small cell pairs. Specifically, we daidate how stem cell driven growth dynamics results in the
sequential production of owf-phase clones of sibling cells, and hence-adythase dividing
neighboring cells. Combined we thus uncovered a novel refigbggrowth mechanism for periodic

LR priming. To link this model to experiments, we derived predictions stating that both cell division
rate and meristem size, and hence meristem cell production rate determines priming frequency as well
as PS spacing.

To validate these model predictions, we mgad spatidemporal dynamics of priming site and LR
formation using perturbations that allowed us to extract information on the influence of individual
model parameters by deconvolution of effects. In agreement with our model predictions but not with
those of competing models, we observed a significant positive correlation of both priming frequency
and spacing with meristem cell production rate. Our results thus present a novel framework explaining
the periodic nature of LR priming in dicot plant rootatthighlights the role of cell size differences

in auxinbased patterning. As such it bears resemblance to an earlier study demonstrating how lateral
root bending, through enlarging cells at the outer curve of the bend, could induce lateral root formation
(Laskowski et al., 2008)

As a further support of the mechanism we propose here, agreement between model outcomes and
experimental data further increased when incorporating additional biological detail into our model.
When accounting for the differences in distance relative t@@erom where cells stop dividing
(Lavrekha et al., 2017pur model automatically reproduces the start of priming in the pretodyle

(De Smet et al., 2007and the subsequent transmission of the signal to the pericycle, where founder
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cell formation occurgDubrovsky et al., 2006)0n a similar note, incorporating the experimentally
observed larger size and higher division frequency of vascularkalleekha et al., 2017, Rahni and
Birnbaum, 2019) significantly improved quantitative agreement between model and data.
Additionally, the predicted periodic patteof gradually increasing sizes of cells arriving at the
transition zone with the final largest cell followed by the first smallest cell of a new sequence has been
measured for cortical cells in a detailed root tip tracking sfudg)Wangenheim et al., 2017)

Compared to prebranch site spacing actual root system architecture is often considerably less regular
(Gruber et al., 2013)Stochasticity(Laskowski, 2013)root curvaturgKircher and Schopfer, 2016,
Richter et al., 2009knvironmental condition®ao et al., 2014, Gruber et al., 2018)d competition
between neighbang primed site¢Bielach et al., 2012, Hofhuis et al., 2013, Toyokura et al., 2819)

mold prebranch site patterns into actual root system architecture.

Indeed, we observed ~4 fold lower LR numbers and ~4 fold increase in LR spacing as compared to
priming site numbers and spacing (F3gZA, B and Fig.3.7E, F). Although differences may partly

arise from data being obtained in separate experiments uiglglystlifferent conditions, the size of

the difference suggests many priming events do not result in LR formation. While earlier studies
reported a near 100% translation from priming events to LR form@figem et al., 2015, Xuan et al.,

2016) much lower success rates were reported in experiments using a similar intermittent light regime
and no additional sucrose as we applied fi€ireher and Schopfer, 201.8fombined, this underlines

the extensive reserve potential and plasticity in root architecture development under more natural
growth conditionsNevertheless, our in planta experiments demonstrate that for actual formed LRs a
similar dependence of frequency and spacing on meristem growth rate exists as was found for
prebranch sites. Thus, at least for idealized experimental conditions, qualiattictemporal
characteristics of priming and prebranch site patterning translate into those for LRs.

In addition to the predictions of our model being borne out by our experimantalations the

priming mechanism uncovered here agrees with & langge of experimental data. We demonstrated
how reduction of LRC auxin producti¢Xuan et al., 2015)and mutations in auxin transportéte

Smet et al.,, 2007, Swarup et al., 2008, Lewis et al., 2011, Xuan et al., 20d4%,eX al., 2016)
significantly reduce oscillation amplitude, explaining the reduced observed prebranch site numbers
from a decreased chance for priming to lead to prebranch site formation. Also, the predicted
importance of cell elongation for oscillatimamplitude (Fig.3.4C, 3.4D) is supported by recent
experimental findings reporting reduced LR formation for roots with shorter elongate(htaiton

et al., 2019) or reduced potential for cell wall modificati¢w/achsman et al., 2020Additionally,

the central role of growth uncovered here explains why in absence of light and hence growth, no LR
formation takes plac@lensen et al., 1998)he observed relationship between LR formationceild
production is furthermore supported by studies varying nutrient levels, where a decrease in main root
size (and hence cell production) translated to reduced LR numbers and a higher LR(Bénresity
Torres et al., 2008, Gruber et al., 201Qur findings furthermore suggest that the previously found
correlation between LRC apoptosis and priming may arise from the coordination between root cap
apoptosis and meristem growth dynamics, consistent witlecant study demonstrating this
coordination(Shi et al., 2018and the observed persistence of priming in the apoptosis defective
mutant(Xuan et al., 2016)Finally, findings indicating that mutations in pericycle specific cell cycle
regulators affect the frequency of LR formation corroborate the importance of cell growth and division
dynamics in determining LR formati¢hlieuwland et al., 2009)
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Lateral roots are an important determinant of both dicot taproot and monocot fibrous root architectures,
Available data indicate a commaericycle origin of these lateral roots, while depending on the
species also cortical and endodermal cell layers may contribute to lateral root fofiaticet al.,

2019) Intriguingly, depending on the species the auxin maxima preceding lateral root formation may
form at either the protoxylem (e.g. Arabidopsis) or protophloem (e.g. maize) vascul@lgnden et

al., 2012) possibly as a result of differently oriented radial auxin transport. In either case formation of
the auxin maxima critically depends on auxin transport, and vascular priming signals are transmitted
to thepericycle. Combined with the fact that the priming mechanism uncovered here depends on the
basics of stem cell driven root growth, that is shared between all higher, true roots containing plants,
this suggests that while radial patterning may be speciesfisp oscillatory longitudinal auxin
patterning is likely largely conserved. Indeed, our model results indicate that changes in root tip size,
shape and number or number of cortical layers do not change priming dyngigni&s 6l).

In summary, our work presents evidence that LR priming is driven by-aar@mnical mechanism for
periodic pattern formation that is distinguishable from other known periodic patterning mechanism
such as a cloekndwavefront model or a Turing pattern.

3.3.1Limitations of this study

A limitation of the current study is that the lateral root priming mechanism we uncaneséido

could not be experimentally validated in a direct manner and instead required a more indirect
validation of model predictig Direct validation of the priming mechanism through perturbation
would require interfering with either the dynamic formation of periodic cell size differences or with
the cell size dependence of auxin uptake. It is to our knowledge currently not feagibtéurb the
relationships between time available for growth and attained cell size, or of cell surface area with
passive uptake capaciiy plantain a targeted, systematic manner (note that we did perform these
experimentsn silico, confirming our hpothesisethods, Fig. S3)§. An alternative direct validation

of the priming mechanism by measuring a correlation between the periodic formation fnteitye

cell pairs in the early EZ and auxin oscillations or subsequent laterérowition would require the
dynamic monitoring of transient cell size differences either simultaneous with auxin dynamics or
combined with tracing these to lateral root development. Again, there are technical limitations on
dynamic measurements of vascudal sizes due to the narrow shape and internal tissue localization
of the vasculature.
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34 STAR METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE | SOURCE | IDENTIFIER
Chemicals, Peptides, and Recombinant Proteins
SCRI Renaissance 2200 (SR2200) Renaissance Chemicals | N/A
D-Luciferin Duchefa Biochemie Cat# L1349
Gibberellic acid A3 Duchefa Biochemie Cat# G0907
24-Epibrassinolide Duchefa Biochemie Cat #E0940
Murashige & Skoog basal salts Medium | Duchefa Biochemie Cat# M0222
Plantagar Duchefa Biochemie Cat# P1001
MES Monohydrate Duchefa Biochemie Cat# M1503
NaHPQ..2H:0 Merck Cat# 106580
NaH,POu.H>0 Merck Cat# 106346
KsFe(CN) Merck Cat#104973
K4Fe(CN).3H.0 Merck Cat# 104984
Triton X100 SigmaAldrich Cat# 9002931
X-GIcA Cyclohexylammonium Salt Duchefa Biochemie Cat# X1405
N-dimethyHormamide SigmaAldrich Cat# D4551
Dimethyl sulfoxide SigmaAldrich Cat# D5879
TWEEN® 80 SigmaAldrich Cat# P5188
Experimental Models: Organisms/Strains
Arabidopsis:pPLT3::GUS Du and Scheres, 2017 N/A
Arabidopsis:DR5::Luciferase MorenoRisueno et al., N/A
2010
Software and Algorithms
Fiji https://fiji.sc/ RRID:SCR_002285
Cell-o-Tape https://www.nottingham.a| N/A
c.uk/research/groups/cvl/s
oftware/cellotape.aspx
KymoResliceWide https://github.com/ekatruk N/A
ha/KymoResliceWide
Growing root model http://bioinformatics.bio.u| N/A
u.nl/khwijtuss/PrimingRoo
Other
Nu n ¢ E -CGlere Treated Multidishes | Thermo Scientific Catt 167063
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3.4.1RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled

by the Lead Contact, Kirsten ten Tusscher (k.h.w.j.tentusscher@uu.nl).

Materials Availability
This study did nogenerate new unique reagents or materials

Data and Code Availability
The code and datasets generated during this study are available at

[http://bicinformatics.bio.uu.nl/khwjtuss/PrimingRoot].

3.4.2EXPERIMENTAL MODEL AND SUBJECT DETAILS
Plant material

Arabidopsis thalianaccession Ced was used in this work. The transgefsiabidopsis thaliandines

used were described previously: pPLT3::G{I# and Scheres, 201@nd DR5::LUC(Morenc
Risueno et al., 2010, Xuan et al., 2Q1%¢eds were surface sterilized with gaseous chlorine produced
in a sealed container with 80ml bleapplemented with 3ml of 37% hydrochloric acid for 2 hours.
Seeds were sown on growth medium consisting ofdie¢ihgth Murashige Skoog salts (Y2 MS) with
1-1.5% agar for lateral root number assay and luciferase assay respectively. Seeds werefibeén strati
at 4°C for 2 days in the dark and transferred to growth chamber at 22°C for germination under long
day conditions (16 h light/8 h dark photoperiod) in oriented Petri dishes (15 degree to vertical plane).

3.4.3.METHOD DETAILS
3.4.3.1Experimental methods

Hormone Treatments

Seeds were sterilized, plated and seedlings were grown as described in the plant material subsection.
The seedlings were transferred with tweezers onto solid %2 MS medium plates containing Gibberellic
acid (GA) ata final concentration of 10uM or Brassinosteroid-Bdibrassinolide) (BR) at a final
concentration of 1nM or 100nM. As control the seedlings were transferred to ¥2 MS medium without
any supplements. For the lateral root number assay the total duratienhafrmonal treatment was 6

days. Quantification of lateral roots was performed over a 4 day period, starting 2 days after transfer
to the treatment plates to avoid measuring initial, transfer induced stress response rather than hormonal
responsed-or theluciferase assay the hormonal treatment period was 66 hours, Luciferase imaging
of the root began 48 hours after transfer to the treatment plates (more details can be found in the
respective sections below).

Histology and Microscopy

Histochemical staimig of promoted r i v-glucurobidase (GUS) activity was performed as
described previouslfwillemsen et al.1998)with modifications. In brief, a strip of filter paper soaked

in GUS staining solution (0.5 mg/ml-§luc dissolved in fdimethytHormamide, 0.1% Triton XL0O,

0.5 mM K4Fe(CN)6.H20, 0.5 mM K3Fe (CN)6, and 50 mM sodium phosphate buffer, pH 7.2) was
placed on the root section of interest and incubated at 37°C in the dark for 2hours. Stained primordia
were counted under a Carl Zeiss Stemi SV6 Stereomicroscope. For meristem and cortical cell size
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analysis, roots were stained and fixed in SCRI Renaiss22@@ Staining Solution (0.1% (v/v)
SR2200, 1% (v/v) DMSO, 0.05% (w/v) Triton-X00, 5% (w/v) glycerol, 4% (w/v) para
formaldehyde in PBS buffer (pH 8.0) and stored at 4°C before imaging as described previously
(Kerstens et al., 2020)Jmages were acquired usireg Zeiss LSM 710 confocal laser scanning
microscope with 40X objective with laser lines and setting as described pre\idastyens et al.,

2020) Images were analyzed with Rigchindelin et al., 2012)

Lateral root number assay

PLT3::GUS seedlings grown on Y MS plates for 5 days were transferred onto respective
treatment/control plates. 2 days after transfer, the root tips of the seedlings were labelled and the plates
were scanned using Epson Expression 11000XL every 24hreémsécutive days. Displacement of

root tips indicated by consecutive marks was used to determine root growth per day. At the end of the
treatment period, the number of lateral root primordia/ emerged lateral roots formed per day were
guantified by countinghe GUS stained primordia in each labelled section.

Luciferase assay

DR5::LUC seeds were plated on %2 MS medium and grown for 5 days before transferring onto
compartmented plates (NuncE Thermo ScientifickE)
sekcted from a paired design. The next day, we sprayed the seedlings with a XLméifdnin

solution (dissolved in 0.01% Tween80, 0.1% DMSO) in order to reveal their DR5::LUC expression.

24 hours after spraying in vivo luminescence signal was monitord@foours using the Nightshade

LB 985 (Berthold) system adapted for kirmaging of vertically growing Arabidopsis seedlings by

(Xuan et al., 2018)

Similar to an approach previously followed by Kircher and Schopfer, we measured in vivo DR5:LUC
luminescence in plants exposed to intermittent periods of darkness (allamingscence recording)

and light (simulating normal growth chamber conditigksther and Schopfer, 2018%pecifically,

for a period of 18h we applied 22 min cycles in which plants were exposed to 14 min light, and to 8
min of darkness, recording DR5::LUC expression for the final 3 min of darkness, DR5::LUC
expression was recorded using an integrated clangeled device (CCD) camera, acquired the
emitted signal with a 5 minutes exposure time and a 2x2 binning resolution. During the 14 minutes of
light exposure, we simulated the growth chamber light intensity using the Nightshade LED panels.
After imaging rats were stained and fixed in SR2200 Staining Solution to perform analysis on
primary root meristem.

Kymograph analysis

Stack images from microscopy analysis wemalyzed by making a kymograph using the
KymoResliceWide plugin for FiJhftps://github.com/ekatrukha/KymoResliceWjid& line matching

the width of an individual root was drawn on the root in tis¢ tisne frame of the movie, the plugin

was used with O6averaged settings to avoid tempor
of the analysis. A space scale was added while processing the kymdgapb$36A).

ImageJ/Fiji cannot handle different scales in x and y direction therefor only a space scale was added,
while a time scale was manually added based on the duration of the experimental recording. Brightness
and contrast was adjusted per individual rootmalisual identification of priming events. Since no
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conclusions are drawn from or analysis is based on priming amplitudes, adjusting settings per
individual root did not affect our analysis of priming frequency and spacing.

Kymograph analysis, root grovut

To measure root growth rate over the 18h period of the recording a line was drawn perpendicular to
the position of the root tip at the end of recording (F&E36B, red line). Subsequently, a straight

line was drawn from this first line to thEosition the root tip occupied at the start of the recording
(FigureS36B, cyan line), with the total size of this line representing overall root tip displacement and
hence overall root growth. Dividing this root growth over the time of the recordintjsr@sia root

growth rate. Root growth rate measurements were afterwards divided over the average adult
(expanded) cell size of the respective root to obtain root growth rate expressed in cell numbers/h.

Kymograph analysis, priming site spacing

To determme priming site spacing a line was drawn corresponding to the position of the t=18h time
frame (Figure S36C, yellow dotted line), using a line width of 3 pixels to enhance resolution. Start
and end position of this line are determined by the positiomefTZ/EZ border (location where
priming occurs, recognizable as the second diagonal line from the left in the kymograph) at the start
(FigureS36C, red line) and end of the recording period. We have thus defined, for a particular time
point, a spatial doain in which we can determine the spacing of priming events.

To determine spacing, we plot DR5:LUC intensity along the defined spatial doRigimgS36D).

To measure actual priming site spacing rather thatbmech site spacing priming evetitat do not

result in maintained high pixel intensity but instead fade out were atrtificially enhanced with a white
line to allow measurement at the t=18h position in the kymograpbréF&3 6D).

Anintensity plot over space was obtained and was useddonae the priming site spacingigure
S36E). Priming site spacing (PSS) per root was calculated in the following way:

PSS (mm)= (peakimmj peakisimm) peaksumsizecen)/( peaksum-1)

Where peaksinandpeakisin are the positions in spaof the last and first DR5::LUC intensity peak
respectively, peaksnare the number of peaks counted and.sizefers to the average adult cell size

of the respective root. Thepeaksun*sizecen serves to substract from the total distance betwesh fi

and last priming event the space occupied by priming events themselves, thus restricting inter priming
distance calculation to in between amimed cells. The above formula calculates the PSS in mm, by
dividing this distance afterwards over adult s@tk of the corresponding root we compute PSS in cell
numbers.

Kymograph analysis, priming frequency

To independently determine priming frequency we need to determine the number of priming events
occurring along the time axis. However, since mésolution of the time axis is considerably lower
than that of the space axis, projecting priming events on theatiseavill likely results in highly noisy
priming frequency data. As an alternative approach, to make use of the higher resolutionatighe sp
dimension, we first draw a diagonal line following the position of the root tip over timaréSg§6G,

yellow line), We set the scale of this spatonporal root tip trajectory line to the 18h of the recording
period. Next, we draw a line paraltel this line, corresponding to the displacement over time of the
end EZ/start DZ where priming events are most clearly visible (Methods Fig 1G, yellow dashed line).
The time scale of this line (mm to h conversion) is obtained from the root tip line. Veettnzs
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defined, for a particular spatial trajectory, a temporal domain in which we can determine priming
frequency.

To determine frequency DR5:LUC intensity was plotted along the defined temporal domain, again
fading out priming events where artificia®nhanced to determine frequency of priming rather than
pre-branch site formatiorF{gureS36F).

The priming period (inverse of priming frequency) per root was calculated as follows:
Priming period (h)= (peakn 1 peakisin)/( peaksum-1)

Where peaksin) ando€akist (nyare the occurrence in time of the last and first DR5:LUC intensity peak
respectively, peaksnare the number of peaks counted.

In total n=132 roots were grown and imaged (MS, n=33; 10um GA, n=31;1nm BR n=32 and 100nm
BR n=36), n=104 were analysed. Data from 28 roots was excluded from analysis due to various
reasons: growing out of the imaging plane (n=5), heavy curling (n=3), curling and touching of
neighboring root (n=14), lack of growth (n=2), lack of resolution jnRéots treated with 100nm BR

were more prone to curling and hence touching of neighboring roots. Of the total of n=28 excluded
roots, n=19 were treated with 100nm BR, n=5 with 10 ym GA, n=1 with 1nm BR and n=3 were on
control medium.

Measuring active mastem size

Meristem imaging was done as mentioned in the histology and microscopy section. To measure
meristem size and mature cortical cell sizes, Fiji/lmage J waq8shihdelin et al., 2012applying

the CellO-tape macro for cell size measureme(fisench et al., 2012)Previous researchas
demonstrated that due to the stopping of cell division and onset of cell elongation, the boundary of the
actively dividing meristem corresponds to the position in graph plotting cell size as a function of
distance from the QC where cell size increstsets to acceleraf¢layashi et al., 2013, lvanov and
Dubrovsky, 2013)Therefore, to determine active meristem size, we plot cortical cell size as a function
of position, doing this for both cortical cell files. We defined the meristem boundary as the position
where the slope of cell size changes from neutral to positiveréE&86H green line). If we obtain
different meristem boundary positions from the two cortical cell files, an average meristem boundary
position was computed.

All n=104 roots that were used for kymograph analysis were also used for active meristem size
measurements.

Determining cell production and division frequency

To determine (cortical) cell production rate, the numbédcoftical) cells produced by the meristem
per hour, we divide the measured root growth ratguirth) (see sectioKymograph analysis, root
growth)over the mature cortical cell size (im).

Next, to determine (cortical) cell division frequency, the number of cell divisions per hour, we divide

the obtained cell production rate (in cells/h) over the numbmeoktematicortical cells (see section
Measuring active meristem size).

51



3.4.3.2Computational methods

General model description

We developed a novel mulicale model for root growth and development, using as a basis a
combination of our earlier root models that either incorporated a realistic root tip archifeatuden

Berg et al., 2016pr root growth dynamicgMahonen et al., 2014similar to what we recently
published(Salvi et al., 2020)As a critical extension thereof, we incorporated in more detail root
meristem activity, including realistic cell division patterns with slow stem cell (SC) divisions near the
quiescent center (QC) and subsequent clonal expansion of more rapidly dixéaisiy amplifying

(TA) cells (Fig.3.1A) (Bizet et al., 2015, Rahni and Birnbaum, 2019ke our earliemodels, the

model incorporates cell type specific and zonation dependent gene expression and polarity patterns of
AUX/LAX auxin importers and PIN exportersiff S31A), developmental zone specific cellular
growth, division, expansion and differentiationndynics (Fig.3.1A), cell level control of gene
expression, and sub cellular, grid level, simulation of auxin dynamics. With respect to gene expression,
the model only incorporates the auxiapendent gene expression of AUX/LAX.

Tissue layout

In the current study we aimed to investigate the interplay between auxin transport and root growth
dynamics. Work by us and others has demonstrated the importance of a realistic root tip layout, as
compared to a simplified rectangular root topology, fot tip auxin patterningCruzRamirez et al.,

2012, van den Berg et al., 201%hus,we need to incorporate in our model an anatomically realistic,
wedgeshaped root tip layout encased in a lateral root cap (LRC). At the same time, our research goal
requires the incorporation of root growth dynamics. However, since the development Ibf a fu
mechanical model of root growth dynamics is outside the scope of the present paper, the aim was to
use the previously applied simplistic method of simulating root growth dynamics in which cells grow
by adding a row of grid points and shifting upwardnadire shootward cell@gvlahonen et al., 2014)

While this root growth algorithm can be easily applied in a square root topology in which all cells are
stacked in straight columns, this approach is less easily extended to the curved regions of the root tip.
Therefore, as a compromise, we limited the sizthe curved part of our root topology and ignored

cell growth and divisions there, simulating growth dynamics only in the straight part of the root
architecture. We reasoned that this is a justified approximation since it only ignores growth dynamics
of the columella and lowermost parts of the RC, which do not contribute to root tip meristem growth
dynamics. The root layout was simulated on a grid of 224x225%jitln a spatial resolution of 2 um.

A total of 8 different cell types were incorporated ire tnodel, with cell type specific widths
incorporated based on experimental data and earlier modelling stud#®wski et al., 2008, van

den Berg et al., 2016In figure3.1A, left side of root, moving from outermost to innermost these are:

RC and LRC (maroon, 8 um in straight part root), epidermal (blue, 18 um), cortical (light green, 20
pm), endodermal (orange, 12 um), pericycle (yellow, 8 um) and 3 vasculature filesg(dark 6

pm). Finally, the vasculature converges on the QC (pink) and below the QC are the columella cells

(grey) (Fig.3.1A).

To simulate developmental zonation dynamics, our model root is subdivided into 4 distinct
developmental zones, moving from ttwot tip shootward these are: meristematic zone (MZ), with
cytoplasmic growth and cell division; transition zone (TZ), with cytoplasmic growth but without
further cell division; elongation zone (EZ), with vacuolar expansion; and differentiation zonenDZ),
which cells undergo terminal differentiation without growing further (BijA, right part of root). In

the model used in this study, to simplify matters, the position of zonation boundaries were defined in
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terms of distance from the QC rather thardemdependent on aux{&rieneisen et al., 2007PLT
(Mahonen et al., 20149r combined PLT and cytokinin signalif@alvi et al., 2020gradients.
Boundary positions were set such that the combined meristem and transition zone contains an average
number of 40 cells for default simulations (average size 1.5 times the 8 um they have just after
division). The rootward 75% of these cells mgJdo MZ and will proliferate while the shootward 25%
belong to the TZ, exhibiting cytoplasmatic growth but no longer dividing. The EZ contains between
7-10 cells with a height between 20 and 174 um and the DZ contdip€8ll with an size of 175 um.

PIN expression and polarity patterns as well as AUX1/LAX patterns where incorporated based on
tissue type and developmental zone, in agreement with experiment@elatett et al., 1996, Swarup

et al., 2001, Péret et al., 2012, Swarup et al., 288 similar to earlier modeling studi@rieneisen

et al., 2007, Laskowski et al., 28Mahonen et al., 2014, Salvi et al., 20@y. S31A). This pattern

of auxin transporters results in reverse fountain auxin reflux pattern with maximum levels in the QC
(Grieneisen et al., 200Tig. S31A).

Auxin dynamics

Auxin metabolism, passive arattive transport across the membrane, and intracellular and intra
apoplast diffusion were implemented on a subcellular, grid point level in a similar manner as in earlier
studiegGrieneisen et al., 2007, Mahonen et al., 2014, van den Berg et al., 2016)

For a cytoplasmic grid point i,j (A surrounded by wall (Awai) andm cytoplasmic (Aer)
grid points the equation is as follows:

' H O —B & by B @ My & i B
Q0 QO0f (1)
Here, is the auxin production rat€) is the auxin degradation rate, a@@d is the diffusion

rate of auxin inside a celQ is the combined passive, diffusional and active, AUX/LAX

mediated influx of auxin from walls to cytoplasf, represents active, PIN medidtexport

of auxin from cytoplasm to walls, and active transport by other not explicitly modeled exporters
such as ABCB:s is captured@h. For an apoplastic grid point i§ (;) surrounded by n wall

(Awan) and m cytoplasmic (&) grid points theequation is as follows

(2)
With 'O representing the auxin diffusion rate in the apoplast.

Auxin production

While historically, root auxin levels were assumed to almost solely depend on shoot delivered
auxin, more recent data show the importance of root localized regions @fbighproduction,
particularly once roots have passed a particular development@laaerao et al., 2002We
incorporated elevated auxin production occurring in cells surrounding the QC as wehes in
columella and LRC cells (Fi®.1E), assigning these cells with higher valueg ofTableS31).

Finally, to ensure that despite grid based modeling of auxin dynamics, the overall auxin production

of an individual cell is independent of cell size we normalizedsr) =p*
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Where ' (XKD is the actual height of the cell arid (XX is the initial height of a
meristematic cell.

Boundary conditions

To simulate auxin exchange with the not explicitly modeled shoot, we incorporate an auxinnfflux (
into the top wall of the topmost endodermal and stele cells, while including an auxin(efffjépom

the top walls of all other cell files with the strengthedfdetermined by the amount of influx and
AUX/LAX on the lower membrane of the top cellshi$ approach is similar to that used in previous
root tip modelgGrieneisen et al., 2007, Mahonen et al., 2014, van den Berg et al., 2016, Di Mambro
et al., 2017, Salvi et al., 2020)

AUX/LAX pattern

For simplicity active auxin import was desxed using a single lumped AUX/LAX import term. To
define the lumped expression domain we defined an AUX/LAX prepattern that represents the sum of
experimentally reported expression domains of AUX/LAX ggBesnettet al., 1996, Swarup et al.,
2001, Péret et al., 2012, Swarup et al., 208%3. S31A). Active AUX/LAX mediated influx is
described as:aixiax = Vup *AUX/LAX par *AUX/LAX gen Where vyp is the auxin uptake rate of
AUX/LAX, AUX/LAX pat is the prepattern describing the maximum membrane level of the auxin
importers as a function of zone, cell type and membrane face and AUX{lig\¥he cell level gene
expression of AUX/LAX. AUX/LAX expressen is auxin dependenfLaskowski et al., 2006,
Laskowski et al., 2008)and we recently showed that this auxin dependence plays an important role
in root tropisms(van denBerg et al., 2016)Assuming a saturating dependence of AUX/LAX
expression on auxin levels we write:

e ¥ Z

®3)

Q ; !5B!8

Here,& G @ 7 is the maximal gene expression rate of AUX/LARA ¢ s the auxin
level at which the rate of AUX/LAX>@ression is half maximal, AUX/LAX proteins are degraded
withrateQ  ,andd 0 @ Q& is the average cellular auxin level.

PIN expression and localization

Similar to our earlier studies, we model active auxin export from cetleressting of a major

PIN protein mediated componenti{eand a minor additional componeng)(that can be

thought of as ABCB/PGP mediated auxin export. For simplicifyigeassumed to be equal for

all cells and to have an apolar membrane patternileé8ito iauxiax, €n is implemented to depend

on uptake rate, polarity pattern and gene expression levels in the following wey:v&: *
PINpa*PINgenWhere \tis the rate of PIN mediated auxin transport, Rithe PIN prepatterning
describing the maximum membrane level of the auxin importers as a function of zone, cell type and
membrane face and PJNthe gene expression level of PIN. With regards to PIN mediated transport,
tissue type and zonation dependelit prepatterns are incorporated based on experimental data and
similar to those used in earlier models (F3@.1A) (Grieneisen et al., 2007, Laskowski et 2008,
Mahonen et al., 2014, van den Berg et al., 20R@vious research has shown the critical importance
of protoxylem and xylem pole pericycle in LR priming. The initial priming signal was shown to only
occur at the two protoxylem poles, not in other vascular files, and to be transmitted specifically to
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overlaying pericycle cells in which subsequent LR development o¢B@sSmet et al., 2007pince

we aim to model LR priming, we choose for our 2D model to represent a longitudinakeoties
through the protoxylem poles. To achieve this we implemented a vascular PIN patternngmulati
critical aspects of thia plantapresent three dimensional auxin fluxbat result in the directing of
auxin towards the protoxylem poles, ensuring protoxylem pole priming(ek8howk et al., 2015)
Specifically, we included in addition to the predominant basally oriented active auxin transport,
outward oriented, protoxylem directed PIN transport (Bg11A).

Relative to earlier models changes were made in the PIN1 polarity pattern in the MZ, based on recent
experimental data demonstrating a relatively apolar distribution of PIN1 in the lowermost regions of
the root{Omelyanchuk et al., 201@¥ig. S3.1A). This change resulted in a broader, more robust auxin
maximum, more consistent with experimentally observed auxin patterns. For simplicity, regulation of
and resulting changes in PIN gene expressioridevere ignored.

Growth dynamics

Earlier data on Arabidopsis root growth dynanfBeemster and Baskin, 1998)ggested that

cell cycle durations in the root meristem (RAM) are in the order of 20 hours. These cell

cycle durations were based on measured cumulative cell flux dynamics at the end of the meristem
with the assumption that all, approximately3®), rows of cellsvithin the meristem divide at

a similar rate. In our earlier model, cellular growth dynamics were based on these estimated
rates(Mahonen et al., 2014However, more recent data suggest that cell divisions occur in only

a limited, rootward region of the meristem containing2D5cell rows(Wendrich et al., 2017, Rahni
and Birnbaum, 2019%ells in the remaining more shootward part of the meristem grow slowly, while
not or hardly dividing, until switching to rapid vacuolar expansion driven growth in the elongation
zone(Dello loio et al., 2008, Novak et al., 201@®)ivision rates measured within the lowermost
actively dividing part of the meristem were found up to 3 hours per cell gatapilho et al., 2006,
Rahni and Birnbaum, 2019, von Wangenheim et al., 200d¢ account for these recent insights, we
incorporated in the current model transit amplifying division rates in the range between 8 and 20h. In
addition, we also explicitly incorporated a proper meristem zone (MZ) in which cells actively divide
and ashootward MZ part, which we will refer to as a transition zone (TZ) in which we ignore rare cell
divisions and only simulate slow cytoplasmic cell growth (BigA).

Individual cells start in the MZ where they grow with rageJimzZ/pum anddivide

when they have doubled their size. When leaving the MZ, cells enter the TZ where they still grow
with rgrowthmz/im but no longer divide. Upon entering the EZ, cells start to expand witlsateAum

until a maximum cell height of 175um is reachand cells enter the DZ. MZ and EZ growth rates are

per um, resulting in higher per cell growth rates for larger cells and constant elemental growth rates,
consistent with experimental observatigBeemster and Baskin, 1998&jiven the discrete, grid based
nature of our model, cellular growth éxecuted in discrete steps during which a single row of grid
points is added to the height of a cell. The time interval at which these discrete growth event occurs
follows from the cellular growth rate in the following manner: if (time)fimeyevgrowthste
+(U/(rgrowtnmziez * cellheight)) add row of gridpoints. Concentrations of auxins and proteins are
corrected for these instantaneous cellular volume increases in case of cytoplasmic growth, but not in
case of vacuolar driven cell expansion where cytogtasoiume is assumed to stay constant. Upon
division, cells are divided into two equally sized daughter cells that inherit transporter patterns and
concentrations of cellular components of their mother cell. All tissues grow in the described manner.
In the LRC developmental zones are shorter and cellular apoptosis occurs when cells reach a fixed
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position from the root tip, corresponding with the start of EZ of other tissue type3.1Rig.To

ensure an approximately constant size of the simulated tissuamstant sized simulation domain
encompassing the simulated tissue is defined and the most shootward cells are removed if their
shootward cell wall is within 2 grid points of the simulation domain upper boundary.

Model variations, auxinavailability and transport

To investigate the impact of root tip auxin transport and auxin availability, simulations with altered
expression and/or localization of auxin importers and exporters or altered auxin production were
performed (Fig3.1C, 3.1D, 3.1E). Alterations in transporter levels, auxiroduction rates or shoot

auxin influx rates were applied by simply multiplying default parameter values with a scaling
parameter U, using U > 1 in case of orippdudienas e and
l evel s. Alterations were often applied in a tis
specific regions of the root tifTableS32).

Model variations, altered tissue specific growth dynamics

For adjustment in growth dynamics for LRC tissue (FRA) we assumed that the location of LRC
shedding was more shootward to mimismabmutant while keeping all other settings the same. For
simulations with absence of growth in specific tissue (BigA, 3.2B), simulations were run to
equilibrium. After this, for assigned tissues no growth, division and expansion dynamics were
simulated vhile all other tissue would continue growth as in default conditions.

Model variations, auxin transport relative to cell height

To determine the mechanism underlying the cell expansion driven increases in cellular auxin levels
we performed additionairaulations investigating the roles of auxin export and import and effective
changes therein as a consequence of cell expansion. Since passive auxin uptake occurs across the
membrane, which surface area increases with cell height passive transport aatigniatieases

with cell height. This increase will thus also ocouplanta Additionally, for the apolar AUX/LAX
mediated active auxin import we did not incorporate a cell size increase mediated dilution of
membrane transporter levels in our default eloskettings. Constant membrane levels with an
increased membrane area result in larger cellular AUX/LAX levels, therefore, also active auxin import
increases with cell height in our model. It is unclear whethetantaalso such an increase occurs,
which would imply an upregulation of AUX/LAX production proportionate to membrane area.
Finally, PIN proteins typically are highly abundant on shootward/rootwaednbranes, with
significantly lower levels and/or occupying smaller membrane fractionktefal membranes.
Nonetheless, analogous to the situation for AUX/LAX, the strong increase in lateral membrane length
during growth results in an implicit upregulation of total lateral PIN levels elongation. Again it is
unclear whether this increase ocimr planta, or rather total lateral PIN levels are maintained and
smeared out over a larger area.

To investigate the relevance of these slependent increases in passive and active auxin import and
export for auxin loading, in a subset of simulatiores prevented this increase through normalizing
these auxin fluxes for cell height in the TZ, EZ and DZ of stele cell files by multiplying them with a

factor———— for cellheight>2.2*MZelheighs Where MZeineigh{= 8 tm)and 2*MZeeliheigh{= 16 um)

is the average cell height in the TZ just before expansion starts. Since plant cells elongate in length
this normalization for transport was only applied for the lateral membranes. Furthermore, in case of
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normalization of pasge import, since auxin levels in the EZ strongly depend on this passive influx
we restricted the normalization to 25% of the total passive influx capacity to prevent a total auxin
collapse in the simulations.

Model variations, tissue specifimonation

In our default simulations cell growth, division and expansion dynamics are perfectly synchronized
within and across cell files. However, in planta between tissue types differences in zonation dynamics,
cell cycle durations and cell sizes havem®bservedBeemster and Baskin, 1998, Lavrekha et al.,
2017, Rahni and Birnbaum, 201%tele protoxylem and protophloem cells start expanding relatively
close to the root tip (~150 um), whereas pericycle protoxylem and protophloem cells stop divisions
furthest from the root tip (~250 pnillavrekha et al., 2017, Rahni and Birnba@®19) Additionally,
vasculature cell cycles are faster than cell cycles in the outer tissuesaddilature versus 22h
cortex) (Lavrekha et al., 2017yupplemental information) and vasculaturescbve an increased
height compared to outer tissue (2.5imes larger on averagf)avrekha et al., 2017, Rahni and
Birnbaum, 2019)

To investigate the consequences for priming of these cell type specific differences, we implemented a
tissue type dependent location of the-WZ boundary, transamplifying division rates and cell sizes,

both alone and in combination in our model. For the MZboundary vasculature division ceases at
55% of the total meristem length, pericycle at 85% of meristem length and all other tissue at 75% of
meristem lengthfor division rates we increased vascular TA division rates by a factor of 1.5, and for
cell sizes we increased vascular cell sizes by a factor of 1.5.

Since plants cells have cell walls which they share with their neighboring cells, cells are unable to
slide past one another and instead maintain their neighborhood of surrounding cells. This begs the
guestion how vasculature cells can have a more rapidyoée, implying a larger doubling rate and
hence elemental growth rate, compared to other cells. Adding to this a larger cell size (doubling in less
time) aggravates this matter even further. However, while outer cell files curve out laterally from the
QC (Fig3.1A) and straighten out further shootward, vasculature cell files originate atop of the QC and
follow a straight trajectory. We thus hypothesized that the curvature efasmular cell files would

result in a longer pathlength, that in absenceamhpensation would result in a higher cumulative
displacement at the end of the MZ for these cell files. This would imply that higher vascular growth
rates serve to compensate for the longer pathlength. To investigate this matter, we analyzed 10
meristemsf 7-day oldArabidopsisroots grown on 1/2MS medium that were used for the lateral root
number assayye applied the Fuiji plugin ceti-tape to measure the length of the cell file from QC to

EZ for a cortical and vasculature file and divided the diffeecof the cell file lengths through the
average cortical cell size in the first 4 layers above the QC. The results indicate that a cortical cell file
length is 1220um longer than stele file length, translating to roughly te32cells of 5um. This
indicaes that ~12 division evens have occurred in the cortical cell file before vasculature divisions
start.

We combined these findings with the data from Lavrehka 2017 et al regarding cell cycle and cell size
values for cortex and stele cells to analyticédlgt whether the differences in division rate and cell
size indeed serve to compensate differences in cell file length and result in overall synchronized
cumulative displacement from cell growfltavrekha et al., 2017)

For stele cells we model the cumulative displacement as functioneofis:
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Where MZysiion IS the position of a cell in a meristem expressed in cortical cell size, the terms are the
growth contribution by TA division from released SC assuming that a maximum of 3 SC divisions
occur in the time window that an individual cell spends in the MZ. Massuming a 1.5 times larger

cell height.

For the cortical cell files starting with 4 instead of 1 cell, we applied the following formula:

z

0 ® 0 o 12¢ ¢ ¢

Here the-3 term represents the 3 cadlseady present when counting from the QC in the cortical but
not the vasculature cell file, to ensure we are comparing positions of cells with an initially
corresponding position over time. Additionally, the5tTAcort term represents that given the
preence of 4 instead of dell relative to the last SC division already 1 TA division has passed and
hence a new SC division is due at time t=t3&. For stem cell cell cycles we applied tSC=60h and
for TA cell cycles we applied tT#e=16h and tTA=22hfor stele and cortex respectivélyavrekha

et al., 2017, Rahni ari8irnbaum, 2019)

When plotting the above formulas while not incorporating the larger size of vascular celiginor

faster TA division (using the same value as for the cortex), we see that the head start provided by the
curvature of the cortical cell file results in a substantially faster displacement of cortical versus
vasculature cells (Figurg3.6l, yellow vs brown line). When incorporating in the vasculature formula
either the larger cell sizd=igure S3.6l, purple line) or the faster division rates this difference in
displacement decreaseBidure S3.61, grey line). Only when incorporating both astgea highly

similar displacement graph as compared to the cortex §fRgpaeS3.6l, red line). These findings
confirm our hypothesis, supporting that the larger vasculature cell size and faster division rates serve
to compensate for the longer celeflength in the cortex due to curvature.

Since in our model growth dynamics are only applied outside of the curved region (see section Tissue
layout), applying a faster division and hence growth rate in the vasculature would induce biologically
unrealistc sliding in our model. To avoid this sliding, several adjustments to the model growth
dynamics were made. First, under default conditions, per update step cells in the MZ could undergo
either growth or division, leading to a small growth disadvantagastérf dividing cells. To avoid

this, cells were allowed to both grow and divide during the same time step. Secondly in our default
simulations cells enter the EZ when their lower membrane is above the LRC, however, with different
cell sizes in the meristethis might result in large cells not meeting this condition yet while a smaller
neighboring cell already enters the EZ and starts to rapidly elongate. To achieve across cell file
synchronously occurring rapid elongation, cells should in addition to ltweér membrane being
above the LRC, have only neighboring cells in the horizontal plane that all also fulfill the requirements
to start elongation. Finally, we applied a compensation in the elongation rates for large cells. To
understand this, we need tonsider the following: In our discrete, giidhsed model, cell walls take

up 1 grid point. Therefore, modeling the situation of a large cell flanked by two smaller cells half its
size, results in our model in practice in a large cell of height H flankéddgells of height (HL)/2,

due to the 1 grid point cell wall separating these two smaller cells also taking up space. As a
consequence, despite having a constant elemental growth rate, the presenceefpamding cell

wall causes the 2 small cells éxpand less rapidly than the one larger cell. To prevent this, we need
to downscale expansion rates of larger cells, taking into account the numbegobnamg cell walls
potentially present in cell files containing smaller cells.
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To achieve this wapply the following formula:

rgrowtnmzez* (cellheight(cellheightd & -1)*1.5)

giving a penalty for how often a meristematic cell sizei§ ) fits in the cell size and hence
compensating for the number of walls sniaid sized cells would have that do not contribute
to growth rate, thel is such that & @ sized cell has no penalty.

Analysis methodskymographs

To display and analyze simulated spd@mporal auxin dynamics, we also generated model
kymographs. Kymographs were created by taking snapshots of auxin patterns in a one grid point wide
longitudinal cross section in the cell file of interesp{tally outer vasculature or pericycle). To zoom

in on the spatial domain relevant for priming, longitudinal snapshots run from the first dividing cell
(~200 um from root tip) to the position where cells are fully elongated (~1200 um from the root tip).
Smapshots were stored every 100 time steps (=20 seconds) and aligned according to their temporal

sequence. Priming frequency was obtainedy——, where priming is the observed number of

priming events, time is the simulatiome. A cell was considered to undergo priming (i.e. its passing

through the EZ was counted as a priming event) when the auxin level of that cell at the start of the EZ
was more than 110% of that of itdés i mespacingpt e abo
was counted as the number of cells passing through in the time interval between 2 priming events,

cells undergoing priming were excluded from the priming site spacing count.

Analysis methods: disentangling size, time and competigffiects on auxin loading

Our results show that the auxin reflux loop creates an auxin loading zone in the transition zone/early
elongation zone and that long narrow cells have an advantage in terms of auxin loading potential.
Kymographs show that parti@rly large cells followed by a small cell have the largest auxin levels
(Fig. 3.3A). At the start of the EZ (400 um from the root tip), we see a periodic temporal sequence
from small to large cells arriving at the EZ. Furthermore, we see that the celdgmitidhe highest

auxin levels are those cells that arrive with the largest size at the EZ and that have the smallest cell
following them (Fig.3.3B).

Theoretically, having a small cell below you may contribute to the auxin level of the above large cell
in a total of three ways. First, nearby cells may compete for auxin, and given the lower auxin loading
potential of a small cell, the above larger cells may be enabled to load more auxin. Second, due to
exponential growth dynamics a smaller cell causesdegplacement of its uppeeighbor allowing

this cell to reside longer in the auxin loading region, we will refer to this as residence time. This larger
residence time will allow the above cell to load auxin for a larger time period, which may centribut

to its overall auxin levels. Third, a larger residence time allows for a longer period of growth while
inside this domain, so it will also allow the above cell to reach a larger size while in the auxin loading
domain and may thus enhance auxin loadirgytdusize.

To disentangle these potential effects of competition, residence time and cell size we performed a
series of artificially controlled growth simulations. These artificial growth simulations were started
from steady state conditions obtained emdhormal growth dynamics. For these simulations,
controlled growth was applied as follows: 1 cell at the start of the elongation zone was monitored for

59



its cell size and auxin levels during the growth simulation, only the 10 cells of the meristem directly
below the tracked cell were allowed to grow. For these 10 meristem cells linear growth was applied,
meaning that cellular growth rates do not increase with cell size as is normally the case. These specific
growth dynamics were maintained irrespective béther cells are still in the meristem zone or enter

the elongation zone during the time of the growth simulation. Thestaoard linear growth
dynamics were chosen for more easy control of growth rate and hence overall cumulative displacement
generatedby this growth domain as opposed to the standard exponential growth. Cells that are in the
elongation zone from the start of the simulation onwards elongated with standard, exponential
dynamics.

First to test whether cells compete for auxin (58.6J orange bottom box), we varied whether the
below meristem cells divided or not. This allows us to investigate whether size dependent competition
is relevant for auxin levels in the larger cells.

Next to assess the influence of residence time @dJ orangegreen middle box), we doubled the
meristematic cell cycle duration essentially impacting cumulative displacement rate and hence
residence time in the elongation zone. However, without additional measures, changing the time spent
in the early ®ngation zone will also affect the growth time and hence the size the cell has when
residing in this zone. To be able to investigate the impact of residence time independent of cell size,
elongation rates need to be adjusted such that a constant flreizeéds reached at a fixed distance

from the root tip. To achieve this, cells in the elongation zone were tracked and their actual height,
height.tis compared with the target height, heiglthat would normally be achieved under default
growth ratesThe ratio between these two heights is next used to determine a modified root growth
rate:

mmg,,
mmg,

rgrowthez corrected= rgrowthgz *

This corrected growth rate is subsequently applied, resulting in heightverging to
heighta. Inthis way growth rate variations in the below MZ are compensated by changes in the growth
rate in EZ. The target cell height is determined as followsR@ =
MM +1 Q £ o , Whereheightr is the cell size at the start of the simulation and
tgrowtn IS the time a cell wouldeed to reach the current position under default displacement velocity.
Finally to assess the effect of cell size on auxin loadingufEi§3.6J,green, upper box), we
doubled the elongation time while keeping all other settings, including final cell size constant, enabling
us to investigate the impact of expansion rate and hence cell size attained within the TZ independent
of changes in residentiene.

The results of the 3 above described simulations were compared to a default growth simulations where
meristem cells grow but not divide at a doubling rate of 7h and cells in the elongation zone reach their
final cell size in 7h (F§ S36J black line). The comparison shows that auxin loading hardly depends

on the size of the neighboring below cell, suggesting that reduced competition for auxin does not play
a significant role ig S36J, orange line). A modest increase in auxin loading Gawlserved for
increased residence time (Green/orange line). Finally, we see a significant reduction in auxin loading
for a more slowly expanding, and hence smaller cells (green line). Thus, the impact of a smaller below
cell arises predominantly from tlaove cell having more time to grow and hence reaching larger
sizes and more auxin loading potential, and to a lesser extent from the above cell spending more time
in the auxin loading domairr{gure S36J).
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Analysis methods: Mathematical derivation of demdence priming on division frequency and
meristem size

Folllowing Beemster and Baskin (1998) the residence time of a cell in the merisigms(@ function

of cell cycle duration (Ficycld) and meristem size (B9 can be written as'Y Y z

a ¢ 0@ ,which basically states that the time it takes for a cell to leave the meristem is the
product of the time needed for the cell to divide times the number of divisions needed to generate the
number of cd$ in the meristem. Since each round of division, cell numbers double the latter equals
a ¢ Q& .Fromthis equation it follow that the number of divisions a(cetliv) undergoes before

leaving the meristem equatsii QQ6—— 0 € "D &

In the limit case where stem cells divide at the same rate as transit amplifying cells, each round of
division of a TA cell also a nhew clone originates at the SC. Under these conditions the number of
divisions a cdlundergoes before leaving the meristem equals the number of clones generated by the
SC within that period that fill up the meristem from the SC up until this cell that is just about to leave
the meristem. Thus an upper boundary for the number of clatirg fh the meristem is the number

of divisions a cell can undergo before leaving the meristein, @ &

Clone density can then be written as: clone density=——-.

For a priming event to occur a largmall cdl pair needs to arrive in the transition zoireorder to

arrive large in the transition zone a cell needs to have undergone its last division as long as possible

ago, yet not undergo one further division. This defines a temporal wind@w @fgell cycle before

reaching the transition zone (lesstharl{) cel | cycl e ago cells have not
than 1 cell cycle ago they will divide once mom)is temporal window can be translated into a spatial

window (in terms of numberfocells) by again using the equation that Beemster and Baskin (1998)

formul ated for a cell 6s residence time in the me
Y Y zae QO
To calculate the size of the window we can write:
YooY Y zgé Of C 7
YooY Y zaemM Of q ’ 7
Wheref is the lowerandf  is the upper boundary of the window expressed in the number of

meristem cells between this position andthe QC afddYl i s t he fr acthdtsilh of t h

results in the arrival of a large cell at the. B¥ definition window size is then given by
z T

window =0 Q¢ Q£ 10 f  andhenc® Q¢ Q¢ B T
substituting’Y Y za¢e QW  subsequently results:in
0 Qe Q¢ q C

Thederived function windovean be approximated as’Q¢ Q¢ 0z 0 & , which for the =0.25
derived from our simulations results in a valug¢ ©0.34 FigureS36K). The spatial window defines

the number of cell positions at which one last division will result in a cell that will be large enough to
give rise to a priming event.
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For priming to occur, a large cell needs to be followed by a small cell. Thus, rootward of the cell
undergoing its last division in the spatial window, a further round of cell division should occur causing
this cell to arrive small. For the lowermost positianthis spatial window, at ~0.99 cell cycle, it
automatically holds that the cell rootward of it, at a distanceceflLycle of the end of the meristem,

will undergo one more round of cell division before entering the TZ. For positions inside the window
the only possibility for that particular cell to divide for the last time yet the cell(s) directly below it to
undergo one more division is if these cells are part of anothefqtase dividing clone.

Combined this gives rise to the following forradbr priming frequency:
For window is <4.: 0 ]
for window >1 0 0O zp 0QEQEPMZRI WE ®

hereO s the division frequency, for which hols , Which sets a lowdimit to the

priming frequency in absence of asynchronous clones, (winddweflects thatf asynchronous
clones are presenther positions in the window than this lowermost one (so wirtlpgive room to
alternative, out of phase final division evemially async is an asynchronicity factor, that determines

to what extent asynchronous divisions may occur at these additional positions provided by window

size and is proportionate ¢tone density=——— (see above).

Numerical integration and runtime performance

Auxin transport occurs at relatively high rates. As a consequence, standard Euler forward explicit
integration schemes would require very smal/l t e
plant growthdynamics over a time course of one or several days, this would result in excessively long
simulation run times. Therefore, similar to earlier modeling studies by us and(@hiereisen et al.,

2007, Mahonen et al., 2014k used an alternating direction saémplicit integration schemfor the

auxin partial differential equation®eaceman and Rachford, 195&ljowing us to use integration

steps of 0.2s and a spatial integrato st ep of @x = 2 Om. The code of
simulations were run on 24 to-86re workstations with Intel Xeon EE87W processors, resulting

in a typical ruatime of 24 hours for a simulation representing 6 days of plant growth.

3.44 QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis and curve fitting were performed using python. Criteria for exclusion of
experimental samples were described in the corresponding STAR methods. Statistical details of
experiments (whenever pegg: n, mean, median;yalue) are in the figure legends of corresponding
experiments.

Computational results

Robustness analysis

To test whether the observed behavior found here might be an artifact of modelling choices we
performed arextensive robustness analysis. First, to ensure that the observed oscillations are not a
result of changes in tissue total auxin content due to the culling of the most shootward cells as they
are nearing the boundary of the simulation domain, we perfosimadlations in much larger
simulations domains yet similar starting tissue sizes in which initially the simulation domain is not
reached by the topmost ce(lBig. S36A). This enabled us to validate that oscillations occur also in
absence of culling of shootward cells. Second, to ensure robustness against changes in precise root tip
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architecture or division dynamics incorporated in the model, simulations were perfornaed in
alternative root tip architecture with a more pointy root tip shape as previously used in our halotropism
study (van den Berg et al., 201@)ig. S36B), in a root tip architecture in which all cells have a
reduced widthKig. S36C, left pané), in aroot tip layout in which cells in the different cell files are
staggeredHKig. S36D), in a root tip in which clones of sibling cells dividikghtly asynchronously

(Fig. S36E), and in a root tip wherboth different cell files are staggered and cellsidivslightly
asynchronous Hig. S36F). In all cases, oscillation dynamics were found to robustly occur.
Additionally, simulations were performed at an alternative spatial resolutipm(instead of the
default2um), again without resulting in changesaascillation dynamicgFig S36C, right panél

Next, we investigated whether the incorporated adependence of AUX/LAX expression, or rather
ignoring the auxirdependence of PIN expression affected oscillations. Again, both removing
AUX/LAX auxin dependence or instead incorporating PIN auxin dependence had no significant effect
on oscillation dynamicéFig. S36G, S36H). Finally, we performed simulations for a root tip model
incorporating multiple layers of cortical cell layers as frequently emeoed in plant species other
than Arabidopsis thalianademonstrating that also this does not influence priming dynarRigs (
S36l1). We thus conclude that the observed oscillations in auxin levels are not a direct result of
particular choices in model slamptionssimplifications or implementation.

In the main manuscript, as part of our investigation of the mechanism underlying oscillations we have
varied auxin production rates and locations, PIN and AUX1 transporter efficiencies and patterns,
meristem sizes, and cell division and elongation rates. In all cases, periodic auxin oscillations were
observed. Changes in auxin parameters merely affected oscillation amplitude but not frequency, as for
example shown in Figui@1C and3.1D. Similarly, changes in elongation rate also affected oscillation
amplitudebut not frequencyas demonstrated in Figu8el. In contrast, changes in meristem size and
division rate affected priming frequency and spacing, as described. Only when the auxin reflux loop
was fully abolished (Fig3.1E, yellow ling or vascular cells weraot allowed to grow Fig S32B)
simulations did not display periodic auxin oscillations.
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3.5Supplementalinformation
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Figure S3.1; Auxin oscillations automatically emerge in a growing root model. Related to Figife A.) Model output

for default parameter settings, from left to right: snapshots of AUX/LAX and PIN membrane patterns and cellular auxin
levels; Color scale indicate®lative levels of these properties. B.) Kymographs for pericycle, vasculature, epidermis and
endodermis auxin levels for default parameter settings. Color scale indicates cellular auxin levels for all 4 kymographs. C.)
Snapshot of auxin pattern at 26h siation time and (vasculature) kymographs for reduced auxin availability. D.) Snapshot

of transporters (PIN or AUX/LAX) and auxin patterns at 26h simulation time and kymographs for simulations with altered
reflux loop settings. Auxin color bars were scabed simulation for visualization purposes.

64



A smb mutant No growth LRC

Aucxin level cell (a.u.)
Auxin level cell (a.u.)

40 0 0 0 0
Simulation time (h) Simulation time (h)
Only growth in vasculature No growth vasculature

180 and pericycle and pericycle

00

0
5 s 3
< Kol
8 ER:; 3
L ° T 2 ]
8 3 38 3
= = c S k=
% % £ X
a — l< = — = | E&a <
20 30 40 10 20 30 40 10 20 30 40 O
Simulation time (h) Simulation time (h) Simulation time (h)
Cc Auxin
— influx 120 1D model without reflux loop 1D model with reflux loop
2 z 3
= 1000 3
O 800 g "
Auxin |- o %
bz = reflux [ L &
(0]
Ez O — | -— 2 e
7z . = S g
Mz @ = a =) =
sC PIN 10 20 30 40 10 20 30 40 00
Developmental membrane Simulation time (h) Simulation time (h)
zonation levels (a.u.)

Figure S3.2; Role of root cap and vascular growth dynamics in priming. Related to FigigeA) Kymographs of vascular

auxin levels for a simulated smb mutant and absence of LRC growth. B) Kymographs for simulations without growth in
epidermis (left), only growth in vasculature and pericycle (middle) and only growth in epidermis, cortex andmaisdode
(right). For comparison purposes, the auxin scale bar is kept constant relative to the simulation in which all tissues grow
(Fig 3.1B). C) Simulation data for a simplified 1D model. From left to right: schematic depiction of the developmental
zonation PIN1 pattern and lateral auxin influx mimicking a reflux loop that generates an auxin loading zone at the MZ/EZ
boundary (tissue width is amplified for ease of visualization), kymograph for 1D model without lateral auxin influx and
kymograph for 1D modéhcorporating lateral auxin influx.
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Figure S3.3; PS spacing and frequency as a function of division rate and MZ size. Related to FRjré,B) Simulations
performed with varying division rate (A) or varying MZ size (B) wkéleping stem cell division constant.
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Figure S3.4; Distribution of measurements for growth and priming parameters. Related to Fighife A-D) Boxplot of
experimental measurements for MZ size (A), cell production (B), priming frequency (@)iraimd) site spacing (D) and

cell division rate (G). Color indicates data set, all data combined (brown, n=104), control/MS (blue, n=30), 10mM GA
(yellow, n=26), 1nM BR (red, n=31) and 100 nM BR (green, n=17). Boxes cover lower to upper quartile vatleknél
indicates median and white square mean, whiskers indicate the total range of the data and black dots indicates outliers.
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Figure S3.5; Priming frequency and spacing as a function of cell production. Related to FiggifeA, B) Experimentally
measured priming frequency (A) and PS spacing (B) as a function of cell prodatarpoints are colored to indicate

the different treatments) Experimentally measured priming frequency as a function of division rate. To avoid confounding
effects, subsets of data containing only plants with a similar MZ size were used. Data points from both the control and the
three different hormone treatmerat® used.D) Experimentally measured priming frequency as a function of meristem size.
To avoid confounding effects, subsets of data containing only plants with a similar division rate were used. Data points
from both the control and the three differentrhone treatments are used.E) Priming site spacing as a function of MZ size
for experiments. Data points are colored to indicate the different treatmfEnfS spacing as a function of division
frequency for experiments. Data points are coloreiddicate the different treatments, H) Model priming frequency (G)

and PS spacing(H) as a function of cell production. Vasculature specific details were incorporated into the model alone or
in combination, and results were compared to those for defadehsettings (green linen A, B, E, F the combined data

of different treatments were fitted to a single linear regression line. In C, D, G, H, data was fitted using linear regressio

per colorindicated subset
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Figure S3.6; Experimental andanalysis methods. Related to STAR method¥.Example kymograpB) Growth was
measured through a line (cyan) running from the location of the root tip at the start to the end of the imaging period (red
line indicates root tip location at the end of imaging) PSS was determined by measuring intensity on a line matching the
last time frame (18h) of imaging (dotted yellow line), a line perpendicular to the location of the TZ at the start of imaging
was taking as the start of the measuremdd}sTo accounfor all priming events, fading priming events where enhanced
with a white lineE) Intensity values along the yellow line shown in D for analysis of the spacing of the primed sites. F)
Intensity values along the yellow line in G for analysis of the timfrmiming eventsG) Priming frequency was measured
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