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Abstract
I present a systematic interpretation of the foundational purpose of constructions in ancient 
Greek geometry. I argue that Greek geometers were committed to an operationalist foun-
dational program, according to which all of mathematics—including its entire ontology 
and epistemology—is based entirely on concrete physical constructions. On this reading, 
key foundational aspects of Greek geometry are analogous to core tenets of 20th-century 
operationalist/positivist/constructivist/intuitionist philosophy of science and mathematics. 
Operationalism provides coherent answers to a range of traditional philosophical problems 
regarding classical mathematics, such as the epistemic warrant and generality of diagram-
matic reasoning, superposition, and the relation between constructivism and proof by con-
tradiction. Alleged logical flaws in Euclid (implicit diagrammatic reasoning, superposition) 
can be interpreted as sound operationalist reasoning. Operationalism also provides a com-
pelling philosophical motivation for the otherwise inexplicable Greek obsession with cube 
duplication, angle trisection, and circle quadrature. Operationalism makes coherent sense 
of numerous specific choices made in this tradition, and suggests new interpretations of 
several solutions to these problems. In particular, I argue that: Archytas’s cube duplication 
was originally a single-motion machine; Diocles’s cissoid was originally traced by a link-
age device; Greek conic section theory was thoroughly constructive, based on the conic 
compass; in a few cases, string-based constructions of conic sections were used instead; 
pointwise constructions of curves were rejected in foundational contexts by Greek math-
ematicians, with good reason. Operationalism enables us to view the classical geometri-
cal tradition as a more unified and philosophically aware enterprise than has hitherto been 
recognised.
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1  Introduction

1.1 � The Question

Ancient Greek geometers were obsessed with constructing things. Why? That is the ques-
tion I propose to answer.

Euclid’s Elements spends almost as much time showing how to draw geometrical fig-
ures as it does proving theorems about them. In fact, it seems Euclid thought drawing was 
a prerequisite for proving. For instance, the first theorem involving squares is the Pythago-
rean Theorem (Elements I.47). In the proposition right before it, Euclid explains in detail 
how to construct a square by ruler and compass. The same goes for every other geometrical 
entity ever used in the Elements: first you construct it, and only then can you say anything 
about it. Without constructions there can be no geometry, Euclid seems to be saying.

And not only Euclid. All the best Greek geometers had their own signature construc-
tions. Three famous construction problems dominated higher geometry for centuries: dou-
bling the cube, trisecting the angle, squaring the circle. The long list of mathematicians 
who contributed their own distinctive solutions to these problems is a who’s who of every-
body who was anybody in ancient geometry.

What fundamental motivations—what philosophy—drove ancient Greek geometers to 
this fixation with constructions? Why did Greek mathematicians think it was a good idea 
to spend hundreds of years trying to make an angle the third of another, or a cube twice 
the volume of another, in dozens of different ways? Why did they so stubbornly bang their 
heads against the same wall for century upon century? What sin could be so grave that they 
imposed on themselves such a Sisyphean task?

Why indeed make things at all? And furthermore, why do so only sometimes, with 
Janus-faced inconsistency? Why meticulously articulate recipes for transferring line seg-
ments by ruler and compass, only to then suddenly move entire triangles like it’s nobody’s 
business in the very next proposition, as Euclid seemingly does? (Sect.  3.4) The higher 
problem tradition appears no less schizophrenic: it often “constructs” things only by 
assuming much more intricate entities as “given,” seemingly by magic. A cube twice the 
volume of another evidently has to be made, yet cones can apparently be sliced at will to 
produce conic sections with precise properties. Archytas evidently thinks the cube with 
twice the volume is an exotic entity that must be produced rather than assumed, yet in his 
solution he seems to treat the very complicated intersection of a torus and a cylinder as 
self-evidently given simply by decree (Sect. 4.2.1).

“Anyone who has not defined a thing through terms that are prior and more intelligi-
ble has not defined it at all,” says Aristotle (Topics VI.4). Surely one should be able to 
say the same about constructions: anyone who has not constructed a thing through means 
that are constructively simpler and more immediately given than the thing itself has not 
constructed it at all. Yet this simple principle is seemingly in conflict with much of the 
Greek geometrical tradition. To cut an angle into three equal parts was regarded by Greek 
mathematicians as a difficult research challenge. Yet in their solutions they assume, seem-
ingly as primitive, operations that seem considerably more convoluted than the problem 
they are used to solve. In what sense are those peculiar assumptions more basic or given 
than the entities they are used to construct? How can a constructivist research program be 
maintained and make any sense if the starting assumptions used for constructions is a Wild 
West where anything goes? How could Greek geometers be so consistent for centuries on 
end in their agreement that constructing basic entities such as the third of an angle is of 
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the utmost importance, yet at the same time so dramatically at odds with one another as to 
what kind of assumptions are the best or most legitimate basis for such constructions?

Is there any coherent logic to all of this? I say there is. My answer shall be that the 
Greeks had a philosophically sophisticated conception of mathematics—operationalism, as 
I shall call it—which explains these things perfectly. The Greeks knew exactly what they 
were doing. They had very well-reasoned replies to the questions posed above, and these 
kinds of methodological considerations were a prominent part of mathematical thought in 
Greek antiquity.

1.2 � General Aspects of My Thesis

I claim that ancient Greek mathematicians deliberately pursued a philosophically sophis-
ticated foundational program based on constructions by ruler, compass, and other instru-
ments. It is evident that constructions played a prominent role in Greek geometry, and that 
construction problems were a significant niche of research. But most leading scholars have 
rejected the notion that this is an indication of an overall constructivist philosophy of math-
ematics. Many have supposed that Greek mathematicians were probably not concerned 
with such philosophical questions, such as Mueller, who raises questions similar to those in 
our introductory section only to assert that “it seems unlikely that there are philosophically 
satisfactory answers to such questions” (Mueller, 1981, 29).

But it is perfectly possible that Greek mathematicians were ardent philosophers of 
mathematics. That would make sense contextually. We know that Greek mathematics and 
philosophy were born in a fiercely critical and combative intellectual climate (Lloyd, 1996, 
1979; Szabó, 1978). Rival schools of thought attacked each other with penetrating cri-
tiques, often challenging the epistemological foundations of entire philosophical systems. 
My operationalist interpretation of Greek geometry fits this picture. Operationalism is a 
reply to philosophical critics who are trying to cast doubt on the certainty of mathemati-
cal reasoning. These critics, I hypothesise, would have tried to discredit mathematics by 
showing that it was subject to fallacies, paradoxes, and self-contradictions. We know from 
the philosophical tradition that such modes of criticism were common weapons in Greek 
thought, so it is easy to imagine that they would have been mobilised against mathematics 
as well.

So, in my view, Greek mathematicians were highly philosophical in the sense that they 
were sensitive to philosophical critiques and actively concerned with mounting a philo-
sophically sophisticated defence against them. On the other hand, I propose that the rela-
tion between mathematicians and philosophers was antagonistic. It is likely, I believe, that 
Greek mathematicians—like so many mathematicians of later eras—were proudly autono-
mous and felt that they had little to learn from philosophers. So I suggest that Greek math-
ematicians were heavily influenced by philosophical context in the sense that they were 
prodded to address the epistemological foundations of mathematics in a philosophically 
advanced way, yet they were not at all influenced by philosophers in the sense of accepting 
any philosophical teachings or deferring to philosophers on any issues.

This is why I propose that the right way to understand the philosophy of Greek math-
ematics is to study the foundational assumptions implicit in advanced technical works. The 
main evidence for my operationalist hypothesis shall be of this form. I shall argue that 
only an underlying operationalist foundational program can make sense of otherwise inex-
plicable choices made in technical works. This will lead to a very different picture of the 
philosophy of geometry than anything one can find explicitly in surviving philosophical 
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prose sources, such as Aristotle, Plato, or Proclus. But absence from such sources does not 
necessarily mean much, just as one won’t learn the views of 17th or 20th century mathema-
ticians by reading Spinoza or Wittgenstein.

The origin of operationalism in philosophical critique that I have hypothesised has 
another important consequence, namely that operationalism is conceived for subtle theo-
retical purposes. Operationalism was conceived, I suggest, purely to address fundamen-
tal epistemological questions. It is not meant to be useful in applied mathematics or as a 
research tool in creative mathematics.1 On the contrary, in applied or exploratory research 
settings, mathematicians would often put aside operationalist principles. Operationalism is 
used for putting a mathematical theory into a fully rigorous form.

Yet operationalism celebrates concrete constructions and embraces their physicality and 
real-worldness. This is a point that invites confusion, and indeed I shall argue that previous 
literature has fallen into misinterpretations for this reason. From a modern point of view, 
it is natural to take for granted that the foundations of mathematics is a matter of pure 
theory, while constructions with physical tools can only be of practical relevance. This is 
completely wrong, according to the operationalist perspective. To understand the philoso-
phy of Greek geometry, we must abandon the dogma that to make mathematics rigorous it 
“should” be separated from any links to physical reality and turned into purely formal and 
abstract theory. Operationalism, in contrast to this modern dogma, anchors mathematical 
rigour in the physical realm. Technical mathematical sources detailing constructions with 
various curve-tracing devices have often been misinterpreted as quasi-practical, whereas 
the operationalist perspective suggests that they should instead be read as epistemologi-
cally motivated foundational investigations.

The possibility of a coherent reading of classical geometry along such lines has been 
clouded not only by modern dogmas about what rigorous pure mathematics “should” look 
like, but also by conflation with applied works. Operationalism places strict constraints on 
what kinds of curves and constructions are permissible in geometry. In applied mathemat-
ics it is often useful to abandon these constraints. For instance, according to my interpre-
tation, Greek geometers carefully articulated operationally stringent ways of constructing 
conic sections, which they saw as forming the epistemological foundations of that theory. 
But when they needed to actually draw conics in practice, such as when producing sundials 
or burning mirrors, they chose completely different methods of generating the curves. Like-
wise, what makes a curve suitable for trisecting an angle is very different from what makes 
a curve suitable describing planetary motions, because the former is a matter directly con-
cerned with the operationalist foundations of geometry while the latter is not. Since the 
operationalist foundational program is a reply to philosophical challenges to the epistemo-
logical foundations of mathematics reasoning, it is perfectly natural that its principles are 
useful only for that purpose and not in applications.

Similarly, and again in contrast with some modern associations, the role of empirical 
considerations in operationalist mathematics does not in any way conflict with or dimin-
ish the importance of deductive proofs. Operationalism does not appeal to empirical con-
siderations to replace deductive proofs, but solely to provide epistemological justification 
for deductive proofs—that is to say, to ensure that deductive mathematics is not subject to 
contradictions, inconsistencies, paradoxes, fallacies, and meaninglessness. Operationalism 
appeals to the practical for purely theoretical reasons. It cares little about actually realising 

1  Interestingly, operationalism can have advantages in such areas as well, as we shall see some examples of 
below. But I propose that this should be regarded as a bonus side effect rather than a primary intent.
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constructions for any pragmatic end, but much about realisability-by-construction-in-prin-
ciple as a crucial mark of rigorous and reliable thought.

The operationalist reading of Greek geometry suggests the following timeline. Axio-
matic-deductive mathematics was born in the Classical period: the -5th and -4th centuries. 
From the outset, it was forged in the furnace of philosophical critique. For this reason, 
operationalist foundational considerations were part of sophisticated theoretical mathemat-
ics from the very beginning.

In the Hellenistic period, the  -3rd and -2nd centuries, mathematics was perhaps no 
longer such an active target of philosophers trying to discredit its claims to epistemologi-
cal authority. Yet those original challenges were still thoroughly well understood, and the 
operationalist defence against them was still regarded as essential to properly rigorous 
mathematics.

Later eras are of secondary interest. The goal of my operationalist thesis is to recon-
struct the philosophy of geometry of the golden age of Greek mathematics. At the end of 
the Hellenistic period the Greek geometrical tradition seems to have been disrupted and 
never truly recovered, as is well known. For our purposes, sources beyond, say, −100 are 
primarily of interest for their traces and remnants of lost earlier work.

Compared to most standard accounts of the evolutionary timeline of Greek geometry, 
the timeline of my operationalist reading differ most notably in two respects. First, I place 
refined foundational work somewhat earlier than many scholars would. This goes naturally 
with my emphasis on the philosophical context in those early days, and my reinterpretation 
of what some have seen as quasi-practical meddling with constructions as in fact system-
atic foundational-theoretical work. Secondly, I argue that the operationalist foundational 
program remained essentially unchanged throughout the golden age of Greek geometry, 
say −450 through −150 , and was more or less universally accepted among mathematicians 
in those centuries. Most historians are disinclined to see so much uniformity. Yet I shall 
argue that much apparent diversity and even conflict in the geometrical tradition can be 
better understood as varied manifestations of the same fundamental ideals than as disjoint 
convictions altogether.

Attributing particular philosophical convictions to the entire Greek geometrical tradi-
tion is a bold and debatable proposition. However, even if I am historically wrong about 
this claim in its full generality, my detailed articulation of this particular perspective is very 
likely to be a fruitful lens for at least some purposes. Even if the philosophical perspective 
I outline was not as dominant as I hypothesise, the germs of it were almost certainly felt in 
antiquity and was without a doubt read into the ancient tradition by early modern interpret-
ers. The operationalist vision of the Greek geometrical tradition—which has never before 
been articulated systematically—was very likely perceived, at least in germinal form and 
at least as a possibility with some attractive arguments in its favour, by many ancient and 
early modern mathematicians. Most likely, this perspective often informed their thought, 
even if they did not accept it as their definitive philosophy of mathematics. This paper 
can be a lens for understanding these tendencies in the history of mathematical thought, 
whether they were as prominent as I claim or not. I believe that my thesis is viable as a 
historical hypothesis, but if more cautious minds wish to reserve judgement on that point, I 
hope they can still find value in my work in these secondary respects.
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1.3 � Operationalism in 17th‑Century Mathematics

My reading of the Greeks is influenced by the way 17th-century mathematicians viewed 
constructions. Descartes, Huygens, Leibniz and other leading early modern mathemati-
cians were arguably outright operationalists in their geometrical practice. At any rate, they 
clearly embraced many key tenets of the operationalism that I attribute to the Greeks. This 
has been extensively documented in Bos (2001) in the case of Descartes and Blåsjö (2017) 
in the case of the subsequent generation. Here we confine ourselves to a brief summary of 
the main points of these studies relevant to the present purpose.

Descartes gave a programmatic vision for geometry and its foundations in his Géomé-
trie of 1637. Its cornerstone is a curve-tracing method intended as a generalisation of the 
ruler and compass and other construction tools of the Greek tradition. Descartes’s method 
is based on linked rulers whose motions are constrained by pegs and mutual contact. 
Descartes’s own figures clearly depict these things as physical objects (Descartes, 1637, 
318, 321). This shows very clearly and unequivocally the key elements of the operationalist 
conception of geometry: geometry takes place in physical space; physical pegs and rulers 
are identified with mathematical points and lines; curves are defined in terms of physical 
motions, and curves that cannot be generated in this way are deemed inadmissible in geom-
etry; these constructions are unquestionably introduced for foundational reasons (they are 
in fact useless for almost all practical purposes).

All of these points are equally prominent and undeniable in the late 17th century. Huy-
gens, Leibniz, and Jacob and Johann Bernoulli devoted major efforts to extending the con-
struction arsenal of the geometer, while remaining unequivocally faithful to these prin-
ciples. Notable examples include their extensive use of curve-tracing recipes based on 
tractional motion, and other physically given curves such as the catenary and the elastica 
(Bos, 1988; Blåsjö, 2017, Chapters 5, 6, 8).

Besides embodying these operationalist principles in mathematical practice, this 17th-
century tradition also makes many of its core philosophical principles perfectly explicit. 
This includes clear expressions of the following core theses of the operationalist view that 
I attribute to ancient Greek geometers. Constructions are necessary for a curve to be admit-
ted into geometry (Blåsjö, 2017, 16, 44, 134, 209). Constructions are grounded in motion 
(Blåsjö, 2017, 16, 44–45, 114, 121, 124, 134, 209). Constructions should be effected by an 
instrument (Blåsjö, 2017, 39, 104, 121, 134). Construction by motion should be determined 
by one single motion, not assume the coordination of multiple motions (Blåsjö, 2017, 41, 
45, 74, 112, 134). Pointwise constructions are unacceptable (Blåsjö, 2017, 16–17; Bos, 
2001, 177, 189). Constructions that are not physically effectible are unacceptable (Blåsjö, 
2017, 40, 43, 74). But practical feasibility or accuracy, although desirable, is not essential 
(Blåsjö, 2017, 116–118, 121). Constructions ensure the existence of objects (Blåsjö, 2017, 
46; Hobbes, 1845, VII.205). Constructions ensure the logical consistency of definitions 
(De Risi, 2016, 35; Heath, 1949, 71).

These very close parallels between ancient and 17th-century geometry can, I believe, 
help us understand aspects of Greek mathematics for which we have little documentation 
by looking at analogous developments in the 17th century, where we have much better 
sources. Indeed, the project of the present work was conceived in precisely this way, by 
approaching Greek mathematics with a mindset soaked in 17th-century ideas.

Let us look at some conclusions suggested by this perspective. Consider for instance 
the relation between practical applications and the kinds of foundational-geometrical con-
structions studied by leading mathematicians. Leibniz discovered that the catenary is very 
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closely related to the exponential or logarithm function. This relationship means that one 
can find the logarithm of any number by performing simple measurements on a hang-
ing chain. Leibniz alleges that “this may be helpful since during long journeys one may 
lose one’s table of logarithms … In case of need the catenary can then serve in its place” 
(Blåsjö, 2016, 2017, 137). It is quite clear that this was not really a viable proposal of any 
practical utility to speak of. I have done this construction many times with students and 
with an ordinary necklace and ruler one normally does not get any better accuracy than 
a single decimal point. Leibniz most likely knew this full well. His remark about practi-
cal applicability should probably be taken more as a quaint illustration that brings home 
an interesting mathematical point in a striking way. It may also have been not unreason-
able at the time to hope that future developments might bridge the gap between theory 
and practice on this point. The same is true of several other constructions at the time [such 
as those described in Blåsjö (2017, Chapter 5)]: mathematical investigations that fit into 
a foundational research program are dressed up with a veneer of pseudo-practicality and 
come with some remarks about allegedly useful applications. The latter have illustrative 
and pedagogical value, and perhaps even some far-fetched potential for practice, but they 
were in all likelihood very much secondary to a theoretically driven research agenda. I sus-
pect that one can say the same about the alleged practical applicability of the three classical 
construction problems mentioned in Sect. 4.1.1.

Another such parallel may illuminate how and why the three classical construction 
problems became canonised in the first place. In the context of the early calculus, it was 
natural to seek the integral of all possible algebraic expressions. For instance, integrating 
1∕

√

1 − x4 was soon recognised as the natural next frontier beyond integrals that could be 
done by existing standard functions. However, it was not found very suitable to pose the 
question in this technical insider language. Instead, the challenge was given greater force 
and elegance, and more compelling packaging, in the form of a concrete physical problem 
that readily reduced to it. The paracentric isochrone problem was conceived by Leibniz 
for this very purpose, it seems (Blåsjö, 2017, 32, 156–157, 183–184). Neither Leibniz nor 
anyone else at the time were interested in actually finding the path along which a particle 
under the influence of gravity travels with constant radial velocity as seen from a fixed ori-
gin. In the same way, the Greeks did not have any burning need to trisect a bunch of angles 
and double a bunch of cubes. In ancient and early modern geometry alike, these questions 
were conceived as illustrative encapsulations of broader theoretical questions. They were 
not selected because they were interesting in their own right, but because they pinpointed 
issues that were key to a systematic enlargement of geometrical problem solving practice. 
They were the kinds of problems for which, when you solved them, other mathematicians 
would have no interest in actually using your solution for its ostensible purpose, but a very 
high interest in extracting the method of your solution and use it a myriad other contexts. 
To solve these problems means being able to solve many others. That is how they were 
selected, and that is what made them interesting.

That, at any rate, seems to have been how Leibniz interpreted the Greek tradition. And 
Leibniz’s interpretation carries considerable weight, in my opinion. The interpretations 
of historical mathematics by people such as Leibniz are not just any interpretations. They 
are historical interpretations made by people who not only were trained in a tradition still 
dominated by ancient masterpieces to a considerable extent, but who also spent decades 
of active research effort in extending mathematics by purposefully following in their foot-
steps. It is not far-fetched to think, therefore, that the 17th century is a quite good window 
into the more ancient past in these respects.



594	 V. Blåsjö 

1 3

2 � Why Construct?

This section sets out the philosophy of operationalism. This is the theoretical lens that I 
shall use to interpret Greek geometry in later sections.

We begin by looking at the most fundamental threats to the reliability and rigour of 
geometry. If our house is built on rotten pillars it is only a matter of time before it comes 
crashing down. Critics have indeed identified some ominous cracks in the bedrock of 
geometry. Any serious attempt at establishing firm foundations of geometry must give a 
coherent and systematic account of why such problems could never occur on its watch.

Operationalism does this emphatically. But not only that. Operationalism accomplishes 
this proactively rather than reactively. It doesn’t solve problems as they arise. Instead it 
focusses on positive virtues, and derives the solutions to the problems as effortless corol-
laries. The operationalist program of grounding geometry in concrete constructions is emi-
nently justifiable on positive grounds, and furthermore negates a range of severe threats to 
the certainty of mathematical knowledge.

2.1 � Problems with Non‑constructive Mathematics

2.1.1 � False Diagrams

Figure 1 show a famous example of how an incorrectly drawn, yet plausible-looking dia-
gram can quickly lead to absurd results. The Greeks were evidently well aware of this type 
of problem, as witnessed by a remark in Plato: “geometrical diagrams … have often a slight 
and invisible flaw in the first part of the process, and are consistently mistaken in the long 
deductions which follow.” (Cratylus, 436d, Jowett transl.) We even know for a fact that 
Euclid himself wrote a (now lost) treatise on fallacies in geometry which is likely to have 
dealt with these kinds of issues (Acerbi, 2008).

The fallacy of Fig. 1 is often used to justify the modern view of geometry in the vein 
of Hilbert. On this account, the erroneous proof shows the danger of relying on visual and 
intuitive assumptions (Maxwell, 1963, 23; Mumma, 2010, 261; Kline, 1972, 1006–1007; 
Wagner, 2018, 315). The solution is to purge geometry of any kind of reasoning based 
on diagrams,2 and instead formalise the subtle issues of betweenness and relative posi-
tion involved here as precise axioms so that geometry can proceed through purely logical 
deduction.

But this is not the only possible diagnosis and treatment of the problem with this erro-
neous proof. Another point of view is to say: the problem is not that the proof relied too 
much on diagrammatic reasoning, but that it did so too little. The problem is not that the 
proof is insufficiently divorced from visual considerations, but that it is too divorced from 
them. The example doesn’t show that diagrams are dangerous even if they are just sche-
matic accompaniments to otherwise logically solid proofs, but rather that diagrams are 
dangerous when they are merely treated as such. The solution is not to place less empha-
sis on diagrams, but more. That is, to demand diagrams to be not merely schematically 
sketched but in fact precisely constructed according to the most exacting standards and 

2  See, e.g., Mancosu (2004, 14) who quotes Pasch (1976, 43) and Hilbert (1894, 11) to this effect: “the 
theorem is only truly demonstrated if the proof is completely independent of the figure” (Pasch); “a theorem 
is only proved when the proof is completely independent of the diagram” (Hilbert).
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rigorous proofs that these constructions accomplish the configurations in question. This 
would indeed prevent errors of this type from occurring. No one adhering to this mode of 
doing geometry would ever find themselves reasoning about false diagrams like the one in 
the above example.

This diagnosis of the source of error in the false proof above leads immediately to the 
conclusion that precise constructions of angle bisectors, bisectors of segments, and perpen-
dicular lines are foundationally very important, and that no proof must ever be formulated 
without all entities occurring in it having been introduced through rigorously verified and 
precise procedures. This is exactly what we find in Euclid’s Elements. Without fail, Euclid 
always meticulously shows how to construct all entities involved in all of his propositions. 
And all the constructions needed to ensure that we end up with the correct Fig. 1b rather 
than the deceptive Fig. 1a are carefully spelled out as core propositions right at the heart 
of the Elements: how to bisect an angle (I.9), bisect a line segment (I.10), erect a perpen-
dicular from a point on a line (I.11), and drop a perpendicular from a point to a line (I.12). 
It is surely not a coincidence that Euclid hastened to explicate precisely the tools needed to 
solve the diagram problem mentioned by Plato.

2.1.2 � Existence and Hidden Assumptions

It is impossible to conduct a serious axiomatic study of geometry without paying atten-
tion to existence issues. For example, the assumption that squares exist may seem innocent 
enough, but in fact it implies the parallel postulate.3 Hence any investigation that aims to 
elucidate the fundamental assumptions of geometry cannot treat any object whose exist-
ence has not first been either proved or explicitly postulated. To do otherwise would be to 
render the entire enterprise of axiomatic geometry useless and moot, since it would open 
a back door through which any number of hidden assumptions can creep in. The point of 
an existence proof for squares, then, would not so much be to establish that there is such a 
thing as squares, but to ensure that any foundational assumptions involved in supposing the 
existence of squares have been systematically accounted for.

Another example showing how seemingly innocuous existence assumptions can be 
tantamount to fundamental assumptions about the structure of space occurs in Legendre’s 
attempt to prove by contradiction, using only the first four postulates of Euclid, that the 
angle sum of a triangle cannot be less than 180◦ . His proof implicitly assumes that given 
two intersecting lines, and a point not on those lines, it is possible to draw a line through 
that point that intersects the two given lines (Heath, 1956, I.214; Rosenfeld, 1988, 105). 
This assumption does not hold in hyperbolic geometry. Hence Legendre’s attempted proof 
is invalid, since the contradiction did not come from the assumption he intended to refute, 
but from an innocent-seeming existence assumption introduced along the way in his argu-
ment. This shows once again the danger of letting even the most harmless-looking exist-
ence or construction assumptions proliferate without explicit control. Inconsistencies can 
arise from even the most inconspicuous of assumptions. The moral of the story is that the 
mathematician must stick to a minimalistic set of stringently controlled construction princi-
ples, whose consistency should be as unquestionable as possible.

3  The existence of a square implies the existence of similar triangles of arbitrary magnitude, which Wallis 
showed implies the parallel postulate (Fauvel & Gray, 1987, §16.A1). “Square” here means a square in the 
sense of Euclid’s Definition 22: an equilateral quadrilateral with four right angles.
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Issues of this nature were recognised in antiquity. Quite possibly, even the specific issue 
of Legendre’s assumption may have been investigated in works that are no longer extant, 
such as the lost treatise On parallel lines by Archimedes. At any rate, closely related issues 
emerge explicitly in the treatments of parallels by Simplicius and Al Jawhari (Rosenfeld, 
1988, 45, 48). On a more conceptual level, Aristotle pinpoints the same type of fallacy in 
the work of some “who suppose that they are constructing parallel straight lines: for they 
fail to see that they are assuming facts which it is impossible to demonstrate unless paral-
lels exist. So it turns out that those who reason thus merely say that a particular thing is, if 
it is.”4

Aristotle draws the obvious conclusion that existence issues must be controlled by either 
explicit postulates or existence proofs. “What is denoted by the first [terms] ...is assumed; 
but, as regards their existence, this must be assumed for the principles but proved for the 
rest.”5 Thus “What a triangle is, the geometer assumes, but that it exists he proves.”6 In 
Greek geometry, constructions are the means by which existence is assured. The link 
between constructions and existence is stressed by Proclus in his commentary on the Ele-
ments (Proclus, 1970, 183).

(b)(a)

Fig. 1   a “Proof” that all triangles are isosceles. The point in the middle is defined as the intersection of the 
bisector of the top angle and the perpendicular bisector of the base. By construction, the top two triangles 
are congruent (AAS), and the two base triangles are congruent (SAS). It follows that the remaining two 
triangles are congruent (SSRA). Hence the left and right sides of the original triangle are equal. Since we 
started with an arbitrary triangle, we have thus proved that any triangle is isosceles. b Correctly drawn ver-
sion of the diagram. The “proof” does not work, since it relied on aspects of the false diagram that do not 
hold on the correctly drawn diagram

4  Aristotle, Prior Analytics, 65a, (Aristotle, 2001, 94). See Tóth (1966) for a reconstruction of the meaning 
of this passage as well other evidence of sophisticated foundational investigations regarding parallels in the 
−4 th century.
5  Aristotle, Posterior Analytics, 76a, (Heath, 1949, 50).
6  Aristotle, Posterior Analytics, 92b, (Heath, 1949, 70).
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2.1.3 � Existence and Consistency

Reasoning about objects merely defined verbally, as opposed to constructed, can be very 
dangerous. For example, suppose I add to Euclid’s Elements the definition: “A superright 
triangle is a triangle each of whose angles is a right angle.” Then I may reason that I know 
from I.32 that the external angle of a superright triangle is two right angles. Then it follows 
from I.13 that two right angles are equal to three right angles—an obvious contradiction.

The definition of a superright triangle is disturbingly similar to that of an equilateral or 
isosceles triangle, and the reasoning sounds just like the kind of thing we do in geometry 
all the time. So it casts doubt on the entire enterprise of geometry. How do we know that 
the propositions of the Elements are not one or two steps away from leading to contradic-
tions? The geometers must reply with some definitive criterion that explains why none of 
their theorems are susceptible to this kind of error.

In a way it is clear what the problem is. There are no superright triangles. Hence one 
can consider the problem solved by ensuring the existence of the objects one speaks of. 
One way of accomplishing this would be to say: Only constructive definitions, that imply 
a recipe for making the object defined, are permitted in mathematics. This is clearly not 
the path taken by Euclid, however. For instance, Euclid defines a square at the outset but 
only shows how to produce one much later, in I.46, based on substantial previous results. 
This corresponds to the strategy of avoiding the superright triangle fallacy by demanding 
that we cannot make a propositional statement about a particular class of objects unless 
we have first shown beforehand that the class in question is nonempty. Thus the types of 
inferences made in the false argument are only warranted if supported by suitable existence 
proofs, and that is why theorems about triangles cannot be applied to superright triangles, 
but can be applied to equilateral and isosceles triangles, which Euclid indeed proves exist 
by means of constructions.

The momentous discovery of the incommensurability of the diagonal of a square and its 
side—that is to say, that this ratio, 

√

2 , “does not exist” in the realm of “numbers” (mean-
ing rational numbers)—could be taken as further proof that existence questions can be very 
subtle and far from intuitively obvious.

But existence is not the only aspect that should be emphasised here. Another important 
lesson from the superright triangle example is the danger of defining objects through mul-
tiple conditions. A superright triangle is defined as: having three sides; having one right 
angle; another right angle; ant yet another right angle. The first two conditions were fine. 
It was taking all of them together that was impossible. The more conditions you add, the 
greater the risk of ending up with an inconsistency.

Another example of this is to say: Let ABC be a triangle such that: one angle is a right 
angle; the sides next to the right angle have lengths 4 and 7; the third side has length 9.7 
Again, some of these conditions would have been fine on their own, but all of them taken 
together are inconsistent. Hence defining or introducing an object through a list of speci-
fications of its properties is unacceptable. Doing so would leave the door wide open for 
possible inconsistency to enter mathematics, and hence ruin the claim to certainty of math-
ematical reasoning.

A rigorous mathematical theory needs a systematic guarantee that such errors cannot 
be committed. Constructions are a way to provide such a guarantee. Instead of introducing 

7  This example occurs in a 16th-century geometry textbook (Heitholt & Sauer, 2019, 183).



598	 V. Blåsjö 

1 3

objects by a list of properties, construction builds it up step by step. Thus properties can 
no longer be ascribed to an object merely by decree. Rather they must be introduced by a 
rigorously controlled stepwise process. Each step in this process involves the application 
of a construction postulate or a demonstrated construction proposition or theorem, which 
means that assumptions and conditions of validity are carefully monitored and reduced to a 
few axiomatic principles.

This has an important implication for what types of constructions can be assumed as 
axiomatic. If the goal of constructions is to eliminate the danger of imposing multiple 
(potentially inconsistent) conditions at once, it follows that the primitive construction prin-
ciples themselves must as far as possible be defined in terms of a single simple characteris-
tic, rather than a combination of multiple elements.

2.1.4 � Verbal Logic Fallacies

One could argue that the challenge posed by the superright triangle fallacy is not convinc-
ingly solved by the insistence on existence proofs. As far as syllogistic or propositional 
logic is concerned, it seems perfectly in order to say that if t is by definition a kind of tri-
angle, and the claim P(x) is true for any triangle x, then we may infer that P(t) holds. The 
qualifications regarding existence necessary to safeguard against the superright triangle fal-
lacy feel quite external to this logical mechanics. Perhaps careful attention to existence 
proofs can “save” verbal logic. But one may well ask whether a paradigm that invites such 
problems in the first place is worth saving.

The mathematician might well say: Geometry is the most reliable branch of knowledge. 
More reliable than verbal logic, which derives its credibility, insofar as it has any, from 
mathematics more than than conversely. The superright triangle fallacy relies on abstract 
verbal logic. But abstract verbal logic has no foundational status in mathematics. All math-
ematical statements are about concrete constructions and operations. Any uses of abstract 
verbal logic in mathematical texts is merely a psychological or pedagogical shorthand for 
actual constructive operations. (It is suggestive in this connection that Euclid’s proofs are 
all “purely quantifier free”—that is, they never make assertions of the form “there exists 
… ” or “for all … ”. This is “remarkable” (Avigad et al., 2009, 707) from the point of view 
of modern mathematics, and could perhaps be an indication that Greek mathematicians 
distanced themselves from syllogistic or propositional logic where such phraseology is 
commonplace.)

Indeed, we know for a fact that logical paradoxes and fallacies figured prominently 
in Greek thought in the classical era. Some of these are clearly relevant to mathematics. 
Zeno’s paradoxes of motion are the most famous examples, and clearly pose a foundational 
challenge to geometry. But, arguably, already the liar paradox shows that natural-language 
propositional logic is incoherent. Namely, it shows that verbal logic allows propositional 
statements P to be formulated that are inherently contradictory. “This statement is false” or 
“I am lying” are examples of such statements P, because, arguably, P implies ¬P and ¬P 
implies P, whence there is no way of assigning a truth value to P without ending up with 
a contradiction. This kind of thing clearly poses an issue for a logic-based conception of 
mathematics, not least in connection with proofs by contradiction.

Another example of a paradox discussed in ancient times was that of the horn: What you 
have not lost, you have; but you have not lost horns; therefore, you have horns. Here again 
the blind, mechanical application of logical inferences in a quasi-algebraic manner leads 
to an absurd conclusion. As with the superright triangle fallacy, it is possible to attribute 
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the problem to some specific cause: in this case not so much an existence issue as a cer-
tain misleading ambiguity in the first premiss. Furthermore, the fallacy may be regarded 
as “obvious.” But trying to defuse the paradox in these ways does not solve the core issue 
exposed by the paradox, namely that “blind” logic, in and of itself, seems to lead to errone-
ous conclusions.

This multitude of logical paradoxes arguably validates the suspicion mentioned above 
that when we supplemented verbal logic with existence proofs we had perhaps not gotten 
to the bottom of all its problems yet. It would not have been out of character for the Greeks 
to have been sensitive to such challenges and to have taken radical steps to protect them-
selves from logical fallacies and paradoxes.

2.2 � Operationalism

2.2.1 � Operationalism Defined

Above we have seen a number of specific considerations that point toward the foundational 
importance of constructions. I shall now articulate a philosophy of geometry—operation-
alism—that synthesises these isolated indications into a systematic foundational program. 
Operationalism is a term most closely associated with a 20th-century movement in phi-
losophy of science that grew out of relativity theory and quantum mechanics. Several of its 
key tenets, however, are much older and more universal. I propose that this rich tradition in 
philosophy of science was largely foreshadowed in Greek philosophy of geometry. I shall 
argue that the key commitments and motivations of modern operationalism and related tra-
ditions could very plausibly have been precisely mirrored in Greek geometrical thought.

The core principle of operationalism is that “we mean by any concept nothing more 
than a set of operations; the concept is synonymous with the corresponding set of opera-
tions” (Bridgman, 1927, 5). Thus “triangle,” for example, means: the figure obtained when 
drawing three intersecting lines with a ruler. This diagram is not a drawing of a triangle, or 
a physical instantiation of the formal concept of a triangle, or in some other way subordi-
nated to or derived from some purer concept of triangle. No, a diagram resulting from these 
operations simply is what a triangle is. This is the root meaning of “triangle” and the foun-
dational bedrock on which any claim about triangles ultimately rests. When Euclid says 
“let ABC be a triangle,” he strictly speaking simply means: draw one line, then another, 
then another (making three points of intersection).8

Geometry is readily interpreted in operationalist terms, in a manner consistent with 
Euclid’s Elements and Greek geometry generally. What is a line? Take a piece of string and 
pull the ends; that’s a straight line. What is a circle? Take a piece of string and hold one 
end fixed and move the other end while keeping the string taut; that’s a circle.9 What does 
it mean for two things to be equal? Put one on top of the other; if they align, and neither 

8  Cf. Euclid’s definition of a triangle, Elements, Definition I.19. On this idea more generally cf. also Knorr 
(1975, 139): constructions are fundamentally “what the ancients mean by mathematical knowledge.”
9  Cf. Elements, Definition I.15.
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sticks out beyond the other, then they are equal.10 What is a right angle? Cut the space on 
one side of a line into two equal pieces; that’s a right angle.11

In effect, every statement Euclid makes in his geometry can be read as a statement about 
operations or the outcome of operations. It could easily have been otherwise. Most geom-
etry treatises of later eras do not allow themselves to be interpreted in operationalist terms. 
Consider for example the parallel postulate (Fig. 2), whose convoluted phrasing in Euclid 
has caused much consternation. It transpires already from the Elements itself that Euclid 
could have used a simpler, equivalent statement in place of it, such as: given any line and 
any point not on this line, there is no more than one parallel to the line through that point. 
Why did Euclid opt for his much more convoluted formulation of the postulate? From the 
point of view of modern mathematics, his choice is strange, as witnessed by the major-
ity of more modern treatments that much prefer the formulation in terms of existence of 
parallels. But from an operationalist point of view Euclid’s choice makes perfect sense. 
Euclid’s version of the postulate is purely about operations: if you draw two lines, and per-
form an operation that shows that they stand in such-and-such a relation, then if you extend 
them such-and-such a thing will happen. Everything is formulated in terms of actions that 
the geometer performs. The existence formulation, on the other hand, is incompatible with 
operationalist principles. It only makes sense in some kind of Platonist or preformationist 
framework that assumes that all the objects of geometry are already “out there,” indepen-
dently of any geometer.

Similarly, Euclid doesn’t say “there are infinitely many prime numbers” but rather: if 
you have a list of prime numbers, you can make a larger list of prime numbers.12 This 
achieves the same thing but without needlessly entangling itself with the quasi-metaphysi-
cal assumption that “the set of all prime numbers” is a preexisting entity whose properties 
we are proving theorems about. There is no need for mathematics to make assumptions of 
that type. Doing so would only invite attacks from philosophical sceptics.

Operationalism avoids the dubious ontological assumption that the totality of all objects 
of geometry are somehow already at our disposal. The modern formulation of the parallel 
postulate assumes that mathematics can, so to speak, survey the totality of all lines through 
a particular point and make proclamations about this infinite set. Operationalism doesn’t 
make such an assumption. When it says “all right angles are equal to one another” (Ele-
ments, Postulate 4), it does not assume that the set of all right angles is a meaningful entity 
about which we can make statements. Rather, the postulate means: if you make one right 
angle, the another right angle, then those two right angles are equal to one another.13

Or consider a prototype geometrical proposition: the Pythagorean Theorem (Ele-
ments I.47). Again, this theorem does not say that every element of the infinite set of all 

10  Cf. Elements, Common Notion 4. This is arguably what equality means, in its most fundamental sense. It 
is of course not a way to prove that two things are equal, because a proof must establish the result by exact 
means from first principles. Euclid later develops a more general notion of equality, which allows for exam-
ple two triangles of different shapes to be “equal” (in area). But this extended notion of equality is derived 
from the earlier, primitive one.
11  Cf. Elements, Definition I.10.
12  Cf. Elements, IX.20.
13  One may feel that, if Euclid had wanted to emphasise this way of interpreting the right-angle postulate, 
he could have made this more explicit for instance by saying any two right angles in place of all right 
angles. But he may have taken this kind of synonymity for granted. For example, in Elements XI.18, he 
speaks of “all” the planes containing a given line, but then, for the purposes of the proof, immediately 
operationalises this as any one (arbitrarily drawn) plane containing that line.
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right-angle triangles has a particular property. Rather, operationally speaking, it says: if 
you have drawn a right-angled triangle, and if you then draw the square on each of the 
sides, then the areas of those particular squares are related in such-and-such a way. Until 
you have drawn a right-angled triangle, the theorem can be said to have no content.

Operationalist geometry is automatically protected from the fallacies discussed above 
in straightforward ways. The existence and false diagram issues are resolved because they 
could never arise in strict operationalist practice (insofar as the construction procedures 
admitted have high practical accuracy, as for example ruler and compass does). And the 
verbal logic problems do not arise since verbal logic is not accorded any foundational role 
in operationalist mathematics. Thus operationalism very conveniently cuts off in one fell 
swoop numerous lines of attack of philosophical scepticism directed at mathematics, with-
out the need for any sacrifices in mathematical content.

2.2.2 � Modern Philosophical Motivation

The big-picture philosophical considerations that made operationalism and related pro-
grams attractive in modern times could very well have been influential in antiquity as well.

In modern physics, operationalism was at the heart of a philosophical critique of the 
fundamental assumptions of Newtonian mechanics, which eventually led to relativity 
theory. Many of the ideas in those writings can be applied virtually verbatim to ancient 
geometry as I interpret it. Here for example is a typical passage from Ernst Mach’s famous 
critique of Newton:

Absolute space and absolute motion ...are pure things of thought, pure mental con-
structs, that cannot be produced in experience. ...[They have] therefore neither a 
practical nor a scientific value; and no one is justified in saying that he knows aught 
about it. It is an idle metaphysical conception. ...All our principles of mechanics are 
...experimental knowledge concerning the relative positions and motions of bodies. 
...No one is warranted in extending these principles beyond the boundaries of expe-
rience. In fact, such an extension is meaningless, as no one possesses the requisite 
knowledge to make use of it. (Mach, 1883, II.VI)

Ancient mathematicians might have justified their emphasis on constructions in much the 
same terms. The domain of constructions is the domain in which geometrical statements 
are meaningful and have testable truth-value. Imagining the claims of geometry to extend 
beyond this domain is hubristic as well as pointless. It would accomplish nothing but need-
lessly saddling geometry with metaphysical baggage. Thus operationalism exposed a cer-
tain naiveté in previous, more philosophically unreflective scientific practice.

Fig. 2   Euclid’s parallel postulate (Elements, Postulate 5): “If a straight line falling on two other straight 
lines make the interior angles on the same side less than two right angles, the two straight lines, if produced 
indefinitely, meet on that side on which are the angles less than the two right angles.” (Heath, 1956, I.202)
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But in addition to this critical element, operationalism was also positive and forward-
looking: it offered a powerful heuristic for reforming conceptions of fundamental scientific 
concepts. This heuristic proved very fruitful and was pivotal in Einstein’s formulation of 
special relativity.14 Physicists drew the conclusion that “we do not know the meaning of a 
concept unless we can specify the operations which were used ...in applying the concept in 
any concrete situation” (Bridgman, 1952, 7). Thus physicists realised that they had oper-
ated with naive concepts of time and space. This worked fine for most purposes, but critical 
foundational investigations revealed that these naive assumptions were ultimately unten-
able. Relativity theory showed that traditional assumptions about time and space were ulti-
mately inconsistent and incoherent, and that the way to fix these problems is to reduce the 
concepts of space and time down to concrete operations with measuring rods and clocks.

Greek mathematicians could very well have had similar experiences. That is, they could 
very plausibly have found that attempts at clarifying mathematical concepts—both in the 
context of critical philosophical analysis and in technical research—ultimately forced them 
to abandon naive conceptions of mathematical objects in favour of strictly operational 
explications. The examples discussed in Sect. 2.1 can be read in such a way.

The empirical character of operationalism also makes it naturally aligned with a sci-
entific worldview, and has often gone hand in hand with an “us versus them”—scientists 
versus philosophers—attitude that is as much about rejecting other perspectives as it is 
about affirming its own principles (Bridgman, 1927, 28, 1952, 10). Positivism, which is 
closely related to operationalism, also has such a history [from Comte (1830) to the Vienna 
Circle and beyond], of using a strict empirical theory of meaning to reject much grandiose 
philosophising as wrongheaded and even strictly meaningless.

It is possible that this dynamic was paralleled in antiquity. Ancient mathematicians 
would have felt that their geometry was a lot more grounded in reality than even quasi-
science such as the four elements theory, not to mention more abstract philosophy such 
as, say, Aristotle’s doctrine of causes. Ancient mathematicians would have felt that their 
results were qualitatively different from philosophy in terms of reliability, objectivity, 
and many other dimensions. They may even have felt, as members of the Vienna Circle 
later did, that much philosophy was empty gibberish. As Ptolemy said: “only mathematics 
can provide sure and unshakeable knowledge”; other “divisions of theoretical philosophy 
should rather be called guesswork than knowledge.” (Almagest, I.1, Toomer, 1998, 36)

Perhaps this would have led them to articulate general methodological principles that 
would “explain” why their form of reasoning and knowledge was superior to that of the 
philosophers, as many scientists have been inclined to do ever since.

What methodological dicta might Greek mathematicians have seized upon to set their 
field apart from philosophy? Certainly not anything like the modern identification of math-
ematics with logic and axiomatic-deductive reasoning. Logic and deduction were already 
highly prized among Greek philosophers. If anything, they were too obsessed with deduc-
tive logic: Zeno’s argument that there can be no such thing as motion is one example among 
many of extreme faith in abstract deductive reasoning even when it is in blatant conflict 
with the most basic common sense. Axiomatics too was far from the exclusive purview of 
mathematicians; indeed it is obvious that basing one’s theories on a list of allegedly evident 
but ultimately unjustified axioms is very convenient for mathematicians and sophists alike. 

14  Einstein repeatedly stated in many places that he was influenced by Mach. For a clear and explicit exam-
ple of operationalist principles in action in his work, see for instance the operational definition of simultane-
ity—the linchpin of the entire theory—given in Einstein (1916, Section VIII).
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It may even be reasonable to say that the abundance of deductive philosophical systems 
that were clearly in conflict with one another would rather have been an incentive for the 
mathematics to insist that, unlike the philosophers, they did not rely on abstract logic.

Operationalism would have been an alternative readily at hand. Constructions had 
always been a central part of geometry, from the time of the Egyptian “rope-stretchers” 
whom the Greeks identified as the originators of the field. Later theoretical developments, 
such as the irrationality of 

√

2 , had spoken in favour of taking geometry as the foundational 
bedrock of all mathematics. It would have been a short and natural step for the mathemati-
cians to tie the foundations of their subject to their already ubiquitous ruler and compass. 
To the mathematicians it would have cost little to embrace all-out radical operationalism. 
Virtually all of mathematics was readily susceptible to being reframed in such a paradigm. 
It would have been a way of legitimating existing practice that would have necessitated 
little or no deviation from what they were already doing. Meanwhile, other branches of 
philosophy stood no chance of founding their teachings on an operationalist basis. So if the 
mathematicians were looking for a way to set themselves apart from the philosophers—to 
explain why their field had cumulative progress, universal agreement, and inviolable truths 
while philosophy had paradoxes and schools in constant disagreement with one another 
without any prospect of reconciliation—then operationalism would have been a natural 
option readily at hand.

Unlike most of philosophy, any statement of geometry is readily equated with a claim 
regarding certain empirical circumstances. Ancient mathematicians had a golden opportu-
nity to highlight this natural attribute of their field as an epistemic virtue. They could pose 
to head-in-the-clouds philosophers the very difficult challenge of explaining what good a 
theory is if it has no “cash value” in the real world, in the form of empirically testable 
claims. And they could stress that geometry, by contrast, has no need to engage in that kind 
of theorising.

Related to this is the ideal of falsifiability. When the geometers claim that any triangle 
has an angle sum of two right angles, they are sticking their necks out. If their claim was 
false, it should be simple enough to find a counterexample. The operationalist formulation 
of geometry makes it possible to press this point very strongly. The theorem simply means: 
if you put a ruler down on a piece of paper and draw three intersecting lines, then cut out 
the three corners and put them point-to-point, then the three pieces fill precisely the angle 
on one side of a straight line. The very meaning of the theorem directly contains a concrete 
recipe for testing and potentially falsifying it.

Also remarkable is that this operational meaning of a geometrical theorem is theory-
independent. You do not need to accept the definitions and postulates of the mathemati-
cians in order to perform this empirical test. Sceptics who try to criticise mathematics in 
general terms can thus be confronted with a concrete challenge: regardless of whether you 
accept any of our assumptions or modes of reasoning, we offer you hundreds upon hun-
dreds of claims of the form: if you perform such-and-such concrete operations, then the 
outcome will always be one particular way rather than another. Feel free to prove us wrong, 
the mathematician can say. It would be impossible to meet the challenge and very difficult 
to try to dismiss it as illegitimate. The operationalist formulation of mathematical state-
ments is reducible to straightforward recipes whose neutrality and objectivity is very diffi-
cult to deny. This is in stark contrast with many philosophical claims, which must often be 
bought into or rejected wholesale along with an entire theory because of their interdepend-
ent nature—not merely in the innocent sense that they derive mutual support and plausibil-
ity from one another, but in the more fundamental sense that even their very meaning is 
inherently bound up with the system as a whole. Operationalism ensures that geometry is 
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not like that. Operationalist geometry is not an entangled holism. And for this reason the 
avenues of attack available to a would-be sceptic are severely limited.

Thus operationalism ensures that geometrical claims are meaningful to outsiders. This 
is put to good use in Plato’s Meno, 84d–85, where an uneducated slave boy is led to dis-
cover what is in effect a special case (the isosceles case) of the Pythagorean Theorem. A 
modern formulation in terms of algebraic symbolism and terminology is opaque and mean-
ingless to the uninitiated. But the Greek operationalist formulation of the theorem makes 
it immediately meaningful and accessible without any prerequisite knowledge or higher-
order technical concepts. Thus this way of doing geometry makes its content universally 
available and communicable to anyone.

2.2.3 � Modern Mathematical Motivation

The operationalist reading of Greek mathematics that I have proposed has much in com-
mon with considerations that led to renewed interest in constructive mathematics in the 
20th century, and even with more radical foundational critiques such as the intuitionism of 
Brouwer.

In this context I would draw a distinction between operationalism and constructivism. 
Both prohibit mathematical theorems from speaking about non-constructed objects. Hence 
both solve a number of the problems noted above in the same way. Nevertheless I would 
characterise operationalism as the more radical of the two. Constructivism is closer to ordi-
nary abstract-logic mathematics: it restricts the kinds of objects mathematics can speak 
about, but otherwise it leaves the nature of mathematical reasoning the same. Operational-
ism goes further. It sees constructions not only as a means of ensuring that objects are safe 
to treat, but as constituting the very meaning of all mathematical concepts and the funda-
mental nature of all mathematical reasoning.

While both operationalism and constructivism eliminate problems such as that of the 
superright triangle, operationalism arguably does so in a more proactive rather than reac-
tive manner. Constructivism can be seen as the result of a defensive retreat: a crutch the 
abstract logic paradigm invented to solve specific problems that it encountered. As with 
any such ad hoc response to criticism, a concern may linger whether the whole rot was 
truly eliminated by this quick fix. Operationalism does more to get back on the front foot. It 
not only solves the particular issue at hand, but it also emphatically disavows the entire way 
of thinking that gave rise to it in the first place.

Consider first the issue of what objects can legitimately be studied in mathematics. 
Operationalism solves existence-related issues since “if experience is always described in 
terms of experience, … we need never be embarrassed” to find that we were talking about 
imagined concepts with no connection to reality (Bridgman, 1927, 6–7). “The language 
of Euclidean geometry ...is reliable only because the mathematical systems and relations, 
which are symbolized by the words of that language as conventional signs, have been con-
structed beforehand independently of that language” (Brouwer, 1975, 98). That is one 
major advantage of operationalism.

But, more fundamentally, the operationalist grounding in concrete experience or prac-
tice means not only that the objects we speak of exist and are meaningful but, more than 
that, that the entire practice itself is consistent.

In mathematics much the same situation arises that arises in physics; in foundation 
studies, in which one wants to secure the maximum awareness of what one is doing 
and the maximum security that he is not involving himself in contradiction, one 
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would do well to use only concepts whose meaning is found in … unambiguously 
performable operations. For in this way, … the description of a situation in math-
ematics reduces to the description of an actual experience, … and actual experience is 
not self-contradictory. (Bridgman, 1955, 17)

This was no empty threat, as shown by Russell’s Paradox, which proved that naive attempts 
at using logic to ground mathematics were not a way to ensure rigour and unequivocal 
clarity, as intended, but rather that this way of thinking readily permits incoherent state-
ments. Unlike “let S be the set of all superright triangles,” which is deceptive since the set 
is empty, the statement “let R be the set of all sets that are not elements of themselves” is 
not only misleading in this benign way but in fact, far worse, is altogether incoherent, since 
the definition implies that R must be an element of itself and also that it must not be. This 
shows that definitions of the form “the set of all objects having a particular property” can 
be problematic.

Brouwer diagnoses the problem with Russell’s Paradox in a manner very much aligned 
with operationalism.

By a propositional function ...the logicians ...mean a statement about x ...; they 
reckon that by that statement a class is defined, consisting of all things ...which by 
substitution make the statement true. [Thus they speak of] all things for which the 
statement �x is true. ...As the fundamental domain of operations, within which the 
relations meant by the words or symbols must exist, they choose not some [already 
constructed] mathematical system, but the chimerical ‘everything’. ...[They thus] 
give a linguistic system of statements and propositional functions priority over math-
ematics. ...They postulate that these sentences define classes and that it is allowed to 
reason about these classes according to the laws of classical logic. ...It is not surpris-
ing that they ...came up against contradictions [such as Russell’s Paradox]. ...Exactly 
because Russell’s logic is no more than a linguistic system, deprived of a presup-
posed mathematical system to which it would be related, there is no reason why no 
contradictions would appear. (Brouwer, 1975, 88–89)

Note well that this is not merely about a constructivist restriction on what objects are 
permissible in mathematics. Rather, what is at stake here is something much deeper: a 
rejection of the logic-centered mathematical paradigm altogether, in favour of a radical 
operationalist conception of the nature of mathematical reasoning and the basis for its epis-
temological credibility.

Superright triangles (Sect. 2.1.3) are an example of a class defined verbally by its prop-
erties, just like the �x classes criticised by Brouwer. This type of issue occurs naturally 
in geometry, as do other reasons to treat logic with suspicion more generally, as we saw 
above (Sect. 2.1.4). Russell’s Paradox shows that such suspicions were well founded and 
that the issues are by no means confined to “non-mathematical” examples, or examples 
whose fallacy is obvious. Though they would in all likelihood not have been familiar with 
Russell’s Paradox per se, it is not unrealistic to imagine that Greek mathematicians may 
have arrived at conclusions similar to that of Brouwer regarding the dubiousness of pure 
logic, and the status of operationalism as the only reliable warrant not only of meaning but 
also of consistency.
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3 � Operationalism and Euclidean Geometry

3.1 � The Role of Diagrams in Geometry

3.1.1 � Diagrams as the Ontology of Geometry

The following interpretation is half right and half wrong, according to the operationalist 
reading of Greek geometry:

Undoubtedly, many mathematicians would simply assume that geometry is about 
spatial, physical objects, the sort of thing a diagram is. … The centrality of the dia-
gram … meant that the Greek mathematician would not have to speak up for his 
ontology. … The diagram … acted, effectively, as a substitute for ontology. … One 
went directly to diagrams, did the dirty work, and, when asked what the ontology 
behind it was, one mumbled something about the weather and went back to work. 
(Netz, 2003, 56–57)

I agree that, indeed, diagrams—physicality and all—were accepted as the de facto ontol-
ogy of mathematics. And I also agree that mathematicians were adverse toward and disin-
terested in philosophical accounts of geometry that did not square well with this practice.

However, I do not believe that Greek mathematicians “simply assumed” these things, 
and could only “mumble something about the weather” if pressed on the issue. I claim 
that, on the contrary, Greek mathematicians had a philosophically sophisticated defence of 
their ontological stance. In this section I am going to attempt to articulate how they might 
have replied, instead of merely “mumbling something about the weather,” if they had been 
pressed on a range of key philosophical issues.

3.1.2 � Diagrammatic Reasoning

From a modern point of view, the right way to do geometry is as a formal axiomatic-deduc-
tive system. The Greek tradition has often be interpreted as aspiring toward, but falling 
short of, this ideal. This view has it that Euclid’s Elements was a valiant attempt at a formal 
treatment of geometry, especially for its time, but that it contains some fundamental flaws 
stemming from Euclid’s inability to fully avoid implicit reliance on intuitive and visual 
assumptions.

Operationalism, by contrast, embraces visual reasoning and keeps abstract logic at 
arm’s length. This arguably fits the Greek geometrical tradition better than modern for-
malistic conceptions of geometry. Indeed it is well known that Greek geometry some-
times bases inferences on diagrammatic considerations that are not explicitly formalised. 
The most famous example is Elements I.1, where the existence of a point of intersection 
of two circles is tacitly assumed but can arguably not be formally justified from Euclid’s 
definitions and postulates. It is fashionable nowadays to characterise visual reasoning and 
intuition as a source of perpetual error and naiveté, while formalism is iron-clad rigour par 
excellence. But this view is neither a priori plausible nor historically sustainable. Manders 
(2008a, 66) puts is well: “I detect ignorance and empty (arrogant, even panicked) dismiss-
iveness on the part of the critics of diagram-based demonstration. … It is hard to escape the 
impression that philosophers of mathematics have had something at stake in dismissing 
properly geometrical reasoning methods out of hand.” Basing geometry on visual reason-
ing about figures is natural in that it grounds knowledge in immediate experience and the 
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clearest possible intuition. This is a commonsensical epistemological stance. Any attempt 
to discredit operationalism needs to be argued from first principles other than the axiomatic 
assumption that logical formalism and rigour are the same thing.

Modern scholarship has shown that Euclid’s use of diagrammatic reasoning is by no 
means a haphazard reliance on intuition, but rather that it can readily be interpreted as a 
careful use of systematic principles. Two separate modern studies have fully formalised 
Euclidean diagrammatic reasoning, spelling out in considerable technical detail sets of 
axioms that rigorously and systematically delineate between permissible and impermissi-
ble diagrammatic inferences. Hence they have concluded that: “The use of diagrams in a 
Euclidean proof is not soft and fuzzy, but controlled and systematic, and governed by a dis-
cernible logic” (Avigad et al., 2009, 701). “There is, in fact, an underlying logic to Euclid’s 
methods that can be made every bit as rigorous as other methods of presenting geometry. 
The idea that his methods are inherently informal should therefore be banished forever” 
(Miller, 2007, 85). This suggests that the Elements should not be seen as a failed attempt 
at a full axiomatic formalisation of geometry, but rather as a coherent and well-considered 
attempt at doing another kind of geometry altogether. Operationalism provides precisely 
such an interpretation.

The modern mathematician rejects anything not obtained through logical deduction 
from formal axioms. The operationalist classical geometer rejects anything not obtained 
through concretely defined operational procedures. We can formulate the difference 
between the two points of view in terms of what kind of audience the geometer is try-
ing to convince. If we adopt the modernistic point of view, we can picture the audience 
of a mathematical proof as a veritable logic-parsing machine. The mathematician feeds 
in statements, in the form of symbolic strings in a suitable formal language, one by one, 
and the machine tests whether each statement follow from the one before it based on basic 
logical inference rules or previously established theorems. This point of view fits very 
uneasily with classical geometry for a range of reasons, including the use of diagram-based 
reasoning.

The operationalist point of view, on the other hand, envisions the audience of a math-
ematical proof differently. A Euclidean proof is addressed at a person with a ruler and 
compass. This person is every bit as critical as the logic machine of the modernists. He is 
hell-bent on trying to argue against us at every stage. But our strategy for convincing him 
to nevertheless concede the truth of our theorems is not by appeals to formal logical infer-
ences. Instead we make him draw things. We build our results up from simple operations 
with ruler and compasses. In this way we put our critic in a difficult position. He is forced 
to either agree with us, or to deny a very specific, concrete claim about a very specific, con-
crete figure that he himself has drawn. For instance, what is the person with the ruler and 
compass supposed to say regarding the intersection of the circles in Elements I.1? He just 
drew the two circles himself on a piece of paper. It would be ridiculous for him to claim 
that there is no justification for the assumption that they intersect. They clearly intersect 
right there in front of his eyes, and it was he himself who drew it using tools whose validity 
he had admitted.

Since operationalism gives absolute primacy to the concretely constructed diagram, the 
sceptic has no other foothold from which to reject the proof. The logic machine of the 
modernist paradigm would catch the gap in I.1 at once, and shoot down our proof. But 
operationalist mathematics is not susceptible to that kind of critique. Geometrical proofs 
are claims about what happens when you carry out concrete constructions. Constructed 
diagrams is all there is, so the only way to question a geometrical proof is to question what 
it says about a concretely constructed diagram. The sceptic cannot hide behind sophistical 
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logic and vague generalities, but is forced to either concede the validity of the proof or 
deny something so obvious that he will look ridiculous.

I propose that the diagrammatic inferences Euclid permits are precisely those that such 
a sceptic, who has drawn the diagram himself, could not reasonably doubt. This fits well 
with Manders’ observation that Euclid permits diagrammatic inferences only of properties 
of the diagram that are invariant under minor variations or imperfections in the drawing 
process (Manders, 2008a, 69, 2008b, 91–94). Thus, for example, in Elements I.1, the equal-
ity of the legs of the triangle can of course not be established merely by visual inspection 
of the diagram; rather, these equalities have to be derived from postulates and definitions, 
as do all exact properties of diagrams in Euclid’s geometry. Indeed, a sceptic could very 
well question whether such properties hold, despite having just constructed the diagram 
himself. The equality of the legs is not immediate from the diagram in and of itself, but 
only follows when we remind ourselves that we used the same radius for both circles and 
so on. You could draw the diagram without keeping such things in mind. You could not, 
however, draw the diagram without directly experiencing one circle cutting unequivocally 
right through the other one.

Operationalism relies on diagrammatic reasoning only in this restricted sense. It attrib-
utes foundational status to diagrams in certain respects, but of course it does not go so far 
as to say that the truth of propositions or veracity of solutions to problems can be verified 
merely by measurements in a diagram. Of course such things have to be established by 
rigorous demonstration, which is obviously the main preoccupation of Greek mathematical 
sources. What Plato says about inferring geometric truths from diagrams remains true also 
for operationalists: “If someone experienced in geometry were to come upon [diagrams] 
very carefully drawn and worked out … , he’d consider them to be very finely executed, but 
he’d think it ridiculous to examine them seriously in order to find the truth in them about 
the equal, the double, or any other ratio.” (Republic, VII, 529, Plato, 1997, 1146) Indeed, 
exact properties such as ratios cannot be inferred from diagrams, no matter how carefully 
drawn, just as Plato says. But the operationalist enterprise of avoiding false diagrams based 
on constructions does not rely on such epistemic overreach. Instead, its use of diagram-
matic reasoning is much more restrictive and limited to essentially qualitative or topologi-
cal (or “inexact” in Manders’s terminology) inferences from diagrams.

In sum, operationalism makes sense of Euclidean practice with regard to diagrammatic 
reasoning. It eliminates the need to attribute to Euclid a big logical blunder in his very 
first proof, or the need to denigrate the more visual aspects of Euclid’s reasoning as lowly 
intuition and an imperfect form of mathematics. Instead it articulates a philosophy of math-
ematics that incorporates this aspect of Euclidean mathematical practice into a coherent 
and purposeful whole.

3.1.3 � Generality

Basing geometrical reasoning on diagrams gives rise to the so-called generality prob-
lem. Geometrical theorems are about entire classes of objects—infinite sets of them. For 
instance, the angle sum of all triangles. Yet all geometrical proofs in the classical tradition 
are always illustrated with, and reason based on, one particular diagram. The generality 
problem, then, is the challenge of reconciling the idea that the diagrams of geometry are 
concrete, specific objects with the notion that can nevertheless ground universal truths.

A standard way to defend geometrical reasoning against this challenge is to say that geo-
metrical proofs concern only properties that hold generally and do not rely on incidental 
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properties that hold only for the particular diagram. This view was expressed already by 
Proclus [Proclus (1970, 162); see Mumma (2010, 257) for similar remarks among early 
modern authors]. Such a view is compatible with operationalism.

But operationalism also suggests an alternative way of dealing with the generality prob-
lem, namely by denying the premiss that there is such a thing as “all triangles” in the first 
place. Before you have put your pen on the paper, there is no geometry. There are no lines, 
no circles, no triangles. We do not make the metaphysical assumption, as the modernists 
do, that there is some preexisting universe of these things “out there” about which geom-
etry looks for universal truths. One consequence of this is that the “problem” of generality 
ceases to exist. The theorem is not: there is an infinitude of triangles and all of those have 
angle sum 180◦ . Instead it is: any triangle has angle sum 180◦ . Which really means: if you 
put your ruler down and draw a line segment, then another one, then another one, then 
the angles of that one triangle has angle sum 180 degrees.15 The theorem has no other 
meaning than that. And the proof is not a logical schema talking about an infinite class of 
objects. Rather, it is a set of instructions for the sceptic to carry out that will convince him, 
regardless of which triangle he started with, that the theorem is true for that triangle.16 It 
is precisely the strength of the insistence on constructions to reduce everything from the 
abstract to the concrete in this way. We only talk about what we can see and draw and put 
on the table right in front of us. To do otherwise would be to engage in empty metaphysics.

Greek geometry is remarkably consistent with such a reading. Indeed, as Netz has 
observed, Greek mathematical texts never explicitly claim generality beyond the concrete 
proof based on a particular diagram (Netz, 2003, 242).

Operationalism rejects certain deep-seated assumptions that are often taken for granted 
in modern mathematics. From a modern point of view, any reliance on diagrams in mathe-
matics is inherently problematic, since mathematics is in essence independent of diagrams. 
On this view, diagrams are merely a secondary representation of mathematics, and further-
more one contaminated by intuition and other limitations. How, then, can diagrammatically 
based reasoning be a legitimate way of doing mathematics? That is, how could we ever be 
sure that what is true of diagrams is true of the “actual” content of mathematics? Opera-
tionalism does not answer the question but rejects it. There is nothing more “actual” than 
the diagram.

Likewise, the generality problem is dissolved since operationalism rejects the Platon-
ist ontology of mathematics (Bridgman, 1955, 100) on which it is based. Nothing exists 
except what the geometer has constructed. “Wheresoever in logic the word all or every is 
used, this word, in order to make sense, tacitly involves the restriction: insofar as belong-
ing to a mathematical structure which is supposed to be constructed beforehand” (Brou-
wer, 1975, 76),

To be sure, many who are concerned about the generality problem will feel that opera-
tionalism “solves” the problem only by introducing further problems of equal or greater 
magnitude. For one thing, operationalism implies that “the very nature of meaning itself 
makes it impossible to get away from the human reference point” (Bridgman, 1955, 112), 
since nothing exists or has meaning in geometry except through human agency. But opera-
tionalism denies that this is a problem, as Platonists would have it.

15  This way of reading Euclidean propositions is similar to that of Panza (2011, 57–58).
16  This way of characterising the sense in which Euclidean demonstrations are general is somewhat akin to 
that of Panza (2012, 62) [who, however, fundamentally differs from us in that he still takes diagrams to be 
mere representations of abstract objects (Panza, 2012, 59)].
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Regarding the generality problem more specifically, a modern mind may feel that the 
operationalist solution merely shifts the problem one step over. Even the operationalist is 
committed to a form of generality, in the sense that the proof of, say, the angle sum theo-
rem must always work for any given triangle. Isn’t the operationalist mathematician still 
obligated to somehow justify that the proof has this form of generality, which is essentially 
the original generality problem in slightly different guise? It is of course true that the proof 
is intended to be general in this sense, but officially the operationalist mathematician does 
not need to be committed to having proved that it is. The operationalist mathematician can 
simply say: I assert that such-and-such a construction will always have such-and-such an 
outcome; if you want to prove me wrong, feel free to try to come up with a counterexample.

Of course, psychologically the mathematician presenting a proof must be convinced that 
it will always work, for if a counterexample would be forthcoming he would be exposed 
as a fool. But this can be left to the discretion of the mathematician’s intuition. Internally, 
operationalist mathematicians are of course concerned with this kind of generality. But 
externally, as a reply to sceptical and philosophical challenges to the epistemological status 
of mathematics, there is no need for them to saddle themselves with the burden of claiming 
that their proofs themselves have inherent characteristics that strictly ensure such general-
ity. Instead they can restrict themselves to presenting the proof as a challenge to any scep-
tic: apply these construction and inference steps to any one figure that fulfils the conditions 
stated, and you will find that you cannot credibly doubt the validity of any step, and hence 
you will become convinced that the proposition holds for that figure. It is possible, for the 
operationalist, to maintain that this is what a proof is.17

One may well feel that this restrictive view of what a proof is sells mathematics short 
and fails to account for the nature and status of mathematical knowledge. However that 
may be, the fact remains that operationalism makes it possible to take such a stance. The 
restrictive view of the nature of proofs fits naturally with the operationalist conception of 
mathematical content and meaning, while it is incompatible with a Platonist conception of 
the nature of a mathematical theorem. The restrictive view is a scorched-earth defensive 
position that can be useful when under philosophical attack. Saying that this is the only 
sense of mathematics one is willing to defend is a powerful way of cutting off lines of phil-
osophical attack without changing the practice of mathematics substantially. Operational-
ism makes taking such a stance possible, but it does not demand it. Operationalism does 
not preclude one from holding more expansive beliefs and defending them for instance 
along the lines indicated by Proclus.

3.1.4 � Diagram Cases

An issue for diagrammatic reasoning connected to the generality problem is that proofs in 
Euclid’s Elements are sometimes dependent on non-universal properties the diagram. For 
example, I.35 should obviously hold if AD and EF overlap, yet the wording of the proof is 
adapted to the case illustrated in the figure, where the line segments do not overlap. It is 
trivial to adapt the proof to the overlapping case. Other times the adaptation needed is less 
trivial. For instance, the proof of I.7 needs to be somewhat substantially adapted if point D 
falls within the triangle ABC. This issue of cases was addressed in tedious detail by later 

17  The conception of a proof as a refutation of a sceptic fits the Greek context well. Extracting concessions 
from a determined opponent in incremental steps is the main mode of philosophical discourse in many 
Socratic dialogues, which are in this respect representative of the broader philosophical culture.
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Greek commentators and was surely known to Euclid himself (Heath, 1956, I.19, I.246). 
Euclid evidently omits such details for purely practical reasons: including full proofs for 
each case would be too tedious. A reader who can follow the proofs that Euclid does give 
can also be expected to be able to supply the minor variations of these proofs needed to 
address the cases not directly covered by them.

For the philosophical interpretation of Euclid’s method, the issue of cases is neither 
here nor there. On any interpretation, whether standard or operationalist, dealing with 
the other cases is strictly speaking necessary. While this issue is somewhat problematises 
the account we gave above regarding generality, this is not a problem for operationalism 
specifically.

3.1.5 � Manuscript Diagrams

Operationalism implies that drawing accurate diagrams is important for some purposes.18 
However, diagrams in Greek mathematical treatises, as they have come down to us, are 
very often curiously oversimplified and crudely schematic. This could be regarded as at 
odds with the operationalist interpretation of Greek geometry.

I counter this objection by denying that the manuscript diagrams are representative of 
ancient geometrical practice. As Carman (2018) has argued, a degeneration of diagrams 
converging to such simplistic versions is the predictable outcome of repeated copying by 
generations of scribes largely ignorant of mathematical content, for the simple reason that 
an ignorant copyist can easily misinterpret a subtle diagram in a simplistic way while a 
converse transition toward a more subtle and exact diagram can only be introduced by 
someone with a solid understanding of the mathematical content.

For example, the figure for the Pythagorean Theorem (Elements I.47) is often drawn in 
manuscripts with the two legs of the triangle being equal, even though the theorem holds 
for any right-angle triangle. The diagram thereby gives the misleading impression that the 
theorem is less general than it really is. But it is indeed plausible that repeated copying 
converges to this kind of specificity, assuming copyists largely ignorant of mathematical 
content. A scribe might get a version of the figure where the legs look similar and mistak-
enly assume that exact equality was intended. He then copies it this way, and specificity 
is introduced, and thereafter passed on to subsequent copies. No one was likely to restore 
more generality in the diagram, because that would require revising the figures based on 
mathematical understanding, which was not the task of copying scribes.

Hence this aspect of the manuscript sources is likely an artefact of transmission that 
says nothing about ancient geometry. There are a number of indications that “ancient math-
ematicians were indeed interested in making drawings that were accurate” (Saito & Sidoli, 
2015, 158), and that “Greek geometers were interested in working with instruments so as 
to produce metrically accurate diagrams” (Sidoli & Saito, 2009, 606), unlike later copyists.

Furthermore, the extent to which the operationalist reading of ancient geometry 
demands exactness of diagrams should not be overstated. Several of the core tenets of oper-
ationalism do not depend on great exactness of diagrams in the first place (Sect.  4.6.5). 
Also, insofar as exactness of diagrams is important in geometry generally, that is not the 
same thing as the diagrams in written works needing to be exact. Indeed, the relation of 

18  Section  2.1.1. Manders (2008b, 97) reached the same conclusion on different but related grounds: 
“Because of its reliance on diagram-based attribution, traditional geometric reasoning is essentially bound 
up with physical skills of diagram production.”
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written works to geometrical practice was likely different in antiquity than today: writ-
ten ancient works should perhaps be regarded as a mere secondary and incomplete repre-
sentation of geometrical practice rather than as constitutive of geometrical practice itself. 
Moreover, the philosophical importance of basing geometry on constructions that can in 
principle yield accurate diagrams does not imply that every single diagram must be drawn 
according to such standards (just as, for example, a mathematician may use infinitesi-
mal methods casually and informally despite being officially committed to a more formal 
account of their foundations that could be invoked when needed but is not part of everyday 
practice).

For all these reasons, I do not consider the manuscript diagram tradition to pose a prob-
lem for operationalism.

3.1.6 � Physicality of Geometry

Operationalism implies that mathematics is in its very essence anchored in physical reality 
and instrumental practice. This notion was vehemently resisted in the Platonic tradition. 
Plato’s opinion was reportedly that mathematicians who “descended to the things of sense” 
were “corrupters and destroyers of the pure excellence of geometry” (Plutarch, 1917, 
471–473). Proclus’ view is typical of this tradition:

The unchangeable, stable, and incontrovertible character of the propositions [of 
mathematics] shows that it is superior to the kinds of things that move about in mat-
ter. ...And how can we get the exactness of our precise and irrefutable concepts from 
things that are not precise? … We must therefore posit the soul as the generatrix of 
mathematical forms and ideas. Proclus (1970, 3, 11)

However, in ancient sources, these kinds of claims come exclusively from philosophers. 
There is no evidence that mathematicians shared these sentiments. On the contrary, the 
combative way in which these claims are presented in the sources clearly show that they 
were far from a consensus opinion. The passage from Proclus above is his answer to the 
question: “Should we admit that [the objects of mathematics] are derived from sense 
objects ...as is commonly said ...?” Proclus (1970, 10; emphasis added) Likewise, Plato 
himself openly puts his view in diametrical contrast with that of the geometers:19

No one with even a little experience of geometry will dispute that this science is 
entirely the opposite of what is said about it in the accounts of its practitioners. … 
They give ridiculous accounts of it, … for they speak like practical men, and all their 
accounts refer to doing things. They talk of ‘squaring,’ ‘applying,’ ‘adding,’ and the 
like, whereas the entire subject is pursued for the sake of knowledge … [and] for the 
sake of knowing what always is, not what comes into being and passes away. (Plato, 
Republic, VII, 527, 1997, 1143)

Again, Plutarch reports on the same conflict and makes it crystal clear that Plato’s views 
on geometrical method was diametrically opposed to that of the leading mathematicians of 
his day: “Plato himself censured Eudoxus and Archytas and Menaechmus for endeavouring 
to solve the doubling of the cube by instruments and mechanical constructions” (Thomas, 

19  A more reconciliatory reading of this passage would be that Plato is not putting himself in opposition to 
the geometers but merely lamenting the necessity, due to human limitations, of speaking in practical lan-
guage to represent abstract ideas. Such a reading is advanced by Panza (2012, 67).
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1939, 389). So not only is there no evidence that any notable Greek mathematician was a 
Platonist, but the Platonic sources themselves clearly and openly admit that their view is 
an ideological extreme that was not widely shared, especially not among mathematicians.

Non-platonic sources often take a more balanced view of the relation between math-
ematics and physical matter. According to Aristotle, “obviously physical bodies contain 
surfaces and volumes, lines and points, and these are the subject-matter of mathematics” 
(Physics, 193b, Aristotle, 2001, 238). And mathematical authors do not seem to mind 
mingling physical notions into the foundations of geometry, as, for example, when Heron 
defines a straight line as a line “completely stretched between its endpoints” (Heron, 1912, 
17), or a circle as the line traced by the end of a segment which rotates around its other end 
(Heron, 1912, 27). Of course mathematics is in some sense abstracted or idealised. “When 
we think of mathematical objects we conceive them, though not in fact separate from mat-
ter, as though they were separate.” (Aristotle, On the Soul, 431b, Heath, 1949, 11) “Geom-
etry investigates physical lines but not qua physical.” (Aristotle, Physics, 194a, Aristotle, 
2001, 239) This kind of ambivalence is perfectly compatible with operationalism. The 
point of view expressed in these passages does not deny that geometry is ultimately physi-
cal, although it recognises the obvious fact that mathematics idealises away from irrelevant 
physical particulars.

Modern scholarship has tended to exaggerate the alleged division between geometry 
and physical reality, in my opinion. This is not surprising since such a view aligns with 
modern conceptions of mathematics. Typical of this mainstream view are interpretations 
such as the following.

Traditionally, geometry was taken to be an abstract inquiry into the properties of 
magnitudes that are not to be found in nature. Dimensionless points, breadthless 
lines, and depthless surfaces of Euclidean geometry were not traditionally taken to be 
the sort of thing one might encounter while walking down the street. Whether such 
items were characterized as Platonic objects inhabiting a separate realm of geometric 
forms, or as abstractions arising from experience, it was generally agreed that the 
objects of geometry and the space in which they are located could not be identified 
with material objects or the space of everyday experience. (Jesseph, 2015, 205)

This interpretation is based on philosophical sources. There is virtually no evidence that 
such a view was accepted among ancient mathematicians. For one thing, geometry was in 
antiquity extensively applied in optics, mechanics, geography, hydrostatics, etc., and all of 
this is obviously based on precisely the assumption that geometry can be identified with 
“the space of everyday experience” and “the sort of thing one might encounter while walk-
ing down the street.” This is clearly taken for granted without hesitation in all of these 
applied works. Aristotle calls optics, harmonics, and astronomy “branches of mathematics” 
(Physics, II, 194a8, Aristotle, 2001, 239). Pappus even reports the view that “the science of 
mechanics … includes geometry” (Collection, VIII.1, Cohen & Drabkin, 1966, 183–184).

Indeed, we may ask ourselves: Why would Greek geometers want to emphasise that 
geometry was divorced from physical reality? Doing so would obviously cause them a 
massive headache in terms of trying to explain how geometry could nevertheless be so 
successfully employed across numerous branches of applied mathematics in which these 
same mathematicians were themselves very often engaged. What would they have stood to 
gain from nevertheless taking such a view that could have outweighed this enormous cost? 
It is hard to see any reason intrinsic to mathematics itself. To anyone who is a Platonist for 
independent reasons, however, the motivation for taking such a stance is abundantly clear.
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Operationalism embraces the physicality of geometry. It therefore makes the applicabil-
ity of geometry seem perfectly natural. Admittedly, the operationalist restriction that geom-
etry can only speak of objects we ourselves have constructed may appear to be in conflict 
with some applications of geometry. Greek mathematicians applied geometrical theorems 
to, for example, astronomical triangles determined by heavenly bodies or the center of the 
earth. Clearly such triangles are not practically constructible. Does this mean that the appli-
cability of mathematics is just as mysterious in operationalism as in Platonism? No. Oper-
ationalism suggests that the geometry of such triangles is epistemologically less secure 
than the geometry of constructed triangles in our midsts. It involves a leap of faith, or the 
assumption that our experience with ruler and compass—or stretched strings, if you like—
generalises to astronomical distances. This assumption is indeed a crucial point that makes 
the geometry of astronomical triangles potentially very different from terrestrial ones: and 
it is indeed correct, according to our modern understanding of the nature of space, to make 
such a distinction. So operationalism is not incompatible with applying geometry in such 
cases, but rather prudently and accurately clarifies the fundamental assumptions involved 
when doing so.

3.1.7 � Platonic Definitions

Some of Euclid’s definitions and idealisations are often taken to prove that the objects of 
geometry cannot be physical. According to Euclid, “a point is that which has no part” and 
“a line is breadthless length,” whereas, the argument goes, in physical reality anything we 
consider a point really has some extension, however small, and any line, such as that drawn 
by a pen, has some breadth, however negligible. This point is made in various ancient 
sources. For example:

The mathematicians talk idly when they say that they will bisect a given straight line. 
For the straight line shown to us on the board has length and breadth, whereas the 
straight line conceived by them is ‘length without breadth’. And the line shown on 
the board will not be a line, and those who attempt to cut it are cutting not the real 
line but the unreal. (Sextus Empiricus, 1936, 139)

Perceptible lines [are not] such lines as the geometer speaks of ...for no perceptible 
thing is straight or round in the way in which he defines ‘straight’ and ‘round’; for a 
hoop touches a straight edge not at a point, but [in an entire segment or multitude of 
points] as Protagoras used to say it did, in his refutation of the geometers. (Aristotle, 
Metaphysics, 998a, Aristotle, 2001, 721)

However, there is no inconsistency between these definitions and a physicalist view of 
geometry. On the contrary, these kinds of idealisations are an essential part of any theory 
relating to physical reality. Thus Ptolemy treats the moon as a point when determining its 
position in its orbit, for instance (Toomer, 1998, 188–189). Obviously no one would infer 
that Ptolemy is therefore committed to some peculiar ontology in which the moon is a 
mathematical point with no extension. The convention of treating it as such is simply a 
common-sense idealisation that is the only sensible thing to do for many mathematical pur-
poses, regardless of what one’s estimation of the actual body of the moon may be. It is 
the same for instance in Archimedes’s work on levers, where the lever arm is a weightless 
mathematical line and the weights are applied at mathematical points. Since such idealisa-
tions are unequivocally used without further ado in applied mathematics, it makes no sense 
to take them to be inconsistent with a physicalist view of geometry. The argument that 
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Euclid’s definitions prove that his geometry is divorced from reality would, if valid, prove 
that the Greeks did not intend their astronomy or their statics to apply to the real world 
either, which is obviously absurd.

It is more plausible to read these definitions as specifications of idealisations made 
in geometry, rather than as ontological claims about the ultimate nature of geometrical 
objects. Heron clearly takes such a view, for example:

Already in ordinary language use we have the notion of a line as something which 
has only length, but not at the same time width and thickness. For we say: … a road 
of 50 stades, as we concern ourselves with the length only, but not at the same time 
its width. (Heron, 1912, 17)

Proclus makes the same point—also using the example of a road—and attributes this view 
to “the followers of Apollonius” (Proclus, 1970, 82).20 That is, Proclus puts this view right 
at the mainstream of Greek geometry at its peak. In these passages, the identification of 
geometry with everyday physical objects is evident, and the allegedly Platonic or ontologi-
cal aspects of the definitions is merely a common-sense matter of simplifying assumptions 
and directing attention only to the relevant aspects of the situation.

There is a further argument for why one must not make too much of the alleged ontolog-
ical import of Euclid’s definitions of point and line. Namely, that they are the most extrane-
ous part of the Elements. Almost every statement of the Elements is carefully formulated 
to correspond precisely to the justification of specific inferences in deductive proofs. Many 
definitions are of this type, such as the definition of a circle which is used already in I.1 
to infer that since two line segments are radii of the same circle, they must be equal. The 
definitions of point and line, however, are not of this type: they serve no direct role in the 
deductive structure of the theory. There are even grounds for suspecting that they are later 
additions that were not in the original text of Euclid at all (Russo, 1998, 2004, 320–326). 
Yet despite being arguably the most unreliable and inconsequential parts of the entire Ele-
ments, these are the very passages always cited as virtually the only textual evidence in 
mathematical sources of alleged anti-physicalist tendencies in Greek geometry.

3.2 � Interpreting Euclid

3.2.1 � Impracticality of Euclid’s Constructions

Operationalism makes actual, physical constructions with ruler and compass the founda-
tion of all geometry. However, it does so for theoretical reasons. Operationalism does not 
mean that the Greeks in fact obsessively constructed every diagram for their every proof 
according to the most exacting standards and elaborate ruler-and-compass procedures. 
They surely did not do this any more than Hilbert refused to use diagrams in any context 
despite his avowal to base nothing on them in formal geometry. The operationalist interpre-
tation says that the Greeks considered such constructions to be the rigorous foundation for 
geometry in principle, just like Hilbert and other modernists would insist that in principle 
a geometrical proof can be reduced to a formal argument independent of any diagram. Nei-
ther ideology requires absolute adherence to their foundational stringency in every context; 

20  The same idea, but with a wall in place of a road, is also mentioned by Sextus Empiricus, who attributes 
it to Aristotle (Bett and Empiricus, 2018, 168–169).
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indeed, they both obviously violate it all the time. The purpose of the official stance is to 
serve as the ultimate arbiter of mathematical rigour whenever foundational issues are at 
stake.

Hence observations such as the following do not stand in any conflict with the opera-
tionalist interpretation of geometry.

Euclid’s problem-constructions are not practical instructions for the use of a compass 
and straightedge—despite the fact that this is the most common way of explaining 
Euclid’s approach. ...Although the problem-constructions of Elements I–VI emulate 
the possible actions of a human geometer, they quickly become rather far removed 
from any series of actions that a human geometer would actually perform. ...As we 
progress farther into the problems, it becomes less and less tenable that Euclid would 
have believed a human geometer would actually follow all of the constructive steps 
in exactly the way that he sets them out. ...The algorithms detailed by the Elements 
are almost prohibitively laborious to carry out with real instruments. … Obviously 
simpler constructions are overlooked in favor of constructions that call on previously 
established problems. (Sidoli, 2018b, 432, 436, 428, 433)

This is a standard feature of any mathematical theory that derives complex results from 
simple principles. In the same way, modern analysis officially defines limits in terms of �–� 
arithmetic, but only the most basic results are established directly from this root definition. 
In most situations, the analyst does not specify concretely how to find the � needed for any 
given � , but rather relies on lemmas that have proved once and for all certain useful higher-
order results that follow from the definition. It it evident in such situations that the proof 
of the final theorem could be expanded into a proof from first principles by incorporating 
the proof of the lemma into it. It is also evident that this would not generally be the easiest 
way of proving the final theorem directly from first principles. The path via the lemma is 
useful not because it is a stepping stone in the most direct way of proving that one theorem, 
but because it reduces cognitive complexity of the theory overall. None of this undermines 
the foundational status of the �–� definition in any way. Similarly, the foundational status of 
constructions in Euclid is not affected by the above observations.

The following observations should be interpreted in an analogous manner, I propose.

A characteristic of Euclid’s practice in setting out problem-constructions is that a 
subroutine acts as a black box in the sense that the internal constructive operations 
that lead to its output are not directly recoverable. … In fact, there is no problem-
construction in Elements I–VI or the Data in which an object that would have been 
involved in a subroutine is not later introduced by its own problem-construction step, 
if it is required. ...
[For example,] it is difficult for us to imagine how a circle could have been con-
structively introduced without first introducing its center, but … Euclid’s practice in 
his problem-constructions is consistent in introducing objects whose production is 
described by a problem as fully formed, without any auxiliary constructions that may 
have been used in the original problem-construction. Hence, if in the course of a 
problem-construction a circle is introduced as passing through three given points …
—as, for example, in Elem. IV.4 or IV.5 …—then the circle’s center will not have 
been introduced at the same time. Now, of course, the problem-construction of such 
a circle will first involve finding its center, but since this operates as a subroutine, its 
center is not immediately available when the circle is called in. Hence, if its center is 
required, it must be introduced by its own introduction rule. ...
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This discussion makes it clear how remote Euclid’s procedures are from the actions 
of any human geometer—any person actually producing one of these diagrams would 
see that the objects produced in the subroutines are already there in the figure and do 
not need to be introduced again. (Sidoli, 2018b, 435, 411, 436)

In my view, this does not point to the non-actuality of Euclid’s constructions. Rather, it is 
merely a consequence of using intermediary lemmas to reduce cognitive complexity. It is 
precisely because it can be treated as a “black box” that the previous construction results 
are useful in reducing cognitive complexity. The human mind can only process so much 
information at any given time, which is why, to prove complex results, we must use earlier 
results as stepping-stones without calling all of their constructions and proofs actively to 
mind. This is an artefact of human cognitive abilities that has nothing to do with the foun-
dational status of constructions in geometry.

3.2.2 � The “Collapsible” Compass

Elements I.2 shows how to transfer a length to another position by ruler and compass. 
However, with an actual physical compass, one can do this much more straightforwardly, 
by simply opening the compass to the given length and then lifting it and putting it down 
with one leg at the given point where the length needs to be placed. Euclid acts as if this 
is not possible. As is often observed, Euclid behaves as if his compass is “collapsible”: it 
stays at a fixed opening while drawing a particular circle but as soon as it is lifted from the 
paper it “collapses,” so that the opening to which it was set is lost and cannot be transferred 
elsewhere.

Many have pointed to this as evidence that Euclid’s constructions do not correspond to 
actual ruler and compasses, since no actual compasses are collapsible (Sidoli, 2018b, 422, 
Acerbi, 2010b, 229). This conclusion clashes with the operationalist reading of geometry. 
And indeed I believe there are good grounds to reject it.

The Elements masterfully reveals the minimum assumptions necessary for geometry. 
The fact that one can do away with the assumption that a compass can transfer length is 
an interesting foundational insight. Since Euclid can prove this, he does. This does not 
imply that he is opposed to the idea of a non-collapsible compass. One could simply delete 
Proposition I.2 from the Elements and all the rest would still stand verbatim as a treatise 
about constructions with non-collapsible compasses. Hence Proposition I.2 can be viewed 
as an optional exercise in foundational minimalism within a paradigm fully based on physi-
cal compasses, rather than as evidence of conceptions fundamentally at odds with such a 
paradigm. An argument in favour of this interpretation of I.2 as optional is the fact that, in 
solid and spherical geometry, where no equivalent of I.2 is forthcoming, Greek mathemati-
cians seem to have been perfectly content to assume that lengths could be unproblemati-
cally transferred by the compass (Sects. 5.2.1 and 5.3).

Analogous situations are commonplace in modern mathematics. For example, open any 
textbook on abstract algebra and turn to the definition of a group. The definition of a group 
says that in any group there is an (“identity”) element e such that g ∗ e = e ∗ g = g for any 
element g in the group. As far as this definition is concerned, there could potentially be 
several such identity elements. However, all textbooks immediately proceed to show that 
the identity element is in fact unique. These textbook authors could have made life easier 
for themselves by simply making the uniqueness of the identity element part of the defini-
tion. Then there would have been no need to prove it a separate theorem. But it is better to 
keep definitions and axioms as simple and minimalistic as possible, for instance in order to 
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minimise the risk of inconsistency and because proving properties instead of gratuitously 
including them in the definition illuminates fundamental relationships. Note well, however, 
that one cannot infer from this that the uniqueness of the identity is somehow a secondary 
or less embraced aspect of the group concept. It is proven as a theorem rather than included 
in the definition solely because of the technical possibility of doing so, not because it was 
seen as less essential than the definitional group properties. This does not show that the 
fundamental conception of a group that mathematicians have in mind is ambivalent regard-
ing the uniqueness of the identity. On the contrary, it is arguably a core aspect of the intui-
tive notion of a group that has, prima facie, no less of a claim to being fundamental than 
the definitional properties. But if one tries to find the smallest set of key properties of a 
group to take as definitional, then one finds that uniqueness of the identity is a property 
that can most efficiently be made into a theorem.

In the same way, I claim, Proposition I.2 does not show that Euclid’s fundamental 
notion of the circle-drawing constructions and postulates were divorced from a physical 
compass. It does not prove this any more than a modern textbook proves that the unique-
ness of the identity is fundamentally divorced from the group concept. Just as a modern 
algebra textbook would have nothing a priori against including uniqueness of the identity 
in the definition of a group, so Euclid may very well have had nothing a priori against 
assuming a non-collapsible ruler. Just as the modern algebra textbooks nevertheless arrives 
at the conclusion that it is better to make the uniqueness of the identity into a theorem 
because that enables the minimisation of definitional properties overall, so Euclid may very 
well have decided to assume only a non-collapsible ruler purely for reasons of axiomatic 
minimalism. This is not in any way in conflict with operationalism.

3.2.3 � How Can You Know a Circle and Not Its Midpoint?

In Elements III.1, Euclid constructs the midpoint of a given circle. This may seem to sug-
gest that, according to Euclid, we can know that something is a circle without knowing 
its midpoint. Or in other words, we can evidently know that something is a circle with-
out having constructed it ourselves. This is in apparent conflict with operationalism, which 
holds that a circle simply means the figure produced by a compass, which cannot be done 
without knowing the midpoint. According to operationalism, the only circles we ever talk 
about in geometry are ones we have concretely constructed ourselves. It is anathema to 
operationalism to do geometry to objects introduced by fiat, such as a circle pre-drawn on a 
piece of paper without its midpoint indicated. Yet this seems to be basically what Euclid is 
doing in this proposition.

But there is no need to view this as a fundamental conflict. Even though operationalism 
implies that you must have drawn the circle yourself, and hence must have known the mid-
point already, nothing stops you from investigating whether you can reconstruct the mid-
point if you pretend for the sake of argument that you do not know it. In this way, Elements 
III.1 is interesting in its own right and can be useful for various purposes,21 but it does not 
have the foundational implication that circles can be known without their midpoint. Just 
as Elements I.2 does not imply that Euclid is opposed to moving lengths with a non-col-
lapsible compass (Sect. 3.2.2), so also Elements III.1 does not imply that Euclid thinks it 

21  E.g., for applied geometry, or when using problems in the “black box” sense discussed in Sect. 3.2.1 (as 
Sidoli, 2018b, 411 notes, III.1 is obviously needed in that regard).
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makes sense to speak of circles given in some way other than by a compass. Just as Euclid 
proves I.2 because he can, he proves III.1 because he can—not because he thinks they are 
epistemologically essential. From an operationalist point of view, these constructions can 
be viewed as optional. They could be deleted from the Elements and the whole work would 
still make coherent epistemological sense, because moving lengths could be considered a 
primitive capacity of the compass, and the midpoint of a circle can be considered known 
by virtue of the circle having been constructed by a compass in the first place. The fact that 
Euclid shows that it is possible to work around these assumptions does not imply that he 
rejects them.

In other words, an author concerned with nothing but operationalist foundations should 
not have included III.1 in the Elements, but an author fully committed to operationalist 
foundations could still very well choose to include this theorem because he found it inter-
esting from some other point of view. Operationalism doesn’t tell you what theorems to 
prove. Interest in particular geometrical investigations should come from elsewhere. Oper-
ationalism says only that wherever such motivations may take you, you should carefully 
ensure that the investigations you pursue are consistent with operationalist foundational 
principles. As indeed III.1 is.

3.2.4 � The Parallel Postulate as Construction

While Euclid’s Postulates 1–3 have often been identified with ruler and compass con-
structions, such an interpretation is often resisted for the parallel postulate. However, even 
Euclid’s Postulate 5, the parallel postulate (Fig. 2), “is clearly constructive in the sense in 
which is it articulated. It acts as an introduction rule for a point as the intersection of two 
given lines” (Sidoli, 2018b, 423). In other words, the parallel postulate “can be viewed as 
a construction method for producing certain triangles. In view of ...remarks of Geminus 
and Proclus, it seems likely that Euclid viewed his postulate in this way, or he would have 
called it an axiom.” (Beeson, 2016, 8–9)

In this way the parallel postulate is directly analogous to the ruler-and-compass postu-
lates, which likewise licenses the introduction of geometrical objects by postulating that 
a certain construction can be carried out. Just as it is possible to draw a straight line from 
a given point to a given point (Postulate 1), so it is possible to extend converging straight 
lines until they meet (Postulate 5). It is remarkable indeed that among the many possible 
equivalents of the parallel postulate—several of which have often been considered prefer-
able by later authors—Euclid uses what is perhaps the most directly constructive formula-
tion possible. This fits very well with the operationalist reading of the Elements.

It is notable also that Euclid formulates the parallel postulate (as his geometry gener-
ally) in terms of finite line segments rather than lines in the modern sense. In a modern 
setting, one takes the full lines as preexisting and assumes that it makes sense to speak of 
them either intersecting or not. But that is not operationally sound. Operationally, we can 
only speak of what we have constructed, which restricts us to finite configurations. This 
agrees with Euclid’s formulation of the parallel postulate, which says that the lines will 
cross “if produced.” That is to say, the crossing of the lines is not a preexisting relationship 
with a predetermined truth-value in some Platonic realm that assumes omniscient access 
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to infinite lines.22 On the contrary, saying that the lines intersect only becomes meaningful 
after we ourselves have extended them so as to concretely produce this intersection.

3.2.5 � Non‑verifiability in the Theory of Parallels

It is often felt that the theory of parallels “involves infinity” in some way that the ruler-and-
compass postulates and constructions do not. But there is no such distinction as far as the 
parallel postulate is concerned. It is true that the parallel postulate says that under certain 
conditions two lines will meet if they are extended far enough, so to speak. But how far is 
far enough? No bound is given. A geometer who has extended the lines for miles and still 
not found an intersection might come to doubt the postulate. But this is not qualitatively 
different from the other postulates. A geometer trying to draw an enormous circle by fixing 
one end of stretched string and moving the other end may likewise feel pessimistic that the 
curve will ever close back up on itself as the postulate and definition demand. So the paral-
lel postulate is not any less constructive than the earlier postulates in this regard.

Non-Euclidean geometry suggests another sense in which the parallel postulate is spe-
cial. In hyperbolic geometry, Euclid’s postulates effectively hold in small neighbourhoods, 
whereas on a larger scale the parallel postulate fails while the other postulates remain true. 
This may seem to suggest that the parallel postulate is a more “global” assumption than 
the other postulates, and hence an assumption that extrapolates recklessly beyond experi-
ence in a way the other postulates do not. But I do not think it is possible to make such a 
qualitative distinction. The earlier postulates already make far-reaching idealisations and 
assumptions about the space of geometry that by necessity go beyond past experience no 
less than the parallel postulate does. For one thing, if the universe is finite—as was the 
standard cosmological conception in antiquity—the ruler-and-compass postulates fail as 
well. Obviously the identification of geometry with physical experience—which is cen-
tral to operationalism—is contingent on the assumption that the postulates correspond to 
physical reality. This assumption is subject to verification in any given case. The parallel 
postulate is not different from the other postulates in this regard.

Another way of trying to get at the “infinity” aspect of the theory of parallels is in terms 
of decidability.

The notion of constructivity can be applied to relations as well as operations. The 
simplest account of a constructive relation is as one which is decidable, i.e., as one 
for which there is a uniform way of deciding whether or not it holds of a given object 
or objects. ...[Euclid] makes no attempt to show that one can decide whether or not 
two straight lines are parallel before he treats parallels. ...He introduces the relation 
with a nonconstructive sense (never meeting, even if extended ad infinitum). The 
sensible conclusion seems to be that, whatever tendency Euclid has toward using 
constructibility as a proof of meaningfulness for operations, he has none toward 
using decidability as a proof of meaningfulness for relations. (Mueller, 1981, 40–41)

This critique is indeed very much applicable to the operationalist interpretation of geom-
etry, which holds that concepts have meaning only in terms of concrete operations. How 
can Euclid, by that standard, prove results about parallels, if the concept of parallelism is 

22  Which can be construed as comparable to the assumption that the Russel set R (Sect. 2.2.3) exists and 
that R ∈ R must be either true or false.



621Operationalism: An Interpretation of the Philosophy of Ancient…

1 3

not reducible to concrete, finitistic operations? Just as we argued above that operationalist 
geometry does not have the “omniscience” to speak of such things as all right triangles 
or all lines through a given point, so also an operationalist geometer does not have the 
omniscience to survey the full extent of two given lines (extended arbitrarily far) to know 
whether they intersect or not.

But again one can question whether the situation regarding parallels is really qualita-
tively different from that regarding for example circles. Consider Euclid’s definition of a 
circle:

A circle is a plane figure contained by a single line [which is called a circumference], 
(such that) all of the straight lines radiating towards [the circumference] from one 
point amongst those lying inside the figure are equal to one another (Elements, Defi-
nition I.15)

Is it “decidable” whether a given figure is a circle or not? Arguably, no. You could never 
check all the straight lines for equality. And if you per chance found two such straight 
lines that were not equal, this would not show that the figure was not a circle, but only that 
the point of origin of those two lines is not the “one point” (the midpoint) that the defini-
tion speaks of. To conclusively show that something is not a circle, you would have to go 
through all points in the interior of the figure and, for each one of them, find two unequal 
segments from there to the circumference. This is arguably as impossible as verifying that 
two straight lines never meet. Hence I question whether there is any special decidability or 
meaningfulness problem with respect to parallel lines that does not apply equally to other 
geometrical concepts such as that of a circle.

The ability to decide whether or not a figure is a circle is not needed in the Elements. All 
Euclid needs to know is that the figures he constructs with his compass are in fact circles, 
which arguably follows directly by construction. By contrast, Euclid needs the concept of 
parallelism to be meaningfully applicable to geometrical objects that are not specifically 
constructed in a way that guarantee that they have this property. Thus, if someone chal-
lenged Euclid during the proof of Proposition I.1 to explain what he means by something 
being a circle, he does not need to rely on the definition of a circle being directly construc-
tively meaningful in itself. Instead, it is enough that the particular circles involved in the 
proof are constructively knowable to be circles, which follows not from the definition per 
se but rather from their generation by a compass or rotating line segment.

Now imagine that someone challenges Euclid during the proof of I.27 to explain what 
he means by two lines being parallel. Just as in the circle case, he does not need to rely 
on his definition on this concept to be inherently constructively meaningful. Rather, it is 
enough that he can constructively show that this definition applies to the particular lines 
involved in the proof. This time this is known from an argument by contradiction rather 
than directly by construction, but why should this make a difference as far as meaningful-
ness is concerned?

Altogether, it therefore seems to me that decidability issues, while they do point to limi-
tations of strict verificationism generally, do not provide grounds to conclude that Euclid 
was unconcerned with verificationist thinking on the basis of his theory of parallels par-
ticularly. It is true that the definition of parallel lines is not immediately translatable into 
finite operationalist terms. But neither is the definition of a circle. Nor does Euclid need 
his definitions to be operational in the abstract and in isolation. Rather, he only needs it to 
be operationally knowable that they apply to the particular objects that occur in his proofs. 
This indeed fits with the operationalist view that there is no geometry except the geometry 
of concretely constructed figures. Definitions in the abstract are indeed meaningless. It is 
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not a problem for operationalism that some definitions do not have a direct operational 
meaning in general; rather, it is a necessary consequence of operationalism that definitions 
by themselves cannot have any meaning and that there is nothing general. The content of 
geometry is particular constructed figures. Terms can only have meaning as instantiated in 
such figures.

3.2.6 � Linguistic Arguments

The language of Greek mathematics “makes the author and temporality disappear from a 
proof” (Acerbi et al., 2018, 270). At first sight, this may be perceived as suggesting a Pla-
tonic conception of the transcendent and eternal character of mathematics. Indeed, some 
have seized on the passive, impersonal formulations in construction proofs (e.g., “let the 
circle ABC have been described”) as evidence that the constructions are merely imagined 
to have taken place rather than being something the geometer is actively engaged in (e.g. 
Lachterman, 1989, 67). Furthermore, the Greek verb form (third person imperative) of 
Euclid’s constructions is the same as the Biblical “let there be light,” suggesting that geo-
metrical entities are commanded into existence at will rather than manually produced by 
a geometer-craftsman. However, this inference has been compellingly countered by Netz, 
who argues that this grammatical construction is merely a reflection of a tradition in which, 
due to technical limitations of the visual media available, presentations of proofs would 
take place after the diagram had been drawn.

Of the media available to the Greeks … none had ease of writing and rewriting. 
...[Standard media were papyri and wax tablets, and, for larger audiences, such as 
Aristotle’s lectures,] the only practical option was wood … painted white. ...None 
of these [ways of representing figures] is essentially different from a diagram as it 
appears in a book. … The limitations of the media available suggest … the prepara-
tion of the diagram prior to the communicative act—a consequence of the inability 
to erase. ...This, in fact, is the simple explanation for the use of perfect imperatives in 
the references to the setting out—‘let the point A have been taken’. It reflects nothing 
more than the fact that, by the time one comes to discuss the diagram, it has already 
been drawn. (Netz, 2003, 14, 16, 25)

If this interpretation is correct, Euclid’s grammatical choice reflects only incidental cultural 
circumstances and says nothing about philosophical commitments.

Other linguistic aspects of Greek mathematical terminology line up well with the opera-
tionalist conception of concrete constructions as the foundations of geometry. The asso-
ciation between construction and proof in the minds of Greek geometers is so close that 
one word, , is used for both concepts (Lloyd, 1979, 106). Similarly, a theorem is a 

—a figure (Netz, 2003, 35–36; Hintikka & Remes, 1974, 73). It has even been 
argued that, etymologically speaking, to prove, , originally meant to “show” or 
“point out” in a visual sense (Szabó, 1978, 188). It has also been argued that Euclid’s use 
of  rather than  as his term for a “point” may suggest a deliberate association 
with a physical and visual mark as opposed to the abstract notion of point expounded in 
philosophical literature (Russo, 1998, 208, 2004, 181).
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3.2.7 � Constructions are Not Merely Existence Proofs

The idea of constructions as existence proofs has for many been a convenient way to 
shoehorn the constructive aspect of Greek geometry into modern conceptual categories 
(Zeuthen, 1896). Existence is no doubt part of the story, as I have argued and as Proclus 
indicates (see esp. Sect. 2.1.2; Proclus, 1970, 157, 183). But in truth it is very difficult to 
imagine how qualms about the possible nonexistence of basic geometric entities could pos-
sibly be so great as to motivate the extremely thorough attention to constructions through-
out Greek geometry. Are we really to believe that the Greeks seriously doubted the exist-
ence of such a thing as the third of an angle, and that this was the reason why they spent 
hundreds of years constructing it over and over again by a variety of methods? Surely this 
makes no sense. Clearly there was something more than existence at stake here, as the 
Greeks saw it.

Another way of proving this is by examples such as Elements III.1, in which Euclid 
shows how to construct the midpoint of a given circle. It is impossible to doubt the exist-
ence of the midpoint of a circle, because a circle is defined in terms of its midpoint (Defini-
tion I.15). So knowing that something is a circle means knowing that its midpoint exists, 
yet constructing it is apparently still of interest. There are various examples of this type in 
the Elements (Sidoli, 2018b, 410).

3.2.8 � Does “Given” Imply Constructible?

“Given” is a technical term in Greek geometry. It is used in problem enunciations, such 
as: “In a given pentagon, which is equilateral and equiangular, to inscribe a circle” (Ele-
ments, IV.13). From an operationalist point of view, it is essential that any object assumed 
as given in the enunciation of a problem is constructible, and also that any theorem only 
speaks of constructible objects. Hence operationalism suggests that we think of “given” 
as meaning constructively available to us. Thus construction problems are in effect about 
enlarging the universe of givens.

This interpretation has strong textual support. Indeed, the theorems of the Elements only 
speak of objects that have first been shown to be in this universe of constructibles, which 
suggests that Euclid meant his theorems to apply only to “given” (that is to say, construc-
tively produceable) objects. Table 1 gives one illustration of this unfailing consistency.23

Furthermore, the very first definition of Euclid’s Data—the authoritative work on 
givens—reads: “Given in magnitude is said of figures and lines and angles for which we 
can provide equals.” This is an operationalist definition if there ever was one. Givenness 
amounts to constructibility. Givenness has to do with what we can do. Indeed, “the use of 
the first person plural [in this definition] is somewhat unusual in Greek mathematical prose 
and should be taken as deliberate. That is, the issue involved in the notion of given is not 
primarily about the existence of the object, but rather about what we, as mathematicians, 
are able to do” (Sidoli, 2018a, 367). Similarly, when Pappus defines “what mathematicians 
call given,” he characterises it as things that are “obtainable” (Jones, 1986, 84) or “can be 
provided” (Acerbi, 2011, 129).

So the operationalist conception of the notion of “given” fits very well with Euclidean 
practice in both word and deed. Nevertheless, some resist the identification of givenness 

23  Based on text searches in Fitzpatrick (2008).
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with constructibility: “Every constructed object is given, but not every given object is con-
structed … because we ...apply the term given to objects that we assume and set out, as 
well as to objects that we construct” (Sidoli, 2018a, 368). A philosophical consequence 
of this is that “since the notion of given also applies to objects that are simply assumed at 
the beginning of the discourse, Euclid seems to be unconcerned with the ultimate origin 
of such objects ” (Sidoli, 2018b, 411). This interpretation conflicts with the operationalist 
point of view, according to which the ultimate origin of geometrical objects is a matter of 
paramount importance to Euclid and other Greek mathematicians.

I believe we should reject this notion of a dichotomy between given as in specified in 
the problem enunciation and given as in constructed. Essentially, the objects assumed as 
given in the enunciations of problems are previously constructed. Within the framework 
of the Elements, Euclid never assumes a regular heptagon, for example, as “given,” even 
though as far as the above interpretation is concerned that would be perfectly permissible. 
Similarly, he does not assume a square as given before he has constructed squares in I.46. 
From the operationalist point of view, it is evident why. It is of the utmost importance to 
restrict mathematics to objects that are proven constructible. It is also evident that, what-
ever “given” means, “any object that can be constructed from given objects is fully given” 
(Sidoli, 2018a, 375)—indeed the whole point of problems is to show that certain objects 
are given in this sense. If the only givens permitted are previously constructed objects, 
this fits together into a coherent program for keeping track of the established scope of 
constructibility.

If, on the other hand, the givens of a problem can be anything and do not need to answer 
to any constructive standard, then their role and purpose become much more puzzling. 
The very rigid restriction to a constructive standard in the solution to problems is evident: 
“all of the objects introduced in the constructions of problems can be unproblematically 
produced by applications of the postulates and previously established problems” (Sidoli, 
2018b, 407). Why would the Greeks insist on this if the starting points are arbitrary any-
way? Why insist that the one and only way to prove that givenness transfers from one 
object to another is by strict construction, if the initial givenness was not itself construc-
tive? It makes a lot more sense to see problems as the investigation of the propagation of 
givenness, meaning constructibility, from primitively constructible objects to more com-
plex ones.24

I therefore resist the interpretation that “given means little more than assumed or pro-
duced by the permitted operations” (Sidoli, 2018a, 359, emphasis added), and that “there 
does not appear to have been any restriction on the objects that can be assigned in setting 
out a problem [i.e., assumed]” (Sidoli, 2018a, 398–399). Instead I claim that, effectively, 
given means only produced by the permitted operations, not assumed, and that constructi-
bility is a fundamental restriction on what is allowed to be assumed in setting out a prob-
lem. Or perhaps better put: I do not need to claim that this is the meaning of “given” per se, 
but only that the purpose of having the concept of given in Greek mathematics is to use it 
to this end. Rephrased in this way, my view is not in conflict with the more literalist inter-
pretation cited above. It is even possible to reconcile my interpretation with the theoretical 
possibility of a problem whose enunciation assumes as given a non-constructible object. 
The solution to such a problem would have a hypothetical status, just as a theorem of the 
form “if the Riemann Hypothesis is true, then ...” does in modern mathematics: it could be 

24  My view on this is similar to that of Panza (2011, §2.1).
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illuminating for certain purposes, but it would be self-evidently different in status from any 
normal problem solution and would in a strict sense not add to the body of mathematical 
knowledge.

If indeed the objects given in the enunciations of theorems and problems were not 
required to be constructed beforehand, this leaves open the possibility that they are self-
contradictory, such as a superright triangle. This calls all of mathematics into question. In 
particular, any proof by contradiction would become vacuous sophistry, since the contra-
diction obtained could then very well not derive from the counterfactual assumption made 
for the sake of argument, but from the impossible objects assumed to be “given” at the 
outset.

Altogether, the hypothesis that only constructed or constructible objects are permissible 
as givens is well justified and makes coherent sense of the Greek corpus. The hypothesis 
that there is no such requirement—and that hence that the enunciations of theorems and 
problems are a free-zone of anarchy where anything goes—can perhaps not be directly dis-
proven from the sources, but would be peculiar and unmotivated.

3.3 � Proofs by Contradiction

Proofs by contradiction are often used in Greek geometry.25 This may seem incompatible 
with operationalism. Proofs by contradiction involves reasoning about figures that are not 
only not constructed but even altogether impossible, whereas operationalism tells us that 
mathematics is solely about what we ourselves have constructed.26 If it is perfectly fine to 

Table 1   Only constructible 
regular polygons are mentioned 
in the Elements 

Regular polygon Constructible Elements 
word count

3-gon Yes 13
4-gon Yes > 100
5-gon Yes 90
6-gon Yes 36
7-gon No 0
8-gon Yes 4
9-gon No 0
10-gon Yes 22
11-gon No 0
12-gon Yes 0
13-gon No 0
14-gon No 0
15-gon Yes 4
≥ 16-gon 0

25  E.g., Elements I: 4, 6, 7, 8, 14, 26, 27, 29.
26  The dichotomy between constructions and proofs by contradiction is emphasised by e.g. Sidoli (2018b, 
407–415). For an interpretation of diagrams in proofs by contradiction that instead deemphasises their 
exceptional status, see the argument in Manders (2008b, 111) that “there is … no special reason to doubt the 
cogency of diagram-based reasoning in reductio proof.”
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do mathematics to fictional, non-constructed objects in proofs by contradiction, why should 
it not be fine to do so in mathematics as a whole, contrary to the decrees of operationalism?

I say that there is no such incongruity. The use of non-constructed entities in proofs by 
contradiction do not show that mathematicians have carte blanc to disregard core princi-
ples of operationalism if they feel like it. On the contrary, the form of argument used by 
Euclid in these cases is very well tailored to be compatible with operationalism. For what 
these proofs show is that a diagram with particular properties could not be the outcome 
of a construction. This is shown by proving that, if it were the outcome of a construction, 
then constructive practice leads to inconsistent results, which is assumed impossible. In 
other words: “The widely held belief that ‘proofs by contradiction’ are ‘not constructive’ is 
mistaken. One can constructively prove that a certain construction is impossible by proving 
that if it were possible, then another construction that is clearly impossible would also be 
possible” (Edwards, 2005, 186).

This is why Euclid, after having made the counterfactual assumption, always proceeds 
according to his usual standards of construction for the rest of the proof, when drawing 
consequences from the counterfactual assumption. Therefore, when a contradiction is 
reached, this proves that either the hypothesised figure is impossible, or, if it is possible to 
construct it, that constructive practice leads to self-contradictions. So Euclidean proofs by 
contradiction are not about things outside the scope of operationalism; rather, their point is 
precisely to investigate whether the counterfactual assumption is consistent with operation-
alist practice.

In a proof by contradiction, it is important to admit only one counterfactual assumption 
and for the rest to be very strict, in order to be sure that the counterfactual assumption, and 
that alone, was the source of any contradiction obtained. Aristotle points this out (Prior 
Analytics, 65b). He uses the following example. In order to show that the diagonal of a 
square is incommensurable with its side, one must derive the contradiction strictly from the 
negation of this statement. One must not smuggle in unrelated issues and derive the contra-
diction from them, such as replicating within an ostensible proof of the incommensurabil-
ity of the diagonal the arguments Zeno used to derive a contradiction in his paradox against 
motion. For the same reason, it is crucial for Euclid to make only isolated and controlled 
counterfactual assumptions, and for the rest stick to the same strict principles of proof and 
construction as elsewhere.

A proof by contradiction is only convincing if one’s entire system of reasoning is con-
sistent. Otherwise the source of the contradiction could have been something other than the 
counterfactual assumption one is trying to refute. If geometry is inconsistent, all geometri-
cal theorems—not only those proved by contradiction—would become worthless, since a 
theorem only has meaning if it says that something is thus and not otherwise, which can no 
longer be maintained if the system is inconsistent. History shows that inconsistencies can 
very easily creep into formal axiomatic systems, against the best efforts of even top math-
ematicians devoted specifically to building rigorous foundations. “Great logicians (Frege, 
Curry, Church, Quine, Rosser) have managed to propose quite serious systems of logic 
which later turned out to be inconsistent” (MacKenzie, 2004, 93). In the case of Euclidean 
geometry specifically, one high-profile attempt at formalising it proved to be inconsistent 
(Miller, 2012).

Hence Greek geometry can credibly be challenged on such grounds: How do we know 
that Euclidean geometry is consistent at all? Operationalism avoids or minimises this chal-
lenge by reducing as far as possible any contradiction among principles and assumptions to 
a contradiction in physical experience itself. A Euclidean proof by contradiction does not 
merely show that one statement in an axiomatic-deductive theory contradicts another. Of 
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course Euclid does indeed derive his contradictions from statements within his theory—
that is to say, ultimately from the postulates. But since the postulates are construction 
postulates, the force of a proof by contradiction can be expressed purely in terms of con-
structions, without relying on the assumption that the postulates constitute a consistent axi-
omatic system. Instead, a Euclidean proof by contradiction translates into a concrete recipe 
for how, if the counterfactual figure assumed for the sake of demonstration could really 
be constructed by ruler and compass, concrete physical experience produces inconsistent 
results. So we do not need to place inordinate trust in mathematicians as to whether they 
formulated a consistent axiom system in the first place. Instead we only need to trust that 
actual physical experience is not self-contradictory (that is to say, in physical experience, 
a particular object cannot be both larger than and also smaller than another object, a stick 
cannot be both one meters long and two meters long, and so on).

It is also interesting to note that even according to modern notions of constructive math-
ematics, the geometry of “Euclid[’s Elements] is essentially constructive as it stands” (Bee-
son, 2016, 12). My operationalist interpretation is not equivalent to this modern construc-
tivist one. Nevertheless, this modern analysis supports my point that Euclid’s use of proof 
by contradiction is limited and certainly more restrictive than the classical logic inference 
rule ¬¬P → P for any proposition P.

Altogether, I have tried to turn an apparent weakness into a strength. Proofs by con-
tradiction are not a problem for operationalism because the counterfactual assumption 
involves non-constructed entities. Rather, proofs by contradiction are a problem for formal-
istic conceptions of geometry because of the challenge to establish the consistency of all 
geometry but the counterfactual assumption. Operationalism meets this challenge. Formal-
ism does not, by itself.

3.4 � Superposition

3.4.1 � The Problem with Superposition

In the Elements, Euclid appeals to superposition to establish two triangle congruence theo-
rems (I.4, I.8). His proofs are based on placing one triangle on top of the other, seem-
ingly treating them as moveable physical objects. This is often regarded as one of the major 
flaws of the Elements. Euclid’s use of superposition is seen as a naive appeal to empirical 
or intuitive considerations that should have no place in a formal treatment of geometry 
(Heath, 1956, I.249; Mueller, 1981, 21; Klein, 2004, 200; Russell, 1902, 165). It is fur-
thermore often said that Euclid himself realised as much, and therefore avoided the use of 
superposition whenever he could, and only used it with regret in a few instances because he 
could think of no alternative (Heath, 1956, I.249, I.225; Knorr, 1978, 161; Mancosu, 1996, 
29).

Yet there are obvious problems with this reading. How could such a sophisticated geom-
eter make such an elementary blunder? And in an early key theorem that is hugely impor-
tant to his entire edifice, no less. And if Euclid disapproved of his own use of superposition 
to prove the triangle congruence theorems, then why did he not opt for the obvious alter-
native, namely to take these theorems as axioms? This is generally regarded as the “right 
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answer” to the problem from the point of view of modern mathematics (Heath, 1956, 
I.249). Euclid could surely not have failed to see this possibility.27

Another puzzling aspect of Euclid’s use of superposition is the baffling contrast between 
the obsessive focus on precise ruler-and-compass constructions in I.1–3 and the sudden use 
of the apparently very different and incompatible principle of superposition in I.4. One way 
to address this has been to regard superposition as theoretical or hypothetical in character.28 
This view is based on emphasising the distinction between problems and theorems. The 
two play by different rules: problems are strictly constructive, while theorems are more 
theoretical, whence merely supposing a triangle to have been moved is permissible in 
proofs of theorems (such as I.4) but not in solutions of problems (such as I.1–3). But then 
why did Euclid go to such lengths to show how to move a line segment in I.2? If theorems 
do not depend on such constructive procedures, then why does Euclid so consistently insert 
them in just the right places throughout the Elements?

3.4.2 � Euclid’s Use of Superposition

Euclid first uses superposition to prove the side–angle–side triangle congruence theo-
rem (I.4; Fig. 3). I propose that, in the strict operationalist framework adopted by Euclid, 
we must read this theorem as follows. It is “given” that two triangles have the same 
side–angle–side. Whenever something is “given” in a Euclidean proposition, we must 
understand this to mean “has been produced by a construction recipe such that the resulting 
objects are known to satisfy the stated conditions.” The meaning of the theorem is there-
fore: if you have constructed two triangles, ABC and DEF, in such a way that the construc-
tion recipe implies that DE = AB , DF = AC , and ∠BAC = ∠EDF , then those two triangles 
are congruent—that is to say, all remaining sides and angles are pairwise equal as well.

This operationalist reading of the theorem enables us to give a different interpretation of 
the proof as well: superposition does not involve lifting one triangle, like a cardboard cut-
out, and putting it on top of the other. Rather, it means constructing a copy of one triangle 
in the same place and orientation as another. This is done in order to be able to conclude 
that the third side EF coincides with BC using the fact that two points uniquely determine 
a line. The theorem therefore proves that if we want to make a copy of a given triangle 
ABC, we do not necessarily need to follow the same steps we did when constructing ABC. 
Instead, it is enough to know that our DEF construction is equivalent to our ABC construc-
tion in terms of the side–angle–side.

Superposition, therefore, really means “reconstruction in a different place.” This inter-
pretation is not at all far-fetched. After all, I.2 reads: “to place at a given point a straight line 
equal to a given straight line,” and it transpires from the proof that this obviously means: 
to construct at the given point a copy of the given straight line. Everything in Euclid must 
be understood to be shorthand code for a ruler-and-compass construction, including the 
notion of “placing” a figure at a given location. Since this is undeniable in the case of I.2, it 
is natural also in the case of I.4.29

27  Nor does it appear that he was overly stingy in trying to keep axioms to a minimum, judging by the fact 
that various later commentators argued that his fourth and fifth postulates were avoidable.
28  Historically, this was the view of e.g. Clavius (see Axworthy, 2018). A modern articulation and defence 
of such a view is given in Sidoli (2018b, 444–448).
29  For this reason, Heath’s claim that “the phraseology … Euclid employs [in I.4] … leaves no room for 
doubt that he regarded one figure as actually moved and placed upon the other” (Heath, 1956, I.225) should 
be rejected. Heath’s interpretation is criticised on linguistic and other grounds in Sidoli (2018b, 446).
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Euclid’s subsequent uses of superposition are readily interpreted in an analogous man-
ner to my reading of I.4. Euclid uses superposition again in I.8, the side–side–side triangle 
congruence theorem. As I read it, the theorem says that if you have constructed a triangle 
is such a way that you know that the lengths of its sides correspond to the lengths of the 
sides of another triangle, then you may infer that the triangles are congruent. Euclid uses 
superposition for a third and final time in III.24, a theorem stating that similar segments of 
circles on equal line segments are congruent. Similar segments of circles means segments 
subtending the same central angle (Definition III.11), so similar segments are closely asso-
ciated with the side–angle–side (in this context, radius-central angle-radius) triangles of 
I.4. Superpositioning circle segments is therefore in effect equivalent to superpositioning 
side–angle–side triangles. Because of this close correspondence it is not surprising that 
superposition is used here in an analogous way to I.4. It hence poses no new interpretative 
issues.

My interpretation of superposition is in large part not new. To a significant extent it 
agrees with the mature view of Zeuthen. In a widely cited paper, Zeuthen (1896) argued 
that Euclidean constructions should be considered existence proofs, which, as discussed 
above, I see as an overly restricted and modernistic view of the role of constructions in 
Greek geometry. However, decades later, in one of his last works, available only in Danish, 
Zeuthen developed a more sensitive appreciation of the role of constructions as it relates to 
superposition (Zeuthen, 1917, Chapter VIII, pp. 66–86, entitled “Figurflytning hos Euklid” 
[“Movement of figures in Euclid”]). Here he explicitly rejects his earlier view that Euclid’s 
principle of superposition is based on motion, and instead argues, as I do, that when Euclid 
speaks of placing one figure on top of another he really means reconstructing it in that 
position by means of ruler and compass (Zeuthen, 1917, 68).30

Fig. 3   The initial steps of 
Euclid’s proofs of the SAS (I.4), 
SSS (I.8), and ASA (I.26) trian-
gle congruence theorems. In each 
case, Euclid supposes that the 
given triangles are not congruent 
and derives a contradiction from 
this assumption. The counterfac-
tual, non-aligning configurations 
are obtained by superposition in 
I.4 and I.8, but not in I.26

30  Zeuthen’s thesis has been reinvented a number of times. Evidently without being aware of Zeuthen’s 
work, Wagner (1983) proposed the same interpretation. On this point Wagner is exactly right, in my view. 
But his short notes leaves much to be desired in terms of follow-through, for he says nothing about I.22 and 
I.23, which, as we shall see, are of considerable and obvious interpretative importance. Thus Wagner is 
puzzled as to why Euclid “chose to omit the proof” of the “triangle reproduction theorem” Wagner feels is 
implicitly assumed in I.4 and I.8 (69), when in fact Euclid did not omit this but rather proved it at length in 
I.22 and I.23.
  Again apparently independently, Shabel (2003, 33) likewise proposed that Euclid’s superposition proofs 
are not based on motion but on reconstruction. Unlike Wagner, but like Zeuthen (and on the same grounds), 
Shabel also concludes that Euclid’s reasoning is circular.
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Zeuthen admits that there is a major problem with his interpretation, namely that Euclid 
proves how to constructively move an angle in I.23 and how to construct a triangle from 
three given line segments in I.22. If the proofs of I.4 and I.8 are meant to involve not mov-
ing the triangles but rather reconstructing them using ruler and compass, then it would 
seem that these constructions are needed before these theorems can be established. But 
Euclid uses I.4 and I.8 to prove I.22 and I.23, so the theorems are the foundations for the 
corresponding constructions rather than conversely, which is contrary to Zeuthen’s con-
structivist interpretation of the superposition principle. Indeed, Zeuthen accepts the con-
clusion that Euclid’s reasoning is ultimately circular [Zeuthen (1917, 72, 176) and Vit-
rac (1990, 297) raises the same problem in his discussion of the similar view of Wagner 
(1983)].

I avoid the problems with Zeuthen’s interpretation by adopting a more radical operation-
alist interpretation. On my reading, Euclid’s reasoning is perfectly sound and involves no 
circularity. I.22 and I.23 are not assumed in I.4 and I.8. This interpretation is made possible 
by my rejection of the Platonic interpretation of these theorems as being abstract inferences 
that hold for all triangles with the given conditions. On the Platonic view, the equalities of 
certain sides or angles in the hypotheses of the theorems are simply given absolute truths. 
But in operationalist geometry, properties of figures cannot be simply given in such an 
abstract manner. Instead, we can only ever make inferences about triangles we have made 
ourselves. Any equalities of sides or angles cannot be merely “given” but must be conse-
quences of the constructions of the triangles in question.

It follows that we are only allowed to apply these triangle congruence theorems in cases 
where we know how to constructively reproduce one triangle in the position of the other. 
But, from an operationalist point of view, this in not actually a restriction at all. The only 
way we could know that the angles of the two triangles are equal is by construction. Any 
time we are in a position to apply I.4, we must have constructed the two triangles using 
some definitive recipe that guarantees that the given angle is equal in the two triangles. 
This knowledge must come from one of two sources. Either the two angles are directly 
identical (not only in magnitude but also in position), which makes them equal by Com-
mon Notion 4 (“things coinciding with one another are equal to one another”). In such a 
case, the proof does not need to do any moving of angles, so it poses no problems for the 
interpretation of superposition as reconstruction. The second way in which we can know 
that two angles are equal is by virtue of their constructions being equivalent. In such a case, 
the reconstruction of one triangle in the place of the other is possible by repeating in the 
position of the second triangle whatever construction recipe produced the first triangle to 
begin with.

So instead of asking how we could reproduce one triangle on top of the other in I.4, 
I ask: how could we not? That is to say, how could we know that the angle–side–angle 
of two triangles are equal unless we know how those triangles were made? It is impos-
sible, from an operationalist point of view, to have the knowledge that the second triangle 
has side–angle–side in common with the first, without also having the knowledge of how 
the triangles were made, and hence how to (re)produce them constructively. This reading 
squares well with Definition 1 of Euclid’s Data: “Given in magnitude is said of figures and 

Footnote 30 (continued)
  It is unfortunate that Zeuthen’s account has been forgotten, especially since it is more sophisticated than 
the more often cited article by Wagner. Vitrac (1990, 297), Saito (2009, 809, 2018b, §5.3) all discuss what 
is in fact Zeuthen’s thesis without being aware that he proposed it.
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lines and angles for which we can provide equals.” It makes no sense, from an operational-
ist point of view, to speak of a given angle being equal to another given angle unless we 
can constructively (re)produce that angle.

There is nothing strange about able to reproduce specific angles without being able to 
reproduce any angle. I.23 shows how to copy any angle, including an angle drawn at will 
(by simply laying down any two lines with your ruler). I.4 does not depend on the ability to 
do this, but only on the ability to copy a particular angle involved in the particular triangles 
we are applying the theorem to. For the latter we do not need a general theorem like I.23, 
but only specific knowledge of the specific configuration we have constructed. For exam-
ple, I can define the angle in question as the angle of an equilateral triangle, or the angle I 
obtain by placing some number of equilateral triangles side by side and connecting certain 
points in this configuration. If my angle at A was given by such a construction recipe, then I 
can repeat the same construction recipe (or one proven to be equivalent to it) when produc-
ing the angle at D. In this way I can know that the angle at D equals the angle at A, and be 
able to reproduce it, without relying on any general ability to copy any angle.

3.4.3 � Euclid’s Non‑use of Superposition

As noted above, a standard view is that Euclid studiously avoided the use of superposi-
tion whenever he could. In my view, this is a misconception stemming from a misunder-
standing of the sense in which Euclid uses superposition in the triangle congruence proofs. 
Many of the examples usually given to prove that Euclid could have simplified his proofs 
with superposition are based on the traditional interpretation of superposition as motion 
of a rigid figure. If one adopts my much more restrictive interpretation of superposition as 
reconstruction, there is no longer such an array of missed opportunities in the Elements.

For example, one common claim is that if superposition is allowed then there is no need 
for elaborate ruler-and-compass constructions for such things as transferring a line seg-
ment to a different place, which Euclid gives in I.2.31 On my reading of Euclid, this kind of 
objection is a non-starter, since I have argued that Euclid’s so-called superposition proofs 
are based on much more limited and refined principles than at-will physical motion of any 
geometrical object.

Postulate 4, which states that all right angles are equal, is often said to be trivi-
ally demonstrable if superposition is allowed.32 I disagree. Euclid’s definition of a right 
angle (Definition I.10) is readily interpreted operationally, namely as the cutting-in-half 
of the neighbourhood on one side of a line. The statement that all right angles are equal 
then amounts to the claim that this construction recipe gives equal or congruent results 
no matter at which point it starts. Assuming position-invariance of constructions argua-
bly amounts to assuming the homogeneity of space. Indeed, Euclid’s Postulate 4 can quite 
plausibly be interpreted as being intended to capture the homogeneity of space, since it is 
false on the surface of a cone (Clifford, 1886, 222; Henderson & Taimina, 2004, 58). This 
shows that Postulate 4 is by no means a trivial consequence of superposition, since on the 
surface of a cone a right angle at the cone point will be smaller than a right angle else-
where, and hence does not coincide with it when brought to lie on top of it. It is possible 

31  “Thus in I.2 we could simply have supposed the line taken up and placed at the point” (Heath, 1956, 
I.249). The same opinion is expressed by Dijksterhuis (1929, 147) and Klein (2004, 200).
32  E.g. Hartshorne (2005, 33) and Mueller (1981, 22), who writes: “Postulate 4, … as Proclus (188.20–
189.10) points out, is easily demonstrated using superposition.”
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that Euclid may have thought of cone points as the only possible obstacle to homogene-
ity of space in the kind of “flat piece of paper” (or zero curvature) geometry he is talking 
about, and hence included Postulate 4 to rule out such points.

If we assume that a given construction recipe always gives equal or congruent results no 
matter at which point it starts, then indeed Postulate 4 is a consequence of this principle. 
As we saw, my reading of Proposition I.4 is indeed based on attributing this assumption 
of position-invariance of constructions to Euclid. My reading would arguably fit better if 
this principle was the postulate, and Euclid’s Postulate 4 a corollary of it. But if the intent 
of Postulate 4 is to rule out cone points, and cone points are seen as the only possible 
deviation from homogeneity in the presence of the other axioms, then Postulate 4 can be 
read as effectively tantamount to postulating position-invariance of constructions generally. 
Interpreted this way, Euclid’s Postulate 4 fits perfectly with my reading of superposition: 
Postulate 4 cannot be proved by superposition; rather, it provides the foundations for super-
position by guaranteeing the position-invariance of constructions on which superposition 
is based. We do not know what Euclid meant with Postulate 4, but since in any case the 
interpretation of it is inevitably intertwined with subtleties of this sort, I do not think Pos-
tulate 4 should be given too much weight when trying to interpret Euclid’s intention in his 
superposition proofs in the body of the Elements.

Arguably the most important case of Euclid’s non-use of superposition is in his third 
triangle congruence theorem, I.26 (Fig.  3) (Heath, 1956, I.225; Dijksterhuis, 1929, 147; 
Morrow in Proclus, 1970, 273). A standard view is that “Euclid’s failure to use superposi-
tion in I,26 is somewhat surprising; it constitutes one piece of evidence for a widely held 
thesis that Euclid found something unsatisfactory in this method of proof” [Mueller (1981, 
22), who spells out the proof by superposition that he has in mind]. However, Euclid’s 
preference for reduction to I.4 in place of direct superposition can be explained as a sound 
and reasonable strategy that has nothing to do with distrust in superposition but rather 
merely the desire to minimise the need to consider separate diagrammatic cases.33 Indeed, 
the proof of I.26 has no case-division complications, since it constructs one definitive tri-
angle (BCG) for comparison purposes. If, on the other hand, one had tried to compare ABC 
directly to a superpositioned version of DEF, there is a lot more ambiguity in how exactly 
the counterfactual diagram should be drawn. We need to argue by contradiction that DEF 
does not fit on top of ABC, but in what way does it not fit? Where exactly should D be posi-
tioned in relation to A in this counterfactual diagram? This is a messy question. Euclid’s 
proof bypasses such issues. Hence Euclid’s avoidance of superposition is perfectly reason-
able without any need to suppose that he found superposition inherently dubious.

4 � Operationalism and the Classical Construction Problems

4.1 � Introduction

4.1.1 � Why Trisect an Angle? Double a Cube? Square a Circle?

Higher Greek geometry is as obsessed with constructions as Euclid was. Greek geometers 
devoted great efforts, across several centuries, to three fundamental problems in particular:

33  As Miller (2007) has shown. Cf. Sect. 3.1.4.
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•	 Doubling the cube: given a cube, make a cube with twice the volume.

	 

•	 Trisecting the angle: given an angle, cut it into three equal parts.

	 

•	 Squaring the circle: given a circle, construct a square with the same area.

	 

In other words, the great prizes of Greek geometry was not proving things, but making 
things. These problems “were rallying-points for mathematicians ..., and the whole course 
of Greek geometry was profoundly influenced by the character of the specialized investiga-
tions which had their origin in the attempts to solve these problems.”34

From a modern point of view, the Greek obsession with these problems is a peculiar 
oddity if not altogether inexplicable. What core conviction in the Greek mathematical psy-
che was so strong and deeply rooted that they remained doggedly determined to cut an 
angle into three equal pieces or die trying, while modern mathematicians can hardly wrap 
their heads around how this could even be considered a research problem at all.

34  Heath (1981a, 218). This great prominence of the classical construction problems in Greek geometry is 
generally accepted; a case in point being Knorr (1975). A minority dissenting view is Acerbi et al. (2018, 
277), who suggests that this impression may be amplified by “the compilatory attitude of the late commenta-
tors”: “compiling many solutions to the same problem creates a false impression of a mass effort.” In my 
view, the apparent centrality of the classical construction problems cannot be explained away in this manner. 
It is one of my key overall points in this work to argue that the classical construction problems form a natural 
whole with the constructivist tendencies that are inextricably embedded in all aspects of Greek geometry.
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But the operationalist outlook puts the matter in a different light. We have seen how 
dangerous it can be to assume that mathematical entities are given by abstract properties 
or logical sentences of the form “let x be an angle such that x = �∕3 ” (Sects. 2.1.2–2.1.4). 
We have also seen a second, independent reason for making constructions foundational. 
Namely, that talking about geometrical configurations without constructing them can easily 
make us march right into paradoxical errors even with arguments that at first sight looked 
just like any from the Elements (Sect. 2.1.1). We saw that Euclid’s construction of an angle 
bisector was key to avoiding that error. Naturally, cutting an angle into three equal pieces is 
the problem next in line in this enterprise to secure the foundations of mathematics.

The Greeks did not say that this is what they were doing. The record is virtually silent 
on why they wanted to solve those three problems. But I believe the operationalist back-
ground is the only way to make sense of this research program.

One alternative is to not attempt to explain it at all. Many modern commentators seem 
to view the Greek obsession with constructions as an idiosyncratic quirk. According to this 
view, just as one geometer may be particularly focussed on proving theorems about triangles 
and another about conic sections, so many of the Greeks happened to be especially interested 
in proving what can be constructed using certain tools, and how. As far as the philosophy of 
geometry is concerned, this peculiarity of the Greek taste is of no more consequence than any 
other technical details of this or that line of inquiry that the Greeks happened to pursue. I do 
not find this interpretation of the role of the construction problems at all convincing: it is a 
non-explanation that attributes a large part of the historical record to sheer whim.

Another way to try to account for the importance of the classical problems is in terms of 
their alleged usefulness. It is possible to construe the three classical construction problems 
as useful for certain applied purposes.35 But it is more likely that these alleged applica-
tions were used to boost the status of an already existing research program than that they 
were the actual motivation for these mathematical developments.36 This is quite evident, 
unless one is willing to believe that mathematicians spent 600 years trying to double the 
cube because an oracle supposedly once told someone to double the size of an altar, or 
because there was a burning practical need to determine the optimal dimensions of stone-
throwing machines in a dozen different ways (those are the main applications the sources 
repeatedly mention). The overall nature of the sustained research program on the classical 
construction problems in Greek times cannot be well explained in terms of such aims. If 
practical results were the goal, one would expect to see much more focus on numerical and 
approximative methods (Sect. 4.6.8). Instead we find many solutions based on ingeniously 
conceived motions that are out of touch with practice and quite clearly selected for the sake 
of some sort of theoretical purity.

Similarly, the research program on the classical problems makes little sense as an effort 
whose primary goal is to supply existence proofs, as noted in Sect. 3.2.7. For one thing, 
this perspective does not explain why the Greeks were so interested in going back over the 
same material and re-solve the same problem over and over again with particular variations 
in fundamental assumptions. All the more so when the existence of the solution is seem-
ingly more obvious than the existence of the curves or other auxiliary means assumed to 
construct it, as frequently happens.

35  Russo (2004, 201). It is striking indeed that especially ancient cube duplications for which we have the 
original text bring up such applications, namely Eratosthenes (Netz, 2004, 294–295), and Philon and Heron 
(Marsden, 1971, 41, 111). Cf. also Sect. 1.3.
36  Knorr (1975, 22) argues for such an interpretation of the story that the Delian oracle implored the dou-
bling of a cubical altar.



635Operationalism: An Interpretation of the Philosophy of Ancient…

1 3

Another attempt at explaining the purpose of constructions is given by Proclus. He 
needs to explain away the obvious prominence of constructions in mathematics, since it 
clashes with the Platonic belief that the objects of mathematics are eternal and independ-
ent of human actions situated in space and time. He accomplishes this by alleging that 
constructions play a role in geometry not because they have anything to do with the essen-
tial nature of geometrical objects but because of limitations of the human mind. The mind 
needs this crutch of concretely exhibiting figures in the imagination as a stepping stone, 
even though the end goal is a pure understanding that is higher and independent of such 
operations.37 This account is defensible in the case of Euclidean geometry. It makes sense 
that step-by-step constructions can assist the mind in forming the concept of a parallelo-
gram or a dodecahedron. But this picture makes no sense for the higher problem tradition. 
In order for, say, an angle trisection to make any sense from this point of view, it would 
have to construct the third of an angle using only things that are more immediately acces-
sible to the imagination than the idea of the third of an angle itself. It is obvious that the 
classical problem tradition comes nowhere near to accomplishing anything of the sort. In 
the solutions to the classical problems, the means assumed to construct the objects sought 
are much less readily imagined than the objects themselves. Therefore it makes no sense to 
maintain that the constructions are meant to assist the imagination in conceiving the sought 
objects by building them up stepwise from simpler starting points.

Operationalism, by contrast, makes sense of the tradition of the classical construction 
problems. On this view, constructions are the foundations of all geometry. The three con-
struction problems cannot be solved by ruler and compass. The Greeks effectively knew 
this, though they could not strictly prove it. So any solution is based on introducing some 
additional construction tool or method beyond the Euclidean ones. The classical construc-
tion problems were selected, I believe, to be representative of a whole body of geometry 
representing the next step beyond ruler and compass. Solving the classical construction 
problems meant devising the definitive foundations of higher geometry, just as Euclid pro-
vided the definitive foundations of elementary geometry. The classical construction prob-
lems were not interesting in isolation but as showcases for rethinking the foundations of 
geometry as a whole. As such, it makes perfect sense that generation upon generation of 
the very best mathematicians would devote major efforts to this particular research pro-
gram, and to rework the same problems over and over again based on different fundamental 
assumptions.

If this reading is correct, it follows that the solutions to the classical construction prob-
lems would have been devised with a conscious emphasis on foundations. Solutions would 
have to be accompanied by (perhaps implicit) reasons for why that new construction 
method should be granted foundational status and not some other one. Clearly this must 
be based on some convincing rationale. Minimalism and stringency in this regard is clearly 
essential. If you can just introduce whatever constructions you like at any time, then the 
whole project of operationalist mathematics becomes meaningless.

Solving the classical construction problems would thus have been perhaps the “most 
philosophical” part of geometry. Hence I believe it is essential, when studying the ancient 
solutions to these problems, to try to understand what vision for the foundations of geom-
etry they are meant to encapsulate. Unfortunately we have next to no source material on 

37  Proclus (1970, 64), building on the Platonic idea he outlines earlier (37, 44) that learning is recollection, 
or the bringing out of what was already latently there but which our minds needed some stimulus bring into 
consciousness.
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such questions. The sources we have for Greek mathematics are almost exclusively for-
mal mathematical texts: definition-theorem-proof, with no informal commentary, contex-
tualisation, or motivation of any kind. Therefore, we must study the technical works in the 
Greek geometrical tradition and extract the implicit foundational assumptions on which 
they are based. What does a technical analysis of these proofs say about the assumptions 
these mathematicians made regarding mathematical method and the purpose and rules for 
constructing geometrical objects? Answering this question shall be our goal in this section.

4.1.2 � Algebraic Aspects of the Classical Problems

In modern terms, the classical construction problems can be interpreted as follows. Dou-
bling a cube is equivalent to constructing a line segment of length 3

√

2 , the side length of 
a cube with twice the volume of a unit cube. Trisecting an angle is equivalent to solving a 
particular cubic equation. This can be seen by trigonometry, since constructing the required 
points on the arc is equivalent to constructing the point perpendicularly below it on the 
axis, whence the trisection of an angle amounts to constructing cos(�∕3) from cos(�) , 
and by trigonometric addition formulas we know that cos(�) = 4 cos3(�∕3) − 3 cos(�∕3) . 
Squaring the circle is equivalent to constructing a line segment of length � . This follows 
from the theorem shown in Fig. 34. Since � is a transcendental number, this is in a definite 
sense “more complicated” than the n-section of an angle, which is an algebraic problem. 
Thus the complexity of these problems form a clear hierarchy:

The scope of ruler and compass, meanwhile, corresponds algebraically to the ability to 
solve quadratic equations, or, what comes to the same thing, to the ability to perform the 
four arithmetical operations as well as square root extraction.

Although these are modern terms, it is likely that Greek mathematicians had a sense of 
such a hierarchy. For instance, for squaring the circle they resorted to methods that they 
likely found more questionable than those used for the simpler problems. I shall argue 
below that they relaxed operationalist ideals precisely and only insofar as the complexity of 
the problem at hand necessitated doing so.

The insolubility of these problems by ruler and compass was quite clearly taken for 
granted by the ancient mathematicians who worked on them. The actual proofs of this 
insolubility is a staple topic of abstract algebra courses to this day (Hartshorne, 2005, 
243–245), but the importance of such proofs should not be overestimated. It would be a 
mistake to think that these modern results somehow undermine the Greek problem tradi-
tion. The Greek tradition is not hampered by ignorance of these results, but rather founded 
upon an awareness of them. Nothing about the Greek problem tradition would change if 
they had been able to prove these results.

It should also be noted that the Greek mathematical tradition saw the doubling of the 
cube as a special case of the more general problem of finding two mean proportionals. That 
is to say, given a and b, find x and y such that a ∶ x = x ∶ y = y ∶ b . The duplication of the 
unit cube is the special case of finding x when a = 1 and b = 2 . The Greek methods for 
doubling the cube are really ways of finding two mean proportionals, but I shall ignore this 
distinction and restrict my discussions to cube duplication for simplicity and clarity, since 
everything generalises straightforwardly to the general setting of two mean proportionals 
without anything of interest from the point of view of operationalism being added.

double cube ≤ trisect angle < square circle
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4.1.3 � Overview Chronology of the Three Classical Problems

Table 2 gives a chronological overview of all solutions of the classical construction prob-
lems in Greek mathematics that have been recorded. The chronological order as well as 
a number of the attributions to specific mathematicians are tentative. Almost all of these 
solutions are known to us only through much later sources; specifically, the vast major-
ity only through Pappus’s Collection and Eutocius’s commentary on Archimedes. These 
authors lived many centuries after the golden age of Greek geometry had ended, and their 
brief accounts are no doubt far from a complete and faithful picture of the lost original 
works. The approximate chronology and attributions in the table are my attempt at roughly 
summarising the secondary literature;38 I am not contributing anything new in these 
regards. My contribution shall consist in the operationalist interpretation of these solutions.

As the table shows, these problems formed the basis for a sustained, continuous research 
program for more than two centuries, from Hippias around −420 to Diocles around −190
,39 attracting the attention of many of the best mathematicians in between. The sheer multi-
tude of solutions speaks to the centrality of the problems, and also suggest that no solution 
was viewed as fully satisfactory.

The surviving record of solutions is surely incomplete. For example, Simplicius lists the 
circle quadratures mentioned in the table and then says that, in addition, “many others con-
structed a solution of this problem in diverse ways” (Thomas, 1939, 335).

4.1.4 � Origins of the Classical Problem Tradition

There are some earlier signs of theoretical interest in constructions that suggest that the 
solutions to the three classical problems were, at the time of Hippias, already embedded in 
a coherent program that took constructions as a foundational paradigm of geometry.

Proclus attributes to Oenopides (ca. –450) the discovery of Elements I.12 (to draw a 
perpendicular to a given line through a given point not on that line) and I.23 (to move an 
angle to another location). This can only mean that Oenopides worked within a theoreti-
cal framework specifically restricted to ruler and compass, for in a pre-theoretical context 
these results are trivial (Heath, 1981a, 175).

Anaxagoras (ca. –470) supposedly worked on squaring the circle (Heath, 1981a, 173). 
This problem was surely also the motivation for Hippocrates (ca. –440) to square circular 
lunes (Heath, 1981a, 183–200). Hippocrates also proved that cube duplication is equivalent 
to finding two mean proportionals (Heath, 1981a, 200–201). The sophistication of Hip-
pocrates’s work suggests that at this time the construction paradigm and at least two of the 
great construction problems were well established.

The squaring of the circle was evidently such a famous problem already in –414 that it 
was referenced in popular culture (Aristophanes, The Birds, 1005).

These indications suggest that the solutions in Table 2 should be considered part of a 
well-established tradition that had already been the subject of much attention well before 

38  Sefrin-Weis (2010) in particular is a useful starting point for this literature. Naturally, the solutions in the 
table without author attribution are especially difficult to place chronologically.
39  Assuming that the standard chronology is more or less accurate. Knorr (1975, 81) argues that the 
quadratrix solutions have been dated mistakenly early, and hence that the entire tradition got going later 
than this. At the other end, it is possible that Diocles was active a few decades earlier (Knorr, 1975, 234), 
thereby shrinking the period of prime activity from that side as well.
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the record available to us even begins. The hypothesis that an operationalist paradigm dom-
inated Greek geometry from an early stage onwards fits well with this picture.

Knorr has challenged this view and argued that geometry remained more pre-theoretical 
for much longer than suggested here. According to Knorr,

Oenopides would surely not have been occupied in a consciously formal geometric 
effort, for the astronomical context indicates that he was showing how to arrange the 
construction of astronomical devices, like sundials, via appropriate instruments of 
construction. The latter surely included compasses and rulers, but we have no reason 
to suppose that he rejected the use of others … [such as] set squares. (Knorr, 1975, 
16)

This is a peculiar argument since it makes no sense for someone using a set square to prove 
Elements I.12, or even to conceive of it as a proposition at all. Similarly, it is easy to see 
why an operationalist would be interested in the highly theoretical and impractical copying 
of angles by ruler and compass in Elements I.23, while it is difficult to imagine why anyone 
else would even conceive of this as a proposition. The mere fact that Oenopides used these 
things in astronomy is not in conflict with an interest in the foundations of geometry any 
more than Plato and Aristotle should be considered non-theoretical philosophers because 
they discuss applied topics. If anything, one could argue that it is precisely because they 
think philosophy is so important in so many areas that they are all the more interested in its 
theoretical foundations. In the same way, theoretical and applied interests could very well 
have gone hand in hand for mathematicians.

Knorr continues in the same vein:

The conscious restriction to a specific set of constructing techniques, like the com-
pass and straightedge in sharp separation from others, would be premature at Hippo-
crates’ time. … The trisection of the angle became a problem only after a tightening 
of the restrictions on construction techniques, and hence only within a formally more 
sophisticated geometric field. By contrast, the problems of the cube and the circle 
present difficulties at the much earlier level of development. (Knorr, 1975, 41)

I disagree. I don’t see how the problem of the quadrature of the circle, as a construction 
problem, makes much sense in a pre-theoretical framework. The basic area result of Fig. 34 
is evident by polygonal approximation (Fig.  4)—an idea that is bound to suggest itself 
readily to any mathematician devoting effort to circle quadrature. From there it follows that 
a piece of string or tape measure is sufficient to square any circle in an obvious way, by 
measuring its circumference. How, then, could a research program on circle quadrature be 
meaningful without deliberate foundational restrictions on construction techniques? That 
could only make sense if we believe that these simple ideas were unknown even informally, 
until rigorously proven by Archimedes (Knorr, 1975, 83 indeed argues for this). But it is 
all but impossible to imagine how the very basic idea of Fig. 4 could have eluded peo-
ple like Hippocrates, whose work on lunes shows that he worked extensively in this area 
and proved much more intricate results than this.40 Meanwhile, the angle trisection prob-
lem, which Knorr believes only becomes relevant as a byproduct of later theoretical devel-
opments, is natural from an operationalist point of view. It is a short step beyond angle 
bisection, whose importance as a construction problem we justified in simple terms in 

40  Van der Waerden (1975, 135–136) gives a high estimate of the level and sophistication of Hippocrates’s 
mathematics.
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Sect. 2.1.1. Angle division also arises immediately from the natural problem of construct-
ing regular polygons. Therefore it makes sense, from an operationalist point of view, that 
the trisection problem would have been part of the tradition from the outset.

4.1.5 � Operationalist Demands on Curve Construction

Higher geometry necessitates that new construction means be introduced beyond ruler 
and compass. On what grounds can one judge which new means are better than others? In 
accordance with Sect. 2, operationalist philosophy of mathematics suggests the following 
criteria.

•	 Realisability Constructions must be generative and realisable in concrete experience.
	   This ensures that all mathematical claims have an unequivocal meaning that is stat-

able in theory-independent terms accessible to outsiders and potentially falsifiable. It 
also means that mathematics need not assume the reliability or consistency of abstract 
verbal logic, only the consistency of physical experience itself.

•	 Unicity Constructions should be defined in terms of one single property, not multi-
ple simultaneous conditions. In other words, the outcome of a construction should be 
defined in the form “the result of doing X,” not in the form “the result of doing X until 
or while conditions Z and Y are met.”

	   Defining something in terms of multiple properties inhibits primitive generation and 
increases the risk of inconsistency.

•	 Single degree of freedom Curves can favourably be traced by some mechanical contrap-
tion moving a pen, but in such cases the configuration moving the pen should be driven 
by one single “input” motion (which may very well produce multiple other motions as 
side-effects by pushing various mechanical parts etc.).

	   This is a consequence of the previous points. Just as an axiom system runs less risk 
of being inconsistent if it derives statements instead of assuming them as additional 
postulates, so also a curve tracing scheme runs less risk of being incoherent or impos-
sible if it defines secondary motions in terms of a primary one rather than stipulate 
multiple simultaneous conditions.

Fig. 4   The area of a circle by 
polygonal approximation
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•	 Definitive termination Constructions should produce entities definitively and finitely, 
not in terms of gradual approximations or convergent infinite processes.

	   This ensures that entities have unequivocal meaning and that, once constructed, they 
are unequivocally available to serve as subcomponents of subsequent constructions.

•	 Practical accuracy Constructions should be accurate in practice.
	   This protects against the danger of reasoning based on false diagrams.
•	 Primitiveness The assumptions on which constructions are premised should be more 

basic and immediate than the entities constructed with their aid.
	   Otherwise they cannot serve to give meaning to the entities they construct in a cred-

ible way.

We shall now turn to the specific constructions proposed in the Greek tradition and investi-
gate to what extent they can be viewed as consistent with these priorities.

4.2 � Cube Duplication

4.2.1 � Archytas

Archytas’s method for doubling a cube amounts to taking the intersection of three sur-
faces (Fig.  5): a cone ( x2 + y2 + z2 = 22x2 ), a cylinder ( x2 + y2 = 2x ), and a torus 
( x2 + y2 + z2 = 2

√

x2 + y2 ). If one of the four intersection points is projected onto the 
xy plane (the plane that contains the axis of the cone and is perpendicular to the axis of 
the cylinder), the distance from there to the origin (the vertex of the cone) is 3

√

2 . Hence, 
assuming that the intersection of these surfaces can be found, the problem has been solved.

This is a perplexing solution to the cube duplication problem, since it appears to be 
based on taking for granted things that are more complicated than the problem itself. How 
could someone be perfectly happy to take very complicated intersections of various sur-
faces at will, yet still feel that that finding 3

√

2 is a challenging puzzle? The source is of no 
help in explaining how this is supposed to make sense. It simply says that when a circle 
rotates so as to generate the torus, “it will cut the cylindrical surface in its rotation, and will 
draw in it a certain line”; and then the “conical surface ...will meet [that] cylindrical line 
at a certain point” (Netz, 2004, 291). In other words, the intersections shown in Fig. 5 are 
assumed to become immediately available to us merely by being defined. If one can call 
into being by simple decree such a complicated object as the curve of intersection of a cyl-
inder and a torus, then why can one not do the same with a segment of length 3

√

2 or a cube 
of a certain volume?

This seems baffling, but, in fact, one can make perfect operationalist sense of all of this 
in a rather straightforward way, namely as follows (Figs. 6 and 7). Consider a door. That is 
to say, a plane, one edge of which is attached to an axis (the z-axis) around which the plane 
is moveable. In this plane we draw a semicircle, corresponding to the generating circle of 
the torus. This circle touches the axis of the door in one point, has unit radius, and has a 
diameter along the bottom edge of the door. As we move the door, this semicircle traces 
out the top half of a torus in space, so to speak, although there are no actual physical solids 
involved in this construction.

On the floor under the door we draw a circle, corresponding to the base of the cylinder. 
This circle touches the axis in one point and has unit radius. Its diameter starting at the axis 
of the door corresponds to the x-axis; we may take it to be the threshold of the door. The 
door intersects this circle in two points: one point is always the same, at the axis itself, and 
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the other point changes as we move the door. Standing on the floor we have a metal rod 
with a foot that ensures that it is always perpendicular to the floor. As we move the door, 
we also move this rod, and we always place it right where the door intersects the circle on 
the floor. In terms of Archytas’s setup, this means that, for any given position of the door, 
the metal rod represents the intersection of that plane with the cylinder. And hence the 
intersection of the rod with the semicircle drawn on the door is on the surface of both the 
cylinder and the torus.

Fig. 5   a The three solids involved in Archytas’s duplication of the cube. b The curve of intersection of the 
cylinder and the torus. c This curve and the cone

Fig. 6   Reconstruction of opera-
tionalist version of Archytas’s 
method
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Now for the cone. Again, there is no actual cone involved. Instead all we need is a com-
pass. One leg of the compass is fixed in position along the threshold of the door. The other 
leg is free to rotate. The opening of the compass is fixed at 60◦ . When we move the door, 
we also move the compass leg until it touches the door. It will lay flat against the door and 
hence the compass leg is a line on the surface of the door.

We keep moving these three objects until the metal rod, the circle on the door, and the 
compass leg all intersect in the same point. This is the sought point of intersection of the 
three surfaces that solves the problem. The reconstruction up to this point is essentially that 
proposed by Knorr.41

But we can do even better than Knorr’s reconstruction. We can eliminate the need for 
adjusting the various parts by hand. We could make the circle on the floor a rail or groove 
in which the rod stands, so that it is automatically constrained to move along this curve 
only. Then when we start with the door in the threshold position we only need to move the 
door, whereupon the rod and the compass will be forced to move as required without any 
additional manual involvement from us. Furthermore, instead of drawing the semicircle on 
the door, we can replace it with a radial stick that is nailed to the door at the midpoint of 
the semicircle, around which it can rotate. At its other end, this radial stick has a nail stick-
ing out of it. With the door it its stating position, we place the radial stick so that the nail is 
touching the rod (on the inside, toward the axis). Then as the door moves, and hence forces 
the rod to move, this in turn forces the nail on the radial stick to move. Meanwhile the leg 
of the compass is being forced to move toward the nail from above. At a certain point the 
configuration locks, because the rod needs to go inward and the compass leg needs to go 
downward but the nail is stuck between them and prevents them from moving any further.

Fig. 7   Reconstruction of operationalist version of Archytas’s method: initial position (left) and final, lock-
ing position (right)

41  Knorr (1989, 109–110). See also Masià (2016) for a recent study of Archytas’s solution and a survey of 
other interpretations, which, however, is not interested in our core concern, the issue of mechanical genera-
tion, as it explicitly states (197). Another recent study claims that “Archytas’ … heavy reliance on motion” 
was an “anomaly” “alien to the later development of Greek geometry” (Menn, 2015, 408). This is not true, 
as Table 4 shows.
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Thus we have built a machine that produces the required solution in a deterministic 
way and according to demonstrable mathematical principles. This is a good solution to the 
problem that fits perfectly in the operationalist tradition.

This solves all the apparent mysteries of Archytas’s method. It makes perfect sense 
that Archytas had in mind a construction such as the one I have outlined. I consider it 
more plausible that this is what Archytas did than that he relied on the perplexing notion 
of accepting the intersection of a cylinder and a torus as primitively given. Admittedly, 
the source we have does not directly support this, but that is of little consequence, for it is 
a third-hand account at best, written many hundreds of years after the original, that could 
plausibly have missed Archytas’s operationalist point altogether. There is even some tex-
tual support, namely that Archytas’s solution was at one point criticised from a Platonic 
point of view as being instrumental rather than purely geometrical (Thomas, 1939, 389), 
which makes little sense as a critique of the solution as transmitted in surviving sources, 
but makes perfect sense as a critique of the solution as I have reconstructed it.

4.2.2 � Pseudo‑Plato

The pseudo-Platonic machine for doubling the cube is shown in Fig. 8. As we push the 
point M along the x-axis, the conditions imposed and welded into the machine mean that 
there is only one way the machine can move. In particular, the pen point P is forced to 
move along one particular curve, 2(1 + x)2 = y(x2 + y2 + x) . When the point P hits the 
y-axis, its y-value is 3

√

2 , so we have doubled the cube. The source is explicit about the 
physicality of the contraption: it consists of several “rulers” whose “motion” is constrained 
by various “grooves” and “knobs” (Netz, 2004, 273–275).

The least convincing aspect of this solution from the point of view of actual execution 
is how to ensure that l3 is perpendicular to l2 . If we are merely trying out one position of 
the machine after another we can adjust it manually for each individual case. But it is much 
more satisfying to have the machine trace a continuous curve, rather than trying to find 
the configuration where P falls on the y-axis by trial and error. I do not see an easy way 

Fig. 8   The pseudo-Platonic cube 
duplication by moving rulers. 
The pen point P traces a curve 
as M is pushed. The rulers l

1
 , 

l
2
 , l

3
 constrain the motion of the 

entire configuration as follows: 
l
1
 and l

2
 are rigidly attached to 

one another at right angles; l
1
 is 

forced to pass through (0,−2) , 
and l

3
 through (−1, 0) , due to the 

pegs fastened at those points; l
3
 is 

at right angles to l
2
 ; M can move 

only along the x-axis
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implementing this, although it could be done in principle and the source does address it.42 
Therefore, I think we must count the pseudo-Platonic machine as problematic—though 
certainly not altogether a failure—as far as the requirement of continuous, single-motion 
curve tracing is concerned.

4.2.3 � Philon, Apollonius, Heron

Philon’s cube duplication is shown in Fig. 9. The ruler must be fitted into position by trial 
and error until the condition is fulfilled. For this reason the solution cannot be considered 
exact, but only approximative. On the other hand, the practical realisation is simple and 
uses only basic tools. In this respect it has clear advantages over previous solutions in addi-
tion to its clear disadvantage.

Heron’s solution (Fig.  10) is a rather trivial variation on that of Philon. It appears to 
have no theoretical or practical advantages to speak of.43

Unlike almost all other solutions in Table 2, we do not need to rely only on second-
ary accounts by Eutocius and Pappus in these cases. Full treatises by Philon and Heron 
containing these constructions have survived.44 The hands-on nature of the constructions 
is explicit. Thus for instance Philon writes: “Taking a ruler, ...I juggle it about, always 

Fig. 9   Philon’s cube duplication. 
A ruler is turned about the corner 
of the rectangle until the two 
marked segments are equal

42  The source does not say unequivocally one way or the other whether the operation should be continuous, 
but it does propose a way of ensuring that l

1
 and l

3
 “remain throughout parallel” (Netz, 2004, 273), namely 

by a fourth ruler, l
4
 , that cuts across l

1
 and l

3
 to complete a rectangle. But this cannot be done in a very 

straightforward way since side lengths of the rectangle should remain variable. We could do it with some-
thing like moveable square pegs through the holes where l

4
 intersect l

1
 and l

3
 , but this seems awkward for 

continuous operation. One may also try to achieve perpendicularity by an L-shaped constraint, one leg of 
which is attached to l

3
 and the other lying against l

2
 . But it is problematic to assume that that entire leg will 

remain in contact with l
2
 throughout the motion.

43  Eutocius (Netz, 2004, 278) rightly points out that Philon’s original version is easier to implement in 
practice. One conceivable sense in which Heron’s variant could serve a purpose might be if the construction 
is not taking place on a sheet of paper, so that the circle cannot be drawn. This could perhaps be relevant in 
the engineering contexts that Heron is interested in.
44  See Marsden (1971, 41, 111) for their accounts and translations of the full treatises.
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keeping one part of it touching the corner [of the rectangle], until” the two lengths indi-
cated are equal as required (Marsden, 1971, 111).

There is some unclarity as to Apollonius’s solution. What Eutocius calls Apollonius’s 
solution is trivially identical to that of Heron, only with pointless cosmetic changes.45 It 
makes little sense for Eutocius to include it as a separate solution in his catalogue. And, 
more importantly, it makes little sense that Apollonius would have contributed something 
so trivial and useless (assuming that he knew Philon’s solution). More plausible, and in 
accord with other sources (Heath, 1896, cxxv–cxxvii; Knorr, 1975, 305–308), is that Apol-
lonius’s work was about the connection between Philon’s solution and conic sections. The 
circle in Fig. 9 is (x − 2)x + (y − 1)y = 0 and the point where the ruler cuts it in the sought 
configuration can be obtained by intersecting this circle with the hyperbola xy = 2 . So we 
can replace the trial-and-error ruler-fitting procedure with the drawing of a simple hyper-
bola. If we accept the hypothesis that this was Apollonius’s point, then his contribution was 
clearly mathematically interesting. Showing that conic sections subsume previous work 
speaks to the centrality of the theory of conics. On the other hand, doubling the cube by 
conics was already old news, so this solution does not constitute progress in terms of dou-
bling the cube based on simpler construction assumptions (except that this solution uses 
only one conic section, rather than the intersection of two as the previously recorded solu-
tions had done).

4.2.4 � Eratosthenes

Eratosthenes’s cube duplication is shown in Fig. 11. The main drawback of the construc-
tion is that it requires the coordination of multiple conditions instead of producing the solu-
tion by a single motion. For the rest it is a simple construction using nothing but basic 

Fig. 10   Heron’s variant of 
Philon’s cube duplication of 
Fig. 9. The same configuration 
is achieved by an equivalent 
condition

45  The final configuration is the same as that of Fig.  10. Eutocius formulates the solution in terms of a 
circle centered at the midpoint of the rectangle such that the chord between its axis intercepts cuts through 
the corner of the rectangle. This is obviously equivalent to Fig. 10, only it would seem to suggest that the 
solution should be found by trying different radii of the circle instead of different inclinations of the ruler 
through the corner point—a pointless distinction. But Eutocius then says that the circle in question should 
be found by trying different positions of a ruler through the corner point, which obviously erases any differ-
ence with Heron’s construction, if one could even speak of there having been any to begin with.
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Fig. 11   Eratosthenes’s cube 
duplication by sliding triangles. 
The three grey triangles are slid 
horizontally until the points of 
overlap are collinear with the two 
marked points

Fig. 12   Nicomedes’s cube duplication by conchoid compass

(b)(a)

Fig. 13   a A linkage machine for drawing the cissoid. The linkage is operated by pushing the motion point 
M. The vertical grey ruler and the two marked points on the horizontal diameter are fixed in position. As the 
bottom point is pushed, it causes the other components of the linkage to move as indicated by arrows. The 
two points on the circumference of the circle are constrained so that they can only move along the circle, 
and furthermore the grey rulers ensure that they are always symmetrically placed with respect to the verti-
cal axis. The motion of the left circumference point causes the diagonal black ruler to rotate about its fixed 
point. The right circumference point moves the vertical black ruler along with it, while this ruler is also 
locked at right angles to the diameter. The intersection of the two hollowed black rulers traces the cissoid. b 
Diocles’s cube duplication by the cissoid
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tools. As Eratosthenes noted, it can also be adapted to yield any number of mean propor-
tionals (such as 4

√

2 , 5
√

2 , 6
√

2 , etc.) by increasing the number of triangles.
The account of this solution transmitted by Eutocius is supposedly a verbatim letter by 

Eratosthenes himself. The text explicitly speaks about the realisation of the construction 
“by a machine,” that is to say triangles sliding along “grooves” inside “a box ...made of 
wood, or ivory, or bronze” (Netz, 2004, 296).

4.2.5 � Nicomedes

Nicomedes’s cube duplication is shown in Fig. 12. It uses the conchoid compass that arises 
more naturally in the context of angle trisection (see Sect. 4.3.1). Nicomedes reportedly 
criticised Eratosthenes’s cube duplication when he offered his own (Netz, 2004, 298), and 
indeed an obvious advantage is that it is a single-motion construction rather than a trial-
and-error process.

4.2.6 � Diocles

Diocles doubled the cube by means of a particular curve, the cissoid, y2(r + x) = (r − x)3 , 
as shown in Fig. 13b.46 This curve can readily be traced by a single-motion linkage device, 
as shown in Fig. 13a. This manner of generation is not in the sources. However, it suggests 
itself naturally from the way the cissoid is defined in the sources. Any mathematician in 
Greek times who would have spent even the slightest effort thinking about how the cis-
soid could be mechanically realised would have come up with this idea. I believe they did. 
Indeed, the ease with which the abstract geometrical definition of the cissoid lets itself be 
interpreted in mechanical terms suggestively hints that such an interpretation was intended. 
If so, this cube duplication fits well in the operationalist tradition.

Disturbingly, however, the sources clash with this interpretation. Instead the cissoid is 
“constructed” by marking a bunch of points belonging to it (which can be done by ruler 
and compass, just as they can on a conic section for instance) and then fitting a curve along 
these points by naive interpolation. This is profoundly unsatisfactory from an operational-
ist point of view. Indeed, it is arguably conceptually incoherent altogether regardless of 
whether one is an operationalist or not. For the entire use of the cissoid for a problem such 
as cube duplication consists in producing one particular point of intersection. It is useless 
to produce a bunch of points elsewhere on the curve. Obviously only the points nearest the 
intersection will help interpolate that point, and since that is the goal we are better off tar-
geting that area by trial and error already in the point-production phase. Producing points 
elsewhere, and fitting a curve to this entire set of points, serves no purpose.47

46  As we see, the construction does not directly solve the problem, i.e. it does not produce 3
√

2 directly, but 
rather produces a scaled version of the actual solution. So the construction must be followed by an extra 
scaling step. This is an unaesthetic aspect of Diocles’s solution. However, it is not theoretically problematic 
since the scaling can be done by Euclidean means.
47  Conceivably, one could argue that it would make a bit more sense if we need to extract two mean pro-
portionals between various different givens all the time, not just 3

√

2 once. Then one could produce a large 
number of points on the cissoid once and for all, and use it as a nomographic tool many times after that. But 
there is no indication that such a usage was intended, and the practical value of this would be very question-
able. One might imagine that the use of a single fixed curve saves time and effort compared to many of the 
previous proposals we have seen which require separate constructions for each case. But the cost of using a 
single curve is quite high. Each such application of the cissoid would require pre- and post-processing, so 
to speak, in the form of two scalings. First one must scale “into” the figure, since the ratio 2 : 1 in our figure 
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A version of Diocles’s own text survives in Arabic, making this one of the few cube 
duplications for which we have a full source rather than merely a paraphrased extract in 
Eutocius or Pappus. Diocles’s text is explicit on precisely the pointwise aspect of the con-
struction that I just criticised. Eutocius’s account is a bit more ambiguous in this respect, 
but basically seems to back the Arabic version of the Diocles text.48 On the other hand the 
text has obviously been corrupted in transmission in intrusive ways, so the authenticity of 
specific details cannot be assumed. This was pointed out by (Toomer, 1976, 31) on grounds 
completely independent of my operationalist reconstruction. Eutocius’s account appears to 
be based on more or less the same corrupt version of the original that was the basis for the 
Arabic text (Knorr, 1989, 87).

In fact, the internal logic of Diocles’s text contains traces that the linkage construction 
was originally intended, and readily suggests how a corruption from there to a pointwise 
construction could have occurred.

In the surviving text of Diocles’s On burning mirrors, Diocles begins his discussion 
of cube duplication by the cissoid with the following result (Toomer, 1976, 96–98). In 
Fig. 14, let H be defined as the intersection of KB and ΘZ , where arc DK = arc DZ. Diocles 
says: “The reason that AΘ ∶ ΘZ = ΘZ ∶ ΘB is clear.” (Elements VI.13) “But I say that 
ZΘ ∶ ΘB = ΘB ∶ ΘH also.” Indeed Diocles proves that this follows from the definition 
of H. Now H is a point on the cissoid, and by repeating this construction for various other 
choices of Θ one can construct more and more points on the cissoid and then proceed with 
the cube duplication from there in the manner corresponding to Fig. 13b.

But, strikingly, this argument can be simplified and reformulated by omitting all the 
parts related to K. Taking Θ arbitrarily on the diameter, and constructing the perpendicular 
ΘZ , one immediately has AΘ ∶ ΘZ = ΘZ ∶ ΘB by Elements VI.13. From there, construct-
ing ΘH such that ZΘ ∶ ΘB = ΘB ∶ ΘH simply means constructing the third proportional 
of two given segments: a well-known standard construction (Elements VI.11). Hence the 
point H and its key property could easily have been introduced without any reference to the 
point K, the line KB, or the condition arc DK = arc DZ. Nor are these entities related to K 
ever needed for any other reason in the remainder of the text. All of the rest of Diocles’s 
text uses only the ability to construct points H on the cissoid, and the relation between AΘ , 
ΘB , ZΘ , and ΘH , so it works equally well if H is defined and constructed in the simplified 
manner as a third proportional.

It is surely impossible that Diocles could not have seen this. So why did he include all 
the matters related to K, which are superfluous as far as the logic of the text as transmitted 

needs to be a  : b generally to find the two mean proportionals of given segments a and b, and the radius 
is fixed if we are using a fixed cissoid for all cases. Then one must scale the answer “out of” the figure, 
because of the issue with the scaling factor k. Since these auxiliary constructions are needed anyway, it 
would be hard to argue that the use of a fixed cissoid is qualitatively preferable to for instance the solution 
by Philon that, although unlike the fixed cissoid it requires the approximate construction itself to be carried 
out in each case, is more directly adapted to the givens (in Philon’s case, working directly with an a : b rec-
tangle).

Footnote 47 (continued)

48  One brief phrase in Eutocius’s text hints at the interpolation of the curve from points, saying that the 
defining property of the cissoid determines points on it, “to which we join lines (by the application of a 
ruler [from one point to its neighbor]) – and then we shall have a certain line [i.e., the cissoid] figured in 
the circle” (Netz, 2004, 280). Or in an alternative translation: “If we place our ruler against these points and 
join them by straight lines, we will have a certain line drawn in the circle” (Toomer, 1976, 199). Eutocius 
does call the pointwise process “continuous” (Netz, 2004, 280, 283; Toomer, 1976, 201) though this seems 
to mean merely sequential.
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is concerned? My reconstruction of the linkage device suggests an obvious explanation: 
The entities related to K in Fig. 14 are there because they correspond exactly to the linkage 
device of Fig. 13a. If Diocles wanted to construct the cissoid pointwise—as his text osten-
sibly does—then he could easily have omitted everything related to K and used the simpler, 
obvious alternative construction of H as a third proportional instead. But if Diocles wanted 
to demonstrate that the points H generated by his linkage device stands in this particular 
relation to AΘ , ΘB , ZΘ , then everything about his Proposition 11 makes perfect sense. The 
point of this proposition is not to give a pointwise construction of the cissoid but to derive 
properties of points generated by the cissoid linkage.49

This suggests that Diocles’s original text contained a discussion of the linkage genera-
tion of the cissoid. One can easily imagine that some later editor or compiler lacking an 
understanding of the fundamental importance of this might have chosen to copy only the 
“mathematical” part of Diocles’s text. This would give us exactly Diocles’s Proposition 
11 as transmitted. Subsequently, somebody working from this purely “mathematical” ver-
sion might realise that the text in this form only amounts to a pointwise construction of the 
cissoid, even though for the purposes of forming the intersection in Fig. 13b a continuous 
version of the cissoid is needed. Hence that person may have felt the need to address this 
“gap” by adding the remark that the full curve be interpolated from the many individual 
points generated. This would explain how the in my opinion foundationally nonsensical 
notion of pointwise construction could have found its way into the text. On this hypothesis, 
the availability of the cissoid as a continuous curve would have been assured in the original 
treatise by the linkage discussion and hence assumed implicitly in the “mathematical” part 
of the treatise. So only when the linkage discussion was separated from the demonstrations 
did the perceived “gap” occur and the need for pointwise construction and curve-interpo-
lation arise.

Diocles’s text treats conics by pointwise construction as well. I shall discuss this in 
Sect. 4.4.3. That context will make the plausibility of corruption along the above lines even 
more plausible, because it is likely that Diocles’s original did indeed use pointwise con-
structions of conics for applied purposes (constructing burning mirrors), while keeping 
this strictly separated from theoretical problems such as doubling a cube—a distinction 

Fig. 14   Proposition 11 of Dio-
cles’s On burning mirrors

49  In other words, it is effectively a derivation of the “equation” for the curve traced by the linkage. Indeed, 
by rewriting AΘ ∶ ΘZ = ΘZ ∶ ΘB = ΘB ∶ ΘH as (r + x) ∶ ΘZ = ΘZ ∶ (r − x) = (r − x) ∶ y we get the 
equation for the cissoid y2(r + x) = (r − x)3.
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that later compilers could very well have failed to appreciate, and hence corrupted the text 
accordingly.

4.2.7 � Sporus and Pappus

The cube duplications by Sporus and Pappus are identical in construction. They reproduce 
the same final outcome as Dicoles’s in Fig. 13b, but they replace the use of the cissoid by 
an equivalent characterisation of the intersection point in terms of an equality of line seg-
ments (Fig. 15). This is to be found by trial and error, by varying the inclination of a ruler 
until the two segments are equal. Pappus, at least, is explicit about this being a trial-and-
error process with an actual ruler.

4.3 � Trisection

4.3.1 � Neusis Angle Trisections

Angles can be trisected if we allow neusis (Fig. 16)—that is, the ability to place a marked 
ruler in such a way that the marked segment fits precisely between two given curves, while 
the ruler is also passing through a given point.50 Angle trisection by neusis is shown in 
Fig. 17.

From an operationalist point of view, neusis is in many respects attractive. It is con-
crete and simple, uses only the most basic tools, and can be carried out with considerable 
precision.

But neusis has one major flaw, namely that the placement of the ruler is a trial-and-error 
process that is not exact and deterministic. We can put a nail at the given point and place 

Fig. 15   The cube duplication by 
Sporus and Pappus

50  Neusis is sometimes described as a “marked ruler” construction in contrast with the unmarked straight-
edge of Euclid. But this is a misleading way of putting it. The difficulty with neusis lies entirely in the trial-
and-error placement procedure discussed below, not in the marking of the ruler. Arguably, Elements I.2–3 
effectively show that we might as well consider even the Euclidean straightedge to be marked or markable, 
so marking is a non-issue.
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the ruler against it, and then arrange that the first marked point hits the first curve. But 
whether the end of the marked segment then hits the second curve or not cannot be guaran-
teed at the same time. Realistically, we must repeat the procedure over and over again until 
this outcome is reached, as far as we can judge by eye. There is no guarantee that we will 
ever hit upon the right position with this trial and error process, although we can keep mak-
ing improved guesses. Neusis is therefore approximative.

Figure 18 shows a variant neusis angle trisection associated (possibly spuriously) with 
Archimedes. In terms of operationalist foundational status, it comes to much the same 
thing as the previous neusis construction.

The weaknesses of the neusis angle trisection could be removed if it could be translated 
into a method that produced the sought point in one definitive position as the intersection 
of two curves, just as Euclid always finds points in his constructions as intersections of 
circles and lines. Nicomedes did precisely this. He devised an angle trisection of this type, 
assuming that, in addition to circles and lines, we also add to our construction arsenal the 
ability to draw conchoids. As shown in Fig. 19, a conchoid can be defined in a manner 
analogous to how Euclid defines a circle: it is the set of all points that stand in a certain 
distance relation to lines drawn from a particular point. But Nicomedes did not stop with 

Fig. 16   General neusis construc-
tion. By trial and error, the ruler 
is moved until the marked seg-
ment “clicks” into place between 
the two given curves

Fig. 17   Angle trisection by neusis

Fig. 18   The Archimedean angle trisection by neusis

Fig. 19   The conchoid of Nico-
medes
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that definition. Instead he proposed a physical tool (shown in Fig. 20) for tracing the curve. 
Figure 21 shows how to reproduce the angle trisection of Fig. 17 using Nicomedes’s tool.

Nicomedes’s angle trisection makes perfect sense from an operationalist point of view. 
He was clearly concerned with practical realisation with a physical instrument, as the 
sources explicitly say. He would also have been aware of the simple neusis construction, so 
evidently he considered his method to be an improvement upon it in some respect. I do not 
believe it makes any sense to take Nicomedes’s solution to be an improvement in terms of 
practical accuracy or utility. But from a more theoretical point of view, Nicomedes’s solu-
tion addresses exactly the foundational issues with simple neusis, namely the coordination 
of multiple conditions and the trial-and-error or approximative nature of the construction. 
Instead Nicomedes’s method produces the solution with a deterministic, single-motion pro-
cess, which, as we have seen, is operationally crucial.

One theoretical advantage of Nicomedes’s solution over the neusis ones is that it makes 
the existence of a solution more unquestionable. With neusis, the existence of a solution 
must be taken as intuitively obvious, even though, as we know, existence is a dangerous 
assumption when multiple simultaneous conditions are imposed, as in the case of the 
superright triangle of Sect.  2.1.3. By reducing the construction to a single, unequivocal 
generative process, Nicomedes’s solution effectively reduces the existence issue to a funda-
mental continuity assumption regarding the intersections of curves.

4.3.2 � Angle Multisection by the Quadratrix

The earliest specifically attested solution in Table 2 is Hippias’s trisection of an angle by 
the quadratrix. Actually the quadratrix enables any multisection of an angle just as easily 
as a trisection, as Hippias surely knew. None of the other angle trisections can do this. The 
other angle trisections are obviously favourable if we do not mind limiting ourselves to 
trisection only. The quadratrix is clearly overkill for this problem. But Hippias probably 

Fig. 20   Nicomedes’s instrument 
for drawing conchoids

Fig. 21   Nicomedes’s angle trisection by the conchoid
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knew this and introduced the quadratrix with the more general multisection problem in 
mind. For this purpose, it is most likely as good of a curve as one could hope for. One may 
even speculate that it was precisely because the quadratrix is so good for multisection that 
so many later Greek mathematicians focussed on trisection rather than multisection, having 
concluded that the quadratrix had effectively closed the field as far as general multisection 
is concerned, while there was still work to do on trisection since simpler methods are pos-
sible there.

The quadratrix (Fig. 22) solves the multisection problem in the simplest possible way 
(Fig.  23): to cut the angle associated with the ray QC into n equal pieces, simply drop 
the perpendicular from Q to the horizontal axis, then cut this segment into n equal pieces 
(which is readily done by ruler and compass; Elements VI.10), and find the points on the 
quadratrix with those y-values. The rays from the origin through these points define equal 
parts of the angle.

It seems quite evident, thus, that the quadratrix must have been conceived as an angle-
multisection curve; it can virtually be defined as the curve that translates n-section of a 
segment into n-section of an angle. Or for that matter, any time we can cut a segment into 
a given proportion, then with the help of the quadratrix we can also cut an angle into that 
same proportion, by precisely the same logic as above.

This perfect fit between the quadratrix and multisection suggests that Hippias arrived 
at this curve by “reasoning backwards,” asking himself what kind of curve would have 

Fig. 22   The quadratrix (of 
Hippias). C moves along the 
arc of a circle and Y along its 
vertical radius. Both points start 
at A and move at uniform speed 
in such a way as to reach the 
horizontal axis at the same time. 
The intersection Q generates the 
quadratrix

Fig. 23   Angle-trisection using 
the quadratrix
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the property that if you multisect its ordinate then you multisect the corresponding angle. 
Only then, I imagine, would he have tried to make the curve so defined more concrete by 
characterising it in terms of some kind of construction. We should keep this in mind when 
we evaluate the constructive status of the curve. According to my thesis, the Greeks were 
already at this point committed operationalists obsessed with constructions as the only 
legitimate way to introduce geometrical entities. The quadratrix may at first sight appear 
to weigh against this thesis, since its definition is quite abstract and does not readily corre-
spond to constructive generation in the real world. Indeed, the quadratrix is not the kind of 
thing one would arrive at by trying to come up with constructions that go a bit beyond ruler 
and compass but are still as acceptable as possible from an operationalist point of view. 
There are clearly better options for that.

But this does not prove that Hippias had no interest in operationalism. If anything, Hip-
pias must have had an interest in operationalism, because the quadratrix is not interest-
ing otherwise. The quadratrix only makes sense as a solution to a theoretical interest in 
angle multisection as a well-defined and crystalised foundational research problem. For the 
purposes of any kind of applied or intuitive geometry, or any non-constructive (Platonic) 
theoretical geometry, the quadratrix serves no purpose. Someone not interested in opera-
tionalism would have no incentive to spend so much effort studying this complicated curve.

The quadratrix was not conceived by starting from the question of what would be the 
most acceptable form of construction, but from starting from a curve defined as the curve 
that would accomplish the geometer’s dream of directly converting cutting a line segment 
into any ratio into cutting an angle in that same ratio. Keeping this in mind, the classical 
definition of the quadratrix is as operational as it can be under the circumstances. It would 
have been easy, for someone not concerned with operationalism, to define the curve as 
the set of all points with a certain property (viz., the set of all points (�, y) such that y is 
proportional to � , which is readily stated in Greek mathematical language in terms of arc 
lengths etc.). Instead we find a preference for the much more operationalist characterisation 
in terms of motions.

The motion definition of the quadratrix is well conceived for the purposes of analysing 
its possible constructive generation. It immediately suggests an instrumental construction 
like that shown in Fig. 24. This is a perfectly good operationalist constructions, provided 
that we accept the cogwheel principle that arc length can be translated into rectilinear dis-
placement. This assumption is a fairly big ask, whose accuracy and practical viability can 
be questioned. But it is an assumption that fits naturally in an operationalist framework. 
Whether it should be operationally accepted is debatable, but that it is operationally mean-
ingful is clear.

An equivalent way of generating the quadratrix, which uses strings instead of cog-
wheels, is shown in Fig. 25. Foundationally, it comes to the same thing as the cogwheel 
method: the fundamental principle in both cases is the intertranslatability of circular arc 
and straight line, or rotation and rectilinear displacement. In both cases, this is achieved by 
a circle being in one-to-one contact with a straight line as it rotates. I shall frame my analy-
sis below in terms of the cogwheel construction, but because of this essential equivalence 
the same conclusions apply in the string generation case.

The cogwheel way of generating the quadratrix does not fully solve the issue of the 
coordination of the motions. It shows how rotational motion can be translated into pro-
portional rectilinear motion, but we still have to address the issue of how to achieve a par-
ticular ratio of the speeds of the two motions. If the cogwheel has radius r, the vertical 
displacement for a rotation arc of � is �r . To obtain the quadratrix as defined above, we 
need a displacement of 1 to go with a rotation of �

2
 , so we need to make r = 2

�
 . So the 
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machine cannot be constructed without first knowing � , or in other words the rectification 
of a circle.

Whether such a prior knowledge of � is inherently necessary for the setup of the quad-
ratrix is debatable. In the semi-polar coordinate system (�, y) , the quadratrix (inscribed in a 
unit circle) has the equation (�, 2�

�
) , since it starts at (�, y) = (

�

2
, 1) and goes to (�, y) = (0, 0) 

with proportional speeds in the � and y directions. But it is not this occurrence of � that 
causes the issue. We could just as well have considered the curve (�, y) = (�, a�) for any 

(b)(a)

Fig. 24   Generating the quadratrix mechanically. a If hollowed rulers could be made to move at the right 
speeds, they could force a pen to trace the curve. But how can we ensure that the motions of the rulers are 
suitably coordinated? b Coordinating the motions using a cogwheel mechanism. The length of arc turned 
by the wheel attached to the radial ruler is translated into an equal vertical displacement of the horizontal 
ruler

Fig. 25   String-based generation 
of the quadratrix. (Suardi, 1752, 
Plate II, Figure 5)
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a. Any such curve achieves the same goal in terms of multisection in just the same way as 
above.51

For instance, if we take a = 1 we can use a unit-circle cogwheel, so we no longer need 
to know � for that part of the setup. It is true that now instead the point on the vertical axis 
is (�, y) = (

�

2
,
�

2
) , so if we wanted to trace the curve from above to below we would have to 

first mark off the length �
2
 on the y-axis before we can set up the machine, and hence need 

to know � after all. So this does not actually simplify the setup and we might as well stick 
with the traditional form of the quadratrix.

If the quadratrix is conceived more abstractly in terms of lines rather than physical rul-
ers, one could argue that the dependence on � can be avoided. For instead of tracing the 
curve from its top position downwards, we could start with the two rulers in their horizon-
tal position and trace the curve from the bottom up. We could then get the intersection with 
the vertical axis for free, so that no part of the setup depended on prior knowledge of � 
(Bos, 2001, 43). As long as we can assume that the two motions are uniform, this produces 
a curve of the form (�, y) = (�, a�) . It is not necessary to ensure that the two speeds are in 
a particular ratio, only that they are both uniform. Only after the motion is completed can 
we draw the circle whose arc the quadratrix can multisect. So we cannot custom-make a 
quadratrix so defined to a particular arc of a given radius. But this is not a problem. If I 
can multisect any arc of a reference circle, I can multisect any arc of some other circle. For 
instance, I can use Elements I.23 to move any angle into the reference circle drawn about 
the quadratrix, then multisect it there, and then move it back again.

But this scheme is a bit more problematic than the original, �-dependent one in terms 
of realisation by rulers and a moving pen. For if the pen is in the wrong position when the 
two rulers are in their horizontal position, this will prevent the machine from turning at all. 
Hence for the sake of this instrumental generation we are dependent on specifically deter-
mining a starting point after all, which must involve � as above.

In a sense the dependence on � is not a problem, because it can be resolved without any 
additional assumptions. As Fig. 26 shows, the cogwheel assumptions we needed to gener-
ate the quadratrix can just as easily be used to generate � in an obvious way. So the setup 
of the quadratrix machine can be done by the same tools that are required for its operation 
once set up.

Fig. 26   The cogwheel principle implies the constructibility of �

51  This was surely well understood in antiquity. One may even speculate that it could be why Proclus 
speaks of “the quadratrices of Hippias” in the plural (Heath, 1981a, 225–226).
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This further limits the appeal of the more abstract, supposedly �-independent generation 
of the quadratrix. For what it accomplished was the avoidance on � in setting up the line 
segments needed to produce the configuration, while retaining the assumption that the two 
motions can somehow be ensured to be uniform. But as Fig. 26 shows, the line segment 
issue is arguably no issue for the instrumental generation either; rather, the coordination 
of the motions is the core issue, and the principle used to solve it (the cog wheel) elimi-
nates the line segment issue as a separate point. Thus the more abstract generation has only 
succeeded in eliminating a minor issue, while doing nothing to solve the real crux of the 
matter, which it simply avoids by making the uniformity of the motions a mere stipula-
tion without any indication of how such a thing can be realised. For these reasons I do not 
regard this abstract generation of the quadratrix as altering the fundamental �-dependence 
of the curve.

4.4 � Conic Sections

4.4.1 � Uses of Conic Sections to Solve Construction Problems

Cube duplication and angle trisection can be reduced to conic sections in a variety of ways, 
as seen in Table 2 and summarised in modern form in Figs. 27, 28 and 29. The construc-
tion in Fig.  27a, using a parabola and a hyperbola, seems to be Menaechmus’s original 
solution, which quite possibly occasioned the introduction of conics sections in Greek 
geometry altogether. Unfortunately there are many question marks regarding the attribution 
and dating of the remaining conic section solutions to the classical problems. For example, 
the cube duplication by two parabolas (Fig. 27b) has often been attributed to Menaechmus, 
since Eutocius presents it right after the one he explicitly credits to Menaechmus, without 
any indication that it is from another author. On the other hand, this solution by two parab-
olas occurs in Diocles, in a way that could be seen as suggesting originality (Toomer, 1976, 
170). Both possibilities are perfectly plausible, even though these authors are a century and 
a half apart. Similar uncertainty attaches to the other conic section solutions.

I shall offer an operationalist interpretation of the conic section tradition that is in my 
opinion satisfying from an internalist mathematical point of view. I shall reconstruct two 
distinct tracks, each of which is squarely operationalist and prominently concerned with 
the instrumental generation of conic sections. I consider it plausible that these ideas were 
indeed prominent in the minds of Greek mathematicians. This is perfectly consistent with 
the historical record, but admittedly so are many other hypotheses since the record is so 
incomplete.

4.4.2 � Generation by Conic Compass

Conic sections can be operationalised by means of the generalised compass shown in 
Fig.  30. This “conic” (or “perfect”) compass is discussed in a number of medieval Ara-
bic sources.52 Eutocius’s text also makes a vague allusion to a “compass” for drawing 

52  Hogendijk (1985, 36), Martines (2014, 297) and Rashed (2003). At least one of these authors, al-Sijzi, 
attached foundational importance to its single-motion character, contrasting this with “non-measurable” 
curves such as the cylindrical helix which is generated by double motion (Rashed, 2003, 31–34).
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Fig. 27   Two cube duplications by conics sections

Fig. 28   Angle trisection by conics. Unattributed solution that recreates the neusis configuration of Fig. 17 
by means of the intersection of a hyperbola and a circle

Fig. 29   Angle trisection by con-
ics without preliminary reduction 
to neusis. The hyperbola trisects 
the arc of the circle above the 
x-axis. The two solutions in 
Pappus Collection IV.34 both 
produce this hyperbola, but char-
acterise it in different terms
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parabolas,53 which could plausibly be a reference to this instrument. In fact, this method 
of generating a conic section can be considered virtually implicit in the definition of a cone 
as the rotation of a line about an axis. This is effectively the definition used by Euclid Ele-
ments XI, Definition 18: “When a right triangle with one side of those about the right angle 
remains fixed is carried round and restored again to the same position from which it began 
to be moved, the figure so comprehended is a cone.” Note that the conic compass interpre-
tation of this definition is completely analogous to how we interpreted surfaces as moving 
curves in Sect. 4.2.1.

Eratosthenes says that Menaechmus not only “wrote demonstratively” on the duplica-
tion of a cube by conics, but also showed “how to practically do this by hand” (Netz, 2004, 
294–295). We do not know what this method of Menaechmus’s was, but I think the conic 
compass is the likeliest candidate (cf. Sect. 4.6.7).

All conics used to solve the classical problems are readily produced by the conic com-
pass. Table 3 shows how the conic compass can be set up to produce each of them.54 As 
we see, the parameters needed to calibrate the conic compass in all of these cases are con-
structible by ruler and compass (since they involve only the four arithmetical operations and 
square roots), so there is no circular reasoning or other non-performable demands involved.

Fig. 30   Generalised compass for drawing conic sections. The angle � and the direction of the axis AB are 
fixed. As the other leg rotates around the axis, the pen slides up and down in its cylinder, so as to always 
reach the plane

Table 3   How to calibrate the conic compass of Fig. 30 to produce the conic sections used in the solutions 
of the classical problems

P
0

h A

Parabola ky = x2 used in Fig. 27 (0, 0) k/2 (0, h)
Hyperbola xy = k2 used in Fig. 27 (k, k) k (2k, 2k)
Hyperbola x(m − y) = m used in Fig. 28 (m,m −

√

m)
√

m (2
√

m,m − 2
√

m)

Hyperbola used in Fig. 29 (X/3, 0) X (X∕3 + 2X, 0)

54  All of these results can be verified using the method explained in Blåsjö (2016, 287).

53  “The parabola is drawn by the compass invented by our teacher, Isidore the Milesian mechanician” (Netz, 
2004, 290). This particular attribution would place the invention of the conic compass centuries later than my 
hypothesis would have it, but the author of this remark (which appears to be not Eutocius himself but a later 
editor Netz (2004, 290) and Knorr (1989, 99)] could likely have had imperfect knowledge of the earlier tradi-
tion; or been motivated more by loyalty to their teacher than an objective commitment to historical accuracy; 
or knowledge of the conic compass was lost and then independently rediscovered by Isidore (such independent 
discovery would speak to the naturalness of the idea of the conic compass). When al-Sijzi introduces the conic 
compass, he mentions Eutocius’s allusion as a source of inspiration (Rashed, 2004, 284).
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As this reconstruction suggests, an easy and natural way to set up the conic compass is to 
specify its parameters in terms of an initial position where the pen arm is perpendicular to 
the plane. Strikingly, this corresponds exactly to an otherwise peculiar oddity of the early his-
tory of conic sections, namely that conic sections were defined as the intersection of a cone 
with a plane perpendicular to its side.55 This is reflected in the very names for conic sections 
used before Apollonius, for instance in the works of Archimedes. There, ellipse, parabola, and 
hyperbola are called, respectively, “section of an acute-angled cone,” “section of a right-angled 
cone,” and “section of an obtuse-angled cone.” This restriction to always assume the cutting 
plane to be perpendicular to the side at first appears artificial and strange. Why not any plane, 
since they all yield conic sections? This mystery can be explained by the hypothesis that it is 
due to thinking in terms of the conic compass. All conic sections generated by the conic com-
pass in the manner I have indicated, with the pen arm initially in perpendicular position, are 
indeed of the type assumed in the old theory of conics. If one thinks of conics as cones sliced 
by a plane, then the natural way to characterise parabolas are as those intersections obtained 
when the cutting plane is parallel to the side of the cone. But if one thinks of conics in terms of 
the conic compass, it is natural to instead characterise parabolas as precisely those curves one 
obtains when � = 45◦ , that it to say when the total cone angle 2� is right, so that we are cutting 
a right-angled cone. The curve drawn by a conic compass with perpendicular initial position 
of the pen arm is a parabola if and only if 2� is right (in this case the pen arm is in a horizontal 
position precisely once in the course of a full rotation, pointing toward the “point at infinity” 
of the parabola). It is suggestive at the very least that the early terminology of conics, which is 
otherwise mysterious, fits so naturally with the conic compass point of view.

Apollonius’s Conics marked a departure from tradition. Right away in his Definition 1, 
Apollonius uses a more general definition of a cone; in effect: the figure generated when 
one point on a line remains fixed, while another point on the line moves along a circle. This 
includes “skew” or “oblique” cones (Definition 3) that are not cones by Euclid’s definition 
and hence do not correspond to the surface generated by the pen arm of the conic compass 
of Fig. 30. Nevertheless, as Apollonius showed, the sections of skew cones are not more 
general; they can all be obtained as sections of Euclidean cones and by the conic compass. 
From an operationalist point of view, it is problematic to specify a conic as a section of an 
oblique cone, because how could such a section be actualised or constructed?

It is striking, therefore, that when Apollonius sets out to actually construct conics with 
given properties (I.52–60), he expressly uses only non-oblique cones. “The cone will be a 
right cone,” i.e. non-oblique, he explicitly proves in each construction. That is to say, Apol-
lonius solves the problem of constructing a conic with certain given properties, by show-
ing how to—constructively from those givens—determine a right cone that has the desired 
conic as a section. These are the constructions that are the basis for introducing conic sec-
tions with given properties into mathematical arguments, analogously to how Euclid’s pos-
tulates allow the introduction of lines and circles, or Elements I.46 allows the introduction 
of a square with a given side. Because Apollonius specifically uses only right cones in 
these constructions, they are effectively recipes for how to draw these conic sections using 
the conic compass. The way in which Apollonius derives the specifications of the cone 
needed from the givens effectively corresponds to adding more entries to our Table 3.56

55  This connection was first suggested, very briefly, in Blåsjö (2016, 287).
56  Apollonius’s choice of cones is not the same as those I used above, since he does not place the ver-
tex of the cone perpendicularly above the starting points of the conics he is tracing. It is possible that the 
early theory of conics used the simplest case of a perpendicular starting point, while Apollonius desired to 
abstract away from this for the sake of generality. Indeed, Apollonius’s constructions produce not only one 
cone but an infinite family of cones that solve each construction problem.
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In summary, the hypothesis that the early Greek theory of conics was based on the conic 
compass is supported by: its continuity with other constructions in the problem tradition; 
its striking fit with the early terminology of conics; its suitability for generating all the 
conics actually used in solutions of the classical problems in a convenient way; the fact 
that Apollonius’s construction propositions—which were the basis for how conics were 
introduced into mathematical arguments not only in his own works but e.g. in Pappus and 
elsewhere (Bos, 2001, 51)—effectively amount to concrete recipes for how to calibrate and 
position the conic compass in order to actually draw the desired conic.

4.4.3 � Generation by Strings

The conic compass way of generating conics is, I claim, a natural way to operationalise the 
mainstream Greek theory of conics. But the Greek corpus also contains traces of a second 
approach. When Pappus introduces the hyperbola of Fig.  29, he does so in the kinds of 
standard terms that I propose should be operationalised by the conic compass. Interest-
ingly, however, Pappus then goes on to say that “some” do it “another way,” and gives a 
second construction in which the same hyperbola is introduced in terms of its focus, direc-
trix, and eccentricity. This points to a fundamentally distinct approach to conic sections, 
of which only scattered bits survive from Greek times. The other traces are a passage else-
where in Pappus that suggests that the basic focus-directrix characterisation of conics was 
involved in some way in a lost work by Euclid (Jones, 1986, 593–595), and a clear discus-
sion of the focus-directrix property of parabolas by Diocles (On burning mirrors, Props. 4, 
10; Toomer, 1976, 16–17).

Characterising conic sections in terms of their focal points leads naturally to an alterna-
tive way of generating them, namely by means of rulers and strings, in the manner indi-
cated in Figs. 31 and 32. These constructions are not found in Greek sources. But Pappus’s 
and Diocles’s use of conics defined in focus-directrix terms to solve the cube duplication 
problem only makes sense if conics with prescribed focus-directrix properties can be con-
structed. Seeing as so many other solutions of this problem in Greek sources are explicitly 
concerned with instrumental generation, it makes little sense that these solutions would 
disregard the same issue in the case of these conics. The string constructions of Fig. 32 are 
so natural that it is hard to imagine how they could fail to suggest themselves to mathema-
ticians concerned with such matters. They fit well in the Greek context.

From an operationalist point of view, the following hypothesis makes a lot of sense: 
whoever first made substantial use of the focus-directrix characterisation of the parabola 
also realised that this translates into an alternative way of tracing the curve (as in Fig. 31), 
and used this to solve the cube duplication problem in a new way (as in Fig. 27b). This 
could explain why there are two solutions in Fig. 27. Why solve the problem by conics in 
two very similar ways? Why this seemingly pointless redundancy? If one’s means of gen-
erating conics work just as well for hyperbolas as parabolas, there seems to be little reason 
to seek a solution in terms of parabolas only. Indeed, if one uses the conic compass to 
produce the curves of Fig. 27, there is little reason to favour one over the other, especially 
since the parabolas have different steepness and hence require the compass to be recali-
brated anyway (as detailed in Table 3). But if the curves are to be generated by the string 
methods of Fig. 32, then it becomes more attractive to work with parabolas only, as this 
leads to a simpler and more unified construction procedure.

Let us see this in more detail by spelling out how to reproduce the two solutions of 
Fig. 27 using string procedures. It is clear from Fig. 31 that it is straightforward to produce 
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the parabolas of Fig. 27b in this manner. If we instead want to produce Fig. 27a some more 
work is needed. The parabola is the same as one of the above, but the other curve needed, 
the hyperbola, is no longer a trivial variation of the same construction procedure. Not only is 
a somewhat different instrument needed, but the string calibration is more involved as well. 
The focal points of the hyperbola are (2, 2) and (− 2,− 2) , and the string length needs to 
be calibrated so that CE = 2(

√

2 − 1) . Clearly this is rather more elaborate than the parab-
ola–parabola setup of Fig.  27b. Hence it makes sense that a mathematician who favours 
a focus-directrix approach to conic sections, and therefore their generation by strings, will 
also favour the second of the two solutions in Fig. 27. This would explain why Menaechmus 
(who I hypothesise used the conic compass) gave the solution of Fig. 27a, while Diocles 
(who uses a focus-directrix approach) gives the parabola–parabola solution of Fig. 27b.

Fig. 31   String-based generation of parabolas, such as those of Fig. 27. The vertical ruler moves with its foot 
along the directrix. The thick line FP + PR is a string of constant length with its endpoints fixed at F and R. 
The string is kept taut by a pen at P. The pen point P traces the parabola with the focus-directrix property 
DP = FP

Fig. 32   String-based generation of conics with given focal points. From Frans van Schooten De Organ-
ica Conicarum Sectionum in Plano Descriptione Tractatus (1646). a Ellipse with focal points H, I, and 
defining property HE + EI = constant. Middle: Parabola with focus B, directix GE, and defining property 
BD + DG = constant (where G is the point perpendicularly below D). The ruler GI is moveable but always 
perpendicular to GE. The string IDB has constant length. b Hyperbola with focal points C, F, and defining 
property Fc − Cc = constant. The string NcC has constant length
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The fact that the focus-directrix theory and the parabola–parabola solution go together 
in Diocles’s treatise gives some support to this hypothesis. But, unfortunately, beyond this 
the source evidence does not directly support this reconstruction, but rather directly con-
tradicts it. Diocles’s treatise—or what is supposedly his treatise, which is only preserved 
in a corrupted Arabic version—is clear on how parabolas are to be generated, namely by 
producing lots of points on it by ruler and compass, and then fitting a curve through these 
points. Thus “we mark numerous points ...and bend along the resultant points a ruler made 
of horn” (Toomer, 1976, 66), or we “mark many points close to each other” and “draw with 
the curved ruler a line passing through ...points marked in this way” (Toomer, 1976, 92). 
It is not known what kind of instrument exactly this mysterious curved or flexible ruler 
is supposed to be (Toomer, 1976, 159–160). Diocles uses it also for the cissoid (Toomer, 
1976, 100), so it cannot be specific to conic sections. Obviously there is no such general-
purpose curve-fitting instrument that has any mathematical substance. The curve is simply 
interpolated in a naive way, evidently.

In my opinion, it makes no sense to claim (as Diocles’s text explicitly does) to “solve” 
the cube duplication problem by assuming “curves” that are defined as interpolated from a 
set of points. Such a “solution” obviously comes down to pure trial and error and eyeball-
ing: construct a point on each curve, see which way you need to adjust it to get closer to an 
intersection, repeat. As we know, the point of intersection itself cannot be constructed by 
ruler and compass, so the process can only close in on the point with arbitrarily good preci-
sion but never reach it. So eventually one must estimate the point of intersection. Count-
ing this as a “solution” is obviously inconsistent with the core assumptions in the Greek 
construction problem tradition. It is evident that virtually any problem one can think of, 
including for example the quadrature of the circle, can be “solved” in this sense of gradual 
approximation. It is obvious that this was clearly dismissed out of hand as completely unac-
ceptable by the vast majority of Greek mathematicians, or else the tradition of solutions to 
the three classical construction problems would have looked unrecognisably different.

So the approximate, pointwise construction is worth nothing. The naive interpolation by 
some mysterious bendable “ruler” also lacks value and purpose. The one and only purpose 
of the parabolas, as far as duplicating the cube is concerned, is to find the point of intersec-
tion. This is done by constructing points as close to the intersection as possible, perhaps 
on both sides of the intersection. The location of the intersection can then be estimated 
from these points, either by connecting the two points nearest the intersection, or, more 
realistically if precision is desired, by constructing gradually better points until they are 
so close that there is no significant gap left between them. Tracing the entire parabolas is 
useless for these purposes, as is constructing any points on the parabolas other than those 
that approximate the intersection. These things serve no mathematical or practical purpose 
whatsoever.57 It is therefore conceptually nonsensical to express this so-called “solution” to 
the problem in terms of tracing parabolas. In fact, it follows that if Diocles’s solution is a 
solution to the cube duplication problem at all, it is a solution by ruler and compass, since 
everything of any mathematical substance in the solution is done entirely by ruler and com-
pass, and the allusion to parabolas is purely cosmetic and gratuitous.

I therefore feel that this aspect of the solutions in “Diocles’s” text must be due to an 
author who did not understand and did not fit into the ancient Greek geometrical tradi-
tion. Presumably this was not Diocles himself but some later editor. We know for a fact 

57  This is similar to the point I made above in Sect. 4.2.6 with respect to the use of the cissoid in the same 
treatise.
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on independent grounds that the text is obviously corrupt in numerous respects, including 
several entire passages of trivial and erroneous reasoning that could not possibly be due 
to a mathematician of any competence and sophistication (Toomer, 1976, 31). It is even 
easy to imagine how such a corruption might have occurred. For the pointwise construc-
tion of parabolas does make sense for the sake of practically constructing parabola cutouts 
for practical uses such as constructing burning mirrors, which is exactly how Diocles first 
uses such constructions in his treatise (Toomer, 1976, 66). Possibly Diocles included this 
method for such purposes only, and some later compiler figured he could shortcut later 
proofs by allowing this method in the geometrical arguments as well, even though that is 
conceptually incoherent.

Another argument for the implausibility of “Diocles’s” method being part of the Greek 
tradition proper is the following. The pointwise, ruler-and-compass construction of any 
number of points on the parabolas in Fig. 27b is immediately obvious from the core alge-
braic property py = x2 of the parabola. This property was by all indications recognised as 
central, or in fact more likely taken as the very essence of parabolas, from the inception of 
conic section theory, as the solution in Fig. 27a suggests. It was in any case well entrenched 
by the time of Apollonius. So why does Diocles construct points on the parabola by the 
focus-directrix property? This accomplishes nothing that could not easily be done with-
out focus-directrix theory. So this would make it seem as if Diocles is merely reworking 
in a different language a type of solution that had been readily available (and evidently 
not accepted) for a long time. If the focus-directrix property is associated with string gen-
eration, on the other hand, then Diocles is offering a fundamentally new construction and 
solution of the problem.

For these reasons I think it is not implausible to hypothesise that Diocles (or whoever 
it was who first proposed to duplicate the cube by two parabolas defined in terms of focus 
and directrix) meant the parabolas to be constructed by the string-and-ruler method, which 
is a continuous, single-motion mechanism that fits well in the Greek tradition as I have 
construed it. This makes perfect sense of his method, and entails that he made a meaning-
ful contribution to the problem-solving tradition rather than offered a solution that is con-
ceptually naive and fundamentally inconsistent with the tradition in several key respects.

Let us consider now the other attested solution to a classical construction problems 
by conics that involves focal language. As mentioned above, this is the hyperbola of 
Fig.  29, which Pappus says “some” characterise in a way that amounts to specifying its 
focus, directrix, and eccentricity. Interestingly, this does not correspond to the nowadays 
most well-known approach to hyperbolas via their focal properties, namely that shown in 
Fig. 32. Instead, the natural way of reconstructing an implied construction seems to be that 
of Fig. 33. As we see, this particular setup is well suited for generation by strings. Thus, in 
this case as well as in the parabola case, the uses of focus-directrix conics in solutions to 
the classical problems lend themselves well to concrete physical realisation by strings.

4.5 � Circle Quadratures

4.5.1 � Quadratrix

The quadratrix of Fig. 22 can be used to square the circle because it intersects the horizon-
tal axis at x-coordinate 2∕� . However, this is a deeply unsatisfactory way of accomplishing 
the quadrature of a circle for obvious reasons. One issue is that the point of intersection 
with the x-axis is only a limit point, and not actually part of the definition of the curve, 
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regardless of whether we consider it defined as a point set or in terms of moving rulers. 
But more importantly, the quadratrix can only be produced, as we have seen, by tools that 
already imply the ability to produce � in much more straightforward ways. It makes little 
sense to consider the quadratrix to be somehow given yet � not be; rather, constructing � is 
a prerequisite for producing the quadratrix.

Pappus reports precisely this critique: the quadratrix quadrature of the circle “takes into 
the assumption the very thing for which it seems to be useful. ...For how is it possible [that 
the two motions] come to a halt at the same time, unless the ratio of the straight line ...to 
the arc ...is known beforehand? For the velocities of the motions must be in this ratio, also” 
(Sefrin-Weis, 2010, 132). Pappus cites Sporus as his source for this critique. However, it 
is difficult to imagine that this obvious objection was not recognised much earlier; indeed 
from the very outset of serious work on the quadratrix.

Since the drawbacks of the quadratrix in this regard are so blatant, I find it difficult to 
believe that it would ever have been considered a viable solution to circle quadrature. An 
alternative interpretation would be as follows. When the quadratrix was shown to imply 
circle quadrature (whether this was done by Dinostratus or Hippias himself or whoever it 
may have been), the point was not to propose this as a solution to circle quadrature but to 
illuminate the foundational assumptions involved in admitting the quadratrix, somewhat as 
follows.

We saw above that the quadratrix can be constructively generated if we assume the cog-
wheel principle. It may reasonably be felt that this is asking quite a lot. It would be reason-
able to inquire whether one could avoid this big assumption and instead produce the curve 

Fig. 33   String-based generation 
of hyperbolas with eccentricity 
2, such as that of Fig. 29. The 
horizontal ruler moves with its 
foot along the directrix. The 
thick line FP + PR + RP is a 
string of constant length with its 
endpoints fixed at F and P. The 
string is wrapped double around 
PR, so that, as PR decreases, FP 
increases by twice that length. 
The pen point P traces the hyper-
bola with the focus-directrix 
property FP = 2DP

Fig. 34   “The area of any circle is equal to a right-angled triangle in which one of the sides about the right 
angle is equal to the radius, and the other to the circumference of the circle.” (Archimedes, 2002, 91)
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by some simpler means. Proving that the quadratrix implies circle quadrature shows, in a 
sense, that there is no simpler way: not only is � necessary to produce the quadratrix in 
the particular manner shown above using cogwheels, but in fact any way of generating the 
quadratrix enables us to construct � . This justifies the cogwheel construction and suggests 
that no simpler construction is possible, since any other solution must have “ �-ness” in it 
somewhere as well. This is an interesting result that makes perfect sense in an operational-
ist context.

It is possible that this is all the classical mathematicians claimed with their investiga-
tions regarding the link between the quadratrix and circle quadrature, and that no one actu-
ally proposed that the quadratrix should be considered a viable way of squaring a circle. 
The supposed use of the quadratrix to the latter end is only mentioned by late commenta-
tors who could very well have been confused on this point and in any case give no his-
torical detail that would enable us to say anything definitive one way or the other (Heath, 
1981a, 225–226). The most puzzling thing, if we accept my interpretation, is how the name 
“quadratrix” got stuck to the curve. The curve is very well suited to angle multisection and 
poorly suited to circle quadrature, so it is quite evident that the former must be considered 
its real purpose.58 Perhaps it was only because the quadratrix is so excellent for multisec-
tion, and hence widely accepted and celebrated, that the on other grounds questionable idea 
of applying it to circle quadrature was even considered.

Hence my interpretation suggests that the name “quadratrix” must be due to some sort 
of confusion or mixup among later commentators, even though several of them use this 
name consistently. According to my interpretation, it would not have made sense for the 
classical mathematicians to use “quadratrix” as the primary name for the curve. It would, 
however, have made sense for them to say that the curve of Hippias is “a quadratrix”—that 
is, a curve that implies circle quadrature. Perhaps this later gave rise to some terminologi-
cal confusion. It is surely more plausible that later commentators misunderstood the point 
of the terminology than that the elementary and obvious objections to the quadratrix raised 
by Sporus were somehow missed by generations of first-rate mathematicians who worked 
on this curve many centuries earlier. Regarding the plausibility of the later tradition get-
ting names and labels wrong, one may note that the attribution of the cube duplication 
of Sect. 4.2.2 to Plato—which occurs in Eutocius, one of the best sources—is obviously 
extremely implausible and almost certainly a mistake.

4.5.2 � Archimedean Spiral

Archimedes proved the basic area result for a circle shown in Fig. 34, which implies that 
circle quadrature reduces to finding the circumference of a circle, or, in more modern alge-
braic terms, a line segment of length � . Archimedes also showed that the subtangent of an 
Archimedean spiral is such a line segment (Fig. 35). The Archimedean spiral is defined in 
terms of a combination of rectilinear and circular motions: a ray is rotating uniformly about 
its endpoint, while a point is moving outward along it at uniform radial speed. In other 
words, the Archimedean spiral has the equation r = a� in polar coordinates. It is interest-
ing that Archimedes defines his spiral in terms of motions and derives the locus property 

58  Knorr (1975, 84–85) also argues that the quadratrix was first devised for angle division.
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(essentially r = a� ) as a theorem,59 even though it is the latter rather than the former that 
is doing all the work in the subsequent proofs. Since Archimedes’s choice to nevertheless 
insist on a motion definition of the curve is not explicable on grounds internal to the techni-
cal arguments of the treatise, it must have been motivated by broader considerations—per-
haps operationalist ones, which would indeed explain a preference for motion, as noted in 
Sect. 4.6.3.

The operational status of the Archimedean spiral is comparable to that of the the quad-
ratrix. Like the quadratrix, it involves a coordination of circular and linear motion that can 
be accomplished by means of cogwheels (Fig. 36). But unlike the quadratrix, it does not 
have calibration issues that require the initial and final states of the machine to be coordi-
nated. As in the case of the quadratrix, cogwheel generation of the spiral is quite useless 
for circle quadrature purposes, since cogwheels alone can be used to square the circle in 
much simpler ways.

As in the case of the quadratrix, a string wrapping around a circle can be used in place 
of a cogwheel. Figure 37 shows how the Archimedean spiral can be generated in this way.60 
Again, the ability to wrap strings around a given circle, which is assumed here, is in itself 
sufficient to square the circle without the detour of drawing the spiral.

It is unclear how Archimedes intended tangents to be drawn.61 The fact that Archimedes 
does not address this may seem to indicate a willingness on his part to reason geometrically 
about entities simply supposed or imagined as opposed to actually constructed. However, 
there is reason to believe that Archimedes would not have accepted such a stance, expect 
perhaps with great regret and as a last resort. Indeed, when Greek geometers can construct 
tangents, rather than merely assume them, they do so, as Euclid does for the tangent of a 
circle in Elements III.16–17. In the Conics, Apollonius finds the tangent to a parabola by 
first constructing its point of intercept with the axis and then connecting that point to the 
given point of tangency (Fig. 38). To construct the spiral tangent in Fig. 35 in an analogous 
way clearly requires the circle quadrature problem to have been solved already. This does 
not appear to be what Archimedes intended, because if he meant this he ought to have 
stated the result as a construction problem for the tangent, rather than, as he in fact does, as 
a theorem establishing a property of the tangent.

Archimedes’s angle trisection by neusis (Sect. 4.3.1) also suggests an interest in actual 
construction, as opposed to reasoning abstractly about entities merely postulated. Surely 
Archimedes would not have been interested in angle trisection by neusis if it were not for 
the fact that neusis is an actualisable construction. For if one can just imagine things, then 
one can just imagine the third of an angle right away, making it pointless to imagine a neu-
sis construction for it. This suggests that Archimedes had an interest in actual construction 

Fig. 35   Archimedes’s circle 
quadrature by means of the 
tangent to the spiral after one full 
revolution. Area of triangle = 
area of circle

60  This construction was described by Huygens (Oeuvres, XI, 216).
61  As Crippa (2014, 95) notes, a number of later commentators tried to address this step, without reaching 
a satisfactory solution.

59  On spirals, Definition 1 and Proposition 14 respectively (Archimedes, 2002, 165, 167).
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in this context, thereby making it less likely that he was completely unconcerned with the 
issue in his work on spirals.

In any case, if the tangent to the spiral is to be used to square the circle, the tangent 
obviously needs to be constructed in some way that does not presupposes circle quadrature 
or rectification. How? I can see no good option. One can of course simply try to eyeball it 

Fig. 36   Generation of the Archimedean spiral by a cog mechanism. The cogwheel is rigidly attached (by 
an axis through its midpoint) to the plane underneath it. As the cogwheel rotates, it rotates the entire plane 
along with it, including the part of the spiral drawn so far. At the same time it pushes the cogged ruler 
(which is above the plane and does not move with it) and its attached pen by a horizontal displacement 
proportional to the angle turned. The cogwheel and ruler can be kept in an elevated plane so as to not inter-
fere with the pen’s motion in the plane. The pen point tracing the curve is aligned with the midpoint of the 
circular wheel. The rest of the pen should be regarded as above the plane in which the tracing takes place

Fig. 37   String-based generation 
of the Archimedean spiral. CC′ 
is a fixed circle with midpoint O. 
The ruler OR rotates around the 
fixed point O. The string CC′RP 
is fastened at the fixed point C 
and the moving pen point P, and 
it is wrapped around the moving 
ruler. The portion CC′ of the 
string wrapped around the circle 
equals OP. As the ruler turns, 
more and more of the string 
becomes wrapped around the 
circle, thereby pulling the pen 
P outwards in proportion to the 
angle turned
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with a ruler.62 Another possibility is to construct the secant line of the spiral through the 
point of tangency and a nearby point. By taking the nearby point sufficiently close to the 
point of tangency, the secant can be made to approximate the tangent with any desired 
degree of accuracy. This is obviously less satisfying than an exact construction.

Like the quadratrix, the Archimedean spiral is well suited for angle multisection. This is 
immediate from its equation r = a� : n-secting � is equivalent to n-secting r, which is easily 
done. Namely, given � , we have the associated r as a line segment. On this segment we can 
mark off r/n, and draw a circle through this point with midpoint (0, 0). This circle will cut 
the spiral in the point (r∕n, �∕n) , so the angle has been n-sected. Archimedes was surely 
well aware of this, although that is not made explicit in surviving sources.

4.5.3 � The Cylindrical Helix

The cylindrical helix is connected to circle quadrature by the result shown in Fig. 39. A 
cylindrical helix can be constructed in a number of ways. In terms of motion, it is the 
path of a point whose x and y coordinates trace an ordinary circle, while its z coordinate 
is increasing uniformly. So the helices on a unit cylinder are parametrised by x = cos t , 

Fig. 38   Tangent of a parabola. 
Apollonius Conics I.33

Fig. 39   Circle quadrature by tangent to a cylindrical helix. Drawn is the tangent of a cylindrical helix at the 
point on the helix one full revolution away from its starting point. The distance between the starting point 
of the helix and the point where this tangent line hits the ground plane is equal to the circumference of the 
base circle of the cylinder. The result is independent of the steepness of the helix

62  Leibniz, for one, seems to have considered this the method implied by Archimedes (Crippa, 2014, 416).
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y = sin t , z = at . Equivalently, a cylindrical helix is the path of a stretched string on the 
surface of the cylinder. Or again equivalently, if we cut a right triangle out of paper, and 
wrap it around the cylinder while keeping one leg along the base of the cylinder, then the 
hypothenuse traces a cylindrical helix.63

The definition in terms of motion makes the cylindrical helix closely related to the quad-
ratrix and the Archimedean spiral, so it is not surprising that it can be used to square the 
circle. But, interestingly, the other two constructions of the cylindrical helix circumvent the 
need for the difficult coordination of two motions. So a cylindrical helix can be physically 
realised in simple and concrete ways without assuming cogwheels. According to our analy-
sis, it was precisely the cogwheel assumption—or the coordination of the two motions—
that was the core issue making the quadratrix and the Archimedean spiral unsatisfactory as 
circle quadratures. So it seems a dream scenario that the cylindrical helix can accomplish 
the same goals as these curves while avoiding their biggest drawbacks.

Unfortunately, the issue of how to construct the tangent to the cylindrical helix remains. 
It is highly questionable whether this can be done in a satisfying way. In the case of the 
Archimedean spiral we mentioned the possibility of approximating the tangent by secants. 
This method is far from satisfying even in that case, and trying to use it on a three-dimen-
sional cylindrical helix is surely quite a nightmare, not least since we would have to pass 
lines through the interior of the cylinder.64 The construction of the cylindrical helix by 
wrapping a triangle suggests an alternative way: while keeping the vertical leg in place 
along the cylinder, unwrap the rest of the triangle again, until it is a flat triangle in the tan-
gent plane that contains the vertical leg. Then the hypothenuse in the unwrapped position is 
the tangent line of the cylindrical helix traced by the hypothenuse in the wrapped position. 
But then the subtangent used for circle quadrature is simply the straightened-out version 
of the horizontal leg of the triangle. This comes to the same thing as assuming the ability 
to wrap a piece of string around the cylinder and then straightening it out to produce the 
circumference as a line segment. Of course this assumption would immediately solve the 
quadrature problem by itself. So the whole business with the cylindrical helix is useless for 
quadrature purposes unless some other way of producing the tangent can be found.

The cylindrical helix has another interesting property, as the Greeks knew: it is the only 
“homeomeric” curve other than the line and circle (Acerbi, 2010a); that is, a curve, any 
part of which can be superimposed and fit perfectly anywhere else on the curve. In this way 
the helix can be construed as a natural next curve beyond the Euclidean ones, and one may 
be tempted to argue, as for example Galileo later did, that “the cylindrical helix, of which 
all parts are similar[,] ...therefore seems to belong among the simple lines” in addition to 
straight lines and circles (Galileo, 1953, 16). It is not known whether ancient mathemati-
cians shared this sentiment. From an operationalist point of view, the homeomeric property 
of the helix is not foundationally relevant.

4.5.4 � Cycloid

It is likely, though not documented, that Greek mathematicians considered the cycloid 
(Fig. 40). The idea of the curve is simple and suggests itself naturally in the Greek context, 
where many combinations of circular and rectilinear motions were investigated at length. 

63  This way of producing a cylindrical helix is discussed by Heron (Mancosu & Arana, 2010, 414–415).
64  Regarding the operationalism of three-dimensional geometry in general, see Sect. 5.2.1.



672	 V. Blåsjö 

1 3

It is also easy to see that the cycloid solves the quadrature of the circle,65 because the base 
segment b of the cycloid arch equals the circumference c of the generating circle. The area 
of the circle, cr/2, is readily constructed from there. Nevertheless, this solution does not 
seem to have been taken seriously by the great Greek geometers.

The reason for there being no surviving evidence that the Greeks studied the cycloid in 
connection with circle quadrature is most likely not that the failed to conceive of it, but that 
they dismissed it out of hand as obviously unsatisfactory. It is useful to understand what 
their reasons might have been for this.

First of all, rolling is a problematic notion. From an operationalist point of view, a 
mechanical or physical definition of a curve is of course not a problem at all, but rather a 
strength. So there is no problem with the cycloid in that regard. However, there is reason 
to believe that the particular mechanical generation involved here is especially unreliable. 
An indication of this is given by the wheel paradox, which was well known in antiquity 
(Drabkinl, 1950): while the circumference of the rolling circle is exactly equal to the base 
of the cycloid, a smaller concentric circle moving along with it covers the same horizontal 
distance with the same angular revolution, which means that it covers a base longer than its 
circumference. So a point on this inner circle does not trace a cycloid even though a point 
on the outer circle does. This is because the inner circle is not purely rolling, but is rather 
“slipping,” that it, it is being yanked ahead by the motion of the larger circle. This shows 
how easily there can be a miscoordination between the rectilinear and rotational motions in 
any attempt to draw a cycloid. If the motion of a point on this inner circle can be so easily 
distorted away from a cycloidal path, then how can we trust that a point on the outer circle 
itself is not suffering from similar issues? How can we know that the motion of the big cir-
cle is pure rolling and that there is no slipping involved?

Another line of critique is that the cycloid “solution” of the circle quadrature problem 
comes dangerously close to merely assuming the problem solved. What makes the cycloid 
solution work is not really the cycloid itself but only the base segment of it. So the solution 
is arguably more based on postulating that we can find a line segment equal to the circum-
ference of the circle (which obviously solves the problem), rather than any substantive use 
of the cycloid curve per se. Another way of putting it is that, by “unrolling” the circumfer-
ence of a circle, the cycloid solution basically amounts to assuming that we have a “meas-
uring tape” or that we can wrap strings around figures and straighten them out again. This 
is already achieved by the cogwheel principle of Fig. 26. Since the real work is done by 
this principle, smuggling it in indirectly via the cycloid serves little purpose.

Fig. 40   The cycloid is the curve 
traced by a point on a circle as 
that circle rolls on a straight line

65  This was observed for instance by Leonardo da Vinci (Magazu et al., 2019, 765).
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4.5.5 � Conclusion on Circle Quadratures

We have seen that the constructions involved in the recorded circle quadratures can be 
operationalised (at least except the drawing of tangents). Hence this work is in accord with 
operationalist principles such as only speaking of constructed objects. However, as quad-
ratures of the circle, none of these solutions are at all convincing, operationally speaking. 
This is because they can only be operationalised by effectively relying on some principle—
such as the wrapping and straightening of strings or measuring tapes, or cogwheels—that 
by itself leads to a much more direct and simple squaring of the circle in an obvious way. 
It is quite possible that the mathematicians of the golden age agreed with this, including 
Archimedes and Apollonius themselves. Archimedes says that “earlier geometers tried to 
[square the circle, but resorted to] assuming lemmas not easily conceded.”66 It is perfectly 
plausible that this assessment can be generalised to the entire Greek tradition of attempts 
at circle squaring, and that no serious geometer ever claimed to have solved the problem 
without “assuming lemmas not easily conceded.”

The constructions we have discussed above may not have been intended as actual solu-
tions of the circle quadrature problem but as stepping-stones in a research program explor-
ing this problem. The results shed light on foundational interrelations between various con-
struction assumptions. It is interesting to know that the ability to draw and take tangents 
of spirals or cylindrical helices implies the ability to square a circle. Such results fit into 
a broader program of classifying curves and problems according to their complexity and 
interrelations. Such results also suggest paths toward actual solutions of the circle quadra-
ture problem, since it is conceivable that some hitherto unforeseen instrument or mechani-
cal device could produce these curves in an operationally convincing way that avoided the 
dependence on circle-quadrature-equivalent assumptions. It is possible that the works in 
question by Archimedes, Apollonius, et al. did not claim more than this. It seems to me 
that, from an operationalist point of view, this is the interpretation that would make most 
sense.

According to this interpretation, circle quadrature would have had to have been con-
sidered provisionally “solved”—say by strings or cogwheels—in some sense, because that 
would be the only way in which speaking of a circle with area equal to a rectilinear fig-
ure could have any meaning from an operationalist point of view. However, there could 
very well have been widespread dissatisfaction with these provisional solutions, such as 
a sense that they assumed too much and trivialised the problem rather than solved it. For 
this reason it would still have made sense to keep looking for more operationally sound and 
restrictive ways of squaring the circle.

Nevertheless, it is possible to construe the sequence of proposed circle quadratures as 
progressing toward operational improvement. The spiral is operationally preferable to the 
quadratrix in that it removes the issues concerning initial state calibration and the use of a 
limit point of the constructed curve. But it still seems to need something like cogwheels for 
its construction, which is not ideal. The cylindrical helix constitutes progress in the sense 
that it is a curve that can be physically realised in simple ways that do not need such an 
assumption. Thus, although neither solution is fully satisfactory, they nevertheless make 
some sense within a research program attentive to operationalist concerns.

66  Heath (1897, 233). Archimedes contrasts this with his quadrature of the parabola. In no surviving source 
does he (or any other of the great Greek geometers) claim to have solved the circle quadrature problem.
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4.6 � Conclusions

Table 4 schematically summarises our discussion of how solutions to the three classical 
problems fare with respect to operationally important desiderata. The table covers all solu-
tion methods for which a source has survived. It evaluates these methods according to the 
criteria defined in Sect.  4.1.5. Naturally, my attempts at quantifying the extent to which 
these criteria are met are to be considered very rough indications. They are for crude over-
view purposes only. Nevertheless I think a global, comparative analysis of this entire cor-
pus taken together is essential. In this section I shall consider what conclusions can be 
drawn from such an analysis.

4.6.1 � Cohesion of the Classical Tradition

Operationalism enables us to view the classical problem tradition as a coherent enterprise 
based on a universally agreed and consistent foundational program. I have offered such a 
reading. No other hypothesis, to my knowledge, comes close to offering a unified expla-
nation of the classical problem tradition. Clearly there was considerable disagreement on 
whose solution was the best one, but this can plausibly be read as disagreements about 
whose solution better embodies the foundational ideals envisioned than as disagreements 
about those foundational ideals themselves. My operationalist reconstructions of the theory 
of conics and the solutions by Archytas and Diocles show that these can be readily and 
plausibly reconciled with the commitment to physical generation by moving instruments 
that is unequivocally prominent in the rest of the tradition. If these reconstructions are 
rejected, the classical problem tradition is much less conceptually coherent.

4.6.2 � Physicality of Geometry

The operationalist thesis that geometry takes place in the physical, as opposed to the men-
tal, world is well supported by the classical problem tradition. Half of the attested solution 
methods are explicitly and unequivocally physical in nature. In this way they are inconsist-
ent with Platonic or modern formalist conceptions of mathematics. It is plausible that the 
remaining solutions were intended as physical as well. This could have been evident to any 
reader without the need for formulations that make this completely explicit, just as physi-
cal realisability by ruler and compass is never explicit in the Elements but is nevertheless 
obvious. Chances are that the construction tradition would have been even more explicitly 
physical than Table 4 indicates if we had the original sources. Plutarch claims that Archy-
tas, Eudoxus, and Menaechmus doubled the cube “by instruments and mechanical con-
structions” (Thomas, 1939, 389; cf. Sect. 3.1.6). Yet none of these three solutions survive 
in a form that is explicitly physical.
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4.6.3 � Generation of Curves by Motion

The explicit use of motion to define curves in a large proportion of the solutions (Table 4) 
also makes a lot more sense from a physicalist or operationalist point of view, as opposed 
to a Platonic or formalistic one. Defining a curve by motions means defining it in terms of 
its generation, as opposed to in terms of its properties: an obvious operationalist advantage, 
as we have seen. The reference to motion in these constructions is easily avoidable: instead 
of speaking of the figure generated by such-and-such a motion, one can readily translate 
the same relation into a motion-free formulation—essentially “the set of all points such 
that … ”. Euclid’s definition of a circle is an example of the latter type of definition, so the 
option of using such definitions instead of motion would have been perfectly evident and 
established. The operationalist thesis, if accepted, explains why so many leading mathema-
ticians nevertheless deliberately opted for motion definitions.

4.6.4 � Determinate Realisability

The classical problem tradition shows frequent adherence to core operationalist principles, 
as seen in Table  4. It is unlikely that the record would be so consistent on realisability, 
single degree of freedom, definitive termination, and primitiveness if Greek geometers had 
not been deliberately and prominently concerned with these issues. For instance, the con-
choid was quite clearly conceived for the exact purpose of solving the degree of freedom 
and termination issues of simple neusis. We also see that deviations from operationalist 
desiderata are greater the harder the problem in question is,67 which indicates that such 
deviations were committed reluctantly.

4.6.5 � Practical Accuracy

The column regarding practical accuracy in Table 4 is a very rough indication only and 
should not be relied upon in any strict sense. I have marked construction schemes as hav-
ing questionable realisability and primitiveness when their setup involves tools or objects 
that can only be built in something like a carpenter’s workshop and not by simple everyday 
means. Typically, I have marked their practical accuracy as questionable as well in such 
cases, since it would typically require skilled craftsmanship to realise these construction 
schemes with any kind of accuracy. It is of course debatable to what extent something like 
a precision carpentry workshop should be considered at the disposal of the geometer.

Despite this caveat, it seems safe to conclude that practical accuracy of the solutions do 
not seem to have been a high priority in the classical problem tradition. Practical accuracy 
was surely valued but seems to have been clearly subordinated to more core concerns. The 
corpus of solutions seems consistent with the assumption that Greek geometers deliber-
ately sought the greatest possible practical accuracy only insofar as that did not interfere 
with the constraints imposed by the other foundational principles we have highlighted. 
Meanwhile, it is extremely difficult to imagine how this corpus of solutions could be the 
outcome of a quest for practically accurate solutions as a primary goal.

67  As indicated in the column for the degree of problem solves. Cf. Sect. 4.1.2. The circle quadrature solu-
tions (indicated as “degree ∞ ” since the problem is transcendental) are operationally even worse than the 
table conveys, for reasons discussed above.
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Realistically, my guess would be that tools such as the conchoid compass, conic com-
pass, or the cissoid, quadratrix, and Archytas machines (as I have reconstructed them) were 
never used to produce solutions of any practical accuracy to speak of. I and others have 
recreated these machines in a rough-and-ready way with common tools one can find in a 
hardware store. With such methods it is not generally realistic to get a trisection accuracy 
of more than, say, two degrees, or an approximation to 3

√

2 accurate to more than one or 
possibly two decimals at most. My guess would be that Greek mathematicians did this 
too.68 The accuracy could certainly be improved if one mobilised dedicated precision engi-
neering. However, my guess would be that the Greeks probably did not do this, nor was it 
their intention that it ever be done. However, they may very well have found it appealing 
and perhaps essential that it could be done in principle.

Indeed, the actual realisability of proposed constructions in principle is the essential 
thing from an operationalist point of view. Great practical accuracy can be seen as separate 
from most of the core tenets of operationalism.69 A construction can have the property 
of being eminently actualisable in a concrete way quite independently of accuracy ques-
tions. Of the core foundational motivations for operationalism in Sect.  2, only the false 
diagram issue is essentially dependent on accuracy. The other core tenets of operational-
ism remain in effect as long as practical execution of the construction is indeed possible, 
even if relatively crude. Furthermore, one could argue that the theoretical exactness and 
practical perfectability-in-principle of the classical construction machines make them in 
some sense more “exact” than methods (such as numerical and algebraic approximation 
algorithms) that more readily produce better approximations in practice but do not even in 
theory exhibit the perfect solution itself.

4.6.6 � Implications for Interpreting Euclid

Euclid’s Elements is ambiguous as to whether he has in mind ruler and compass, or if he 
is simply reasoning abstractly about lines and circles. But the classical problem tradition 
again and again favours concrete physical instruments even though more abstract accounts 
would have been perfectly possible. For instance, Nicomedes could have stopped at neusis, 
or he could have stopped at the point-set definition of the conchoid (which is so similar to 
Euclid’s definition of a circle), but evidently he thought his mechanical tracing device was 
the best way to go. Furthermore it is surely undeniable that the classical problem tradition 
was meant as a generalisation of the Euclidean program—an extension of the same founda-
tional ideals. Therefore, when so many of the best Greek geometers opt for solutions to the 
classical problems based on physical tools, this all but proves that they considered physical 
tools to have been the basis of Euclid’s geometrical program as well.

68  In favour of the plausibility that Greek geometers really did build their machines, one may mention 
not only the explicit physicality of several sources, but also the rich and longstanding connection between 
mathematics and engineering in antiquity. Archimedes famously engaged in a range of engineering projects 
(Dijksterhuis, 1987, 21–29) and Archytas reportedly constructed “a wooden dove that flew” [Berryman 
(2009, 96) that is, some kind of automaton contraption that used pneumatic or other mechanical principles 
to imitate a living bird], for example.
69  This conclusion has also been reached independently by modern operationalist philosophers of science, 
on grounds that have nothing to do with ancient geometry: “Concepts which are to be of value to the factual 
sciences must be definable by operations which are (1) logically consistent; (2) sufficiently definite (if pos-
sible, quantitatively precise); (3) empirically rooted, i.e., by procedural and, finally, ostensive links with the 
observable; (4) naturally and, preferably, technically possible; (5) intersubjective and repeatable.” (Feigl, 
1945, 258, emphasis added).
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This argument assumes that Nicomedes and others favoured the physical tools for foun-
dational reasons. It is true that the sources do not explicitly say that this is what the physi-
cal tools were for. But what else could their purpose have been? The questionable practical 
value of these tools suggest that they could hardly be used for anything but a theoretical, 
foundational purpose.

4.6.7 � Pointwise Constructions

I believe that mathematicians of the classical and Hellenistic eras rightly and universally 
rejected the notion of solving the classical construction problems by means of curves con-
structed pointwise. By a pointwise construction I mean an ostensible construction of a 
curve that is actually a construction of many individual points on the curve, one by one. 
I have argued above in Sects. 4.2.6 and 4.4.3 that such “constructions” make little sense 
conceptually. In modern terms, if the curve in question is y = f (x) , such constructions 
effectively amount to plugging in x-values into a formula f(x) and checking whether the 
resulting output solves the problem or not. By trial-and-error and improved guessing, one 
can come as close as one wishes to the desired solution this way. It serves no substantive 
purpose to pretend otherwise, and phrase such constructions in terms of the curve y = f (x) . 
All the actual work is done by the trial-and-error procedure and there is no sense in which 
interpolating a curve from a set of constructed points contributes anything of actual value 
toward the solution.

This is a profoundly different state of affairs from constructions in which the curve gen-
eration is primary, such as the conchoid, conics, quadratrix, etc. In these canonical con-
structions, the curve is generated by a process that is independent of x and y coordinates, 
and the curve so produced is then used to read off the x or y coordinates of certain intersec-
tion points. In the case of pointwise constructions, however, the curve is generated pre-
cisely by employing a relationship between x and y coordinates, yet the curve is still in 
these cases used to read off the x or y coordinates of certain intersection points. In this 
latter case, the reasoning is circular. It is nonsensical to use the curve to read off x-values 
since the curve was obtained by plugging in x-values in the first place. Any knowledge 
about x or y values in such a case comes solely from the trial-and-error pointwise process. 
It is therefore foundationally nonsensical to consider a curve given by a pointwise “con-
struction” to be in any way comparable to curves given by instruments.

Indeed, pointwise constructions occur in the classical tradition only once, in the solu-
tions associated with Diocles, and that can plausibly be due to corruption. I showed above 
that these solutions can readily be reinterpreted in a way that avoids reliance on pointwise 
constructions. These reconstructions are simple and would suggest themselves naturally 
to anyone with basic familiarity with the way curves are generated in the earlier Greek 
tradition. In Table 4, the pointwise Diocles constructions correspond to the conics focus-
directrix and cissoid entries. These rows would lose their single degree of freedom and 
definitive termination attributes if pointwise constructions are used instead of my recon-
structions. The strong adherence to these two attributes in other solutions makes it implau-
sible that they would have been gratuitously abandoned in the manner the corrupt Diocles 
manuscript would have it, when obvious ways of avoiding this clash with tradition were 
readily at hand.

Furthermore, if pointwise constructions were generally considered acceptable, it makes 
no sense that they would occur only in one source. Numerous other opportunities to use 
pointwise constructions would have readily suggested themselves to Greek geometers. For 
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instance, the quadratrix admits of a pointwise construction.70 The absence of any evidence 
that Greek mathematicians pursued those possibilities suggests that they did not consider 
this method of construction acceptable. Indeed, if pointwise constructions are accepted, 
then the division between Euclidean means and conic sections collapses, since conic sec-
tions can be constructed pointwise by ruler and compass. It is quite evident that the Greek 
tradition did not accept this conflation. Hence it cannot have accepted pointwise construc-
tions either.

I disagree with Knorr’s unconvincing speculation that pointwise constructions were in 
fact the primary conception of conic sections even to their originator Menaechmus him-
self (Knorr, 1975, 63, 1989, 117). Eratosthenes says that Menaechmus’s practical construc-
tion can only be done “with difficulty” (Netz, 2004, 295). This makes perfect sense as a 
description of the conic compass method, which is a challenge to build and operate as a 
physical instrument. It makes little sense, however, as a description of pointwise construc-
tion, which is not difficult at all, albeit potentially time-consuming.71

Indeed, the only precedence for pointwise constructions of conics that Knorr is able to 
cite are from Diocles (in the source discussed above) and passages in Eutocius and Anthe-
mius that are explicitly concerned with the practical generation of the curves for mechani-
cal purposes such as building burning mirrors. As discussed in Sect. 4.4.3, it makes perfect 
sense to use pointwise constructions for such practical purposes, as indeed Diocles also 
does. However, it would be foundationally naive and nonsensical, in my opinion, to take 
this to be a legitimate way of solving the classical construction problems. The historical 
record fits precisely this distinction that I have argued for on conceptual grounds. It is pre-
cisely and expressly for practical purposes only that we find the use of pointwise construc-
tions, not as solutions to the classical problems, except in the sole case of Diocles. And 
since this very work by Diocles discusses the practical generation of burning mirrors by 
a pointwise construction, one can readily imagine how later corruption could have let that 
methodology creep into the text of Diocles’s solutions of the classical problems as well, 
through the intervention of later editors with imperfect understanding of the classical prob-
lem tradition. This would have been a superficial corruption, since these solutions are so 
easily restored to a form that avoids this foundational naiveté.

4.6.8 � Numerical Methods

Numerical methods for approximating cube roots were known in antiquity (Thomas, 1939, 
60–63; Becker, 1957, 69–70; Heath, 1981b, 323–326). This immediately implies the abil-
ity to double the cube (or find two mean proportionals) numerically. But evidently Greek 
mathematicians considered this type of solution irrelevant to the classical problem tradi-
tion. Similarly, Archimedes’s Measurement of a Circle amounts to a numerical-approx-
imative solution (whose precision can be made arbitrarily high) to the circle quadrature 
problem, yet, as far as we can judge, Archimedes evidently did not consider this a solution, 

71  Given p, take x at will, and erect a perpendicular of length y such that py = x2 , or in other words 
p ∶ x = x ∶ y , which is readily done by Elements VI.11. Repeat for many x.

70  Clavius at one point enthusiastically accepted the quadratrix as a solution to the quadrature of the cir-
cle and other problems, on the grounds that it could be produced by a pointwise construction—a poorly 
conceived idea that would not have occurred to anyone with a proper familiarity with the Greek tradition 
(Mancosu, 1992, 93–96; Bos, 2001, Chapter 9). As Bos shows, Clavius was corrected by Lansbergen and 
later added qualifications to his claim. Clavius’s error is of the same kind as the unsustainable reasoning 
attributed to Diocles that I criticised in Sects. 4.2.6 and 4.4.3.
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but rather regarded his construction by means of the spiral as his contribution to the cir-
cle quadrature problem. At any rate, that is how the matter was interpreted by several late 
ancient commentators (Thomas, 1939, 335; Heath, 1897, xxxv).

This speaks to the foundational role of the construction problem tradition. If practical 
purposes were the goal, numerical methods would be very good and useful. But if, as I 
have claimed, the problem tradition is part of a philosophical program to ground the foun-
dations of all mathematical reasoning in constructions, then it is evident why the Greek did 
not embrace numerical methods. It is ultimately geometry that provides the foundations for 
arithmetical and algebraic reasoning in Greek mathematics, as has often been argued. This 
fits well with the operationalist reading. For one thing, it follows from the operationalist 
thesis that the consistency of mathematics is inherited from the consistency of metrical 
physical experience itself (Sect. 3.3). From an operationalist point of view, numerical or 
algebraic methods cannot be the basis for solving construction problems, because only geo-
metric constructions could give legitimacy to those methods in the first place.

One could argue that for instance Archimedes’s circle area approximation is grounded 
in constructions, and hence operationally legitimate. Indeed, Archimedes uses only con-
structible polygons (namely 2n-gons) to approximate the circle. But the trifling idea that 
a circle can be approximated by a constructible polygon had always been obvious and is 
of no use in solving the circle quadrature problem in a foundationally satisfactory man-
ner. Numerical approximations fail the operationalist requirement of definitive termination. 
There are indeed other proposed solutions that also fail to meet this requirement, as seen in 
Table 4, but it is quite evident that this was recognised as a major drawback. It seems likely 
that Nicomedes’s conchoid was conceived precisely with the express goal of avoiding this 
major problem with neusis. And other methods that do well on definitive termination in 
Table 4 have clearly sacrificed quite a lot to achieve this, as seen by the much greater sim-
plicity of the methods that allow themselves to neglect this goal. The record thus suggests 
that definitive termination was prized highly, even though it was recognised that dropping 
it would simplify everything immensely. For this reason, approximative methods could 
never be satisfactory solutions to the classical problems.

4.6.9 � My View Contrasted with Others

My view clashes with traditional interpretations. Concerns related to concrete execution of 
constructions have often been seen as secondary or external to geometrical theory itself. 
Operationalism says otherwise. Actual realisability is far from a mere side issue relevant 
only to applications. Rather, it is the very core of the foundations of mathematics also at 
its most pure level of theory and philosophy. Thus I disagree with for example Knorr, who 
summarises the late problem tradition as follows:

The efforts on the cube duplication among the later writers are ...instigated ...by the 
interest in providing practical forms of the solution. Hero affirms his neusis to be 
“the most convenient for practical use,” and Pappus repeats this judgement; Euto-
cius notes the practical advantages of the Philonian form; both Sporus and Pappus 
devise neuses of their own; Eutocius describes pointwise constructions of conics to 
accommodate the difficulties that mechanical writers experience in this regard;72 Isi-

72  Importantly, in his catalogue of cube duplications (cited in Table 2), Eutocius does not give pointwise 
constructions of the conics. When he does mention pointwise constructions of conics elsewhere, in his 
commentary on Apollonius’s Conics, he explicitly frames this as a practice-oriented matter set apart from 
theory (Knorr, 1989, 83).
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dore invents a compass for tracing parabolas. In related contexts, Anthemius uses 
pointwise constructions for ellipses and parabolas; Sporus criticizes the use of the 
quadratrix for circle quadrature on the grounds that one cannot synchronize the linear 
and rotatory motions needed to draw the curve—and objection that may touch on a 
real difficulty in the mechanical realization of the constructions, but is pointless in 
a theoretical context. In sum, the practical element overshadows any concern over 
theoretical questions throughout the later discussions of these constructions. (Knorr, 
1989, 118)

I disagree in two respects. Firstly, it is not true that concern for practical execution is asso-
ciated only with the later part of the problem tradition, as Knorr seems to suggest. The 
solutions by Eratosthenes and Nicomedes are clear proof of the contrary. They were active 
at the peak of Greek geometry, and their prominent concern with practical realisation of 
their solutions is explicit and unequivocal. It is plausible that they are representative of the 
tradition up to that point, and that only lack of sources prevents us from proving this explic-
itly. For instance, we know that neusis, which Knorr associates with a practical turn, was a 
mainstream feature of the tradition from an early stage. Are we really to believe that earlier 
generations thought of neusis merely “theoretically,” and that its close and obvious corre-
spondence with a concrete operation with a ruler is a more or less unintended coincidence? 
Surely that is extremely implausible. Instead of postulating a rift in attitudes between early 
and late geometers, a more natural interpretation is that assessments of the advantages and 
disadvantages of for example neusis remained basically constant throughout the Greek tra-
dition. From this point of view, the comments about practical execution in later sources do 
not reflect a change in attitudes; rather, such remarks occur in later eras only, because only 
then do we have discursive sources that go into such issues at all, whereas for the early eras 
all that has survived is the purely formal proposition-proof core of what those mathemati-
cians wrote. The operationalist reading enables us to view the practice-oriented remarks in 
later sources as a natural continuation of existing tradition rather than a divergent oddity.

More fundamentally, I reject the anachronistic assumption that “theoretical” and “prac-
tical” concerns can be dichotomised in the way Knorr suggests. On the contrary, according 
to operationalism, practical realisability is the theoretical foundations of geometry. Atten-
tion to actual realisability is not “pointless in a theoretical context.” On the contrary, a “the-
oretical” geometry in which for instance the quadratrix is considered given by its abstract 
definition yet in which the third of an angle needs to be constructed makes no sense. There 
can never have been such a stage of Greek geometry, because it is conceptually incoherent 
and void of any rationale. The very idea of constructing the third of an angle becomes non-
sensical if one is allowed to conceive purely “theoretical” construction means without any 
attention to realisability. Such a “theoretical” “construction” is not a construction at all: it 
merely shows that one imagined entity (such as a quadratrix) is related to another imagined 
entity (such as the third of an angle). If Greek geometers cared only about such “theory,” 
then why did they want to construct the third of an angle at all? To allow such “construc-
tions” is to void the concept of construction of any credible meaning and any restriction in 
scope. It would be trivial to imagine any number of geometric entities that can be used to 
“construct” the third of an angle in this sense. A research program on the classical prob-
lems would therefore immediately collapse unless the concept of construction is much 
more restricted and controlled. Restricting constructions to what is concretely actualisable 
in physical reality is the obvious and natural way to impose such a restriction. Thus the fact 
that Greek geometers were always heavily focussed on construction problems proves that 
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they must have been sensitive to issues of practical realisability, or else the enterprise they 
were engaged in would have been nonsensical.

Cuomo makes a point similar to that of Knorr:

The duplication of the cube, far from being the epitome of pure mathematics, was 
quite generally associated with applied mathematics. … Its practical applications 
were emphasized (Eratosthenes, Hero); authors criticized their predecessors because 
of the cumbersomeness of their procedures (Eratosthenes, Nicomedes). … Whatever 
its historical origin, then, the problem over the years acquired various and contrast-
ing meanings which overrode its mathematical significance. (Cuomo, 2000, 135)

Again, operationalism suggests another reading. Attention to practice is not a “contrasting” 
concern that “overrode” pure mathematics; rather, it is an inherently essential part of math-
ematics itself, even—or in fact especially—at the level of its ultimate theoretical founda-
tions. Operationalism, again, saves us from having to posit rampant disunity of the classical 
problem tradition.

Fowler, too, perceives heterogeneity in the classical tradition:

In broad terms, we see three phases of development [with respect to foundational 
attitudes regarding neusis]. The early geometers, from Hippocrates to Archimedes, 
seem to have used the neusis-construction freely, as a basic construction of math-
ematics. This was followed by a period, represented by Apollonius and Nicomedes, 
in which the scope and implications of the construction were investigated, and its 
relation with other constructs was explored. Finally, in late antiquity, we find Pappus 
laying down formal criteria that the use of constructions must satisfy. (Fowler, 1999, 
285)

I disagree. An obvious counterargument against the alleged, carefree acceptance of neu-
sis is of course that Euclid does not use it in the Elements. Surely this proves that Greek 
geometry at its peak was deeply interested in the minimalistic reduction of construction 
assumptions to ruler and compass only. Fowler tries to explain this away unconvincingly, 
by trying to construe “the apparent [!] concern for ruler-and-compass constructions in the 
Elements” as a side-effect of the mathematical nature of the problems it treats (effectively, 
their corresponding to quadratic relations algebraically) rather than any primary interest in 
constructive-foundational issues. Only later, according to this reading, “would [the] under-
lying constructions move into prominence and be of interest in their own right” (Fowler, 
1999, 288). This radical view is at odds with a face-value reading of Book I of the Ele-
ments, which puts constructions front and center.

But there are even deeper problems with Fowler’s periodisation. It is evident that the 
three classical problems were already well entrenched in what Fowler calls the first period. 
Therefore it makes no sense to ascribe construction-foundational obliviousness to the 
geometers of these generations, as Fowler does. There is no coherent way in which a math-
ematician can take the three classical problems to be central, yet at the same time not have 
a carefully thought out position on issues such as whether neusis should be accepted as a 
fundamental construction. It is impossible to conceive of circle quadrature and angle trisec-
tion as problems at all, unless one prohibits the use of construction means that solve these 
problems in a trivial way, such as the possibility of wrapping a piece of string along a curve 
and then stretching it into a straight line segment of equal length. And it is impossible to 
judge which among several proposed constructions to the same problem (a state of affairs 
that occurred already in pre-Euclidean times) is better, unless one has precise prescrip-
tive criteria that constructions should satisfy. These criteria must surely be foundational in 
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nature; indeed, all evaluative statements of constructions in the ancient record assess the 
method in and of itself in terms of its inherent properties, not in terms of its broader posi-
tion in a mathematical theory or research program (which would have been more akin to 
the internalistic explanation that Fowler proposes in the Euclidean case).

Meanwhile, it is implausible that much later commentators like Pappus would have 
invented foundational-prescriptive rules out of thin air, when everything else they say is 
subservient to the sources they are copying with little or no original contribution of their 
own. And if such foundational concerns are a late invention, what are the odds that the 
entire centuries-long tradition can be plausibly reconstructed as having aimed at such con-
cerns all along, as the operationalist reading shows?

The characteristics Fowler associates with his three phases have more to do with the 
availability of sources than with any actual historical transitions, I believe. Of the solu-
tions to the classical problems before Archimedes, we know virtually nothing about the 
full works and contexts in which they were embedded. Perhaps indeed “the scope and 
implications of the construction were investigated” in these works, for all we know. Fowler 
associates such investigations with the second phase, but it is perhaps not coincidental that 
this is the first period for which we have information about how such constructions were 
embedded in entire treatises and what their overall goals were. We have such information 
for Apollonius’ work on neusis, which is what Fowler is referring to, but we have no such 
information for the work on the classical construction problems by Hippias, Archytas, 
Eudoxus, Menaechmus, etc. So the apparent emergence of such concerns in the genera-
tion of Apollonius could very well be an artefact of the source scarcity of the earlier period 
rather than an indication of any actual change in the attitudes of Greek mathematicians 
over time concerning constructions. The same goes for the unprecedented methodological 
remarks by Pappus in Fowler’s phase three: this is surely not because earlier mathemati-
cians lacked methodological opinions, but because their thought on such issues—which 
must have been extensive and sophisticated for the classical tradition to make any sense—
has not come down to us.

Knorr makes another case for disunity based on the testimony of Eratosthenes, who 
says:

It is said that Archytas of Tarentum solved this [cube duplication or mean proportion-
als problem] with the aid of semicylinders, while Eudoxus did so with the so-called 
curved lines; as it happens, all of them wrote demonstratively, and it was impossible 
practically to do this by hand (except Menaechmus, … and this with difficulty). But 
we have conceived of a certain easy mechanical way of taking proportionals. (Netz, 
2004, 294–295)

From this (Knorr, 1975, 63) concludes that, “evidently, views on the importance of 
mechanical approaches varied over the course of antiquity and might sometimes be a mat-
ter merely of personal preference.” I disagree. I believe a commitment to mechanical reali-
sation always remained a prominent concern throughout the classical tradition. The physi-
cality and realisability columns of Table 4 testify to this.

The statement by Eratosthenes can readily be interpreted in a manner consistent with 
the operationalist reconstruction of the classical tradition. I have argued that the solutions 
by Archytas and Menaechmus were, in the original, explicitly based on instrumental gen-
eration. However, these instruments are conceived for theoretical reasons and would be 
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difficult to build in actual practice. I believe Archytas and Menaechmus would very much 
have liked to come up with even more practicable constructions. The record does not show, 
in my opinion, that they disregarded mechanical generation, but that they prioritised it as 
much as they could while remaining true to the other operationalist ideals such as unic-
ity, single degree of freedom, and definitive termination. Eratosthenes is able to give a 
mechanically simpler construction only by sacrificing these other desiderata. Of course, 
when introducing his method, Eratosthenes is going to highlight the particular criteria on 
which his method shines, and downplay the others. So it makes perfect sense that he con-
trasts the mechanical simplicity of his method compared to the impracticality of the earlier 
ones. But this does not show that values had changed. The record is perfectly consistent 
with the operationalist desiderata being constant over time, and that all these mathemati-
cians tried to meet all of them. Trying to come up with a method that meets all of these 
conditions is very difficult or impossible. But mathematicians will keep trying, and when 
they have a candidate of their own they will naturally try to highlight what advantages it 
has relative to the others. Insofar as they do not emphasise or meet other conditions, this 
could very well be due to the impossibility of doing so due to mathematical limitations 
inherent in the construction they were able to come up with. That is to say, such differences 
can very well be due to unintended and unavoidable mathematical contingencies rather 
than to preexisting personal preferences.

5 � Operationalism Elsewhere

5.1 � Hierarchy of Methods

The Greeks were concerned, when giving constructions, to proceed by means that are 
the “simplest” possible in some sense. The methodological dictum that it is “not a small 
error for geometers” to solve a problem “from a non-kindred kind”—that is, using more 
advanced assumptions or methods than necessary—is found in Pappus and seems to have 
been a prominent concern for Apollonius as well (Knorr, 1975, 346, 1982, 272; Sefrin-
Weis, 2010, 145, 271–275; Jones, 1986, 530; Acerbi et al., 2018, 273, 276). Something like 
it must surely have been a concern even earlier, because the preoccupation with the three 
classical construction problems necessitates it. It is indeed essential to have some “rules of 
the game” of this sort as a mathematical community when research is focussed on solving 
construction problems. Obviously, if anything goes it is trivial to solve any construction 
problem. Hence a meaningful research program of this type can only be sustained given 
considerable attention to, and restrictions on, what constitutes a legitimate construction 
method. So the very nature of the problem solving enterprise demands that mathematicians 
keep to minimalistic, carefully justified methods in some sense.

Such a concern for methodological purity and minimalism in construction assumptions 
goes perfectly with operationalism. Simplicity of constructions is the very bedrock on 
which the reliability of mathematical reasoning is based. Constructions need to be simple 
to avoid any risk of involving inconsistent or hidden assumptions, to achieve accuracy with 
intuitive means, and to serve as sources of operational meaning for basic entities by having 
greater immediacy than any theorem about them.
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But many have questioned the alleged role of a hierarchy of methods in ancient geom-
etry as testified by Pappus. First of all it is evident that the Greek geometrical corpus does 
not obey the particular dicta articulated by Pappus. Pappus’s hierarchy of methods has 
three levels: ruler and compass; conic sections; and higher curves. But Pappus explicitly 
criticises Archimedes and Apollonius for not following his rule of always sticking to the 
lowest possible level in this hierarchy for any given problem (Sefrin-Weis, 2010, 145; Bos, 
2001, 49), and himself extensively reports many solutions that do not do so either.73 This 
indeed proves that the rather simplistic hierarchy proposed by Pappus was far from a uni-
versal guiding principle among Greek geometers. But it does not follow by any means that 
they therefore had no concern for hierarchies of method more broadly. If anything, it seems 
strange that Pappus would have invented his rule completely out of the blue, especially 
since it is at odds with many things he himself brings up.

There are a few exceptional places in the Greek corpus where ruler and compass would 
have sufficed for a certain problem, yet other methods, such as neusis or conics, are used. 
If this practice was widespread, this would seem to suggest a disregard for the foundational 
issues connected with operationalism. It would indeed be problematic for the operational-
ist reading of Greek mathematics if people like Archimedes did not take the distinction 
between neusis and Euclidean constructions very seriously. But the isolated instances of 
such practice usually adduced do not prove anything of the sort. For example, Pappus’s 
objection of this type against Apollonius concerns the Conics, but it is hardly compelling 
to insist that conics be avoided in favour of ruler and compass in a few isolated instances 
in a treatise that is entirely devoted to conics from start to finish. Obviously, gratuitous 
uses of conics in such a work is in no way an indication of a disregard for the foundational 
distinction between conics and ruler and compass generally.74 Similarly, Archimedes could 
perhaps have avoided some particular neusis, but that in a work that uses other neuses that 
are not reducible to ruler and compass, which would make carrying out the reduction in 
the simplest case rather pointless (Dijksterhuis, 1987, 138–139; Heath, 1897, c–ciii). Fur-
thermore, this is in a work whose primary aim is arguably the quadrature of the circle—
the hardest of the classical construction problems that certainly puts us way beyond the 
scope of ruler and compass and even neusis. The fact that Archimedes used neusis freely in 
such a work, whose main purpose is perhaps precisely to expand on previous construction 
methods, does not mean that he did not have any regard for the distinction between neusis 
and ruler and compass altogether. The same can be said for Hippocrates’s avoidable use of 
neusis, which also occurs in the context of circle quadrature.75 In sum, all examples used 
to argue that classical mathematicians were unconcerned with whether certain higher con-
structions could be reduced to ruler and compass are from works where the overall purpose 
of the treatise means that a reduction to ruler and compass in those isolated cases would 
arguably have been pointless, since the treatise as a whole is concerned precisely with what 
cannot be reduced to ruler and compass.

More fundamentally, there is the possibility in such cases that these mathematicians 
may have known perfectly well what particular instances of, say, neusis could be accom-
plished by ruler and compass, and used them without hesitation for that very reason. This 
would be analogous to how basic Euclidean constructions are used. For example, Elements 

73  Thus in Table 2, T and D should be done by conic sections according to Pappus’s dictum, yet he gives 
many other kinds of solutions without any further qualms.
74  Heath (1896, cxxix) agrees with this, and spells out plausible reasons for why Apollonius may have 
made such a choice in the Conics despite keen awareness and respect for the issue in other contexts.
75  Heath (1981a, 183, 196). Assuming that this was the intended goal of Hippocrates’s work on the quadra-
ture of lunes.
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I.46 shows how to construct a square. Once this is proved one can (and everybody does) 
treat the introduction of a square on a given segment as if it were a primitive operation, 
without giving its construction details. This of course does not imply that any mathemati-
cian who introduces a square is unaware of the foundational ramifications of doing so, or 
has no regard for the constructive justification of this step. Rather they merely leave the 
subconstructions needed to make a square implicit since they are common knowledge. The 
same could be the case for certain cases of neusis and perhaps other constructions.

Another basis on which the hierarchy-of-methods picture has been questioned is that, 
allegedly, Pappus’s decree would have been “unworkable” in ancient times since the Greeks 
had no way of proving impossibility results of the type that a certain problem is unsolvable 
by certain means (Knorr, 1975, 347; Sefrin-Weis, 2010, 274 holds a similar view). It is true 
that the Greeks lacked systematic proofs to settle such questions definitively. Nevertheless, 
a research program paying prominent attention to hierarchies of methods was by no means 
“unworkable.” Experience, intuition, and informal arguments would easily have been more 
than sufficient to guide such research in a convincing and sound way. It is plausible that 
considerations of that nature led Greek mathematicians to use “last resort” methods that 
they would have otherwise avoided for circle quadrature, use the quadratrix for multisec-
tion but prefer simpler means for trisection, and so on.

5.2 � Spatial Euclidean Geometry

5.2.1 � Lines and Planes

Euclid treats three-dimensional geometry from Elements Book XI onwards. We must now 
investigate the question: How does Euclid introduce objects in a three-dimensional setting? 
What are the construction rules by which geometrical entities can be introduced into a geo-
metrical argument in this setting? Unfortunately Euclid does not address these questions 
with anything like that clarity of the explicit postulates of Book I. But his basic rules seem 
to be: 

3Dpoint	� Points can be taken at will in space, just as in the plane.
3Dline	� Any two points can be joined with a line. This does not seem to require an 

ambient plane. We may think of it as stretching a string between the two points.
3Dplane	� Given a line and a point,76 the plane containing them is available to us. We can 

imagine taking a stiff sheet of paper, laying it against the line, and rotating it 
until it hits the point.

3D2D	� In any such plane, we can do all our usual plane geometry.
3Dlentr	� Lengths of line segments can be transferred from anywhere onto any plane. We 

can imagine this as being done with a compass.

 It has been objected that 3Dlentr is an unwarranted use of I.2, which was proved only for 
the plane but is now used indiscriminately in space to transfer lengths from one plane to 
another (Mueller, 1981, 208). But as I argued in Sect. 3.2.2, it is perfectly possible to read 

76  Or equivalently: three points (join two of them), or two intersecting lines (consider one line and an end-
point of the other).
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Euclid as considering the transferring of lengths by the compass as a valid, axiomatically 
given operation.

Euclid also assumes in his solid geometry that he can apply the triangle congruence the-
orems of Book I to triangles in different planes, which again can be considered objectiona-
ble since he proved them by planar means (Mueller, 1981, 208). But with our interpretation 
of superposition as reconstruction (Sect. 3.4), no planarity assumption is needed in these 
proofs; 3Dlentr is enough to be able to apply the proofs to triangles in different planes.

Elements XI.1–3 try to justify that a plane that contains a segment of a line contains the 
whole line, that three points or two intersecting lines determine a plane, and that planes 
intersect in lines. But the proofs are very poor in several ways, one of which is that they 
do not unequivocally reduce to clearly articulated fundamental principles.77 In particular, 
Euclid does not give a mathematically useful definition of a plane,78 which makes it impos-
sible to prove fundamental propositions about them in a meaningful way. For our purposes, 
we might as well consider XI.1–3 and the 3D principles as axiomatic.

The next propositions are:

XI.4. If a straight line is set up at right angles to two straight lines which cut one 
another at their common point of section, then it is also at right angles to the plane 
passing through them.

XI.5. If a straight line is set up at right angles to three straight lines which meet one 
another at their common point of section, then the three straight lines lie in one plane.

These propositions are puzzling, because it is not immediately evident how to construct 
the configuration in question. We have emphasised at length that, in operationalist geom-
etry, it is essential to only speak of constructible geometrical entities and configurations, 
and indeed Euclid’s plane geometry follows this requirement meticulously. But how are we 
supposed to “set up” a straight line at right angles to two or three other lines? Constructing 
the perpendicular of one line in a given plane is handled in I.11, but it is a world of differ-
ence to require a line to satisfy several perpendicularity conditions simultaneously. It is 
anathema to operationalism to introduce objects defined only implicitly by a set of condi-
tions they satisfy.

This is all the more striking since XI.5 is proved by contradiction (assuming that the 
three lines do not lie in a plane and deriving a contradiction). It is obviously essential for 
the logic of this argument that the initial configuration assumed was not self-contradictory 
already, like the superright triangle of Sect. 2.1.3. Euclid simply says “Let a straight line 
AB be set up at right angles to the three straight lines BC, BD, and BE at their intersection 
B.” This seems like exactly the kind of thing the superright triangle example warns against, 
namely uncontrolled introduction of a complex object defined not constructively but by a 
set of properties it is assumed to have. This is unacceptable in an operationalist, not to say 
in any rigorous, mode of doing geometry, because configurations introduced in such an 
uncontrolled manner can easily be self-contradictory. For instance, I could add to Euclid’s 

77  These flaws have often been noted. E.g., Heath (1956, III.272–275) and Mueller (1981, 206–211).
78  Definition I.7 says “a plane surface is a surface which lies evenly with the straight lines on itself,” which 
is as useless as the analogous definition of a straight line as a line “which lies evenly with points on itself” 
(Definition I.4). This exceedingly vague and useless definition is plausibly a later corruption of the text that 
was not in Euclid’s original text. Russo (1998, 2004, 320–326) argues convincingly that it is a truncated 
version of a description given by Heron. According to this hypothesis, Euclid would probably not have 
defined a straight line at all in the original Elements. Indeed, it is obvious that any theory must involve some 
undefined terms.
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sentence: and let BS be a straight line set up at right angles to AB, BC, BD, and BE at their 
intersection B. There is no such BS line. We must have some way of knowing that the con-
figuration assumed in XI.5 is not of this type. Otherwise, for one thing, the contradiction 
derived from the assumption that BC, BD, and BE do not lie in the same plane could not 
be taken to disprove this assumption, for another possibility would be that the configura-
tion was self-contradictory to begin with and that it was this that was the actual source 
of the contradiction derived, and not the assumption about the lines being non-coplanar. 
One could choose to argue that it is intuitively clear which configurations are coherent and 
which are contradictory, but a much better way of managing such issues is by building eve-
rything up from a few constructive principles, which isolates the need to invoke intuition to 
the core principles only.

But I believe in these cases Euclid can be saved. To make operationalist sense of XI.4, 
it seems to me that we must read it as follows (Fig. 41). I take a line, FE, and a point A not 
on that line, and I consider their plane. In that plane, I apply I.11 to make a perpendicular 
AB to FE. I then take another point, C′ , at will and make another perpendicular, C′D′ , to 
FE in the same way. Now, C′D′ may not cut FE in the same point (E) as AB did. But this 
is required by the theorem. To fix this, consider the plane of FE and C′D′ and use plane 
geometry (Elements I.31) to produce the parallel CD to C′D′ through E. Now I have the 
“straight line is set up at right angles to two straight lines which cut one another at their 
common point of section” that the theorem is talking about. So we do not need to make the 
operationally unacceptable concession that the configuration of XI.4 is merely imagined 
or otherwise introduced without construction. Rather, there is a straightforward way of 
constructing it that could be considered implicit in the Elements, by the 3D rules outlined 
above. XI.5 can be treated in the same way.

Note that my reading makes it essential to start with the “vertical” line and then con-
struct the “base” lines to which it is to be perpendicular from it. We could not draw the set 
of intersecting lines first and then raise perpendicular upon them, which would seem like 
the most natural thing to do given Euclid’s wording. Indeed, doing so would essentially 
mean that we could solve XI.11–12 (which are the first construction problems in Book XI):

XI.11. To draw a straight line perpendicular to a given plane from a given elevated 
point.

XI.12. To set up a straight line at right angles to a give plane from a given point in it.

Fig. 41   Operationalist recon-
struction of the setup to Elements 
XI.4
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But the proof of these propositions depend on XI.4, so XI.4 must be done using more prim-
itive and basic constructions than XI.11–12 for the text to make sense. My reading satisfies 
this requirement.

The reasoning involved in my reading can be summed up for reference in a lemmatic 
construction problem: 

3D⊥plane	� Given a line, make a plane perpendicular to that line.

 We do this by making two perpendiculars to the line in the same point, as above, and then 
use 3Dplane to get the plane. XI.4 proves that the line is indeed perpendicular to the plane 
(and not only to the two lines used in the construction).

Most of the remaining material in Book XI can be straightforwardly operationalised 
using the 3D principles and the constructions Euclid provides as propositions. That is to 
say, no entities are assumed in the course of proof other than such as can be produced by 
those constructions. For instance, XI.7, XI.9, XI.10 need only the simple 3D principles 
described above, while XI.14 can be achieved by 3D⊥plane.

In XI.16, Euclid implicitly assumes: 

3Dplane-int	� Given two (non-parallel) planes, their intersection is available to us.

 This is not a new construction principle but reducible to the ones we have already men-
tioned. For operationalist purposes, we must resist the notion that one can simply “let” a 
curve be the intersection of two surfaces and assume that the curve so defined is concretely 
at hand just like any that we have made using ruler and compass. This is a very abstract, 
point-set-condition way of defining a curve, and one that could be very difficult to realise 
physically. But for planes we can produce the intersection much more concretely. Since we 
know that planes intersect along straight lines,79 we only need to extend two lines from one 
plane that hit the other plane wherever, and then connect this two points of intersection. 
This is very much physically realisable with strings or rulers on physical planes, and needs 
nothing but the previously outlined 3D construction principles.

The one disturbing exception to the operationalist reading I have offered is:

XI.6. If two straight lines are at right angles to the same plane, then the straight lines 
are parallel.

I do not see any way of interpreting this proposition that makes it operationally acceptable 
at this point in the Elements. Operationalism demands that we only state theorems about 
entities that we know how to construct. But how are we supposed to construct “two straight 
lines at right angles to the same plane”? 3D⊥plane does not help us. With that strategy, we 
could make two lines that are each perpendicular to a particular plane, but we could not 
ensure that this would be the same plane for both lines. We could raise perpendiculars from 
lines in one of those planes, but we could not ensure that they would be perpendicular to 
the plane as opposed to merely the reference line used for the construction.

What we need for XI.6 to make operational sense is precisely XI.11–12. If we had those 
constructions already, the configuration of XI.6 would be readily realisable and hence 
not pose any problems for an operationalist reading. But doing XI.6 first does not make 

79  This is XI.3, or if that proof is found too questionable it can be taken as an axiomatic assumption.
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operationalist sense. In fact, the construction problems XI.11–12 are not logically depend-
ent on XI.6 (which is not used at all in the rest of Book XI). It is tempting, therefore, to 
suppose that the order of the propositions has been corrupted. An independent argument 
for this is that the proof of XI.6 implicitly assumes that the two parallels cannot meet the 
plane in the same point, and XI.13 (“From the same point two straight lines cannot be set 
up at right angles to the same plane on the same side”) is devoted specifically to ruling out 
this very possibility (as noted by Joyce, 1998). So the placement of XI.6 is not only opera-
tionally unacceptable but foolish also for independent logical reasons.

In sum, Book XI is not as clearly operationalist as the earlier books of the Elements, 
but it does allow an operationalist reading. Book XI is also of lower mathematical quality 
by anyone’s standards, for many reasons that are independent of operationalism. It makes 
some sense to suppose that a better version of this theory once existed and that that the-
ory was more operationalist in character. For why else would the text contain construction 
problems such as XI.11–12? These are clearly theoretical propositions; it is surely safe to 
assume that they were not included for practical applications in, say, architecture or car-
pentry. But what theoretical purpose could they serve, if non-operationalist ways of intro-
ducing objects have already been used numerous times before they are proved? If one can 
simply “let a straight line be set up at right angles to three straight lines,” as Euclid does in 
XI.5, then why does the perpendicular to a plane need to be constructed, as Euclid does in 
XI.11–12? Why can one not simply “let” such perpendiculars be introduced at will? The 
operationalist reading makes coherent sense of these enigmas. With some simple adjust-
ments (such as moving XI.6 and being a bit more explicit about the foundational construc-
tion assumptions), the operationalist reading allows us to view the theorems and problems 
of Book XI as foundationally coherent.

5.2.2 � Solids

Euclid’s definitions of solids are operationally sound. They may be interpreted as follows.

Definition XI.12. A pyramid is a solid figure contained by planes which is con-
structed from one plane to one point.

It is implied that the base figure is some polygon drawn in a plane. The vertex of the pyra-
mid can be taken at will outside of this plane, and then the edges and walls of the pyramid 
are constructively available by 3Dline and 3Dplane.

Definition XI.13. A prism is a solid figure contained by planes two of which, namely 
those which are opposite, are equal, similar, and parallel, while the rest are parallelo-
grams.

We can use 3D⊥plane to make the parallel planes, and 3Dlentr to make sure the opposite 
end polygons are equal. The other walls are available by 3Dline and 3Dplane, and can be 
proved to be parallelograms.

Definition XI.14. When a semicircle with fixed diameter is carried round and 
restored again to the same position from which it began to be moved, the figure so 
comprehended is a sphere.
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Definition XI.18. When a right triangle with one side of those about the right angle 
remains fixed is carried round and restored again to the same position from which it 
began to be moved, the figure so comprehended is a cone.

Definition XI.21. When a rectangular parallelogram with one side of those about the 
right angle remains fixed is carried round and restored again to the same position 
from which it began to be moved, the figure so comprehended is a cylinder.

Rotating a figure around an axis must be admitted as an additional construction principle. 
It is indeed striking how these solids are defined through operational generation rather than 
by their properties (“what you get when you … ” rather than “a figure such that …”).

As we emphasised above in the case of planes, Euclid does not need the assumption that 
taking the intersection of one surface and another, or the intersection of a solid and a plane, 
makes the intersection available to us. Instead, the kinds of intersections of figures by 
planes that Euclid considers are such that the intersection can be constructed by ruler and 
compass and the basic 3D principles. Thus a parallelepiped sliced with a plane parallel to 
a face makes a parallelogram (assumed in XI.25), and a cylinder sliced perpendicularly to 
the axis makes a circle (assumed in XII.13). Furthermore, a sphere cut by a plane through 
the midpoint makes a circle, as Euclid assumes in XII.17. This follows immediately from 
Euclid’s definition of a sphere, insofar as the plane contains the diameter used at the axis 
of rotation. Euclid also needs the assumption that other planes through the midpoint like-
wise produces equal circular intersections (Heath, 1956, III.431); this does not follow from 
the rotational definition per se but can be derived via its consequence that all points of the 
sphere are equidistant from the midpoint.

The five regular polyhedra—the subject of Elements XIII—are another showcase for 
Euclid’s strong emphasis on constructions, as is well known. Euclid spells out in detail 
how to produce these solids with ruler and compass and the basic 3D principles.(80 The 
regular polyhedra are good examples of geometrical objects whose existence is not evident, 
which makes their construction all the more essential.

In sum, Euclid’s treatment of solid figures is readily susceptible to an operationalist 
reading. Parts of Euclid’s stereometry books are demonstrably poor by any standard—that 
is, completely independently of operationalist considerations—presumably due to corrup-
tion. Once this is corrected, deviation from operationalism is minimal.

5.3 � Spherical Geometry

Spherical geometry provides another test case for the operationalist reading of Greek 
geometry. Theodosius’s Spherics (ca. −100 ) develops the geometry of the surface of a 
sphere in a manner that is in many ways analogous to Euclid’s Elements. I shall argue that 
this treatise too is consistent with operationalism.

80  See, e.g., Heath 1981a, 416–418) for an overview of Euclid’s constructions of the regular polyhedra.
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First of all it is abundantly clear that the Spherics is very much concerned with perform-
ing actual constructions on a physical sphere.81 To this end, an ordinary compass is also use-
ful on a globe: it can be used to draw circles on the surface of a globe, and it can be used to 
transfer lengths (meaning the spatial, and not the geodesic, distance between two points) not 
only on the globe itself but also from the globe onto a flat sheet of paper. Like the Elements, 
the Spherics is not explicit about how the constructions it describes can be realised by physi-
cal instruments, but it is quite evident that this is what the author had in mind.82

This alone is yet more evidence of the centrality of constructions in Greek mathematics. 
However, operationalism maintains not only that constructions are important but also that 
they are the proper foundational bedrock of mathematical theory. It is not evident whether 
constructions in the Spherics serve such a purpose, or whether they are merely practical 
and geared toward applications, such as in astronomy, which clearly provided the main 
impetus to study spherics.

Recent scholarship indeed makes a sharp distinction between constructions intended to 
be actually performed for applied purposes, and ostensible constructions that are merely 
imagined for theoretical purposes while being in reality unrealisable.

In the Spherics, the use of constructions in writing proofs was distinct from the use 
of constructions in showing how to solve a given problem. ...The techniques used in 
solving a problem are constrained by the possible operations of some assumed set of 
geometric tools, while constructions employed in proofs—indeed, even the construc-
tions employed in the proof of a problem—are not subject to this constraint. (Sidoli 
& Saito, 2009, 583–584)

This interpretation is diametrically opposed to operationalism. Operationalism demands 
that all constructions be physically realisable. If this requirement is not met, the entire 
operationalist foundational program collapses. Fictive “constructions” that can only be 
imagined and not concretely carried out are as useless as no constructions at all. Hence we 
must investigate whether the theoretical constructions too can be operationalised.

The core construction said to be theoretical as opposed to actual is that of taking the 
intersection of the sphere with a plane.

From the outset, [the Spherics] contains a distinction between constructions that can 
be carried out with the postulates, and thus tools, of elementary geometry, and those 
that are more conceptual, or abstract, but are nevertheless required by the need to 
write proofs about solid objects ...[namely,] the operation of cutting a sphere with a 
plane. (Sidoli & Saito, 2009, 586)

We have no instrument for slicing spheres. ...The slicing of a sphere with a plane to 
produce a circle requires a chef in Plato’s heaven to wield a planar cleaver. (Thomas, 
2014, 229)

82  “[Solutions to problems in the Spherics generally correspond to] practical operations that would be used 
in the process of carrying out these constructions on real globes using the basic tools of Greek geometry, 
a straight edge and compass. ...Many features of Theodosius’s approach ...are best understood by an appeal 
to such practical considerations” (Sidoli & Saito, 2009, 587). Specifically, the use of a compass to transfer 
lengths clearly appears implied (Sidoli & Saito, 2009, 589).

81  “The problems in the Spherics were written in such a way that they could be carried out on an actual 
globe and, hence, must have derived from an interest in producing accurate diagrams” (Sidoli & Saito, 
2009, 606). “Although the text is structured as a purely deductive treatise, it was written by and for indi-
viduals who used material objects ...[and were interested in] solving problems in spherical geometry by 
drawing diagrams on a real globe” (Sidoli & Saito, 2009, 607).
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I agree that merely defining a curve as the intersection of a surface with a certain plane 
does not make that curve constructively available to us. But the Spherics does not need 
such an assumption, for the same reason I argued above that the Elements does not either. 
Just as the intersections of solids Euclid considers in the Elements are all constructible and 
determined by the generation of those solids, so also in the Spherics a concrete construc-
tion of the intersection of a sphere with a plane can be read off the definition. The Spherics, 
in its Definition 1, defines a sphere as a figure such that all straight lines from a particular 
point (the center or midpoint) to the surface are of equal length. This can be physically 
conceived as the set of all points reachable by a pen attached to one end of a string whose 
other end is fixed (just as a circle in plane can be generated in the same way). This concep-
tion implies a concrete way of drawing the intersection with a plane: hold up a physical 
plane, such as a stiff sheet of paper, and trace on it the curve that the pen can reach while 
holding the string stretched.

The first proposition in the Spherics proves that this curve is a circle. Its method of 
proof works well with the operationalist conception of the curve I have outlined. The proof 
considers the perpendicular from the plane through the midpoint of the circle, which is 
operationally sound by Elements XI.11, as discussed in Sect. 5.2.1. It then notes that all 
points on the curve are associated with a right triangle having as one of its legs this fixed 
perpendicular, and as its hypothenuse a radius of the sphere. Since the latter is constant by 
definition, it follows that so is the distance from the foot of the perpendicular to the curve 
traced, which proves that this curve is a circle.

The Spherics assumes that whenever we consider the intersection of a sphere by a plane, 
not only do we get a circle as just proved, but also the plane of that circle is available 
for us to do Euclidean geometry in (e.g., Spherics I.2–4). This is unproblematic given the 
above operationalisation. Furthermore, whenever we are “given” a circle on our sphere, 
the Spherics likewise assumes that the plane of that circle is available to us (e.g., Spherics 
I.7). We can view being given a circle as nothing but a shorthand for being given the cor-
responding plane. This explains why the plane is immediately available, as the Spherics 
assumes. Another way of producing circles on the sphere is by drawing it with a compass 
on the surface of a globe, just as one would in a plane. But, foundationally speaking, the 
definition in terms of the intersecting plane is better viewed as the primitive one, and its 
equivalence with drawing with a compass to be a derivative result to be proved. Indeed, 
while “given” circles always come with a plane, they do not come with a pole, i.e., the 
point where the fixed leg of the compass needs to be placed, as they would have if they had 
been drawn with the compass. The pole of a given circle is instead constructed in Spherics 
I.21.

I propose that this conception of spherical geometry—in terms of a pen on a string and 
sheets of stiff paper that can be fixed in various positions—is the right way to view the 
foundations of the subject. Hence I reject the following interpretation:

What look like constructions in the proofs of Propositions 1 and 2, since there are no 
instruments to perform them, are better thought of as thought experiments. … There 
is no way to do these things. (Thomas, 2018, 6)

My point with the pen on a string is that there is in fact a way to do these things. The 
important thing is that this physical realisation can in principle be invoked as the founda-
tions of the subject. But of course this does not mean that a working geometer will actu-
ally go through constructions of this type when they are doing spherical geometry. They 
will not do so any more than they will construct the squares on the sides of the triangle 



694	 V. Blåsjö 

1 3

according to Euclid’s construction recipes every time they apply the Pythagorean Theorem. 
Yet those actual constructions are foundationally essential.

Just as Euclid had to construct the regular polyhedra, and could not simply introduce 
them as a “thought experiment,” so also spherical geometry as I have conceived it is very 
much restricted in terms of what geometrical entities can be introduced and in what order, 
so that everything can be articulated and given meaning in terms of actual operations with-
out circularity. But I believe the Spherics does nothing to violate this condition.

Just as my operationalist interpretation of conic sections does not involve any physi-
cal cone (Sect. 4.4), so my operationalist interpretation of spherical geometry involves no 
physical sphere. Foundationally, these theories are analogous. There is, however, a great 
practical difference. In the case of spherical geometry one really does want to work with 
a physical globe, for instance for astronomical purposes. So there is to a certain extent a 
mismatch, in the case of spherical geometry, between the official foundations of the sub-
ject as I have interpreted them, and the practical needs of a working geometer. We cannot 
practically pass a sheet of paper through the surface of an actual globe, of course, so when 
we solve problems in spherical geometry we are interested in giving constructions not only 
in the official foundational context but also in a form that is practicable in a physical globe.

This is indeed what the Spherics does. Spherics I.18 is the problem: “To set out the 
diameter of a given circle in a sphere.” The construction gives a recipe for producing this 
diameter that consists entirely of operations that can be performed on the outside of the 
sphere, namely by picking three arbitrary points on the circle, then setting out the triangle 
they define on a flat sheet of paper (presumably by holding a compass against the sphere 
and setting the opening to the distance between two of points and then marking this dis-
tance on the paper), and then performing certain Euclidean constructions there to produce 
the diameter of the sphere as a line segment on this sheet of paper (Sidoli & Saito, 2009, 
590). However, for the purposes of proving that this construction is valid, it is necessary 
to consider the corresponding configuration inside the sphere, in the plane of the circle. 
This internal configuration too is built up with constructions. Insofar as the internal plane 
of the circle can be considered constructively available, this internal construction in itself 
already solves the problem. It explicitly produces the diameter of the circle. Yet the text 
goes through the extra trouble of making a replica of this entire configuration on a plane 
outside the sphere. I all but agree with the following conclusion from this state of affairs:

Although [the] internal diameter is constructed using standard techniques, it does 
not, in fact, solve the problem. The internal diameter is, clearly, only constructed for 
the sake of the proof. It is constructed in order to introduce a new set of starting 
points from which Theodosius will argue that the external line is equal to the internal 
diameter. In this problem, it becomes clear that Theodosius intends a functional dif-
ference between the use of construction for the sake of proof and its use as a practical 
technique for drawing figures. The internal diameter, which is constructed for the 
sake of the argument, does not solve the problem. The problem is only solved when 
another line has been drawn outside the sphere, which is equal to this internal diam-
eter. The difference must, in some sense, be practical. If the geometer is working 
with a real spherical body, [the outer configuration] can be drawn on a flat surface 
[using ruler and compass]. The internal diameter, on the other hand, is not imme-
diately accessible to the practical tools of the geometer. (Sidoli & Saito, 2009, 591)

However, I would say that, strictly speaking, the internal diameter does in fact solve the 
problem. From a foundational point of view, the internal construction alone is a perfectly 
good solution. As I interpret it, the need for the external solution does not come from any 
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kind of principle inherent to geometrical method per se, but is due solely to a voluntarily 
imposed restriction geared toward a particular type of application. This view is essentially 
compatible with the above passage, while also being consistent with operationalist phi-
losophy. From this point of view, the constructions inside the sphere are not imaginary or 
hypothetical. On the contrary, it is precisely the fact that they can be physically realised 
that ensures the certainty and soundness of the reasoning.

Similarly, I essentially agree that:

[Some] constructions ...provided in the course of demonstrations ...have a purely 
theoretical function. For example, in Spher. I 8, the poles of a circle are constructed 
for the sake of the demonstration, and in Spher. I 19, a great circle is produced in a 
sphere by passing a plane through its center. When the related problems are later 
established [in I.20–21], however, they show how to produce these same objects in 
such a way that they may actually be produced on a real globe. (Sidoli & Saito, 2009, 
601)

But note well that these “purely theoretical” constructions are eminently realisable in the 
foundational sense I have outlined. They indeed serve a theoretical purpose, and the Spher-
ics is indeed interested in achieving the same thing by working outside the globe only. 
Nevertheless, they can be translated into physical operations just as readily as anything in 
Greek geometry.

Spherics I.2 finds the midpoint of a given sphere. It does so by taking its intersection 
by an arbitrary plane, then raising the perpendicular through the midpoint of the resulting 
circle, and then bisecting the part of this perpendicular contained in the sphere. This cor-
responds directly to Elements III.1, where Euclid finds the midpoint of a circle in an analo-
gous way. My interpretation in Sect. 3.2.3 was that it is not really foundationally coherent 
to consider a circle known but not its midpoint, although it is of course nevertheless pos-
sible to pose for oneself the challenge of reconstructing the midpoint if one pretends that 
it is not known. My interpretation of spherical geometry requires me to view Spherics I.2 
similarly. It is interesting that the midpoint of a sphere can be reconstructed, and in a pleas-
ing and elegant way, but in principle the very meaning of the concept of a sphere implies 
that its midpoint is known, so foundationally speaking the problem must be regarded as 
gratuitous.

Nevertheless, just like Elements III.1, Spherics I.2 can be useful for practical purposes. 
One can use it to find the midpoint of a physical globe. The emphasis on the theoretical or 
thought-experiment nature of the foundational constructions in the Spherics has led some 
to deny this. Spherics I.2, on this view, is an example of a “construction ...that can be car-
ried out ...only by an ideal agent but that we are unable even to approximate,” because 
“getting the plane is a real difficulty” (Thomas, 2014, 231). I do not think we need to be 
so pessimistic. Spherics I.1 proved that the intersection of a sphere with a plane is a circle. 
Therefore, we can henceforth consider a second manner of physically realising the inter-
section of a sphere with a plane, namely by cutting a circular disc out of stiff paper and 
pressing it against the inner walls of the globe. This can be done readily and accurately. On 
this disc I can do all the plane geometry constructions I want. I can also drill a hole in the 
middle of it a run a stick through it perpendicularly. This stick I can extend to a diameter of 
the sphere and bisect it to find the midpoint. This seems to me a workable and useful way 
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of finding the midpoint of a given sphere. Far from being something we cannot do, it is in 
fact something we can easily do with useful results.

The idea of putting physical plane figures together until they fit arguably has venerable 
precedent in Greek geometry in the form of the regular polyhedra and even solid angles 
generally. For the purposes of the Elements such an assumption is not strictly needed, 
because the 3D construction principles outlined in Sect. 5.2.1 suffice in theory. However, 
the practical realisation of the regular polyhedra by fitting together polygons immediately 
suggests itself. The realisation of an intersection of a sphere with a plane by means of a 
physical disc is arguably no stranger or more foreign to geometry than this most obvious 
construction of these polyhedra that had a prominent status in Greek geometry. Of course 
you have to prove that the shapes fit together to form the polyhedra, as Euclid does in the 
Elements, but Spherics I.1 accomplishes the analogous goal for the intersection discs.

The disc method makes sense for Spherics I.2, but it is not possible to consider it the 
primary operationalisation of intersecting a sphere with a plane. First of all Spherics I.1 
is needed to justify the disc method, but to prove it one needs some operationalisation of 
the intersection already. Then Spherics I.6, which proves that the circles of intersection are 
smaller the further the plane is from the midpoint of the sphere, makes perfect sense, and is 
a natural continuation of Spherics I.1, if we conceptualise the intersections using the pen-
on-a-string method, but would have a strange interpretation if we took the cutout discs as 
the fundamental meaning of intersections. But most importantly, Spherics I.18, which finds 
the diameter of a given intersection circle, cannot be made operationally coherent using the 
disc operationalisation as far as I can see, since the proof depends on the intersection being 
operationally available to us, which presupposes our ability to produce it and hence that we 
could already produce the diameter, which is the goal of the problem. With the pen-on-a-
string operationalisation instead, this makes perfect sense. This example goes to show that 
it is no trivial matter for a particular operationalisation of fundamental concepts of geom-
etry to be consistent with the manner in which the theory is developed.

5.4 � Sections of Solids

There are some indications that Greek geometers saw conic sections as part of a broader 
class of sections of various kinds of solids. Thus Eutocius says that “solid loci have 
obtained their name from the fact that the lines used in the solution of problems regarding 
them have their origin in the section of solids, for example the sections of the cone and 
several others.”83 Above I have given an operational reconstruction of how Greek geom-
eters could have viewed sections of cylinders and tori (Sect. 4.2.1), cones (Sect. 4.4.2), and 
spheres (Sect. 5.3). I have interpreted all of these cases in a unified manner. In all cases, 
there is no actual solid present. Rather, the solid is a way of speaking about the set of all 
positions of a line or point moving subject to a particular restriction. From this point of 
view, the policy (alluded to by Eutocius) of seeking solutions to problems in terms of sec-
tions of solids makes perfect sense. Without this interpretation, it is baffling why sections 
of solids should be accepted as primitive construction operations. But the operationalist 
interpretation, in which a solid is merely a shorthand for a moving instrument, makes this a 
natural and unified class of constructions, just as Eutocius suggests.

83  Heath (1956, I.329, Emphasis added) and Proclus (1970, 91) similarly lumps together conics with curves 
based on other solids, such as the cylinder and torus.
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A lost work by Perseus on sections of a torus fits into this tradition (Heath, 1981b, 
203–206; Proclus, 1970, 91). Perseus evidently considered all sections of a torus obtained 
by intersecting it with a plane parallel to its symmetry axis (that is to say, a vertical plane 
if the torus is lying flat on the ground). Such sections are indeed readily operationalised in 
the manner of Sect. 4.2.1. (Let l be the torus axis, and let R be the radius of the torus hole, 
and r the radius of the torus ring. Attach a stick � to l that can rotate around l while always 
remaining perpendicular to l. On � , at a distance R + r from l, attach another stick of length 
r, whose other endpoint can move in the plane of l and � . Let P be the non-attached end of 
this second stick. As � rotates around l, and P is kept in contact with a vertical plane, P will 
trace a toric section on that plane.) Thus Perseus’s work fits naturally into the operationalist 
tradition as I have reconstructed it.

5.5 � Theories of Numbers and Magnitudes

“Euclid’s arithmetic is hardly less ‘active’ than his geometry” (Mueller, 1981, 60). “One 
will not find in Euclidean arithmetic any essentially nonconstructive arguments or asser-
tions” (Mueller, 1981, 77). Euclid’s more general and abstract theory of magnitudes, how-
ever, is more problematic. Some have argued that aspects of it betray “evidence of Euclid’s 
adherence to a constructive point of view” (Mueller, 1981, 127, who rejects this view), 
while others have identified non-constructive assumptions in these parts of the Elements 
(Mueller, 1981, 122–128, 232). I shall not go into these issues. It may indeed be that the 
theory of magnitudes should be seen as a somewhat separate research track in Greek math-
ematics that did not concern itself as much with operationalist considerations. Even if that 
were so, I do not believe that undermines the fundamental significance of the operational-
ist point of view in geometry. Indeed, the theory of magnitudes was most likely the most 
recent theoretical development Euclid included in the Elements, and it makes sense that 
mathematicians would have focussed on achieving the main goals of the theory first, and 
provisionally postponed some foundational issues. Therefore, in my view, it is impossible 
to argue convincingly against the importance of operationalism in Greek geometry overall 
based on certain possibly non-constructive particulars in these parts of the Elements.

It is well known that Greek mathematicians studiously avoided speaking of infinities, 
and instead used cautious finitistic circumlocutions, surely for reasons of foundational rig-
our. The method of exhaustion is exemplary in this regard. So is Elements IX.20, which 
is often paraphrased as proving the infinitude of primes, while strictly speaking proving 
rather that any finite list of relatively prime numbers can be expanded into a larger list of 
relatively prime numbers.

A comparable form of argument occurs in Zenodorus’s proof that the circle has 
greater area than any polygon of the same perimeter (Heath, 1981b, 207–212; Thomas, 
1941, 386–395; Blåsjö 2005). Acerbi maintains that this work exhibits non-constructive 
tendencies:
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Nonconstructive assumptions are frequently made in Greek geometry. An interesting 
example comes from the tract On Isoperimetric Figures. The main theorem, namely, 
that a regular polygon in greater than a nonregular polygon isoperimetric to it and 
having the same number of sides, is proved by a sort of “local symmetrization.” One 
assumes that the maximal polygon is neither equilateral nor equiangular and drives 
this assumption to contradiction by showing how to construct, by making two adja-
cent sides or two angles equal, a greater isoperimetric polygon. The problem lies in 
the fact that the existence of a maximal polygon is posited without proof.84

I disagree. Nothing in the logic of Zenodorus’s arguments rests in any essential way on any-
thing non-constructive. The proofs do not depend on the existence of a maximal polygon. 
Instead they prove that any given non-regular polygon can be improved by symmetrisation, 
and hence cannot be maximal (just as Elements IX.20 proves that a finite list of primes can-
not be complete). This is a perfectly constructive result. There is no need to formulate this 
as a proof by contradiction that “the” maximal polygon cannot be irregular. Doing so adds 
no new insight to the constructive formulation to the problem, and only needless inserts an 
existence assumption. The surviving paraphrase of Zenodorus’s lost original does explic-
itly refer to the maximal polygon, and hence makes precisely this avoidable assumption. 
But we do not know what Zenodorus’s own formulations were. Just as Elements IX.20 
is often paraphrased as “there are infinitely many primes,” so also Zenodorus’s theorems 
may have been stated in a similarly sloppy form by writers (whether Zenodorus himself 
or someone later reporting on his work) who were focussed on other things than system-
atic foundations on these occasions. But that is a cosmetic matter. The fact remains that 
all of Zenodorus’s results and proofs are readily formulated in impeccably constructivist 
terms, following obvious and well-known precedent in Euclid. Therefore they cannot, in 
my opinion, be used to infer non-constructivist commitments. In any case it is interesting 
that Acerbi, when trying to argue that Greek mathematics was non-constructivist, repeat-
edly relies on this one example whose non-constructivist element is superficial and readily 
removed.

Perhaps I may be permitted to add a further speculation on the subject of number the-
ory. To produce a list of primes, one may start with a list of the integers and systematically 
cross out all numbers divisible by 2, then all divisible by 3, and so on. This elementary idea 
is known as “the sieve of Eratosthenes.” But surely it is much too basic to have been unno-
ticed before Eratosthenes, who lived after Euclid, meaning after Greek number theory had 
reached a refined state. We know of Eratosthenes’s work on this only indirectly, through 
the much later and much less sophisticated Nicomachus. Indeed Nicomachus does not say 
that Eratosthenes discovered the algorithm but only that he was the one who likened it to 
a sieve (Nicomachus, 1926, 204), which fits our assumption that Eratosthenes surely was 
not the first to notice this way of generating primes. Nevertheless one would think Eratos-
thenes’s name became attached to this idea for a reason. Presumably he did more with this 
algorithm than merely point out that it was reminiscent of a sieve.

84  Acerbi et  al. (2018, 277). The same argument is made in Acerbi (2010b, 96–97). Acerbi continues: 
“Moreover, the process of ‘local symmetrization’ is not effective: it cannot produce, starting from a given 
polygon, the maximal (regular) one in a finite number of steps. The approach, then, is eminently non-con-
structive.” The fact that the symmetrisation process does not terminate in a finite number of steps is irrel-
evant, just as it is irrelevant that the algorithm used in Elements IX.20 will never produce a complete list of 
primes. So this is a non-starter of an argument.
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Could it be that Eratosthenes proposed the sieve as an operationalist definition of prime 
numbers, and organised the foundations of number theory on this basis (just as his cube 
duplication is operational, as we saw in Sect. 4.2.4)? Euclid’s definition of a prime num-
ber—“a prime number is that which is measured by a unit alone” (Elements, Definition 
VII.11)—is not immediately operational, but the sieve of Eratosthenes can be seen as an 
explication of an operationalisation implicit in it. Hence the sieve of Eratosthenes can be 
linked to the broader operationalist foundational program. This could potentially explain 
why an excellent mathematician such as Eratosthenes would have concerned himself with 
such a seemingly trivial idea.

This hypothesis about the sieve of Eratosthenes is of course sheer speculation. The his-
torical record is much too thin on this point to do anything but speculate wildly. Neverthe-
less it is an occasion to reiterate the operationalist principle that mathematics should deal 
with objects specified as “the thing you get when you … ” rather than “the thing with the 
property that …”—the sieve of Eratosthenes is indeed a way of bringing prime numbers 
from the latter realm to the former.

5.6 � Astronomy

In astronomy, Greek mathematicians worked extensively with epicyclic curves to model 
planetary orbits. Such curves can readily be used to trisect an angle.85 In my view it is 
unlikely that Greek mathematicians failed to realise this. Much more likely is that we do 
not find any epicyclic solutions in the surviving record of angle trisections because such 
a solution would have been regarded as clearly less satisfactory than the other available 
options. Epicyclic curves are indeed operationally highly dubious, just like the plain 
cycloid (cf. Sect. 4.5.4). So, from an operational point of view, it makes perfect sense that 
the Greeks would think of epicyclic curves as excellent for astronomy but unacceptable for 
foundational geometrical questions. On other accounts of the classical problem tradition, 
however, this fact becomes more of a mystery.

Epicyclic curves clearly had many advantages. Their definition is clear and defi-
nite. They are composed of nothing but circular motions, and hence can be construed as 
closely related to the Euclidean compass. They were also regarded as particularly natural 
and appropriate for fundamental natural processes.86 Furthermore, epicyclic curves were 
eminently susceptible to calculation (namely trigonometry), as the astronomical tradition 
demonstrates.

It is telling that epicyclic curves were still not used to trisect angles, despite these clear 
and clearly recognised advantages. Evidently, the Greeks strived for something else with 
the angle trisection enterprise. The standards they used to assess solutions to the classi-
cal construction problems evidently included essential desiderata beyond the palpable 
advantages of the epicyclic curves that they were so happy to embrace in astronomy. The 
operationalist interpretation makes sense of this, by taking the construction tradition to be 
entirely focussed on the foundational legitimation of the certainty of theorem-proof geo-
metrical reasoning. It is natural that the criteria of construction in this context will be 

85  For example, in the early 17th century, Etienne Pascal showed how to trisect an angle by the cardioid, a 
special case of an epicyclic curve (Dudley 1987, 10).
86  The metaphysical naturalness of uniform circular motion had long been emphasised, e.g. in Plato, 
Timaeus 34a, and Aristotle, De caelo II.6. Ptolemy, Almagest, IX.2, justifies epicyclic motion by appeal to 
such arguments.
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different from those in applied subjects.87 Others have tried to explain the purpose of the 
classical construction problems by appeal to their applicability, to the need for explicit and 
workable curve descriptions, or the need to represent geometric entities in the imagina-
tion (Sect. 4.1.1). But none of these interpretations explain why different curves should be 
accepted in astronomy than in attempts to solve the classical construction problems.

5.7 � Pythagorean Mathematics

According to many accounts—both ancient and modern—“the Pythagoreans” played a sig-
nificant part in the early history of Greek geometry. But little is known for certain about 
this early period. Burkert gave an authoritative and widely accepted argument that “the 
apparently ancient reports of the importance of Pythagoras and his pupils in laying the 
foundations of mathematics crumble on touch” (Burkert, 1972, 415). However, the oper-
ationalist interpretation of the Greek geometrical tradition suggests a somewhat differ-
ent perspective. When Burkert speaks of “the foundations of mathematics,” he takes for 
granted the traditional view that a core pillar of Greek geometry was its Platonist detach-
ment from the physical world. According to this view, “Greek geometry assumed its final 
form in the context of [Plato’s] Academy … after Plato had … fixed its position as a disci-
pline of pure thought” (Burkert, 1972, 422). Operationalism of course denies this. Accord-
ing to the operationalist reading, a Platonic emphasis on “pure thought” and detachment 
from physicality is not the “final form” of Greek geometry, but rather a philosophical aber-
ration that is in some ways out of touch with the point of view of the ancient mathemati-
cians themselves.

Indeed, it is striking that Burkert’s key arguments against Pythagoras’s mathemati-
cal significance are really arguments that he did not advocate a proto-Platonist philoso-
phy of mathematics. Burkert’s overall thesis is that “that which was later regarded as the 
philosophy of Pythagoras had its roots in the school of Plato” (Burkert, 1972, preface). 
And indeed he proves convincingly that there was a clear tendency to distort history in this 
way in Platonic sources that is not consistent with more reliable sources outside this tradi-
tion. For example, Burkert shows that when Proclus mentions Pythagoras in his “catalogue 
of geometers,” and attributes to him “a nonmaterialistic procedure” in mathematics, this, 
unlike the rest of the catalogue of geometers, is not based on the highly credible Eudemus. 
Instead it is copied from Iamblichus, i.e., from the biased Platonic tradition (Burkert, 1972, 
409–411). (From this it does not follow, as Burkert tries to argue, that Eudemus did not 
mention Pythagoras as a geometer. It follows only that Eudemus in this place likely did not 
associate Pythagoras with proto-Platonic views. This is enough to give Proclus the motiva-
tion to supplement his account with phrases from Iamblichus, even if Eudemus had men-
tioned Pythagoras in the original.) Burkert also observes that “Aristotle [says] expressly of 
the Pythagoreans [that] ‘they apply their propositions to bodies’—bringing out the distinc-
tion, in this regard, between them and all genuine Platonists” (Burkert, 1972, 409). Eude-
mus and Aristotle are clearly much more credible than the much later, more biased, and 
less intellectually accomplished Iamblichus and Proclus.

Thus Burkert’s arguments that Pythagoras’s alleged proto-Platonist philosophy of 
geometry is a fabrication of biased sources are quite convincing. However, it does not fol-
low from this that the Pythagoreans did not take a profound theoretical and foundational 

87  Another example of this is pointwise construction of parabolas, as discussed in Sect. 4.4.3.
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interest in geometry altogether. Burkert tends to conflate these two conclusions, because he 
sees no alternative path to theoretical mathematics than through Platonic-style abstraction 
and detachment from physical considerations. Burkert believes that early work on geomet-
rical constructions “is still not doing mathematics for its own sake”; rather, the “discovery 
of pure theory” was a later “accomplishment” (Burkert, 1972, 424). But operationalism 
rejects such a dichotomy between constructions and “pure theory.” Instead, operationalism 
articulates a sense in which earlier mathematicians, such as the Pythagoreans, could have 
made profound and foundationally sophisticated contributions while vehemently rejecting 
Platonising tendencies in the philosophy of geometry.

Indeed, when going beyond his convincing case against Pythagoras the Platonist, to the 
more general case of trying to minimise the significance of Pythagoras and his followers 
in the history of geometry, Burkert find himself on the back foot. He is forced to try to 
explain away Aristotle’s compelling statement that “the so-called Pythagoreans were the 
first to take up mathematics; they advanced this study, and having been brought up in it 
they thought its principles were the principles of all things” (Burkert, 1972, 412). Burkert’s 
thesis leaves him little choice but to dismiss the centrality of mathematics implied by this 
statement as “a psychological conjecture of Aristotle, which the historian is not obliged to 
accept” (Burkert, 1972, 414). That Proclus was wrong is plausible enough, but having to 
postulate that Aristotle was wrong comes at a considerably higher cost. And while Burkert 
was able to discredit Proclus’s mention of Pythagoras in the catalogue of geometers, he 
cannot deny that numerous attributions of mathematical discoveries to Pythagoreans made 
by Proclus are indeed based on Eudemus and hence credible (Burkert, 1972, 449–450). 
Thus even Burkert must admit that “Pythagoreans made significant contributions to the 
development of Greek geometry.” Yet he hastens to add: “but the thesis of the Pythagorean 
foundation of Greek geometry cannot stand” (Burkert, 1972, 465).

I do not make any claims of my own regarding the Pythagorean mathematical tradi-
tion.88 My point is only to observe that Burkert’s argument is based on tacitly assuming 
a monolithic conception of what “the foundations of Greek geometry” consisted in. The 
operationalist reading of Greek geometry problematises this assumption. It shows that one 
cannot simply take for granted that “the foundations of geometry” means what modern 
authors think it should mean. Operationalism offers an alternative vision, according to 
which much early Greek geometry may very well have been eminently foundational, but 
in a sense different from that commonly assumed by modern observers. This at least raises 
the possibility that early traditions such as that of the Pythagoreans may have been more 
foundationally significant than Burkert’s argument admits.

6 � Conclusion

Making is the idée fixe of Greek geometry. In Euclid’s Elements, the first postulates and the 
first propositions are about making; in his Data, even the first definition is about what can 
be made. The three most persistent research problems in Greek geometry are about making 
something.

88  As noted in Sect.  4.1.3, the operationalist reading of Greek mathematics suggests that sophisticated 
foundational work and articulate philosophy of geometry must have been present in roughly Pythagorean 
times, i.e., at a somewhat earlier stage than most historians would be inclined to say. But how much of that 
should be attributed to Pythagoreans is a question I leave open.
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I have argued that Greek geometers had a grand plan behind this—a coherent, deliber-
ate philosophy that makes perfect sense of this entire program of research. Rigour, to the 
Greeks, meant operationalism, and for good reason. Operationalism safeguards mathemat-
ics against a multitude of plagues. It prevents us from reasoning about entities and con-
cepts that are inconsistent, incoherent, non-existent, or imaginary. It grounds mathematics 
in reality and gives a straightforward account of what geometry is and what geometrical 
statements mean.

Mathematicians would have had every reason to articulate such a philosophy. Greek 
antiquity was an age of sceptical philosophical attacks. Mathematics would have found 
itself under fire, and its enemies were no fools. The logic and rigour of mathematical proofs 
were by and large hugely impressive. Yet it had a conspicuous Achilles heel: a veritable 
self-destruct button that could bring the entire edifice crashing down at the slightest trigger. 
For if there was any way an inconsistency could slip into mathematical reasoning unde-
tected, then everything that followed would immediately be rendered logically worthless. 
What guarantee do we have that this will never happen, or indeed that it has not already 
happened?

This vulnerability pertains especially to the way objects are introduced into mathemati-
cal discourse. It is safe to say “let ABC be a right-angled triangle,” but if you say “let ABC 
be a triangle with two right angles” or “let ABC be a right-angle triangle with side lengths 
4, 7, and 9” then you have introduced an inconsistency and all is lost. Geometry needs to 
systematically guarantee that it could never commit an error of this type. In other words, it 
needs a meticulous gatekeeping policy that only allows the most carefully vetted entities to 
enter mathematical discourse.

Constructions are the answer to this problem. By insisting that geometry only speaks 
of entities that are constructed, the mathematician immediately knocks the legs out under 
boogeymen examples of inconsistent objects such as the superright triangle. In fact, more 
generally, constructions guarantee the consistency of geometrical entities by subsuming 
geometry in physical experience. In the 19th century, hyperbolic geometry was proved 
consistent—or rather equiconsistent with Euclidean geometry—when it was shown that 
models of it could be constructed in Euclidean space. Hyperbolic geometry thereby inher-
ited the credibility of the ambient Euclidean geometry, whose consistency was, if not 
proven, at least testified by extensive experience. In the same way, when ancient mathema-
ticians founded geometry on physical constructions, they made geometry equiconsistent 
with metrical physical experience. Geometry thereby inherited the consistency credibility 
of physical experience: that is to say, believing that there is an inconsistency in geometry is 
tantamount to believing that there are inconsistencies in physical experience itself, such as 
a ruler being both twice as long and also equally long as another.

It is clearly essential for this argument that construction really means actual, physically 
realisable construction. It is not very essential to this argument, however, that these con-
structions can be practically executed with significant precision. Attention to concrete real-
isability in principle is still a severe form of intellectual hygiene that rules out a great many 
possible sources of inconsistency and hidden assumptions that could easily creep into a 
system with less exacting standards.

Constructions are essential not only for consistency but also for the careful monitoring 
of potential hidden assumptions. It may seem innocent enough to assume that a square 
exists, or that, given any two lines and a point somewhere between them, one can draw 
a line through that point cutting both lines. In fact, however, both of these assumptions 
depend on the parallel postulate. This hidden dependency is not obvious if one introduces 
these objects merely by decree or “thought construction.” Explicating concrete steps and 
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postulates corresponding to physical operations, on the other hand, forces rigorous atten-
tion to the underlying assumptions.

Constructions can support these foundational purposes only if they are explicable in 
terms of concrete, practical execution. If we loosen this requirement, and allow “construc-
tions” that are merely mentally imagined, then the strength of all of these arguments is 
immediately null and void. The nebulous notion of constructions as merely some form of 
thought experiment does not have anything like the rigour to answer the foundational chal-
lenges of consistency and assumption control. Insisting on physical realisability is a way of 
taking the vagueness and imprecision of our imagination and intuition out of the equation, 
and instead grounding the concept of constructions in what is concretely knowable and 
testable in actual experience.

Salient aspects of the Greek geometrical tradition are best understood in these terms, 
I claim. To Euclid, constructions always come before theorems. Mathematics about what 
is not constructed is not properly mathematics at all, according to operationalism, for it is 
wide open to sceptical attacks and can readily succumb to paradox or self-contradiction at 
any moment. Greek geometers were determined to carry this program through for higher 
geometry that goes beyond the scope of Euclid’s ruler and compass. The three classical 
construction problems are little but a thinly veiled research program to do exactly this: that 
is to say, to find specific, concrete constructions that enlarge the scope of geometry while 
remaining as true as possible to the philosophical principles of operationalism.

Those are the main theses I have argued for in this work. On many points this is a radi-
cal departure from established interpretations of Greek geometry. The strength of my case 
is in the big picture. The most convincing support for my interpretations comes not from 
detailed source evidence but how each part fits into a coherent whole. While no one part of 
my revisionist take is beyond question on its own, the fact that I can sustain my perspective 
across a wide range of case studies lends indirect support to specific claims as well.

I may well have too much faith in this form of evidence, but then again other schol-
ars may have too little. It is true that next to nothing of the operationalist philosophy that 
I attribute to Greek geometers is actually explicitly documented in any surviving ancient 
source. But then again there is virtually no direct documentation of the philosophical views 
of the great mathematicians of antiquity altogether, whether operationalist or otherwise. As 
for sources that do speak of the philosophy of mathematics, my interpretation largely goes 
against them, if anything. But those sources are almost exclusively written by philosophi-
cal authors. People like Plato, Aristotle, and Proclus should not be taken to speak for the 
mathematicians any more than Hegel and Wittgenstein are good guides to the philosophy 
of mathematics of Hilbert.

And if philosophically explicit sources asserting the key principles of operationalism 
is what you want, then you have it in abundance in the 17th century. There it is stated 
by mathematicians, and not any mathematicians. Viète, Descartes, Huygens, Leibniz, etc.: 
these were the closest peers of the Greek mathematicians the world has ever seen before 
or since. Unlike Plato, Aristotle, and Proclus, they lived and breathed geometry and were 
technically excellent mathematicians. Unlike, arguably, Pappus, Eutocius, and medieval 
Arabic and Renaissance European geometers, they perceptively and creatively built on the 
ancient problem tradition in their own work. These are the people who did not hesitate to 
ascribe operationalist principles to the ancients. The word of interpreters of such creden-
tials should not be dismissed lightly, in my opinion.

As for the ancient Greek mathematicians themselves, they are silent on philosophical 
issues as far as surviving sources are concerned. But it is impossible to deny, in my opin-
ion, that they must have had a sophisticated appreciation of the kinds of foundational issues 
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that I have discussed. How could their studious constructive-foundational pedantry have 
stemmed from any other source? What else could have driven them to fixate manically on 
two or three construction problems for centuries?

If my hypothetical reconstruction is not accepted, the Greek tradition is full of para-
doxes. How can Euclid obsessively reduce everything to ruler and compass in Elements 
I.1–3 only to immediately turn to a completely antithetical method in I.4? How can the 
Greeks give pride of place to the three classical construction problems, only to then pro-
pose solutions to these problems by means of entities that are not themselves constructed 
such as conics or the intersecting surfaces of Archytas? If I can simply “let” surfaces and 
their intersections come into being by decree, then why can I not just “let” an angle be the 
third of another? How can constructions by physical instruments and motions be consid-
ered an unequivocally essential aspect of a solution by half of the first-rate mathemati-
cians who worked on the three classical problems, only for it to be entirely disregarded 
by the other half? None of this makes any sense. My operationalist reconstruction of the 
Greek geometrical tradition solves these glaring interpretative problems. My reconstruc-
tion is speculative, yes. But it is also the only hypothesis that does not force us to attribute 
rampant incoherence to the philosophy of Greek geometry.
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