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Summary
The thermochemical nature of the lower mantle, and the two Large Low Shear-wave
Velocity Provinces (LLSVPs) in particular, remains a topic of active debate. Exclu-
sively imaging seismic velocity anomalies only provides limited ability to distinguish
between thermal and compositional origins. In this thesis we use whole Earth os-
cillations, or normal modes, to study 3D variations in mantle shear wave velocity
(vs), compressional wave velocity (vp), bulk sound velocity (vφ), density (ρ) and
shear attenuation (qµ). These observations provide new constraints on the presence
of lower mantle chemical heterogeneity. Normal mode observations are commonly
included in seismic tomographic models in the form of splitting functions, a conve-
nient intermediate step from normal mode spectra to a tomographic model. Here,
we compare the two-step splitting function inversion method to the less frequently
used, computationally more expensive one-step direct spectrum inversion. In theory,
the one-step inversion suffers less from non-uniqueness and only requires regular-
ization once. In practice, we find that the average spectral misfits for the one-step
inversion are lower for each combination of mantle parameters we invert for.

Dissimilarities in model patterns and amplitudes between the two inversion
methods grow larger when adding independent parameters to a vs-only inversion,
resulting in differences in thermochemical interpretations. The ratio between vs
and vp anomalies obtained from their joint inversion, proposed to be an indicator
of chemical heterogeneity when exceeding a threshold predicted by mineral physics,
varies significantly between the two inversion methods. The method of computing
the ratio is just as important. We obtain ratios exceeding the threshold in the lower
mantle only when dividing the root mean square amplitudes of our vs and vp models,
although lower than some previous studies suggest. However, by taking the median
ratio from a grid at each depth, we barely exceed the threshold. Instead of relying
on these 1D representatives of the ratio, we infer chemical heterogeneity in certain
depth ranges based on a wide spread in distributions of vs, vp anomalies and their
ratio.

Another constraint on the presence of chemical heterogeneity comes from the
anti-correlation of vs and vφ structure. Whereas many previous studies find an
anti-correlation in the lower mantle, we find (de-)correlation in the lower mantle in
joint vs and vφ inversions, with only slightly negative correlation for the two-step
inversion. We shift towards more negative correlation values when extracting vφ
from our previously obtained vs and vp models.

Lower mantle density structure has remained elusive and controversial in recent
decades. In joint inversions for vs, vp, ρ and discontinuity topography, we show that
a basal layer of excess density is located underneath part of the otherwise lighter-
than-average LLSVPs, reconciling previous observations. This dense layer is more
robust in the one-step inversion and does not result from high-amplitude ghost pat-
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terns that are thought to have plagued earlier normal mode studies. Compositional
variations such as iron enrichment may explain this dense but seismically slow layer.

Finally, we obtain preliminary results for imaging lower mantle shear attenua-
tion in joint vs and qµ one-step inversions. As this is a pioneering study, we first
select the best way of inverting for 3D qµ in synthetic tests, before applying this
method to real data. Mode selection appears to be crucial, as modes with limited
qµ sensitivity do not contribute in a constructive manner. We also need to properly
account for detailed elastic structure to minimize leakage into anelastic structure.
The preliminary 3D qµ model shows low attenuation in LLSVPs and high attenua-
tion in the surrounding lower mantle, possibly indicating a dominant role for grain
size.



Samenvatting
De thermochemische status van de ondermantel, en van de twee Large Low Shear-
wave Velocity Provinces (LLSVPs) in het bijzonder, is al lang een onderwerp van
discussie. Door alleen te kijken naar variaties in seismische golfsnelheden kunnen
we slechts in beperkte mate onderscheid maken tussen thermische en chemische oor-
zaken van mantelstructuren. In dit proefschrift gebruiken we de eigentrillingen van
de aarde, ook wel normal modes genoemd, om 3D variaties in transversale golf-
snelheid (vs), longitudinale golfsnelheid (vp), bulk geluidssnelheid (vφ), dichtheid
(ρ), en attenuatie of demping (qµ). Deze observaties bieden nieuwe inzichten over
de aanwezigheid van chemische heterogeniteit in de ondermantel. Normal mode
observaties worden vaak meegenomen in seismische tomografische modellen in de
vorm van splitting functies; een handige tussenstap als je van normal mode spectra
naar een tomografisch model gaat. Hier vergelijken we deze twee-staps splitting
functie inversie met de zelden gebruikte, rekenkundig dure één-staps directe spec-
tra inversie. Theoretisch gezien lijdt de één-stapsinversie minder aan niet-uniekheid
en vereist deze slechts eenmaal regularisatie. In de praktijk zien we dat de gemid-
delde spectrale misfits lager zijn in de één-stapsinversie voor elke combinatie van
mantelvariabelen waarvoor we inverteren.

Verschillen in modelpatronen en -amplitudes tussen de twee inversiemethodes
groeien wanneer onafhankelijke parameters worden toegevoegd aan een pure vs-
inversie, wat leidt tot verschillende thermochemische interpretaties. De ratio tussen
variaties in vs en vp verkregen uit hun gezamenlijke inversie, een indicator van
chemische heterogeniteit als de ratio een drempelwaarde uit de mineraalfysica over-
schrijdt, verschilt aanzienlijk tussen de twee inversiemethodes. Net zo belangrijk is
de methode waarmee de ratio berekend wordt. We verkrijgen alleen ratio’s die de
drempelwaarde in de ondermantel overschrijden als we de kwadratische gemiddeldes
van de vs en vp modellen door elkaar delen, hoewel onze ratio’s lager zijn dan eerder
gesuggereerd. Echter, als we op elke diepte de mediaan uit een grid nemen komen
we nauwelijks boven de drempelwaarde uit. In plaats van te vertrouwen op deze 1D
representaties van de ratio, halen we aanwijzingen voor chemische heterogeniteit op
bepaalde dieptes uit de wijde spreiding in de distributies van vs en vp variaties en
hun ratio.

Een andere indicator van chemische heterogeniteit is de anti-correlatie tussen vs
en vφ structuren. Terwijl veel eerdere onderzoeken een anti-correlatie vinden in de
ondermantel, vinden wij (de-)correlatie in de ondermantel in gezamenlijke inversies
voor vs en vφ, met een lichte negatieve correlatie voor de twee-stapsinversie. De
correlatie verschuift naar meer negatieve waardes als we vφ extraheren uit onze
eerder verkregen vs en vp modellen.

De dichtheidsstructuur van de ondermantel is de laatste decennia ongrijpbaar en
controversieel gebleken. Gezamenlijke inversies voor vs, vp, ρ en topografie van dis-
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continuïteiten laten zien dat er een laag met hoge dichtheid op de kern-mantelgrens
ligt, deels onder de verder lichte LLSVPs, wat eerdere observaties kan verzoenen.
Deze dichte laag is robuuster in de één-stapsinversie en is niet het resultaat van
overheersende “ghost” patronen, die in eerdere normal mode onderzoeken een grote
rol kunnen hebben gespeeld. Compositionele variaties zoals ijzerverrijking zouden
deze dichte maar seismisch langzame laag kunnen verklaren.

Als laatste doen we een inleidend onderzoek naar het in kaart brengen van
attenuatie of demping in de ondermantel door middel van één-stapsinversies voor
vs en qµ gezamenlijk. Aangezien we hiermee pionier zijn, selecteren we eerst de
beste manier om voor 3D qµ te inverteren uit synthetische testen, alvorens deze
methode toe te passen op echte data. De selectie van normal modes lijkt cruciaal,
omdat modes met beperkte gevoeligheid voor qµ geen constructieve bijdrage leveren.
We moeten ook rekening houden met gedetailleerde elastische structuren om de te
zorgen dat ze niet in de anelastische structuur lekken. Het voorlopige 3D qµ model
heeft lage demping in LLSVPs en hoge demping in de omringende ondermantel, wat
mogelijk wijst op een dominante rol van korrelgrootte.



1
Introduction

The vast majority of the Earth is physically inaccessible to us, shielded by the
crust. We can only directly observe certain features at the surface, such as faults
and volcanoes that are expressions of processes happening deeper in the Earth,
and sense the earthquakes and volcanic eruptions that are associated with them.
Advances in seismic tomography, where we use earthquake waves to image the deep
Earth in 3D, have allowed us to indirectly observe the Earth’s deep interior with
ever increasing resolution; painting a picture of places where only sci-fi scientists
can physically travel to.

The main topic of this thesis is using normal modes to image the Earth’s man-
tle, which ranges from just below the crust-mantle boundary (the so-called Moho-
discontinuity) to 2891 km depth at the core-mantle boundary (CMB). We aim to
improve tomographic models of large-scale mantle structure in terms of its 3D shear-
wave velocity (vs), compressional-wave velocity (vp), bulk sound velocity (vφ), den-
sity (ρ) and shear attenuation (qµ), by directly extracting information from normal
mode spectra. The Earth’s mantle plays an important role in the dynamics of the
Earth as a whole. The mantle is heated from below by the outer core and from
within by radioactive decay, and loses heat to the universe, implying that the Earth
is slowly cooling down. This heat transport gives rise to mantle convection, with
upwelling plumes (forming hotspot volcanoes) and downwelling subducted slabs as
main contributors to vertical displacent. A significant portion of mantle material
has been mixed by ongoing convection for millions of years, where some regions are
affected more than others. The mantle is therefore not a homogeneous medium.
Heterogeneities in the order of tens to thousands of kilometres have been mapped
by seismic tomography (see recent review by Ritsema & Lekić (2020)).

Representing the Earth’s properties as an average 1D radial profile, e.g. PREM
(Dziewonski & Anderson, 1981) or ak135 (Kennett et al., 1995), provides a good
first-order fit to a range of seismic observations, including body wave travel times,
normal mode eigenfrequencies, and surface waves. The inner core – outer core
interface is characterized by a major drop in shear-wave velocity (Fig. 1.1), from
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Figure 1.1: 1D Preliminary Reference Earth Model (PREM) (Dziewonski & Anderson, 1981), from
the surface to the centre of the Earth, showing (isotropic) vs (red), vp (black) and density (grey),
and major discontinuities ‘400’ and ‘670’ in the mantle transition zone, the core-mantle boundary
(CMB) and the inner core boundary (ICB).

about 3.5-3.7 km/s in the solid iron-nickel alloy inner core to zero in the vigorously
convecting fluid outer core, generating the Earth’s magnetic field. Another major
interface is the CMB, which is characterized by a large drop in density and jump in
seismic velocities from outer core to lower mantle (Fig. 1.1).

Distinct regions in the mantle from top to bottom derived from a 1D profile are
(i) the upper mantle, (ii) mantle transition zone from 400 to 670 km depth and
(iii) lower mantle. Velocities and density gradually increase with depth throughout
the mantle, with discontinuities at the top and bottom of the mantle transition
zone (Fig. 1.1). These transition zone interfaces are associated with global phase
changes in the main upper mantle mineral olivine. The lower mantle hosts a number
of regional and local scattering bodies or reflectors, but is not characterized by
any more of these global discontinuities, the only exception potentially being the
seismically distinct D” layer in the lowermost couple of hundred kilometres.

Seismic tomography maps spatial variations of a certain parameter (e.g. velocity,
density, attenuation) with respect to a 1D average, often PREM. The three main
types of seismic waves used in these studies are, in order of increasing period: body
waves, surface waves and normal modes (whole Earth oscillations). Each type comes
with its own depth sensitivity, lateral resolution, limitations and approximations.
Seismic tomographic resolution generally decreases with increasing depth, so 3D
upper mantle structures are more well-known than lower mantle structures. Even
the nature and origin of the largest heterogeneities found in the Earth’s interior, the
Large Low Shear-wave Velocity Provinces that we will introduce shortly, is heavily
debated, as they are situated in the lowermost mantle where seismic resolution is
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poorest.
I will give an overview here of the most studied lower mantle structures, from the

largest (∼1000s kms) to the smallest (∼10s kms) heterogeneities, and how they are
currently explained in terms of composition, temperature and their role in mantle
dynamics. Apart from consensus on the existence of these structures, nearly every
(thermo)chemical interpretation is debated, although some explanations seem more
plausible than others.

1.1. Large Low Shear-wave Velocity Provinces
1.1.1. Seismic observations
The most prominent structures in global seismic tomographic models (Fig. 1.2),
including those using normal modes, are two nearly anti-podal low velocity regions,
dominated by spherical harmonic degree 2 (e.g. Li & Romanowicz, 1996; Ritsema
et al., 1999, 2011; French & Romanowicz, 2015). One is located in the lower mantle
beneath Africa, which was dubbed “Tuzo”, and the other is located beneath the
Pacific Ocean, and was given the nickname “Jason” (Burke, 2011).

Originally called “superplumes”, these regions are currently referred to as Large
Low Shear-wave Velocity Provinces (LLSVPs) (Garnero & McNamara, 2008) to
avoid any implications on dynamic behaviour in their name, and simply refer to
their low-velocity signature in 3D vs models instead. Some recent studies started
calling them Large Low Velocity Provinces (LLVPs), since their vp is also lower than
average (e.g. Masters et al., 2000a; Houser et al., 2008b; Koelemeijer et al., 2016).
Although they are degree-2 dominant structures, their shapes in map view (Fig.

Figure 1.2: Tomographic S-wave velocity model S40RTS (Ritsema et al., 2011) a) in map view
at 2800 km depth, with LLSVP outlines by Koelemeijer et al. (2016), b) in cross-section view
showing the radial extent of the LLSVPs, where the section intersects at the equator, and the
degrees represent degrees east from the meridian.
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1.2a) and cross-section view (Fig. 1.2b) are not identical. For example, the African
LLSVP is more elongated in a north-west south-east direction, whereas the Pacific
LLSVP is more rounded.

Although the exact details of LLSVP geometry vary due to different modelling
approaches and data sets, cluster analyses have shown that tomographic studies
agree very well on the lateral extent of LLSVPs in S-wave velocity models (Lekic
et al., 2012) (Fig. 1.3), and to a lesser degree in P-wave velocity models (Cottaar
& Lekic, 2016; Garnero et al., 2016). Global tomographic models agree less well
(correlation < 0.4) for spherical harmonic degrees higher than 16, which comes down
to structures of about 2,500 km and smaller (Meschede & Romanowicz, 2015) that
have been excluded from cluster analyses. LLSVPs, or LLVPs, do not even appear
as coherent continent-sized low velocity regions in some P-wave velocity models, but
instead as a collection of smaller scattered regions (Houser et al., 2008b; Hosseini
et al., 2019). Detailed seismic waveform analysis infer that LLSVPs may be bounded
by steep lateral gradients in vs (e.g. Ni et al., 2002; Wang & Wen, 2004; He et al.,
2006). Their sharpness at the top and their vertical extent are less well defined,
ranging from approximately 300-400 to 2000 km above the CMB and varying for
both LLSVPs (e.g. Garnero & McNamara, 2008; He & Wen, 2009; Tanaka et al.,
2009; French & Romanowicz, 2015).

Figure 1.3: Taken from Lekic et al. (2012). Vote map resulting from a cluster analysis of slower-
than-average vs anomalies in 5 global tomographic models (Mégnin & Romanowicz, 2000; Houser
et al., 2008b; Kustowski et al., 2008; Simmons et al., 2010; Ritsema et al., 2011) in depth range
1000-2800 km. Colours point to the number of models that agree on a slow anomaly in a particular
region.

The large uncertainty in their vertical extent translates to large variations in
volume estimates of LLSVPs. The volume fraction of both LLSVPs based on the
−1.0% δvs/vs contour in vs model SMEAN (Becker & Boschi, 2002), the average of
three 3D vs models, adds up to 1.6% of the mantle. This is a conservative estimate
according to Cottaar & Lekic (2016), who argue this number is 8% based on cluster
analysis of five tomographic models. The volume fraction of LLSVPs is strongly
dependent on the choice of velocity contour or other measures used to define their
boundaries, and to a lesser extent on the tomographic models. The volume occupied
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by the LLSVPs has implications for their nature and origin, and for the size of a
geochemical reservoir potentially residing within them.

There is a high geographic correlation between LLSVP edges at the CMB on
the one hand and past and present hotspots at the Earth’s surface (Thorne et al.,
2004), large igneous provinces (LIPs) (Torsvik et al., 2006), and kimberlites (Torsvik
et al., 2010) on the other hand. Moreover, the probability of obtaining the specific
degree 2 configuration of LLSVPs is 0.001 by randomly generating the 5 degree 2
spherical harmonic coefficients (Dziewonski et al., 2010), so these structures were
hardly formed accidentally. All of these observations suggest that LLSVPs are stable
and long-lived features of the lower mantle. The geographic correlations suggest
a relation between LLSVP edges and surface expressions in the form of mantle
plumes (e.g. Burke et al., 2008; French & Romanowicz, 2015), although correlations
between LIPs and the interior of LLSVPs is statistically indistinguishable from the
correlation with the edges (Austermann et al., 2014). These plumes would have
to be nearly completely vertical conduits, neglecting horizontal convective flow.
Furthermore, correlation does not necessarily imply causation and these surface
expressions also correlate well with other features such as diverging plate boundaries
(Julian et al., 2015).

The prominent degree 2 signal in mantle tomography is also present in grav-
ity anomalies. The geoid is elevated above the LLSVPs, after correcting for the
gravity signal of subducting slabs (e.g. Hager et al., 1985). Interpreting the grav-
ity signal in terms of LLSVP density is complicated by the non-unique nature of
gravity measurement owing to trade-offs between underlying density and dynamic
topography. Hot rising superplumes can create positive geoid anomalies due to the
dominant effect of dynamic topography, whereas dense piles can result in positive
geoid anomalies if excess density would be the most important contributor to the
geoid.

The lower mantle is characterized by a high ratio of S- to P-wave velocity varia-
tions, with even higher values for the LLSVPs (e.g. Masters et al., 2000a; Koelemeijer
et al., 2016; Moulik & Ekström, 2016), and wide distributions of this ratio laterally
(Deschamps & Trampert, 2003). Whereas S-wave velocity (vs) in LLSVPs is lower
than average, bulk sound velocity (vφ) is often found to be higher, leading to an
anti-correlation between vs and vφ anomalies (e.g Su & Dziewonski, 1997; Ishii &
Tromp, 1999, 2001; Masters et al., 2000a; Resovsky & Trampert, 2003; Trampert
et al., 2004; Mosca et al., 2012).

In addition to low S- and P-wave velocities, LLSVPs are commonly characterized
by a higher-than-average density, at least in a significant part of them. High LLSVP
density is primarily constrained by normal mode splitting measurements (e.g. Ishii &
Tromp, 1999; Resovsky & Trampert, 2003; Trampert et al., 2004; Mosca et al., 2012;
Moulik & Ekström, 2016), and the Earth’s tides (Lau et al., 2017), implying an anti-
correlation between vs and density anomalies. However, Stoneley modes, a certain
type of normal modes sensitive to depths just above the CMB, prefer lighter than
average LLSVPs (Koelemeijer et al., 2017), providing an apparently contradicting
observation of LLSVP density. Recent efforts to reconcile these observations come
from looking at the different depth sensitivities to density between Stoneley modes
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and tides. Both observations can be satisfied by a dense layer at the base of LLSVPs
(Lau et al., 2020; Robson et al., 2021; van Tent et al., 2021). Despite concerns on the
resolvability of lower mantle density (Resovsky & Ritzwoller, 1999b; Romanowicz,
2001; Kuo & Romanowicz, 2002), especially in earlier studies, we slowly converge
to a better understanding of density heterogeneities in the deep mantle.

Besides imaging elastic structures, seismic waves also provide information on
anelastic processes in the mantle. Intrinsic seismic attenuation, i.e. energy of seis-
mic waves being transformed into heat, of LLSVPs has been measured using body
waves and normal mode splitting functions, yielding apparently contradicting re-
sults. Body wave studies infer the LLSVPs to be regions of high attenuation, at
least in part of them (Lawrence & Wysession, 2006b; Hwang & Ritsema, 2011;
Liu & Grand, 2018), whereas an inversion of anelastic splitting functions results in
low attenuation in LLSVPs (Talavera-Soza et al., 2021b). The biggest challenge of
imaging seismic attenuation using body waves is separating the intrinsic attenua-
tion from apparent attenuation due to scattering and focussing of seismic energy.
This distinction is more easily made in normal mode research, in part because of
the negligible sensitivity of normal modes to small-scale scatterers. Reconciling the
above-mentioned observations and improving techniques to image lower mantle at-
tenuation are important steps for the seismological community to take in the near
future.

Normal modes are the only seismic waves directly sensitive to anomalies in den-
sity, in addition to vs, vp, vφ, and seismic attenuation, and are therefore espe-
cially well-suited to make robust observations of the large-scale seismic signature of
LLSVPs. We will provide novel constraints on these parameters within the LLSVPs
by using an extensive normal mode data set and reviving a long overlooked direct
spectrum inversion approach.

1.1.2. Geodynamical/mineralogical interpretations
LLSVPs most likely play a very important role in mantle dynamics. In spite of many
observations of various parameters, as outlined above, their exact role is not yet
clear. Several conceptual models of LLSVPs and the surrounding lower mantle have
been put forward (e.g. Kellogg et al., 1999; Courtillot et al., 2003; Dziewonski et al.,
2010; Torsvik et al., 2014). Four endmember models encountered in geodynamic
modelling efforts have been described by Garnero et al. (2016) (Fig. 1.4), which we
will discuss here. The significant variations in morphology between these models
reflect the uncertainties regarding the nature and origin of LLSVPs. Normal modes
can only resolve large-scale morphological features, and will therefore need to be
combined with higher frequency seismic observations to distinguish between piles,
superplumes and plume clusters.

One possible nature of LLSVPs is that they are in fact a collection of smaller
plumes, originating from the CMB (Fig. 1.4a), which only appear as coherent struc-
tures through the blurry lense of seismic tomography (Schubert et al., 2004). Plume
conduits have always been notoriously difficult to image in seismic tomography be-
cause of an effect called wavefront healing, where seismic waves that have interacted
with a small low velocity anomaly, such as a plume conduit, restore their original
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wavefront before arriving at the seismic station. Employing dense seismic arrays to
measure waves diffracted by a plume-like structure could improve their resolvability
(e.g. Stockmann et al., 2019). Recent improvements in resolution of seismically slow
and narrow structures suggests that the LLSVPs may indeed not be as continuous as
they seem in lower spherical harmonic degree (<18) models (French & Romanowicz,
2015; Lei et al., 2020). Davaille & Romanowicz (2020) argue that the position and
morphology of the plume clusters in this case are dictated by the degree 2 pattern of
subduction, and have shifted depending on patterns of past subduction throughout
the Earth’s evolution. This kind of mantle convection is slab-driven, known as a
“top-down” convection model. The proposed plumes may entrain dense material
and still maintain overall bouyancy (Davaille & Romanowicz, 2020).

Another conceptual model portrays the LLSVPs as buoyant superplumes or
domes (Fig. 1.4b), which was first observed by Tackley et al. (1998) in numeri-
cal simulations and by Davaille (1999) in laboratory experiments with an intially
stratified fluid. Superplumes are long-lived thermochemical structures, stabilized by
counteracting forces from positive buoyancy due to high temperatures and negative
buoyancy due to chemical composition.

Figure 1.4: Adapted from Garnero et al. (2016). Conceptual models of the lowermost ∼1500 km
of the mantle. The four proposed morphologies of LLSVPs are surrounded by subducting slabs
(light green), possibly containing post-perovksite (pPv; dark green), and carrying oceanic crust
(thin slivers of brown). Dark red small-scale structures on top of the CMB are ULVZs (ultra-low
velocity zones). The four LLSVP cases consist of a) clusters of separate plume conduits, b) bouyant
domes or superplumes, c) dense stable piles, and d) metastable piles. Faded background colours
represent the blurry picture of slow (red) and fast (blue) areas from seismic tomographic models.
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Finally, LLSVPs may be denser-than-average stable piles (Fig. 1.4c) (e.g. Li
et al., 2014; Gülcher et al., 2021) or meta-stable piles with an internal density cross-
over (Fig. 1.4d) (e.g. Tan & Gurnis, 2005; Bower et al., 2013), with long-lived plumes
generated along their margins, and possibly even short-lived secondary plumes from
their roofs (Ballmer et al., 2016). In these two models the LLSVPs are stable and
may have anchored mantle convection in its degree 2 configuration. This type of
convection is referred to as “bottom-up” convection (Dziewonski et al., 2010), in
contrast to the slab-driven top-down convection model mentioned earlier.

Seismic observations of LLSVPs mentioned before generally require some de-
gree of thermochemical heterogeneity to explain them (e.g. Ishii & Tromp, 1999;
Trampert et al., 2004; Simmons et al., 2010; Mosca et al., 2012; Moulik & Ekström,
2016). However, some studies argue for a dominant role of thermal heterogeneity.
Sharp edges might indicate compositional boundaries, but we cannot exclude sharp
edges corresponding to a purely thermal anomaly, according to geodynamical studies
(Schuberth et al., 2009; Davies et al., 2012). They also argue from their mantle con-
vection simulations that thermochemical LLSVPs regularly overpredict deep mantle
S-wave velocity anomalies, compared to purely thermal buoyant LLSVPs. Further-
more, anti-correlation between vs and vφ anomalies and the high ratio between 3D vs
and vp may be explained by post-perovskite (e.g. Murakami et al., 2004; Oganov &
Ono, 2004; Tsuchiya et al., 2004), a high-pressure polymorph of the most abundant
mantle mineral bridgmanite, not requiring the presence of chemical heterogeneity
(Koelemeijer et al., 2018). However, the stability field of post-perovskite is still
highly debated, and has even been proposed to be situated at outer core pressures
(e.g. Cobden et al., 2012). Recent in-situ high-pressure and -temperature experi-
ments suggest that the phase transition does occur under lower mantle conditions
(Kuwayama et al., 2021).

In the thermochemical pile paradigm (Fig. 1.4c,d), proposed compositions of the
LLSVPs include recycled oceanic crust (e.g. Christensen & Hofmann, 1994; Hirose
et al., 2005; Jones et al., 2020), ancient primordial material (e.g. Labrosse et al.,
2007; Deschamps et al., 2012), or a combination of the two (e.g. Tackley, 2012;
Ballmer et al., 2016; Gülcher et al., 2021). Deschamps et al. (2012) argue that
material enriched in perovskite (bridgmanite) and iron provides a good explanation
for the seismic signature of the LLSVPs, and that LLSVPs being composed of
recycled oceanic crust seems highly unlikely, as this MORB would have to heat up
to unrealistically high temperatures to produce the observed low velocities. On the
other hand, geodynamical studies such as Jones et al. (2020) show that long-term
recycling of oceanic crust is able to create warm low-velocity piles with a dense
base, complying with seismic observations, as long as the density contrast between
subducted basaltic material and the ambient mantle is sufficient. The geochemical
nature of LLSVPs partly determines the start of modern-day plate tectonics, as
dense primordial LLSVPs could have a profound delaying impact on this onset
(Kreielkamp et al., 2022).

Geochemical evidence supports the existence of a primordial reservoir in the
mantle. The mantle is thought to be composed of various geochemical reservoirs,
inferred from the observation of different geochemical compositions of basalts at the
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surface (see review by White (2015)). The source material of these basalts originates
from a range of depths in the mantle. Hotspot basalts, called Ocean Island Basalts,
or OIBs for short, have a different geochemical signature than the basalts found at
mid-ocean ridges, called Mid Ocean Ridge Basalts, or MORBs. Within OIBs there
are subclasses with different trace element isotope ratios, potentially reflecting differ-
ent degrees of mixing, whereas MORBs are relatively uniform in chemical signature.
Furthermore, OIBs are less degassed and less depleted in incompatible elements than
MORBs, which are elements that preferentially go into the melt phase upon partial
melting, indicating that their source material has undergone limited recycling and
melting in the past. If this primordial geochemical reservoir resides inside LLSVPs,
they must have been denser to survive being entrained in mantle convection over
geological time scales (Tackley, 2012). If hotspots originate from within LLSVPs or
from their margins, as spatial correlations suggest, they might be tapping into the
LLSVPs as a geochemical reservoir (e.g. Kellogg et al., 1999), showing signatures of
both primordial material and recycled oceanic crust (e.g. Christensen & Hofmann,
1994). Recent geochemical analyses on OIBs of the Galápagos Archipelago revealed
that the recycled oceanic crust component might be related to the Pacific LLSVP
margin only, not to the enriched interior (Gleeson et al., 2021), which agrees with
the slab configuration in the conceptual models of Fig. 1.4.

Alternatively, Ballmer et al. (2017) propose that the LLSVPs are composed
of recycled oceanic crust, and the ambient mantle in between as viscous primor-
dial geochemical reservoirs, called bridgmanite-enriched ancient mantle structures
(BEAMS) (Fig. 1.5). These BEAMS would have survived mantle convection due to
their high viscosity and are being sampled by plumes on their way up, explaining
the enriched signature of OIBs.

Figure 1.5: Taken from Ballmer
et al. (2017). Conceptual mantle
model showing the high viscosity
BEAMS (grey blobs), one LLSVP
(yellow), plumes (red) and slabs
(blue).

We will contribute to the thermal versus thermochemical LLSVPs debate by
interpreting our normal mode models of various seismic parameters. If LLSVPs are
chemically distinct, normal mode observations of 3D velocities, density and attenu-
ation combined with mineral physics may predict their preferred bulk composition.
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1.2. D” layer
The D” region at the base of the mantle is also of great interest to mantle dynam-
ics, as it directly overlays the outer core, and therefore any interaction between
the mantle and core takes place in this region. It is thought to host the roots of
mantle plumes, and possibly accumulated ancient subducted slabs. The D” layer
is seismically distinct from the rest of the lower mantle (Bullen, 1949) and marked
by a discontinuity at the top. This D” reflector has been found in many regions
with a depth averaging around 200-300 km above the CMB, constrained mostly by
travel times of seismic waves reflected off the top of this layer (e.g. Lay & Helm-
berger, 1983). Several explanations have been suggested for this reflector, such as
subducted slabs (e.g. Kendall & Silver, 1998), disconnected scattering bodies (e.g.
Scherbaum et al., 1997), and the phase change from bridgmanite to post-perovskite
(Murakami et al., 2004; Oganov & Ono, 2004; Tsuchiya et al., 2004).

A comparison between polarities of D” reflected waves (PdP, SdS) on one hand
and direct waves (P,S) and CMB reflections (PcP, ScS) on the other hand provides
information on the velocity change across the D” reflector. Polarity observations
vary globally. In some locations, PdP polarities are opposite to P and PcP waves,
indicating a decrease in vp velocity across D” (e.g. Thomas et al., 2011; Pisconti
et al., 2019), while SdS polarities agree with S and ScS waves, indicating a positive
velocity jump in vs across D” (e.g. Chaloner et al., 2009; Cobden & Thomas, 2013).
These observations discard a purely thermal origin and can be explained by the
presence of post-perovskite (Thomas et al., 2022). In regions where both SdS and
PdP have opposite polarities to the main phases, post-perovskite may still cause the
D” reflector, within a MORB layer, if the P-wave velocity change is positive across
the phase transition. This could be the case, as the P-wave velocity change is small
and could be slightly positive or negative depending on the exact composition of
post-perovskite (e.g. Tsuchiya & Tsuchiya, 2006b).

An alternative explanation for these variations in polarity observations is seis-
mic anisotropy (e.g. Thomas et al., 2011; Pisconti et al., 2019). Contrary to most
of the lower mantle, the D” region is characterized by strong seismic anisotropy,
especially in the areas surrounding the LLSVPs, where observations of SKS, ScS or
Sdiff splitting were made. Typically, horizontally polarized shear waves (vsh) travel
faster than their vertically polarized counterparts (vsv), whereas regions within the
LLSVPs have either no significant anisotropy, laterally varying anisotropy or faster
vsv (see review by Romanowicz & Wenk (2017)) (Fig. 1.6). The observed anisotropy
might reflect the preferred orientations of crystals that are aligned due to horizontal
flow outside of the LLSVPs and vertical flow inside the LLSVPs, as part of mantle
convection (e.g. McNamara et al., 2002; Wenk et al., 2011). Combined observations
of shear wave splitting and polarity observations, over a range of distances and az-
imuths, are required to uniquely constrain the (anisotropic) nature and composition
of this D” layer (Creasy et al., 2019).

Studying 3D variations in D” anisotropy with normal modes is beyond the scope
of this thesis, but large-scale radial anisotropy has been modelled through observa-
tions of resonance (i.e. cross-coupling) between the two main types of normal modes:
spheroidal and toroidal (Schneider & Deuss, 2021b). Their radial anisotropy model
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matches the body wave studies that generally find vsh > vsv surrounding LLSVPs
and vsv ≥ vsh within LLSVPs (Fig. 1.6).

Figure 1.6: Taken from Chandler et al. (2021), adapted from Romanowicz & Wenk (2017). El-
lipses and lines superimposed on the vote map by Lekic et al. (2012) where shear wave splitting
observations infer vsv > vsh (cyan dashed), vsh > vsv (white), or the presence of strong lateral
anisotropic variations (green).

1.3. Ultra Low Velocity Zones
Other important features observed in seismic studies are Ultra Low Velocity Zones
(ULVZs), which are 5-40 km thick regions in the D” layer, directly overlying the
CMB, characterized by very low seismic velocities (> 10% drop in velocity) (Gar-
nero et al., 1998). An increase in density of about 10% has also been inferred for
some ULVZs by fitting synthetic to observed seismograms (Rost et al., 2005). They
are primarily located within the LLSVPs and near their margins, with only a few
ULVZs spotted away from LLSVPs (see review by McNamara (2019)). Although
Yu & Garnero (2018) found no clear correlation of ULVZs with hotspots, a couple
of hotspot locations at the surface are linked to large ULVZs at the CMB (e.g. Cot-
taar & Romanowicz, 2012; Yuan & Romanowicz, 2017), with seismic tomography
suggesting a link between them in the form of a plume (French & Romanowicz,
2015), as depicted in the conceptual models of Fig. 1.4. At the time of conducting
their study, Yu & Garnero (2018) found that roughly 17.1% of the CMB area has
been probed for ULVZs, with 10.3% corresponding to positively identified ULVZs.
There is an uneven and patchy coverage of studies probing the CMB for ULVZs
due to the localized sensitivity of body waves and uneven distribution of suitable
earthquake-receiver pairs. Normal mode studies provide global tomographic models
and do not suffer from this uneven distribution. However, small-scale ULVZs can
only be measured by high frequency waves (i.e. body waves), so our normal mode
models will not provide novel constraints for these anomalous features.

The exact cause of the very low seismic velocities within ULVZs is unknown.
Some studies argue for partial melt as the cause for ULVZs, as they found the drop
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in S-wave velocity to be up to 3 times larger than the drop in P-wave velocity
(e.g. Williams & Garnero, 1996; Rost et al., 2005). However, ULVZs without this
difference in velocity drop between vs and vp also exist (e.g. Hutko et al., 2009),
which may point to a chemical component to ULVZs, or multiple origins. Contrary
to partial melt causing the low velocities, Mao et al. (2006) suggest ULVZs are made
up of solid post-perovskite, having higher density due to enrichment in iron, formed
by core-mantle reactions. If ULVZs anchor hotspot mantle plumes through time,
their high densities would help stabilize them (Garnero et al., 2016).

Some studies propose that these ULVZs are remnants of an ancient basal magma
ocean, implying that they have to be denser than average to remain gravitationally
stable features at the base of the mantle throughout the Earth’s evolution (Labrosse
et al., 2007). Increased iron content in partial melt, caused by a different iron parti-
tioning due to the iron spin transition, could explain the extreme drop in velocities
and make the melt denser than the surrounding solid mantle (Nomura et al., 2011).

Figure 1.7: Taken from Yuan
& Romanowicz (2017). Con-
ceptual model showing the thin
basal partially molten layer
(red, 10x vertically exagger-
ated) with local thickening re-
sulting in ULVZs, from which
plumes arise. This model as-
sumes the “bundle” of plumes
scenario for LLSVPs (see also
Fig. 1.4a). A change in vis-
cosity around 1000 km is also
depicted.

ULVZs may also represent detectable thickened features in an otherwise seis-
mically virtually undetectectable thin (i.e. with a thickness of several kilometres)
partially molten layer (Fig. 1.7) (Garnero & Helmberger, 1996; Yuan & Romanow-
icz, 2017). This thin basal layer is a candidate for excess density in the lowermost
mantle found by normal mode and tidal studies (e.g. Trampert et al., 2004; Moulik
& Ekström, 2016; Lau et al., 2017), while at the same time being invisible to Stone-
ley modes that did not find excess density (Koelemeijer et al., 2017). We will use
a large data set of normal modes, including these Stoneley modes, to provide con-
straints on the exact location of the proposed lower mantle excess density, and find
a way to reconcile prior observations. Unfortunately, a layer of several kilometres in
thickness lies well below the detection limit of normal modes, so such a basal layer
would need to be much thicker to be visible in our density models.

1.4. Subducting slabs
Oceanic plates subducting into the mantle are downwellings that displace mantle
material and thereby play a key role in mantle convection. Subducting slabs, both
from present subduction and paleosubduction processes, explain the upper mantle
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high velocity regions around the Pacific Ocean (i.e. “the ring of fire”), and are a
plausible explanation for the high velocity ring around the LLSVPs in the lower
mantle interpreted to be a “slab graveyard”. Both of these high-velocity rings are
visible in large-scale normal mode models, although individual slabs are hard to
image using normal modes only. High-velocity features do not suffer from wave-
front healing, making thin slabs easier to image than narrow plumes. However,
agreement between 14 tomographic models on current slab locations decreases in
the lower mantle, where tomographic resolution drops and thermal diffusion and
dissipation could make the slabs look more smeared (Shephard et al., 2017). Al-
though subducted oceanic crust is arguably denser than the ambient mantle at all
depths greater than 720 km (Hirose et al., 2005), viscous forces might be too strong
to overcome for the subducted slab to penetrate all the way down to the CMB
(Wang et al., 2020). Seismic tomography cannot give us a definitive answer (yet) on
whether or not slabs reach the CMB as illustrated in Figs. 1.4, 1.5 and 1.7, but it
does seem likely. Our normal mode studies will not provide any definitive answers
to that question, as individual slabs will appear as smeared high-velocity regions.

Fukao & Obayashi (2013) defined four categories of slabs in their detailed P-wave
model resulting from an inversion of more than 10 million P-wave travel times: i)
stagnating above the 670-discontinuity, ii) penetrating the 670-discontinuity, iii)
trapped in uppermost lower mantle (670-1000 km depth), and iv) descending into
the deep lower mantle. They found most slabs to reside in stages i and iii, and
stages ii and iv to likely be transient stages.

Slab stagnation in the mid-mantle, combined with ponding of low-velocity plumes
in some tomographic models (French & Romanowicz, 2015), could be linked to vis-
cosity changes. Rudolph et al. (2015) inferred a jump in viscosity around 1000 km
depth, based on geoid analysis. Studies using teleseismic body waves also find mid-
mantle reflectors around this depth (e.g. Jenkins et al., 2017; Waszek et al., 2018).
The exact reason behind a possible viscosity jump is still debated, as there are no
known phase changes in major mantle constituents related to this depth.

The viscous BEAMS mentioned before (Fig. 1.5) are one of the explanations
for an inferred mid-mantle increase in viscosity. Explanations for slab stagnation
specifically involve a viscosity change in ferropericlase surrounding subducting slabs
due to an increase in strength (Marquardt & Miyagi, 2015), and a density cross-
over in a basalt enriched lower mantle rendering some subducting slabs neutrally
buoyant, while other slabs still penetrate to the deep mantle (Ballmer et al., 2015).
Alternatively, the iron spin transition in ferropericlase, predicted to occur at mid-
lower mantle pressures and temperatures (Badro et al., 2003; Tsuchiya et al., 2006),
reduces viscosity in regions outside of the proposed BEAMS, resulting in a low
viscosity channel where slabs might accelarate (Marquardt & Miyagi, 2015).

1.5. Motivation
As we have seen in this general introduction, there are still a lot of active ques-
tions regarding the thermochemical state of the mantle, particularly of the deep
mantle. Could post-perovskite be a dominant constituent of the D” layer? Why
do upwellings and downwellings seem to pond or stagnate at particular depths in
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the mantle? Can we reconcile seemingly contradicting observations of lower mantle
density? Regarding LLSVPs, what is their role in mantle convection (stable mantle
anchors or buoyant superplumes) and what can we say about their thermochemical
nature? Based on the observations mentioned earlier, LLSVPs are most likely ther-
mochemical structures, but the relative importance of temperature and composition
is poorly understood. Are LLSVPs geochemical reservoirs for primordial material,
and/or recycled MORB? The aim of this thesis is providing novel observations of
vs, vp, vφ, ρ and qµ anomalies in the mantle, using the one-step direct spectrum
inversion of normal modes. Results of the one-step inversion will be compared to
those of the more commonly used two-step splitting function inversion (more details
on these methods in Chapter 3), for which we use the same spectral data as starting
point. We will compare these two inversion methods throughout the entire thesis,
for each combination of mantle parameters, to see whether the one-step inversion
improves our models. While normal modes are sensitive to large-scale structures
only, and will hence not be able to resolve e.g. mantle plumes or ULVZs, they
will be able to provide new perspectives on the thermochemical nature of LLSVPs.
We expect that the one-step inversion will contribute towards better constraints on
lower mantle density and attenuation especially, two of the least well-known seis-
mic parameters. Motivated by an increase in computational power and recent large
earthquakes, we are extending the work done by Li et al. (1991), and more recently
Akbarashrafi (2020), in terms of an expanded data set, more detailed tomographic
models, and adding more independent parameters to vs in the inversion.

1.6. Outline
We will start with an introduction to the seismic data that we will be using through-
out this thesis in Chapter 2: normal modes, or Earth’s free oscillations. In addition
to clarifying the terminology used in normal mode research, we give a brief overview
of the theory behind normal modes; how we go from conservation of momentum and
mass to a description of normal mode displacement. We also demonstrate the main
concepts related to normal modes and the Earth’s heterogeneity: cross-coupling and
singlet splitting. These two phenomena are described by the splitting matrix, which,
as we will show, is used to compute synthetic spectra.

In Chapter 3 we compare the one-step direct spectrum inversion to the two-step
splitting function inversion, in a continuation of the study by Li et al. (1991) using
an expanded normal mode data set. Whereas the two-step inversion involves an
intermediate step of inverting for splitting functions, which can be non-unique and
not necessarily agree with a single mantle model, the one-step inversion inverts the
spectra directly, but is computationally more expensive. A comparison between
these inversion methods is drawn in a theoretical sense, by outlining the differences
in their equations, and in a practical sense, by inverting the same spectral data
for a model of 3D shear-wave velocity (the parameter that normal modes are most
sensitive to). Both inversion methods yield very similar vs models to those reported
by other tomographic studies using normal modes, however, there are differences
in the more detailed structures of the two models. We find the one-step inversion
producing lower spectral misfits than the two-step inversion, for the same number of
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effective eigenvalues, but the two-step inversion still performs decently. We finally
show that our current data set has insufficient odd-degree sensitivity to make robust
claims on odd-degree structures in the mantle. We require more measurements of
mode pairs that couple for odd degrees to study, for example, any (dis)simmilarities
between the two LLSVPs.

We then focus our attention in Chapter 4 on relaxing the scaling factor (intro-
duced in Chapter 3) between vs and vp heterogeneity in the mantle, and invert for
these two parameters jointly. The ratio RS/P between δlnvs and δlnvp has been sug-
gested to be indicative of chemical heterogeneity when exceeding a certain threshold
from mineral physics calculations. The way that this ratio is computed varies greatly
between studies. We compute the 1D depth-dependent ratio for our one-step and
two-step vs and vp models in the two most common ways: i) by dividing their RMS
amplitudes, and ii) by taking the median RS/P at each depth. The ratios, and
thereby the thermochemical interpretations, depend both on the inversion method,
and on the method of computing this 1D RS/P. For completeness, we show the dis-
tributions of RS/P and vs and vp anomalies with depth for both inversion methods,
as this will yield a more representative view of the ratio. A wider distribution points
to more than one underlying cause of the spread, i.e. temperature is not the only
mechanism. We find depth ranges where the presence of thermochemical hetero-
geneity is required to explain our observations of RS/P, although the exact depths
differ between the one-step and two-step models. In addition, we invert jointly for
vs and vφ heterogeneity. The anti-correlation between δlnvs and δlnvφ has also been
proposed as indicator of chemical heterogeneity, as a purely thermal mantle cannot
generate a S-Φ anti-correlation. We perform synthetic inversions and starting model
tests to explore the robustness of inverting for 3D bulk sound velocity. The upper
and lowermost mantle are most poorly constrained by the data, especially in the
two-step inversion. In the bulk of the mantle we find S-Φ (de-)correlation, con-
trary to most other studies. We do find anti-correlation in the lower mantle when
extracting δlnvφ from our vs and vp models.

In Chapter 5, we seek to relax another scaling factor employed in the previ-
ous chapters, the scaling factor between vs and density heterogeneity. Independent
observations of density contribute to the understanding of the buoyancy and ther-
mochemical nature of LLSVPs. Normal modes are the only seismic data sensitive
to lower mantle density, but previous density models based on Stoneley modes and
Earth’s tides have produced seemingly conflicting results. We present state-of-the-
art density models obtained by inverting for vs, vp, ρ and topography on the ‘400’,
‘670’ discontinuities and core-mantle boundary (CMB), using the one-step and two-
step inversions. Both density models show a dense sliver just above the CMB, partly
overlapping with the LLSVPs, which is more robust in the one-step inversion with
respect to density starting models. We perform synthetic tests to assess the degree
of contamination of velocity structure into density. There is some leakage, but it is
smaller in amplitude than the observed density models. We therefore believe that
the dense base is robust, which provides a way of reconciling previous contradicting
observations. This sliver could be related to iron enrichment.

We have investigated elastic structures in the mantle thus far. In Chapter 6,
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we direct our final modelling efforts towards attenuation, which is the anelastic
process of wave energy transforming into heat. Attenuation is a key parameter for
mapping variations in temperature, partial melt, water content, and composition.
Lower mantle attenuation is relatively unknown, so we will perform the first one-
step normal mode inversion for mantle attenuation here, and compare our results
to new constraints from splitting functions. We start running synthetic tests for
four plausible direct spectrum inversion schemes to see whether we can recover
various 3D input vs and qµ models. The inversion scheme that is most successful
in recovering the input models concerns first inverting for vs anomalies, which then
serves as a starting model for a joint inversion for vs and qµ. One-step and two-step
attenuation models for the same normal mode data set display significant differences,
which might be resolved when we invert for detailed elastic structures in the one-step
inversion, thereby minimizing leakage of elastic into anelastic structure.

Finally, the main points of this thesis are summarized in the synthesis chapter.
We will also try to combine the observations of all explored parameters to make a
final interpretation of the thermochemical state of the lower mantle. In the end, we
suggest directions for future research.



2
Normal mode theory

In this chapter we describe the background and theory of normal modes; the seismic
data that we use in order to get information on the Earth’s interior. It is beyond the
scope of this thesis to provide a thorough overview of all the theory, and instead we
refer to Dahlen & Tromp (1998) for a more comprehensive and complete story. We
will first look at the physical basis for normal modes, starting from the momentum
equation and Poisson’s equation, and ending up with the linearised equations of
motion for a general Earth model. We then simplify these equations for a spherical
non-rotating elastic isotropic (SNREI) Earth, and introduce the eigenfunctions and
eigenvalues that arise as natural solutions for the displacement field. These eigen-
functions and eigenvalues corresponding to normal modes are perturbed when the
Earth model deviates from SNREI, removing the degeneracy of the modes’ singlet
frequencies. We finally introduce the splitting matrix, including various degrees
of cross-coupling between modes, and how to use the splitting matrix to compute
synthetic seismograms.

17
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2.1. Introduction to normal modes
Seismic tomographic studies employ measurements of three different types of waves
sampling the Earth’s interior, which are, from the highest to the lowest frequencies,
body waves, surface waves and normal modes. The first two wave types are travelling
waves or travelling disturbances of the medium, and the latter are standing waves.
It is important to note that these different types are, in fact, equivalent. Travelling
waves can be obtained by superposition of standing waves, which is often done when
computing synthetic seismograms, and vice versa (e.g. Masters & Widmer, 1995).
Surface waves in a seismogram can be replicated by fundamental normal modes
(n = 0), since their energy is concentrated near the Earth’s surface. The normal-
mode equivalent of body waves such as S, SS, SSS, and P, PP, PPP are modes that
have oscillatory energy distribution, followed by a turning point where the energy
starts decaying exponentially. Summation of normal modes with the same turning
point as the ray turning point of body waves, creates a very similar seismogram to
actual body wave arrivals. Finally, we have a normal-mode equivalent of ScS and
PcS (core-reflected) body waves: modes whose enery oscillates all the way until the
core-mantle boundary. In the remainder of this chapter and thesis, our primary
focus is on normal modes, since it is the type of data we use in the inversions
for 3D mantle structure. We will outline some of their general characteristics and
theoretical and physical background below.

2.1.1. Terminology
Earth’s free oscillations, or normal modes, are long-period standing waves along
the surface and radius of the Earth. Due to their nature as standing waves, they
only exist at discrete frequencies, typically between 0.3 and 10 mHz. Normal modes
involve 3D oscillations of the Earth as a whole, similar to the 2D harmonics that
arise after plucking a guitar string. The disturbance needed to excite normal modes
comes from large earthquakes, typically magnitude Mw 7.4 or higher. Modes can
be subdivided into two main categories, based on the nature of their displacement:
i) spheroidal modes, which are characterised by P-SV motion similar to Rayleigh
waves, and ii) toroidal modes, which are similar to Love waves and hence involve
SH motion (Fig. 2.1).

Each normal mode has a unique displacement pattern, governed by radial eigen-
functions marked by integers n, l, and spherical harmonics marked by n, l and m in
the lateral direction. The number of zero crossings in the radial direction is given by
overtone number n. If n = 0 we call the mode a fundamental mode, and if n > 0 it is
called an overtone. This is similar to the terminology for a guitar string, where over-
tones are also referred to as harmonics. l is the angular order and m the azimuthal
order. The number of nodal surfaces in the longitudinal direction is given by |m|
and the number of nodal surfaces in the latitudinal direction is given by |l − m|.
Azimuthal order m is limited to the interval −l ≤ m ≤ l, whereas n and l can be
any non-negative integer. Each mode consists of 2l + 1 eigenfunctions, or singlets,
which is why the ensemble of all 2l + 1 singlets is called multiplet. In this thesis,
when we say “mode” it refers to multiplet. Each singlet is denoted by azimuthal
order m. In a spherically symmetric non-rotating Earth, all singlet eigenfrequencies
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are the same, or degenerate. The degeneracy of singlet frequencies is removed when
the Earth departs slightly from this spherical symmetry, as is the case in the real
Earth. This phenomenon is called splitting, as a single symmetric peak for the entire
multiplet will split into separate peaks for each singlet in the frequency spectrum.
The effects of the Earth’s rotation and ellipticity on singlet splitting are well-known,
which leaves the effect of Earth’s 3D structure as the unknown parameter that we
invert for.

Figure 2.1: Oscillation patterns for a spheroidal mode 0S2 (also called “rugby” mode) and a toroidal
mode 0T2, both for m = 0.

2.2. General linearised equations of motion
Before we arrive at the equation describing normal modes, we need to start with
the equilibrium equations, and then expand upon them using conservation of mo-
mentum and mass. We initially consider an Earth model in mechanical equilibrium,
i.e. undisturbed, only acted upon by self-gravitation of the planet. We omit the
centrifugal potential here, as our reference Earth is non-rotating. In this case, the
equations of mechanical equilibrium and gravitation are:

τ0
ij,j = ρ0φ0

,i (2.1)

φ0
,ii = 4πGρ0 (2.2)

where τ0
ij is the initial static stress field, φ0 the initial gravitational potential, ρ0 the

initial density, which are all functions of position x. G is the gravitational constant,
and φ,i implies differentiation of φ with respect to xi, i.e. ∂φ/∂xi.

When the state of equilibrium is perturbed (i.e. an earthquake occurs), the par-
ticle that was at original location x will move to new location r = r(x, t), therefore
the stress tensor and gravitational potential are now depending on space and time.
If we want to write the momentum equation (eq. 2.1) and Poisson’s equation (eq.
2.2) for this new location r = r(x, t), we obtain:

∂τij
∂rj

= ρ
∂φ

∂ri
+ ρD2

t ri (2.3)

∂2φ

∂ri∂ri
= 4πGρ (2.4)
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where the Lagrangian material time derivative Dt = ∂t + v ·∇r (the time derivative
at constant x) is introduced, in which v is the Eulerian velocity. Note that the zero
superscripts are dropped here for the material properties, since we are not at the
equilibrium position any more. Alternatively, we can make the stress tensor and
gravitational potential functions of x again:

∂xk
∂rj

∂τij
∂xk

= ρ
∂xk
∂ri

∂φ

∂xk
+ ρD2

t ri (2.5)

∂xk
∂ri

∂

∂xk

(
∂xl
∂ri

∂φ

∂xl

)
= 4πGρ (2.6)

The equivalence between eqs. 2.3 and 2.5 on one hand, and eqs. 2.4 and 2.6 on the
other hand is clear when eliminating all the double xk and xl terms.

Apart from conservation of momentum, we also take conservation of mass into
account. If we compare the mass of a small volume element in the equilibrium state,
ρ0d3x, to the mass of its corresponding element after perturbation, ρd3r, they must
be equal as no mass is lost, hence ρ0d3x = ρd3r. Conservation of mass is then
defined as

Jρ = ρ0 (2.7)

where J is the Jacobian determinant:

J = J(x) = ∂(r1, r2, r3)
∂(x1, x2, x3) = det(ri,j) (2.8)

2.2.1. Linearisation
For linearisation purposes, we now introduce the displacement vector s, that con-
nects the original position x to the new position r (Fig. 2.2):

ri = xi + si (2.9)

where si is small, which is why we will ignore all higher order terms of si in the
derivation that follows.

Figure 2.2: Displacement vector s connecting the old position x to the new position r.

We can use this si to linearise the density ρ and gravitational potential φ in eqs.
2.5, 2.6 and 2.7. The first order changes in density ρ1 and gravitational potential φ1

are related to the deformation at a fixed point in space, so they follow an Eulerian
description:

ρ1 = ρ(r)− ρ0(r) (2.10)
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φ1 = φ(r)− φ0(r) (2.11)
Using eq. 2.9, we linearise these two equations as:

ρ = ρ(r) = ρ0(x + s) + ρ1 = ρ0 + skρ
0
,k + ρ1 (2.12)

φ = φ(r) = φ0(x + s) + φ1 = φ0 + skφ
0
,k + φ1 (2.13)

We can approximate the determinant of eq. 2.7 using eq. 2.9, neglecting any higher
order terms:

J = det(ri,j) = det((xi + si),j) = det(δij + si,j) = 1 + sj,j (2.14)

Substituting eq. 2.12 and eq. 2.14 into 2.7 gives the expression:

ρ0 = (1 + sj,j)(ρ0 + skρ
0
,kρ

1) (2.15)

which, when neglecting any higher order terms and implementing the product rule,
becomes:

ρ1 = −skρ0
,k − ρ0sk,k = −(ρ0sk),k (2.16)

To complete the system of equations of motion, we need a constitutive law relat-
ing the incremental stress change τ1

ij at a material particle (Lagrangian description)
to the elastic displacement si. An in-depth derivation is given by Biot (1965), but
we will keep it brief here. The Lagrangian incremental Cauchy stress change is
described by:

τ1
ij = τij(r)− τ0

ij(x) (2.17)
Following Dahlen & Tromp (1998), the linearized constitutive relation between τ1

ij

and the displacement si can be expressed in terms of a new fourth-order tensor
Υijkl:

τ1
ij = Υijklsl,k (2.18)

Using the fact that
Υijkl = Λijkl + τ0

jkδil − τ0
ijδkl (2.19)

with Λijkl = cijkl + τ0
ikδjl as the fourth-order tensor relating the incremental first

Piola-Kirchhoff stress tensor to the displacement. The first Piola-Kirchhoff stress
tensor relates forces on a material surface in the deformed state at position r to the
corresponding undeformed surface at the original position x. In the end, it can be
shown that the perturbation can be written as:

τ1
ij = Λijklsl,k + τ0

jksi,k − τ0
ijsk,k (2.20)

where the term Λijklsl,k represents the incremental first Piola-Kirchhoff stress:
TPK1.

When we substitute the first order approximations of eqs. 2.12, 2.13 and 2.17
into the equations of motion (eqs. 2.5 and 2.6), using the expressions found in eqs.
2.16 and 2.20, and employ the first order approximation:

∂xi
∂rj

= δij −
∂si
∂xj

(2.21)
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we finally obtain the equations of motion:

ρ0(∂2
t si + φ1

,i + sjφ
0
,ij) = (Λjiklsl,k),j (2.22)

φ1
,ii = −4πG(ρ0si),i (2.23)

in which si(x, t) and φ1(x.t) are the unknowns that govern Earth’s free oscillations.
The other quantities, ρ0, φ0, τ0

ij and Λjikl are assumed to be known parameters of
the Earth model. All of the parameters are subject to boundary conditions, such
as continuity of traction and displacement across welded (solid-solid) boundaries,
continuity of displacement perpendicular to free-slip (fluid-solid) boundaries, and
that the gravitational potential vanishes at infinity.

In order to excite the Earth’s free oscillations, we need a force distribution F(x, t)
representing an earthquake, which we introduce in eq. 2.22 to get

ρ0(∂2
t si + φ1

,i + sjφ
0
,ij)− (Λjiklsl,k),j = Fi (2.24)

or, in vector notation:

ρ0(∂2
t +∇φ1 + s · ∇∇φ0)−∇ ·TPK1 = F (2.25)

A symbolic way to write down this general equation that determines the seismic
displacement s is:

(H0 + ρ0∂2
t )s = F (2.26)

where H0 represents the integro-differential operator corresponding to the left-hand-
side of eq. 2.24.

2.3. Normal modes in a SNREI Earth
It is convenient to compute normal modes for a spherical non-rotating elastic isotropic
(SNREI) Earth first, and treat the asphericity, rotation, anelasticity and anisotropy
with perturbation theory. The general equations given in the previous section are
hence simplified. This reference Earth model also has a initial hydrostatic stress
field:

τ0
ij = −δijp0(r) (2.27)

where p0(r) is the inital pressure distribution depending only on the radius r. When
we use this expression of hydrostatic stress in eqs. 2.18 and 2.19 for the stress
perturbation, we obtain:

τ1
ij = Υijklsl,k (2.28)

with
Υijkl = cijkl − p0(δjlδik + δilδjk = δijδkl) (2.29)

Λijkl = Υijkl + p0(δilδjk − δijδkl) (2.30)

Substituting eq. 2.30 into the equation of motion (eq. 2.22), we end up with

ρ0(∂2
t si + φ1

,i + sjφ
0
,ij)− (Υijklsl,k),j − (p0si,j),j + (p0sk,k),j = Fi (2.31)
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In the case of isotropy, which is assumed throughout this thesis, we get a simple
expression for Υijkl depending on only the bulk κ(r) and shear modulus µ(r):

Υijkl = µ(δikδjl + δilδjk) + (κ− 2
3µ)δijδkl (2.32)

As in the general case (eq. 3.6), we may write down the problem that involves
determining the seismic displacement s in a symbolic way:

(H0 + ρ0∂2
t )s = F (2.33)

After taking the Fourier transform in time, effectively replacing ∂t by iω, we get:

(H0 − ρ0ω2)s = F (2.34)

For the homogeneous solution (F = 0), we can rewrite the problem in terms of its
eigenfunctions sk and eigenvalues ωk:

H0sk = ρ0ω2
ksk (2.35)

The solution to eq. 2.34 (with F = 0) then becomes a harmonic function of time:

s(x, t) = sk(x)eiωkt (2.36)

in which sk(x) represents the spatial shape of a free oscillation that resonates in the
Earth long after the earthquake rupture has ceased.

2.3.1. Radial scalar equations
Following e.g. Woodhouse (1980), we seek solutions for the eigenfunctions employing
spherical harmonics and spherical polar coordinates (r, θ, φ), in the form:

nsml = nUl(r)Ylm(θ, φ)r̂ + nVl(r)∇1Ylm(θ, φ) + nWl(r)r̂×∇1Ylm(θ, φ) (2.37)

in which operator ∇1 means θ̂∂θ + cosecθφ̂∂φ, r̂, θ̂ and φ̂ are unit vectors point-
ing in the coordinate directions, and nUl(r), nVl(r), nWl(r) are the radial scalar
eigenfunctions. Ylm(θ, φ) are the scalar spherical harmonics as defined by Edmonds
(1960). The subscript k in sk has been replaced by the three integer numbers men-
tioned at the beginning of this chapter that describe a mode singlet: n, l,m. We
can formulate solutions for the gravitational potential in a similar way, with radial
scalar eigenfunctions P (r):

φ1 = nPl(r)Ylm(θ, φ) (2.38)

They can be solved for the appropriate boundary conditions.
It can be shown that U(r), V (r), and P (r) are completely decoupled from W (r)

(e.g. Dahlen & Tromp, 1998; Woodhouse & Deuss, 2007), from which the natural
distinction between spheroidal and toroidal modes originates. For toroidal modes,
U = V = P = 0, and displacement is purely horizontal in a SNREI Earth, implying
that these modes do not affect the Earth’s density distribution nor its gravitational
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potential. On the other hand, W (r) = 0 for spheroidal modes, with displacement
composed of both vertical and horizontal components.

We also note here that radial eigenfunctions U(r), V (r), W (r) and P (r) do not
depend on azimuthal order m in a SNREI Earth, which is where the degeneracy
of the eigenfrequencies ωk comes from. All 2l + 1 singlets within a mode/multiplet
have different spherical harmonic horizontal motions depending on azimuthal order
m, but the same eigenfrequency and radial displacement patterns.

2.4. Perturbations to SNREI model
As mentioned before, it is convenient to have a SNREI model as reference, and
treat the deviations from the reference state with perturbation theory. We distin-
guish here between a spherical perturbation and a general aspherical perturbation
(parameterised in spherical harmonics).

2.4.1. Spherical perturbation and sensitivity kernels
Let us consider a model parameterised in terms of shear wave velocity vs, com-
pressional wave velocity vp and density ρ, containing internal discontinuities. The
frequency of a mode is affected by changes in the spherical structure of the Earth:
ω → ω + δω. This first order perturbation in angular frequency δω due to pertur-
bations δvs(r), δvp(r), δρ(r) in the elastic parameters and δhd in the discontinuities
can be described by:

δω =
∫ a

0

(
Kvs

(r)δvs(r)
v0
s(r) +Kvp

(r)δvp(r)
v0
p(r) +Kρ(r)

δρ(r)
ρ0(r)

)
dr +

∑
d

Kd
δhd
h0
d

(2.39)

in which a is the Earth’s radius and Kvs
, Kvp

, Kρ and Kd are the sensitivity kernels
to variations in vs, vp, ρ and topography on internal discontinuities, respectively.
Expressions for such sensitivity kernels are given by Woodhouse (1980).

We show some example sensitivity kernels for vs, vp and ρ for a few representative
modes (Fig. 2.3): a fundamental mode (0S6), a CMB Stoneley mode (2S16) and a
mode with a high overtone number (13S19). The vs and vp sensitivity kernels of a
fundamental mode are not oscillatory with depth (Fig. 2.3a), and the higher the l,
the more they act like surface waves, with their sensitivity kernels peaking in the
uppermost part of the mantle. On the other hand, density kernels often oscillate
around zero, even for fundamental modes, which could explain the difficulty in
making robust density models. The sensitivity of a CMB Stoneley mode peaks at
the core-mantle boundary (Fig. 2.3b), especially for vp. The other two kernels, vs
and ρ, peak above the CMB. For higher n, the eigenfunctions of a mode become
more oscillatory with depth, and their sensitivity kernels as well, as demonstrated
for mode 13S19 (Fig. 2.3c).

2.4.2. General perturbation and splitting matrix
Woodhouse & Dahlen (1978) and later Woodhouse (1980) have proposed formula-
tions for a general perturbation to SNREI and its effects on the eigenvalue problem
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Figure 2.3: Sensitivity kernels for vs, vp, ρ for modes 0S6, 2S16 and 13S19. The 400- and 670-
discontinuity, core-mantle boundary and inner-outer core boundary are plotted.

of eq. 3.9. Under the influence of rotation, ellipticity and 3D structure, the per-
turbed eigenvalue equation becomes:[

H0 +H1 − (ρ0 + ρ1)σ2]u = 0 (2.40)

where σ and u are the eigenfrequencies and eigenfunctions of the perturbed system,
and ρ1 and H1 are the perturbations in density and the integro-differential operator.
Rewriting u in a different way:

u =
∑
km

|km)(km|ρ0|u) (2.41)

where eigenfunctions of the unperturbed system are written as |km) = smk , and their
complex conjugates as (km| = sm∗k , where k = (n, l, q) is the collection of overtone
number, angular order and mode type (i.e. S(pheroidal) or T(oroidal)). As the
degeneracy of mode singlets is removed when perturbations are introduced, we have
separated the azimuthal order m from the other integers. Using the unperturbed
eigenvalue equation (eq. 3.9) to rewrite H0 and substituting the expression for u,
we arrive at:∑

km

(k′m′|
[
(H1 − ρ1σ2)− (σ2 − ω2

k)ρ0] |km)(km|ρ0|u) = 0 (2.42)

Using the requirement that σ2 = ω2
0 +δω, where ω0 is a reference frequency close

to the unperturbed frequencies ωk, here defined as ω0 = 0.5(ωk + ωk′), and δω be a
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small perturbation, we end up with:∑
km

[
(k′m′|(H1 − ρ1ω2

0)|km)− (ω2
0 − ω2

k + δω)δkk′δmm′
]

(km|ρ0|u) = 0 (2.43)

where δkk′ is the Krönecker delta. It becomes apparent that the perturbations in
unperturbed eigenfrequencies δω are the eigenvalues of the matrix:

M(k′m′)(km) =
(
k′m′|(H1 − ρ1ω2

0)|km
)
− (ω2

0 − ω2
k)δkk′δmm′ (2.44)

which we call the splitting matrix. The splitting matrix describes singlet splitting
and cross-coupling between modes due to asphericities. It consists of blocks with size
(2l+1)×(2l′+1) on the off-diagonal corresponding to the intersection of two different
modes, and blocks with size (2l+1)×(2l+1) on the main diagonal corresponding to a
single mode. Elements of the splitting matrix are described explicitly in Woodhouse
(1980) and Dahlen & Tromp (1998), including the Woodhouse kernels. We will
describe the splitting matrix constituents in Chapter 3. In the following section, we
will look at the splitting matrix as a whole.

2.4.3. Cross-coupling
The splitting matrix records whether or not modes are coupled through rotation,
ellipticity and/or 3D structure. Cross-coupling of modes involves energy exchange,
or resonance, between modes, further removing the degeneracy of singlet frequen-
cies. This effect is especially strong between modes that have similar unperturbed
eigenfrequencies. Some spheroidal-toroidal mode pairs may even form “crossover”
pairs that become almost indistinguishable in terms of their singlet eigenfrequencies
and eigenfunctions (e.g. 0S19 − 0T20; Dahlen & Tromp, 1998).

A potential benefit of cross-coupling is that inner core confined toroidal modes
(e.g. Woodhouse, 1980), which we cannot observe directly, could in theory be ob-
served when they couple to spheroidal modes we can measure on the surface.
Another potential benefit of cross-coupling is sensitivity to odd-degree structure.
Modes treated as isolated are only sensitive to symmetric even-degree structure (up
to maximum spherical harmonic degree 2l), whereas cross-coupling can give a mode
sensitivity to odd-degree structure (e.g. Deuss et al., 2010).

Normal mode cross-coupling follows certain selection rules, meaning that a cer-
tain set of modes can only couple through structure of certain spherical harmonic
degrees. This set of rules is (e.g. Laske & Widmer-Schnidrig, 2007):

i) The Coriolis force and the Earth’s ellipticity cause spheroidal-toroidal mode
coupling when their angular degrees differ by 1: nSl − n′Tl±1.

ii) Earth’s ellipticity also causes spheroidal-spheroidal or toroidal-toroidal cou-
pling between modes that differ in angular order by 0 or 2: nSl − n′Tl or
nSl − n′Tl±2.

iii) The Earth’s rotation causes spheroidal-spheroidal mode coupling for modes
with the same angular order: nSl − n′Tl.
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Figure 2.4: Real part of the splitting matrix for self-coupled modes in frequency band 0-3 mHz
with coupling for rotation, ellipticity, and for mantle vs model S20RTS, with vp and ρ variations
scaled to vs variations with factors 0.5 and 0.3, respectively.

iv) Lateral heterogeneity of spherical harmonic degree s causes spheroidal-toroidal
mode coupling if |l − l′|+ 1 ≤ s ≤ l + l′ − 1 and l + l′ + s is odd.

v) Lateral heterogeneity of degree s causes spheroidal-spheroidal or toroidal-
toroidal mode coupling if (1) m + t − m′ = 0, (2) l + l′ + s is even, and
(3) |l − l′| ≤ s ≤ l + l′.

We can take three approaches in computing the splitting matrix (e.g. Deuss &
Woodhouse, 2001), from least to most amount of cross-coupling: (i) self-coupling
(SC) approximation, (ii) group-coupling (GC) approximation (also known as quasi-
degenerate perturbation theory), (ii) full-coupling (FC). For full-coupling, the first-
order approximation theory becomes exact when coupling an infinite number of
modes for all possible spherical harmonic degrees. However, since this is compu-
tationally intractable, full-coupling is applied to modes in a finite frequency range.
We will illustrate the three cross-coupling approaches using the splitting matrix.
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Figure 2.5: Real part of the splitting matrix for group-coupled (and a tail of self-coupled) modes in
frequency band 0-3 mHz with coupling for rotation, ellipticity, and for mantle vs model S20RTS,
with vp and ρ variations scaled to vs variations with factors 0.5 and 0.3, respectively. The GC-
matrix is a bit bigger than the SC- and FC-matrices, since a couple of modes appear twice in two
different mode groups.

Matrix elements on the main diagonal are 103 − 104 times bigger than the off-
diagonal elements. In order to make the off-diagonal elements more visible, all three
matrices are cut off at 5 · 10−8 maximum and −5 · 10−8 minimum. If we did not do
that, we would only see the main diagonal surrounded by beige. The self-coupling
matrix (Fig. 2.4) is very clearly diagonally dominant, which makes this matrix the
easiest to diagonalize. It consists exclusively of (2l+1)× (2l+1) self-coupled blocks
on the main diagonal.

The group-coupling splitting matrix (Fig. 2.5) is also diagonally dominant, but
contains bigger non-zero squares on the diagonal representing the 2-3 modes in a
group that couple with each other through rotation, ellipticity and 3D structure.
This GC-matrix would still be relatively easy to diagonalise, requiring only 1.05
times the computation time of the SC-matrix. In practice, we do not need to
diagonalize the entire SC- or GC-matrix as a whole, since these matrices can be
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Figure 2.6: Real part of the splitting matrix for fully-coupled modes in frequency band 0-3 mHz
with coupling for rotation, ellipticity, and for mantle vs model S20RTS, with vp and ρ variations
scaled to vs variations with factors 0.5 and 0.3, respectively.

decoupled into all the individual modes or, in the group-coupling case, into the
small mode groups. We can then diagonalize each section separately.

The full-coupling splitting matrix (Fig. 2.6) up to 3 mHz is almost completely
populated. It is not fully populated as we only introduce 3D structure up to degree
20, setting parts of the matrix that couple for degrees higher than 20 to zero.
We can still see the main diagonal clearly, but it is now surrounded by non-zero
elements across the entire matrix. Diagonalising the full-coupling matrix takes a
lot more computational power: 3.4 times more than the SC-matrix in the case of
frequency band 0-3 mHz. Computational power will grow even more for bigger
splitting matrices, which is one of the reasons this coupling scheme has never been
used before in an inversion of normal mode spectra for Earth’s 3D structure. In
this thesis, we will use the group-coupling approximation, with self-coupling where
modes are sufficiently isolated in the spectrum.
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2.4.4. Synthetic spectra
From the splitting matrix, we can compute synthetic spectra. Following e.g. Wood-
house & Girnius (1982); Deuss & Woodhouse (2001), the time series for synthetic
normal mode spectra is given by

u(t) = (R ·U)ei
√

Λt(U−1 · S) (2.45)

where the real part is understood, and where the splitting matrix has been rewritten
using eigenvalue decomposition: M = UΛU−1, with Λ containing the eigenvalues,
and U the corresponding eigenvectors. The receiver vector R incorporates the
instrument response and orientation of the seismic station, and the source vector S
depends upon the earthquake moment tensor. In the next chapter, we will explain
two different ways to use the synthetic normal mode spectra in the inversion for
mantle heterogeneity.

Here, we inspect the synthetic spectra computed for the SC, GC and FC splitting
matrices depicted previously. We include all modes within the 0-4mHz frequency
band for full-coupling here, since cross-coupling all modes up to 1 mHz higher than
the cut-off frequency provides a more accurate synthetic spectrum (Akbarashrafi
et al., 2018). In comparing the three synthetic spectra to observed spectra (Fig. 2.7),
we see that the SC approximation does not closely resemble the observed spectra.
By excluding the cross-coupling between neighbouring modes, we are not able to
match, for example, the two peaks of 0S11 − 2S7. SC does a much better job in the
lower frequency range (up to 1.5 mHz (Yang & Tromp, 2015)), except for toroidal
modes, as they do not show up on the vertical component of a SC spectrum. The
GC approximation already does a much better job at fitting the observed spectra,
by matching the position of nearly all peaks in the amplitude spectrum. For the
full-coupling case, i.e. including cross-coupling between all modes in the entire 0-
4mHz frequency band, the synthetic spectra do not deviate much from the GC
approximation. Hence, it seems that we can confidently treat full-coupling as a
second-order effect. However, this minor difference in the spectra could be significant
when trying to observe structures with a small signal (Deuss & Woodhouse, 2001).
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3
Comparing one-step with

two-step inversion in normal
mode tomography

Normal modes provide important constraints on Earth’s large-scale 3D structure.
In addition to constraining shear and compressional wave velocities, they are the
only seismic data directly sensitive to lower mantle density perturbations. Previous
studies have found contradicting results for lower mantle 3D density, hence the
method chosen to invert normal mode data for 3D structure becomes important. In
the problem of inverting measured frequency spectra for an Earth model, we can take
two approaches: (i) a one-step full-spectrum inversion, where normal mode spectra
are directly inverted for a mantle model; (ii) a two-step splitting function inversion,
where first the spectra are inverted for splitting functions, which are then inverted for
a mantle model. Most previous studies have incorporated normal modes by including
splitting function coefficients. However, this method may suffer from possible non-
uniqueness or inconsistencies of the splitting functions. Alternatively, normal mode
spectra can also be inverted directly in a one-step inversion, but this method has not
been used extensively in normal mode studies because of its high computational cost.
Here we compare the methodology and results of both approaches, continuing the
work done by Li et al. (1991) and Durek & Romanowicz (1999), and extending it to
higher spherical harmonic degrees. Employing exactly the same normal mode data
set, we use both inversion approaches to make 3D shear wave velocity mantle models.
Both approaches give models consistent with previous tomographic studies, although
spectral misfits are consistently lower for the one-step full-spectrum inversion. We
also show that we cannot draw any conclusions on odd-degree structure in the lower
mantle with the currently available normal mode data sets.
The content of this chapter was published as: Jagt, L., & Deuss, A. (2021). Comparing one-step
full-spectrum inversion with two-step splitting function inversion in normal mode tomography.
Geophysical Journal International, 227 (1), 559-575.
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3.1. Introduction
Normal modes, or free oscillations, are whole Earth oscillations excited by large
earthquakes (typically Mw > 7.5). These standing waves along the Earth’s surface
and radius make the Earth ‘ring like a bell’. Seismic normal modes are long-period
waves, typically studied in the frequency domain between 0.3 and 10 mHz. They
constrain large-scale Earth structures, and have been used to make global tomo-
graphic models from crust to inner core (e.g. Li et al., 1991; Durek & Romanowicz,
1999; Ishii & Tromp, 1999, 2004; Resovsky & Ritzwoller, 1999; Resovsky & Tram-
pert, 2003; Beghein & Trampert, 2003), often in combination with body wave and
surface wave data (e.g. Ritsema et al., 1999, 2011; Koelemeijer et al., 2016; Durand
et al., 2016). In addition to providing information on shear wave velocity (δlnvs) and
compressional wave velocity (δlnvp) anomalies, modes are sensitive to variations in
density (δlnρ) (Ishii & Tromp, 1999; Resovsky & Trampert, 2003). It has proven dif-
ficult to determine 3D variations in density due to trade-offs with other parameters
such as core-mantle boundary (CMB) topography and vs, and their strong depen-
dence on a priori constraints (Resovsky & Ritzwoller, 1999; Romanowicz, 2001; Kuo
& Romanowicz, 2002). Yet information on density carries important implications
for mantle dynamics, since density perturbations drive mantle flow (e.g. Davies &
Gurnis, 1986; Kellogg et al., 1999).

Of special interest are the two Large Low Shear-wave Velocity Provinces (LLSVPs)
in the lower mantle beneath the Pacific Ocean and Africa. Ever since their first
appearance in mantle tomographic models as anomalously low vs regions with a
prominent degree 2 signature (Dziewonski et al., 1977; Giardini et al., 1987), their
nature has been controversial. If they have a low density, then they are likely to
have a thermal origin. Alternatively, if they are found to have a higher density, they
need to have a compositional origin. To answer this question, relative amplitudes
of density with respect to seismic velocities as well as the sign of density anomalies
have been studied extensively, but nevertheless are still heavily debated (Romanow-
icz, 2001; Resovsky & Trampert, 2003). Although most normal mode studies argue
for a higher than average density (Ishii & Tromp, 1999, 2004; Trampert et al., 2004;
Resovsky & Trampert, 2003; Lau et al., 2017), observations of light LLSVPs exist
(Koelemeijer et al., 2017). The question of 3D density variations in the mantle thus
remains unanswered.

Modes appear as distinct peaks in frequency spectra by Fourier transforming
several days to week-long seismograms from the time to the frequency domain. The
shape and position of normal mode peaks change due to departures of Earth from a
spherical, non-rotating, elastic, isotropic (SNREI) Earth. Measurements of spectral
peaks are data input for inversion procedures aiming to image the Earth’s interior.
In principle, two different inversion approaches can be used for obtaining an Earth
model from normal mode data, either (1) in one step, by directly inverting the
spectra, or (2) in two steps, via the splitting function method (see Fig. 3.1).

The one-step full-spectrum inversion involves a direct inversion of normal mode
spectra for an Earth model in terms of velocity and/or density perturbations. This
approach was first used by Li et al. (1991) and has only been used a few times in
the last decades (Li et al., 1991; Durek & Romanowicz, 1999; Kuo & Romanowicz,
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2002; Akbarashrafi, 2020). The problem is that it is a non-linear method involving
diagonalisation of large matrices and requires large computer power.

The two-step splitting function inversion was introduced by Giardini et al. (1987)
to separate the inversion into two smaller steps which require less computer power.
As the name suggests, it involves first inverting the normal mode spectra for splitting
function coefficients, also called structure coefficients (e.g. Resovsky & Ritzwoller,
1998; Deuss et al., 2013), as an intermediate step. Splitting functions describe the
weighted depth average of lateral heterogeneities that a mode ‘sees’, and are similar
to phase velocity maps for surface waves. Splitting functions are linearly dependent
on 3D variations in Earth structure. They can be visualised as splitting function
maps showing where locally the frequency of a given mode is slightly lower or higher
than its average frequency. The splitting function coefficients are then inverted in
the second step for variations in velocity and density. Splitting functions are most
commonly used when normal mode constraints are included in global tomographic
models, often in combination with other data such as body waves and surface waves,
for example in constructing mantle models S40RTS (Ritsema et al., 2011), SP12RTS
(Koelemeijer et al., 2016) and SEISGLOB1 (Durand et al., 2016). Generally, mea-
suring splitting functions and performing the two-step splitting function inversion
are more common in normal mode studies (e.g. Giardini et al., 1987; He & Tromp,
1996; Resovsky & Ritzwoller, 1998, 1999; Masters et al., 2000b; Deuss et al., 2013;
Pachhai et al., 2016; Koelemeijer et al., 2017), than the one-step direct spectrum
inversion.

So far, only Li et al. (1991), Kuo & Romanowicz (2002), Durek & Romanowicz
(1999) and Akbarashrafi (2020) have attempted to directly invert the spectra for a
model. A splitting function inversion may have multiple local, or sometimes global,
minima (Megnin & Romanowicz, 1995). The problem may be especially relevant
for core-sensitive modes and therefore Durek & Romanowicz (1999) performed a
one-step full-spectrum inversion to make an anisotropic model of the inner core to
circumvent the problem of non-uniqueness in measuring splitting functions. We will
discuss the theoretical differences between the two inversion methods in more detail
in section 2.4. Splitting functions predicted for their preferred model matched the
measured splitting functions retrieved from spectral data well. The one exception
(13S1) was attributed to non-uniqueness of its measured splitting function. Here, we
will investigate the difference between the two methods for mantle sensitive modes.
Kuo & Romanowicz (2002) inverted synthetic spectra directly for vs, vp and ρ simul-
taneously and looked at whether 3D variations in mantle density could be resolved
with then available normal mode data set. They found that density structure ob-
tained from their normal mode data set was not reliable, due to contamination of
seismic velocity structure into density.

Li et al. (1991) compared the one-step full-spectrum inversion and two-step split-
ting function inversion methods by making tomographic models based on the same
normal mode data set. Their models included vs mantle structure, CMB topography
and inner core anisotropy. Resulting mantle models from the two approaches were
in good agreement, which prompted the authors to conclude that splitting functions
can serve as a convenient intermediate step in obtaining Earth models from normal
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mode splitting. Indeed, the two-step splitting function inversion method has been
the preferred choice in the last decades to include normal modes in tomographic
models.

Recently, Akbarashrafi (2020) performed synthetic and real data one-step inver-
sions for 3D variations in vs, vp and ρ for self- and group-coupled modes up to 3
mHz. The models were parameterized up to spherical harmonic degree 4, containing
21 splines in the radial direction. The synthetic tests showed that all parameters
are relatively well constrained, except upper mantle density variations. However,
in real data inversions, vp and ρ models strongly depended on starting model and
regularization.

It is important to revisit the one-step versus two-step approach again in light
of recent theoretical developments, the expansion of data and increase in computer
power. For example, Li et al. (1991) used the self-coupling approximation, mean-
ing that they treated each mode in isolation. It has recently been suggested that
self-coupling may be a reasonable approximation for modes below 1.5 mHz that are
isolated in the frequency spectrum (Yang & Tromp, 2015), but all modes exchange
varying amounts of energy with other modes, especially when their frequencies are
close. Deuss & Woodhouse (2001) showed that this so-called cross-coupling (i.e.
resonance) in large groups of modes needs to be taken into account to accurately
calculate synthetic spectra, even below 1.5 mHz (Akbarashrafi et al., 2018). So,
the question is what happens when we take this cross-coupling between modes into
account in the one-step full-spectrum inversion and two-step splitting function in-
version. Here, we will extend the work done by Li et al. (1991), using the large
normal mode data set initially compiled by Deuss et al. (2013) to make a new cat-
alogue of splitting function measurements. Owing to greater computational power,
we will also be able to go to higher spherical harmonic degrees, significantly increase
the amount of data, and test the influence of cross-coupling.

We will make a shear wave velocity model using both the one-step full-spectrum
inversion and the two-step splitting function inversion methods and investigate the
effect of the two methods on the misfits and resulting models.

3.2. Theoretical framework
We will use normal modes to make tomographic models of Earth’s mantle. There
are two types of normal modes: spheroidal modes, which involve P-SV motion and
are similar to Rayleigh waves, and toroidal modes, which involve SH-motion and are
similar to Love waves. Normal modes are characterized by their overtone number n
and angular order l: nSl for spheroidals and nTl for toroidals. A mode with a given l
consists of 2l+1 singlets, or eigenfunctions, which are labelled with azimuthal order
m. In a SNREI Earth, all 2l + 1 singlets of a mode will be degenerate, i.e. they
all have the same eigenfrequency ω0. Rotation, ellipticity and 3D structure of the
Earth remove the degeneracy and lead to spectral splitting of singlets, giving each
singlet a different frequency. Contributions of rotation and ellipticity are known
exactly and only depend on the 1D Earth model (Woodhouse & Dahlen, 1978), so
we can invert the observed remaining spectral splitting of normal modes for the
contribution due to 3D heterogeneity in vs, vp and ρ. We will use both the one-step
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Figure 3.1: Inversion procedure for a) one-step full-spectrum inversion with only one non-linear
inversion (blue arrow) inverting all spectra for all modes simultaneously for a mantle model; b)
two-step splitting function inversion with non-linear inversions (blue arrows) to obtain splitting
functions from spectra for all modes separately; and then inverting all those splitting functions si-
multaneously for a mantle model in a linear inversion (yellow arrow). All of the forward (synthetic)
calculations are represented by red arrows.

full-spectrum inversion approach and the two-step approach with the intermediate
splitting functions estimation. A detailed explanation for both approaches is given
in the sections below.

An overview of the main steps and the major differences between the two inver-
sion schemes is outlined in Fig. 3.1. The one-step full-spectrum inversion (Fig. 3.1a)
has only one inversion step (blue arrow), in which we invert the normal mode spec-
tra non-linearly for a mantle model. The fit to the original spectra is determined
by computing synthetic spectra for the resulting mantle model (red arrow). The
two-step splitting function inversion (Fig. 3.1b) first involves inverting the normal
mode spectra for splitting functions for each mode separately (blue arrows), which
is a non-linear process. Secondly, the splitting functions are linearly inverted simul-
taneously for a mantle model (yellow arrow). Different data fits are determined for
the resulting mantle model, both to the measured splitting functions (red arrow)
but also to the original spectra by computing synthetic spectra (light red arrow).

3.2.1. Forward problem: synthetic spectra
In both inversion approaches we need to calculate synthetic spectra for given mantle
model coefficients mst or splitting function coefficients cst (see red arrows in Fig.
3.1), in order to minimize the spectral misfit between data and synthetics. We use



3

38 3. Comparing one-step with two-step inversion

the ‘Coriolis and kinetic energy approximation’ explained in Deuss & Woodhouse
(2001) to compute synthetics. As we have seen in the previous chapter, synthetic
normal mode seismograms in the time domain for a given Earth structure are har-
monic functions of time t given by:

u(t) = Re
[
R · ei

√
Mt · S

]
(3.1)

where u(t) is the synthetic seismogram, S is the source vector depending on the
moment tensor, R is the receiver vector depending on the instrument location and
orientation, and M is the splitting matrix which includes contributions due to 3D
variations in Earth structure, ellipticity and rotation (Woodhouse, 1980), either in
terms of the model coefficients mst or splitting function coefficients cst. We obtain
the moment tensors from the Global CMT catalog (Ekström et al., 2012) and treat
the source equally in both inversion methods. Hence we will not discuss the effects
of uncertainties and errors in the source parameters on the δlnvs models. In the
presence of ellipticity, rotation and asphericities, M is not diagonal, so we need
to diagonalize this matrix to compute the exponential. This is done by eigenvalue
decomposition: MU = UΛ, where U contains the eigenvectors and Λ contains the
eigenvalues on the diagonal. The synthetic seismogram (Eq. 3.1) then becomes:

u(t) = Re
[
(R ·U)ei

√
Λt(U−1 · S)

]
(3.2)

The splitting matrix M contains the degenerate frequencies ω2
0 on the diagonal and

additional diagonal and non-diagonal contributions from ellipticity, rotation, 3D
heterogeneity in vs, vp, ρ and anisotropy. For a mode pair k, k′ with degenerate
frequencies ωk, ωk′ in the reference model, we can write M as:

M(kk′)
mm′ = ω2

0δkk′ + ω0W(kk′)
mm′ + H(kk′)

mm′ (3.3)

where s is the angular order or structural degree, t is azimuthal order, ω0 =
(ωk + ωk′)/2, matrix W describes the Coriolis force due to rotation, and matrix
H describes ellipticity, 3D heterogeneity in vs, vp and ρ and anisotropy. Please
note that the dimension of the splitting matrix is ω2 (Woodhouse, 1980), hence the
square root in Eq. 3.1. In the self coupling case, M is a square matrix of size
(2l + 1)(2l + 1) and k = k′ so δkk′ = 1, and, in the absence of 3D structure, the
splitting matrix is diagonal. The cross coupling is described by matrix contributions
of size (2l + 1)(2l′ + 1) and k 6= k′ so δkk′ = 0.

For modes that are sufficiently isolated in the spectrum, we use the self-coupling
approximation, meaning that only singlets belonging to the same mode exchange
energy. We use the group-coupling approximation for small groups of 2−3 modes
that interact strongly. The modes that we allowed to couple varies for each method.
It is an advantage of the one-step inversion that we can easily include coupling
between all modes in a particular spectral segment. In the two-step inversion, this
is more complicated, since we cannot always include all cross-coupling, since that
would result in too many unknown model parameters compared to the limited data
availability per mode. It has been shown that full-coupling would probably be a
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more accurate approach (Deuss & Woodhouse, 2001; Al-Attar et al., 2012; Yang &
Tromp, 2015), but the aim of the present paper is to compare vs models obtained
using either direct spectrum inversion or splitting functions, and therefore we need
to use the same theoretical approximations in both. In addition, full-coupling is
computationally very expensive and will be the subject of a further paper.

One-step full-spectrum inversion
The two inversion methods differ in the calculation of H. In the one-step full-
spectrum method the matrix H depends on the model coefficientsmst. The splitting
matrix elements are then computed using the ‘Woodhouse kernels’ in equation A.17
of Woodhouse (1980), which can also be found in Appendix D of Dahlen & Tromp
(1998). Matrix H is in this case a function of mst, which include 3D perturbations
in vs, vp, ρ, anisotropy and discontinuity topography:

H(kk′)
mm′ =

l+l′∑
s=l−l′

s∑
t=−s

γmm
′t

ll′s

[∫ a

0
δmst(r)Ks(kk′)(r)dr +

∑
d

δhstH
d
s(kk′)

]
(3.4)

where the coefficients γmm′tll′s are given by:

γmm
′t

ll′s =
∫ 2π

0

∫ π

0
Y m∗l (θ, φ)Y ts (θ, φ)Y m

′

l (θ, φ)sinθdθdφ (3.5)

with Y ml as the fully normalized spherical harmonics according to Edmonds (1960).
Woodhouse (1980) and Dahlen & Tromp (1998) describe how to evaluate this inte-
gral. δmst and δhst describe Earth’s elastic heterogeneity (δlnvs, δlnvp, δlnρ) and
discontinuity topography, respectively, parameterized in spherical harmonics with
angular order s and azimuthal order t. Ks(r) and Hd

s are known kernels (Wood-
house, 1980).

Two-step splitting function inversion
In the two-step splitting function inversion, the matrix H depends on the splitting
function coefficients cst instead. The heterogeneity matrix in H can then be readily
described using splitting function coefficients cst as:

H(kk′)
mm′ =

l+l′∑
s=l−l′

s∑
t=−s

γmm
′t

ll′s cst(kk′) (3.6)

It is interesting to note that the splitting matrix now only depends on cst values and
these can be estimated without any knowledge of the underlying 3D heterogeneity.
This is what is being used in the first step of the splitting function inversion. Only in
the second step we use the fact that the splitting function coefficients cst do linearly
depend on 3D heterogeneity and are given by:

cst(kk′) =
∫ a

0
δmst(r)Ks(kk′)(r)dr +

∑
d

δhstH
d
s(kk′) (3.7)
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3.2.2. Partial derivatives
Synthetic seismograms u(t) and the corresponding spectra are non-linearly depen-
dent on either (1) the model parameters mst in the one-step inversion, or (2) the
splitting function coefficients cst in the two-step inversion. Therefore we need to
linearize these two problems using partial derivatives.

One-step full-spectrum inversion
In the one-step inversion we need to calculate derivatives of the synthetic spectra
with respect to the model parameters mst (see blue arrow in Fig. 3.1a). The partial
derivatives of seismogram u(t) (see eq. 3.2) with respect to model parameters mst

are given by:

∂u(t)
∂mst

= Re
[
eiωt

(
r · ∂U

∂mst

)(
U−1 · s

)
+ (r ·U)

(
∂U−1

∂mst
· s
)

+ (r ·U) it ∂ω
∂mst

(
U−1 · s

)]
(3.8)

where ω is diagonal matrix
√

Λ. We use Rayleigh’s principle to find perturbations
in the eigenvectors U and eigenvalues Λ of splitting matrix M resulting from a
perturbation δmst in the model coefficients. The eigenvalue correction is given by:

δω2
n = δΛ = u−1

n δMun (3.9)

where un is a column vector of U and u−1
n is a row vector of U−1. The eigenvector

corrections are given by:

δun =
∑
l 6=n

u−1
l δMun
ω2
n − ω2

l

ul (3.10)

δu−1
n =

∑
l 6=n

u−1
n δMul
ω2
n − ω2

l

u−1
l (3.11)

where ωn are the diagonal elements of ω =
√

Λ. These eigenvalue and eigenvector
corrections are substituted in eq. 3.8 for ∂ω

∂mst
, ∂U
∂mst

and ∂U−1

∂mst
to evaluate the

derivatives. Here, we will only calculate derivatives with respect to vs, so mst

only contains δlnvs. If we extend this to vp and ρ then mst contains three sets of
independent parameters for which derivatives need to be calculated.

Two-step splitting function inversion
First step - splitting function measurement In the first step of the splitting
function inversion method, we need to calculate derivatives of the synthetic spectra
with respect to the splitting function coefficients cst (see blue arrows in Fig. 3.1b).
We can easily obtain the equation for the partial derivatives by replacing every in-
stance of mst in equation 3.8 by cst. These derivatives are then used in the first step
of estimating the splitting function coefficients in the two-step inversion method.
This equation is also given in Deuss et al. (2013) as equation 12. These are then
the derivatives needed to measure the splitting function coefficients from the normal
mode spectra in the first step of the splitting function inversion. We will not do this
first step in this paper, because it was already done by Deuss et al. (2013) and we
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will use their measured cst’s for the second step.
Second step - splitting function inversion We then need to calculate the deriva-
tives of the splitting function coefficients cst with respect to the model parameters
mst (see yellow arrow in Fig. 3.1b). Because it is a linear problem, the partial
deriatives are the same as what we use to do the forward calculation (eq. 3.7):

∂cst
∂mst

= Ks(r) (3.12)

where Ks(r) appear once again as known kernels (Woodhouse, 1980). This is the
step we will perform in this paper, represented by the yellow arrow in Fig. 3.1b.

3.2.3. Inversion method
We use the iterative least squares approach of Tarantola & Valette (1982) to estimate
the model (mst) or splitting function coefficients (cst) from the normal mode spectra
(see blue arrows in Fig. 3.1). In both approaches we minimize the same objective
function, but the model parameters aremst (δlnvs) in the one-step inversion (section
2.3.1). The model parameters are splitting function coefficients cst in the first step
(blue arrow in Fig. 3.1b) andmst (δlnvs) in the second step of the two-step inversion
(section 2.3.2) (yellow arrow in Fig. 3.1b). We will compare the two inversion
approaches based on their fit to the original spectral data, shape of their L-curves,
robustness to choices in weighting, and similarity of the resulting models.

One-step full-spectrum inversion
The total objective function Φ that we try to minimize in both methods is:

Φ(m) = 1
2 [d− u(m)]TC−1

d [d− u(m)] + 1
2 [m−m0]TC−1

m [m−m0] (3.13)

in which d is observed data, u(m) is synthetic data given a model m, m0 is the
starting model, and C−1

d and C−1
m are the a priori data and model covariance matri-

ces, respectively. Since we are not applying any smoothing to the model, C−1
m purely

contains norm damping on the main diagonal. In the one-step method the model
m contains the mst model parameters for δlnvs. Function Φ minimizes both misfit
to the data and size of the model parameters in a least squares sense (Tarantola,
2005).
The spectra u(m) depend non-linearly on the model parameters m, so we need to
iterate the inversion. The model that minimizes this objective function is obtained
through the Gauss-Newton (or quasi-Newton) method, a gradient-based approach
(Tarantola & Valette, 1982; Pratt et al., 1998). The final expression for the iterative
damped least squares inversion is given by:

mi+1 = mi +
(
AT
i C−1

d Ai + C−1
m

)−1 ×
[
AT
i C−1

d

(
d− u(mi)

)
−C−1

m (mi −m0)
]

(3.14)
where A =

[
∂u
∂m
]
is the matrix of partial derivatives (equation 3.8), m0 is the

starting model, mi the vector containing the model coefficients mst for δlnvs for the
previous iteration and mi+1 the updated model coefficients for the current iteration,
d the measured spectra, and u(mi) the synthetic spectra (equation 3.2).
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Two-step splitting function inversion
First step The first step of the splitting function method is very similar to the one-
step method, but instead of inverting for mst we now invert for splitting function
coefficients cst. The main difference is that we estimate the cst’s for each mode
seperately, so we run a non-linear iterative inversion for every mode. Because the
same inverse theory applies, we obtain the non-linear splitting function inversion
from the spectra by replacing m by c in equations 3.13 and 3.14 to obtain splitting
function coefficients in the iterative inversion of this first step.
Second step Once the cst’s have been measured for all the different modes, we then
linearly invert the cst’s for model parameters mst in the second inversion step. The
cst are linearly related to the mst through known kernels (eq. 3.7). A collection of
splitting function coefficients for a large number of modes is inverted jointly for a
model of 3D elastic structure, using the fact that each mode has a different depth
sensitivity. This is now a linear inversion. We solve for the model coefficients in a
damped least squares inversion:

m = m0 +
(
ATC−1

d A + C−1
m

)−1 ATC−1
d

(
c− c(m0)

)
(3.15)

where A = [ ∂c
∂m ] is the matrix of partial derivatives, and C−1

m again contains norm
damping on the main diagonal. Comparing equation 3.15 for the second step of the
splitting function inversion with equation 3.14, we see the advantage of eq. 3.15: it
does not have to be iterated because it is a linear inversion.

3.2.4. Choices in weighting
The choice of weighting the data is very important in any inversion scheme and is
included by assigning varying values to the a priori data covariance matrix C−1

d . We
found that weighting in the one-step direct spectrum inversion is done automatically,
since modes with more data have a larger weight by virtue of contributing more
data. Hence those modes are more dominant in determining the updated model.
Weighting in the one-step inversion is therefore implicit (i.e. C−1

d = I; no explicit
variations required for the different modes). The first step in the two-step splitting
function inversion does not require variations in C−1

d either, because only one mode
(or a pair) is measured at a time (see Deuss et al. (2013)). However, the second
step in the two-step splitting function inversion depends much more strongly on
weighting of the different splitting function coefficients. We will apply weighting
by using the errors assigned to the coefficients in the first step of the splitting
function inversion. Other weighting schemes have also been used. Li et al. (1991),
for example, included all splitting function coefficients with equal weight. They
found that their splitting function coefficient errors for modes with little splitting
were unrealistically small, and decided to assume the same standard error for all
splitting function coefficients. We require non-uniform weighting of the splitting
function coefficients to get reasonable models. We decided to use the errors σd
estimated by Deuss et al. (2013) on the diagonal of the data covariance matrix C−1

d

as 1/σ2 with σ = √σd, leading to a weighting range from 0.15 to 51. Using σ = σd
instead would give a much larger range of weighting coefficients: 0.02−2,646, making
modes with the smallest errors too dominant.
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A spectral segment is defined by a time and frequency window in the spec-
trum corresponding to a single seismogram. Modes with more segments generally
have lower error estimates of their splitting function coefficients, so the error-based
weighting of the two-step splitting function inversion is comparable to the implicit
weighting by data amount in the one-step direct spectrum inversion. Contrary to
the procedure outlined so far, we could choose to weigh each mode in the one-step
inversion equally. The expected outcome is that modes with less segments will get a
lower spectral misfit in the equal weights procedure. This is indeed what we see. The
resulting models are still highly similar, with a correlation coefficient of 0.96. This
indicates that the one-step inversion is robust to changes in the weighting scheme.
The two-step inversion is more dependent on the weighting scheme, since treating
all modes as equally important in the second inversion of the two-step inversion
does not give a vs model that looks similar to models in previous studies. Applying
equal weights worked for Li et al. (1991), but in our case it resulted in very large
cst misfits. Furthermore, the models did not look like δlnvs obtained in previous
studies, possibly due to the higher maximum degree of the model and/or including
more data.

3.2.5. Misfit definition
For the two-step inversion we can compute two kinds of misfit for a model: cst misfit
and spectral misfit (red arrows in Fig. 3.1b). For the one-step inversion we only
compute the spectral misfit (red arrow in Fig. 3.1a).

One-step direct spectrum inversion
The spectral misfit per mode segment is defined as:

spectral misfit = 1
N

N∑∑n
i=1(di − ui(mst))2∑n

i=1(di)2 (3.16)

which is the squared difference between n spectral data points in observed spectra
di and synthetic spectra ui(mst), divided by the norm of the data, averaged over
the number of spectral segments N . The total average spectral misfit of all modes
combined is calculated by weighing each spectral segment misfit by the number of
segments per mode.

Two-step splitting function inversion
The first step in the two-step method was already performed by Deuss et al. (2013),
using the same spectral misfit definition as in equation 3.16, with mst replaced by
cst. Here we performed the second inversion step of fitting the splitting functions
measured by Deuss et al. (2013). The cst misfit of splitting function coefficients (i.e.
the misfit that is minimized in the second step of the splitting function inversion)
is defined as:

cst misfit = 1
ntot

N∑
n ·
∑
s,t |cobsst − cmodst |∑

s,t |cobsst |
(3.17)

where cobs
st are the measured splitting function coefficients, cmod

st are the predicted
coefficients for the new model, n is the number of cst’s per mode, N the total number
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of modes and ntot the total number of cst’s. This begs the question of whether our
final model still fits the original spectral data from which those splitting functions
were derived in the first step (dashed red arrow in Fig. 3.1b)? We have a unique
opportunity to compare the two inversion methods, since we use the same initial
spectral data set and can therefore calculate the spectral data fit of all resulting
models. Another important question for the two-step inversion is: would the model
that we choose based on the splitting function misfits be the same model that we
choose based on spectral misfits? Hence, we also use equation 3.16 to calculate the
spectral misfit for the model obtained in the two-step splitting function inversion.

3.2.6. Theoretical comparison of the two methods
Based on the overview of the two inversion schemes in previous sections, we now
list the advantages and disadvantages of both methods. The advantage of the one-
step method is that all data is fitted with the best model. The disadvantage is
that it is computationally intensive, amounting to approximately 4-5 days on a
High-Performance Computing cluster to reach convergence. The advantage of the
two-step inversion is its lower computational cost, since the problem is decoupled
into a number of smaller problems. The first step of the two-step inversion takes
up to a few hours until reaching convergence, and the second step only a few min-
utes. The decoupling also leads to splitting functions in the first inversion step
being obtained for each mode or mode group separately. These splitting functions
are therefore not required to be consistent with a single Earth model (e.g. Kuo &
Romanowicz, 2002). If a measured splitting function does not represent the unique
solution corresponding to true properties of the Earth, the error will propagate into
the final model (Li et al., 1991). Weighting in the second inversion step is necessary
to make measurements with large uncertainties less important, otherwise erroneous
splitting function measurements will dominate the model. Furthermore, regulariza-
tion is applied twice in the two-step inversion, hence information is lost twice.

What are the practical implications of these theoretical differences? That is
what we will explore in the rest of this paper.

3.3. Data
We use normal mode spectra as starting point of our inversions. These spectra are
obtained by taking vertical component seismic data of tens of hours length, removing
the first few hours since the earthquake onset, and then transforming them to the
frequency domain. For the one-step inversion (blue arrow in Fig. 3.1a) we use
the spectral segments of Deuss et al. (2013), consisting of vertical component data
for 91 large events since 1976 with Mw ≥ 7.4. For the two-step approach we use
the spheroidal mode splitting functions obtained by Deuss et al. (2013), and only
execute the second inversion step in this paper (yellow arrow in Fig. 3.1b). So, both
inversion schemes use exactly the same spectral data. We exclude spheroidal modes
that are sensitive to the inner core or couple strongly to an inner core mode, since
our focus is on the mantle. This makes the total number of spectral segments 84,248,
for 76 modes and mode groups in the one-step inversion and 104 self-coupled and 8
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Table 3.1: Spectral segments containing the mode groups that were used in the one-step full-
spectrum inversion, with the number of events as Nev.

Spectral segment Nev

0S2 8
0S3 − 0T2 − 2S1 37
0S4 − 0T3 − 1S2 56
0S5 65
0S6 82
0S7 87
0S8 − 4S1 − 0T9 89
0S9 − 0T10 91
0S11 − 2S7 − 0T12 86
0S13 − 0T14 91
0S14 − 2S9 − 0T15 91
0S15 − 0T16 91
0S16 − 0T17 91
0S17 − 2S11 − 0T18 91
0S19 − 0T20 90
0S21 − 1S14 − 0T22 91
1S2 − 0S4 − 0T3 9
1S4 77
1S5 − 2S4 84
1S6 − 2S5 82
1S7 74
1S8 75
1S9 74
1S10 70
2S1 − 0S3 − 0T2 3
2S6 84
2S8 − 4S3 91
2S10 − 4S5 89
2S12 90
2S13 90
3S6 87
3S7 − 5S5 86
3S9 90
4S2 − 0S10 − 0T11 90
4S4 − 1T8 86
5S3 86
5S4 − 2T4 89
5S6 − 0S21 − 0T22 86

Spectral segment Nev

5S7 78
5S8 87
5S11 − 7S8 73
5S12 63
5S14 − 9S8 79
5S16 − 8S10 80
5S17 65
6S9 − 7S6 87
6S10 84
6S15 − 9S10 62
6S18 78
7S5 89
7S7 77
7S9 − 9S6 57
8S6 56
8S7 59
9S11 72
9S12 − 10S10 66
9S13 − 5S22 58
9S14 − 14S7 49
9S15 − 14S8 39
10S20 − 15S12 − 16S10 57
11S9 40
11S10 − 4S28 42
11S23 − 13S18 − 19S10 50
11S24 − 15S15 42
11S25 35
12S6 36
12S7 56
12S13 49
12S14 42
12S15 41
13S16 − 14S13 − 16S11 50
13S19 − 19S11 43
13S20 39
14S14 26
15S16 − 17S15 49
17S14 29
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Table 3.2: Modes and mode pairs for which their measured splitting functions were used in the
two-step inversion, with the number of events as Nev. Modes between brackets were included in
the forward computations, but not inverted for.

Splitting function Nev

0S2 8
0S3(−0T2 − 2S1) 37
0S4(−0T3 − 1S2) 56
0S5 65
0S6 82
0S7 87
0S8(−4S1 − 0T9) 89
0S9(−0T10) 91
0S11(−2S7 − 0T12) 86
0S11 − 2S7(−0T12) 86
0S13(−0T14) 91
0S14(−2S9 − 0T15) 91
0S15(−0T16) 91
0S16(−0T17) 91
0S17(−2S11 − 0T18) 91
0S17 − 2S11(−0T18) 91
0S19(−0T20) 90
0S21(−1S14 − 0T22) 91
1S2(−0S4 − 0T3) 9
1S4 77
1S5(−2S4) 84
1S6(−2S5) 82
1S7 74
1S8 75
1S9 74
1S10 70
1S14(−0S21 − 0T22) 91
2S1 3
2S4(−1S5) 84
2S5(−1S6) 82
2S6 84
2S7(−0S11 − 0T12) 86
2S8(−4S3) 91
2S9(−0S14 − 0T15) 91
2S10(−4S5) 89
2S11(−0S17 − 0T18) 91
2S12 90
2S13 90

Splitting function Nev

3S6 87
3S7(−5S5) 86
3S7 − 5S5 86
3S9 90
4S1(−0S8 − 0T9) 89
4S2(−0S10 − 0T11) 90
4S3(−2S8) 91
4S4(−1T8) 86
4S5(−2S10) 89
5S3 86
5S4(−2T4) 89
5S5(−3S7) 86
5S6(−0S21 − 0T22) 86
5S7 78
5S8 87
5S11(−7S8) 73
5S12 63
5S14(−9S8) 79
5S14 − 9S8 79
5S16(−8S10) 80
5S16 − 8S10 80
5S17 65
6S9(−7S6) 87
6S10 84
6S15(−9S10) 62
6S18 78
7S5 89
7S6(−6S9) 87
7S7 77
7S8(−5S11) 73
7S9(−9S6) 57
8S6 56
8S7 59
8S10(−5S16) 80

Splitting function Nev

9S6(−7S9) 57
9S8(−5S14) 79
9S10(−6S15) 62
9S11 72
9S12(−10S10) 66
9S12 − 10S10 66
9S13(−5S22) 58
9S14(−14S7) 49
9S15(−14S8) 39
10S10(−9S12) 66
10S20(−15S12−16S10) 57
11S9 40
11S10(−4S28) 42
11S23(−13S18−19S10) 50
11S24(−15S15) 42
11S25 35
12S6 36
12S7 56
12S13 49
12S14 42
12S15 41
13S16(−14S13−16S11) 50
13S18(−11S23−19S10) 50
13S19(−19S11) 43
13S20 39
14S7(−9S14) 49
14S8(−9S15) 39
14S13(−16S11−13S16) 50
14S13−16S11(−13S16) 50
14S14 26
15S12(−16S10−10S20) 57
15S12−16S10(−10S20) 57
15S15(−11S24) 42
15S16(−17S15) 49
16S10(−15S12−10S20) 57
16S11(−14S13−13S16) 50
17S14 29
17S15(−15S16) 49
19S10(−13S18−11S23) 50
19S11(−13S19) 43
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cross-coupled splitting functions for the two-step inversion (Tables ?? and 3.2). Our
data set displays a significant increase with respect to only 10 events, 33 self-coupled
spheroidal mode splitting functions and approximately 1,000 spectral segments of Li
et al. (1991). We invert for vs, which is the observable that modes are most sensitive
to. To reduce the number of independent parameters, we assume that the aspherical
perturbations in compressional velocity, δlnvp, and density, δlnρ, are proportional
to δlnvs with factors 0.5 (Li et al., 1991) and 0.3 (Karato, 1993), respectively. We
will remove these scaling factors in Chapters 4 and 5. Crustal contributions are
included using model CRUST 5.1 (Mooney et al., 1998). In the one-step inversion,
crustal effects are included in the splitting matrix for computing synthetic spectra.
Splitting function predictions for the crust are subtracted from the measured cst’s,
effectively removing the crust.

We use the same parameterization as global mantle shear wave velocity models
S20RTS (Ritsema et al., 1999) and S40RTS (Ritsema et al., 2011), using 21 splines
for depth, and spherical harmonics laterally. Models S20RTS and S40RTS go up to
spherical harmonic degree 20 and 40, respectively, but here we will use maximum
degree 8. We will initially invert for even degrees only, but explore the odd degrees
as well. We use 1D model PREM (Dziewonski & Anderson, 1981) as starting model
for the one-step inversion and for the second step of the two-step inversion.

3.4. Results
We invert normal mode data for a shear velocity mantle model using the one-step
direct spectrum inversion and the two-step splitting function inversion. We will
compare the resulting models and misfits in detail below.

3.4.1. L-curves and misfits
We investigate and compare the L-curves and corresponding misfits of the models
resulting from the one-step and two-step inversions (Fig. 3.2). All L-curves show the
characteristic shape of decreasing misfit as a function of model size (Fig. 3.2a) and
also as a function of number of effective unknowns or independent model parameters
(Fig. 3.2b). Model size is defined as

msize =
smax∑
s=0

s∑
t=−s

m2
st (3.18)

and the number of effective unknowns as the trace of the resolution matrix. The most
optimum model is usually defined at the “kink" in the L-curve, at which the misfit
does not significantly decrease anymore but model size and the number of effective
unknowns still increase, filling the null space. As mentioned in section 2.4.2, we
can compute two kinds of misfit for the two-step inversion: misfit to the measured
splitting function coefficients and misfit to the spectra. We find that the shapes of
the L-curves for the two-step inversion are similar for both the cst misfit (dotted line
in Fig. 3.2a) and the spectral misfit (dashed line in Fig. 3.2a) and that the kink in
the curve is found in the same place for both misfits (black dots in Fig. 3.2a). So,
the chosen best model based on spectral misfit is the same model we would choose
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Figure 3.2: L-curve for the one-step inversion spectral misfits (red), and L-curves for the cst misfits
(dotted) and spectral misfits (dashed) for the models resulting from the two-step inversion, as a
function of a) model size and b) number of effective unknowns. Red dot: best model for one-step
inversion. Black dots: best model for the two-step inversion.

based on cst misfit. The cst misfit is lower than the spectral misfits, but it cannot
be directly compared to the spectral misfits, since it is a different kind of misfit for
a different kind of data (i.e. cst’s instead of spectra). The two chosen δlnvs models
have approximately the same number of effective unknowns (Fig. 3.2b), which allows
for direct comparison between the models. It is interesting to note that for the same
number of effective unknowns, the one-step model has a slightly larger model size
than the two-step model, which is probably a direct consequence of the inversion
method. The same feature is also often seen in full-waveform model inversions,
which usually have stronger anomalies than simple arrival time inversions.

The most important observation we make from the L-curves is that the total
average spectral misfit for the one-step inversion is consistently lower than for the
two-step inversion, for all model sizes and numbers of effective unknowns (compare
solid curve to dashed curve in Fig. 3.2). Thus, the one-step inversion results in a
better fit to the original data making the one-step model the preferred choice. Also,
it shows that the worries initially voiced by Li et al. (1991) and Durek & Romanowicz
(1999) that information might be lost in the two-step inversion resulting in a worse
fit to the original data, are valid. It is possible that by applying a different splitting
function weighting procedure we might succeed to shift the two-step spectral misfit
L-curve to lower misfits, but we think weighting by error is the most logical procedure
and most similar to implicit weighting by data amount in the one-step inversion.

All our inversions are started from PREM, only taking rotation and ellipticity
into account. If we examine the average spectral misfit per mode or small group
of modes (Fig. 3.3), we see that both our models improve the spectral data fit
with respect to PREM plus rotation and ellipticity across almost the entire mode
range. For some low angular order modes the misfit neither decreases nor increases
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Figure 3.3: Average spectral misfit per mode or mode group for the best models from the one-step
(red triangles) and two-step (black squares) inversion, compared to predicted misfits for PREM
plus rotation and ellipticity (grey dots).

Figure 3.4: Zooming in on the lower angular order fundamentals of Fig. 3.3.
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Figure 3.5: Synthetic spectra for 1D structure plus coupling for rotation and ellipticity (grey
dashes), and for the best models from the one-step inversion (red), and from the two-step inversion
(thin black). Thick black spectra represent real data of events a) in the South Indian Ocean and
b) off the coast of Peru.

Figure 3.6: Synthetic spectra for 1D structure plus coupling for rotation and ellipticity (grey
dashes), and for the best models from the one-step inversion (red), and from the two-step inversion
(thin black). Thick black spectrum represents real data of an event near the Kuril Islands.
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significantly. The lower average spectral misfit of the one-step model is mostly
due to lower misfits for the higher angular order fundamental modes (0S13 − 0S21),
however, the average spectral misfit without these modes of the one-step inversion
is still lower (0.55) than for the two-step inversion (0.56). The one-step model fits
the spectra better than or equally well as the two-step model for the majority of
modes. Even if it seems that there is no difference between the one-step and two-step
spectral misfit, such as for the lower angular order fundamentals, for some modes
the one-step spectral misfit is lower (Fig. 3.4). The few exceptions are mainly vp
sensitive modes.

The difference in misfit between the two inversion methods is also clearly visible
in synthetic spectra based on the two best models (Fig. 3.5). Although both our
models fit the spectra better than PREM + rotation and ellipticity, the model
resulting from the one-step inversion fits the position and amplitude of the peaks
better, especially for modes with lower overtone numbers such as the fundamentals
shown in Fig. 3.5. Not all individual spectra can be fitted better when including
3D vs variations, with scaled vp and density (Fig. 3.6). In these cases, adding
independent constraints on vp and density might improve the fit.

3.4.2. Model characteristics
We first look at the general features of the two models. Model slices at several
depths in the mantle show the similarities in pattern and amplitude of δlnvs (Fig.
3.7a-b) of the models made using the two different approaches. At first glance, the
two models look very similar. Both show the fast slab anomalies in the upper mantle
around 500 km depth, and the Large Low Shear Velocity Provinces (LLSVPs) in
the lowermost mantle. If you look in more detail, small differences become visible,
for example in the low velocity anomalies in the LLSVPs around 2000 and 2800 km
depth which show stronger negative velocity anomalies in the one-step than in the
two-step model. We also compare our models to SP12RTS-vs (Koelemeijer et al.,
2016) and S40RTS (Ritsema et al., 2011). Both of these models include measure-
ments of body wave travel times, and Rayleigh surface wave phase velocities, in
addition to normal mode splitting function coefficients, providing more data sensi-
tive to the uppermost and lowermost parts of the mantle. From a depth of 500 km
onward, our models start to look similar to SP12RTS and S40RTS. The differences
around 200 km depth are due to the lack of surface waves in our models which are
based only on normal mode data.

The differences between our two models become more apparent in cross-sections
through the mantle (Fig. 3.8). We see in the top panel of Fig. 3.8 that the
Pacific LLSVP in the one-step model is more stretched in a Northwest-Southeast
orientation, compared to the two-step model. The slab subducting beneath Japan
seems more continuous in the two-step model. In the bottom panel of Fig. 3.8,
the African LLSVP in the two-step model seems to be more connected to the East
African Rift anomaly in the upper mantle than in the one-step model.

The one-step and two-step models are similar in their power spectrum per struc-
tural degree (Figs 3.9a,b), though the power distribution as a function of depth
appears to be smoother in the one-step than in the two-step inversion. Any dif-
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Figure 3.7: Model slices showing even degrees 2, 4, 6, 8 for a) the one-step inversion; b) two-step
inversion; c) SP12RTS (Koelemeijer et al., 2016); d) S40RTS (Ritsema et al., 2011).
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a) One−step b) Two−step
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Figure 3.8: Cross-sections through the models from the a) one-step inversion; b) two-step inversion.
Top panel shows the subducted plate near Japan and part of the Pacific LLSVP; bottom panel
shows the African LLSVP.

Figure 3.9: Power spectra per spherical harmonic degree for the four δlnvs models shown in Fig.
3.7.
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Figure 3.10: a) Normalized sensitivity for one-step and two-step models; b) Root mean square
amplitude of the four models in Fig. 3.7; c) Normalized cross-correlation coefficients of all combi-
nations of the same four models (SP12 = SP12RTS, S40 = S40RTS).

ferences in power spectra per degree could arise from the inversion method, or the
difference in the amount of mode coupling between the two methods. Our models
share the characteristic of SP12RTS and S40RTS (Figs 3.9c,d) of a dominant degree
two structure, especially in the upper and lower parts of the mantle. Degree two
structure in the uppermost mantle is the consequence of tectonic processes, where
subducting slabs form the ‘ring around the Pacific’. LLSVPs result in a large degree
two signature in the lowermost mantle. As we already saw in the depth slices (Figs
3.7a,b), the power in the uppermost 200 km of the mantle is weaker in our models
compared to SP12RTS and S40RTS, probably due to a lack of surface waves in our
inversions. Lower power in the CMB region could be the result of omitting Stoneley
modes and core-diffracted body waves from our inversions.

By visualizing data sensitivity of our normal mode data set, we get a better
understanding of our resulting models. Data sensitivity to each depth spline is
related to the diagonal elements of the ATA matrix. Following Gu et al. (2001)
and Koelemeijer et al. (2016), data sensitivity for the kth spline is defined by a
horizontal average:

˜(ATA)k = ãk =
√

1
4π
∑
st

ast,k (3.19)

where ast,k are diagonal elements of (ATA)k. Both the one-step and two-step
models have peak sensitivity at the second to deepest spline (2600 km depth) and
least sensitivity in the most shallow part of the mantle (Fig. 3.10a). Note that the
sensitivity in Fig. 3.10a is normalized. We cannot draw any conclusions from the
absolute sensitivities in the two inversion approaches, because it is not possible to
compare the ATA of the linear two-step inversion to that of the non-linear one-step
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inversion.

The root mean square (RMS) amplitudes of the four models paint the same
picture as the power spectra: higher amplitudes are seen in the uppermost mantle
and CMB region for SP12RTS and S40RTS than for our two models (Fig. 3.10b).
In the depth range of 700-2500 km all vs models have similar RMS amplitudes. It
is the depth range dominated by the normal mode data in SP12RTS and S40RTS,
which explains the similarity in RMS amplitudes across all four models. Comparing
our own models, we again see that the RMS amplitude of the one-step model varies
more smoothly as a function of depth than the RMS amplitude of the two-step
model.

The cross-correlations between the four models as a function of depth are shown
in Fig. 3.10c. The correlation between our two models is close to 1.0 in the upper
1000 km of the mantle and drops to values of less than 0.9 around 1250 km depth
and the CMB. The drop around 1250 km depth can be explained by looking at the
1200 km slice in Fig. 3.7 and the power spectra in Fig. 3.9. Here, the one-step model
has a higher power for degree 6, resulting in more dominant small-scale structures
than in the two-step model. The drop around the CMB is caused by differently
shaped LLSVPs, especially the Pacific LLSVP. In the one-step model both LLSVPs
consist of two elongated slow regions in a North-South configuration, whereas in the
two-step model both LLSVPs are more stretched in an East-West direction. These
drops in correlation between the one-step and two-step models are probably the
consequence of the inversion method and might be due to errors propagating from
the intermediate splitting function measurement into the final model in the two-step
inversion method, since we used the same spectral data in both methods.

Our two models correlate better with SP12RTS than with S40RTS. Correlation
of all other three models with S40RTS is especially poor at 800 and 1400 km depth,
although their RMS amplitudes are similar. The poor correlation could be caused by
S40RTS not including modes with overtone number > 5, in contrast to our models
and SP12RTS which do include higher overtones.

We have started the one-step inversion and the second step of the two-step inver-
sion from PREM. To check whether or not we converge to a local minimum, we also
experimented with starting our inversions from S20RTS (Ritsema et al., 1999) and
a random model (Figs S1-S4). If we apply sufficiently low damping, we end up with
models that look very similar to the ones obtained starting from PREM, for both
inversion methods and all starting models, converging to comparable misfits and
model sizes (Fig. S5) . The only difference in observed patterns is in the uppermost
200 km of the mantle, implying that this part of the mantle is most poorly con-
strained by the normal mode data. The data sensitivity distribution in our models
(Fig. 3.10a) agrees with this observation. Including spheroidal fundamentals with
higher angular order, which are similar to Rayleigh surface waves, might improve
the data coverage of this part of the Earth. An important observation for this study
is that the spectral misfit for the one-step inversion is always lower than for the
two-step inversion, independent of the starting model (Fig. S5).
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3.4.3. Odd degrees
We have so far only considered even degree structure, but we are wondering if odd-
degree structure can also be resolved and if there is also a difference between the
two inversion methods for odd-degree structure. Sensitivity of normal modes in
self-coupling is limited to even degrees, since waves travelling in opposite directions
destructively interfere for odd-degree structure. This can also be understood from
the coupling rules, which state that two spheroidal modes nSl and n′Sl′ only couple
for structure |l − l‘| ≤ s ≤ |l + l′|. In the case of cross-coupling, we will get
sensitivity to odd-degree structure if l − l′ is an odd number. Therefore we are
bound to mode pairs that couple for odd-degree structure according to the coupling
rules and are close enough in frequency to form a group or ‘hybrid’ mode pair.
Unfortunately, we will show below that only a very small number of spheroidal
modes pairs differ in their angular order l by an odd-number and are close enough
in frequency, limiting the number of cross-coupled splitting functions and spectral
data available to constrain odd-degree structure.

Figure 3.11: Power spectra per spherical harmonic degree, including odd degrees, showing in a, b,
d, e the four δlnvs models shown in Fig. 3.7, and c) two-step model including odd degree couples
from Durand et al. (2016).

Figure 3.12: Number of splitting functions (self- and cross-coupled) that constrain the spherical
harmonic degrees for a two-step inversion including the odd-degree cst coefficients of Deuss et al.
(2013) (in blue) and Durand et al. (2016) (in orange).
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Figure 3.13: Data sensitivity kernels (not normalized) for a) one-step model (red), plus odd degrees
by Deuss et al. (2013) (grey); b) two-step model (red), plus odd degrees by Deuss et al. (2013)
(grey), plus odd degrees in SEISGLOB1 (Durand et al., 2016) (dashed).

We extend the one-step and two-step inversion to include odd degrees. Allowing
modes in the small mode groups of Deuss et al. (2013) to couple for odd degrees yields
a one-step model with a power spectrum containing significantly less power in odd
degrees than in even degrees (Fig. 3.11a). Adding odd-degree splitting functions to
the even-degree two-step inversion gives the same observation in the power spectrum
(Fig. 3.11b), with less power for degree 1, 3 and 7. This is because measurements
of odd-degree cross-coupled splitting functions by Deuss et al. (2013) are limited,
especially compared to the large number of even-degree splitting functions available
(blue bars in Fig. 3.12). Odd and even degrees were given the same norm damping
to illustrate the lack of normal mode data sensitive to odd degrees compared to
even degrees. The extra data added in this manner does not contribute greatly to
the data sensitivity kernels (Fig. 3.13), though the relative increase in sensitivity is
larger in the one-step inversion than in the two-step inversion. Thus there is only
little information contained in the small amount of cross-coupled splitting functions
for odd-degree structure. Group coupling in the one-step inversion, which includes a
small number of mode pairs sensitive to odd degrees, does not add much information
either.

Nonetheless, a recent study by Durand et al. (2016) argues that adding odd-
degree splitting function coefficients results in odd-degree structure in the lowermost
mantle becoming stronger than previously believed. Their mantle model SEIS-
GLOB1 contains a higher spectral amplitude for degree 3 than degree 2 at 2800 km
depth. Their cross-coupled normal mode data comprises measurements of Resovsky
& Ritzwoller (1998) and Deuss et al. (2013). The odd-degree cross-coupled splitting
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functions of Deuss et al. (2013) and Resovsky & Ritzwoller (1998) comprises 16 and
3 spheroidal-spheroidal measurements, respectively, with some overlap. We also run
our two-step inversion using their odd-degree mode pairs with equal damping for all
degrees, which results in the power spectrum of Fig. 3.11c. Because they actually
included a few modes less than we did, there is still some power around 2800 km for
degree 3, but in fact less than in our two-step inversion (Fig. 3.11b) and in all cases
the degree 3 structure stays smaller than the degree 2 structure. Again, the data
sensitivity kernels (Fig. 3.13b) also show that there is negligible data sensitivity to
odd degrees in the model made using the same cross-coupled splitting functions as
Durand et al. (2016).

Similar to Durand et al. (2016), who increased the weights of odd-degree splitting
functions to fit these data, the only way in which we are able to obtain strong
odd-degree lowermost mantle patterns as in SEISGLOB1 is by applying degree-
dependent damping, even though the L-curves of these odd degrees do not show
any indication to do so. The non-characteristic shape of the L-curves per degree
illustrates that the amount of splitting function coefficients used by Durand et al.
(2016) is not enough to constrain whole-mantle odd-degree structure. To support
this statement, we would like to add that the six mode pairs in the SEISGLOB1
data set sensitive to degree 3 (i.e. 6 × 7 = 42 splitting function ‘data’ coefficients)
are not sufficient to constrain all model parameters at degree 3 for 21 depth splines
(i.e. 21× 7 = 147 ‘unknown’ model coefficients). Overall, we find that the two-step
inversion would need more cross-coupled splitting functions that are sensitive to
odd-degree structure to make robust vs models of odd-degree structure. Although
there is stronger odd-degree sensitivity in the one-step inversion, even there we also
need to include more mode couples sensitive to odd degrees to make robust models
of odd-degree structure.

3.5. Discussion and Conclusion
We have explored two different inversion methods that have been used in normal
mode tomography: (i) the computationally intensive one-step full-spectrum inver-
sion and (ii) the commonly used two-step splitting function inversion, using the
same spectral data set of Deuss et al. (2013) as a starting point. Theoretically, the
two-step inversion is more sensitive to data weighting, and information might be
lost in the intermediate step of measuring splitting functions. We find that we need
to weigh the splitting function coefficients by their error or uncertainties, otherwise
the resulting mantle models will not be similar to vs models obtained in previous
studies, which were made with other data types including body waves and/or sur-
face waves. The one-step inversion is more robust, both from a theoretical and a
practical point of view, since all spectral data are inverted at once. Neither of the
two inversion methods depends on the starting model in our inversion for vs only,
except in the uppermost mantle, where normal mode sensitivity is lacking in our
data set.

The average spectral misfit for the one-step inversion is lower for all model sizes
and numbers of effective unknowns, as displayed in the inversion L-curves. The
model resulting from the one-step inversion is smoother than the model resulting
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from the two-step inversion, even when the model size and number of unknown pa-
rameters are the same between the two models. Moreover, the anomalies in vs are
stronger in the one-step model for the same number of effective unknowns, similar to
stronger anomalies being observed in a full waveform inversion compared to conven-
tional travel time tomography (Rickers et al., 2013). Whether this statement still
holds when we invert for other parameters that modes are less sensitive to, such as
vp and ρ, will be addressed in upcoming chapters. The two-step splitting function
inversion for vs does a decent job, especially when combined with other data types
(i.e. surface waves and body waves), and could be suitable for Monte Carlo model
space search techniques (e.g. Fichtner et al., 2019; van Tent et al., 2020).

We cannot draw any conclusions yet on odd-degree structure in the mantle based
on the currently available small number of cross-coupled odd-degree normal mode
splitting functions. It will be essential to expand the data set of odd-degree cross-
coupled splitting functions in order to be able to robustly constrain odd-degree
structure, especially in the lower mantle, where the odd degrees are currently poorly
constrained by normal modes. To conclude, the one-step inversion results in lower
misfits to the spectral data. Furthermore, the resulting model is more smooth and
has stronger anomalies for the same number of effective unknowns. This makes the
one-step inversion, even though more computational intensive, the preferred choice,
when possible.

Data availability
The cst measurements underlying this article are available in the supplementary ma-
terials of Deuss et al. (2013), and through the GitHub of FrosPy at https://github.com/s-
schneider/frospy.
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A1. Appendix A
Here we show the models (Figs. A1-A4) and L-curves (Fig. A5) for the one-step
and two-step inversions for starting models PREM, S20RTS (up to degree 8, only
even degrees) and a random model. It is well known that the success of a full-
waveform inversion heavily depends on the quality of the starting model, since it
is hard to reach convergence (e.g. Biondi & Almomin, 2014). Thus the resulting
models depend on the starting model, and it is important to check that the inversion
did not converge towards a local minimum (e.g. Virieux & Operto, 2009). In our
full-spectrum normal mode inversion (i.e. the one-step inversion), we find that
our resulting models do not depend so strongly on the starting model as in a full-
waveform inversion. We arrive at the same models for sufficiently low damping
(Fig. A5), hence it seems to be less likely to end up in a local minimum using our
full-spectrum method.

The starting model does dictate how the model size varies as a function of
damping. For the same value of strong damping, the PREM starting model will
have a small model size, while the S20RTS and random starting models will have
a model size very close to said starting models which will be much larger. In the
same way, for little damping, the starting model will also dictate at which damping
we start filling the model null space. Therefore we do not choose the same damping
for the inversions starting from PREM as for the inversions starting from S20RTS
and the random model. The final best models we picked for the different starting
models therefore do not look exactly the same. The most important point is that
our conclusions stay the same for all three starting models: the spectral misfit of the
one-step inversion is always smaller than the spectral misfit of the two-step inversion
(see Fig. A5).
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Figure A1: Model slices showing even degrees 2, 4, 6, 8 for a) starting model S20RTS; b) resulting
model for the one-step inversion; c) one-step inversion result starting from PREM (as shown in
the main paper)
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Figure A2: Model slices showing even degrees 2, 4, 6, 8 for a) starting model S20RTS; b) resulting
model for the two-step inversion; c) two-step inversion result starting from PREM (as shown in
the main paper)
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Figure A3: Model slices showing even degrees 2, 4, 6, 8 for a) random starting model; b) resulting
model for the one-step inversion; c) one-step inversion result starting from PREM (as shown in
the main paper)



3

64 3. Comparing one-step with two-step inversion

200 km
± 2.0%

500 km
± 1.5%

800 km
± 1.0%

1200 km
± 1.0%

2000 km
± 1.0%

2800 km
± 1.0%

0slow fast

S−velocity variation from 1D

a) Random b) Two−step random c) Two−step PREM

Figure A4: Model slices showing even degrees 2, 4, 6, 8 for a) random starting model; b) resulting
model for the two-step inversion; c) two-step inversion result starting from PREM (as shown in
the main paper).
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Normal mode constraints on
vs, vp, their ratio RS/P, and

vs-vφ (anti-)correlation
Spheroidal normal modes are sensitive to both shear (vs) and compressional (vp)
wave velocity and have the advantage that they do not suffer from different S-wave
and P-wave data coverage as is the case for body waves. Thus, modes are ideal
for constraining the ratio RS/P=δlnvs/δlnvp, which may contain information on the
presence of thermal or chemical heterogeneity in the mantle and is crucial in the
debate on the origin and nature of the two Large Low Shear wave Velocity Provinces
(LLSVPs) in the lower mantle. According to mineral physics experiments, RS/P is
lower than 2−2.5 in an isochemical lower mantle in the absence of phase transitions.
Most of the previously estimated RS/P values in seismological studies increase to
about 3 in the bottom ∼1000 km of the mantle, generally interpreted to be due
to the presence of chemical heterogeneity. This observation is usually paired with
anti-correlation between vs and bulk sound velocity (vφ) anomalies. We use normal
mode data to make tomographic models of 3D variations in vs and vp and constrain
RS/P in the Earth’s mantle. In addtion, we invert for vs and vφ anomalies in order to
determine the S-Φ correlation. We investigate how RS/P and S-Φ correlation depend
on the inversion approach (i.e. one-step or two-step inversion), and how different
ways of computing this ratio and correlation may lead to different interpretations on
the state of the mantle. Looking at distributions of RS/P, δlnvs and δlnvp combined
with 1D representations of the corresponding distributions gives a better overview
than the 1D profiles exclusively. We present a new state-of-the-art one-step model
of RS/P for the mantle, based on normal mode data including CMB Stoneley modes
(sensitive to the lowermost mantle) and higher order fundamental modes (sensitive
to the uppermost mantle). We also explore the robustness of inverting for 3D vφ
and present novel constraints from the one-step inversion.
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4.1. Introduction
For decades, studies have modelled the S- and P-wave velocity of the mantle (e.g.
Dziewonski et al., 1977; Woodhouse & Dziewonski, 1984; Masters et al., 2000a;
Simmons et al., 2010; Koelemeijer et al., 2016). All lower mantle studies show two
low-velocity zones in the lower mantle underneath Africa and the Pacific Ocean.
The thermochemical nature of these two Large Low Shear-wave Velocity Provinces
(LLSVPs), or sometimes simply called Large Low Velocity Provinces (LLVPs) as
they are also visible in P-wave models, is still heavily debated. They could either be
thermal only, in which case they would be buoyant superplumes, or compositional,
making them potentially more stable (and dense).

Heterogeneity ratios between 3D variations in velocity and density, such as RS/P,
RΦ/S, Rρ/S, have been proposed to discriminate between thermal and compositional
heterogeneity (e.g. Masters et al., 2000a; Karato & Karki, 2001; Deschamps & Tram-
pert, 2003). Observations of high RS/P (e.g. Romanowicz, 2001; Ritsema & van
Heijst, 2002; Koelemeijer et al., 2016; Moulik & Ekström, 2016), a wider spread in
the distributions of RS/P (e.g. Deschamps & Trampert, 2003) and anti-correlated
shear and bulk sound velocity variations (e.g. Su & Dziewonski, 1997; Ishii & Tromp,
2001; Trampert et al., 2004) are generally interpreted to be indicators of chemical
heterogeneity in the lower mantle. By converting global mantle circulation models
to seismic structure, Davies et al. (2012) argue that chemical piles might be present,
but are not required to explain the observed lower mantle velocities. Schuberth et al.
(2009) on the other hand, propose an isochemical thermal plume model, that can be
reconciled with tomographic images because of the limited resolving power of seis-
mic tomography. Thus, better constraints on heterogeneity ratios from seismology
are required.

4.1.1. Ratio between vs and vp heterogeneity
In this chapter, we will focus on heterogeneity ratio RS/P and we will present results
for RΦ/S. We will examine Rρ/S in Chapter 5. Mineral physics calculations predict
that in a lower mantle dominated by thermal effects (exluding phase transitions, but
including anelasticity), the maximum RS/P is about 2.5 (Karato & Karki, 2001).
However, according to Brodholt et al. (2007) the importance of anelasticity was
exaggerated and they lowered the probable upper bound of RS/P in the lower mantle
to 2.1. Many studies observed RS/P values increasing to about 3 in the lowermost
mantle (Fig. 4.1; (Su & Dziewonski, 1997; Romanowicz, 2001; Houser et al., 2008b;
Della Mora et al., 2011; Koelemeijer et al., 2016)), which is higher than both 2.1
and 2.5, and therefore have originally been interpreted to be indicative of chemical
heterogeneity.

In addition to RS/P, we are going to look at another interesting parameter: the
correlation between shear-wave velocity and bulk sound velocity. When RS/P at
a specific point in the Earth becomes high enough, variations in bulk sound δlnvφ
start to become anti-correlated to variations in shear-wave velocity δlnvs.
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Figure 4.1: Previously measured
RS/P profiles for seismic tomographic
models from: KRDH16: Koelemei-
jer et al. (2016), AGED03: An-
tolik et al. (2003), SD97: Su &
Dziewonski (1997), SHK01: Saltzer
et al. (2001), ME2016: Moulik & Ek-
ström (2016), DBTNG11: Della Mora
et al. (2011), MLD00: Masters et al.
(2000a), R01: Romanowicz (2001),
HMSL08: Houser et al. (2008b).

4.1.2. Previous observations of S-Φ anti-correlation
The anti-correlation between δlnvs and δlnvφ in the lowermost mantle is observed by
many studies (Fig. 4.2) using various seismic data, such as body wave arrival times
or splitting function measurements. In some cases, the anti-correlation was observed
indirectly from shear- and compressional wave velocity models (e.g Simmons et al.,
2010; Koelemeijer et al., 2016; Moulik & Ekström, 2016), using the following relation
between vs, vp and vφ:

δlnvp = γδlnvs + (1− γ)δlnvφ (4.1)

with:
γ = 4

3
v2
s

v2
p

(4.2)

In other cases, the anti-correlation is observed directly from a joint inversion for
shear-wave and bulk sound velocity (e.g Su & Dziewonski, 1997; Ishii & Tromp,
1999, 2001; Masters et al., 2000a), and finally, through probabilistic tomography
using splitting functions, surface waves (Resovsky & Trampert, 2003) and gravity
constraints (Trampert et al., 2004) or body waves (Mosca et al., 2012).

Only two studies have found a slightly positive S-Φ correlation in part of the
lowermost mantle: Saltzer et al. (2001) and Kennett et al. (1998). By extracting
vφ from vs and vp in a body wave study, Saltzer et al. (2001) found a negative
S-Φ correlation in the depth range 1700-2100 km, which turns into a moderately
positive correlation in the lowermost 200-300 kms of the non-slab regions (Fig. 4.2).
Kennett et al. (1998) inverted S and P travel times for shear and bulk sound velocity
and did not find any negative correlations throughout the mantle, but only slightly
positive correlations to decorrelations (Fig. 4.2). An important note here is that
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most of the lower mantle contained very little bulk sound variation, which makes the
correlation less significant. Koelemeijer et al. (2018) partly reconcile the differences
between body waves and long period (normal mode) S-Φ correlation profiles by more
vertical smearing that occurs in body wave dominated studies, when the ray theory
approximation is used. Finite frequency effects could also partly explain the large
spread in RS/P (Tesoniero et al., 2016; Koelemeijer et al., 2018).

Figure 4.2: Previously observed
cross-correlation between δlnvs and
δlnvφ by SD1997: Su & Dziewon-
ski (1997), KWH1998: Kennett
et al. (1998), MLBD2000: Mas-
ters et al. (2000a), IT2001: Ishii
& Tromp (2001), SHK2001: Saltzer
et al. (2001) in the non-slab re-
gions, ME2016: Moulik & Ekström
(2016), KRDH2016: Koelemeijer
et al. (2016).
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4.1.3. Mineral physics
Bulk sound velocity depends on the bulk modulus κ and density ρ as:

vφ =
√
κ

ρ
(4.3)

Contrary to shear- and compressional-wave velocity, bulk sound velocity is indepen-
dent of the shear modulus µ, and hence not affected much by attenuation (since bulk
attenuation is assumed to be negligible). Furthermore, many high pressure labora-
tory experiments produce results that can be directly linked to bulk sound speed,
making observations of bulk sound in the mantle very suitable for mineralogical
interpretations.

If we consider elastic effects alone, the correlation between vs and vφ anoma-
lies cannot be negative (e.g. Karato & Karki, 2001; Matas & Bukowinski, 2007).
The magnitude of anelastic effects on both RS/P and the S-Φ correlation has been
debated, with some claiming that anelastic effects alone might account for the ob-
served high RS/P values (Karato, 1993; Karato & Karki, 2001), while others reduce
the importance of anelastic effects in favour of chemical heterogeneity (Trampert
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et al., 2001; Matas & Bukowinski, 2007). Most likely, anelasticity cannot alter the
sign of the S-Φ correlation, only its magnitude (Brodholt et al., 2007).

These considerations mean that S-Φ anti-correlation cannot be explained by a
purely thermal mantle, not even when anelasticity is taken into account, and is
hence thought of as a robust indicator of the presence of chemical heterogeneity.
The anti-correlation between δlnvs and δlnvφ is a stronger indicator of chemical
heterogeneity than RS/P, as chemical heterogeneity can also lower the value of RS/P
(Trampert & Van Der Hilst, 2005). In any case, the argument against or in favour of
chemical heterogeneity will become stronger when observations of high RS/P values
are combined with S-Φ anti-correlation.

Alternatively, the lowermost mantle phase transition from bridgmanite to post-
perovskite (pPv) might explain a rise in RS/P combined with S-Φ anti-correlation,
which would not require chemical heterogeneity. This phase transition is accompa-
nied by an increase in vs and little to no change in vp (e.g. Murakami et al., 2004;
Oganov & Ono, 2004; Tsuchiya et al., 2004), resulting in a higher RS/P and S-Φ
anti-correlation. Recently, Koelemeijer et al. (2018) have studied the effects of pPv
on the S-Φ correlation, and found that lateral variations in the presence of pPv have
a dominant effect on the S-Φ correlation. Their finding implies that S-Φ correlation
might not be a robust measure to constrain the presence of chemical heterogeneity
after all. There is still much unknown about the stability field of pPv (see review by
Cobden et al. (2015)), but several seismic studies have found that seismic data pre-
fer or hint towards a pPv-bearing CMB region, including core-diffracted body waves
(Cobden et al., 2012), normal modes (Koelemeijer et al., 2017), body waves, surface
waves and normal modes (Mosca et al., 2012), and also thermochemical modelling
(Koelemeijer et al., 2018). Recent in-situ high-pressure and -temperature experi-
ments also suggest that the phase transition occurs under lower mantle conditions
(Kuwayama et al., 2021).

As we have seen in the previous chapter, the one-step and two-step inversions give
very similar results when modelling S-wave velocity perturbations, although the one-
step model produces slightly lower spectral misfits. Hence splitting functions serve
as a convenient intermediate step when modelling 3D shear velocity (Li et al., 1991),
but will they still be accurate enough when we also include 3D P-wave velocity or
bulk sound velocity in the inversions? The other important question we address here
is how the methods of computing RS/P or S-Φ correlation affect the thermochemical
interpretations we draw from them.

4.2. Data and methods
We use the same normal mode spectra as starting point of both our inversions.
Similar to the procedure in Chapter 3, we invert the normal mode spectra for a
mantle model in two ways: i) in a one-step direct spectrum inversion, and ii) in a
two-step splitting function inversion. Details on these two methods are outlined in
Chapter 3, so we will not discuss them any further here.

In addition to, or sometimes in replacement of, the spectral segments of Deuss
et al. (2013), we use the segments of Koelemeijer et al. (2013) and Koelemeijer
(2014). The noteworthy additions to the previous data set are high angular order
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fundamental modes (0S22 − 0S30) and a few core-mantle boundary Stoneley modes
(1S11−14, 2S15−17,25, 3S26). All segments consist of vertical component data for 93
large events (Mw ≥ 7.4) since 1976. For the two-step approach we use the spheroidal
mode splitting functions obtained by the same three studies, and only execute the
second inversion step in this paper. We exclude spheroidal modes that are sensitive
to the inner core or couple strongly to an inner core mode, since our focus is on the
mantle. The total number of spectral segments is 118,034, for 88 modes and mode
groups in the one-step inversion and 125 self-coupled and 10 cross-coupled splitting
functions for the two-step inversion. We use more modes and segments than in the
previous chapter (Tables 4.1 and 4.2).

We assign weights to the data in the two inversions in the same way as in Chapter
3. For the one-step inversion the normal mode spectra are weighed implicitly by the
number of segments each mode or mode group contributes to the inversion. For the
second step of the two-step inversion, the splitting functions are weighed by their
maximum error determined by cross-validation. We have already explained that
these choices in weighting are comparable.

We invert for aspherical perturbations in shear wave velocity (δlnvs) and com-
pressional wave velocity (δlnvp), which are the two observables that normal modes
are most sensitive to. Hereby we remove the scaling factor between δlnvs and δlnvp
of 0.5 that was present in the inversions of Chapter 3. The constraint of δlnρ being
proportional to δlnvs by a factor of 0.3 is still present here. In Chapter 5, we will re-
move this final proportionality constraint. Crustal contributions are included using
model CRUST 5.1 (Mooney et al., 1998). In the one-step inversion, crustal effects
are included in the splitting matrix for computing synthetic spectra. In the two-step
inversion, splitting function predictions for the crust are subtracted from the mea-
sured cst’s, effectively removing the crust. We use 1D model PREM (Dziewonski
& Anderson, 1981) as starting model for the one-step inversion and for the second
step of the two-step inversion.

For the joint vs + vp inversion we use the same model parameterization as
S20RTS (Ritsema et al., 1999), S40RTS (Ritsema et al., 2011) and SP12RTS (Koele-

Table 4.1: Spectral segments in the one-step inversion containing the mode groups that were added
or modified (in italics) with respect to the modes in Chapter 3, with the number of events as Nev.

Spectral segment Nev

0 S15 92
0 S16 93
0 S19 − 1 S13 91
0 S21 − 1 S14 93
0S22 − 2S14 93
0S23 − 1S15 93
0S24 − 2S15 92
0S25 − 1S16 92
0S26 − 2S16 93
0S27 93

Spectral segment Nev

0S28 93
0S29 93
0S30 92
1S11 − 0S15 93
1S12 − 0S17 91
2 S13 92
2S17 − 7S5 90
2S25 − 3S25 76
6 S15 − 9 S10 − 3 S26 81
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Table 4.2: Splitting functions in the two-step inversion that were added or modified (in italics)
with respect to the modes in Chapter 3, with the number of events as Nev.

Spectral segment Nev

0 S15 92
0 S16 93
0 S19 91
0 S21 93
0S22 93
0S23 93
0S23 − 1S15 93
0S24 92
0S25 92
0S26 93
0S27 93
0S28 93
0S29 93
0S30 92
1 S10 70
1S11 93
1S12 91

Spectral segment Nev

1S13 91
1 S14 93
1S15 93
1S16 92
2 S13 92
2S14 93
2S15 92
2S16 93
2S17 90
2S25 76
3S25 76
2S25 − 3S25 76
3S26 81
6 S15 81
7 S5 90
9 S10 81

meijer et al., 2016), using 21 splines in the radial direction (Fig. 4.3a), and spher-
ical harmonics laterally. We go up to maximum spherical harmonic degree 12, as
in SP12RTS, but only invert for the even degrees, since our normal mode data set
does not allow for much odd-degree sensitivity (as previously discussed in Chapter
3), especially in the splitting function inversion.

We choose a radial parameterization of 7 equally spaced B-splines (Fig. 4.3b)
and a maximum spherical harmonic degree 6 for vs + vφ inversions, as normal mode
sensitivity to bulk modulus κ is low. Performing these inversions with 21 splines
resulted in models which were highly dependent on damping, with many dissimilari-
ties between the one-step and two-step models. We will start inversions for 3D bulk
sound velocity by trying to recover various input models in synthetic inversions.
Furthermore, real data inversions will be performed for various vφ starting models,
containing zero and non-zero 3D variations, to assess dependence on the starting
model. As we have seen before, S-Φ correlation can be obtained either i) through a
direct inversion for vs and vφ heterogeneity, or ii) by extracting vφ from an inversion
for vs and vp heterogeneity, using the relation of eq. 4.1. We will attempt both ways
and compare the resulting correlations.

After we obtain the δlnvs and δlnvp models, we compute the ratio RS/P =
δlnvs/δlnvp. RS/P has been estimated previously in a number of different ways: (i)
dividing the RMS amplitude of the shear velocity anomalies by the RMS ampli-
tude of the compressional velocity anomalies (e.g. Su & Dziewonski, 1997; Antolik
et al., 2003; Koelemeijer et al., 2016); (ii) taking the median value (e.g. Masters
et al., 2000a; Davies et al., 2012; Koelemeijer et al., 2016; Moulik & Ekström, 2016;
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Figure 4.3: Mantle radial parameterizations used in this study: a) 21 splines as used in e.g. S20RTS
(Ritsema et al., 1999), S40RTS (Ritsema et al., 2011) and SP12RTS (Koelemeijer et al., 2016), b)
7 equally spaced B-splines.

Tesoniero et al., 2016) or (iii) taking the mean value (e.g. Della Mora et al., 2011) of
the ratio at grid points at a certain depth; (iv) computing the slope of the best linear
fit through a cloud of δlnvs against δlnvp (e.g. Saltzer et al., 2001; Koelemeijer et al.,
2016); (v) taking the ratio of the spherically averaged values of δlnvs and δlnvp (e.g.
Robertson & Woodhouse, 1996). All of these methods result in a 1D depth profile
representative of 3D variations in RS/P, but, as we will show below, may result in
different RS/P values. We will compute RS/P in the two most common strategies,
outlined below.

4.2.1. R-median
R-median is defined as the median value of a range of R-values computed by point-
by-point division of δlnvs by δlnvp on a equidistant grid at a particular depth. We
only include grid points for which both δlnvs and δlnvp exceed a certain threshold,
to discard spurious estimates of RS/P when δlnvs or δlnvp are too close to zero. We
will try 0.1 and 0.01 as threshold for the absolute δlnvs and δlnvp values that needs
to be exceeded for inclusion in the distribution. The grid points are positioned on a
5x5°grid, with less sampling at the poles to avoid overrepresentation of those areas
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Figure 4.4: Example of a histogram
of RS/P at a particular depth, in this
case 2300 km. The red line repre-
sents the median of this distribution at
2.025, and is the 1D representative that
we will use as R-median. The chosen
threshold in this example is 0.01 and
RS/P is derived from the one-step in-
version models.

in the histograms. An example of a histogram of RS/P and its median is given in
Fig. 4.4. Since it is also useful to look at the spread of RS/P and not just a 1D
representative, we will examine the depth-dependence of the distribution of RS/P
and of the velocity anomalies themselves. A wider spread in RS/P values is an
indication of the presence of chemical heterogeneity, since temperature affects the
two velocities in a similar way (Deschamps & Trampert, 2003).

4.2.2. R-RMS
R-RMS is obtained by dividing the RMS amplitudes of δlnvs by δlnvp. More specif-
ically, the spectral power ps at a spherical harmonic degree s is defined as:

ps =

√√√√ 1
2s+ 1

[
m2
s0 +

s∑
t=1

((Re(mst))2 + (Im(mst))2)
]

(4.4)

in which mst are the model coefficients of vs or vp corresponding to the spherical
harmonics. The total RMS power of degrees 2 to 12 is then given by:

prms =

√√√√ 1√
4π

12∑
s=2

(2s+ 1)p2
s (4.5)

In computing R-RMS, we divide the total RMS power of the S-wave model by
that of the P-wave model. Since computing RMS values involves squaring model
coefficients (eq. 4.4), all negative ratios that could exist are not included, whereas
they are included in the R-median approach. This is the reason why R-median will
generally give lower estimates of RS/P than R-RMS, as we will see later.

4.3. Results for vs, vp and RS/P
We invert normal mode data jointly for a shear and compressional wave velocity
mantle model using the one-step direct spectrum inversion and the two-step splitting
function inversion. We will compare the resulting models, misfits and RS/P in detail
below.
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Figure 4.5: L-curve for the one-step inversion spectral misfits (red), and L-curves for the cst misfits
(dotted) and spectral misfits (dashed) for the models resulting from the two-step inversion, as a
function of a) model size and b) number of effective unknowns. Solid red dot: best model for
one-step inversion. Solid black dots: best model for the two-step inversion.

One-step Two-step SP12RTS
vs only 0.53 0.58
vs + vp 0.44 0.45 0.45

vs + vp with vs-only modes 0.47 0.48

Table 4.3: Spectral misfits for the one-step and two-step inversions, for different cases: a vs only
inversion (performed in Chapter 3), a vs plus vp inversion (performed in this chapter), and the
same vs plus vp inversion with only taking the modes from Chapter 3 into account for computing
the misfit. The spectral misfit for SP12RTS using our data is also shown.

4.3.1. L-curves and misfits
We compute two different kinds of misfit for our models: spectral misfit and cst
misfit. Spectral misfit is the difference between observed and synthetic spectra, cst
misfit is the difference between the measured cst coefficients and the predicted cst’s
for the mantle model, as explained more in detail in Chapter 3. For the two-step
inversion, we can not only compute the cst misfit, but also the spectral misfit, since
we have the original spectral data from which the splitting functions were derived.
We choose to compare the one-step and two-step models based on the same number
of effective eigenvalues, as we did previously. For the same number of effective
eigenvalues, the average spectral misfit and model size of the one-step inversion are
slightly lower than for the two-step inversion (Fig. 4.5; Table 4.3).

The spectral misfits per mode or mode group (Fig. 4.6) clearly show that both
the one-step (red triangles) and two-step (black squares) models fit the spectra
better than PREM plus rotation and ellipticity (grey circles). Compared to the
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vs-only inversion of Chapter 3, the joint vs and vp inversion performed here fits the
spectral data better on average, both for the one-step inversion and the two-step
inversion (Table 4.3). This improvement in data fit is mainly caused by the lower
misfits of the added high angular order fundamentals (0S22 − 0S30). The average
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Figure 4.7: Model slices of shear wave velocity (vs) showing even-degree structure up to degree 12
for a) the one-step inversion; b) two-step inversion; c) SP12RTS (Koelemeijer et al., 2016); and d)
SP12RTS dominated by normal modes.

spectral misfits of our models are comparable to the misfit for SP12RTS (grey stars
in Fig. 4.6; Table 4.3). Without the modes added with respect to the previous
chapter, the spectral misfits for the one-step inversion and the two-step inversion
are still lower than the vs-only inversion (Table 4.3). The improvement in data fit
shows that it is probably not representative of the true mantle to scale perturbations
in vs to perturbations in vp with a single scaling factor throughout the entire mantle
(although another contributing factor to the lower misfit could be the increase in
maximum degree from 8 to 12). This statement is backed up by almost all of the
vp sensitive modes having improved spectral misfits in the joint vs-vp inversion,
compared to the inversion where perturbations in vp were scaled to vs. The average
spectral one-step (two-step) misfit for the vp sensitive modes has dropped from 0.70
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Figure 4.8: Model slices of compressional wave velocity (vp) showing even-degree structure up to
degree 12 for a) the one-step inversion; b) two-step inversion; c) SP12RTS (Koelemeijer et al.,
2016); and d) SP12RTS dominated by normal modes.

(0.71) in the vs-only inversion to 0.55 (0.55) in the current vs-vp inversion.

4.3.2. Model characteristics
We compare the vs and vp models of the one-step and two-step inversion to SP12RTS
(Koelemeijer et al., 2016) and SP12RTS dominated by normal mode splitting func-
tions (’SP12RTS-modes’). The two SP12RTS models do not differ much, since the
chosen SP12RTS model already has strong weights assigned to the splitting func-
tions, compared to the surface wave dispersion and body wave travel time data.
The large-scale features of our one-step and two-step vs (Fig. 4.7a,b) and vp (Fig.
4.8a,b) models agree well with the those found in SP12RTS and SP12RTS-modes
(Figs. 4.7c,d and 4.8c,d). When we look in more detail, the two-step models are
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Figure 4.9: Cross-sections through a) one-step vs and b) two-step vs models, and c) one-step vp
and d) two-step vp models, showing the African LLSVP.

more similar to the SP12RTS and SP12RTS-modes models, which is not surprising
as they share a large part of their splitting function data set.

In cross-sections through the one- and two-step vs and vp models we see the
LLSVP (or LLVP) very clearly (Figs. 4.9, 4.10). Both vs models show a connection
between the lower mantle LLSVP and the root of the East African Rift System
in the upper mantle in the shape of a broad low velocity conduit (Fig. 4.9a,b).
This connection is also present in both vp models, where it is even wider (Fig.
4.9c,d). The lowest vs anomaly of the LLSVP is concentrated in the lowermost
couple of hundred kilometres, whereas the lowest vp anomalies are less concentrated
in one location. Low velocity material appears to be horizontally deflected at various
depths in the mid-mantle, including the 670-discontinuity.

The difference between the one-step model and the other three is more apparent
in vp than in vs, both in the depth slices (Figs. 4.7-4.8) and the power spectra
per degree (Fig. 4.11). Higher spherical harmonic degrees contain more spectral
power in the one-step models than in the two-step models, which is likely due to the
different amount of coupling we are able to include in the inversion methods. We
can include all the mode coupling within a spectral segment up to their theoretical
maximum degree in the one-step inversion, whereas splitting function measurements
may have to be cut off at a lower degree due to robustness issues for higher degrees.
Our models share the characteristic of SP12RTS of a dominant degree two structure,
both in vs and vp, representing cold and fast subducting slabs in the upper mantle
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Figure 4.10: Same as Fig. 4.9, showing a different cross-section through the African LLSVP.

and representing LLSVPs (or LLVPs) in the lowermost mantle. The lack of power
in the uppermost and lowermost mantle in our models compared to SP12RTS is due
to the lack of surface waves and core-diffracted body waves.

These prominent differences in model amplitude between the one- and two-step
models on one hand, and the SP12RTS models on the other hand, are also expressed
in the root-mean square (RMS) amplitudes of all the models (Fig. 4.12a). The RMS
amplitudes of all vs models and all vp models are similar in the depth range 400-
2200km, and deviate in the uppermost and lowermost mantle. The one-step and
two-step models peak in RMS amplitude around 2600km and then decrease again
towards the CMB, while the RMS amplitudes of SP12RTS steadily increase until
the CMB.

As we have seen in the depth slices through the models, there is less agreement
among the vp models than the vs models, also shown in the cross-correlation profiles
(Fig. 4.12b,c). An interesting observation is the drop in cross-correlation around
1250km between the one-step vp model and the other vp models which are all made
with a two-step splitting function inversion (Fig. 4.12c). It coincides with a drop in
cross-correlation between the one-step vs and vp models (Fig. 4.12d) and a decrease
in degree-2 spectral power in the one-step vp model (Fig. 4.11). The decrease in
vs-vp cross-correlation for the normal mode dominated inversions (one-step, two-
step, SP12RTS-modes) near the CMB is another noteworthy feature (Fig. 4.12d).
We need to be careful when interpreting RS/P at these depths, since R-RMS loses
its meaning when vs and vp are poorly correlated. However, a drop in correlation
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Figure 4.11: Power spectra per spherical harmonic degree for a-d) the four δlnvs and e-h) four
δlnvp models shown in Figs. 4.7-4.8.
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Figure 4.12: a) Root mean square (RMS) amplitudes of the models shown in Figs. 4.7-4.8; b)
Normalized cross-correlation coefficients of all combinations of all the vs models; c) and of all the
vp models; d) and between the vs and vp models of all inversions. (SP12 = SP12RTS, SP12m =
SP12RTS dominated by modes).

between vs and vp in itself could hint towards chemical heterogeneity, since they
should be well-correlated in a thermally dominated mantle.
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4.3.3. 1D RS/P
We have computed R-median and R-RMS as described in section 4.2 for the one-step
models, two-step models and both SP12RTS models (Fig. 4.13). For comparison,
the mineral physics prediction for a thermally dominated (isochemical) lower mantle,
computed by Karato & Karki (2001), is also shown to serve as an upper limit for the
isochemical case (blue line in Fig. 4.13). The general trends for the R-median profiles
with thresholds 0.01 (Fig. 4.13a) and 0.1 (Fig. 4.13b) are similar in the upper
mantle and transition zone, but start to deviate in the lower mantle. In either case,
R-median only exceeds the mineral physics upper bound for a thermally dominated
mantle in the lower mantle, which is more significant in the two-step inversion. We
will use threshold 0.01 in the remainder of our analysis, since it matches the choice
made in Koelemeijer et al. (2016) and it includes more information.

The R-RMS values for the one-step and two-step models are lower than the
SP12RTS curves, and thereby closer to the mineral physics prediction (Fig. 4.13c).
The high R-RMS in the one-step model around 1250 km should not be compared to
the mineral physics prediction for a thermally dominated mantle, as the correlation
between δlnvs and δlnvp is low (Robertson & Woodhouse (1996); Fig. 4.12d), as
mentioned before. The decrease in RS/P near the CMB is a striking feature in both
the one-step and two-step models. It was believed that the decrease in RS/P was
caused by the lowest spline being effectively only half a spline, but we still observe
the decrease in boxcar models with a thin lowermost layer (100 km). Furthermore,
Koelemeijer et al. (2016) had already proven it to be a robust feature of their model,
due to the incorporation of CMB Stoneley modes.
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Figure 4.13: a) RS/P based on taking the median value per depth, only including points where
|δlnvs| > 0.01 and |δlnvp| > 0.01, and b) only including points where |δlnvs| > 0.1 and |δlnvp| >
0.1; c) RS/P based on the RMS amplitudes of the vs and vp models. The blue line represents mineral
physics predictions for a thermally dominated (isochemical) lower mantle, including anelasticity
(Karato & Karki, 2001).
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Figure 4.14: Distribution of RS/P versus depth, obtained by point-by-point division of one-step
δlnvs by δlnvp on a 5x5°grid at 57 depths in the mantle. The median with threshold 0.01 is
represented by the blue curve. Distributions of b) δlnvs and c) δlnvp.
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Figure 4.15: Distribution of RS/P versus depth, obtained by point-by-point division of two-step
δlnvs by δlnvp on a 5x5°grid at 57 depths in the mantle. The median with threshold 0.01 is
represented by the blue curve. Distributions of b) δlnvs and c) δlnvp.

4.3.4. Distributions of RS/P, vs and vp anomalies
We will now look at the distributions of RS/P and the anomalies of vs and vp with
depth, from points on a 5x5°equidistant grid. It gives a more complete view of the
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model characteristics than a 1D representative, and helps explaining the features
that we see in R-RMS and R-median.

We observe a wide spread in the one-step RS/P values around 1100-1400 km
depth with low median values, caused by the relatively large amount of negative
ratios compared to other depths (Fig. 4.14a). At this depth we already encountered
a drop in S-P cross-correlation (Fig. 4.12d) and a peak in R-RMS (Fig. 4.13c). The
vp distribution is concentrated around zero in this depth range (Fig. 4.14c), reflected
by a dip in RMS amplitude for the one-step vp model (Fig. 4.12a) primarily due to
degree 2 (Fig. 4.11e), whereas the vs distribution is more wide-spread (Fig. 4.14b).
This difference results in a relatively higher RMS amplitude for vs than vp, causing
a peak in R-RMS (Fig. 4.13c), resulting in larger amplitudes in vs relative to vp.
The drop in S-P correlation is probably related to the large amount of negative
RS/P values in the distribution, implying that δlnvs is often positive where δlnvp is
negative, and vice versa. These features are absent in the two-step histograms (Fig.
4.14).

In the two-step distribution of RS/P we see a wide spread around 200-670 km
depth in the upper mantle and transition zone (Fig. 4.15a), with a high R-median
(Fig. 4.13a) and an exceptionally high R-RMS (Fig. 4.13c). This feature is caused
by the large spread in δlnvs compared to the spread in δlnvp (Fig. 4.15b). We see
similar features in the one-step model, but less extreme.

Around 2600 km both the one-step and two-step distributions are character-
ized by a large spread in δlnvs, resulting in high RMS amplitudes of the vs model
compared to vp, hence a high R-RMS. The combination of a wide-spread δlnvs dis-
tribution and high correlation between the vs and vp models at these depths (Fig.
4.12d) results in a high R-median, as grid points with negative δlnvs and δlnvp
would give a positive contribution to the distribution of RS/P. The same holds for
two positive velocity anomalies.

Both the one- and two-step velocity distributions converge towards zero near the
CMB, which is also where the R-RMS and R-median drop to about 1, reflecting the
similar amplitude range of the two velocities (Figs. 4.14b,c and 4.15b,c). However,
as the S-P correlation drops to zero at this depth (Fig. 4.12d), we should not use
R-RMS to make interpretations.

4.4. Results for S-Φ correlation
4.4.1. Synthetic tests
First, we perform the one-step inversion with synthetic spectra and the two-step
inversion with synthetic splitting function coefficients to get an idea of the sensitivity
of our normal mode data set to bulk sound velocity. The three scenarios for the
input bulk sound velocity of the synthetic data calculations are:

i) δlnvφ correlated to δlnvs with factor 0.3;
ii) δlnvφ anti-correlated to δlnvs with factor -0.3;
iii) no 3D variations, i.e. δlnvφ = 0

The δlnvs models are the same in all three scenarios, and density perturbations are
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scaled to δlnvs with factor 0.3. The radial parameterization is set to 7 B-splines. If
bulk-sound velocity is well-resolved, output models resulting from the inversions will
look very similar to the input models. Scenario iii) is especially enlightening, since
any non-zero output 3D vφ is not constrained by the data, and hence an artefact of
the inversion method. We will call it the “ghost pattern”, as it was not present in
the original input synthetic models.

The synthetic inversion results for the one-step inversion (Fig. 4.16) show that it
seems to be easier to retrieve a positive S-Φ correlation, since all the depth slices of
the scenario (i) input model (Fig. 4.16a) correspond very well with the output model
(Fig. 4.16c). The recovered bulk sound model for the S-Φ anti-correlation input
(Fig. 4.16d) shows less resemblance to the scenario (ii) input bulk sound model (Fig.
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Figure 4.16: One-step synthetic inversion results, showing input vφ models for synthetic spectra
(to serve as observed data for the synthetic inversion) for a) positive correlation between δlnvs and
δlnvφ; b) negative correlation between δlnvs and δlnvφ. Output vφ models after one-step inversion
for c) input model a); d) input model b); e) input model of zero 3D vφ, which makes this the ghost
pattern.
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4.16b). The differences between the input and output bulk sound models seem to
be captured by the ghost pattern model (Fig. 4.16e) of scenario (iii) which looks
like δlnvφ correlated to δlnvs. When interpreting the S-Φ correlations of real data
inversions, we need to keep the ghost pattern in mind.

The synthetic two-step inversion results (Fig. 4.17) show a very dominant ghost
pattern in the upper mantle, very similar in pattern to vs structure, and slightly less
dominant ghost pattern in the lowermost mantle, also very similar to vs structure.
These dominant ghost vφ structures result in the output model for the S-Φ anti-
correlation input models not being able to recover the input model. The one-step
inversion is able to recover the high bulk sound velocity in the LLSVPs in the
lowermost mantle, since the ghost pattern is smaller in amplitude (Fig. 4.16e).
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Figure 4.17: Two-step synthetic inversion results, showing input vφ models for synthetic spectra
(to serve as observed data for the synthetic inversion) for a) positive correlation between δlnvs and
δlnvφ; b) negative correlation between δlnvs and δlnvφ. Output vφ models after two-step inversion
for c) input model a); d) input model b); e) input model of zero 3D vφ, which makes this the ghost
pattern.
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The two-step ghost pattern (Fig. 4.17e) is anti-correlated to vs in the mid-mantle,
in contrast to the one-step inversion ghost pattern which is correlated to vs. The
recovered bulk sound velocity model for an input S-Φ anti-correlation (Fig. 4.17d)
therefore fits the input model better in the mid-mantle, and the recovered model
for input S-Φ correlation (Fig. 4.17c) fits the input model better for the upper and
lowermost mantle.

4.4.2. Real data inversion for vs and vφ
Next, we perform joint vs + vφ one-step and two-step real data inversions using
the same modes as for the joint vs + vp inversions. Similar to the 21-splines one-
and two-step vs models, the one- and two-step 7 B-splines vs models display mi-
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Figure 4.18: S-wave velocity and bulk sound velocity models for real data inversions. a) vs and b)
vφ models for the one-step inversion, and c) vs and d) vφ models for the two-step inversion.
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Figure 4.19: a) S-Φ correlations for the one-step (red) and two-step (black) models; b) RMS
amplitudes of ghost vφ for the one- (red) and two-step (black) synthetic inversions compared to the
RMS amplitudes of vφ of the one- (red dashed) and two-step (grey dashed) real data inversions;
c) cross-correlation between ghost vφ and observed vφ for the one- (red) and two-step (black)
inversions; d) cross-correlation between observed δlnvs models and the ghost vφ (1step=one-step
inversion, 2step=two-step inversion).

nor differences in their patterns, most noticeably in the mid-lower mantle (Fig.
4.18a,c). The vφ anomalies are characterized by two low bulk sound velocity regions
throughout most of the mantle, one underneath Africa and one in the Pacific Ocean,
roughly corresponding with the LLSVP locations (Fig. 4.18b,d). The uppermost
and lowermost depth slices are the exceptions. In the uppermost mantle we find
bulk sound velocity patterns partly coinciding with shear-wave velocity patterns at
those depths, and more pronounced differences between one- and two-step vφ. At
first glance, the lowermost mantle does not show clear S-Φ correlations and again,
significant differences between the one- and two-step vφ models. Amplitudes of vφ
anomalies are at least three times smaller than vs anomalies, which could reflect
true mantle properties, or the limited bulk sound sensitivity of normal modes. The
spectral misfit of the one-step models (0.51) is lower than for the two-step models
(0.53) for the same number of effective eigenvalues.

The S-Φ correlations for the one-step and two-step models reproduce the gen-
eral trend of more positive correlation in the upper mantle, moving towards more
negative correlation in the lower mantle (Fig. 4.19a). The two-step correlation en-
ters negative correlation values, up to -0.2, in the lowermost mantle, whereas the
one-step correlation always stays positive, with a drop in the mid-mantle towards
de-correlation. Our cross-correlations are thereby on the more positive side of the
spectrum of cross-correlations found by other studies (Fig. 4.2). The differences
between the one-step and two-step S-Φ correlations are not due to the vs models,
as their cross-correlation exceeds 0.91 throughout the mantle.

How do the observed bulk sound velocity models relate to the ghost bulk sound
pattern found in the previous section? In terms of RMS amplitude, the two-step
ghost pattern exceeds the one-step ghost pattern while also exceeding the RMS
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amplitudes of the observed real data two-step vφ model in the upper mantle and
lowermost mantle (Fig. 4.19b). The dominance of the ghost pattern in the two-step
inversion may explain the observed significant differences in vφ patterns between
the two inversion methods at these depths. The one-step ghost RMS amplitudes
also increase in the upper mantle and lowermost mantle, but not to the point of
exceeding the observed vφ amplitudes from our real data inversion.

Correlations between observed vφ and ghost vφ (Fig. 4.19c) and between ob-
served vs and ghost vφ anomalies (Fig. 4.19d) are high in the upper mantle for both
inversion methods. This could mean that the ghost pattern, caused by leakage of vs
structure, dominates the observed bulk sound velocity model, which is more likely
in the two-step inversion because of the high RMS amplitudes of the ghost pattern.
Another likely scenario is that the true 3D bulk sound velocity happens to be highly
correlated to 3D vs structure. Correlation between observed vs and ghost vφ anoma-
lies is also high in the lowermost mantle, but corresponds to de-correlation between
observed vφ and ghost vφ in the two-step model and slightly positive correlation in
the one-step model.

4.4.3. Effect of a vφ starting model
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Figure 4.20: a) RMS amplitudes of the vφ models started from correlation (0.3δlnvs), anti-
correlation (-0.3δlnvs) and PREM, for the one- and two-step inversions; b) cross-correlations be-
tween the vφ starting model (scaled to δlnvs by 0.3 and -0.3) and resulting model for the one- and
two-step inversion; c) cross-correlations between the vφ output model for (anti-)correlated starting
model and the vφ observed when starting from PREM.

We examine the effect of a non-zero starting model for bulk sound velocity by
starting our real data inversions from a vφ model positively correlated to δlnvs
by factor 0.3 and negatively correlated to δlnvs by factor -0.3. The effect of the
starting model is minimal in the mid-mantle, reflected by high correlation coefficients
between models started from (anti-)correlation and from PREM (Fig. 4.20c). Both
the one-step and two-step inversions have very similar bulk sound patterns in the
mid-mantle regardless of their starting model (Figs. 4.21, 4.22). The vφ model



4

92 4. Constraints on vs, vp, their ratio and S-Φ correlation

200 km
± 0.3%

500 km
± 0.3%

800 km
± 0.3%

1200 km
± 0.3%

2000 km
± 0.3%

2800 km
± 0.3%

0slow fast

Vφ variation from 1D

a) Start (0.3) b) Start (-0.3) c) End (0.3) d) End (-0.3) e) End (PREM)

Figure 4.21: Bulk sound velocity models for different starting models in the one-step inversion. a)
Starting model scaled to δlnvs by factor 0.3, b) starting model scaled to δlnvs by factor -0.3, c)
resulting vφ model for correlated starting model, d) resulting vφ model for anti-correlated starting
model. The resulting vφ models can be compared to e) the observed vφ started from PREM.

started from positive correlation does a better job at matching the model started
from PREM at all depths, but the model started from anti-correlation has a harder
time moving away from its starting point in the lowermost mantle and primarily in
the uppermost mantle. This is reflected in their RMS amplitudes being lower than
for models started from PREM and positive correlation (Fig. 4.20a), and by the
low correlation coefficients between these models started from anti-correlation and
from PREM (Fig. 4.20c). In terms of spectral misfit, all one-step models end up
with the same misfit (0.51) and all the two-step models as well (0.53), implying that
the differences in the upper mantle and lowermost mantle do not significantly affect
the spectra. So again, we see that vφ in the upper mantle and lowermost mantle is
the least well-constrained by normal mode data, and thereby might constitute the
model null space.
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Figure 4.22: Bulk sound velocity models for different starting models in the two-step inversion. a)
Starting model scaled to δlnvs by factor 0.3, b) starting model scaled to δlnvs by factor -0.3, c)
resulting vφ model for correlated starting model, d) resulting vφ model for anti-correlated starting
model. The resulting vφ models can be compared to e) the observed vφ started from PREM.

4.4.4. Extracting bulk sound from S-wave and P-wave velocity
Instead of inverting for vs and vφ heterogeneity directly, some previous studies have
extracted vφ from inversions for vs and vp heterogeneity. Hence we also tried to
construct models of bulk sound velocity from our shear- and compressional wave
velocity models, using eq. 4.1. We use the δlnvs and δlnvp models obtained pre-
viously in this chapter for the one- and two-step inversions to create bulk sound
models and compare them to bulk sound extracted from model SP12RTS (Koele-
meijer et al., 2016). We should be careful in interpreting any small-scale anomalies
that are artefacts of subtracting two distinct 3D fields, i.e. δlnvs and δlnvp, so in-
stead of interpreting models including all degrees up to 12 (Fig. B3), we henceforth
ignore all degrees higher than 6 (Fig. 4.23).

The extracted bulk sound velocity models look very similar for the one- and two-
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Figure 4.23: Models of δlnvφ obtained from δlnvs and δlnvp models using eq. 4.1 for a) the one-step
inversion, b) two-step inversion, c) even degrees of SP12RTS (Koelemeijer et al., 2016), all cut off
at maximum degree 6.

step vs + vp inversions (Fig. 4.23a,b), but do not agree well with 3D bulk sound
velocity extracted from SP12RTS, especially in the uppermost and lowermost depth
slice (Fig. 4.23c). The S-Φ correlations extracted from the joint vs + vp inversions
(Fig. 4.24b) behave markedly different to those determined from the joint vs + vφ
inversions (Fig. 4.24a). The S-Φ correlation for which δlnvφ was extracted from
δlnvs and δlnvp now shows clear anti-correlation in the lower mantle and upper
mantle, and in the one-step case also in the mid-mantle, agreeing more with the
general trend in the correlation derived from SP12RTS (Fig. 4.24b). To see how
much of the differences between these two ways of computing correlation can be
explained by the extraction of vφ anomalies and how much comes from the more
detailed parameterization, we show the S-Φ correlation for δlnvφ extracted from a
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joint vs + vp 7 B-splines inversion (Fig. 4.24c). In this case the S-Φ correlation is
oscillating around zero for both the one-step and two-step profiles, similar to the 21-
splines case, but with less extreme maxima and minima, especially for the one-step
correlation function. The more oscillatory nature of the 21-splines case can therefore
be attributed to the more detailed radial parameterization of 21 splines, instead to
the use of 7 B-splines. Thus, the shift in general trend towards more negative values
with respect to the correlations directly inferred from vs + vφ inversions may be
explained by the different way of obtaining the correlation.
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Figure 4.24: a) S-Φ correlations for the one-step (red) and two-step (black) models from the joint vs
+ vφ inversions; b) S-Φ correlations for observed vs from the joint vs + vp 21 splines inversion and
vφ extracted from these vs and vp models, for the one-step (red) and two-step (black) inversions,
compared the S-Φ correlation extracted from the even degrees of SP12RTS, all cut off at maximum
degree 6; c) same as b) but for a joint vs + vp inversion for 7 B-splines.

4.5. Discussion
4.5.1. RS/P as indicator of chemical heterogeneity
Cross-sections through our one-step and two-step vs and vp models show that low
velocity anomalies are horizontally deflected at several depths in the mid-mantle,
such as around 670 and 1000 kilometres depth. If LLSVPs are structures from
which mantle plumes originate, plumes appear to be ponding at various depths
in the mid-mantle. We lack resolution to image separate mantle plumes, so they
would appear more smeared here. In a high resolution tomographic model, French
& Romanowicz (2015) did seem to image individual mantle plume conduits, which
were also horizontally deflected, interpreted as ponding due to viscosity contrasts,
inferred by geoid analysis (Rudolph et al., 2015).

We have seen that both the choices in inversion method and in representation
of RS/P could result in different thermochemical or mineralogical interpretations.
Based on R-RMS, we confirm high RS/P values in the lower mantle (∼ 2600 km)
exceeding the purely thermal mineral physics prediction, found by many others,
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although we find less extreme values than for example SP12RTS. The main difference
between the two inversion methods is the 1100-1400 km depth range, where S-P
correlation drops in the one-step inversion, but not in the two-step inversion. This
drop is associated with low degree-2 spectral power in vp, high R-RMS and low
R-median in the one-step model.

If we would base our interpretations on the 1D R-median only, chemical hetero-
geneity would not be required in the lower mantle, as we do not exceed or barely
exceed the mineral physics prediction for a thermally dominated mantle. When in-
ferring the state of the lower mantle from R-RMS only, we conclude that there could
be a degree of chemical heterogeneity, but less than predicted by Koelemeijer et al.
(2016), with the exception of 1100-1400 km for the one-step inversion. However,
when looking at the distributions of RS/P and the velocities, we arrive at different
interpretations.

By using a 1D representative of 3D RS/P, we lose information on its spatial
distribution. However, when we want to compare our observations to mineral physics
predictions, such as the 1D curve by Karato & Karki (2001), we need to use a 1D
RS/P. In that case, R-median is a better 1D representation of the full range of
RS/P values at a certain depth, since negative ratios are also included. The question
remains which method is best to compare 1D RS/P from mineral physics predictions
to 1D RS/P extracted from seismic tomographic models?

The approach of using a 1D representative of RS/P, as most studies have done
before, gives at best a qualitative indication of the presence of chemical heterogene-
ity. 3D distributions of RS/P lead to non-unique interpretations for the source of
the heterogeneity, as any linear combination of sources could fit the observed dis-
tributions (Deschamps & Trampert, 2003). So for quantitative constraints, we need
to look at histograms of RS/P and S- and P-wave velocities in conjunction (De-
schamps & Trampert, 2003; Cobden et al., 2012). This statement has been debated
by Tesoniero et al. (2016), who claim that even if we look at the 3D distributions of
RS/P, δlnvs and δlnvp, the width of histograms and the high values of 1D RS/P in
the lower mantle can be replicated in synthetic tests with random noise. They warn
against overinterpretation of seismic S- and P-wave velocity models, since model
features that are not strictly required by the data should not be interpreted.

Studies by Tesoniero et al. (2016) and Koelemeijer et al. (2018) argue that ob-
servations of RS/P based on body-wave ray theory (e.g. Su & Dziewonski, 1997;
Della Mora et al., 2011) cannot be used to distinguish between thermal and chemi-
cal variations, due to finite-frequency effects. Other studies attribute the high RS/P
to wavefront healing in traveling waves, instead of compositional heterogeneity (e.g.
Davies et al., 2012). Body waves suffer the most from these effects. Surface waves
are affected less, and we do not have to worry about these effects in this normal
mode study.

4.5.2. (Anti-)correlation between vs and vφ anomalies
According to our synthetic inversions and starting model tests, we cannot confi-
dently constrain upper mantle bulk sound velocity with our current normal mode
data set in both the one-step and two-step inversions. The lowermost mantle is also
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plagued by starting model dependency and high-amplitude ghost patterns, but less
severely in the one-step inversion. The one-step inversion provides novel constraints
on bulk sound velocity anomalies and their (anti-)correlation with shear wave ve-
locity anomalies, since these parameters have never been studied before using this
inversion technique. Interestingly, we do not observe a clear anti-correlation in the
lower mantle, especially in the one-step inversion where the correlation is positive
in the entire mantle. This observation may be related to the relatively low R-RMS
values, for the one-step vs + vp inversion especially, compared to e.g. SP12RTS,
not requiring a S-Φ anti-correlation.

As bulk sound velocities appear to be smaller in amplitude than the other ve-
locities in the mantle (e.g. Kennett et al., 1998), determining correlations becomes
tricky, possibly contributing to the large range of S-Φ correlations from previous
studies (Fig. 4.2). Furthermore, we show that S-Φ correlations depend first and
foremost on the way of computing the correlation, either i) through a direct in-
version for vs and vφ heterogeneity, or ii) by extracting vφ from an inversion for
vs and vp heterogeneity, using the relation of eq. 4.1. The latter results here in
more negative correlation values overall. This observation alone cannot explain the
large spread in S-Φ correlations from previous studies (Fig. 4.2), as there is no
clear distinction between correlations based on a joint vs + vφ inversion and those
based on a joint vs + vp inversion. Secondly, the radial parameterization may have
a large impact on the amplitudes of extrema in cross-correlation profiles, affecting
the thermochemical interpretations attached to it.

We find more positive S-Φ correlations and less extreme R-RMS values than
SP12RTS (Koelemeijer et al., 2016). These characteristics of SP12RTS were in-
terpreted in a follow-up geodynamics study to indicate the wide-spread presence
of post-perovskite in the lowermost mantle, even within the LLSVPs (Koelemeijer
et al., 2018). Our observations do not require such an abundance of post-perovskite
to explain them, but we cannot entirely rule out the presence of post-perovskite in
the lowermost mantle either.

4.6. Conclusion
We confirm what previous studies inferred on the thermochemical state of the lower
mantle, solely based on R-RMS values that exceed mineral physics predictions for a
thermally dominated lower mantle, except for a decrease towards the CMB. We ob-
serve lower R-RMS values than for example SP12RTS, which coincides with slightly
positive (one-step) or slightly negative (two-step) S-Φ correlation. Based on the
spread of vs, vp and RS/P and on the 1D R-RMS, we arrive at the conclusion that
our results cannot be explained by purely thermal variations only, and that the role
of post-perovskite is not dominant. However, when looking at the 1D R-median
only, we could also say that we do not require chemical heterogeneity, since R-
median barely exceeds the mineral physics prediction for a thermally dominated
mantle, except maybe around 2600 km. The 1D representation of the ratio between
vs and vp has been criticized in the past (Deschamps & Trampert, 2003; Tesoniero
et al., 2016; Koelemeijer et al., 2018), so we focus on the distributions of vs and vp
anomalies and RS/P.
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Both the one-step and two-step models show a large spread in vs anomalies in
the lower mantle, coinciding with the depth range of high R-RMS values. The wide
spread of RS/P and a de-correlation between vs and vp structure in the depth range
1100-1400 km in the one-step models are also a sign of the presence of chemical
heterogeneity, whereas we infer chemical heterogeneity around 200-670 km depth
in the two-step inversion, based on the wide spread of vs anomalies and RS/P. We
therefore arrive at different thermochemical interpretations between the one- and
two-step inversions for 200-670 km and 1100-1400 km based on these distributions
and correlation between δlnvs and δlnvp, so the inversion method matters for the
interpretation. The inversion method matters more than for a vs-only inversion
performed in the previous chapter, but the one-step models still fit the spectra
better than the two-step models.

Patterns in 3D vφ agree well between the one- and two-step vs + vφ inversions
throughout most of the mantle, showing regions of low bulk sound velocity under-
neath the Pacific Ocean and Africa. The upper mantle and lowermost mantle vφ
structure suffers from starting model dependency and large ghost patterns highly
correlated with vs structure in vs + vφ inversions. The one-step inversion is less
affected and more robust, but we still cannot draw any definitive conclusions on the
sign of the S-Φ correlations in these depth ranges. We do not find anti-correlation
in the rest of the mantle for vs + vφ inversions, except slightly negative correlations
for the two-step models around 2500 km. The correlation shifts towards more neg-
ative values when δlnvφ is extracted from δlnvs and δlnvp, and the extrema become
more pronounced when the radial parameterization becomes more detailed, i.e. 7
B-splines to 21 splines.

We have seen that the robustness of using RS/P and S-Φ correlation for qualita-
tive estimates of chemical heterogeneity has been debated. We will therefore direct
our modelling efforts towards density variations (e.g. Deschamps & Trampert, 2003)
in Chapter 5.



B1. Appendix B

4

99

B1. Appendix B

Figure B1: Distribution of RS/P versus depth, obtained by point-by-point division of SP12RTS’
δlnvs by δlnvp on a 5x5°grid at 57 depths in the mantle. The median with threshold 0.01 is
represented by the blue curve. Distributions of b) δlnvs and c) δlnvp.
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Figure B2: Distribution of RS/P versus depth, obtained by point-by-point division of SP12RTS-
modes’ δlnvs by δlnvp on a 5x5°grid at 57 depths in the mantle. The median with threshold 0.01
is represented by the blue curve. Distributions of b) δlnvs and c) δlnvp.
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Figure B3: Models of δlnvφ obtained from δlnvs and δlnvp models using eq. 4.1 for a) the one-step
inversion, b) two-step inversion, c) even degrees of SP12RTS (Koelemeijer et al., 2016).
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New normal mode

observations of 3D lower
mantle density

Density differences drive mantle convection. Thus, knowlegde of 3D variations in
density is crucial in distinguishing between a thermal or thermochemical nature of
the lower mantle LLSVPs, as this parameter differentiates between buoyant thermal
structures and dense stable thermochemical piles. However, there are contradict-
ing direct and indirect observations of lower mantle density variations, with some
studies suggesting light LLSVPs and others finding them to be dense. We study
mantle density using normal modes, the only seismic data sensitive to lower man-
tle density, performing both the one-step direct spectrum inversion and two-step
splitting function inversion. We invert for 3D vs, vp, ρ and topography on the
400- 670- and CMB-discontinuities jointly. The LLSVPs appear as light structures,
with a partly dense base, which is more pronounced in the one-step inversion. This
observation may reconcile seemingly conflicting past observations. By performing
synthetic tests, we show that density does not suffer from velocity structure contam-
ination to the same extent as in Kuo & Romanowicz (2002), and is thus robust. The
presence of excess density at the base of LLSVPs depends on the choice of starting
model for the two-step inversion, whereas it only affects the extent of this sliver in
the one-step inversion. Regions where the 400-discontinuity is shallow match well
with dense structures, and vice versa, which is expected for the olivine to wadsleyite
phase transition occurring there. The 670-discontinuity topography does not match
as well to the density structure, indicating its complex nature. Light parts of the
LLSVPs cover shallow parts of the CMB and vice versa, which appears to be due
to isostatic compensation.
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5.1. Introduction
Whereas tomographic models of lower mantle S-wave velocity structures, and to a
lesser extent of P-wave velocity structures, are relatively similar (Cottaar & Lekic,
2016; Shephard et al., 2017), the lower mantle density distribution has been a topic
of debate for decades. Density contrasts create positive buoyancy for light structures
that evolve into upwelings and negative buoyancy for dense structures, making them
sink into the mantle. In other words, density drives viscous mantle flow. The density
field, combined with a viscosity profile, therefore needs to be known in order for
geodynamicists to make mantle flow calculations. This dependence of mantle flow on
density makes density a very important link between seismology and geodynamics.

Density heterogeneity plays an especially important role in determining the na-
ture of Large Low Shear-wave Velocity Provinces (LLSVPs) in the lower mantle. If
their density is predominantly low, they will be thermal structures, because density
is correlated to velocity in a purely thermal mantle. However, if their density is
predominantly high, thereby not correlated or even anti-correlated to velocity, they
must be thermochemical structures that have remained stable throughout most of
the Earth’s history and possibly contain primordial material.

Tomographic models of density have mostly been constructed using normal
modes, since body waves do not carry direct information on density, and surface
waves are only sensitive to the top couple of hundred kilometres of the mantle.
Therefore, normal modes are the only seismic data sensitive to the lower mantle
density distribution, because of the important role of the gravitational restoring
force for these long-period waves.

Gravity data has also been used in measuring density, often in combination with
seismic data (e.g. Ishii & Tromp, 1999, 2001) and other geodynamic constraints (e.g.
Forte & Mitrovica, 2001; Simmons et al., 2010; Lu et al., 2020), such as plate motions
and (dynamic) topography. Studies that invert seismic and geodynamic data in a
joint manner, need a viscosity profile and have employed a scaled relation between
vs and density to linearize the inversion. In this way, 3D density is assumed to be
scaled to 3D vs with a depth-dependent (e.g. Forte & Mitrovica, 2001) or constant
scaling factor (Hager et al., 1985), and geodynamic constraints can be successfully
explained by a thermally dominated mantle and light LLSVPs. On the other hand,
studies that did not have these prior assumptions, or expanded upon the purely
thermal case by allowing the vs-ρ scaling to vary laterally, infer the presence of
significant chemical heterogeneity in the lower mantle (e.g. Simmons et al., 2010;
Mosca et al., 2012; Lu et al., 2020). A complicating factor when fitting geodynamic
data is the need for a radial viscosity model, which is not well-constrained at all
(e.g. Rudolph et al., 2020). A viscosity profile can be chosen in such a way that it
would fit the geodynamic data for a given velocity and density model.

Most lower mantle density models that were derived from seismic data agree with
(partly) dense LLSVPs (Fig. 5.1). By performing a two-step splitting function inver-
sion using the then available normal mode data set of 58 spheroidal and 31 toroidal
modes (including some cross-coupled modes), and the free-air gravity anomaly, Ishii
& Tromp (1999) determined the LLSVPs to be denser than average (Fig. 5.1a).
Their density starting model was correlated to a S-wave velocity model, with factor
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0.2, and Ishii & Tromp (1999) claim that their inversion is only weakly dependent on
the density starting model. A probabilistic normal mode approach by Mosca et al.
(2012) found partly light, partly dense LLSVPs (Fig. 5.1b), possibly due to chemical
variations in iron content. Resovsky & Trampert (2003) and Trampert et al. (2004)
also inferred chemically distinct dense LLSVPs, in earlier probabilistic tomographic
studies using normal mode data. In the seismic tomographic model of Moulik &
Ekström (2016), in which surface waves, body waves and normal modes are inverted
for vs, vp and ρ, we once again encounter denser-than-average anomalies, partially
coinciding with the LLSVPs (Fig. 5.1c).

Figure 5.1: Density models by a) Ishii & Tromp (1999) at 2850 km depth, b) Mosca et al. (2012)
at 2891 km depth, c) Moulik & Ekström (2016) at 2800 km depth, d) Lau et al. (2017) in a layer
from 2541 to 2891 km depth, e) Koelemeijer et al. (2017) in the lowermost mantle, and f) Lu et al.
(2020), representing the average density for five different viscosity models in a layer from 2650 to
2891 km depth. Note the flipped colourscale in d) where red means excess density, instead of blue.

More recently, two seemingly contradicting observations of LLSVP density were
published in the same year. Lau et al. (2017) demonstrated in a probabilistic study
that the Earth’s tides prefer the lowermost two-thirds of the LLSVPs to be denser
than average (Fig. 5.1d), although the excess density could also be concentrated
in the very base of the LLSVPs. On the other hand, a model space search by
Koelemeijer et al. (2017) showed that core-mantle boundary (CMB) Stoneley modes
prefer overall lighter LLSVPs (Fig. 5.1e), although, again, a dense 100 km basal
layer could not be ruled out. A dense basal layer in the center of both LLSVPs was
subsequently found by Lu et al. (2020) (Fig. 5.1f), who performed a joint inversion
of seismic shear-wave velocity measurements and geodynamic data (free-air gravity
anomaly, plate motions, dynamic surface topography and excess CMB ellipticity).
This dense base was interpreted to be of non-thermal origin. A first glimpse of a
dense basal part of the African LLSVP had been observed earlier by Simmons et al.
(2009) (by only including seismic constraints) and Simmons et al. (2010), following
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a very similar inversion procedure.
Most studies discussed above have used normal modes to image density. The

resolvability of density by normal modes has been questioned by a number of studies.
Resovsky & Ritzwoller (1999b) claimed that density was not robust with respect
to prior constraints and damping, noting that density models which de-correlate
from vs at different depths fit the splitting functions of Resovsky & Ritzwoller
(1998) equally well. In test inversions using degree 2 splitting function coefficients,
Romanowicz (2001) showed that the correlation between density and S-wave velocity
anomalies was poorly constrained by the data. Kuo & Romanowicz (2002) found
significant leakage of vs and vp structures into density by looking at the resolution
matrix of a synthetic one-step inversion for these three parameters in the mantle.
They also performed a direct spectrum (i.e. one-step) inversion of synthetic data
with non-zero 3D vs and vp variations and zero 3D density variations. The output
density model would ideally not have 3D density variations, but unfortunately it
did. For one of the synthetic inversions they even found an output density model
that resembled the one from Ishii & Tromp (1999). A few years later Ishii & Tromp
(2004) performed a synthetic two-step splitting function inversion with a five times
larger data set, and found the opposite, with almost no contamination of velocity
into density. We currently have even more normal mode data, and we will perform
a similar synthetic test as Kuo & Romanowicz (2002) to see who we agree with.

Having more data does not solve the potential problem of the density signal pos-
sibly being of similar magnitude as commonly made mode coupling approximations
in computing synthetic spectra, and as errors in splitting functions (Akbarashrafi
et al., 2018). However, Moulik & Ekström (2016) note that their density model
(with partially dense LLSVPs; Fig. 5.1c) significantly improved the fit of mode 0S2
in particular, a low-frequency mode which is less affected by coupling approxima-
tions. Furthermore, our aim is to actually not use splitting functions, but instead
direct spectrum inversion, where cross-coupling is more easily included.

Taking the topography of Earth’s internal boundaries into account becomes im-
portant when inverting for density heterogeneity. Lowermost mantle density trades
off with CMB topography in normal mode studies (e.g. Romanowicz, 2001; Koele-
meijer et al., 2017), hence it is not surprising that there is quite some disagreement
between global CMB topography models (Fig. 5.2), ranging from elevated topogra-
phy to partly elevated to depressed topography below the LLSVPs. It is beyond the
scope of this thesis to obtain robust discontinuity topography models, but we are
hoping to minimize the density-topography trade-off by including many different
normal modes with many different sensitivities. In addition to CMB topography,
we will also invert for mantle transition zone (MTZ) discontinuity topography at
400 and 670 km depth. The 400-discontinuity is characterized by the phase tran-
sition from olivine to wadsleyite, which has a positive Clapeyron slope. At the
670-discontinuity ringwoodite breaks down to form perovskite and magnesiowüstite,
which has a negative Clapeyron slope (e.g. Ringwood, 1991). This simplified view
would mean that the MTZ is expected to be thin in warm regions and thick in
cold regions. In reality, the nature of the ‘670’ is more complex due to additional
phase transitions in garnet and pyroxene, which may have the opposite effect on its
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Figure 5.2: CMB topography models from three normal mode studies (a,b,d) and one body wave
study (c). Negative values represent depressed areas, and positive values elevated areas. Figure
adapted from Koelemeijer (2021).

topography (Hirose, 2002).
In this chapter, we will invert normal mode spectra for 3D vs, vp, ρ and topogra-

phy on the 400-, 670- and CMB-discontinuities using an extensive normal mode data
set. We will use both the one-step direct spectrum and two-step splitting function
inversion schemes (see Chapter 3) and see whether using the one-step method im-
proves the robustness and resolvability of 3D variations in upper and lower mantle
density.

5.2. Data and methods
Following the procedure in previous chapters, we invert the normal mode spectra
for a 3D mantle tomography model in two ways: i) in a one-step direct spectrum
inversion, and ii) in a two-step splitting function inversion. Details on these two
methods are outlined in Chapter 3, so we will not discuss them any further here.
We use the same normal mode spectra as starting point of both our inversions. In
addition to, or sometimes in replacement of, the spectral segments of Deuss et al.
(2013), we once again use the segments of Koelemeijer et al. (2013) and Koelemei-
jer (2014). We incorporate the same nine core-mantle boundary Stoneley modes
(1S11−14, 2S15−17,25, 3S26) as the model space search by Koelemeijer et al. (2017)
that found preferably lighter LLSVPs. All segments consist of vertical component
data for 93 large events (Mw ≥ 7.4) since 1976. For the two-step approach we use
the spheroidal mode splitting functions obtained by the same three studies, and
only execute the second inversion step in this paper. We exclude spheroidal modes
that are sensitive to the inner core or couple strongly to an inner core mode, since
our focus is on the mantle. However, taking inner core modes into account and
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inverting for inner core anisotropy and density simultaneously could affect lower
mantle density amplitudes (Ishii & Tromp, 2004). The total number of spectral
segments is 118,034, for 88 modes and mode groups in the one-step inversion and
125 self-coupled and 10 cross-coupled splitting functions for the two-step inversion.

We invert for 3D vs, vp, ρ, and topography on the 400-, 670- and CMB dis-
continuities simultaneously. In addition to inverting real data, we also perform a
synthetic test similar to Kuo & Romanowicz (2002), to assess the leakage of vs and
vp structure into density. We created synthetic spectra (for the one-step inversion)
and synthetic splitting functions (for the two-step inversion) using 3D vs, vp and
discontinuity topography models that resulted from the real data inversions. The
input density is the 1D PREM model (Dziewonski & Anderson, 1981), so not includ-
ing any 3D variations. We then invert the synthetic data in the same way as with
real data, and try to recover the input models. Ideally, the recovered density model
should not have any 3D anomalies, but as Kuo & Romanowicz (2002) observed, this
output density will probably have a non-zero ‘ghost’ pattern. If the ghost pattern
resembles the pattern and strength of density anomalies found in a real data in-
version, we need to be very cautious when interpreting those structures. We will
also explore the influence of a density starting model correlated or anti-correlated
to vs structure, with uniform scaling factors 0.3 and -0.3 respectively. In the ideal
case, the resulting density models will move towards the density model started from
PREM.

The models are parameterized up to spherical harmonic degree 6, only even
degrees, laterally, and 7 B-splines radially. We have tried to build density models
using 21 splines as in Chapters 3 and 4, but those inversions did not give robust
results. The size and polarity of the ghost patterns was comparible to density
measured from real data, which had light LLSVPs, contrary to Kuo & Romanowicz
(2002). Furthermore, starting the real data inversions from density anti-correlated
or correlated to vs did not move the density model towards density from the PREM
inversion. These inversions were probably radially overparameterized, so instead of
21 splines, we choose 7 B-splines.

5.3. Results
We invert normal mode data jointly for an S-wave velocity, P-wave velocity and
density mantle model, including discontinuity topography, using the one-step direct
spectrum inversion and the two-step splitting function inversion. We will compare
the resulting models, misfits and other characteristics in detail below. To compare
the results from the one-step inversion (Fig. 5.3) to results from the two-step inver-
sion (Fig. 5.4), we compare models with the same number of effective eigenvalues.
The one-step model has a 1.26 times larger model size than the two-step model for
the same number of effective eigenvalues, which is mainly attributed to the larger
one-step density model.
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Figure 5.3: Depth slices through one-step models of anomalies in a) shear-wave velocity vs, b)
compressional-wave velocity vp, and c) density ρ, with d) discontinuity topography for the 400,
670 and CMB.
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Figure 5.4: Depth slices through two-step models of anomalies in a) shear-wave velocity vs, b)
compressional-wave velocity vp, and c) density ρ, with d) discontinuity topography for the 400,
670 and CMB.
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5.3.1. Misfit
The spectral misfits per mode (Fig. 5.5) show that the one-step inversion performs
slightly better than the two-step inversion in terms of fitting the normal mode
spectra, with a few exceptions. This minor difference is reflected in the average
spectral misfit of the one-step model being 0.47, compared to 0.49 for the two-step
model. We computed spectral misfits for an inversion for vs and vp, with density
scaled to vs by a factor of 0.3, for the same model parameterization (so up to degree
6 and for 7 B-splines), to observe the effect on the misfits of density not being
scaled to vs. We conclude that density generally fits the spectra better if it is not
uniformly scaled to vs with factor 0.3 throughout the mantle, with average spectral
misfits dropping from 0.50 (0.53) to 0.47 (0.49) for the one-step (two-step) inversion.
Discontinuity topography also contributes to the drop in misfit, but only marginally
compared to the density contribution. From the spectral misfit per individual mode
or mode group (Fig. 5.5) we see that misfits for the n = 5 overtones and some
n = 11 overtones are especially improved for a non-scaled density model. On the
other hand, the high angular order fundamentals 0S21−30 (of which some are coupled
to CMB Stoneley modes) do not seem to improve at all.

5.3.2. Model characteristics
We show slices through our one-step (Fig. 5.3) and two-step (Fig. 5.4) models at
representative depths, including the upper and lower bounds of the MTZ, at which
we also show their discontinuity topography. In the S-wave and P-wave velocity
anomaly models we see the slow ridges and fast subduction zones around the Pacific
ocean in the upper mantle of both inversion methods. The density anomalies clearly
do not correlate with the velocity anomalies in the upper mantle and transition zone.
We would expect the subducting slabs to be dense, so correlated to the fast velocity
zones, but the density anomalies only show part of a dense ring around the Pacific.
Similarly, low density anomalies do not follow the rift zones entirely, where density
might be expected to be low due to upwellings. An example of an anti-correlated
region is the Congo craton. In the cross-sections through Africa (Fig. 5.6), we see
that the Congo craton has a fast velocity and light density signature. An example
of a correlated region is the Andes subducted slab at the left-hand edge of the
cross-section profile, which is both dense and fast (Fig. 5.6).

Velocity anomalies become more correlated to density anomalies in the lower
mantle (Fig. 5.7b for one-step and 5.7c for two-step). The bulk of LLSVPs is both
slow and light, which becomes clear in the cross-sections through the velocity and
density models (Fig. 5.6). The large low velocity blobs in the lower mantle seem to
be connected to slow structures in the upper mantle, according to the cross-section
view, both in vs and vp. Only one of these two seemingly plume-like structures (in
the Atlantic ocean) has a light and buoyant signature. The other is interrupted by
a dense structure.

The correlation between velocity and density decreases near the CMB (Fig.
5.7b,c), where the western part of the LLSVPs is denser than average, but still
seismically slow. No matter what velocity contour you choose for defining the edges
of the LLSVPs, there is a sliver of dense material at the western base of the LLSVPs.
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The slowest part of the LLSVPs is centered in the large low velocity blobs, but the
lightest part of the LLSVPs is offset to the East.

Topography on the 400-discontinuity correlates very well to the density anomalies
at that depth, for both inversion methods (Figs. 5.3d, 5.4d). Deep parts of the
discontinuity correspond to light regions, and shallow parts to dense regions, which
might imply that the dense regions are cold and light regions hot. The same level of
correlation between the 670-topography and density is not present, although there
is a hint of dense-deep and light-shallow correlation, opposite to the ‘400’. The

Figure 5.6: Cross-sections through the African LLSVP for the a) one-step vs, b) two-step vs, c)
one-step vp, d) two-step vp, e) one-step ρ, and f) two-step ρ models.
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Figure 5.7: a) Root mean square (RMS) amplitudes of the models shown in Figs. 5.3 and 5.4; b)
Normalized cross-correlation coefficients of all three one-step models; c) and of all three two-step
models; d) and between the one- and two-step vs, vp and ρ models.

pronounced shallow regions of the ‘670’ correspond rougly to high velocity regions.
Topography on the core-mantle boundary is rougly correlated to density structure
at that depth, where uplifted parts correspond to light regions and depressed parts
to dense regions, with the exception of polar areas.

The RMS amplitudes of the vs models are clearly the biggest, but those of vp and
ρ are comparable (Fig. 5.7a). The one-step density model is stronger in amplitude
than the two-step density model and two vp models, reflecting its strong dense and
light basal parts of the LLSVPs. Structure in vs is well-correlated to vp structure
in both inversions (Fig. 5.7b,c), without the drop in correlation at 1500 km that we
saw in Chapter 4. The disappearance of the drop in correlation is due to the new
depth parameterization of 7 B-splines instead of 21 splines, not due to the inclusion
of density and discontinuity topography.

Cross-correlation between velocity and density is not as close to 1.0 as the two
velocities, as we have seen qualitatively in the depth slices and cross-sections. It
goes from nearly no correlation at the top of the mantle, to negative in the transition
zone, towards positive values in the lower mantle, finishing with a drop towards very
little correlation near the CMB. This cross-correlation curve is far removed from the
often made assumption of 3D vs being proportional to 3D density throughout the
mantle.

Preconceived notions of normal mode sensitivity to vs, vp and ρ heterogeneity are
confirmed in the cross-correlations between the one- and two-step models of the same
parameter (Fig. 5.7d), which reflect dependence on the inversion method. Normal
mode sensitivity to S-wave velocity heterogeneity is the biggest of the three param-
eters, and the difference between the one-step and two-step models the smallest.
The next biggest sensitivity is to P-wave velocity structure, for which the similarity
between the two models is the second-highest. Density is least well-constrained by
normal modes, which shows in the one-step vs two-step density cross-correlation
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being the lowest on average. However, apart from the drop in the mid-lower mantle,
the cross-correlation of density is not that much lower than for the velocities.

5.3.3. Synthetic inversions
We next examine the results from the one- and two-step inversions for synthetic
data without 3D density variations. In both the one-step and two-step inversions,
the input S-wave and P-wave velocity models are nearly perfectly recovered, so we
are not going to show them here. Both the one-step and two-step recovered density
models contain non-zero 3D and hence have a ghost pattern, since the input density
model had no 3D variations (Fig. 5.8). At first glance, the amplitudes of the ghost
pattern are much smaller than the amplitudes of the real data density models (Fig.
5.8c,d for comparison), which is confirmed by looking at RMS amplitudes of all four
density models (Fig. 5.9a). The difference in RMS amplitude between the ghosts
and the observed density is biggest at the top and bottom of the mantle, making
these depth ranges least affected by the ghost pattern. Furthermore, the ghost
pattern does not contain a dense sliver with the same lateral extent as observed
in the real data inversion, making the partly dense base of the LLSVPs a more
robust observation. In the mid-mantle, the two-step observed density moves closer
to the ghost pattern, making this region more prone to be contaminated by the
ghost pattern.

The ghost pattern for both inversions has cross-correlation coefficients between
0.4-0.8, with the one-step ghost and real density models having the highest cross-
correlation throughout the mantle (Fig. 5.9b). As the observed real data density are
well-correlated to S- and P-wave velocity anomalies in the lower mantle, the ghost
density is also well-correlated to 3D vs and vp in both inversion methods (Fig. 5.9c).
However, cross-correlation between the ghost pattern and 3D vs and vp drops in the
mid- and upper mantle, even becoming quite negative for the one-step inversion.
Therefore it is not immediately obvious whether the ghost pattern in density is due
to leakage of vs and/or vp structures. In any case, the ghost patterns are generally
small compared to density derived from observed data, and will thus not pose a
problem for interpreting our density models.

5.3.4. Effect of a density starting model
We explore the influence of a density starting model by starting our real data inver-
sions from a density model correlated to the S-wave velocity model, by factor 0.3,
and a density model anti-correlated by factor -0.3. The resulting density models in
the one-step inversion look very similar (Fig. 5.10b,d), so the effect of the start-
ing model seems negligible. Furthermore, both of the density models resulting from
non-zero starting models look very similar to the density model started from PREM
(Fig. 5.10e), and have the same average spectral misfit of 0.47. The dense western
base of the LLSVPs is present in both cases, but its lateral extent varies. The dense
base of the LLSVP expands across the CMB in the anti-correlated starting model
case, compared to the density model started from PREM. In the correlated case,
the dense LLSVP base becomes slightly less widespread.

The two-step inversion shows more dependence on the density starting model.
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The density model started from positive correlation with δlnvs stays close to its
starting model in the upper two slices at 100 and 400 km depth (Fig. 5.11b) and is
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Figure 5.8: Depth slices through the ghost density recovered models from the a) one-step and b)
two-step synthetic inversion, compared to the real data c) one-step and d) two-step inversions for
density.
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dashed) real data inversions; b) cross-correlation between ghost density and observed density for
the one- (red) and two-step (black) inversions; c) cross-correlation between observed δlnvs, δlnvp
models and the ghost density (1=one-step inversion, 2=two-step inversion).

thereby not well-correlated to the density model started from anti-correlation (Fig.
5.11d) or from PREM (Fig. 5.11e). The density model started from anti-correlation
is not able to deviate from its starting position in most of the lower mantle, failing
to produce the light LLSVPs (Fig. 5.11d). It does slightly better in the lowermost
mantle, where we see a more extreme version of the same thing happening as in
the one-step inversion: The lateral extent of the dense base strongly depends on
the starting model. For a correlated starting model, with entirely light LLSVPs,
the LLSVPs do not get a dense base anymore. Conversely, for an anti-correlated
starting model, with entirely dense LLSVPs, the LLSVPs stay mostly dense. In
terms of average spectral misfit, density started from a positive correlation has the
same misfit as density started from PREM, and density started from a negative
correlation has a slightly higher misfit (0.50 compared to 0.49). The presence of a
dense base within part of the LLSVPs is therefore more disputed in the two-step
inversion than in the one-step inversion.

The RMS amplitudes of density models derived from all three starting models
do not show outliers (Fig. 5.12a). An interesting observation is that all the one-
step density models have a larger amplitude near the CMB than their two-step
counterparts. The ability of density models to deviate from their starting model
is quantified by the cross-correlation curves between the starting model and end
result (Fig. 5.12b,c). The cross-correlation curves of the one-step inversion (in
red) are almost mirror images of each other, showing that when one density model
deviates a lot from its starting model, the other agrees more with its starting model.
We recognize the solid red curve in Fig. 5.12b (cross-correlation between starting
model 0.3δlnvs and the resulting density model) as the cross-correlation between the
density and vs model in our PREM inversion (Fig. 5.7b) shifted approximately 0.2
to the right. Both one-step density models started from non-zero density have cross-
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Figure 5.10: Density models for different starting models in the one-step inversion. a) Starting
model scaled to δlnvs by factor 0.3, b) resulting density model. c) Starting model scaled to δlnvs
by factor -0.3, d) resulting density model. The resulting density models can be compared to e) the
observed density started from PREM.

correlation coefficients close to 1.0 with the density model started from PREM, with
the positively cross-correlated starting model performing marginally better (Fig.
5.12c).
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Figure 5.11: Density models for different starting models in the two-step inversion. a) Starting
model scaled to δlnvs by factor 0.3, b) resulting density model. c) Starting model scaled to δlnvs
by factor -0.3, d) resulting density model. The resulting density models can be compared to e) the
observed density started from PREM.

The two two-step density models started from a non-zero density are more posi-
tively correlated to their starting model than their one-step counterparts (compare
the black/grey lines in Fig. 5.12b to the red lines). We observe a similar shape
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Figure 5.12: a) RMS amplitudes of the density models started from correlation (0.3δlnvs), anti-
correlation (-0.3δlnvs) and PREM, for the one- and two-step inversions; b) cross-correlations be-
tween the density starting model (scaled to δlnvs by 0.3 and -0.3) and resulting model for the one-
and two-step inversion; c) cross-correlations between the density output model for (anti-)correlated
starting model and the density observed when starting from PREM.

in the solid black curve in Fig. 5.12b (cross-correlation between starting model
0.3δlnvs and the resulting density model) as the cross-correlation between density
and vs in the inversion started from PREM (Fig. 5.7c), but it is shifted roughly
0.7 to the right, especially in the upper mantle. This is another indication that
the density model started from positive correlation to δlnvs is not able to move
to the density model started from PREM in the upper mantle, also shown by the
poor cross-correlation between these two density models (Fig. 5.12c). The density
models started from negative correlation to δlnvs are not able to match the density
model started from PREM in the lower mantle (Fig. 5.12c).

5.4. Discussion and Conclusion
The poor correlation between density and velocities in the upper mantle indicates the
presence of chemical heterogeneity. In the case of cratonic roots we find positive ve-
locity anomalies accompanied by near-zero to negative density anomalies. Negative
buoyancy due to low temperatures is compensated by compositional heterogene-
ity resulting in net positive or neutral buoyancy (e.g. Jordan, 1978). Although we
should be cautious when trying to interpret small-scale structures in a model that
lacks odd degrees, the Congo craton could be an example of such a cratonic root.
Chemical heterogeneity in the rest of the upper mantle could be caused by crustal
materials being entrained in the upper mantle due to subduction or delamination of
the lower continental crust (Anderson, 2006). Subducted MORB (Mid-Ocean Ridge
Basalt) could be a potential candidate for the high velocity, high density structures
in the upper mantle, and probably in the top of the lower mantle (Wang et al.,
2020).

As our density models do not suffer from ghost density, except potentially in
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the mid-mantle, we believe that our lower mantle density observations are robust.
According to Kuo & Romanowicz (2002), density could only be retrieved with their
relatively small normal mode data set when its amplitude exceeded 50% of the S-
wave model. In our case, the density models exceed that amount in most of the
mantle, which is another indicator of the robustness of our observed dense basal
sliver and poor density-velocity correlation in the upper mantle.

In contrast to the findings of Akbarashrafi (2020), the one-step inversion has
an almost negligible dependence on the density starting model, both the correlated
and anti-correlated density-to-vs starting models resulted in nearly identical den-
sity models. The two-step inversion showed more dependence on the starting model;
it especially affects the presence and details of the partly dense base of LLSVPs.
These observations suggest that differences between previous two-step density mod-
els, which were sometimes started from a 3D density model (e.g. Ishii & Tromp,
1999), could partly be explained by the two-step inversion being less robust and
more susceptible to the chosen starting model.

Recently, van Tent et al. (2020) employed a Hamiltonian Monte Carlo method
to assess the uncertainties related to density in a two-step inversion using the same
normal mode data set as we use here. They found the uncertainties to be less than
30% throughout the mantle and proceeded to declare their density model as robust.
We have not discovered a way to quantify uncertainties for the one-step inversion,
but seeing as the one-step density model has lower spectral misfits and performed
better in the starting model test, it will probably not have larger uncertainties than
the two-step inversion.

A possible explanation for the high density, low velocity basal part underneath
part of the LLSVPs is iron enrichment (Trampert et al., 2004) due to iron penetra-
tion from the outer core to the lowermost solid mantle (e.g. Kanda & Stevenson,
2006) or through iron partitioning in partial melt (Nomura et al., 2011). Another
potential explanation concerns recycling of MORB over millions of years, creating
warm low velocity blobs with a dense base of basaltic material, under the condition
of sufficiently dense MORB (e.g. Jones et al., 2020). However, Deschamps et al.
(2012) argue that this MORB would have to heat up to unrealistically high tem-
peratures to reach the observed low velocity signal. Finally, the dense sliver could
be of primordial composition, reflecting its origin as remnant of an ancient magma
ocean (e.g. Labrosse et al., 2007).

Potential candidates for the high density, high velocity circum-Pacific ring are
post-perovskite (as S-wave velocity and density both increase (e.g. Oganov & Ono,
2004)) or subducted basaltic material (e.g. Brandenburg & Van Keken, 2007), al-
though viscous forces might be too strong for the subducted material to penetrate
all the way down to the CMB (Wang et al., 2020).

A partly dense base of the LLSVPs is a way to reconcile previously conflicting
density constraints from the Earth’s tides (Lau et al., 2017) and CMB Stoneley
modes (Koelemeijer et al., 2017). The sensitivity of the Earth’s body tides increases
with depth and reaches a maximum at the CMB and they prefer dense LLSVPs.
Stoneley modes, on the other hand, peak in density sensitivity further above the
CMB, and prefer light LLSVPs. As Koelemeijer et al. (2017) already stated, the



5

122 5. Density

Stoneley modes cannot rule out a dense 100 km thick layer just above the CMB,
which was later confirmed in a synthetic study by Robson et al. (2021). Even though
we are not using the Earth’s body tides, some of the Earth’s gravest normal modes
have sensitivity to density all the way to the CMB, explaining why we are able to
make robust observations of a dense sliver just above the CMB.

Our discontinuity topography amplitudes (0.8-1.6 km) are lower than previously
determined for the CMB (Fig. 5.2), and even more significantly lower for the ‘400’
and ‘670’ topography, which is in the range of 10-30 km in reflected body wave
studies (e.g. Houser et al., 2008a; Guo & Zhou, 2020). We picked topography mod-
els with the same damping as the elastic models, but we could have chosen lower
damping for topography in order to get amplitudes that match better with previous
estimates. It would not alter the patterns. The weak anti-correlation of the ‘400’
to the ‘670’ could point to a contribution of thermal variations between slabs (thick
MTZ) and plumes (thin MTZ). Our CMB topography is largely elevated underneath
the light part of the LLSVPs and vice versa, which seems to be due to some kind
of isostatic compensation. We repeat here that we do not know how possible trade-
offs between density and discontinuity topography could affect our results, and we
should be cautious in interpreting them.

In summary, we have made robust observations of large-scale density structure
in the mantle using an extensive normal mode data set and one- and two-step inver-
sions. The one-step inversion performs better in terms of misfit and dependence on
a density starting model. From the negative and neutral cross-correlation between
velocity and density anomalies in the upper mantle and MTZ, we infer this region
of the mantle to be thermochemical in nature. The upper part of the LLSVPs is
both slow and light, and might reflect a more thermal signature, but at the core-
mantle boundary we find a sliver of excess density in both inversion methods that
corresponds to slow velocity anomalies, indicating a thermochemical origin. There-
fore LLSVPs are partly dense, partly light structures, which reconciles previous
conflicting inferences of their buoyancy.

5.5. Outlook
We have some suggestions for future work on density, and discuss a few here. Ishii &
Tromp (2004) included inner core sensitive modes in their joint inversion for mantle
density and inner core anisotropy, which helped to constrain the amplitude of the
density anomalies in the lower mantle. We did not include inner core sensitive modes
here, but it is an interesting avenue to pursue with our expanded normal mode data
set.

The free-air gravity anomaly is uniquely sensitive to density and discontinuity
topography. Including this data type will provide more independent constraints
on these two parameters, as for example Ishii & Tromp (1999) and Ishii & Tromp
(2001) have done already.

Throughout this thesis, we have limited our inversions to even-degree structure,
since our current normal mode data set does not have sufficient odd-degree sensi-
tivity, as we explored in Chapter 3. By not inverting for odd degrees, we dismiss
the possibility of the two LLSVPs being different in shape, strength and thermo-
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chemical nature. Recent geochemical evidence suggests that the two LLSVPs have
had a different evolutionary history through the supercontinent cycles of Rodinia
and Pangaea (Doucet et al., 2020). We need to include odd degrees in the future
to investigate if this LLSVP hypothesis is reflected in their seismic signatures. In-
stead of, or complementary to, including odd degrees, we can increase the maximum
spherical harmonic degree of the models. We have already performed one inversion
for maximum degree 12 (Fig. C1 for one-step and Fig. C2 for two-step). The dense
western base is still present as part of the LLSVPs, although now the top of this
sliver is fluctuating up and down.

We may also explore different parameter combinations to invert for, apart from
3D vs, vp, ρ, such as 3D vs, vφ (bulk sound velocity), ρ, or 3D µ (shear modulus),
κ (bulk modulus), ρ. The latter is especially interesting, since these parameters
directly relate to mineral physical experimental data, and the density kernels become
less oscillatory around zero. Ishii & Tromp (2001) have tried this for their normal
mode data set and found the cross-correlations between the three density models
to be quite similar. We have already performed an initial inversion for 3D µ, κ
and ρ, using 7 B-splines and up to degree 6, and do not agree with that statement.
While the shear modulus anomalies agree well with S-wave velocity anomalies, and
the 3D bulk modulus has some features in common with bulk sound structures from
Chapter 4, the density model disagrees with our previously obtained density models,
especially in the lower mantle (Fig. C3 for one-step and Fig. C4 for two-step). The
LLSVPs are entirely dense in this parameterization. We do not yet know why, and
therefore moved this result to the section discussing future work.
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Figure C1: Depth slices through one-step models of anomalies up to degree 12 in a) shear-wave
velocity vs, b) compressional-wave velocity vp, and c) density ρ, with d) discontinuity topography
for the 400, 670 and CMB.
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Figure C2: Depth slices through two-step models of anomalies up to degree 12 in a) shear-wave
velocity vs, b) compressional-wave velocity vp, and c) density ρ, with d) discontinuity topography
for the 400, 670 and CMB.



5

126 5. Density

100 km
± 1.0%

400 km
± 0.4%

670 km
± 0.4%

1000 km
± 0.4%

1500 km
± 0.4%

2000 km
± 0.4%

2500 km
± 0.8%

2850 km
± 0.8%

0low/light high/dense

Variation from 1D

± 0.5 km

± 0.9 km

± 1.0 km

0deep shallow

Disc. topo

a) Mu b) Kap (x2) c) Rho d) Topo

Figure C3: Depth slices through one-step models of a) shear modulus µ, b) bulk modulus κ (times
two for visualization purposes), and c) density ρ, with d) discontinuity topography for the 400, 670
and CMB.
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Figure C4: Depth slices through two-step models of a) shear modulus µ, b) bulk modulus κ (times
two for visualization purposes), and c) density ρ, with d) discontinuity topography for the 400, 670
and CMB.





6
Towards a one-step inversion
for 3D shear attenuation in

the mantle
Seismic attenuation, or loss of seismic energy, is a key parameter for mapping vari-
ations in temperature, partial melt, composition, and potentially water content,
thereby providing important information about the thermal or thermochemical na-
ture of Large Low Shear-wave Velocity Provinces (LLSVPs). Efforts in imaging
attenuation anomalies have mainly concentrated on the upper mantle, which all
show highly attenuating mid-oceanic spreading ridges. We will employ the one-
step normal mode inversion to make a global model of 3D shear attenuation for
the first time. Small-scale scattering and focussing, which are difficult to separate
from intrinsic attenuation for high-frequency body waves, become less important for
low-frequency modes. Furthermore, by cross-coupling modes and jointly inverting
for elastic and anelastic structure, scattering and focussing are implicitly included.
Since this is the first effort of applying one-step direct spectrum inversion to at-
tenuation, we first perform synthetic inversions to find the optimum way of jointly
inverting for vs and qµ structure. Our preferred method of first inverting for vs
alone, and using the resulting vs model as starting point for a joint vs and qµ in-
version, is then applied to the real data, using various normal mode subsets. We
compare our one-step 3D attenuation model to the two-step model by Talavera-Soza
et al. (2021b). Some of the high attenuation regions between the one- and two-step
models overlap, but others do not, and these differences grow larger for an increasing
number of modes included in the one-step inversion. Dependence on the attenuation
starting model is high. Discrepancies between the one-step and two-step attenuation
models could be explained by the former being more affected by leakage of elastic
structures. Future efforts of mapping attenuation with the one-step inversion should
include more detailed elastic structure, to avoid this leakage.
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6.1. Introduction
The Earth’s mantle is a dissipating medium, causing seismic travelling waves (or
standing waves) to transform their energy into heat and decay in amplitude over
time due to anelastic processes. Focussing and scattering of seismic energy, which
are elastic processes, also affect the measured amplitudes, but are not dissipating
energy. In studying attenuation in the Earth’s interior, it is important to sepa-
rate the intrinsic attenuation (i.e. the anelastic loss of energy) from the apparent
attenuation (including focussing and scattering).

Attenuation is often described by “quality factor” Q, of which the inverse q =
Q−1 is “attenuation” that describes the energy loss per oscillation. The latter can
be defined by

Q−1 = ∆E/2πEmax (6.1)
where ∆E is the amount of enery dissipated per cycle and Emax is the peak energy
contained in the same volume in a cycle (e.g. Knopoff, 1964). Attenuation may occur
in bulk and shear strain, described by Qκ and Qµ respectively. As most attenuation
is concentrated in shear, Qκ is often assumed to be infinite or very high, implying
near-zero bulk attenuation.

Attenuation causes physical dispersion of seismic wave velocities. Dispersion
effects due to attenuation need to be taken into account when interpreting seismic
velocity models derived from long- or short-period waves (Karato, 1993). Q itself is
mildly frequency dependent, and can be approximated by a power law of the form
q ∝ ω−α. The value of α has been constrained between 0.2 and 0.4 by laboratory
measurements (see review by Romanowicz & Mitchell (2015)), although this was
later challenged by Lau & Faul (2019) who found normal modes to reside on a
plateau of frequency-dependence. These conclusions have evolved from the idea of an
“absorption band” (Liu et al., 1976; Anderson & Given, 1982), where a superposition
of various relaxation mechanisms creates a range in the seismic frequency spectrum
with nearly constant Q, and strong frequency-dependence at the edges of this range.
We assume that Qµ in the mantle falls within the absorption band (a statement
that was indirectly proven by Dannberg et al. (2017)) for normal mode frequencies,
meaning that the dependence of Qµ on frequency is small.

Combined with 3D velocity structure, lateral variations in intrinsic seismic at-
tenuation provide constraints on temperature anomalies, differences in grain size
and the presence of (partial) melt and water in the mantle. Seismic attenuation
strongly depends on temperature (e.g. Anderson & Given, 1982), increasing atten-
uation with increasing temperature. Anelastic effects are therefore important in
determining temperature sensitivities (Karato, 1993; Jackson et al., 2002; Matas &
Bukowinski, 2007), although they might be of the order of uncertainties in the elastic
temperature derivatives (Trampert et al., 2001). Thus, an increase in temperature
would lead to low velocity in combination with strong attenuation. Conversely, low-
velocity regions accompanied by low attenuation (i.e. not much energy loss) could
point towards some degree of compositional heterogeneity.

The relation between grain size on the one hand and seismic velocities and atten-
uation on the other hand is also well established. Grain size strongly affects these
seismic variables: at a fixed temperature, smaller grains increase attenuation and



6.1. Introduction

6

131

decrease velocities, and vice versa (e.g. Jackson et al., 2002; Faul & Jackson, 2005;
Dannberg et al., 2017).

Partial melt decreases S-wave velocity, and increases attenuation, although the
extent of this increase is debated (e.g. Chantel et al., 2016; Debayle et al., 2020). In
addition to mid-ocean ridges and subduction zones, partial melt could be present
at the base of the mantle in Ultra Low Velocity Zones (ULVZs) to explain the
significant drop in vs compared to vp (see review by Garnero & McNamara (2008)).
These small-scale structures, of tens of kilometres across, likely reside below the
detection limit of normal modes, that sample large-scale structures, or a smoothed
average of smaller scale structures.

The effect of water, which is structurally bound under mantle conditions and
not in the form of a free fluid, on attenuation is least well-known. The role of water
is probably limited to the upper mantle, as experiments and theoretical calculations
have shown that perovskite does not incorporate significant amounts of water un-
der lower mantle conditions (Panero et al., 2015). However, recent experiments on
upper-mantle olivine have shown that velocity and attenuation appear to be insensi-
tive to elevation in water content (Cline II et al., 2018), so structurally bound water
cannot explain low velocity or high attenuation structures. Instead, they propose
high oxygen fugacity in subduction zones and other oxidized regions as explanation
for observations of high attenuation in the upper mantle.

6.1.1. 1D and 3D models of shear attenuation
The 1D profiles of normal-mode derived shear attenuation (Fig. 6.1) all contain a
layer of high attenuation (i.e. low Qµ) in the upper mantle, specifically the low-
velocity zone underneath the lithosphere. Low attenuation (i.e. high Qµ) is found
in the lithosphere, and in the lower mantle, where Qµ is generally increasing with
depth, with some 1D profiles showing exceptions for the lowermost mantle where
Qµ decreases. All models also share the feature of infinite attenuation (Qµ = 0)
in the fluid outer core (not shown in Fig. 6.1, as it stops at the CMB), due to
the shear modulus dropping to zero there. These 1D attenuation models based on
normal modes show good agreement among themselves. However, the range for
body-wave models would lie between Qµ = 270− 620 in the lowermost mantle (e.g.
Lawrence & Wysession, 2006a; Hwang & Ritsema, 2011), which agrees less well with
the 1D attenuation profiles shown in Fig. 6.1, possibly illustrating the frequency
dependence of attenuation.

This frequency dependence is why we will compare our 3D normal mode at-
tenuation models to global models derived from either normal modes or surface
waves, as body wave studies yield different attenuation models due to their higher
frequencies. Efforts to map attenuation variations in the mantle have mainly been
concentrated on the upper mantle. Global upper mantle 3D attenuation models
(Fig. 6.2b-d) display a strong correlation with tectonic features in the uppermost
few hundred kilometers and are commonly anti-correlated to shear-wave velocity
anomalies (Fig. 6.2a). Low velocities correspond to high attenuation below mid-
ocean ridges, and high velocities correspond to low attenuation below continental
shields. This observation agrees with an upper mantle where heterogeneities are
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Figure 6.1: Normal-mode derived
1D shear attenuation profiles in the
mantle, from: PREM: Dziewonski
& Anderson (1981), QM1: Widmer
et al. (1991), QL6: Durek & Ekström
(1996), RTH: Resovsky et al. (2005),
WKVT: de Wit et al. (2014). The
400- and 670-discontinuities are also
shown.
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mainly caused by temperature differences, with oxygen fugacity possibly playing
a role. Deeper into the upper mantle, the correlation between tectonics and qµ
becomes less clear. Although the attenuation models are correlated to tectonics,
cross-correlation coefficients between upper mantle attenuation models generally do
not exceed 0.5 (Adenis et al., 2017).

The only few studies that have imaged lower mantle 3D shear attenuation were
body wave studies. In a global study, Lawrence & Wysession (2006b) identified a
region at the top of the lower mantle beneath eastern Asia with high attenuation,
explained by increased water content transported there by subducting Pacific litho-
sphere. They also observed a low attenuation, high velocity ring around the Pacific
in the lower mantle, and highly attenuating, slow LLSVPs within. This observa-
tion was matched by Hwang & Ritsema (2011), who separated their teleseismic body
wave data set into a Pacific (sampling the Pacific LLSVP) and circum-Pacific subset,
and found higher attenuation for the LLSVP than for its surroundings. In a regional
study sampling the African LLSVP using the PcS phase, Liu & Grand (2018) in-
ferred that this LLSVP was more attenuating than the surrounding mantle. Thus
high attenuation is now linked to both LLSVPs. In another regional study, Zhang
et al. (2019) found a significantly larger Qµ in the lower mantle beneath North-
east China (i.e. low attenuation) by comparing observed amplitude ratios between
core-reflected phases to synthetic amplitude ratios, which agrees with Lawrence &
Wysession (2006b).

It is important to note that small-scale scatterers become increasingly important



6.1. Introduction

6

133

Figure 6.2: Upper mantle a) S-wave velocity model S40RTS (Ritsema et al., 2011), compared to
four shear attenuation models b) QRLW8 (Gung & Romanowicz, 2004), c) QRFSI12 (Dalton et al.,
2008), d) SEMUCB-UMQ (Karaoğlu & Romanowicz, 2018), e) QsADR17 (Adenis et al., 2017).

in high-frequency body wave studies. However, scattering and focussing were not
taken into account in any of these studies directly, which may have resulted in
scattering or focussing being falsely interpreted as intrinsic attenuation.

An important factor in any attenuation study is quantifying the effect of source
parameters such as earthquake magnitude and radiation pattern. Errors in the mo-
ment tensor solutions published in the Global Centroid Moment Tensor database
(www.globalcmt.org) could be more than 10% due to unmodeled 3D mantle hetero-
geneity (Hjörleifsdóttir & Ekström, 2010; Karaoğlu & Romanowicz, 2018). Talavera-
Soza (2021a) studied the effects of unaccounted magnitude variations in the scalar
moment M0 on recovered anelastic splitting functions in synthetic tests, and found
small but systematic biases in these splitting functions. A thorough investigation
of source parameters on 3D attenuation structure in the one-step inversion is very
much required, but beyond the scope of this chapter.

In this chapter, we will perform the one-step direct spectrum inversion for 3D
global mantle shear attenuation. There are two main advantages to using nor-
mal modes for studying attenuation: i) scatterers are probably small compared to
normal-mode wavelengths, and ii) focussing and defocussing is included in the the-
ory of cross-coupling between modes. As far as we are aware, a one-step inversion
of normal mode spectra for 3D attenuation has not been done before. Therefore we
first need to decide between four ways of directly inverting synthetic spectra to find
the preferred method of inverting the real data. We will then compare our results
to the two-step splitting function model for anelastic structure of the mantle by
Talavera-Soza et al. (2021b) and to other observations of 3D mantle attenuation.
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6.2. Data and methods
The basic normal mode inversion workflow does not drastically change when adding
attenuation. We introduce shear attenuation to the inversions by adding the anelas-
tic splitting matrix A as imaginary part to the elastic splitting matrix E to obtain
the total splitting matrix: H = E + iA. We compute the partial derivatives for the
anelastic part separately from the elastic part, and either concatenate them, or keep
them separate, depending on the inversion method.

Table 6.1: Mode groups used in this study. Two-step modes represent the 14 modes/mode groups
used in the two-step inversion of Talavera-Soza et al. (2021b). The n = 0− 4 modes are all modes
up to and including overtone number 4. The modes in italics are the higher order fundamental
modes mentioned in the text.

Two-step modes
0S5
0S6
0S7
1S4
1S7
1S8
1S9
1S10
2S4 − 1S5
2S5 − 1S6
2S6
2S12
2S13
3S9

n=0-4 modes
0S2 1S2 − 0S4 − 0T3
0S3 − 2S1 1S4
0S4 − 1S2 1S5 − 2S4
0S5 1S6 − 2S5
0S6 1S7
0S7 1S8
0S8 − 4S1 − 0T9 1S9
0S9 − 0T10 1S10
0S11 − 2S7 − 0T12 1S11 − 0S15
0S13 − 0T14 1S12 − 0S17
0S14 − 2S9 − 0T15 2S1 − 0S3 − 0T2
0S15 2S6
0S16 2S8 − 4S3
0S17 − 2S11 2S10 − 4S5
0S19 − 1S13 2S12
0 S21 − 1 S14 2S13
0 S22 − 2 S14 2S17 − 7S5
0 S23 − 1 S15 2S25 − 3S25
0 S24 − 2 S15 3S6
0 S25 − 1 S16 3S7 − 5S5
0 S26 − 2 S16 3S9
0 S27 4S2 − 0S10 − 0T11
0 S28 4S4 − 1T8
0 S29
0 S30

Since we are performing the one-step direct spectrum inversion for attenuation
for the first time, we need to test multiple ways of inverting the spectra to find out
which one works best. We will perform four synthetic tests:

i) inverting for vs and qµ anomalies simultaneously with the same norm damping,

ii) or with ten to a hundred times more norm damping for attenuation;
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iii) alternating between iterations that update the vs model and those that update
the qµ model;

iv) first inverting for vs structure, keeping qµ fixed, followed by inverting for vs
and qµ simultaneously.

We expect attenuation to be less well constrained by the data than S-wave velocity,
so either alternating between the two parameters (iii) or first inverting for vs only
and then for both parameters (iv) would be the preferred methods. Based on the
full-waveform inversion study by Karaoğlu & Romanowicz (2018), the alternating
iterations method (iii) could be the best way. On the other hand, option (iv) would
be the preferred choice based on splitting function inversions, in which the elastic
splitting function coefficients cst are measured first, of which the result is used as
starting point for an inversion for the elastic and anelastic coefficients (cst + dst)
simultaneously (Mäkinen & Deuss, 2013; Talavera-Soza, 2021a).

In the synthetic tests to find the preferred inversion method, we decided to
invert normal modes with overtone numbers n = 0 − 4 (excluding higher order
fundamentals; Table 6.1), with ever increasing model complexity, i.e. inverting for
higher spherical harmonic degrees and more radial parameters. Input 3D attenua-
tion models are scaled to simplified existing 3D S-wave velocity models by scaling
factor Rq, which is defined by

δqµ = Rq
δvs
vs

(6.2)

After confirming our preferred inversion method, we will apply it to real data,
starting with the modes selected for the anelastic splitting functions of Talavera-
Soza et al. (2021b) (Table 6.1), and then increasing the subset of modes. As we
suspect the attenuation signal in normal mode spectra to be of similar amplitude as
density, or even smaller, the radial parameterization chosen for the first real data
inversions consists of three evenly spaced B-splines (Fig. 6.3). This parameterization
will most likely avoid overparameterization, but will clearly not give us detailed
depth resolution, and could cause aliasing. Therefore, this depth parameterization
is merely a starting point, and we will test other parameterizations in the future.

S-wave velocity is parameterized as variations with respect to 1D PREM vs
(Dziewonski & Anderson, 1981): δvs/vs or δlnvs. Due to the large ranges in 1D
attenuation with depth (Fig. 6.1), 3D variations in attenuation are commonly ex-
pressed in terms of δqµ, so irrespective of a 1D reference model or globally averaged
value. By plotting the attenuation models in this way, changes in amplitude with
depth are more apparent (Dalton et al., 2008).

In most synthetic test and in all real data inversions, density and vp structure are
positively correlated to vs anomalies with factors 0.3 and 0.5, respectively. We have
already seen in previous chapters that this is an oversimplification, so we intend to
relax these constraints in the future. We are not performing crustal corrections for
attenuation, since there is no reliable 3D crustal attenuation model available. This
choice will likely not alter our conclusions, since the impact of crustal attenuation
is probably minimal (Dalton et al., 2008; Karaoğlu & Romanowicz, 2018).
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Figure 6.3: Radial parameterization of
3 B-splines, where each spline is repre-
sented by a different colour.

We do not properly account for the anelastic effects of the Earth’s ellipticity
yet. This should not pose a problem for the synthetic inversions, as ellipticity is
not included in the anelastic part of the splitting matrix that is used for computing
synthetic spectra, nor in the partial derivatives part. Therefore the absence of
ellipticity corrections is self-consistent in synthetic tests. For real data, however,
the lack of ellipticity corrections could cause strange patterns in the anelastic zonal
coefficients m20, although the effect of ellipticity in the anelastic splitting matrix is
probably small.

6.3. Synthetic 3D vs + qµ inversions
We perform various inversions of synthetic spectra to find the preferred method out
of the list of four from the previous section. Starting with the most simple synthetic
test, where the input 3D S-wave velocity and shear attenuation models consist of
one layer covering the whole mantle, we find that the first two inversion methods
(options i and ii) recover vs anomalies quite well, but poorly recover qµ structure
(Fig. 6.4b,c). The latter two inversion methods (options iii and iv) do recover the
input shear attenuation model very well (Fig. 6.4d,e). We therefore discard the first
two options in the list of possible inversion methods, and continue our synthetic tests
with increasingly complicated input models with the latter two methods.

The input model now consists of two layers, in the ranges of 24-670 km and 670-
2891 km depth. S-wave velocity anomalies are anti-correlated to 3D attenuation in
the upper layer, according to δqµ = 0.3δlnvs, and correlated in the bottom layer,
according to δqµ = −0.3δlnvs. To avoid confusion, the colour scale for attenuation
is flipped with respect to that of velocity, since high attenuation could be related to
high temperatures (hot means red). Therefore, correlation means low velocities (red)
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corresponding to weak attenuation (blue), so the colours in vs and qµ are opposite.
Anti-correlation means low velocities (red) corresponding to high attenuation (red),
so the colours in vs and qµ match.

Option iv), i.e. first inverting for vs, then for vs and qµ jointly (Fig. 6.5c),
performs better in recovering the input attenuation model than option iii), i.e. al-
ternating between inversions for vs and qµ (Fig. 6.5b). Furthermore, the success of
option iii) is more dependent on norm damping than option iv) and therefore less
robust. We also see that the intermediate vs model for method iv), so the starting
vs model for the joint vs + qµ inversion, improves significantly after this joint in-
version. The method of alternating iterations is the preferred inversion method for
a full waveform inversion for 3D S-wave velocity and shear attenuation (Karaoğlu
& Romanowicz, 2018), but it appears to be less effective for our one-step direct
spectrum inversion.

The spectral misfits per mode (Fig. 6.6) improve by including qµ in the misfit
calculation, with respect to vs only (compare black triangles to black squares). We
can furthermore distinguish between modes that are sensitive to upper and lower

1 layer
± 1.0

0low high

δqµ x 103

a) qµ-in b) qµ-out i c) qµ-out ii d) qµ-out iii e) qµ-out iv

Figure 6.4: Synthetic tests for one layer, with a) input qµ model, and the four output models for
b) jointly inverting for vs and qµ with the same damping, c) and ten times more damping for qµ,
d) alternating between inversions for vs and qµ, e) first inverting for vs, then for vs and qµ jointly.

top
± 1.0

bottom
± 1.0

0low high

δqµ x 103

a) qµ-in b) qµ-out iii c) qµ-out iv

Figure 6.5: Synthetic tests for two layers (24-670 and 670-2891 km), with a) input qµ model, and
the two output models for b) alternating between inversions for vs and qµ, and c) first inverting
for vs, then for vs and qµ jointly.
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mantle attenuation. Modes that are sensitive to upper mantle attenuation show the
greatest improvement in misfit when only upper mantle 3D attenuation is added to
the velocity model (red stars), which are 0S19−1S13, 2S12, 2S13, 4S3−2S8, 4S5−2S10.
Most of the other modes show a larger sensitivity to the lower mantle, by having a
lower misfit for the 3D vs plus lower mantle qµ model (grey stars). This distinction
between upper- and lower mantle attenuation modes agrees with the picture we get
from their sensitivity kernels for shear modulus µ, strengthening our confidence that
we are fitting shear attenuation structure.

We continue our synthetic tests for vs and qµ with option iv) first inverting for vs
structure, keeping qµ fixed, followed by inverting for vs and qµ simultaneously, which
is similar to the splitting function approach of first inverting for the elastic splitting
coefficients, and then for the elastic and anelastic coefficients jointly (Mäkinen &
Deuss, 2013; Talavera-Soza, 2021a). The input models of 3D vs and qµ are param-
eterized with 3 B-splines along the radius and up to spherical harmonic degree 4
laterally. They are the result of a two-step splitting function inversion by Talavera-
Soza et al. (2021b). We recover the input models (Fig. 6.7a,d) almost perfectly
using method iv) (Fig. 6.7c,e). The fit of the S-wave velocity model improves when
we start to include shear attenuation in the inversion, mainly by better matching
the amplitudes (compare intermediate model Fig. 6.7b and end result Fig. 6.7c to
the input model Fig. 6.7a).

6.4. Real data inversions
After establishing that the best way of inverting for vs and qµ anomalies is by method
iv), i.e. first inverting for vs and then jointly for vs and qµ, we apply this method
to real data in an inversion using the same model parameterization (3 B-splines,
up to spherical harmonic degree 4) as the last synthetic test. We compare our

Figure 6.6: Misfit per mode or group of modes, for synthetic inversion iv) with two layers. Showing
misfits for the vs model only (black triangles), the combined vs + qµ model (black squares), vs +
upper layer qµ only (red stars), and vs + lower layer qµ only (grey stars).
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Figure 6.7: Synthetic tests for 3 B-splines up to degree 4, with a) input vs model, b) vs after only
inverting for vs, c) final vs model after joint inversion, d) input qµ model, and e) final qµ model.

results from the one-step direct spectrum inversion to attenuation models inferred
from the two-step inversion of anelastic splitting functions (Talavera-Soza et al.,
2021b). For a fair comparison, we employ the same modes as in the two-step splitting
function inversion of Talavera-Soza et al. (2021b) for our one-step inversion. The
vs model resulting from the one-step inversion (Fig. 6.8c) corresponds well with
large-scale structures of previously obtained vs models. The two-step vs model does
not resemble previously obtained vs models as well, which shows that the two-step
inversion is more affected by the limited number of splitting functions, at least for
the elastic part.

Turning our attention to the attenuation models, we observe different structures
at all depths between the two-step (Fig. 6.8d) and one-step models (Fig. 6.8e).
Although most of the high attenuation (red) regions in the upper mantle overlap,
they are not connected in the same way. The checkerboard-like pattern in the one-
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Figure 6.8: Real data inversion for 3 B-splines up to degree 4, with a) two-step vs model for
reference, b) vs after only inverting for vs, c) final one-step vs model after joint inversion, d)
two-step qµ model for reference, and e) one-step qµ model.

step model is not caused by abnormally high values of model coefficients Re(m42)
and Im(m42). We will assess the robustness of this pattern by including more upper
mantle sensitive modes, as there are only two upper mantle modes included in the
current inversion (2S12 and 2S13).

Lower mantle attenuation also varies in pattern between the one- and two-step
inversion, although attenuation inside the center of the LLSVPs is low (blue) in
both models (Fig. 6.8d,e). The one-step attenuation model shows more of a highly
attenuating ring around these low attenuation cores, but the surrounding regions in
the two-step model are also more attenuating.

The average spectral misfit for the two-step vs and qµ models (Fig. 6.8a,d) is
0.48 for the two-step modes only. In comparison, the average spectral misfit for
the one-step vs and qµ models (Fig. 6.8c,e) for the same subset of modes is 0.39.A
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major part of this misfit difference can be contributed to the better fitting one-step
vs model, since the spectral misfit for the one-step vs model by itself is 0.40, and
for the two-step vs model by itself is 0.47. The spectral misfit only changes by a
small amount due to the inclusion of 3D attenuation, and even increases a bit for
the two-step models.
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a) 2step b) 2step-modes c) n=0-4 excl d) n=0-4 incl e) all modes

Figure 6.9: Attenuation models for real data one-step inversions (3 B-splines up to degree 4) for
various subsets of normal mode data. a) Two-step qµ model is plotted for reference. One-step qµ
models in order of increasing number of modes: b) only including the two-step modes, c) including
all modes with overtone number 0-4, excluding higher order fundamentals, and d) including higher
order fundamentals, and finally e) including all modes.

Several additional inversions are performed for the same model parameterization
and for an increasing number of modes. The starting point is the same number of
modes from the two-step splitting function inversion of Talavera-Soza et al. (2021b),
for which we already described the models (Fig. 6.8; Fig. 6.9b). We then add all
other modes from our normal mode data set with overtone numbers n between 0
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and 4, first excluding the higher order fundamentals (Fig. 6.9c), and consequently
including higher order fundamental modes with upper mantle sensitivity (Fig. 6.9d).
We finally include all modes in the extended normal mode data set which was first
introduced and used in Chapter 4 (Fig. 6.9e). The average spectral misfit increases
with the number of modes (Fig. D1), possibly implying that some of the added
modes are not contributing constructively towards an attenuation model.

Including more upper mantle sensitive modes makes the highly attenuating re-
gions more isolated and alters their position. Ultimately only two high attenuation
blobs remain in the same position with respect to the two-step model: one in the
South-Atlantic Ocean and one east of China. Attenuation patterns in the lower
mantle also change significantly when progressively including more modes in the
one-step inversion. Whereas the cores of the LLSVPs were characterized by low at-
tenuation for the two-step modes only (Fig. 6.9b), this low attenuation region shifts
more towards the south in case of the Pacific LLSVP, and north for the African
LLSVP when adding more modes. The highly attenuating ring has changed into
two connected major regions of high attenuation.

Overall, adding more modes to the one-step inversion creates greater dissimilar-
ities between the one-step model on the one hand, and two-step model created with
a small subset of modes on the other hand.

The models of Fig. 6.9 were compared to each other based on the same number of
effective eigenvalues. However, this picture changes when we compare them based on
their optimum model, i.e. at the kink in the L-curve of each inversion (models: Fig.
6.10, L-curves: Fig. D1). The model for the two-step modes only does not change,
since it was already at the kink. The other three models drastically change, having
much lower numbers of effective eigenvalues and smaller model sizes than before.
This observation implies that the three models depicted earlier (Fig. 6.9c,d,e), with
comparable numbers of effective eigenvalues, consist of a significant portion of filled
model null space. Much of the patterns remain the same in these models picked at
the kink, albeit with smaller amplitudes.

In addition to the two-step model, we compare the two-step modes one-step at-
tenuation model to upper mantle models QRLW8 (Gung & Romanowicz, 2004) and
QRFSI12 (Dalton et al., 2008), showing only degrees 2 and 4 to match the degrees
in our model (Fig. 6.11). The comparison shows that we are limited by our coarse
radial parameterization of 3 B-splines, as the one-step and two-step attenuation
models barely change across the upper mantle, whereas QRLW8 (7 cubic B-splines
in depth range 80-670 km) and QRFSI12 (8 splines in depth range 24.4-650 km) do.
The checkerboard pattern in the one-step upper mantle model looks very similar to
QRFSI12 at 250 km depth, and also shares some large-scale features with QRLW8
at 100 km depth.

6.4.1. Starting model
We change the attenuation starting model from 1D PREM to the 3D two-step
starting model, to see whether or not the one-step inversion prefers to move away
from the two-step 3D attenuation model. For one test, we use the smallest subset
of modes: two-step modes only. For the other test, we use the other extreme of the
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number of modes used: all modes in our data base.
The resulting models we show here (Fig. 6.12b,d) are picked at the kink in the L-

curve, and compared to the models resulting from the inversion started from PREM
(Fig. 6.12c,e), also picked at the kink in the L-curve. The inversion moves further
away from the two-step starting model towards the attenuation model started from
PREM for the smallest subset of modes than for the largest set of modes. The
average spectral misfit drops from 0.40 for the two-step starting model to 0.39 for
the end result, which is the same as the misfit for the model started from PREM.

Let us discuss the inversion for the two-step modes first. The upper- and mid-
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Figure 6.10: Attenuation models at the “kink” of the L-curves for real data one-step inversions
(3 B-splines up to degree 4) for various subsets of normal mode data. a) Two-step vs model
is plotted for reference. One-step qµ models in order of increasing number of modes: b) only
including the two-step modes, c) including all modes with overtone number 0-4, excluding higher
order fundamentals, and d) including higher order fundamentals, and finally e) including all modes.
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Figure 6.11: Attenuation models from the a) one-step inversion with the two-step modes, b) two-
step inversion, compared to two existing upper mantle qµ models c) QRLW8 (Gung & Romanowicz,
2004) and d) QRFSI12 (Dalton et al., 2008), only showing degrees 2 and 4.

mantle show the characteristic checkerboard pattern both when started from the
two-step model (Fig. 6.12b) and when started from PREM (Fig. 6.12c). The high
attenuation regions in the lower mantle east of Africa and around Mexico become
stronger with respect to the starting model, which are regions of especially high
attenuation in the qµ model started from PREM.

The inversion using all normal modes is not able to move away from its starting
position as easily, which makes the resulting model very dependent on the starting
model. Strangely, the average spectral misfit does drop from 0.65 for the two-
step starting model to 0.61 for the end result, which is comparable to the misfit
of qµ started from PREM. Apparently, very different qµ models can yield very
similar misfits if we take all modes into account. In terms of qµ structure, we do
see some hints of attenuation heterogeneities inferred from starting model PREM
incorporated into the model started from the two-step qµ model, such as the very
low attenuation zones south of the Pacific and north of the African LLSVP in the
deepest model slice. For lower norm damping, i.e. beyond the kink in the L-curve
where the model size increases but the misfit barely decreases, the inversion started
from the two-step model would produce a model very similar to that resulting from
starting model PREM, with larger amplitudes.

Cross-correlation between the qµ model started from PREM and the qµ model
started from the two-step model improves with respect to correlation between the
former and the two-step starting model (Fig. 6.13). This confirms what we see in
the depth slices: the model started from the two-step model moves closer to the
model started from PREM, especially in the mid-mantle for the two-step modes
only. Correlation between both the two-step starting model and its resulting model
to the model initiated from PREM remains low in the lower mantle, so dependence
on the starting model is most severe here.
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Figure 6.12: a) Starting qµ model, b) resulting model for two-step modes subset, compared to
c) the attenuation model started from PREM. Inversion results for all modes, with d) using the
two-step model as starting model, and e) using PREM as starting point.

6.5. Synthetic inversions simulating real data
We now simulate a real data inversion by having more complicated input models
for the synthetic data than what we invert for, contrary to the first synthetic tests
at the beginning of this chapter. The final synthetic spectral data set is computed
for the 3D one-step vs, vp and density models from Chapter 5, parameterized with
7 B-splines in the radial direction and up to degree 6 spherical harmonics laterally.
The input 3D attenuation model is still the two-step model. We then either invert
for vs (vp and density scaled to vs with factors 0.5 and 0.3) and qµ structure, or for
vs, vp, density and qµ structure. As in the recently established preferred inversion
method, we invert for the elastic parameters first, and then for elastic and anelastic
structures jointly. The output models are parameterized up to degree 4, and with
3 B-splines radially. We use two subsets from the normal mode data set to perform
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Figure 6.13: Cross-correlation with
depth between the two-step starting
model and the result (red curve for two-
step modes, black curve for all modes),
between the resulting qµ model started
from PREM and started from the two-
step model (red dashed curve for two-
step modes and black dashed curve for
all modes), and between the resulting
qµ model started from PREM and the
two-step model (lightred curve for two-
step modes and grey for all modes).
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this synthetic inversion: i) the modes used by Talavera-Soza et al. (2021b) for the
two-step attenuation model, and ii) the modes from Fig. 6.6 with overtone numbers
n = 0− 4, excluding the higher order fundamentals.

At first glance, the recovered attenuation models (Fig. 6.14b-e) do not resemble
the input model (Fig. 6.14a) as well as in the previous synthetic test where the
input model parameterization was the same as the output model parameterization.
The effects of how many modes are included and whether or not vp and density
structure are independently inverted for are not strong. We see the same upper
mantle patterns in 3D attenuation emerging from all four output models, in which
the highly attenuating regions are more isolated. Recovered lower mantle patterns
are slightly shifted with respect to the input models, although the low LLSVP
attenuation in the input model is a shared feature among all output models.

We look at the cross-correlation with depth for the input and output models
for more details on how much the heterogeneity patterns differ. From the cross-
correlation between the input model on one hand and the four output models on
the other hand (Fig. 6.15), we see that the upper mantle output models all have
the same degree of correlation to the input model. Overall, the synthetic inversions
that use the smaller two-step subset of modes recover the input model better (black
curves in Fig. 6.15). Inverting for vp and ρ heterogeneity separately from vs (dashed
curves) improves the correlation to the input model in the mid-mantle, but reduces
it in the lowermost mantle.

In the previous synthetic test, we did not invert for all the input elastic structure,
which has a parameterization of 7 B-splines radially and spherical harmonics up to
degree 6. Not accounting for higher order elastic structure could lead to leakage in
anelastic structure. Therefore, in a final synthetic test, we invert for attenuation
in the same way as before, but increase either the number of B-splines, or the
maximum spherical harmonic degree, or both, for the vs part of the inversion. We
use the smallest normal mode subset (two-step modes) and scale vp and ρ anomalies
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to vs anomalies, since the previous test showed that inverting for vs, vp and ρ
independently did not have a large impact, except in the mid-mantle.

Increasing the number of B-splines from 3 to 7 for the elastic part does not
significantly affect the output attenuation model (compare Fig. 6.14b to Fig. 6.16b).
Increasing the maximum spherical harmonic degree from 4 to 6 does affect the
output attenuation model, towards a more positive correlation to the input model
(Fig. 6.17). However, high and low attenuation regions in the lower mantle are
shifted with respect to the input model (Fig. 6.16c), causing the low correlation
in the lower mantle between input and output model (Fig. 6.17). When we invert
the elastic part for both 7 B-splines and maximum degree 6, we finally obtain an
output attenuation model that resembles the input attenuation model the most out
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Figure 6.14: Synthetic tests for 7 B-splines up to degree 6 as elastic input models, and a) the 3
B-splines, degree 4 two-step input qµ model. Recovered attenuation models for one-step vs and qµ
inversion b) for two-step modes, and c) for overtone numbers 0-4. Recovered attenuation models
for one-step vs, vp, ρ, and qµ inversion d) for two-step modes, and e) for overtone numbers 0-4.
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Figure 6.15: Cross-correlation with
depth between the two-step input atten-
uation model and the four output mod-
els from Fig. 6.14b-e.
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of all synthetic tests in this section, albeit with lower amplitudes. The correlation
coefficient of the recovered model with the input model exceeds 0.9 in the lower
mantle, and even 0.95 in the upper mantle (Fig. 6.17).

6.6. Discussion and conclusion
Synthetic spectra constructed for 3D input vs and qµ models only are well recovered,
even for an increasingly complicated radial parameterization of one layer up to 3
B-splines. The best inversion method for these synthetic data is first inverting for
3D vs structure only, keeping 1D qµ fixed, and then allowing both 3D vs and 3D qµ
to vary, starting from the previously obtained vs model.

We are not able to recover qµ anomalies as well when the synthetic spectra are
computed for independent input vs, vp, ρ and qµ models and we invert for elastic
structures that are less detailed than the input model structures. Surprisingly, the
smallest subset of modes, i.e. the two-step modes only, yields the output qµ models
that are most positively correlated to the input. Potentially because the small subset
contains modes that are most sensitive to 3D variations in shear attenuation.

We see the same checkerboard-like structure in upper mantle qµ in the above-
mentioned synthetic tests as in real data inversions. It is not until we invert for all
the complexities in the elastic input models, especially in the vs model, that we get
rid of this checkerboard pattern and are able to recover the input model attenuation
structure accurately. This should then also be applied to the real data inversions,
where elastic structure was kept very simple for now, to minimize leakage of elastic
into anelastic structure. It could explain the discrepancies between the attenuation
models derived from splitting functions (Talavera-Soza et al., 2021b) and from the
spectra directly. Leakage might be less of a problem in a two-step splitting function
inversion, since elastic and anelastic structures are conveniently separated into cst
and dst coefficients.
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Figure 6.16: Synthetic tests for 7 B-splines up to degree 6 as elastic input models, and various
output parameterizations for the elastic part. a) 3 B-splines, degree 4 two-step input qµ model.
Recovered attenuation models for one-step vs and qµ inversion for two-step modes, for parameter-
ization for the elastic part b) of 7 B-splines, up to degree 4, c) of 3 B-splines, up to degree 6, d) of
7 B-splines, up to degree 6.

The real data inversions have shown that we have to be careful about mode
selection in the inversion part where elastic and anelastic structures are jointly
inverted for. By selecting too many modes to constrain attenuation structure, we run
the risk of fitting normal mode spectra of modes that do not carry much information
on mantle shear attenuation, thereby filling the model null space. This problem
affects the two-step subset of modes the least, out of all the subsets we investigated.

As this is a preliminary study into the feasability of applying the direct spec-
trum inversion to attenuation, without a thorough investigation into source effects,
we cannot draw any definite conclusions yet on the attenuation structure of the
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Figure 6.17: Cross-correlation with
depth between the two-step input at-
tenuation model and the three output
models from Fig. 6.16b-d. Cross-
correlation between the two-step input
model and the recovered attenuation
model for 3 B-splines, max. degree 4
is shown for reference (solid red).
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mantle. However, the centers of LLSVPs remain low attenuation zones for the real
data inversion of the two-step modes, which is a promising result for the robust-
ness of this observation. Low attenuation in LLSVPs may be explained by larger
grain size (low attenuation) dominating over higher temperature (high attenuation)
effects (Dannberg et al., 2017). In turn, the high attenuation regions around the
LLSVPs could be due to post-perovskite, which has been shown to be possibly
highly attenuating (Goryaeva et al., 2016) and potentially fine-grained (Yoshino &
Yamazaki, 2007). Post-perovskite is also preferentially linked to colder regions such
as a slab graveyard surrounding LLSVPs. If normal modes prefer low attenuation
in LLSVPs, we have to find a way to reconcile these normal mode observations of
low attenuation with body wave observations of highly attenuating LLSVPs.
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Figure D1: Misfit versus model size L-curves for real data vs + qµ inversions, first iteration, for
different numbers of modes: only including the two-step modes (red), including all modes with
overtone number 0-4, excluding higher order fundamentals (black), and including higher order
fundamentals (grey), and including all modes (lightred). Big filled-in circles represent models
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7.1. General findings
The aim of this thesis was to provide novel constraints on the thermochemical nature
of the lower mantle, and the LLSVPs specifically. In order to do so, we have per-
formed, in chronological order, the one-step direct spectrum inversion and two-step
splitting function inversion for i) vs only, ii) vs and vp jointly, iii) vs, vp, density and
topography on the 400- 670- and CMB-discontinuities jointly, and finally iv) the one-
step inversion for vs and qµ jointly. With each additional parameter, the difference
between the one-step and two-step models increases, as normal mode sensitivity de-
creases for vp compared to vs, and decreases even more for density and attenuation.
Both inversion methods are always started from the same initial spectral data set,
so we conclude that the inversion method generally matters more for the resulting
models when normal mode sensitivity decreases for a certain parameter.

In Chapter 3 we find that the average spectral misfit is lower for the one-step
vs inversion than for the two-step vs inversion. In later chapters we see that the
average spectral misfits for the one-step inversion are lower for every combination of
mantle parameters we invert for. This is to be expected, as the second step of the
two-step inversion tries to fit the intermediate splitting functions, originally derived
from the spectra, whereas the one-step inversion fits the spectra directly.

The effect of the chosen inversion method on thermochemical interpretations is
already significant when inverting for vs and vp structure (Chapter 4), on top of
the effect of how the ratio RS/P between vs and vp anomalies is computed. The 1D
representative R-RMS, obtained by dividing the RMS amplitudes of the vs and vp
models, exceeds RS/P predicted for a thermally dominated mantle in the lower man-
tle, agreeing with previously inferred chemical heterogeneity. R-RMS subsequently
strongly decreases towards the CMB, which also agrees with previous studies. R-
median, on the other hand, is always lower than RS/P predicted for a thermally
dominated mantle, except for the two-step models just above the CMB. 1D RS/P
are therefore less robust and heavily debated, and we prefer to look at the distribu-
tions of vs, vp anomalies and RS/P. Both the one-step and two-step models show a
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large spread in vs anomalies in the lower mantle, coinciding with the depth range
of high R-RMS values. On top of that, we infer a dominant role of chemical het-
erogeneity for the depth range 1100-1400 km from the one-step inversion, based on
the wide spread of RS/P and a de-correlation between vs and vp structure, whereas
we infer chemical heterogeneity around 200-670 km depth in the two-step inversion,
based on the wide spread of vs anomalies and RS/P.

The inversion method also affects S-Φ correlation derived from our joint 7 B-
splines vs + vφ real data inversions (Chapter 4). We must be cautious when in-
terpreting upper and lowermost mantle bulk sound velocity anomalies because of
their high starting model dependency and large ghost patterns, especially in the
two-step inversion. This is also where the one-step and two-step model deviate the
most from each other. Patterns in 3D vφ agree well in the rest of the mantle. The
one-step correlation never becomes negative, whereas the two-step correlation does
move towards anti-correlation in the lower mantle, albeit still close to de-correlation.
We obtain more negative S-Φ correlation in the lower mantle when extracting δlnvφ
from 7 B-splines vs and vp models, and even more negative for 21 splines vs and vp
models computed in this chapter.

We make robust normal mode observations of mantle density structures in Chap-
ter 5, of comparable amplitude to vp anomalies, which are not suffering from strong
ghost patterns observed previously. The one-step density inversion is less affected
by the starting model, although both the one- and two-step inversions show the
same large-scale features independent of the starting model. De-correlation of vs
and density anomalies in the upper mantle leads to another hint towards chemical
heterogeneity, since a purely thermally dominated mantle would result in positive
correlation. Correlation between 3D vs and density increases towards the lower man-
tle, and decreases again towards the CMB, reflecting a possible thermal dominance
in the mid-lower mantle, and chemical heterogeneity at the base of the mantle. The
most striking feature at the base of the mantle is a dense sliver underlying part of
the otherwise low density LLSVPs. Such a dense base could reconcile previously
conflicting observations of lower mantle LLSVP density.

Finally, in Chapter 6, we obtain promising results for imaging 3D variations in
shear attenuation in the mantle, especially in the relatively unknown lower mantle,
with the one-step inversion for the first time. Synthetic tests recovering input vs
and qµ structure lead to a preferred way of inverting for elastic (vs) structure first,
keeping qµ fixed, and using the resulting model as starting point for a joint inversion
of elastic and anelastic structure (vs + qµ). Applying this method to real data is
challenging, probably because of the small spectral signal of attenuation. Selecting
modes with sufficient sensitivity to shear attenuation is important, as adding more
and more modes with only limited sensitivity does not guarantee a better attenu-
ation model. It also appears to be crucial to resolve fine-scale elastic structure to
avoid leakage of such unresolved structure into attenuation. Our one-step attenua-
tion model shares some similarities with the two-step model by Talavera-Soza et al.
(2021b), using the same normal mode data set, but differs in the position of high-
and low-attenuation regions.
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7.1.1. On the nature of LLSVPs
We have provided novel observations of the large-scale structure of LLSVPs. To
summarize our findings, we show cross-sections through our preferred vs and vp
models from Chapter 4 (Figs. 7.1a-d and 7.2a-d) with higher radial (21 splines) and
lateral resolution (up to degree 12) than in the combined vs, vp, ρ and discontinuity
topography from Chapter 5 (7 B-splines, up to degree 6). Our preferred density
models do originate from this latter inversion (Figs. 7.1e,f and 7.2e,f). The atten-
uation models shown in this summary (Figs. 7.1g,h and 7.2g,h) are derived from
the smallest subset of modes used in Chapter 6, so for the same modes as in the
splitting function inversion of Talavera-Soza et al. (2021b). These models have the
lowest resolution, both radially and laterally, which will very likely improve in the
continuation of the research presented here. We also show depth slices at 2800 km
through these four models (Fig. 7.3).

The LLSVPs (or LLVPs) are expressed differently in models of vs and vp, with
a more concentrated low-velocity base in vs and more diffuse low velocity anomalies
in vp, especially in the two-step vp model. As noted before, low velocity material is
horizontally deflected at various depths in the mantle, suggesting ponding of plume
material potentially due to viscosity contrasts. We are not able to image individual
plume conduits with normal modes, so instead we might be looking at the smeared
version of several adjacent plumes.

LLSVPs are mostly slow and lighter-than-average structures, reflecting a dom-
inant role of temperature, except for part of their base. There we find a slow yet
dense basal sliver, which has to be compositionally distinct. Potential candidates
for this layer are (i) enrichment in iron, either through penetration from outer core
material into the solid mantle or through iron partitioning in partial melt, (ii) recy-
cling of MORB over millions of years creating warm low velocity blobs with a dense
base of basaltic material, if MORB is sufficiently dense, or (iii) a layer of preserved
dense primordial material, i.e. remnants of an ancient magma ocean.

Although shifted in position, the bulk of LLSVPs is characterized by low attenu-
ation in both the one-step and two-step models. Low attenuation in LLSVPs can be
explained by larger grain size dominating over higher temperature effects. However,
with the current resolution, we cannot rule out smaller volumes of high attenuation
below the detection limit. The high attenuation regions around the LLSVPs could be
due to highly attenuating fine grain-sized post-perovskite. Post-perovskite is pref-
erentially linked to colder regions such as a slab graveyard surrounding LLSVPs,
fitting this hypothesis.

7.2. Suggestions for future work
A number of interesting future research directions arise from the results presented
in this thesis. Here we present some ideas that would contribute to valuable insights
into the nature of the Earth’s deep interior, but have not been carried out in this
thesis due to time limitations.

• We have only shown preliminary results for the one-step attenuation inversion
due to time constraints. Synthetic inversions demonstrate that our real data



7

156 7. Synthesis

Figure 7.1: Summary of cross-sections through the African LLSVP in preferred one-step (left
column) and two-step (right column) models, with a) one-step vs model, b) two-step vs model,
c) one-step vp model, d) two-step vp model from Chapter 4; e) one-step and f) two-step density
models from Chapter 5; g) one-step and h) two-step shear attenuation Talavera-Soza et al. (2021b)
models from Chapter 6. Cross-sections through the Pacific LLSVP look the same, due to inclusion
of even degrees only. The 670-discontinuity is shown by a black line.
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Figure 7.2: Same as in Fig. 7.1, but for a different cross-section.
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Figure 7.3: Depth slices at 2800 km through a) the preferred four one-step models for vs, vp, ρ
and qµ heterogeneity, and b) the four two-step models for the same variables.

one-step attenuation models could be improved by inverting for more complex
elastic structures, to reduce any leakage from elastic to anelastic structures.
Other future endeavours related to attenuation include an assessment of source
uncertainties, and the inclusion of proper ellipticity corrections.

• One of the most obvious next steps is to increase the extent of group coupling.
The current normal mode data set is limited to self- and group coupling in
the one-step direct spectrum inversion, with a maximum of three modes cross-
coupled per mode group. This limited amount of cross-coupling was dictated
by working with an un-parallelized legacy code. Full-coupling in a certain
frequency band is the most accurate method for computing synthetic spectra,
but requires a lot of computational power and fundamental changes to the
entire code. We therefore first need to parallelize certain pieces of the code
(e.g. computation of partial derivatives) to be able to handle a gradual increase
in cross-coupling smoothly.
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. Part of the reason for expanding the cross-coupling between modes is
introducing more odd-degree sensitivity. We have seen in Chapter 3
that our current normal mode data set contains significantly more mode
pairs that couple for even-degree than odd-degree structure. LLSVPs are
dominated by degree 2 structure, but do not necessarily share the same
thermochemical signature and origin (Doucet et al., 2020). Constraints
on odd-degree heterogeneity in LLSVPs primarily come from body waves
in joint inversions for normal modes, surface waves and body waves (e.g.
Ritsema et al., 2011; Koelemeijer et al., 2016), but it will be insightful
to add large-scale normal mode observations by extending cross-coupling
for odd degrees.

• We have largely neglected one of the two main types of normal modes in
this thesis: toriodal modes. Recent advances in toroidal mode splitting func-
tion measurements on the horizontal components of seismograms (Schneider
& Deuss, 2021) spark new research ideas, as toroidal modes provide more in-
formation on horizontally polarized structures. These measurements can be
easily added to our spheroidal vertical component data set, both in terms of
spectral segments for the one-step inversion, and in terms of splitting functions
for the two-step inversion.
. Adding observations from toroidal modes and spheroidal-toroidal cross-
coupling constrains anisotropy in the mantle, which is an indicator of
mantle flow patterns. Anisotropy in the deep Earth has primarily been
mapped using body waves, such as S-wave splitting (e.g. Vinnik et al.,
1989; Reiss et al., 2019). When inverting for anisotropy, it might be
important to include attenuation as well, to account for dispersion effects
(Karaoğlu & Romanowicz, 2018). The first steps of including mantle
anisotropy involve solving for the most simple forms of anisotropy: radial
and azimuthal anisotropy.

• The novel normal mode observations of lower mantle density presented in
Chapter 5 can be used as a basis for geodynamic modelling, to find a geody-
namically viable origin for the partly dense base of LLSVPs. The geodynamic
density model has to be subjected to a tomographic filter before being com-
pared to our normal mode density model, as the latter model has limited
resolution with maximum spherical harmonic degree 6 or 12. As well as fit-
ting our density observations, this geodynamic model should also comply with
our 3D vs and vp models. The modelled geochemical assemblages and temper-
atures have to be translated to seismic velocities, for example through lookup
tables generated for a thermodynamic mineralogical model of specific mantle
composition (Stixrude & Lithgow-Bertelloni, 2011).

• We have looked at anomalies of isotropic S-wave and P-wave velocity and
density in a joint inversion, and vs and shear attenuation in another joint
inversion. In an ultimate inversion we would invert for all of these parameters
at once, including anisotropy, to minimize any trade-offs.
. The inner core is a region of strong anisotropy, partially constrained by
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normal mode studies (e.g. Durek & Romanowicz, 1999; Beghein & Tram-
pert, 2003). The scope of this thesis excluded the inner core, and hence
the inner core sensitive modes have been excluded from our inversions to
avoid inner core heterogeneity falsely mapped as mantle anomalies. In
future studies, inner core sensitive modes may be included, to solve for
a combined model of simple inner core anisotropy and mantle structure,
similar to Ishii & Tromp (2004). The addition of inner core modes in
their study did not alter the density patterns, but did help to contrain
density amplitudes. Interaction or cross-coupling between inner core and
mantle modes potentially provides new insights on mantle anomalies.
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