
Resource
https://doi.org/10.1038/s43588-021-00183-z

Department of Information and Computing Sciences, Utrecht University, Utrecht, The Netherlands. ✉e-mail: l.p.a.arts@uu.nl; vandenbroek@acm.org

Signals are essential in both nature and (man-made) technology,
because they enable communication1,2 (Fig. 1). Mathematically,
a signal is a function of one (for example, speech) or more (for

example, a two-dimensional (2D) image) dimensions that carries
information about the properties (for example, state) of a physi-
cal system3. A source transmits a signal via a channel to a receiver,
which delivers it to its destination. For example, a brain sends an
oral message via vocal cords through the air, which is received by the
listener’s ear, which brings it to the listener’s brain. When the same
message is transmitted via a smartphone, the air is complemented
by a chain of technology, leaving the rest of the chain untouched.
Signals are omnipresent in society3,4 (Fig. 1).

Independent of its source, a signal needs to be processed to enable
the generation, transformation, extraction and interpretation of the
information it is carrying3. A widely used method to interpret (that
is, extract and analyze) repeating patterns in signals is the Fourier
transform (FT)3,4. A FT transforms a function of time into a complex-
valued function of frequency, representing the magnitudes of the fre-
quencies. The FT assumes the signal is stationary. In other words, it
is a stochastic process in which the marginal and joint density func-
tions do not depend on the choice of time origin2. However, in real-
world practice, this assumption is often violated. Consequently, the
FT is unable to process real-world non-stationary signals reliably5.
To circumvent the problem of non-stationarity, advanced algorithms
exist that analyze a signal based on their decomposition in elemen-
tary signals that are well localized (or boxed) in time and frequency4.
These include the short-term Fourier transform (STFT), also known
as the Gabor transform, and the wavelet transform (WT)6.

The STFT is very similar to the FT, but it uses a window function
and short wavelets localized in both time and frequency, instead
of pure waves, to extract temporal and spectral information. The
drawback of the STFT is its use of a fixed-width window function,
as a result of which frequency analysis is restricted to frequencies
with a wavelength close to the window width7. Additionally, chop-
ping up the signal in short, fixed-width windows scrambles the sig-
nal’s properties. Accordingly, the frequency analysis is affected8.

The WT overcomes the drawback of the STFT by not relying on
a window function. Instead, it uses a family of base functions that
dilate and contract with frequency to represent the signal, thereby
ensuring high resolution across the entire frequency spectrum.
Consequently, the WT suffers from a high computational load. This
prohibits its use with low-end hardware and for real-time applica-
tions9, as real-time computation requires an algorithmic computa-
tion time that is smaller than the signal’s duration.

To reduce the computational burden of the WT, the discrete
wavelet transform (DWT) has been proposed, which applies a
coarse, logarithmic discretization. This makes DWT suitable
for data compression, but simultaneously disqualifies it from use
in detailed analysis, as it is not able to analyze intricate time–fre-
quency details8 (as shown in Fig. 2). For this, a true WT—the com-
putationally expensive continuous wavelet transform (CWT)—also
called an integral wavelet transform (IWT), is needed. CWT offers
a high-resolution representation of the time–frequency domain
by using near-continuous discretization. Its continuous time and
frequency scales better support intricate time–frequency analysis.
Consequently, CWT is often described as the mathematical micro-
scope of data analysis10 (Fig. 2).

In this Resource paper we introduce the open-source fast con-
tinuous wavelet transform (fCWT), which brings real-time, high-
resolution CWT to real-world practice (for example, biosignals11–13,
cybersecurity14,15 and renewable energy management16,17; Fig. 1).
Next, we assess the performance of fCWT in a benchmark study
and then validate the use of fCWT on synthetic, electroencephalog-
raphy (EEG) and in vivo electrophysiological data. We end with a
concise discussion.

Results
The performance of fCWT was benchmarked against six widely
used CWT implementations, then it was subjected to a threefold
validation on accuracy, resolution and throughput using, respec-
tively, synthetic data, human EEG data and high-density in vivo
extracellular rodent electrophysiology.

The fast continuous wavelet transformation
(fCWT) for real-time, high-quality, noise-resistant
time–frequency analysis
Lukas P. A. Arts    ✉ and Egon. L. van den Broek    ✉

The spectral analysis of signals is currently either dominated by the speed–accuracy trade-off or ignores a signal’s often non-
stationary character. Here we introduce an open-source algorithm to calculate the fast continuous wavelet transform (fCWT).
The parallel environment of fCWT separates scale-independent and scale-dependent operations, while utilizing optimized fast
Fourier transforms that exploit downsampled wavelets. fCWT is benchmarked for speed against eight competitive algorithms,
tested on noise resistance and validated on synthetic electroencephalography and in vivo extracellular local field potential
data. fCWT is shown to have the accuracy of CWT, to have 100 times higher spectral resolution than algorithms equal in speed,
to be 122 times and 34 times faster than the reference and fastest state-of-the-art implementations and we demonstrate its
real-time performance, as confirmed by the real-time analysis ratio. fCWT provides an improved balance between speed and
accuracy, which enables real-time, wide-band, high-quality, time–frequency analysis of non-stationary noisy signals.

Nature Computational Science | VOL 2 | January 2022 | 47–58 | www.nature.com/natcomputsci 47

mailto:l.p.a.arts@uu.nl
mailto:vandenbroek@acm.org
http://orcid.org/0000-0001-8398-0259
http://orcid.org/0000-0002-2017-0141
http://crossmark.crossref.org/dialog/?doi=10.1038/s43588-021-00183-z&domain=pdf
http://www.nature.com/natcomputsci

Resource NaTurE CompuTaTional SciEncE

Benchmark. To benchmark the performance of fCWT we com-
pared fCWT to the six widely used CWT implementations shown
in Fig. 3. Because of its widespread use across research, the com-
plex Morlet wavelet (σ = 6) was used to calculate the CWT of three
signals, all containing N = 100,000 samples. The Morlet wavelet is
defined as a plane wave modulated by a Gaussian envelope. The
parameter σ controls the time–frequency resolution trade-off18. The
first signal was generated to be non-stationary using a sine wave
whose frequency changed linearly from fstart = 1 Hz to fend = 7 Hz. The
second and third signals contained uniformly random noise and a

stationary piecewise defined function, respectively. Three different
signals were used to prove fCWT’s flexibility and signal indepen-
dence. Nevertheless, the signal content and wavelet choice are irrel-
evant to the performance of fCWT (see Methods for details).

All CWT implementations, including fCWT, use a near-continu-
ous frequency scale containing 3,000 frequencies (range, f0 = 1 Hz to
f1 = 32 Hz), evenly spaced in exponential space. fCWT thus features
a high-frequency resolution in the low-frequency spectrum and a
lower frequency resolution in the high-frequency spectrum.

PyWavelet19 and SciPy20 execution times were measured in a
Python 3.8.6 environment, using the Timeit library inside the code
to exclude compile time. The overhead resulting from the transla-
tion between C and Python was removed by estimating the inter-
section factor of the linear relationship between signal size and
execution time. MATLAB v2019b and Mathematica 12.0.0.0 execu-
tion times were measured using the program-specific timing func-
tions that measure the exact kernel execution times.

Wavelib21 was used as the benchmark’s baseline algorithm as it
is the reference CWT C/C++ library9, and most microcontrollers
are programmed using C/C++. Wavelib21 thus serves as a baseline
for the reported speed-ups (Fig. 3). The reported execution times
were obtained from an eight-core 2.30-GHz central processing
unit (CPU) via 100 successive runs, which removed the influence
of caching behavior. A 10-s pause between runs was implemented
to prevent the CPU from overheating. Outliers that deviated by
more than 3 s.d. from the mean were removed. Wavelib and SciPy
had three outliers, leaving N = 97 samples for all algorithms to
ensure equal group sizes. A repeated-measures analysis of vari-
ance (ANOVA) revealed that the algorithms differed significantly,
F(4, 93) = 2,474,778.911, P ≪ 0.001, η2 = 1.000, where F denotes the
ANOVA statistic based on the ratio of mean squares, which indi-
cates the ratio between the explained and unexplained variance or,
in other words, the between- and within-group variability. P is the
probability that an observed difference occurred by chance, and η2
‘indicates the proportion of variance accounted for (that is, a gen-
eralization of r/r2 and R/R2 in correlation/regression analysis)13.
Also, all pairwise comparisons were highly significant (P ≪ 0.001,

CWT used in gravity wave detection by the Laser
Interferometer Gravitational-Wave

Observatory (LIGO)

Colorbar shows power (dB)
CWT used to measure ground deformation

above gas reservoir

CWT used to measure overall body health
remotely during nocturnal body movements

Real-time high-resolution signal processing (e.g.
classical music), stress reduction via enhanced
noise canceling.

Reducing risk by real-time machine monitoring and
increasing prospecting efficiency 34–120 ×.

Real-time BCI and saving lives by continuous,
remote, real-time monitoring of the cardiovascular
system.

0.125

0.25

0.5

1
0 0.5 1.0 1.5 2.0 2.5 3.0

Time (year)
Pe

rio
d

(y
r)

8
4
2
1
1/2
1/4
1/8

200
130

80
50

30

0 20 40 60 80 100
Time (s)

H
ea

rt
ra

te
 (B

PM
)

Movement

High spectrum power: 17.0
Low spectrum power: 64.0

Video, audio, imagery, accelerometer, fingerprints,
ultrasonography, laser interferometer, various
sensory data…

Ground-penetrating radar, sonar, audio,
ultrasonic, power consumption, various sensory
data…

Electrocardiography (ECG),
electroencephalography (EEG), magnetic
resonance imaging (MRI), ultrasonography…

Cybersecurity, seismology, microscope focusing, spectral
analysis, signal compression and enhancement, gravity
wave detection, mass spectrometry…

Oil and mineral prospecting, process monitoring
and control, renewable energy management,
leakage detection, circuit testing…

Diagnostic imaging, brain–computer interfaces
(BCI), heart disease diagnosis, medical image
classification…

Science and engineering Industry Health

Applications

Data type

fCWT’s
advantage

Example

512

256

128

64

32
0.30 0.35 0.40 0.45

Time (s)

Fr
eq

ue
nc

y
(H

z)

Hanford, Washington (H1)

Fig. 1 | The impact of time–frequency analysis across society. In both nature and technology, signals enable communication, and processing techniques
such as the CWT (also called IWT) are applied throughout. CWT was the primary processing method used in the Laser Interferometer Gravitational-wave
Observatory (LIGO) experiment to detect gravity waves in highly non-stationary gravitational wave data. In industry, CWT has been applied to enhance
mineral detection and speech segmentation. CWT also allows the detailed analysis of biosignals such as an electrocardiogram in the medical domain.
BCI, brain–computer interface; BPM, beats per minute. Image credits: (left) adapted with permission from ref. 82, Caltech/MIT/LIGO Laboratory; (center)
adapted from ref. 83 under a CC BY license.

D
W

T
fre

qu
en

cy
 (k

H
z) 60

40

20

0

0.5

1.0

Normalized
power (dB)

C
W

T
fre

qu
en

cy
 (k

H
z)

0.7 1.4 2.1 2.8
Time (ms)

60
40

20

0

0.5

1.0

Fig. 2 | Comparison of DWT and CWT. A time-varying pulse signal of a
sonar device is analyzed in the range 0–60 kHz using the DWT and the
CWT. The DWT uses a coarse time–frequency discretization to favor
speed. By contrast, the CWT uses a time-consuming near-continuous
discretization of the time and frequency scales to favor resolution.

Nature Computational Science | VOL 2 | January 2022 | 47–58 | www.nature.com/natcomputsci48

https://creativecommons.org/licenses/by/4.0/
http://www.nature.com/natcomputsci

ResourceNaTurE CompuTaTional SciEncE

Bonferroni-corrected), with fCWT being, respectively, 122 times
and 34 times faster than the reference Wavelib21 and the fastest
available algorithm, PyWavelet19. Figure 3 presents descriptive sta-
tistics for all distributions.

The fast running time of fCWT was also compared to two other
fast time–frequency estimation algorithms: the STFT and DWT.
In this benchmark, STFT uses a Blackman window of 500 ms with
400-ms overlap, and DWT uses 20 dyadic (that is, aj = 2j) scales of
Debauchie decomposition. The parameters were chosen to reflect
actual usage in real-world applications (Fig. 1). Both algorithms are
implemented and benchmarked in MATLAB using the in-program
timing functions. CWT implementations use 600 frequencies,
evenly spaced in exponential space. Fewer frequencies are used to
reduce memory usage.

To assess whether or not the algorithms perform in real time
(that is, an algorithmic computation time less than the signal’s dura-
tion), we define the real-time analysis ratio (RAR):

RAR =

Δtcomputation
Δtsignal

, (1)

with Δtcomputation and Δtsignal being the duration of the computation and
signal, respectively. In the case of RAR > 1, an algorithm does not
operate in real time. In the case of RAR just shy of 1, the algorithm
is unlikely to run in real time as the time–frequency calculation is
merely one step in a processing pipeline. When RAR ≪ 1, real-time
operation is likely to be achieved or within reach. For all six CWT
implementations and two traditional time–frequency techniques
(that is, STFT and DWT), Fig. 3b shows RAR versus sampling fre-
quency. The RARs were obtained by averaging 100 successive runs
on 10-s signals with varying sampling frequencies (range, fs0 = 1 kHz

to fs1 = 200 kHz). fCWT and CWT used 5-s signals to fit memory
constraints. Small fluctuations in RAR are caused by the stochastic
nature of benchmarks performed under real-world conditions. It
should be noted that the sampling frequency is directly related to
the number of samples. Therefore, we test fCWT’s performance for
different signal lengths.

STFT and DWT exhibit superior real-time behavior on signals
with sampling frequencies up to 200 kHz and beyond. However,
they achieve these very high speeds because of their considerable
drop in precision, as shown in Fig. 2. Therefore, STFT and DWT
are not suitable for wide-band high-resolution time–frequency esti-
mation. In these cases, CWT is favored. However, even the fastest
CWT implementation available tends to be extremely slow com-
pared to STFT and DWT. fCWT merges the best of both worlds,
yielding real-time behavior on signals with sampling frequencies up
to 200 kHz. This has brought CWT’s execution time close to that
of STFT and DWT, while having 25 times to 100 times the spec-
tral resolution of DWT throughout the spectral domain. As such,
fCWT is a truly competitive real-time, high-resolution alternative
for STFT and DWT.

fCWT allows signals with 34 to 122 times the sampling frequency
of existing CWT implementations. Figure 3 shows fCWT’s capa-
bility of analyzing signals up to 200 kHz in real time, whereas the
fastest implementation of CWT fails at fs = 30 kHz. Consequently,
fCWT enables real-time analysis of high-frequency signal dynam-
ics, as exist in audio (for example, loudspeaker characterization22,
full band speech coding23 and paralinguistic analysis24), biosignals
(for example, brain–computer interfaces12 and peripheral signals
such as ECG, electromyography, electrodermal activity and respi-
ration11,13), image and video (for example, distance transforms25,26),
sonar and radar27,28, network analysis (for example, renewable

3.55×

3.40×

2.41×

1.94×

1.62×

1.00×

121.72×

34.29×

35.85×

50.54×

62.75×

75.20×

121.72×

a

0 20 40 60 80 100 120 140

Speed-up factor

fCWT

PyWavelet

MATLAB

SciPy

Rwave

Mathematica

Wavelib

0 20 40 60 80 100 120 140 160 180 200

Sampling frequency (kHz)

10–3

10–2

10–1

100

R
A

R

Not real time

Real time

DWT

STFT

fCWTFastest CWT available

b

Mean Min. Max. S.d. S.e. 95% CI

0.37 0.36 0.45 0.01 0.00 (0.37,0.37)

12.69 11.19 16.63 1.33 0.14 (12.33,13.04)

13.26 11.08 15.97 1.20 0.12 (12.95,13.58)

18.70 17.70 22.59 1.11 0.11 (18.40,18.99)

23.22 23.03 24.16 0.17 0.02 (23.17,23.26)

27.83 26.17 29.32 0.49 0.05 (27.70,27.96)

45.04 44.63 46.89 0.38 0.04 (44.93,45.14)

Fig. 3 | Benchmarking with fCWT and six state-of-the-art time–frequency methods. a, The average speed-up of fCWT and six publicly available
implementations after 100 runs on a signal of length N = 100,000 with accompanying statistics (in seconds). The signal was analyzed using 3,000
frequencies ranging from f0 = 1 Hz to f1 = 32 Hz. b, The RAR (equation (1)) of fCWT (600 frequencies, σ = 6), the fastest CWT available (PyWavelet’s CWT,
600 frequencies, σ = 6), STFT (500-ms Blackman with 400-ms overlap) and DWT (four-order Debauchie 20 levels) versus sampling frequency on a 10-s
synthetic signal. Parameters were chosen to reflect actual usage in real-world applications. Jumps in the performance of fCWT are explained in the Methods.

Nature Computational Science | VOL 2 | January 2022 | 47–58 | www.nature.com/natcomputsci 49

http://www.nature.com/natcomputsci

Resource NaTurE CompuTaTional SciEncE

energy management16,17 and cybersecurity14,15) and machine fault
diagnosis29,30 (Fig. 1).

Synthetic data. fCWT’s spectral resolution is equal to that of CWT.
In contrast to many other CWT optimization studies, we do not
compromise precision. To demonstrate this, we compared fCWT to
CWT on both clean and noisy synthetic datasets (see Data availabil-
ity statement for details). Each dataset consists of three wavepackets
that validate an algorithm on spectral and temporal resolution and
bandwidth size. A noisy dataset was generated to mimic realistic
conditions and assess noise resilience.

Quantitative assessment of each algorithm’s performance is car-
ried out by calculating the per-wavepacket mean absolute percent-
age error (MAPE) scores of 100 runs on both datasets between
actual frequencies and the time–frequency ridges extracted from the
spectra (see Methods for details). The MAPE scores of the clean data
are based on one run, as they are completely deterministic. We used
a relative error measure to weight errors at all frequencies evenly.

Next to fCWT and CWT, STFT and DWT were also included,
allowing us to show the speed–accuracy trade-off that currently
dominates the time–frequency landscape. STFT is based on calcu-
lating multiple traditional FTs with overlapping fixed-sized win-
dows. The STFT is very fast and efficient as it relies on the fast
Fourier transform (FFT). However, the use of fixed-sized windows
requires the wavelengths to be close to the window size. Hence, fre-
quency resolution changes drastically over the spectrum, and only
a small frequency band can be analyzed at the same time. DWT
does not have this drawback. It does not rely on a window func-
tion. Similar to CWT, it uses wavelets that dilate and contract with
frequency to represent the signal. However, in contrast to CWT, it
uses far fewer wavelets to represent the signal. This makes DWT
a very fast time–frequency estimator. Finally, to complete the
time–frequency landscape and allow a thorough comparison on
accuracy, we added the high-resolution Wigner–Ville distribu-
tion (WVD)4, the advanced Hilbert–Huang transform (HHT)31
and the more recent empirical wavelet transform (EWT)32. WVD
has the highest time–frequency resolution mathematically pos-
sible and HHT and EWT improve the resolution by using a slow
but accurate adaptive iterative process to decompose a signal into
fundamental functions that are not necessarily sine functions (for
example, FFT). Manual tuning obtained the following parameters
for optimal time–frequency sharpness. fCWT and CWT use the
complex Morlet wavelet (σ = 6) and a frequency scale of 480 fre-
quencies (range, f0 = 0.25 Hz to f1 = 250 Hz), evenly spaced in expo-
nential space (cf. the 111Benchmark section). STFT uses a 500-ms
Blackman window with 400-ms overlap, DWT uses 11 dyadic (that
is, aj = 2j) scales of 15-order Daubechie wavelet decomposition, and
WVD does not take parameters. HHT and EWT use a frequency
resolution of 0.25 Hz. HHT uses seven intrinsic modes that were
extracted using a maximum signal-to-residual ratio of 20 as a stop-
ping criterion. EWT decomposes the signal using a peak threshold
of 5%. Outliers that deviated more than 3 s.d. from the mean were
removed. The HHT had four outliers, which resulted in N = 96 for
all algorithms to ensure equal group sizes.

Overall, the per-wavepacket MAPE scores differed signifi-
cantly on both the clean and noisy datasets between the algorithms
(F(6, 90) = 112, 243.890, P ≪ 0.001, η2 = 1.000; Fig. 4). Within each
algorithm, the per-wavepacket MAPE scores also differed signifi-
cantly between each other (F(2, 94) = 399.044, P ≪ 0.001, η2 = 0.895)
However, fCWT and CWT generated similar, low MAPE scores on
both the clean and noisy datasets for all three wavepackets. This was
confirmed by a correlation analysis per wavepacket, respectively
r(94) = 0.996, P < 0.001, r(94) = 1.000, P < 0.001 and r(94) = 0.997,
P < 0.001. The low MAPE scores can be explained by CWT’s and
fCWT’s wavelet convolution, which averages fluctuations of a sig-
nal at different scales33, and its redundancy (that is, wavelets are

not orthogonal at different scales), which reduces noise by cancel-
ing out the random signal components34. Hence, both can separate
frequency bands and their details across the full frequency range.
When compared to the slow CWT, fCWT’s accuracy and noise-
handling capabilities are not compromised by its highly efficient
implementation. Small differences in the time–frequency spectrum
can be seen at the edges. However, these differences are caused by
MATLAB’s mitigation of edge artifacts (202020Implementation of
fCWT section in the Methods).

STFT cannot extract details of the lower frequency bands present
in the first and third wavepackets. The wavelengths of these waves
are too long for the 500-ms window we used, whereas a larger win-
dow cannot distinguish the complex non-stationary behavior of
the first packet. Nevertheless, STFT shows strong noise-handling
capabilities that result from the averaging effect of FFT’s inherited
convolution. DWT is powerful in denoising, but not suitable for
time–frequency analysis. WVD suffers from its well-known arti-
facts, which are only made worse by the additive noise4. HHT and
EWT are very good at separating the frequency bands of the clean
dataset. Unfortunately, HHT’s frequency estimations, and to a lesser
extent those from EWT, fluctuate heavily, leading to high MAPE
values. These distortions are caused by the interference between the
multiple wavefunctions in each wavepacket. This effect increases
dramatically for both algorithms in the noisy dataset4.

EEG. Owing to its ease of measurement and high temporal resolu-
tion, the vast majority of neuroscience studies are based on EEG
measurements35. As EEG measures brain activity via electrodes on
the skull, no medical procedures are needed. However, such external
measurements do suffer from increased noise. Fluctuations in EEG
caused by brain activity are orders of magnitude smaller than the
disturbances caused by eye, face and body movements36. Therefore,
studies average the recordings of many trials to cancel random fluc-
tuations. Unfortunately, the use of repeated trials removes the tem-
poral advantage of EEG and prevents its applicability in real-time
implementations, which rely on single-trial estimation.

The often-used FFT cannot handle the highly non-stationary
character of EEG signals. Additionally, EEG sampling frequencies
are often 1 kHz, and the simultaneous recording of 64 electrodes
is standard. Hence, high-speed, non-stationary, time–frequency
analysis is essential to have any chance of success in single-trial
estimation. This is a criterion that current time–frequency tech-
niques are unable to meet. Techniques like STFT and DWT8 are
fast but lack the desired resolution in representation, whereas
methods like CWT6 are precise but lack speed. fCWT fuses the
best of both worlds by accelerating the high-resolution CWT by
34 to 122 times. So, we can improve the resolution by ≥34 times
or handle ≥34 times as many data than the fastest CWT imple-
mentation available in the same time frame. To demonstrate the
impact of real-time super-resolution on neuroscience, fCWT was
thus benchmarked against full-resolution CWT and fast STFT, and
DWT on a single-trial EEG dataset of subjects performing mental
arithmetic tasks37.

Because active concentration is known to be most visible in the
frontal region of the brain36, the signals of three frontal electrodes
(pre-frontal 1, pre-frontal 2 and mid-frontal in the 10–20 system36)
were averaged to reduce local fluctuations. We analyzed the resulting
signal in the δ (delta), θ (theta), α (alpha), β (beta) and γ (gamma)
frequency bands, using a frequency range that spans five octaves
(f0 = 2 Hz to f1 = 64 Hz). Simultaneous analysis of all these frequency
bands is vital for cognitive task experiments, with pre-frontal δ fre-
quencies (2–4 Hz) being associated with attention and motivation38,
and the power of θ oscillations (4−7 Hz) reflecting memory encod-
ing and retrieval39. Lower α-desynchronization (8–13 Hz) relates to
task-unspecific attentional demands and β-band (13–30 Hz) power
increases with demanding cognitive tasks36. The γ oscillations

Nature Computational Science | VOL 2 | January 2022 | 47–58 | www.nature.com/natcomputsci50

http://www.nature.com/natcomputsci

ResourceNaTurE CompuTaTional SciEncE

(~30−100 Hz) indicate complex cognitive thinking (for example,
object recognition and sensory processing40). Consequently, full-
range, high-resolution frequency analysis is vital.

The analysis of CWT, fCWT, STFT and DWT was comple-
mented with 3.0%CWT (that is, CWT with fCWT’s RAR; Fig.
5). 3.0%CWT enables a fair comparison between the real-time

a

c

b

100

SNR 0dBSynthetic data

4 100
20
5

0

100
20
5

0

100

50
20
0

100

50
20

100

50
20

100

50
20

0

100
20
5

0

4

4

0

4

0

4

0

4

0

4

0

F
re

qu
en

cy
 (

H
z)

F
requency (H

z)

fC
W

T
C

W
T

D
W

T
S

T
F

T
W

V
D

H
H

T
E

W
T

fC
W

T
C

W
T

D
W

T
S

T
F

T
W

V
D

H
H

T
E

W
T

20
5

0

100
20
5

0

100
20
5

100

50
20
0

100

50
20
0

100

50
20
0

100

104

102

100

104

102

100

0

M
A

P
E

 c
le

an
 (

%
)

M
A

P
E

 n
oi

sy
 (

%
)

5

WP 1
fCWT CWT DWT STFT WVD HHT EWT

2 3 WP 1 2 3 WP 1 2 3 WP 1 2 3 WP 1 2 3 WP 1 2 3 WP 1 2 3

10

Time (s)

MAPE

15 20 0

0 1

5 10

Time (s)

15 2017 18 19

Normalized power (dB)

50
20
0

Fig. 4 | Benchmark results for synthetic data. a, Synthetic data composed of wavepackets WP1, WP2 and WP3 (see Methods for details). Seven time–
frequency estimation techniques that cover a frequency range from f0 = 0.25 Hz to the Nyquist frequency f1 = 250 Hz are shown. fCWT and CWT use the
Morlet wavelet (σ = 6) and 480 frequencies to divide the spectrum, DWT uses 11 levels of 15-order Debauchie wavelet decomposition, and STFT uses a
500-ms Blackman window with 400-ms overlap to obtain optimal time–frequency resolution. WVD takes no parameters. HHT and EWT have a frequency
resolution of 0.25 Hz and rely on an adaptive iterating process. HHT uses seven intrinsic modes that were extracted using a maximum signal-to-residual
ratio stopping criterion. A close-up of the time–frequency estimation of the third wavepacket is also shown for comparison. As relative intensity is of
primary interest, the spectra are normalized to a [0, 1] range. b, As in a, but 0-dB white Gaussian noise is added to the synthetic data. The parameters
remained the same. c, MAPE scores for the clean and noisy data. Boxes show the median and 25th to 75th percentile range; whiskers show minima and
maxima. In the top plot only medians are visible as results on the clean dataset are deterministic and, hence, contain no variance. See Supplementary Table
1 for the distribution statistics.

Nature Computational Science | VOL 2 | January 2022 | 47–58 | www.nature.com/natcomputsci 51

http://www.nature.com/natcomputsci

Resource NaTurE CompuTaTional SciEncE

resolution of CWT and full fCWT using 650 frequencies and
3.0%CWT using 20 frequencies. The three CWTs use the complex-
valued Morlet wavelet (σ = 20), tuned for optimal time–frequency
resolution. Based on manual tuning we set a 500-ms Blackman win-
dow with 400-ms overlap for STFT and 11 dyadic (that is, aj = 2j)
scales of 15-order Debauchie wavelet decomposition for DWT,
enabling maximal time–frequency sharpness. RAR versus the num-
ber of 1-kHz channels was calculated for full-resolution CWT and
fCWT, STFT and DWT.

The resolution difference between the equally fast full fCWT
and 3.0%CWT is most prominent during the mental arithmetic
task. Real-time fCWT distinguishes different EEG frequency bands
much better than real-time CWT. The sheer amount of subdivi-
sions in the frequency spectrum allows fCWT to show the small
chaotic β-frequency variations often seen during active concentra-
tion36 and the slow oscillating δ-band power associated with moti-
vation38, in real time. Having the same runtime, the fastest CWT
implementation fails. Although STFT can separate frequencies in
the β-frequency (13–30 Hz) and γ-frequency (~30−100 Hz) bands,
it suffers from low spectral resolution in the δ-frequency (<4 Hz)
and θ-frequency (4–7 Hz) bands. Hence, STFT makes wide-band
EEG analysis impractical. Again, DWT was shown to be unsuitable
for detailed time–frequency analysis.

fCWT’s power excels when an entire array of EEG electrodes is
analyzed in real time. Although the use of EEG is gaining popu-
larity, its low spatial resolution remains a huge drawback. Figure
5 shows that the fastest CWT implementation available can only
handle ~20–24 electrodes (or streams of data) simultaneously at
full resolution in real time. By contrast, fCWT is easily capable of

calculating real-time, high-resolution time–frequency representa-
tions of state-of-the-art EEG set-ups with up to 512 electrodes.

In vivo electrophysiology. Using depth electrodes, local field
potentials (LFPs) measure local voltage changes inside the brain
caused by the activity of neuron clusters. LFPs are recorded in
vivo and, consequently, they do not suffer from the skull’s high-
frequency mask behavior. Consequently, the γ-frequency (~30–
100 Hz) and high γ-frequency (>100 Hz) bands can be reliably
recorded, these being bands that highly correlate with single neuron
firing and reflect aspects of movement (in the motor cortex41) and
vision (in the visual cortex42). Recording these frequencies requires
sampling rates that are several times those used for EEGs (that is,
2–3 kHz). Furthermore, in vivo electrophysiology techniques43 use
huge amounts of electrodes44. LFPs are often recorded simultane-
ously at 100–300 channels, or even more45. In the future, data band-
width is expected to increase even more than its recent tremendous
increases. Neuropixels43, Utah arrays44 and Michigan probes46 are
currently able to measure hundreds of LFPs and thousands of neu-
rons simultaneously. Real-time LFP time–frequency analysis could
lead to next-generation prostatics41. Unfortunately, current imple-
mentations are unable to handle these bandwidths without com-
promising resolution. fCWT shows that super-resolution can be
maintained when analyzing hundreds of high-bandwidth LFP data
streams simultaneously.

Rodent in vivo electrophysiology data from the Allen Brain
Observatory data collection47 were analyzed. During randomly
alternating full-field, high- and low-contrast flashes, six Neuropixel
probes43 with 374 electrodes (Neuropixel 3a; 20 μm vertical

a

–50

0

50

Arithmetic taskRestb c

Full fCWT and CWT

32
16

8
4
2

Fr
eq

ue
nc

y
(H

z)
 E

EG
 (µ

V)

0 1

Normalized power (dB)

36
30
24

18
3.0% CWT

64
32
16

8
4

36
30
24

18
STFT

20

40
3× power

20
25
30
35

DWT

–30 –15 0 15 30
Time (s)

64
32
16

8
4
2

32

1 32 64 128 256 512
Number of electrodes

10–2

10–1

100

R
AR

Real time
Not real time

DWT
STFT

fCWT

3.0%CWT

Fastest full CWT available

Fz
Fp2 Fp1

d

Fig. 5 | Benchmark results of human EEG data. a, The Fp1 and Fp2 pre-frontal and Fz mid-frontal EEG electrodes, which were averaged to assess mental
workload. Credit: Imagewriter/Alamy. b, Full fCWT and CWT, 3.0%CWT, STFT and DWT of EEG, recorded during 30 s of rest and 30 s of mental
arithmetic. Full fCWT and 3.0%CWT analyze the signal using the Morlet wavelet (σ = 20) at 650 and 20 scales, evenly spaced in exponential space,
respectively. STFT uses a 500-ms Blackman window with 400-ms overlap and DWT uses 11 levels of 15-order Daubechie wavelet decomposition.
Spectra are normalized to [0, 1], except for a few spectra that are amplified to enhance visibility. c, Zoomed view during the arithmetic task to show each
algorithm’s ability to extract the intricate time–frequency details of the β frequency band (13–30 Hz). d, The RAR (equation (1)) of full fCWT and CWT,
3.0%CWT, STFT and DWT versus the number of electrodes with a 1-kHz EEG signal.

Nature Computational Science | VOL 2 | January 2022 | 47–58 | www.nature.com/natcomputsci52

http://www.nature.com/natcomputsci

ResourceNaTurE CompuTaTional SciEncE

electrode separation) each recorded a mouse visual cortex’s
responses. LFPs were obtained by downsampling the data to
1.25 kHz and filtering using a 1,000-Hz low-pass filter. Full fCWT
and CWT, 3.0%CWT (EEG section), STFT and DWT time–fre-
quency estimations were performed on 9 s of raw single-trial LFP
data containing four stimuli.

We compared CWT and fCWT to STFT and DWT, as the latter
two are used in situations where speed is key. Other time–frequency
algorithms offer much higher resolution but are orders of magni-
tude slower, making them impractical for LFP analysis.

The analysis covers a frequency range from f0 = 8 Hz to f1 = 128 Hz,
allowing simultaneous analysis of both low frequency (that is, α and
β bands) and high frequency (that is, γ and high γ bands), which
is very important as they reflect different aspects of task perfor-
mance. Low-frequency LFPs unveil long-distance communication,
whereas high-frequency activity reflects local neural processing48.
As the interplay between these frequency ranges discloses the coor-
dination at the inter- and intra-cortical level49, real-time, wide-band
time–frequency estimation is key in the LFP analysis of complex
brain mechanics.

The three CWTs use the complex-valued Morlet wavelet (σ = 16),
tuned for optimal time–frequency resolution. Based on manual
tuning we set a 500-ms Blackman window with 400-ms overlap for
STFT and 11 dyadic (that is, aj = 2j) scales of 15-order Debauchie
wavelet decomposition for DWT, enabling maximal time–fre-
quency sharpness. The RAR versus number of channels was also

calculated for fCWT and CWT at full resolution and STFT and
DWT for a 2.5-kHz input signal.

The subfigures of Fig. 6c show the ability of real-time, full fCWT
to separate multiple β-frequency components (16, 20 and 25 Hz),
locate four γ bursts and reveal the overall γ-frequency dynamics, all
at the same time. By contrast, real-time 3.0%CWT misses two out
of four γ bursts, cannot separate low-frequency β components, and
loses higher γ-frequency dynamics. With STFT, the resolution is on
par in the mid-frequency range, but the high- and low-frequency
ranges suffer from low resolution. Despite their very high speeds,
both STFT and DWT are unsuitable for broadband, high-resolu-
tion, time–frequency estimations.

Electrode density is set to increase dramatically; for example,
5,000-electrode Neuropixels have already been announced50. Figure
6d shows RAR (equation (1)) versus the number of channels per
algorithm. Full CWT can hardly process 15 LFP channels (or data
streams) in real time. By contrast, fCWT offers a real-time, full-res-
olution performance for up to 350–400 channels. Considering the
Allen Brain Observatory dataset, fCWT supports real-time analy-
sis and feature extraction of three to four entire Neuropixel probes,
whereas the fastest CWT implementation available supports only
one-tenth of a single probe.

Discussion
One of WT’s most powerful features is the possibility to use custom
wavelets. However, not all wavelet types are suitable for existing fast

a

–1

0

1
×10–3b c

Full fCWT and CWT
128

64
32
16

Fr
eq

ue
nc

y
(H

z)
LF

P
(V

)

0 1

Normalized power (dB)

80
60
40

3.0% CWT
128

64
32
16

80
60
40

STFT

20
40
60
80

100
120

2× power

20
40
60
80

DWT

0 2 4 6 8
Time (s)

128
64
32
16

8

64
32
16

1 100 200 300 400 500
Number of channels

10–2

10–1

100

R
AR

Real time
Not real time

DWT
STFT

fCWT
3.0%CWT

Fastest full CWT available

Neuropixel Anteromedial
area
Visual cortex

d

Fig. 6 | Benchmark results of in vivo electrophysiology data. a, In vivo electrophysiology measurements were obtained by the insertion of a Neuropixel43
inside the anteromedial area of a rodent’s visual cortex. Mouse drawing adapted from ref. 84 under a CC BY license. b, Time–frequency estimations by
fCWT, CWT, STFT and DWT during 9 s of four 250-ms full-field, high- and low-contrast flashes. The LFP shows exclusive activation after the black stimuli.
Full fCWT and 3.0%CWT analyze the signal using the Morlet wavelet (σ = 16) at 520 and 16 scales evenly spaced in exponential space, respectively. STFT
uses a 500-ms Blackman window with 400-ms overlap and DWT uses 11 levels of 15-order Daubechie wavelet decomposition. Spectra are normalized
to [0, 1], except for a few spectra that are amplified to enhance visibility. c, Zoom-in of the β- (15–30 Hz), γ- (32–100 Hz) and high γ-frequency bands
(>100 Hz), immediately after a black stimulus. Three frequency components in the β-frequency band and two γ bursts are present. Plot scales are aligned
as well as possible, despite differences in exponential scale (fCWT and CWT) and linear scale (STFT). d, The RAR (equation (1)) of full-resolution fCWT
and CWT, 3.0%CWT, STFT and DWT versus the number of channels in a 2.5-kHz electrophysiology signal.

Nature Computational Science | VOL 2 | January 2022 | 47–58 | www.nature.com/natcomputsci 53

https://creativecommons.org/licenses/by/4.0/
http://www.nature.com/natcomputsci

Resource NaTurE CompuTaTional SciEncE

approximate CWT implementations, which rely on finite impulse
response filters4. fCWT does not suffer from this setback, as it cal-
culates wavelets starting directly from its definition. With custom
wavelets, fCWT performance can be improved even further51. As
such, fCWT enables the real-time analysis of high-frequency non-
stationary signals, such as in audio22–24,52, biosignals (for example,
brain–computer interfaces12 and ECG11,13), image and video25,26,
sonar and radar27,28, renewable energy management16,17, cybersecu-
rity14,15 and machine fault diagnosis29,30,53 (Fig. 1).

The implementation of fCWT could be extended to other time–
frequency methods as well. The synchrosqueezed transform (SST)54
uses reassignment to sharpen the CWT spectrum, and the chirplet
transform (CT)55, superlets (SL)6 and the noiselet transform (NT)56
use atoms to describe a signal, sharing a wavelet-like implementation.
Future research could explore speed-ups of these algorithms and
bring them to real-time applications. Hence, fCWT’s impact is
broader than CWT-based applications alone. Consequently, we
did not include the SST, CT, SL and NT in the benchmark study, as
these rely on the CWT in their core. These second-order techniques
as well as modifications of the included first-order techniques
(for example, smoothed WVD6) are by definition slower than the
already expensive CWT.

fCWT shares its mathematical definition with CWT and, hence,
without compromise, inherits both all its benefits10 and all its limita-
tions (for example, its degrading spectral resolution57 and increas-
ing redundancy in higher frequency ranges5). Fortunately, these
are well-known limitations that have solutions4,54. Moreover, the
time–frequency landscape keeps growing, including new CWT
implementations58. We therefore invite everyone to compare their
implementations against fCWT’s open source59, and, to extend its
validity, we invite all to apply fCWT on more extensive and different
specimens that fall outside this paper’s scope.

fCWT allows an acceleration in the developments of science and
engineering, industry and health (Fig. 1). Although maintaining
CWT’s full resolution and supporting customization, fCWT enables
real-time time–frequency analysis of non-stationary signals. As
such, fCWT can bring offline research that is hindered by the low
resolution of DWT, the limited range of STFT and/or the computa-
tional burden of CWT into real-time practice.

Methods
Datasets. In this Resource paper, three types of data were used: synthetic, EEG
and in vivo electrophysiological data. Details on each dataset are described in the
following subsections.

Synthetic data. Two synthetic datasets were generated for this paper, both
composed of the same three time-varying wavepackets with a sampling frequency
of 500 Hz:

	1.	 Three 5-s sine waves, the frequencies of which gradually change between 100
and 110 Hz, 20 and 22 Hz and 5 and 6 Hz, respectively, with a periodicity of
1 Hz.

	2.	 Two 5-s sine waves with linearly changing frequencies between [5, 50] and
[100, 50] Hz.

	3.	 Three 10-s low-frequency waves of 2, 1 and 0.5 Hz. All wavepackets are sepa-
rated by 0.5 s and are multiplied by a Gaussian window function to mitigate
discontinuities at the boundaries.

One set contained clean data and the other was contaminated with white
Gaussian noise with a 1:1 signal-to-noise ratio (SNR) across the whole signal,
with the SNR being determined by the average power. Both datasets have a total
duration of 21.0 s and are available in the fCWT CodeOcean repository59.

EEG. The EEG mental arithmetic dataset by Zyma et al.37 was obtained from
PhysioNet60 and loaded into MATLAB R2021a. EEG data were recorded
monopolarly at 500 Hz, using Ag/Ag electrodes and the Neurocom EEG
23-channel system (Ukraine, XAI-MEDICA). The International 10/20 scheme was
used for electrode placement. Electrodes were referenced to the interconnected
ear reference electrodes. Data were preprocessed using a 30-Hz high-pass filter
and a 50-Hz power line notch filter. Common EEG artifacts were removed using
independent component analysis. All participants had normal or corrected-to-
normal vision and had no mental or cognitive impairment.

In this paper we use the data of subject 13, a 24-year old male who excelled in
mental arithmetic by performing 34 subtractions between four-digit and two-digit
numbers in 4 min. Subject 13 was chosen to ensure task compliance. We used the
last 30 s of EEG during rest and the first 30 s of EEG during the arithmetic task.

In vivo electrophysiology. In vivo electrophysiology data were collected from The
Visual Coding—Neuropixels project47. LFP data from female specimen 738651054
from stimuli IDs 3861−3864 were used. Six Neuropixel version 3a probes were
inserted into the mouse visual cortex. In this study, LFP data from fifth probe (Probe
‘e’) channel 63 were used. The 250-ms high-contrast stimuli, 2,000 ms apart, alternate
in random order. Mice were shown a neutral gray screen between stimuli. Additional
technical, experimental and medical details about the dataset can be found in ref. 47.

Mathematical preliminaries. The Fourier transform. With its core idea that a
function, often a signal, can always be decomposed into pure sine and cosine
functions, the FT is foundational in spectral pattern analysis3,4,8,61. However, not all
functions f(t) can be decomposed—only those that live in the Lebesgue space L2(0,
2π). This space includes all functions that are (1) finite in energy, (2) 2π-periodic
and (3) square-integrable, formally

∫ 2π

0
|f(t)|2dt < ∞ t ∈ (0, 2π) (2)

f(t) = f(t − 2π) t ∈ R, (3)

which allows f(t) to be represented as a weighted sum of complex wavefunctions:

f(t) =

∞∑

−∞

cne2πint, (4)

with the Fourier coefficients cn given by the amount of overlap between the
conjugated complex wavefunction and the function f(t):

cn =
1
2π

∫
∞

−∞

f(t)e−2πint (5)

or in discrete form when used on actual digital samples in a sequence f having
length N:

xk =

N−1∑

n=0
f[n]e−i2πkn/N. (6)

In other words, any 2π-periodic, square-integrable function f(t) can be represented
by this superposition of complex-valued sinusoidal waves that are translated in the
frequency domain. However, this is precisely Fourier’s pitfall; not all functions, or
signals for that matter, are 2π-periodic. FTs cannot decompose the wide variety of
non-stationary functions that are not 2π-periodic. Unfortunately, this constraint
is often misunderstood, and FT are still used to analyze signals with varying
frequencies.

The mathematical reason behind FT’s constraint becomes apparent when we
consider the Lebesgue space L2(R) containing all square-integrable functions that
have finite energy along the entire real axis:

∫
∞

−∞

|f(t)|2dt < ∞. (7)

The reason why equation (4) cannot represent these functions is that pure sine
waves extend to infinity and therefore do not have finite energy. Pure waves do not
lie in L2(R) and, as such, they cannot represent its functions.

Wavelets. We can define a set of functions other than equation (4) that do
have finite energy. The result is the set of short periodic functions ψ(t) called
wavelets that are well localized in both the time and frequency domains5,6,8,33,57,62.
Consequently, wavelets need to be able to translate in both domains as well:

ψ jk(t) = 2−j/2
ψ(2jt − k), (8)

where ψjk is a daughter wavelet function, defined as the mother wavelet ψ(t) scaled
in the frequency domain by j and translated in the time domain by k. So, the WT
outputs a 2D time–frequency matrix, where the FT gives a 1D frequency spectrum.

Similar to equation (4), the superposition of these wavelets can represent any
function

f(t) =

∞∑

j, k=−∞

cjkψ jk(t), (9)

where, like with the FT, the wavelet coefficients cjk are given by the amount of
overlap between the wavelet and the function f(t). This definition also shows us

Nature Computational Science | VOL 2 | January 2022 | 47–58 | www.nature.com/natcomputsci54

http://www.nature.com/natcomputsci

ResourceNaTurE CompuTaTional SciEncE

that wavelets, similar to Fourier’s pure wavefunctions, live in Hilbert space as
multiplication between two functions is defined as an inner product:

Wψ f(j, k) = ⟨f, ψ jk⟩ = cjk =

∫
∞

−∞

f(t)ψ jk(t)dt, (10)

in which ψ jk corresponds to the conjugate of ψjk. However, as j and k can be
any real number, we have to define both variables’ optimal discretization such
that the resulting time–frequency matrix does not under- or overdetermine the
function f(t). So, the variables should be discretized such that the wavelets form
an orthogonal basis in Hilbert space63,64—in other words, such that the wavelet
functions have zero overlap.

Wavelets are orthogonal in Hilbert space if

⟨ψ jk, ψ lm⟩ = δjkδlm, (11)

from which it follows that equation (8) is indeed logarithmic orthogonal. The WT
that uses this type of discretization is called the DWT8,65,66. In this context, ‘discrete’
refers to the use of its wavelets, not to the type of data it processes. As all DWT’s
wavelets are orthogonal, it describes a function by the minimal number of wavelet
coefficients possible. However, as stated at the beginning of this paper, a redundant,
overcomplete representation is often much more favorable for signal analysis.
Therefore, it is also possible to define a WT with arbitrary wavelet discretization.
Such a wavelet transformation is called the CWT67. Again, ‘continuous’ does not
refer to the type of data it can handle. CWT features continuously scalable and
translatable wavelets that allow a much more precise analysis of a signal’s spectrum:

Wψ f(a, b) = |a|−1
∫

∞

−∞

f(t)ψ

(
t − b
a

)
dt, (12)

which comes with considerable computational complexity. When implemented
digitally, its discrete form is used:

Wψ f[a, b] = |a|−1
N−1∑

n=0
f[n]ψ

[
n − b
a

]
, (13)

which is mathematically equivalent to passing the input signal through a series of
wavelet filters of different lengths. Care is required at the boundaries of the signal.
As the discrete form assumes signals of finite length, wavelet coefficients near
the boundaries become increasingly meaningless. Instantaneous frequency at the
first or last sample is impossible to calculate as one should know how the signal
continues. There are several strategies to solve this uncertainty. For more details
about this topic, see the Boundary effects section.

Equation (10)’s computational complexity can be estimated using the
trapezoidal rule for integral solving and assuming a signal of length N = 2J.
Furthermore, we assume J wavelets at aj = 2j discrete scales, and a wavelet length
of L samples at unit scale. Starting at unit scale a0 = 1, we then have O(a0NL)
complexity, with the cost of all scales resulting in

NL + 2NL + 4NL + … + 2JNL = O(LN2
). (14)

In other words, a naïve approach to DWT calculation would result in a polynomial
complexity of O(N2). CWT would be even worse, as the discretization of the time
and frequency domains is much finer. Fortunately, scientists quickly realized a
considerable reduction in computational complexity could be achieved using
Parseval’s theorem.

Fourier-based wavelet transform. Applying Parseval’s theorem to equation (12), a
reduction in CWT’s complexity can be achieved:

Wψ f(a, b) =
1
2π

∫
f̂(ξ)ψ̂a, b(ξ)dξ. (15)

Subsequently, we define ψ̂a, b(ξ) in terms of the FT of the mother wavelet function
ψ(t), using its basic time-shifting and time-scaling properties:

ψ̂a, b(ξ) =
1
a

ψ̂(ξ)e−ibξ
(time shifting) (16)

= ψ̂(aξ)e−ibξ
(time scaling). (17)

Substitution gives

Wψ f(a, b) =
1
2π

∫
f̂(ξ)ψ̂(aξ)eibξdξ (18)

or in its discrete form

Wψ f[a, b] =
1
K

K−1∑

k=0
f̂[k]ψ̂[ak]ei2πbk/K, (19)

which describes Wψf[a, b] as an inverse FT of f̂[k]ψ̂[ak] . So, WT’s computational
complexity no longer depends on the time-offset parameter b. As f̂[k] can be
calculated beforehand, it is reduced to three distinct steps per scale:

	1.	 Generate ψ̂[ak]
	2.	 Calculate f̂[k]ψ̂[ak] and
	3.	 Evaluate the inverse FT and obtain Wψf[a, b],

with the first two steps evaluated in O(N) and the last one requiring at least
O(Nlog2N) when using a fast FT implementation68,69. This results in
O(Nlog2N) complexity, a considerable reduction compared to O(N2), which
is needed for the naïve approach. Additionally, the constant factor of this
complexity can be reduced even more, as we will see in the next section.

Implementation of fCWT. Fourier-based wavelet transformation’s computational
complexity is mainly determined by the inverse FT. Consequently, equation
(12) has been rewritten regularly to use spline interpolation of the wavelet and
circumvent the FT entirely70,71. Spline interpolation, also known as polynomial
interpolation, defines a wavelet by only a few evenly spaced sampling points
across the domain. Because the number of points is independent of the wavelet’s
scale, the theoretical complexity of equation (12) is reduced to linear time.
However, while complexity is lowered, the constant factor that equals the number
of sampling points has been increased tremendously. In turn, this yields a trade-
off between speed and accuracy: more interpolation points leads to increases in
both precision and computation time. Additionally, the spline interpolation only
works for specific wavelet types. To avoid the trade-off, we optimize the Fourier-
based wavelet transformation by reducing the constant factor of its computational
complexity. In this way, we maintain WT’s ability to use custom wavelet types51 and
can exploit optimized FFT libraries72–74.

fCWT separates scale-independent and scale-dependent operations, which
have to be performed separately for each wavelet’s scale. A detailed schematic of
fCWT’s algorithmic implementation is provided in Extended Data Fig. 1. With
CWTs, the frequency scale is often divided into hundreds of scales. We thus
focused the optimization on the fCWT’s scale-dependent part by exploiting its
repeated nature and high parallelizability. The scale-independent operations are
performed first as their result forms the input for the scale-dependent steps. We
pre-calculate two functions: (1) the input signal’s FFT and (2) the FFT of the
mother wavelet function at scale a0 = 2. Both functions are independent of the scale
factor a, so they can be pre-calculated and used as look-up tables in the processing
pipeline.

FFT. Using the float- and AVX2-enabled Fastest Fourier Transform in the West
(FFTW) library73, the input signal’s FFT is calculated. FFTW has superior
performance in various benchmarks75 and has the ability to dynamically optimize
its algorithmic implementation. FFTW determines the most efficient way to
calculate the signal’s FFT with length N on hardware set-up X. This requires
considerable time, which makes it only useful in situations where many FFTs
are calculated with the same N and X. This is the case with fCWT, as its scale-
dependent part evaluates a fixed-length inverse FFT for every scale factor a. Other
high-performance FFT libraries include the Fastest Fourier Transform in the
South72 and Intel’s Math Kernal Library74. However, as Fastest Fourier Transform in
the South lacks important optimization techniques and Intel’s Math Kernel Library
is limited to Intel processors only, FFTW is currently the most flexible and versatile
high-performance FFT library available.

Before a signal’s FFT is calculated, it is first zero-padded to the nearest
power of two, which allows more time-efficient calculations than with other
signal lengths. Zero padding lets all signals that map to the same nearest power
of two use the same FFTW optimization. Hence, the flexibilty of fCWT as a
tool is preserved while still enjoying the benefit of FFTW’s optimization plans.
However, it will result in step-like performance behavior as seen in Fig. 3. After
FFT calculation, we let FFTW write the complex-valued FT to memory in an
interleaving format (Extended Data Fig. 2). Using this, we exploit the CPU’s
predictive caching behavior and hence reduce memory access in the next steps.
Because a CPU works with chunks of memory instead of single values, it always
caches adjacent memory next to a requested value as well26,76. While we access the
real part of a value, interleaving takes advantage of this behavior as the complex
part is cached. Consequently, accessing the complex part after the real part does
not require an additional memory request, which reduces memory accesses
by 50%.

Scale-independent mother wavelet generation. The FFT of the mother wavelet
function Ψ̂ [k] is generated once during the scale-independent step. Because
wavelets in the frequency domain uniformly contract as their scale increases,
daughter wavelet functions can be generated by downsampling a pre-generated
mother wavelet function. Because scales must be at least amin = 2, we generate the
mother wavelet function at a0 = 2 to save memory. It is important to note that
the mother wavelet function is generated directly from its analytical Fourier-
transformed definition. Consequently, we create Ψ̂ [k] such that its length always
matches that of f̂[k]. This ensures fCWT’s independence of wavelet length and
achieves the highest wavelet resolution possible.

Nature Computational Science | VOL 2 | January 2022 | 47–58 | www.nature.com/natcomputsci 55

http://www.nature.com/natcomputsci

Resource NaTurE CompuTaTional SciEncE

After calculation of the FFT signal and the generation of the FFT mother
wavelet, the scale-independent step is complete. fCWT proceeds to the scale-
dependent phase (Extended Data Fig. 1). This phase is repeated m = ∣a∣ times.
Using m steps with step size Δa, the scale factors a are defined by discretizing the
frequency spectrum evenly on a logarithmic scale:

a = {2xΔa
|x ∈ N ∧ 0 < x ≤ m}. (20)

This generates the wavelet coefficient matrix Wψf[a, b] one row at a time.

Scale-dependent downsampling. Each iteration of the scale-dependent step
first generates the Fourier-transformed daughter wavelet function ψ̂a[k] by
downsampling the mother wavelet function generated in the scale-independent
step. This optimization is realized by using the mother wavelet as a look-up
table (Extended Data Fig. 3). Hence, as explained earlier, the expensive Gaussian
calculations involved in wavelet calculation are removed from the scale-dependent
step. The daughter wavelet is generated by only performing a systematic look-up
that accesses every ath value of the mother wavelet function. A schematic overview
of this process is shown in Extended Data Fig. 3.

Scale-independent multiplication. Using the single instruction, multiple data
(SIMD) model, another acceleration is achieved. By using the CPU’s full power,
eight multiplications are executed at once77,78, which is used to exploit the
elemental-wise multiplication between ψ̂a[k] and f̂[k]. In our case, SIMD performs
four complex-valued multiplications in parallel, because the multiplication between
the real-valued daughter wavelet and complex-valued Fourier-transformed input
signal takes two multiplications per element. By exploiting the parallelizable nature
of this step, an additional speed-up of 4× is achieved. Extended Data Fig. 4 shows
this process graphically.

An additional acceleration is achieved by merging the generation of the
daughter wavelet (Scale-dependent downsampling section) and the multiplication
with f̂[k] (Scale-independent multiplication section) in one loop. Consequently, no
intermediate results are stored in memory, which largly eliminates memory access.

Scale-independent inverse FFT. Finally, using FFTW’s inverse FFT function, the
result is transferred back to the time domain. Similar to the FFT calculation in the
scale-independent step, the inverse FFT uses a pre-calculated optimization based
on the input signal’s zero-padded length. The complex-valued time–frequency
matrix is stored in row-major order as an array of 2NM floats, where N is the signal
length and M the number of scales. Each value is stored as two floats as the matrix
is complex-valued.

Boundary effects. Because CWT uses convolution to calculate the wavelet
coefficients, a wavelet is eventually close enough to the beginning or end of the
signal to be multiplied with undefined data outside the boundaries of the signal.
In these situations, frequency becomes a meaningless construct as one does not
know how a signal would proceed beyond these limits. As this effect becomes more
evident with larger wavelets (that is, lower frequencies) one can speak of a cone of
influence33 caused by the edges that affect the entire spectrum. Several strategies
exist to handle these so-called boundary effects4,79,80.

One could extend a signal by adding zeros at the beginning and the end to
define data outside the boundaries. Because convolution relies on the element-wise
multiplication between the signal and the wavelet, this strategy is similar to stopping
the convolution at the boundary. Other strategies rely on making assumptions
about the signal outside its bounds. For example, the signal could be extended by
mirroring or repeating the signal at its boundaries4. With fCWT, we decided to let the
users decide themselves. As fCWT is designed to be independent of signal content,
we assume an unbiased zero extension. Consequently, users can choose their own
boundary strategy by extending the signal manually before the fCWT is applied.

The direct result of fCWT’s strategy can be seen in the Synthetic data section.
At both edges, fCWT shows a strong cone of influence effect of the boundary.
MATLAB, by default, performs signal extension, which mitigates these artifacts.
However, MATLAB’s default extension strategy sometimes leads to an increase
in artifacts instead of a reduction. An extreme example can be seen in a visual
comparison between both techniques in Extended Data Fig. 5. Consequently,
with fCWT we went for an unbiased zero extension strategy aiming for maximal
transparency and flexibility.

Time–frequency ridge extraction. To perform quantitative assessment of time–
frequency spectra on the synthetic data, a time–frequency ridge extraction
methodology is used. This allows a comparison between the ridges (that is,
frequency components) in the time–frequency spectra and the actual frequency
components used to generate the dataset.

The synthetic dataset (see the Data availability statement for details) consists
of three distinct wavepackets. The time–frequency ridge extraction is performed
on each wavepacket separately. Each segment is defined such that it trims the first
0.5 s and last 0.5 s of each wavepacket to remove the Gaussian window function
influence. In the third wavepacket, 3.0 s is trimmed from the end to remove the
influence of boundary effects (Boundary effects section).

MATLAB’s tfridge() is used to extract, respectively, three, two and three
ridges from the first, second and third wavepacket, as it is the most used approach
to ridge extraction. To do so, tfridge() needs pre-defined penalty coefficients
(Pcoef), which determine the stability of the ridge estimation. As wavepackets and
time–frequency algorithms largely differ in their characteristics, these penalty
coefficients need to be optimized manually for each combination. Manual
optimization is performed greedy by first testing different orders of magnitude
(Pmag): Pmag ∈ {10−3, 10−2, 10−1, 100, 101, 102, 103}. When the optimal magnitude range
[Pmag,1, Pmag,2] is selected, ten equally distanced coefficients are tested within that
range Pcoef ∈ Pmag,1 ⋅ {0, 1, 2, …, 8, 9}. The resulting penalty coefficient is chosen for
the benchmark. All penalty coefficients are provided in the source data for Fig. 4.

A fair comparison among the algorithms was secured, as the same stable
ridge extraction was applied on all included algorithms. However, in future work,
alternate open-source algorithms could be worth exploring81. These might yield
highly accurate ridge extractions and/or remove the need for manually tuned
parameters. As such, this might result in an even more fine-grained comparison
among the algorithms.

Data availability
The generated synthetic dataset used in Fig. 4 is provided under ‘data’ in the
CodeOcean fCWT capsule59. The ‘EEG During Mental Arithmetic Tasks v1.0.0’
used in Fig. 5 is available at https://physionet.org/content/eegmat/1.0.0/. The in
vivo electrophysiology data collected by The Visual Coding—Neuropixels project47
and used in Fig. 6 is available in the Neurodata Without Borders (NWB) format
via AllenSDK (https://allensdk.readthedocs.io). An example Jupyter Notebook for
accessing the LFP data is available at https://allensdk.readthedocs.io/en/latest/_static/
examples/nb/ecephys_lfp_analysis.html. Source data are provided with this paper.

Code availability
fCWT is released under Apache License Version 2.0 and will be maintained in
a public GitHub repository available at https://github.com/fastlib/fCWT. fCWT
is available for Mac OSX, Linux and Windows systems and features a detailed
description on how to obtain Visual Studio project-files and generate cpp-based
MEX-packages for easy MATLAB integration. For benchmark reproducibility, a
version of fCWT at the time of publication is available on CodeOcean59.

Received: 4 January 2021; Accepted: 13 December 2021;
Published online: 27 January 2022

References
	1.	 Gabor, D. Theory of communication. Part 1: the analysis of information.

J. Inst. Electr. Eng. 93, 429–441 (1946).
	2.	 Fano, R. M. Transmission of Information: A Statistical Theory of

Communications (MIT Press, 1961).
	3.	 Boukouvala, E., Miridakis, N. & Veloni, A. Digital and Statistical Signal

Processing (CRC Press, 2019).
	4.	 Boashash, B. Time–Frequency Signal Analysis and Processing: A Comprehensive

Reference 2nd edn (Academic, 2016).
	5.	 Addison, P. S. Introduction to redundancy rules: the Continuous Wavelet

Transform comes of age. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 376,
20170258 (2018).

	6.	 Moca, V. V., Bârzan, H., Nagy-Dabâcan, A. & Mureçan, R. C. Time–
frequency super-resolution with superlets. Nat. Commun. 12, 337 (2021).

	7.	 Stockwell, R. G., Mansinha, L. & Lowe, R. P. Localization of the complex
spectrum: the S transform. IEEE Trans. Signal Process. 44, 998–1001 (1996).

	8.	 Cohen, L. Time–Frequency Analysis (Prentice Hall, 1995).
	9.	 Smeets, H., Ceriotti, M. & Marrón, P. J. Adapting recursive sinusoidal

software oscillators for low-power fixed-point processors. ACM Trans.
Embedded Comput. Syst. 19, 1–26 (2020).

	10.	Adeli, H., Zhou, Z. & Dadmehr, N. Analysis of EEG records in an epileptic
patient using wavelet transform. J. Neurosci. Methods 123, 69–87 (2003).

	11.	Sharma, K., Castellini, C., van den Broek, E. L., Albu-Schaeffer, A. &
Schwenker, F. A dataset of continuous affect annotations and physiological
signals for emotion analysis. Sci. Data 6, 196 (2019).

	12.	Nason, S. R. et al. A low-power band of neuronal spiking activity dominated
by local single units improves the performance of brain–machine interfaces.
Nat. Biomed. Eng. 4, 973–983 (2020).

	13.	van den Broek, E. L. Affective Signal Processing (ASP): Unraveling the Mystery
of Emotions. PhD thesis, Univ. Twente (2011); https://doi.
org/10.3990/1.9789036532433

	14.	Dalal, M. & Juneja, M. Steganography and steganalysis (in digital forensics): a
cybersecurity guide. Multimed. Tools Appl. 80, 5723–5771 (2021).

	15.	Derbeko, P., Dolev, S. & Gudes, E. Wavelet-based dynamic and privacy-
preserving similitude data models for edge computing. Wirel. Netw. 27,
351–366 (2021).

	16.	Eroğlu, H., Cuce, E., Cuce, P. M., Gul, F. & Iskenderoğlu, A. Harmonic
problems in renewable and sustainable energy systems: a comprehensive
review. Sustain. Energy Technol. Assess. 48, 101566 (2021).

Nature Computational Science | VOL 2 | January 2022 | 47–58 | www.nature.com/natcomputsci56

https://physionet.org/content/eegmat/1.0.0/
https://allensdk.readthedocs.io
https://allensdk.readthedocs.io/en/latest/_static/examples/nb/ecephys_lfp_analysis.html
https://allensdk.readthedocs.io/en/latest/_static/examples/nb/ecephys_lfp_analysis.html
https://github.com/fastlib/fCWT
https://doi.org/10.3990/1.9789036532433
https://doi.org/10.3990/1.9789036532433
http://www.nature.com/natcomputsci

ResourceNaTurE CompuTaTional SciEncE

	17.	Adebayo, T. S. & Kirikkaleli, D. Impact of renewable energy consumption,
globalization and technological innovation on environmental degradation in
Japan: application of wavelet tools. Environ. Dev. Sustain. 23, 16057–16082
(2021).

	18.	Carmona, R., Hwang, W.-L. & Torresani, B. Practical Time–Frequency
Analysis: Gabor and Wavelet Transforms, with an Implementation in S
(Academic, 1998).

	19.	Lee, G. R., Gommers, R., Waselewski, F., Wohlfahrt, K. & O Leary, A.
PyWavelets:
a Python package for wavelet analysis. J. Open Source Softw. 4, 1237 (2019).

	20.	Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing
in Python. Nat. Methods 17, 261–272 (2020).

	21.	Hussain, R. Wavelib (GitHub, 2015); https://github.com/rafat/wavelib
	22.	Beerends, J. G., van Nieuwenhuizen, K. & van den Broek, E. L. Quantifying

sound quality in loudspeaker reproduction. J. Audio Eng. Soc. 64, 784–799
(2016).

	23.	Beerends, J. G. et al. Subjective and objective assessment of full bandwidth
speech quality. IEEE/ACM Trans. Audio Speech Lang. Process. 28, 440–449
(2020).

	24.	van den Broek, E. L., van der Sluis, F. & Dijkstra, T. in Philips Research Book
Series Vol. 12, Ch. 10 (eds Westerink, J. H. D. M., Krans, M. & Ouwerkerk,
M.) 153–180 (Springer Science+Business Media B.V., 2011).

	25.	Karam, C., Sugimoto, K. & Hirakawa, K. Fast convolutional distance
transform. IEEE Signal Process. Lett. 26, 853–857 (2019).

	26.	Schouten, T. E. & van den Broek, E. L. Fast exact Euclidean distance (FEED):
a new class of adaptable distance transforms. IEEE Trans. Pattern Anal. Mach.
Intell. 36, 2159–2172 (2014).

	27.	Huang, Z., Shi, Y., Tang, B. & Zhang, J. Unimodular multiple-input–multiple-
output radar wave-form design with desired correlation properties. IET Radar
Sonar Navigation. (2021); https://doi.org/10.1049/rsn2.12192

	28.	Gao, C., Wang, D., Qiao, K. & Jiang, X. Optical system design of fully
symmetrical Fourier transform lens. Optical Rev. 28, 349–357 (2021).

	29.	Hannon, B., Sergeant, P., Dupré, L. & Pfister, P.-D. Two-dimensional
Fourier-based modeling of electric machines—an overview. IEEE Trans.
Magn. 55, 8107217 (2019).

	30.	Jalayer, M., Orsenigo, C. & Vercellis, C. Fault detection and diagnosis for
rotating machinery: a model based on convolutional LSTM, fast Fourier and
continuous wavelet transforms. Comput. Ind. 125, 103378 (2021).

	31.	Huang, N. E. & Shen, S. S. P. Hilbert Huang Transform and its Applications
2nd edn, Vol. 16 (World Scientific, 2014).

	32.	Gilles, J. Empirical wavelet transform. IEEE Trans. Signal Process. 61,
3999–4010 (2013).

	33.	Dremin, I. M., Ivanov, O. V. & Nechitailo, V. A. Wavelets and their uses. Phys.
Uspekhi 44, 447–478 (2001).

	34.	Huang, N. E. et al. The empirical mode decomposition and the Hilbert
spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc.
A Math. Phys. Eng. Sci. 454, 903–995 (1998).

	35.	Valdes-Sosa, P. A. et al. The Cuban Human Brain Mapping Project, a young
and middle age population-based EEG, MRI and cognition dataset. Sci. Data
8, 45 (2021).

	36.	Cacioppo, J. T., Tassinary, L. G. & Berntson, G. G. Handbook of
Psychophysiology 4th edn (Cambridge Univ. Press, 2017).

	37.	Zyma, I. et al. Electroencephalograms during mental arithmetic task
performance. Data 4, 14 (2019).

	38.	Knyazev, G. G. EEG delta oscillations as a correlate of basic homeostatic and
motivational processes. Neurosci. Biobehav. Rev. 36, 677–695 (2012).

	39.	Kahana, M. J., Sekuler, R., Caplan, J. B., Kirschen, M. & Madsen, J. R. Human
theta oscillations exhibit task dependence during virtual maze navigation.
Nature 399, 781–784 (1999).

	40.	Engel, A. K., Fries, P. & Singer, W. Dynamic predictions: oscillations
and synchrony in top–down processing. Nat. Rev. Neurosci. 2,
704–716 (2001).

	41.	Mehring, C. et al. Inference of hand movements from local field potentials in
monkey motor cortex. Nat. Neurosci. 6, 1253–1254 (2003).

	42.	Womelsdorf, T., Fries, P., Mitra, P. P. & Desimone, R. Gamma-band
synchronization in visual cortex predicts speed of change detection. Nature
439, 733–736 (2006).

	43.	Jun, J. J. et al. Fully integrated silicon probes for high-density recording of
neural activity. Nature 551, 232–236 (2017).

	44.	Nordhausen, C. T., Maynard, E. M. & Normann, R. A. Single unit
recording capabilities of a 100 microelectrode array. Brain Res. 726,
129–140 (1996).

	45.	Frank, J. A., Antonini, M.-J. & Anikeeva, P. Next-generation interfaces for
studying neural function. Nat. Biotechnol. 37, 1013–1023 (2019).

	46.	Campbell, P. K., Jones, K. E., Huber, R. J., Horch, K. W. & Normann, R. A. A
silicon-based, three-dimensional neural interface: manufacturing processes for
an intracortical electrode array. IEEE Trans. Biomed. Eng. 38, 758–768 (1991).

	47.	Siegle, J. H. et al. Survey of spiking in the mouse visual system reveals
functional hierarchy. Nature 592, 86–92 (2021).

	48.	Einevoll, G. T., Kayser, C., Logothetis, N. K. & Panzeri, S. Modelling and
analysis of local field potentials for studying the function of cortical circuits.
Nat. Rev. Neurosci. 14, 770–785 (2013).

	49.	Fries, P. A mechanism for cognitive dynamics: neuronal communication
through neuronal coherence. Trends Cogn. Sci. 9, 474–480 (2005).

	50.	Steinmetz, N. A. et al. Neuropixels 2.0: a miniaturized high-density probe for
stable and long-term brain recordings. Science 372, eabf4588 (2021).

	51.	Unser, M. & Chenouard, N. A unifying parametric framework for 2D
steerable wavelet transforms. SIAM J. Imaging Sci. 6, 102–135 (2013).

	52.	Qiu, Z., Lee, C.-M., Xu, Z. & Sui, L. A multi-resolution filtered-x LMS
algorithm based on discrete wavelet transform for active noise control. Mech.
Syst. Signal Process. 66, 458–469 (2016).

	53.	Huo, Z., Zhang, Y., Francq, P., Shu, L. & Huang, J. Incipient fault diagnosis of
roller bearing using optimized wavelet transform based multi-speed vibration
signatures. IEEE Access 5, 19442–19456 (2017).

	54.	Daubechies, I., Lu, J. & Wu, H.-T. Synchrosqueezed wavelet transforms: an
Empirical Mode Decomposition-like tool. Appl. Comput. Harmonic Anal. 30,
243–261 (2011).

	55.	Mann, S. & Haykin, S. in Vision Interface, Vol. 91, 205–212 (Citeseer, 1991).
	56.	Coifman, R., Geshwind, F. & Meyer, Y. Noiselets. Appl. Comput. Harmonic

Anal. 10, 27–44 (2001).
	57.	Strang, G. Wavelets. Am. Sci. 82, 250–255 (1994).
	58.	Chu, J. P. & Kemere, C. T. Ghostipy: an efficient signal processing and

spectral analysis toolbox for large data. eNeuro 8, ENEURO.0202-21.2021
(2021); https://doi.org/10.1523/ENEURO.0202-21.2021

	59.	Arts, L. P. A. & van den Broek, E. L. The fast continuous wavelet
transformation (fCWT): real-time, high quality, noise-resistant, time-frequency
analysis (Code Ocean, 2021); https://doi.org/10.24433/CO.8389373.v1

	60.	Goldberger, A. L. et al. PhysioBank, PhysioToolkit and PhysioNet:
components of a new research resource for complex physiologic signals.
Circulation 101, e215–e220 (2000).

	61.	Bracewell, R. N. The Fourier Transform and its Applications Vol. 31999
(McGraw-Hill, 1986).

	62.	Daubechies, I. The Wavelet Transform, Time–Frequency Localization and
Signal Analysis (Princeton Univ. Press, 2009).

	63.	Mallat, S. G. Multiresolution approximations and wavelet orthonormal bases
of l2(r). Trans. Am. Math. Soc. 315, 69–87 (1989).

	64.	Halmos, P. R. Introduction to Hilbert Space and the Theory of Spectral
Multiplicity (Dover, 2017).

	65.	Heil, C., & Walnut, D. F. Fundamental Papers in Wavelet Theory (Princeton
Univ. Press, 2009).

	66.	Shensa, M. J. The discrete wavelet transform: wedding the à trous and Mallat
algorithms. IEEE Trans. Signal Process. 40, 2464–2482 (1992).

	67.	Aguiar-Conraria, L. & Soares, M. J. The continuous wavelet transform:
moving beyond uni- and bivariate analysis. J. Econ. Surv. 28, 344–375 (2014).

	68.	Johnson, S. G. & Frigo, M. A modified split-radix FFT with fewer arithmetic
operations. IEEE Trans. Signal Process. 55, 111–119 (2006).

	69.	Lundy, T. & Van Buskirk, J. A new matrix approach to real FFTs and
convolutions of length 2k. Computing 80, 23–45 (2007).

	70.	Muñoz, A., Ertlé, R. & Unser, M. Continuous wavelet transform with
arbitrary scales and O(N) complexity. Signal Process. 82, 749–757 (2002).

	71.	Unser, M., Aldroubi, A. & Schiff, S. J. Fast implementation of the continuous
wavelet transform with integer scales. IEEE Trans. Signal Process. 42,
3519–3523 (1994).

	72.	Blake, A. M., Witten, I. H. & Cree, M. J. The fastest Fourier transform in the
south. IEEE Trans. Signal Process. 61, 4707–4716 (2013).

	73.	Frigo, M. & Johnson, S. G. FFTW: an adaptive software architecture for the
FFT. In Proc. 1998 IEEE International Conference on Acoustics, Speech and
Signal Processing, ICASSP’98 3, (eds Atlas, L., Huang, X., Hermansky, H. &
Hwang, J.) 1381–1384 (IEEE, 1998).

	74.	Wang, E. et al. in High-Performance Computing on the Intel® Xeon Phi™ (eds
Wang, E. et al.) 167–188 (Springer, 2014).

	75.	Frigo, M. & Johnson, S. G. BenchFFT (2017); http://www.fftw.org/benchfft/
	76.	Stallings, W. Computer Organization and Architecture: Designing for

Performance (Pearson Education India, 2003).
	77.	Chakrabarti, C. & Vishwanath, M. Efficient realizations of the discrete and

continuous wavelet transforms: from single chip implementations to
mappings on SIMD array computers. IEEE Trans. Signal Process. 43, 759–771
(1995).

	78.	Jamieson, L. H., Mueller, P. T.Jr & Siegel, H. J. FFT algorithms for SIMD
parallel processing systems. J. Parallel Distrib. Comput. 3, 48–71 (1986).

	79.	Mallat, S. A Wavelet Tour of Signal Processing (Elsevier, 1999).
	80.	Mertins, A. & Mertins, D. A. Signal Analysis: Wavelets, Filter Banks,

Time–Frequency Transforms and Applications (Wiley, 1999).
	81.	Iatsenko, D., McClintock, P. V. E. & Stefanovska, A. Extraction of

instantaneous frequencies from ridges in time–frequency representations of
signals. Signal Process. 125, 290–303 (2016).

	82.	Abbott, B. P. et al. Observation of gravitational waves from a binary black
hole merger. Phys. Rev. Lett. 116, 061102 (2016).

Nature Computational Science | VOL 2 | January 2022 | 47–58 | www.nature.com/natcomputsci 57

https://github.com/rafat/wavelib
https://doi.org/10.1049/rsn2.12192
https://doi.org/10.1523/ENEURO.0202-21.2021
https://doi.org/10.24433/CO.8389373.v1
http://www.fftw.org/benchfft/
http://www.nature.com/natcomputsci

Resource NaTurE CompuTaTional SciEncE

	83.	Burnol, A. et al. Wavelet-based analysis of ground deformation
coupling satellite acquisitions (Sentinel-1, SMOS) and data from
shallow and deep wells in Southwestern France. Sci. Rep. 9,
8812 (2019).

	84.	Petrucco, L. Mouse head schema (Zenodo, 2020); https://doi.org/10.5281/
zenodo.3925903

Acknowledgements
Both authors (L.P.A.A. and E.L.v.d.B.) have received funding for this work from
the European Union’s Horizon 2020 research and innovation program under grant
agreement no. 952095, from the Intrinsic Motivations to Transitional Wearable
INtelligent companions for autism spectrum disorder (IM-TWIN) project. The
funders had no role in study design, data collection and analysis, decision to publish or
preparation of the manuscript.

Author contributions
L.P.A.A. carried out all programming, performed the empirical validation experiments
and created the figures. E.L.v.d.B. and L.P.A.A. composed the final paper together. All
authors reviewed and agreed the source code and manuscript. Figure 1 includes two
subfigures from other sources, which are used with permission of respectively Caltech/
MIT/Ligo Laboratory and Nature.

Competing interests
The authors declare no competing interests.

Additional information
Extended data is available for this paper at https://doi.org/10.1038/s43588-021-00183-z.

Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s43588-021-00183-z.

Correspondence and requests for materials should be addressed to
Lukas P. A. Arts or Egon. L. van den Broek.

Peer review information Nature Computational Science thanks Leontios Hadjileontiadis,
Madhur Srivastava and the other, anonymous, reviewer(s) for their contribution to the
peer review of this work. Handling editor: Jie Pan, in collaboration with the Nature
Computational Science team.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long as

you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the article’s
Creative Commons license and your intended use is not permitted by statutory regulation
or exceeds the permitted use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
© The Author(s) 2022

Nature Computational Science | VOL 2 | January 2022 | 47–58 | www.nature.com/natcomputsci58

https://doi.org/10.5281/zenodo.3925903
https://doi.org/10.5281/zenodo.3925903
https://doi.org/10.1038/s43588-021-00183-z
https://doi.org/10.1038/s43588-021-00183-z
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://www.nature.com/natcomputsci

ResourceNaTurE CompuTaTional SciEncE ResourceNaTurE CompuTaTional SciEncE

Extended Data Fig. 1 | Algorithmic implementation of fCWT The algorithmic implementation behind fCWT can be divided into: i) scale-independent and
ii) scale-dependent operations. The scale-dependent operations each calculate the wavelet coefficients of a single scale-factor in the final time–frequency
matrix. By repeating the scale-dependent part m = ∣a∣ times, the time–frequency matrix is build up one row at a time.

Nature Computational Science | www.nature.com/natcomputsci

http://www.nature.com/natcomputsci

Resource NaTurE CompuTaTional SciEncEResource NaTurE CompuTaTional SciEncE

Extended Data Fig. 2 | FFTW’s interleaving storing format Using an interleaving value format, the Fastest Fourier Transform in the West (FFTW) writes
a complex-valued Fourier transform to memory. As the CPU caches adjacent values when accessing memory, accessing the complex and real part only
requires single memory access instead of two.

Nature Computational Science | www.nature.com/natcomputsci

http://www.nature.com/natcomputsci

ResourceNaTurE CompuTaTional SciEncE ResourceNaTurE CompuTaTional SciEncE

Extended Data Fig. 3 | From mother to daughter wavelet The generation of the daughter wavelet ψ̂a[k] is done efficiently by downsampling the mother
wavelet Ψ̂[k]. This eliminates the need for expensive Gaussian calculations in the scale-dependent step. The mother wavelet is only calculated once in the
scale-independent step.

Nature Computational Science | www.nature.com/natcomputsci

http://www.nature.com/natcomputsci

Resource NaTurE CompuTaTional SciEncEResource NaTurE CompuTaTional SciEncE

Extended Data Fig. 4 | SIMD multiplication fCWT combines the generation of the daughter wavelet and its multiplication with the Fourier transformed
input signal together in one Single Instruction, Multiple Data (SIMD) multiplication. As the Fourier transformed input signal is complex-valued, the real
daughter wavelet values are copied twice such that SIMD can perform an element-wise multiplication between both buffers. In this example a scale-factor
of a = 3 is used.

Nature Computational Science | www.nature.com/natcomputsci

http://www.nature.com/natcomputsci

ResourceNaTurE CompuTaTional SciEncE ResourceNaTurE CompuTaTional SciEncE

Extended Data Fig. 5 | Boundary effects in fCWT and MATLAB With fCWT we perform zero extension to mitigate boundary effects. In contrast, by
default MATLAB uses a content dependent mirror extension. In some cases, such an extension strategy can increase boundary effect severity instead of
decreasing it as can be seen here.

Nature Computational Science | www.nature.com/natcomputsci

http://www.nature.com/natcomputsci

	The fast continuous wavelet transformation (fCWT) for real-time, high-quality, noise-resistant time–frequency analysis

	Results

	Benchmark.
	Synthetic data.
	EEG.
	In vivo electrophysiology.

	Discussion

	Methods

	Datasets
	Synthetic data
	EEG
	In vivo electrophysiology

	Mathematical preliminaries
	The Fourier transform
	Wavelets
	Fourier-based wavelet transform
	Implementation of fCWT
	Time–frequency ridge extraction

	Acknowledgements

	Fig. 1 The impact of time–frequency analysis across society.
	Fig. 2 Comparison of DWT and CWT.
	Fig. 3 Benchmarking with fCWT and six state-of-the-art time–frequency methods.
	Fig. 4 Benchmark results for synthetic data.
	Fig. 5 Benchmark results of human EEG data.
	Fig. 6 Benchmark results of in vivo electrophysiology data.
	Extended Data Fig. 1 Algorithmic implementation of fCWT The algorithmic implementation behind fCWT can be divided into: i) scale-independent and ii) scale-dependent operations.
	Extended Data Fig. 2 FFTW’s interleaving storing format Using an interleaving value format, the Fastest Fourier Transform in the West (FFTW) writes a complex-valued Fourier transform to memory.
	Extended Data Fig. 3 From mother to daughter wavelet The generation of the daughter wavelet is done efficiently by downsampling the mother wavelet .
	Extended Data Fig. 4 SIMD multiplication fCWT combines the generation of the daughter wavelet and its multiplication with the Fourier transformed input signal together in one Single Instruction, Multiple Data (SIMD) multiplication.
	Extended Data Fig. 5 Boundary effects in fCWT and MATLAB With fCWT we perform zero extension to mitigate boundary effects.

