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Signals are essential in both nature and (man-made) technology, 
because they enable communication1,2 (Fig. 1). Mathematically, 
a signal is a function of one (for example, speech) or more (for 

example, a two-dimensional (2D) image) dimensions that carries 
information about the properties (for example, state) of a physi-
cal system3. A source transmits a signal via a channel to a receiver, 
which delivers it to its destination. For example, a brain sends an 
oral message via vocal cords through the air, which is received by the 
listener’s ear, which brings it to the listener’s brain. When the same 
message is transmitted via a smartphone, the air is complemented 
by a chain of technology, leaving the rest of the chain untouched. 
Signals are omnipresent in society3,4 (Fig. 1).

Independent of its source, a signal needs to be processed to enable 
the generation, transformation, extraction and interpretation of the 
information it is carrying3. A widely used method to interpret (that 
is, extract and analyze) repeating patterns in signals is the Fourier 
transform (FT)3,4. A FT transforms a function of time into a complex-
valued function of frequency, representing the magnitudes of the fre-
quencies. The FT assumes the signal is stationary. In other words, it 
is a stochastic process in which the marginal and joint density func-
tions do not depend on the choice of time origin2. However, in real-
world practice, this assumption is often violated. Consequently, the 
FT is unable to process real-world non-stationary signals reliably5. 
To circumvent the problem of non-stationarity, advanced algorithms 
exist that analyze a signal based on their decomposition in elemen-
tary signals that are well localized (or boxed) in time and frequency4. 
These include the short-term Fourier transform (STFT), also known 
as the Gabor transform, and the wavelet transform (WT)6.

The STFT is very similar to the FT, but it uses a window function 
and short wavelets localized in both time and frequency, instead 
of pure waves, to extract temporal and spectral information. The 
drawback of the STFT is its use of a fixed-width window function, 
as a result of which frequency analysis is restricted to frequencies 
with a wavelength close to the window width7. Additionally, chop-
ping up the signal in short, fixed-width windows scrambles the sig-
nal’s properties. Accordingly, the frequency analysis is affected8.

The WT overcomes the drawback of the STFT by not relying on 
a window function. Instead, it uses a family of base functions that 
dilate and contract with frequency to represent the signal, thereby 
ensuring high resolution across the entire frequency spectrum. 
Consequently, the WT suffers from a high computational load. This 
prohibits its use with low-end hardware and for real-time applica-
tions9, as real-time computation requires an algorithmic computa-
tion time that is smaller than the signal’s duration.

To reduce the computational burden of the WT, the discrete 
wavelet transform (DWT) has been proposed, which applies a 
coarse, logarithmic discretization. This makes DWT suitable 
for data compression, but simultaneously disqualifies it from use 
in detailed analysis, as it is not able to analyze intricate time–fre-
quency details8 (as shown in Fig. 2). For this, a true WT—the com-
putationally expensive continuous wavelet transform (CWT)—also 
called an integral wavelet transform (IWT), is needed. CWT offers 
a high-resolution representation of the time–frequency domain 
by using near-continuous discretization. Its continuous time and 
frequency scales better support intricate time–frequency analysis. 
Consequently, CWT is often described as the mathematical micro-
scope of data analysis10 (Fig. 2).

In this Resource paper we introduce the open-source fast con-
tinuous wavelet transform (fCWT), which brings real-time, high-
resolution CWT to real-world practice (for example, biosignals11–13, 
cybersecurity14,15 and renewable energy management16,17; Fig. 1). 
Next, we assess the performance of fCWT in a benchmark study 
and then validate the use of fCWT on synthetic, electroencephalog-
raphy (EEG) and in vivo electrophysiological data. We end with a 
concise discussion.

Results
The performance of fCWT was benchmarked against six widely 
used CWT implementations, then it was subjected to a threefold 
validation on accuracy, resolution and throughput using, respec-
tively, synthetic data, human EEG data and high-density in vivo 
extracellular rodent electrophysiology.
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Benchmark. To benchmark the performance of fCWT we com-
pared fCWT to the six widely used CWT implementations shown 
in Fig. 3. Because of its widespread use across research, the com-
plex Morlet wavelet (σ = 6) was used to calculate the CWT of three 
signals, all containing N = 100,000 samples. The Morlet wavelet is 
defined as a plane wave modulated by a Gaussian envelope. The 
parameter σ controls the time–frequency resolution trade-off18. The 
first signal was generated to be non-stationary using a sine wave 
whose frequency changed linearly from fstart = 1 Hz to fend = 7 Hz. The 
second and third signals contained uniformly random noise and a 

stationary piecewise defined function, respectively. Three different 
signals were used to prove fCWT’s flexibility and signal indepen-
dence. Nevertheless, the signal content and wavelet choice are irrel-
evant to the performance of fCWT (see Methods for details).

All CWT implementations, including fCWT, use a near-continu-
ous frequency scale containing 3,000 frequencies (range, f0 = 1 Hz to 
f1 = 32 Hz), evenly spaced in exponential space. fCWT thus features 
a high-frequency resolution in the low-frequency spectrum and a 
lower frequency resolution in the high-frequency spectrum.

PyWavelet19 and SciPy20 execution times were measured in a 
Python 3.8.6 environment, using the Timeit library inside the code 
to exclude compile time. The overhead resulting from the transla-
tion between C and Python was removed by estimating the inter-
section factor of the linear relationship between signal size and 
execution time. MATLAB v2019b and Mathematica 12.0.0.0 execu-
tion times were measured using the program-specific timing func-
tions that measure the exact kernel execution times.

Wavelib21 was used as the benchmark’s baseline algorithm as it 
is the reference CWT C/C++ library9, and most microcontrollers 
are programmed using C/C++. Wavelib21 thus serves as a baseline 
for the reported speed-ups (Fig. 3). The reported execution times 
were obtained from an eight-core 2.30-GHz central processing 
unit (CPU) via 100 successive runs, which removed the influence 
of caching behavior. A 10-s pause between runs was implemented 
to prevent the CPU from overheating. Outliers that deviated by 
more than 3 s.d. from the mean were removed. Wavelib and SciPy 
had three outliers, leaving N = 97 samples for all algorithms to 
ensure equal group sizes. A repeated-measures analysis of vari-
ance (ANOVA) revealed that the algorithms differed significantly, 
F(4, 93) = 2,474,778.911, P ≪ 0.001, η2 = 1.000, where F denotes the 
ANOVA statistic based on the ratio of mean squares, which indi-
cates the ratio between the explained and unexplained variance or, 
in other words, the between- and within-group variability. P is the 
probability that an observed difference occurred by chance, and η2 
‘indicates the proportion of variance accounted for (that is, a gen-
eralization of r/r2 and R/R2 in correlation/regression analysis)13. 
Also, all pairwise comparisons were highly significant (P ≪ 0.001, 
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Fig. 1 | The impact of time–frequency analysis across society. In both nature and technology, signals enable communication, and processing techniques 
such as the CWT (also called IWT) are applied throughout. CWT was the primary processing method used in the Laser Interferometer Gravitational-wave 
Observatory (LIGO) experiment to detect gravity waves in highly non-stationary gravitational wave data. In industry, CWT has been applied to enhance 
mineral detection and speech segmentation. CWT also allows the detailed analysis of biosignals such as an electrocardiogram in the medical domain. 
BCI, brain–computer interface; BPM, beats per minute. Image credits: (left) adapted with permission from ref. 82, Caltech/MIT/LIGO Laboratory; (center) 
adapted from ref. 83 under a CC BY license.
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Fig. 2 | Comparison of DWT and CWT. A time-varying pulse signal of a 
sonar device is analyzed in the range 0–60 kHz using the DWT and the 
CWT. The DWT uses a coarse time–frequency discretization to favor 
speed. By contrast, the CWT uses a time-consuming near-continuous 
discretization of the time and frequency scales to favor resolution.
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Bonferroni-corrected), with fCWT being, respectively, 122 times 
and 34 times faster than the reference Wavelib21 and the fastest 
available algorithm, PyWavelet19. Figure 3 presents descriptive sta-
tistics for all distributions.

The fast running time of fCWT was also compared to two other 
fast time–frequency estimation algorithms: the STFT and DWT. 
In this benchmark, STFT uses a Blackman window of 500 ms with 
400-ms overlap, and DWT uses 20 dyadic (that is, aj = 2j) scales of 
Debauchie decomposition. The parameters were chosen to reflect 
actual usage in real-world applications (Fig. 1). Both algorithms are 
implemented and benchmarked in MATLAB using the in-program 
timing functions. CWT implementations use 600 frequencies, 
evenly spaced in exponential space. Fewer frequencies are used to 
reduce memory usage.

To assess whether or not the algorithms perform in real time 
(that is, an algorithmic computation time less than the signal’s dura-
tion), we define the real-time analysis ratio (RAR):

RAR =

Δtcomputation
Δtsignal

, (1)

with Δtcomputation and Δtsignal being the duration of the computation and 
signal, respectively. In the case of RAR > 1, an algorithm does not 
operate in real time. In the case of RAR just shy of 1, the algorithm 
is unlikely to run in real time as the time–frequency calculation is 
merely one step in a processing pipeline. When RAR ≪ 1, real-time 
operation is likely to be achieved or within reach. For all six CWT 
implementations and two traditional time–frequency techniques 
(that is, STFT and DWT), Fig. 3b shows RAR versus sampling fre-
quency. The RARs were obtained by averaging 100 successive runs 
on 10-s signals with varying sampling frequencies (range, fs0 = 1 kHz 

to fs1 = 200 kHz). fCWT and CWT used 5-s signals to fit memory 
constraints. Small fluctuations in RAR are caused by the stochastic 
nature of benchmarks performed under real-world conditions. It 
should be noted that the sampling frequency is directly related to 
the number of samples. Therefore, we test fCWT’s performance for 
different signal lengths.

STFT and DWT exhibit superior real-time behavior on signals 
with sampling frequencies up to 200 kHz and beyond. However, 
they achieve these very high speeds because of their considerable 
drop in precision, as shown in Fig. 2. Therefore, STFT and DWT 
are not suitable for wide-band high-resolution time–frequency esti-
mation. In these cases, CWT is favored. However, even the fastest 
CWT implementation available tends to be extremely slow com-
pared to STFT and DWT. fCWT merges the best of both worlds, 
yielding real-time behavior on signals with sampling frequencies up 
to 200 kHz. This has brought CWT’s execution time close to that 
of STFT and DWT, while having 25 times to 100 times the spec-
tral resolution of DWT throughout the spectral domain. As such, 
fCWT is a truly competitive real-time, high-resolution alternative 
for STFT and DWT.

fCWT allows signals with 34 to 122 times the sampling frequency 
of existing CWT implementations. Figure 3 shows fCWT’s capa-
bility of analyzing signals up to 200 kHz in real time, whereas the 
fastest implementation of CWT fails at fs = 30 kHz. Consequently, 
fCWT enables real-time analysis of high-frequency signal dynam-
ics, as exist in audio (for example, loudspeaker characterization22, 
full band speech coding23 and paralinguistic analysis24), biosignals 
(for example, brain–computer interfaces12 and peripheral signals 
such as ECG, electromyography, electrodermal activity and respi-
ration11,13), image and video (for example, distance transforms25,26), 
sonar and radar27,28, network analysis (for example, renewable 
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energy management16,17 and cybersecurity14,15) and machine fault 
diagnosis29,30 (Fig. 1).

Synthetic data. fCWT’s spectral resolution is equal to that of CWT. 
In contrast to many other CWT optimization studies, we do not 
compromise precision. To demonstrate this, we compared fCWT to 
CWT on both clean and noisy synthetic datasets (see Data availabil-
ity statement for details). Each dataset consists of three wavepackets 
that validate an algorithm on spectral and temporal resolution and 
bandwidth size. A noisy dataset was generated to mimic realistic 
conditions and assess noise resilience.

Quantitative assessment of each algorithm’s performance is car-
ried out by calculating the per-wavepacket mean absolute percent-
age error (MAPE) scores of 100 runs on both datasets between 
actual frequencies and the time–frequency ridges extracted from the 
spectra (see Methods for details). The MAPE scores of the clean data 
are based on one run, as they are completely deterministic. We used 
a relative error measure to weight errors at all frequencies evenly.

Next to fCWT and CWT, STFT and DWT were also included, 
allowing us to show the speed–accuracy trade-off that currently 
dominates the time–frequency landscape. STFT is based on calcu-
lating multiple traditional FTs with overlapping fixed-sized win-
dows. The STFT is very fast and efficient as it relies on the fast 
Fourier transform (FFT). However, the use of fixed-sized windows 
requires the wavelengths to be close to the window size. Hence, fre-
quency resolution changes drastically over the spectrum, and only 
a small frequency band can be analyzed at the same time. DWT 
does not have this drawback. It does not rely on a window func-
tion. Similar to CWT, it uses wavelets that dilate and contract with 
frequency to represent the signal. However, in contrast to CWT, it 
uses far fewer wavelets to represent the signal. This makes DWT 
a very fast time–frequency estimator. Finally, to complete the 
time–frequency landscape and allow a thorough comparison on 
accuracy, we added the high-resolution Wigner–Ville distribu-
tion (WVD)4, the advanced Hilbert–Huang transform (HHT)31 
and the more recent empirical wavelet transform (EWT)32. WVD 
has the highest time–frequency resolution mathematically pos-
sible and HHT and EWT improve the resolution by using a slow 
but accurate adaptive iterative process to decompose a signal into 
fundamental functions that are not necessarily sine functions (for 
example, FFT). Manual tuning obtained the following parameters 
for optimal time–frequency sharpness. fCWT and CWT use the 
complex Morlet wavelet (σ = 6) and a frequency scale of 480 fre-
quencies (range, f0 = 0.25 Hz to f1 = 250 Hz), evenly spaced in expo-
nential space (cf. the 111Benchmark section). STFT uses a 500-ms 
Blackman window with 400-ms overlap, DWT uses 11 dyadic (that 
is, aj = 2j) scales of 15-order Daubechie wavelet decomposition, and 
WVD does not take parameters. HHT and EWT use a frequency 
resolution of 0.25 Hz. HHT uses seven intrinsic modes that were 
extracted using a maximum signal-to-residual ratio of 20 as a stop-
ping criterion. EWT decomposes the signal using a peak threshold 
of 5%. Outliers that deviated more than 3 s.d. from the mean were 
removed. The HHT had four outliers, which resulted in N = 96 for 
all algorithms to ensure equal group sizes.

Overall, the per-wavepacket MAPE scores differed signifi-
cantly on both the clean and noisy datasets between the algorithms 
(F(6, 90) = 112, 243.890, P ≪ 0.001, η2 = 1.000; Fig. 4). Within each 
algorithm, the per-wavepacket MAPE scores also differed signifi-
cantly between each other (F(2, 94) = 399.044, P ≪ 0.001, η2 = 0.895) 
However, fCWT and CWT generated similar, low MAPE scores on 
both the clean and noisy datasets for all three wavepackets. This was 
confirmed by a correlation analysis per wavepacket, respectively 
r(94) = 0.996, P < 0.001, r(94) = 1.000, P < 0.001 and r(94) = 0.997, 
P < 0.001. The low MAPE scores can be explained by CWT’s and 
fCWT’s wavelet convolution, which averages fluctuations of a sig-
nal at different scales33, and its redundancy (that is, wavelets are 

not orthogonal at different scales), which reduces noise by cancel-
ing out the random signal components34. Hence, both can separate 
frequency bands and their details across the full frequency range. 
When compared to the slow CWT, fCWT’s accuracy and noise-
handling capabilities are not compromised by its highly efficient 
implementation. Small differences in the time–frequency spectrum 
can be seen at the edges. However, these differences are caused by 
MATLAB’s mitigation of edge artifacts (202020Implementation of 
fCWT section in the Methods).

STFT cannot extract details of the lower frequency bands present 
in the first and third wavepackets. The wavelengths of these waves 
are too long for the 500-ms window we used, whereas a larger win-
dow cannot distinguish the complex non-stationary behavior of 
the first packet. Nevertheless, STFT shows strong noise-handling 
capabilities that result from the averaging effect of FFT’s inherited 
convolution. DWT is powerful in denoising, but not suitable for 
time–frequency analysis. WVD suffers from its well-known arti-
facts, which are only made worse by the additive noise4. HHT and 
EWT are very good at separating the frequency bands of the clean 
dataset. Unfortunately, HHT’s frequency estimations, and to a lesser 
extent those from EWT, fluctuate heavily, leading to high MAPE 
values. These distortions are caused by the interference between the 
multiple wavefunctions in each wavepacket. This effect increases 
dramatically for both algorithms in the noisy dataset4.

EEG. Owing to its ease of measurement and high temporal resolu-
tion, the vast majority of neuroscience studies are based on EEG 
measurements35. As EEG measures brain activity via electrodes on 
the skull, no medical procedures are needed. However, such external 
measurements do suffer from increased noise. Fluctuations in EEG 
caused by brain activity are orders of magnitude smaller than the 
disturbances caused by eye, face and body movements36. Therefore, 
studies average the recordings of many trials to cancel random fluc-
tuations. Unfortunately, the use of repeated trials removes the tem-
poral advantage of EEG and prevents its applicability in real-time 
implementations, which rely on single-trial estimation.

The often-used FFT cannot handle the highly non-stationary 
character of EEG signals. Additionally, EEG sampling frequencies 
are often 1 kHz, and the simultaneous recording of 64 electrodes 
is standard. Hence, high-speed, non-stationary, time–frequency 
analysis is essential to have any chance of success in single-trial 
estimation. This is a criterion that current time–frequency tech-
niques are unable to meet. Techniques like STFT and DWT8 are 
fast but lack the desired resolution in representation, whereas 
methods like CWT6 are precise but lack speed. fCWT fuses the 
best of both worlds by accelerating the high-resolution CWT by 
34 to 122 times. So, we can improve the resolution by ≥34 times 
or handle ≥34 times as many data than the fastest CWT imple-
mentation available in the same time frame. To demonstrate the 
impact of real-time super-resolution on neuroscience, fCWT was 
thus benchmarked against full-resolution CWT and fast STFT, and 
DWT on a single-trial EEG dataset of subjects performing mental 
arithmetic tasks37.

Because active concentration is known to be most visible in the 
frontal region of the brain36, the signals of three frontal electrodes 
(pre-frontal 1, pre-frontal 2 and mid-frontal in the 10–20 system36) 
were averaged to reduce local fluctuations. We analyzed the resulting 
signal in the δ (delta), θ (theta), α (alpha), β (beta) and γ (gamma) 
frequency bands, using a frequency range that spans five octaves 
(f0 = 2 Hz to f1 = 64 Hz). Simultaneous analysis of all these frequency 
bands is vital for cognitive task experiments, with pre-frontal δ fre-
quencies (2–4 Hz) being associated with attention and motivation38, 
and the power of θ oscillations (4−7 Hz) reflecting memory encod-
ing and retrieval39. Lower α-desynchronization (8–13 Hz) relates to 
task-unspecific attentional demands and β-band (13–30 Hz) power 
increases with demanding cognitive tasks36. The γ oscillations 
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(~30−100 Hz) indicate complex cognitive thinking (for example, 
object recognition and sensory processing40). Consequently, full-
range, high-resolution frequency analysis is vital.

The analysis of CWT, fCWT, STFT and DWT was comple-
mented with 3.0%CWT (that is, CWT with fCWT’s RAR; Fig. 
5). 3.0%CWT enables a fair comparison between the real-time  
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frequency estimation techniques that cover a frequency range from f0 = 0.25 Hz to the Nyquist frequency f1 = 250 Hz are shown. fCWT and CWT use the 
Morlet wavelet (σ = 6) and 480 frequencies to divide the spectrum, DWT uses 11 levels of 15-order Debauchie wavelet decomposition, and STFT uses a 
500-ms Blackman window with 400-ms overlap to obtain optimal time–frequency resolution. WVD takes no parameters. HHT and EWT have a frequency 
resolution of 0.25 Hz and rely on an adaptive iterating process. HHT uses seven intrinsic modes that were extracted using a maximum signal-to-residual 
ratio stopping criterion. A close-up of the time–frequency estimation of the third wavepacket is also shown for comparison. As relative intensity is of 
primary interest, the spectra are normalized to a [0, 1] range. b, As in a, but 0-dB white Gaussian noise is added to the synthetic data. The parameters 
remained the same. c, MAPE scores for the clean and noisy data. Boxes show the median and 25th to 75th percentile range; whiskers show minima and 
maxima. In the top plot only medians are visible as results on the clean dataset are deterministic and, hence, contain no variance. See Supplementary Table 
1 for the distribution statistics.
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resolution of CWT and full fCWT using 650 frequencies and 
3.0%CWT using 20 frequencies. The three CWTs use the complex-
valued Morlet wavelet (σ = 20), tuned for optimal time–frequency 
resolution. Based on manual tuning we set a 500-ms Blackman win-
dow with 400-ms overlap for STFT and 11 dyadic (that is, aj = 2j) 
scales of 15-order Debauchie wavelet decomposition for DWT, 
enabling maximal time–frequency sharpness. RAR versus the num-
ber of 1-kHz channels was calculated for full-resolution CWT and 
fCWT, STFT and DWT.

The resolution difference between the equally fast full fCWT 
and 3.0%CWT is most prominent during the mental arithmetic 
task. Real-time fCWT distinguishes different EEG frequency bands 
much better than real-time CWT. The sheer amount of subdivi-
sions in the frequency spectrum allows fCWT to show the small 
chaotic β-frequency variations often seen during active concentra-
tion36 and the slow oscillating δ-band power associated with moti-
vation38, in real time. Having the same runtime, the fastest CWT 
implementation fails. Although STFT can separate frequencies in 
the β-frequency (13–30 Hz) and γ-frequency (~30−100 Hz) bands, 
it suffers from low spectral resolution in the δ-frequency (<4 Hz) 
and θ-frequency (4–7 Hz) bands. Hence, STFT makes wide-band 
EEG analysis impractical. Again, DWT was shown to be unsuitable 
for detailed time–frequency analysis.

fCWT’s power excels when an entire array of EEG electrodes is 
analyzed in real time. Although the use of EEG is gaining popu-
larity, its low spatial resolution remains a huge drawback. Figure 
5 shows that the fastest CWT implementation available can only 
handle ~20–24 electrodes (or streams of data) simultaneously at 
full resolution in real time. By contrast, fCWT is easily capable of  

calculating real-time, high-resolution time–frequency representa-
tions of state-of-the-art EEG set-ups with up to 512 electrodes.

In vivo electrophysiology. Using depth electrodes, local field 
potentials (LFPs) measure local voltage changes inside the brain 
caused by the activity of neuron clusters. LFPs are recorded in 
vivo and, consequently, they do not suffer from the skull’s high-
frequency mask behavior. Consequently, the γ-frequency (~30–
100 Hz) and high γ-frequency (>100 Hz) bands can be reliably 
recorded, these being bands that highly correlate with single neuron 
firing and reflect aspects of movement (in the motor cortex41) and 
vision (in the visual cortex42). Recording these frequencies requires 
sampling rates that are several times those used for EEGs (that is, 
2–3 kHz). Furthermore, in vivo electrophysiology techniques43 use 
huge amounts of electrodes44. LFPs are often recorded simultane-
ously at 100–300 channels, or even more45. In the future, data band-
width is expected to increase even more than its recent tremendous 
increases. Neuropixels43, Utah arrays44 and Michigan probes46 are 
currently able to measure hundreds of LFPs and thousands of neu-
rons simultaneously. Real-time LFP time–frequency analysis could 
lead to next-generation prostatics41. Unfortunately, current imple-
mentations are unable to handle these bandwidths without com-
promising resolution. fCWT shows that super-resolution can be 
maintained when analyzing hundreds of high-bandwidth LFP data 
streams simultaneously.

Rodent in vivo electrophysiology data from the Allen Brain 
Observatory data collection47 were analyzed. During randomly 
alternating full-field, high- and low-contrast flashes, six Neuropixel 
probes43 with 374 electrodes (Neuropixel 3a; 20 μm vertical  
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Fig. 5 | Benchmark results of human EEG data. a, The Fp1 and Fp2 pre-frontal and Fz mid-frontal EEG electrodes, which were averaged to assess mental 
workload. Credit: Imagewriter/Alamy. b, Full fCWT and CWT, 3.0%CWT, STFT and DWT of EEG, recorded during 30 s of rest and 30 s of mental 
arithmetic. Full fCWT and 3.0%CWT analyze the signal using the Morlet wavelet (σ = 20) at 650 and 20 scales, evenly spaced in exponential space, 
respectively. STFT uses a 500-ms Blackman window with 400-ms overlap and DWT uses 11 levels of 15-order Daubechie wavelet decomposition. 
Spectra are normalized to [0, 1], except for a few spectra that are amplified to enhance visibility. c, Zoomed view during the arithmetic task to show each 
algorithm’s ability to extract the intricate time–frequency details of the β frequency band (13–30 Hz). d, The RAR (equation (1)) of full fCWT and CWT, 
3.0%CWT, STFT and DWT versus the number of electrodes with a 1-kHz EEG signal.
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electrode separation) each recorded a mouse visual cortex’s 
responses. LFPs were obtained by downsampling the data to 
1.25 kHz and filtering using a 1,000-Hz low-pass filter. Full fCWT 
and CWT, 3.0%CWT (EEG section), STFT and DWT time–fre-
quency estimations were performed on 9 s of raw single-trial LFP 
data containing four stimuli.

We compared CWT and fCWT to STFT and DWT, as the latter 
two are used in situations where speed is key. Other time–frequency 
algorithms offer much higher resolution but are orders of magni-
tude slower, making them impractical for LFP analysis.

The analysis covers a frequency range from f0 = 8 Hz to f1 = 128 Hz, 
allowing simultaneous analysis of both low frequency (that is, α and 
β bands) and high frequency (that is, γ and high γ bands), which 
is very important as they reflect different aspects of task perfor-
mance. Low-frequency LFPs unveil long-distance communication, 
whereas high-frequency activity reflects local neural processing48. 
As the interplay between these frequency ranges discloses the coor-
dination at the inter- and intra-cortical level49, real-time, wide-band 
time–frequency estimation is key in the LFP analysis of complex 
brain mechanics.

The three CWTs use the complex-valued Morlet wavelet (σ = 16), 
tuned for optimal time–frequency resolution. Based on manual 
tuning we set a 500-ms Blackman window with 400-ms overlap for 
STFT and 11 dyadic (that is, aj = 2j) scales of 15-order Debauchie 
wavelet decomposition for DWT, enabling maximal time–fre-
quency sharpness. The RAR versus number of channels was also 

calculated for fCWT and CWT at full resolution and STFT and 
DWT for a 2.5-kHz input signal.

The subfigures of Fig. 6c show the ability of real-time, full fCWT 
to separate multiple β-frequency components (16, 20 and 25 Hz), 
locate four γ bursts and reveal the overall γ-frequency dynamics, all 
at the same time. By contrast, real-time 3.0%CWT misses two out 
of four γ bursts, cannot separate low-frequency β components, and 
loses higher γ-frequency dynamics. With STFT, the resolution is on 
par in the mid-frequency range, but the high- and low-frequency 
ranges suffer from low resolution. Despite their very high speeds, 
both STFT and DWT are unsuitable for broadband, high-resolu-
tion, time–frequency estimations.

Electrode density is set to increase dramatically; for example, 
5,000-electrode Neuropixels have already been announced50. Figure 
6d shows RAR (equation (1)) versus the number of channels per 
algorithm. Full CWT can hardly process 15 LFP channels (or data 
streams) in real time. By contrast, fCWT offers a real-time, full-res-
olution performance for up to 350–400 channels. Considering the 
Allen Brain Observatory dataset, fCWT supports real-time analy-
sis and feature extraction of three to four entire Neuropixel probes, 
whereas the fastest CWT implementation available supports only 
one-tenth of a single probe.

Discussion
One of WT’s most powerful features is the possibility to use custom 
wavelets. However, not all wavelet types are suitable for existing fast 
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Fig. 6 | Benchmark results of in vivo electrophysiology data. a, In vivo electrophysiology measurements were obtained by the insertion of a Neuropixel43 
inside the anteromedial area of a rodent’s visual cortex. Mouse drawing adapted from ref. 84 under a CC BY license. b, Time–frequency estimations by 
fCWT, CWT, STFT and DWT during 9 s of four 250-ms full-field, high- and low-contrast flashes. The LFP shows exclusive activation after the black stimuli. 
Full fCWT and 3.0%CWT analyze the signal using the Morlet wavelet (σ = 16) at 520 and 16 scales evenly spaced in exponential space, respectively. STFT 
uses a 500-ms Blackman window with 400-ms overlap and DWT uses 11 levels of 15-order Daubechie wavelet decomposition. Spectra are normalized 
to [0, 1], except for a few spectra that are amplified to enhance visibility. c, Zoom-in of the β- (15–30 Hz), γ- (32–100 Hz) and high γ-frequency bands 
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approximate CWT implementations, which rely on finite impulse 
response filters4. fCWT does not suffer from this setback, as it cal-
culates wavelets starting directly from its definition. With custom 
wavelets, fCWT performance can be improved even further51. As 
such, fCWT enables the real-time analysis of high-frequency non-
stationary signals, such as in audio22–24,52, biosignals (for example, 
brain–computer interfaces12 and ECG11,13), image and video25,26, 
sonar and radar27,28, renewable energy management16,17, cybersecu-
rity14,15 and machine fault diagnosis29,30,53 (Fig. 1).

The implementation of fCWT could be extended to other time–
frequency methods as well. The synchrosqueezed transform (SST)54 
uses reassignment to sharpen the CWT spectrum, and the chirplet 
transform (CT)55, superlets (SL)6 and the noiselet transform (NT)56 
use atoms to describe a signal, sharing a wavelet-like implementation.  
Future research could explore speed-ups of these algorithms and 
bring them to real-time applications. Hence, fCWT’s impact is 
broader than CWT-based applications alone. Consequently, we 
did not include the SST, CT, SL and NT in the benchmark study, as 
these rely on the CWT in their core. These second-order techniques 
as well as modifications of the included first-order techniques 
(for example, smoothed WVD6) are by definition slower than the 
already expensive CWT.

fCWT shares its mathematical definition with CWT and, hence, 
without compromise, inherits both all its benefits10 and all its limita-
tions (for example, its degrading spectral resolution57 and increas-
ing redundancy in higher frequency ranges5). Fortunately, these 
are well-known limitations that have solutions4,54. Moreover, the 
time–frequency landscape keeps growing, including new CWT 
implementations58. We therefore invite everyone to compare their 
implementations against fCWT’s open source59, and, to extend its 
validity, we invite all to apply fCWT on more extensive and different 
specimens that fall outside this paper’s scope.

fCWT allows an acceleration in the developments of science and 
engineering, industry and health (Fig. 1). Although maintaining 
CWT’s full resolution and supporting customization, fCWT enables 
real-time time–frequency analysis of non-stationary signals. As 
such, fCWT can bring offline research that is hindered by the low 
resolution of DWT, the limited range of STFT and/or the computa-
tional burden of CWT into real-time practice.

Methods
Datasets. In this Resource paper, three types of data were used: synthetic, EEG 
and in vivo electrophysiological data. Details on each dataset are described in the 
following subsections.

Synthetic data. Two synthetic datasets were generated for this paper, both 
composed of the same three time-varying wavepackets with a sampling frequency 
of 500 Hz:

	1.	 Three 5-s sine waves, the frequencies of which gradually change between 100 
and 110 Hz, 20 and 22 Hz and 5 and 6 Hz, respectively, with a periodicity of 
1 Hz.

	2.	 Two 5-s sine waves with linearly changing frequencies between [5, 50] and 
[100, 50] Hz.

	3.	 Three 10-s low-frequency waves of 2, 1 and 0.5 Hz. All wavepackets are sepa-
rated by 0.5 s and are multiplied by a Gaussian window function to mitigate 
discontinuities at the boundaries.

One set contained clean data and the other was contaminated with white 
Gaussian noise with a 1:1 signal-to-noise ratio (SNR) across the whole signal, 
with the SNR being determined by the average power. Both datasets have a total 
duration of 21.0 s and are available in the fCWT CodeOcean repository59.

EEG. The EEG mental arithmetic dataset by Zyma et al.37 was obtained from 
PhysioNet60 and loaded into MATLAB R2021a. EEG data were recorded 
monopolarly at 500 Hz, using Ag/Ag electrodes and the Neurocom EEG 
23-channel system (Ukraine, XAI-MEDICA). The International 10/20 scheme was 
used for electrode placement. Electrodes were referenced to the interconnected 
ear reference electrodes. Data were preprocessed using a 30-Hz high-pass filter 
and a 50-Hz power line notch filter. Common EEG artifacts were removed using 
independent component analysis. All participants had normal or corrected-to-
normal vision and had no mental or cognitive impairment.

In this paper we use the data of subject 13, a 24-year old male who excelled in 
mental arithmetic by performing 34 subtractions between four-digit and two-digit 
numbers in 4 min. Subject 13 was chosen to ensure task compliance. We used the 
last 30 s of EEG during rest and the first 30 s of EEG during the arithmetic task.

In vivo electrophysiology. In vivo electrophysiology data were collected from The 
Visual Coding—Neuropixels project47. LFP data from female specimen 738651054 
from stimuli IDs 3861−3864 were used. Six Neuropixel version 3a probes were 
inserted into the mouse visual cortex. In this study, LFP data from fifth probe (Probe 
‘e’) channel 63 were used. The 250-ms high-contrast stimuli, 2,000 ms apart, alternate 
in random order. Mice were shown a neutral gray screen between stimuli. Additional 
technical, experimental and medical details about the dataset can be found in ref. 47.

Mathematical preliminaries. The Fourier transform. With its core idea that a 
function, often a signal, can always be decomposed into pure sine and cosine 
functions, the FT is foundational in spectral pattern analysis3,4,8,61. However, not all 
functions f(t) can be decomposed—only those that live in the Lebesgue space L2(0, 
2π). This space includes all functions that are (1) finite in energy, (2) 2π-periodic 
and (3) square-integrable, formally

∫ 2π

0
|f(t)|2dt < ∞ t ∈ (0, 2π) (2)

f(t) = f(t − 2π) t ∈ R, (3)

which allows f(t) to be represented as a weighted sum of complex wavefunctions:

f(t) =

∞∑

−∞

cne2πint, (4)

with the Fourier coefficients cn given by the amount of overlap between the 
conjugated complex wavefunction and the function f(t):

cn =
1
2π

∫
∞

−∞

f(t)e−2πint (5)

or in discrete form when used on actual digital samples in a sequence f having 
length N:

xk =

N−1∑

n=0
f[n]e−i2πkn/N. (6)

In other words, any 2π-periodic, square-integrable function f(t) can be represented 
by this superposition of complex-valued sinusoidal waves that are translated in the 
frequency domain. However, this is precisely Fourier’s pitfall; not all functions, or 
signals for that matter, are 2π-periodic. FTs cannot decompose the wide variety of 
non-stationary functions that are not 2π-periodic. Unfortunately, this constraint 
is often misunderstood, and FT are still used to analyze signals with varying 
frequencies.

The mathematical reason behind FT’s constraint becomes apparent when we 
consider the Lebesgue space L2(R) containing all square-integrable functions that 
have finite energy along the entire real axis:

∫
∞

−∞

|f(t)|2dt < ∞. (7)

The reason why equation (4) cannot represent these functions is that pure sine 
waves extend to infinity and therefore do not have finite energy. Pure waves do not 
lie in L2(R) and, as such, they cannot represent its functions.

Wavelets. We can define a set of functions other than equation (4) that do 
have finite energy. The result is the set of short periodic functions ψ(t) called 
wavelets that are well localized in both the time and frequency domains5,6,8,33,57,62. 
Consequently, wavelets need to be able to translate in both domains as well:

ψ jk(t) = 2−j/2
ψ(2jt − k), (8)

where ψjk is a daughter wavelet function, defined as the mother wavelet ψ(t) scaled 
in the frequency domain by j and translated in the time domain by k. So, the WT 
outputs a 2D time–frequency matrix, where the FT gives a 1D frequency spectrum.

Similar to equation (4), the superposition of these wavelets can represent any 
function

f(t) =

∞∑

j, k=−∞

cjkψ jk(t), (9)

where, like with the FT, the wavelet coefficients cjk are given by the amount of 
overlap between the wavelet and the function f(t). This definition also shows us 
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that wavelets, similar to Fourier’s pure wavefunctions, live in Hilbert space as 
multiplication between two functions is defined as an inner product:

Wψ f(j, k) = ⟨f, ψ jk⟩ = cjk =

∫
∞

−∞

f(t)ψ jk(t)dt, (10)

in which ψ jk corresponds to the conjugate of ψjk. However, as j and k can be 
any real number, we have to define both variables’ optimal discretization such 
that the resulting time–frequency matrix does not under- or overdetermine the 
function f(t). So, the variables should be discretized such that the wavelets form 
an orthogonal basis in Hilbert space63,64—in other words, such that the wavelet 
functions have zero overlap.

Wavelets are orthogonal in Hilbert space if

⟨ψ jk, ψ lm⟩ = δjkδlm, (11)

from which it follows that equation (8) is indeed logarithmic orthogonal. The WT 
that uses this type of discretization is called the DWT8,65,66. In this context, ‘discrete’ 
refers to the use of its wavelets, not to the type of data it processes. As all DWT’s 
wavelets are orthogonal, it describes a function by the minimal number of wavelet 
coefficients possible. However, as stated at the beginning of this paper, a redundant, 
overcomplete representation is often much more favorable for signal analysis. 
Therefore, it is also possible to define a WT with arbitrary wavelet discretization. 
Such a wavelet transformation is called the CWT67. Again, ‘continuous’ does not 
refer to the type of data it can handle. CWT features continuously scalable and 
translatable wavelets that allow a much more precise analysis of a signal’s spectrum:

Wψ f(a, b) = |a|−1
∫

∞

−∞

f(t)ψ

(
t − b
a

)
dt, (12)

which comes with considerable computational complexity. When implemented 
digitally, its discrete form is used:

Wψ f[a, b] = |a|−1
N−1∑

n=0
f[n]ψ

[
n − b
a

]
, (13)

which is mathematically equivalent to passing the input signal through a series of 
wavelet filters of different lengths. Care is required at the boundaries of the signal. 
As the discrete form assumes signals of finite length, wavelet coefficients near 
the boundaries become increasingly meaningless. Instantaneous frequency at the 
first or last sample is impossible to calculate as one should know how the signal 
continues. There are several strategies to solve this uncertainty. For more details 
about this topic, see the Boundary effects section.

Equation (10)’s computational complexity can be estimated using the 
trapezoidal rule for integral solving and assuming a signal of length N = 2J. 
Furthermore, we assume J wavelets at aj = 2j discrete scales, and a wavelet length 
of L samples at unit scale. Starting at unit scale a0 = 1, we then have O(a0NL) 
complexity, with the cost of all scales resulting in

NL + 2NL + 4NL + … + 2JNL = O(LN2
). (14)

In other words, a naïve approach to DWT calculation would result in a polynomial 
complexity of O(N2). CWT would be even worse, as the discretization of the time 
and frequency domains is much finer. Fortunately, scientists quickly realized a 
considerable reduction in computational complexity could be achieved using 
Parseval’s theorem.

Fourier-based wavelet transform. Applying Parseval’s theorem to equation (12), a 
reduction in CWT’s complexity can be achieved:

Wψ f(a, b) =
1
2π

∫
f̂(ξ)ψ̂a, b(ξ)dξ. (15)

Subsequently, we define ψ̂a, b(ξ)  in terms of the FT of the mother wavelet function 
ψ(t), using its basic time-shifting and time-scaling properties:

ψ̂a, b(ξ) =
1
a

ψ̂(ξ)e−ibξ
(time shifting) (16)

= ψ̂(aξ)e−ibξ
(time scaling). (17)

Substitution gives

Wψ f(a, b) =
1
2π

∫
f̂(ξ)ψ̂(aξ)eibξdξ (18)

or in its discrete form

Wψ f[a, b] =
1
K

K−1∑

k=0
f̂[k]ψ̂[ak]ei2πbk/K, (19)

which describes Wψf[a, b] as an inverse FT of f̂[k]ψ̂[ak] . So, WT’s computational 
complexity no longer depends on the time-offset parameter b. As f̂[k] can be 
calculated beforehand, it is reduced to three distinct steps per scale:

	1.	 Generate ψ̂[ak]
	2.	 Calculate f̂[k]ψ̂[ak]  and
	3.	 Evaluate the inverse FT and obtain Wψf[a, b],

with the first two steps evaluated in O(N) and the last one requiring at least 
O(Nlog2N) when using a fast FT implementation68,69. This results in 
O(Nlog2N) complexity, a considerable reduction compared to O(N2), which 
is needed for the naïve approach. Additionally, the constant factor of this 
complexity can be reduced even more, as we will see in the next section.

Implementation of fCWT. Fourier-based wavelet transformation’s computational 
complexity is mainly determined by the inverse FT. Consequently, equation 
(12) has been rewritten regularly to use spline interpolation of the wavelet and 
circumvent the FT entirely70,71. Spline interpolation, also known as polynomial 
interpolation, defines a wavelet by only a few evenly spaced sampling points 
across the domain. Because the number of points is independent of the wavelet’s 
scale, the theoretical complexity of equation (12) is reduced to linear time. 
However, while complexity is lowered, the constant factor that equals the number 
of sampling points has been increased tremendously. In turn, this yields a trade-
off between speed and accuracy: more interpolation points leads to increases in 
both precision and computation time. Additionally, the spline interpolation only 
works for specific wavelet types. To avoid the trade-off, we optimize the Fourier-
based wavelet transformation by reducing the constant factor of its computational 
complexity. In this way, we maintain WT’s ability to use custom wavelet types51 and 
can exploit optimized FFT libraries72–74.

fCWT separates scale-independent and scale-dependent operations, which 
have to be performed separately for each wavelet’s scale. A detailed schematic of 
fCWT’s algorithmic implementation is provided in Extended Data Fig. 1. With 
CWTs, the frequency scale is often divided into hundreds of scales. We thus 
focused the optimization on the fCWT’s scale-dependent part by exploiting its 
repeated nature and high parallelizability. The scale-independent operations are 
performed first as their result forms the input for the scale-dependent steps. We 
pre-calculate two functions: (1) the input signal’s FFT and (2) the FFT of the 
mother wavelet function at scale a0 = 2. Both functions are independent of the scale 
factor a, so they can be pre-calculated and used as look-up tables in the processing 
pipeline.

FFT. Using the float- and AVX2-enabled Fastest Fourier Transform in the West 
(FFTW) library73, the input signal’s FFT is calculated. FFTW has superior 
performance in various benchmarks75 and has the ability to dynamically optimize 
its algorithmic implementation. FFTW determines the most efficient way to 
calculate the signal’s FFT with length N on hardware set-up X. This requires 
considerable time, which makes it only useful in situations where many FFTs 
are calculated with the same N and X. This is the case with fCWT, as its scale-
dependent part evaluates a fixed-length inverse FFT for every scale factor a. Other 
high-performance FFT libraries include the Fastest Fourier Transform in the 
South72 and Intel’s Math Kernal Library74. However, as Fastest Fourier Transform in 
the South lacks important optimization techniques and Intel’s Math Kernel Library 
is limited to Intel processors only, FFTW is currently the most flexible and versatile 
high-performance FFT library available.

Before a signal’s FFT is calculated, it is first zero-padded to the nearest  
power of two, which allows more time-efficient calculations than with other  
signal lengths. Zero padding lets all signals that map to the same nearest power 
of two use the same FFTW optimization. Hence, the flexibilty of fCWT as a 
tool is preserved while still enjoying the benefit of FFTW’s optimization plans. 
However, it will result in step-like performance behavior as seen in Fig. 3. After 
FFT calculation, we let FFTW write the complex-valued FT to memory in an 
interleaving format (Extended Data Fig. 2). Using this, we exploit the CPU’s 
predictive caching behavior and hence reduce memory access in the next steps. 
Because a CPU works with chunks of memory instead of single values, it always 
caches adjacent memory next to a requested value as well26,76. While we access the 
real part of a value, interleaving takes advantage of this behavior as the complex 
part is cached. Consequently, accessing the complex part after the real part does 
not require an additional memory request, which reduces memory accesses  
by 50%.

Scale-independent mother wavelet generation. The FFT of the mother wavelet 
function Ψ̂ [k] is generated once during the scale-independent step. Because 
wavelets in the frequency domain uniformly contract as their scale increases, 
daughter wavelet functions can be generated by downsampling a pre-generated 
mother wavelet function. Because scales must be at least amin = 2, we generate the 
mother wavelet function at a0 = 2 to save memory. It is important to note that 
the mother wavelet function is generated directly from its analytical Fourier-
transformed definition. Consequently, we create Ψ̂ [k] such that its length always 
matches that of f̂[k]. This ensures fCWT’s independence of wavelet length and 
achieves the highest wavelet resolution possible.
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After calculation of the FFT signal and the generation of the FFT mother 
wavelet, the scale-independent step is complete. fCWT proceeds to the scale-
dependent phase (Extended Data Fig. 1). This phase is repeated m = ∣a∣ times. 
Using m steps with step size Δa, the scale factors a are defined by discretizing the 
frequency spectrum evenly on a logarithmic scale:

a = {2xΔa
|x ∈ N ∧ 0 < x ≤ m}. (20)

This generates the wavelet coefficient matrix Wψf[a, b] one row at a time.

Scale-dependent downsampling. Each iteration of the scale-dependent step 
first generates the Fourier-transformed daughter wavelet function ψ̂a[k] by 
downsampling the mother wavelet function generated in the scale-independent 
step. This optimization is realized by using the mother wavelet as a look-up 
table (Extended Data Fig. 3). Hence, as explained earlier, the expensive Gaussian 
calculations involved in wavelet calculation are removed from the scale-dependent 
step. The daughter wavelet is generated by only performing a systematic look-up 
that accesses every ath value of the mother wavelet function. A schematic overview 
of this process is shown in Extended Data Fig. 3.

Scale-independent multiplication. Using the single instruction, multiple data 
(SIMD) model, another acceleration is achieved. By using the CPU’s full power, 
eight multiplications are executed at once77,78, which is used to exploit the 
elemental-wise multiplication between ψ̂a[k] and f̂[k]. In our case, SIMD performs 
four complex-valued multiplications in parallel, because the multiplication between 
the real-valued daughter wavelet and complex-valued Fourier-transformed input 
signal takes two multiplications per element. By exploiting the parallelizable nature 
of this step, an additional speed-up of 4× is achieved. Extended Data Fig. 4 shows 
this process graphically.

An additional acceleration is achieved by merging the generation of the 
daughter wavelet (Scale-dependent downsampling section) and the multiplication 
with f̂[k] (Scale-independent multiplication section) in one loop. Consequently, no 
intermediate results are stored in memory, which largly eliminates memory access.

Scale-independent inverse FFT. Finally, using FFTW’s inverse FFT function, the 
result is transferred back to the time domain. Similar to the FFT calculation in the 
scale-independent step, the inverse FFT uses a pre-calculated optimization based 
on the input signal’s zero-padded length. The complex-valued time–frequency 
matrix is stored in row-major order as an array of 2NM floats, where N is the signal 
length and M the number of scales. Each value is stored as two floats as the matrix 
is complex-valued.

Boundary effects. Because CWT uses convolution to calculate the wavelet 
coefficients, a wavelet is eventually close enough to the beginning or end of the 
signal to be multiplied with undefined data outside the boundaries of the signal. 
In these situations, frequency becomes a meaningless construct as one does not 
know how a signal would proceed beyond these limits. As this effect becomes more 
evident with larger wavelets (that is, lower frequencies) one can speak of a cone of 
influence33 caused by the edges that affect the entire spectrum. Several strategies 
exist to handle these so-called boundary effects4,79,80.

One could extend a signal by adding zeros at the beginning and the end to 
define data outside the boundaries. Because convolution relies on the element-wise 
multiplication between the signal and the wavelet, this strategy is similar to stopping 
the convolution at the boundary. Other strategies rely on making assumptions 
about the signal outside its bounds. For example, the signal could be extended by 
mirroring or repeating the signal at its boundaries4. With fCWT, we decided to let the 
users decide themselves. As fCWT is designed to be independent of signal content, 
we assume an unbiased zero extension. Consequently, users can choose their own 
boundary strategy by extending the signal manually before the fCWT is applied.

The direct result of fCWT’s strategy can be seen in the Synthetic data section. 
At both edges, fCWT shows a strong cone of influence effect of the boundary. 
MATLAB, by default, performs signal extension, which mitigates these artifacts. 
However, MATLAB’s default extension strategy sometimes leads to an increase 
in artifacts instead of a reduction. An extreme example can be seen in a visual 
comparison between both techniques in Extended Data Fig. 5. Consequently, 
with fCWT we went for an unbiased zero extension strategy aiming for maximal 
transparency and flexibility.

Time–frequency ridge extraction. To perform quantitative assessment of time–
frequency spectra on the synthetic data, a time–frequency ridge extraction 
methodology is used. This allows a comparison between the ridges (that is, 
frequency components) in the time–frequency spectra and the actual frequency 
components used to generate the dataset.

The synthetic dataset (see the Data availability statement for details) consists 
of three distinct wavepackets. The time–frequency ridge extraction is performed 
on each wavepacket separately. Each segment is defined such that it trims the first 
0.5 s and last 0.5 s of each wavepacket to remove the Gaussian window function 
influence. In the third wavepacket, 3.0 s is trimmed from the end to remove the 
influence of boundary effects (Boundary effects section).

MATLAB’s tfridge() is used to extract, respectively, three, two and three 
ridges from the first, second and third wavepacket, as it is the most used approach 
to ridge extraction. To do so, tfridge() needs pre-defined penalty coefficients 
(Pcoef), which determine the stability of the ridge estimation. As wavepackets and 
time–frequency algorithms largely differ in their characteristics, these penalty 
coefficients need to be optimized manually for each combination. Manual 
optimization is performed greedy by first testing different orders of magnitude 
(Pmag): Pmag ∈ {10−3, 10−2, 10−1, 100, 101, 102, 103}. When the optimal magnitude range 
[Pmag,1, Pmag,2] is selected, ten equally distanced coefficients are tested within that 
range Pcoef ∈ Pmag,1 ⋅ {0, 1, 2, …, 8, 9}. The resulting penalty coefficient is chosen for 
the benchmark. All penalty coefficients are provided in the source data for Fig. 4.

A fair comparison among the algorithms was secured, as the same stable 
ridge extraction was applied on all included algorithms. However, in future work, 
alternate open-source algorithms could be worth exploring81. These might yield 
highly accurate ridge extractions and/or remove the need for manually tuned 
parameters. As such, this might result in an even more fine-grained comparison 
among the algorithms.

Data availability
The generated synthetic dataset used in Fig. 4 is provided under ‘data’ in the 
CodeOcean fCWT capsule59. The ‘EEG During Mental Arithmetic Tasks v1.0.0’ 
used in Fig. 5 is available at https://physionet.org/content/eegmat/1.0.0/. The in 
vivo electrophysiology data collected by The Visual Coding—Neuropixels project47 
and used in Fig. 6 is available in the Neurodata Without Borders (NWB) format 
via AllenSDK (https://allensdk.readthedocs.io). An example Jupyter Notebook for 
accessing the LFP data is available at https://allensdk.readthedocs.io/en/latest/_static/
examples/nb/ecephys_lfp_analysis.html. Source data are provided with this paper.

Code availability
fCWT is released under Apache License Version 2.0 and will be maintained in 
a public GitHub repository available at https://github.com/fastlib/fCWT. fCWT 
is available for Mac OSX, Linux and Windows systems and features a detailed 
description on how to obtain Visual Studio project-files and generate cpp-based 
MEX-packages for easy MATLAB integration. For benchmark reproducibility, a 
version of fCWT at the time of publication is available on CodeOcean59.
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Extended Data Fig. 1 | Algorithmic implementation of fCWT The algorithmic implementation behind fCWT can be divided into: i) scale-independent and 
ii) scale-dependent operations. The scale-dependent operations each calculate the wavelet coefficients of a single scale-factor in the final time–frequency 
matrix. By repeating the scale-dependent part m = ∣a∣ times, the time–frequency matrix is build up one row at a time.
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Extended Data Fig. 2 | FFTW’s interleaving storing format Using an interleaving value format, the Fastest Fourier Transform in the West (FFTW) writes 
a complex-valued Fourier transform to memory. As the CPU caches adjacent values when accessing memory, accessing the complex and real part only 
requires single memory access instead of two.
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Extended Data Fig. 3 | From mother to daughter wavelet The generation of the daughter wavelet ψ̂a[k] is done efficiently by downsampling the mother 
wavelet Ψ̂[k]. This eliminates the need for expensive Gaussian calculations in the scale-dependent step. The mother wavelet is only calculated once in the 
scale-independent step.
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Extended Data Fig. 4 | SIMD multiplication fCWT combines the generation of the daughter wavelet and its multiplication with the Fourier transformed 
input signal together in one Single Instruction, Multiple Data (SIMD) multiplication. As the Fourier transformed input signal is complex-valued, the real 
daughter wavelet values are copied twice such that SIMD can perform an element-wise multiplication between both buffers. In this example a scale-factor 
of a = 3 is used.
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Extended Data Fig. 5 | Boundary effects in fCWT and MATLAB With fCWT we perform zero extension to mitigate boundary effects. In contrast, by 
default MATLAB uses a content dependent mirror extension. In some cases, such an extension strategy can increase boundary effect severity instead of 
decreasing it as can be seen here.
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