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� A method for the implementation of
Robin boundary condition in 2D LBM
is introduced.

� The method suggests using a coupling
of Taylor expansion and counter-slip
approach.

� The method can impose nonlinear
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Implementation of nonlinear boundary conditions like nth-order surface reactions or surface radiation
heat transfer has not been investigated in lattice Boltzmann (LB) framework. This study presents a novel
kinetic level method for their implementation. The method couples Taylor expansion of the conditions
with counter-slip approach to find unknown distribution functions at boundary nodes. The proposed
scheme guarantees the locality and orientation independency of formulations. To evaluate the proposed
scheme performance, several 1D and 2D test cases were simulated by D2Q9 LBM and the outcomes were
compared with analytical and numerical solutions. The geometry evolution by nth-order surface reaction
was investigated for dissolutions in a simple fracture and a spherical carbonate particle in a channel. The
results demonstrated the method performs promisingly in terms of accuracy. The convergence rate of
scheme based on the results from l2-norm analyses showed first or second-order rates of convergence,
depending on constraint’s degree of nonlinearity.

� 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Lattice Boltzmann equation (LBE) has been applied to simulate
complicated heat, mass, and momentum transfer problems like
multiphase, multicomponent, and reactive flows (He and Doolen,
2002; Mohamad, 2011; Ponce Dawson et al., 1993; Shan and
Doolen, 1995; Tian et al., 2014). Some advantages of LBE that make
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it popular for simulations are the simplicity of programming and
the parallel nature of the algorithms. However, despite these
promising features, applying boundary conditions in the lattice
Boltzmann method (LBM) is not a straightforward task and over-
coming the corresponding challenges has been the subject of many
studies in the past two decades. Implementing boundary condi-
tions in LBM is intrinsically different from the traditional macro-
scopic computational fluid dynamics (CFD) methods. The
conventional CFD methods are based on numerical discretizing of
macroscopic equations, while LBM employs the classical kinetic
theory and the statistical distribution functions as its computation
basis. In LBM, fractious particles replace the fluid and the distribu-
tion functions represent the properties of particles.

To implement boundary conditions in this framework, the
unknown entering distribution functions at the boundary nodes
should be correctly calculated. Especially for the scalar transport
governed by the convection-diffusion equation, various studies
have been performed on implementation methods of Dirichlet
and Neumann boundary conditions. One of the first boundary con-
ditions presented for the convection-diffusion equation was the
one introduced by He et al. (He et al., 1998). They employed the
bounce-back of nonequilibrium idea proposed by Zou and He
(Zou and He, 1997) to generalize the previously proposed hydrody-
namic boundary condition to heat transfer cases. In another work,
Ginsberg (Ginzburg, 2005) presented a multi-reflection approach
for the imposition of Dirichlet and Neumann boundary conditions.
Tang et al. (Tang et al., 2005) proposed the idea of decomposing the
unknown distribution populations into equilibrium and nonequi-
librium parts. The nonequilibrium part was approximated with
an extrapolation of the neighboring populations. In 2013, Chen
et al. (2013) proposed an improved bounce-back method by using
the midpoint concentration value. Huang et al. (2011) proposed an
extrapolation scheme for Dirichlet and Neumann boundary condi-
tions following the idea of the regularized scheme of Latt et al.
(2008). They also compared different boundary implementation
schemes including the regularized method, simple extrapolation,
non-equilibrium extrapolation, simple bounce-back, and equilib-
rium schemes. The works on the first type and second type bound-
ary conditions have not been restricted to straight boundaries
(Ginzburg, 2005; Latt et al., 2008; Li et al., 2013) and several
boundary methods have been proposed for the treatment of the
curved ones; however, it should be noted that their implementa-
tions -especially in complex media- are rather difficult. Moving
boundaries have also been the focus of some researches.
Mozafari-shamsi et al. (2018) simulated the heat transfer from
moving bodies with curved boundaries by combining ghost-fluid
LBM (GF-LBM) and a refiling scheme. According to their results,
the GF-LBM with refilling could simulate the thermal moving
curved boundaries with high accuracy.

Implementation of the linear Robin boundary conditions for the
convection-diffusion equation has also been the subject of many
studies. He et al. (He et al., 2000) presented a lattice Boltzmann
scheme to simulate the convection-diffusion problem with surface
chemical reactions. In 2002, Kang et al. (2002b) employed a mod-
ification of the nonequilibrium scheme and proposed a Robin
boundary for simulating dissolution of porous media. Their under-
lying approach was based on the observation that the nonequilib-
rium portion of the distribution functions is proportional to the dot
product of their microscopic velocity and the concentration gradi-
ent. In another work, Walsh and Saar (2010) proposed an interpo-
lation boundary condition to simulate first-order reaction kinetics.
Zhang et al. (2012) presented a bounce-back scheme to implement
general thermal/concentration boundary conditions, including
either Dirichlet, Neumann, or Robin boundary conditions. How-
ever, their scheme suffered from first-order accuracy mainly
because a first-order finite difference scheme was adopted for
2

the normal derivative. With an asymptotic analysis technique,
Huang and Yong (2015) suggested two boundary schemes for the
general Robin boundary condition. Although their second scheme
-in contrast to the first one- could also account for curved bound-
aries, but it only offered first-order accuracy. Recently, a reactive
boundary scheme for irregular geometries with linear heteroge-
neous surface reaction is presented by Ju et al. (2020). Their
scheme can easily be applied to problems with complex
geometries.

Despite the rich literature introducing the methods of imple-
menting the more common conditions, i.e., Dirichlet, Neumann,
and linear Robin boundary conditions, the non-linear Robin condi-
tions are rarely found in the literature. In fact, most dissolution-
precipitation cases studied in the LBM framework are essentially
restricted to first-order reaction kinetics, or similarly for the energy
transport, they are mainly limited to Newton’s law of cooling
which is a linear constraint. This is while the nonlinear constraints
(for example the surface radiation case) which are of great practi-
cal importance to industry, have been rarely considered in the lit-
erature. One of the few examples is the work of Kang et al. (Kang
et al., 2006) on multicomponent reactive transport in porous
media. In this study, the Newton-Raphson method was used to
impose a nonlinear algebraic constraint and to calculate the con-
centration of the species at boundary nodes. In more recent work,
Huber et al. (2014) employed a phase-field method and presented
a new pore-scale model for non-linear heterogeneous reactions. In
their model, the surface reaction was not explicitly imposed as a
boundary condition and alternately was treated as a source or sink
term in the governing transport equations. Accordingly, solid-fluid
boundary nodes were considered as part of the solution domain
and therefore the algorithm was independent of the surface shapes
and grains’ orientation. In 2016, the Counter-slip energy approach
was employed by Monfared et al. (Feili Monfared et al., 2016) to
derive kinetic level nonlinear boundary constraints. These con-
straints represented convection and also a combination of convec-
tion and surface radiation at boundary nodes, which – from a
mathematical point of view – are regarded as linear and non-
linear Robin boundary conditions, respectively. However, their
research was only restricted to fourth-degree nonlinear Robin
boundary conditions which is mainly encountered in surface radi-
ation simulations.

It should be pointed out here that except for the mentioned
studies, the treatment of nonlinear Robin boundary conditions in
LBM framework has been rarely investigated in the literature and
to the best knowledge of the authors no general scheme capable
of imposing nonlinear constraints with any arbitrary exponent (de-
gree) is proposed so far. However, these types of constraints are of
wide engineering applications especially for the field of reactive
transport in geochemical systems, where many mineral reactions
have nonlinear kinetics. Accordingly, in this research, proposal of
a general method for the implementation of nonlinear Robin
boundary conditions with any arbitrary degree is intended. Hence,
the remainder of this paper is organized as follows. In Section 2 lat-
tice Boltzmann method and the corresponding equations are
explained. In Section 3 a novel method for imposing nonlinear
Robin constraints is proposed and in Sections 3.1 and 3.2, the
scheme is discussed for two special cases, i.e., surface radiation
boundary condition and nth-order heterogeneous reaction kinet-
ics, respectively. Finally, in Section 4 the performance and accuracy
of the method is evaluated with several 1D and 2D test cases.
2. Lattice Boltzmann method

In this section, a brief introduction about LBM and the govern-
ing equations is given. Convection-diffusion equation (CDE) that
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describes the transport of a passive scalar which could be energy in
heat transfer or mass in the mass transfer is considered as follows
(Huang et al., 2011)

@C
@t

þr � ðuCÞ ¼ r � ðDrCÞ ð1Þ

in which C is a scalar quantity, D is the diffusion coefficient, and uis
the velocity vector. It can be shown that the CDE equation (Eq. (1))
can be derived from the LBE through a Chapman-Enskog expansion
procedure (Chai and Zhao, 2013). In this study, among different LBE
collision models, the Bhatnagar-Gross-Krook model (BGK) was
employed mainly because of its simplicity and high computational
efficiency (Huang et al., 2011)

giðxþ ciDt; t þ DtÞ � giðx; tÞ ¼
1
s

geq
i ðC;uÞ � giðx; tÞ

� � X ¼ x; y

i ¼ 0; :::;8
u ¼ ux;uy

8><
>:

ð2Þ
where gi(X,t) is the particle distribution function along i direction
with Ci being discrete velocity. In this work, the more popular
D2Q9 scheme representing nine discrete particle velocity in a 2D
domain was used. Ci is specified to be one i.e. ci � Dx

Dt ¼ 1, while
Dx and Dt are the linkage length and time step.sis the relaxation
time related to the diffusion coefficient by D ¼ c2s ðs� 0:5Þand cs is
the speed of sound, cs = 1/3. In Eq. (2), geq

i is the equilibrium distri-
bution function calculated from Eq. (3) (Kang et al., 2003):

geq
i ðC;uÞ ¼ wiC 1þ 3ci:u

c2
þ 9ðci:uÞ2

2c4
� 3u:u

2c2

" #
ð3Þ

The hydrodynamic field is also found by solving the lattice
Boltzmann transport equation of the form Eq. (4) (Kang et al.,
2003):

f iðxþ ciDt; t þ DtÞ � f iðx; tÞ ¼
1
s0

f eqi ðq;uÞ � f iðx; tÞ
� � ð4Þ

where fi is the particle distribution function,s0 is the relaxation time
that is related to the kinematic viscosity by m ¼ c2s ðs0 � 0:5Þ, and f eqi
is the equilibrium distribution function that has the following form
for D2Q9 model (Kang et al., 2003).

f eqi ðC;uÞ ¼ wiq 1þ 3ci:u
c2

þ 9ðci:uÞ2
2c4

� 3u:u
2c2

" #
ð5Þ

hereqis the fluid density, and wi is the corresponding weight coef-
ficients. Discrete velocities and weight coefficients for D2Q9 model
are defined as (Kang et al., 2003):

ci ¼ ð0;0Þ ; wi ¼ 4
9 i¼ 0

ci ¼ cos ði�1Þp
2 ;sin ði�1Þp

2

� �
; wi ¼ 1

9 i¼ 1�4

ci ¼
ffiffiffi
2

p
cos ði�5Þp

2 þ p
4

h i
;sin i�5ð Þp

2 þ p
4

h i� �
; wi ¼ 1

36 i¼ 5�8

8>>><
>>>:

ð6Þ
By using the Chapman-Enskog expansion, it can be proved that

the continuity and momentum equations for macroscopic scale are
recovered (Guo and Zhao, 2002). The macroscopic scalar quantities,
velocity, and density are calculated by the following equations
(Kang et al., 2003):

C ¼
X8
i¼0

gi ð7Þ

q ¼
X8
i¼0

f i ð8Þ
3

ua ¼
X8
i¼0

ciaf i a ¼ x; y ð9Þ
3. Methodology

The method proposed in this study generally consists of a lin-
earization step followed by a closure construction step for the sys-
tem of equations. To perform the linearization, Taylor expansion of
the nonlinear boundary constraint was employed and for the pur-
pose of system closure, the equilibrium idea of Inamuro et al.
(Inamuro et al., 1995) was adopted. It is worth noting that it is
not the first time that the idea of Inamuro et al. (Inamuro et al.,
1995) is being used for the boundary conditions of the
convection-diffusion equation in LBM framework and the core idea
has been previously used in several studies (D’Orazio et al., 2004;
D’Orazio and Succi, 2003; Karimipour, 2012).

To evaluate this method, a number of scenarios related to heat
and mass transfer problems were simulated and analyzed. The
general framework of this section is depicted in Fig. 1. For heat
transfer problems, a boundary condition for the combination of
surface radiation and convection was developed and the results
were compared with a previous study. Also, for mass transfer
applications, a general non-linear Robin boundary condition for
nth-order surface reactions was formulated. It is worth noting that
the method is such designed that could be easily applied to com-
plex geometries such as those usually seen in naturally occurring
porous media.

3.1. Combined radiation and convection boundary condition

To discuss a sample nonlinear boundary condition in heat trans-
fer systems, a combination of surface radiation and convection at a
boundary is considered here. The mathematical formulation for
this type of constraint is given in Eq. (10) (Feili Monfared et al.,
2016):

D
@C
@y

¼ eðC4 � C4
s Þ þ hðC � C1Þ ð10Þ

where C represents temperature at boundary node. The first and the
second terms on the right-hand side represent radiation and
Fig. 1. General framework of methodology section.
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convection, respectively. Implementing such a boundary condition
in the LBM framework was first studied by Monfared et al. (Feili
Monfared et al., 2016). They employed the counter-slip approach
and solved the resulting quartic equations with a tedious algorithm.
Assuming this boundary condition to be imposed on a bottom wall,
the term on the left-hand side of this equation would represent the
heat flux along the y-direction.

In general, the total flux along the normal direction of the sur-
face at the boundary nodes can be expressed as (Ju et al., 2020):

total flux along n :
X
i

n:cigi ¼ jd þ jw ð11Þ

where jd and jw represent the fluxes due to molecular diffusion and
the wall motion, respectively. Thus, assuming stationary walls, it
can be shown that (Ju et al., 2020):

jd � �c2s sDt
@C
@n

¼ �cD @C
@n

ð12Þ

where c ¼ s
s�0:5. By combining Eqs. (11) and (12), Eq. (13) is

achieved:X
i

n:cigi ¼ �cD @C
@n

ð13Þ

Considering the velocity naming convention presented in Fig. 2
and assuming the condition to be imposed on the bottom wall,
combination of Eqs. (10) and (13) gives:

ðg5 þ g2 þ g6Þ � ðg7 þ g4 þ g8Þ ¼ �cðeðC4 � C4
s Þ þ hðC

� C1ÞÞ ð14Þ

To linearize Eq. (14), first-order Taylor expansion of C4around Ĉ
was employed:

C4 ffi Ĉ
4 þ 4Ĉ

3ðC � ĈÞ ð15Þ
where Ĉis the scalar quantity (temperature) at the boundary

node in a previous iteration. Hence, combining Eqs. (14) and (15)
gives:

ðg5 þ g2 þ g6Þ � ðg7 þ g4 þ g8Þ ¼ �cðeðĈ4 þ 4Ĉ
3ðC � ĈÞ

� C4
s Þ þ hðC � C1ÞÞ ð16Þ

The unknown distribution functions on the bottom wall are
g2; g5; and g6for which Eq. (16) should be solved. To overcome
the challenge of underdetermination of the system of equations
and close the problem, Inamuro’s idea for boundary conditions
(Inamuro et al., 1995; Yoshino and Inamuro, 2003) was employed.
Inamuro et al. assumed the unknown distribution functions to be
equal to their equilibrium condition at a new unknown condition,
C0:

gi ¼ geq
i ðC 0;uÞ ð17Þ

By substituting Eqs. (3), 7, and 17 into Eq. (16) and letting u = 0,
C0 is found:

C 0¼6

�ðg7þg4þg8Þð1�4ceĈ
3�chÞ�ðg0þg1þg3Þð4ceĈ

3þchÞþceð3Ĉ4þC4
s ÞþchC1

1þ4ceĈ
3þch

ð18Þ
Having calculated C0by Eq. (18), the unknown populations can

be calculated by Eq. (17).

3.2. Nonlinear heterogeneous reaction kinetics

In most numerical LBM studies, to explore dissolution-
precipitation processes, first-order reaction kinetics are commonly
4

assumed(Kalia and Glasbergen, 2009; Ma et al., 2017; Molins et al.,
2020; Mostaghimi et al., 2016). However, in more realistic systems
such as those commonly encountered in hydrogeochemical pro-
cesses (Lasaga, 2014), nonlinear reaction kinetics would be of more
essential importance for a successful description of the underlying
phenomena. Despite this major concern, and to the best knowledge
of the authors, no LBM study regarding non-linear reaction kinetics
is published so far. Accordingly, proposal of a general nth-order
reaction boundary condition in LBM framework is intended in this
section. A general form of such surface reactions is shown in Eq.
(19). Those interested in these reactions and further discussions
are referred to (Jeschke and Dreybrodt, 2002; Lasaga, 2014) as
some examples.
D
@C
@n

¼ kðC � CeqÞN ð19Þ

This empirical rate equation is commonly seen in many natural
processes such as dissolution of limestones (Ague, n.d.; Jeschke and
Dreybrodt, 2002; Yi et al., 2014). The term on the left-hand side
represents the flux along the normal direction and the right-hand
side term indicates dissolution rate which depends on the under-
saturation condition (Keir, 1980). In this equation C stands for con-
centration, Ceq is an equilibrium or saturation concentration, N is
the order of reaction, n is the unit normal vector at the boundary,
and k is the reaction rate coefficient. Combining Eqs. (13) and (19),
Eq. (20) is obtained.
X
i

n:cigi ¼ �ckðC � CeqÞN ð20Þ

Using Taylor expansion similar to that of the previous section

and following the linearization procedure for S ffi ðC � CeqÞNgives:
S ffi Ŝþ ðdŜ
dC

ÞðC � ĈÞ ð21Þ

For more convenience, the links at a boundary node are divided
into two groups of As (representing the unknown directions) and Af

(representing the remaining known links). Hence, Eq. (20) can be
rewritten as:
X
i2As

n:cigi þ
X
i2Af

n:cigi ¼ �ck Ĉ � Ceq

� �N
þ N Ĉ � Ceq

� �N�1
ðC � ĈÞ

� �

ð22Þ
Since C ¼Pi2As gi þ

P
i2Af

gi and by substituting Eq. (17) into Eq.

(22) for the unknown distributions (As), the following equation is
derived:
C 0 ¼
�Pi2Af n:cigi � ckðĈ � CeqÞ

N�1 ðĈ � CeqÞ � NðĈ �Pi2Af
giÞ

h i
P

i2As
win:ci þ ckNðĈ � CeqÞ

N�1P
i2Aswi

ð23Þ
From dot product definition,n:ci ¼ nj j cij jcosa, n and aare inter-

face normal vector and the angle between the normal vector and
velocity link, respectively. n and acould be obtained from methods
like volume of fluid (Pilliod and Puckett, 2004; Rudman, 1997;
Youngs, 1984) or they could be approximated by the lattice link
direction (Kang et al., 2006, 2002; Zhang et al., 2012). Having
foundC0 the unknown populations can be easily calculated from
Eq. (17).
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Fig. 2. Discretized velocities for a D2Q9 model with dashed arrows representing
unknown directions on the bottom wall.
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4. Results and discussion

4.1. Combining surface radiation and convection

To investigate the performance of the proposed boundary
scheme, the problem of conduction in a square slab is considered
here. The vertical walls are assumed adiabatic, constant tempera-
ture condition is defined for the upper wall and the bottom wall
is subjected to combined convection and surface radiation. Sche-
matic of the geometry and the corresponding imposed constraints
are shown in Fig. 3.

By setting zero flux on lateral vertical boundaries, the mathe-
matical formulation reduces to a conceptually 1D problem with
available analytical solutions. The general solution would be of
the form C ¼ a1yþ a2 in which a1 and a2 are constant values:

a1 ¼ Cup � a2
L

ð24Þ

and a2 is the root of Eq. (25):

Lea42 þ ðDþ hLÞa2 � LeC4
s � hLC1 � DCup ¼ 0 ð25Þ
Fig. 3. Geometry of diffusion in a slab with combined convection and surface
radiation from the bottom.

5

In simulations, L; Cs; C1; Cup, and Dwere assumed to be 100, 0.0,
5.0 10.0 and 0.22, respectively (Feili Monfared et al., 2016). A com-
parison of the simulation results with the analytical solutions is
used for method performance analysis. Results from a previous
study (Feili Monfared et al., 2016) are also presented for compar-
ison purposes. Fig. 4 (a) shows temperature variation in vertical
center-line (i.e., Cð50; yÞ) for different ðe;hÞvalues. It is clear from
the figure that the numerical results of the presented method
match very well with the results of Monfared et al. and analytical
solutions. It should be pointed out here that although the method
presented by Monfared et al. calculates the exact root of the gov-
erning boundary equations and therefore is expected to be more
accurate, but the method proposed in this study -in contrast to
(Feili Monfared et al., 2016)- is not restricted to quartic constraints
and can be applied for any boundary constraint of arbitrary degree
with acceptable accuracy. This feature is crucially important espe-
cially for mineral reaction boundary conditions where non-integer
exponents are very common. Additionally, to better see the one-
dimensionality of the temperature profile, the contour of tempera-
ture for special case of ðe;hÞ ¼ ð0:1;1Þis depicted in Fig. 4 (b).

Furthermore, to estimate the global error, relative l2-norm of
the domain (Er) was adopted (Feili Monfared et al., 2016).

Er ¼ k C � Cexact k
k Cexact k ¼

P
all nodesðC � CexactÞ2P

all nodesðCexactÞ2
 !0:5

ð26Þ

where C and Cexact represent the numerical and analytical scalar
variables, respectively. Table 1 provides the relative l2-norm (Er)
of the domain for different values of e and h. As can be deduced
from Fig. 4(a) and Table. 1, there is only marginal errors between
the analytical solutions and the numerical results; demonstrating
the effectiveness of the method.

To check the convergence rate of the method, the relative
l2-norm of the domain versus the reciprocal of mesh size is plotted
for different relaxation times in Fig. 5. As shown in this figure, the
trend of increasing Er by decreasing the grid resolution for allsis
almost linear with a slope of more than unity. It reveals a first-
order convergence of the presented method for the combination
of convection and surface radiation.

4.2. Nth-order reaction rate

In the next two following subsections, the accuracy of the pre-
sented formulation (Eq. (23)) is evaluated in 1D and 2D simula-
tions. For the 1D case, analytical solutions of the problem were
available and were preferably used for validation purposes. How-
ever, for 2D problems, no analytical solutions were available.
Accordingly, the corresponding macroscopic equation (Eq. (1))
was solved by the finite volume method (FVM) and the results
were compared with those of LBM.

It should also be emphasized that the proposed scheme is fully
local and orientation-independent (see Section 4.2.3 for more
explanation). Since these features make this method a good candi-
date for employment in complex geometries, its performance in
such cases is also of interest. Accordingly, the last part of this sec-
tion is devoted to the problem of reactive flow in a simple fracture.
The method is used to simulate the time evolution of the geometry
by the imposed nonlinear reaction kinetics and the results are
compared with analytical solutions.

4.2.1. 1D simulation
In this section, a geometry almost similar to that of Fig. 3 is

considered. The only difference is that the bottom wall boundary
condition is replaced by Eq. (23). As explained before, the analyti-



Fig. 4. (a) Temperature variation in vertical centerline for different values of ðe;hÞ; Lines, filled, and non-filled markers indicate analytical and numerical results of the
presented method and Monfared et al. (Feili Monfared et al., 2016) study, respectively. (b) contours of temperature (C) for. e;hð Þ ¼ ð0:01;1Þ.

Table 1
Relative l2-norm (Er) for different values of.ðe;hÞ.

ðe;hÞ (0.000001,0) (0.000001,0.01) (0.01,1) (0,1)

Er 0.00072 0.0009 0.00017 0.00014

Fig. 5. Relative l2-norm of the domain (Er) as a function of relaxation time and grid resolution (1/L).
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Fig. 6. 1D concentration variation in y-direction at different values of (N, Ceq).
Lines, filled and non-filled markers indicate analytical, LBM and FVM results,
respectively.
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cal solution would be of the form C ¼ a1yþ a2, where a1 is calcu-
lated by Eq. 24 and a2 is the root of Eq. (27):

kLða2 � CeqÞN þ Da2 � DCup ¼ 0 ð27Þ
To find the roots of Eq. (27), the Newton method was applied.

Simulations for 3 different pairs of (N,Ceq) were conducted and
the numerical and analytical results are shown in Fig. 6. In these
simulations Cup, k, and D were fixed at 10.0, 0.06, and 0.22,
respectively.

Results of Fig. 6 demonstrate that both LBM and FVM simula-
tions have very well approximated the analytical solutions. Fur-
thermore, relative l2-norms of the domain for different reaction
orders (N) and different relaxation times ðsÞare illustrated in
Fig. 7. Considering the figure reveals that the presented method
offers acceptable accuracy for a wide range of relaxation times
and N values. However, it should be pointed out that accuracy of
LBM is generally a function of relaxation time and as can be seen,
at low relaxation times, the error of the proposed method did not
change with the order of reaction but at higher relaxation times, by
increasing N the error is decreased.
6

The convergence rate of the method for a special case of N = 0.5
was also investigated. Fig. 8 shows the results of the relative l2-
norm of the domain versus the reciprocal of the mesh size. As



Fig. 7. Relative l2-norm (Er) of LBM at different relaxation times versus exponent N.
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can be observed, the method offers a convergence rate of about 2
for different values of relaxation time.
4.2.2. 2D diffusion
To further analyze the performance of the proposed method, 2D

simulations of the diffusion process in the square domain of Fig. 9
were also investigated.

The boundary condition at the lower wall represents a chemical
reaction (Eq. (19)) whereas constant concentration, Cw, at the left
and right walls is imposed. In addition, the upper wall is assumed
to be impermeable (i.e., no flux condition). The governing equa-
tions of the macroscopic process are given in Appendix A.

To analyze the performance of the method, LBM and FVM sim-
ulations of the problem for serval values of N and Cw were per-
formed. Other simulation parameters were defined as k = 0.06,
Ceq = 1.0 and s = 1.0. It is worth mentioning that the relaxation
time is not explicitly incorporated in the FVMmethod and its value
Fig. 8. Relative l2-norm of the domain (Er) as a funct

7

should be mapped into its macroscopic counterpart which is the
diffusion coefficient for the present case. Regarding Fig. 10, the
horizontal and vertical center-line concentration profiles are
depicted for 3 different pairs of (N, Cw). Clearly, the proposed
method has performed very well over the range of tested expo-
nents and the LBM results show conformity with those of FVM.
4.2.3. Transport in reactive flow
To evaluate the performance of the proposed scheme for more

complex conditions, the acid-carbonate reaction was simulated
(Fig. 11) and the results were compared with those of Molins
et al. (2020). As shown in Fig. 11, the acid enters a rectangular
domain with a uniform inlet velocity and constant inlet concentra-
tion C, and after reacting with the spherical carbonate grain
(CaCO3) exits at a predetermined pressure. In Molins et al.
(2020), the reaction on the interface of the grain was assumed to
ion of relaxation time and grid resolution (1/L).



Fig. 9. Geometry and boundary conditions used for the problem of 2D diffusion.

Fig. 11. Simulated geometry and the employed boundary conditions.

Table 2
Parameters of the simulations (physical and LBM values).

Parameter Symbol Physical value LBM value

Wide of channel w 0.05 cm 128
Length of channel L 0.1 cm 256
Radius of grain R 0.01 cm 25.6
Fluid density q 1 gr cm�3 1
Kinematic Viscosity

(t ¼ c2s ðs0 � 0:5Þ)
t 10�2 cm2s�1 0.167

Diffusion Coefficient
(Section 4.2.3)

D 10�5 cm2s�1
1:67� 10�4

Diffusion Coefficient
(Section 4.2.5)

D 10�3 cm2s�1 1.67 � 10�2

Inlet velocity u 0.12 cm s�1
7:8� 10�4

Inlet concentration C 10�5 mol cm�3 10�5

Concentration at equilibrium Ceq 0 mol cm�3 0
Reaction Rate constant k 10�4.05 mol cm�2 s�1

5:8� 10�4

Activity coefficient c 1000 cm3 mol�1 1
Reynolds number Re ¼ uw

t 0.6 0.6
Peclet number Pe ¼ uw

D 600 600
Damkohler number Da ¼ Kc2R

D
178 178
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be a linear Robin type and to reach a steady-state condition; they
ignored volume alteration of the carbonate.

The physical parameters of the simulations and their corre-
sponding lattice unit values are provided in Table 2. In this section,
the newly proposed scheme was employed to impose the reaction
boundary condition at the mineral’s interface and for Dirichlet and
Neumann concentration constraints at the inlet and outlet of the
channel, the method of Zhang et al. (2012) was employed. Mesh
independence was also checked but for brevity purposes the
results are not presented.

The problem is simulated and the steady state concentration
contour is shown in Fig. 12. As can be seen a small thickness con-
centration boundary layer is formed around the mineral, which is
mainly because of the small value employed for diffusion
coefficient.

To compare the results with those of Molins et al. (2020), pH
values (pH ¼ �log10ðcCÞ) along horizontal and vertical centerlines
(x = 0.05, y = 0.025 cm) were also calculated and the results are
illustrated in Fig. 13. As shown in this figure, a good agreement
between the outcomes of this study and those of Molins et al.
(2020) is observed.
4.2.4. Heterogeneous dissolution in a fracture
From an algorithmic point of view, the presented method offers

two important characteristics; locality and orientation-
independency. By locality, it is meant that the method requires
no information of the neighboring sites to calculate the unknown
populations of the current node. Also, orientation-independency
0
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Fig. 10. Comparison of LBM and FVM results for different values of N

8

means that the method is not restricted to flat boundaries and
can easily and efficiently handle complex geometries with arbi-
trary orientation. However, the claimed orientation-
independency of the scheme should not be confused with curva-
ture recunstruction idea behind many conventional curved bound-
ary treatment techniques. Here, by orientation-independency it is
meant that to find the unknown distributions at fluid-solid inter-
face, the position of the interface node and the number of unknown
links in that node is not a restriction to the scheme; a feature,
which is generally not garanteed in many other boundary schemes
proposed so far (see for example the proposed boundary condition
in (He et al., 1998), which is restricted to flat boundaries).

It should be emphasized that these two features -especially the
latter one- would be essentially useful for efficient computation of
transport phenomena in complex structures. Accordingly, the
0
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and Cw on (a) vertical centerline and (b) Horizontal centerline.



Fig. 12. Steady state concentration contours for the acid-carbonate reaction
problem.

Fig. 14. Geometry of the medium used for fracture dissolution problem (the four
vertical bold lines are assumed as insoluble boundaries).
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Fig. 15. Comparison of simulated normalized permeability and porosity relation-
ship between the analytical solution and the presented method.
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performance and accuracy of the method in geometry evolution
problems are investigated by simulating a heterogeneous dissolu-
tion process in a simple fracture. Fig. 14 shows the geometry
employed for this purpose. It should be pointed out that this prob-
lem has been previously studied in a number of researches and the
interested reader is referred to (Kang et al., 2014; Taahodi et al.,
2021) for more information.

The problem considers the flow of a solvent into a fracture of
width H and aperture h. The solvent reacts with the horizontal
interface of the fracture while the vertical boundaries are assumed
insoluble. The governing macroscopic equations for this problem
are given in Appendix A. The time evolution of the solid phase is
calculated by:

@8
@t

¼ VakðCb � CeqÞN ð28Þ

where 8is the solid volume fraction that evolves by time, V is the
molar volume of mineral which is defined as 36.9 and a is the speci-
fic surface area of the solid phase which is assumed 1 for more sim-
plicity (Kang et al., 2006). The other parameters are defined as
Pin ¼ 1

3 ; Pout ¼ 0:99
3 ; Ceq ¼ 1;k ¼ 0:0000267; and D ¼ 0:5

3 . At a low rel-
ative strength of reaction to diffusion (Damköhler number) and
unreactive vertical walls, uniform dissolution of the lateral walls
is expected (Kang et al., 2014; Taahodi et al., 2021). In this case, ana-
lytical analysis of the permeability porosity relationship for the
medium leads to (Taahodi et al., 2021):

KH

K0
H

¼ h
h0

	 
3

¼ h=H
h0=H

	 
3

¼ e
e0

	 
3

ð29Þ
1
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4

5
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Present work                 

Fig. 13. pH values along (a) horizontal (b) vertical centerlines an
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where h0 is the initial fracture aperture, e0 is the initial porosity, K0
H

is the initial permeability of the whole medium and the variables
without 0 subscripts are the instantaneous ones during the dissolu-
tion progress. According to Eq. (29), a cubic polynomial is expected
for the plot of normalized permeability versus normalized porosity.
Simulation of the case with nonlinear reaction kinetics is performed
and the result of the permeability-porosity relationship is illus-
trated in Fig. 15. As can be observed from the figure, the permeabil-
ity evolution pattern of LBM agrees very well with that of the
analytical solution.
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d their comparison with the results of Molins et al.(2020).



Fig. 16. Geometry evolution of the fracture at normalized porosities of 1.2, 1.6, 2.0, and 2.4 from left to right (colormap map indicating pressure contour).

t=97.1 s t=153.6 s t=186.1 s t=214 s

Fig. 17. Snapshots of geometry evolution with time at 4 different instantaneous volumes of the carbonate grain (V0 representing the initial volume of the solid phase).
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In addition, for more insight into the problem and to better see
the desired uniform dissolution, the time evolution of the fracture
geometry is shown in Fig. 16.
4.2.5. Heterogeneous dissolution of a carbonate grain
To consider a more complex system similar to those occurring

in porous media, the problem of Section 4.2.3 was re-simulated
but this time, the volume reduction and dynamic change of the
geometry of the grain were also considered. The time evolution
of the solid phase was calculated by Eq. (28) and the specific sur-
face area of the solid phase (a) was calculated by the method of
volume of fluid (Pilliod and Puckett, 2004). For the present case,
the employed parameters were assumed the same as those in
Table 2 but to speed up the dissolution process Peclet number
was reduced to 6 to increase reaction rate (i.e. diffusion coefficient
was increased for the simulations of this section). Since the grain
surface was exposed to a reactive flow and because of the associ-
ated acid-carbonate dissolution, the grain size is expected to
decrease over time. This phenomenon was confirmed in simula-
tions and the results are shown in Fig. 17.

The time variation of the surface area of the grain was also cal-
culated and the results were compared with those of Molins et al.
(2020). As can be seen in Fig. 18, the outcomes of the present work
are in a good agreement with those of Molins et al. (2020).
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Fig. 18. Time variation in particle’s surface area and the comparison with those of
Molins et al. (2020).
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5. Conclusions

Despite the applications in heat and mass transfer problems,
the implementation of nth degree linear and nonlinear Robin
boundary conditions in LBM framework have been a challenge so
far. Accordingly, in this study, previously proposed counter-slip
idea (Inamuro et al., 1995) and Taylor expansion method were
employed and a novel general boundary scheme for the implemen-
tation of arbitrary nth order Robin boundary constraints was
proposed.

The performance of the scheme was evaluated in a number of
heat and mass transfer problems and the results were compared
with analytical and numerical solutions. In case of unavailability
of analytical solutions, finite volume solutions of the macroscopic
equations were employed for comparison purposes.

For heat transfer test cases, surface convection (Newton’s cool-
ing law) and surface radiation problems were simulated. Compar-
ison of the LBM results with available solutions demonstrated that
the method performs very well in terms of accuracy. l2-norm anal-
ysis of the scheme was also conducted and the results showed con-
vergence rates of order between 1 and 2 for the method, varying
with the constraint formulation and the exponent N.

For applications in mass transfer problems, a general boundary
condition for nth-order surface reactions was presented. The accu-
racy and convergence rate of the scheme were evaluated in a range
of reaction orders and relaxation times. Analysis of the results indi-
cated a good accuracy of the method.

From an algorithmic point of view, the presented method offers
two important characteristics; locality and orientation-
independency. Hence, it is believed that the method can be easily
employed for simulation of coupled transport phenomena in com-
plex geometries. To evaluate this characteristic, the problem of
reactive flow in a simple fracture and time evolution of the solid
nodes was investigated. To evaluate the performance of the pro-
posed scheme in complex geometry, flow and transport around a
grain with chemical reactions on its surface were investigated.
Results of LBM for this test case indicated that the method can also
be used in complex geometries with satisfying ease and accuracy.
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Appendix A: Governing equations

� The macroscopic boundary conditions in Section 4.2.2 are as
follows:

Cðx ¼ 0; yÞ ¼ Cw ðA:1Þ

Cðx ¼ L; yÞ ¼ Cw ðA:2Þ

@C
@y

ðx; y ¼ LÞ ¼ 0 ðA:3Þ

D
@C
@y

ðx; y ¼ 0Þ ¼ KðCðx; y ¼ 0Þ � CeqÞN ðA:4Þ

� The macroscopic boundary conditions in Section 4.2.4 are as
follow:

Pðx ¼ 0; y; tÞ ¼ Pin ðA:5Þ

Pðx ¼ L; y; tÞ ¼ Pout ðA:6Þ

uðx; y ¼ 0; tÞ ¼ 0 ðA:7Þ

uðx; y ¼ H; tÞ ¼ 0 ðA:8Þ

uðfluid� solid interfaceÞ ¼ 0 ðA:9Þ
and for the mass transfer part we have:

Cðx;y; t ¼ 0Þ ¼ Ceq ðA:10Þ

Cðx ¼ 0;y; tÞ ¼ 0 ðA:11Þ

@C
@y

ðx; y ¼ 0; tÞ ¼ 0 ðA:12Þ

@C
@y

ðx; y ¼ H; tÞ ¼ 0 ðA:13Þ

@C
@x

ðx ¼ L;y; tÞ ¼ 0 ðA:14Þ

and the reaction boundary condition at the fluid-solid interface on
the horizontal face of the fracture is assumed to be of the form:

D
@C
@n

¼ kðC� CeqÞN ðA:15Þ
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