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Abstract. We show that Odd Cycle Transversal and Vertex Multiway Cut admit deter-
ministic polynomial kernels when restricted to planar graphs and parameterized by the solution size.
This answers a question of Saurabh. On the way to these results, we provide an efficient sparsifica-
tion routine in the flavor of the sparsification routine used for the Steiner Tree problem in planar
graphs [Pilipczuk et al., ACM Trans. Algorithms, 14 (2018), 53]. It differs from the previous work
because it preserves the existence of low-cost subgraphs that are not necessarily Steiner trees in the
original plane graph, but structures that turn into (supergraphs of) Steiner trees after adding all
edges between pairs of vertices that lie on a common face. We also show connections between Ver-
tex Multiway Cut and the Vertex Planarization problem, where the existence of a polynomial
kernel remains an important open problem.
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1. Introduction. Kernelization provides a rigorous framework within the para-
digm of parameterized complexity to analyze preprocessing routines for various com-
binatorial problems. A kernel of size g for a parameterized problem \Pi and a com-
putable function g is a polynomial-time algorithm that reduces an input instance x
with parameter k of problem \Pi to an equivalent one with size and parameter value
bounded by g(k). Of particular importance are polynomial kernels, where the func-
tion g is required to be a polynomial, that are interpreted as theoretical tractability
of preprocessing for the considered problem \Pi . Since a kernel (of any size) for a de-
cidable problem implies fixed-parameter tractability (FPT) of the problem at hand,
the question of whether a polynomial kernel exists became a ``standard"" tractability
question one asks about a problem already known to be FPT and serves as a further
finer-grained distinction criterion between FPT problems.

In recent years, a number of kernelization techniques have emerged, including the
bidimensionality framework for sparse graph classes [12] and the use of representa-
tive sets for graph separation problems [22]. On the hardness side, a lower bound
framework against polynomial kernels has been developed and successfully applied
to a multitude of problems [1, 5, 7, 13]. For more on kernelization, we refer to the
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2388 JANSEN, PILIPCZUK, AND VAN LEEUWEN

survey [24] for background and to the appropriate chapters of the textbook [3] for
basic definitions and examples.

For this work, of particular importance are polynomial kernels for graph separa-
tion problems. The framework for such kernels developed by Kratsch and Wahlstr\"om
in [22, 23], relies on the notion of representative sets in linear matroids, especially in
gammoids. Among other results, the framework provided a polynomial kernel forOdd
Cycle Transversal and for Multiway Cut with a constant number of terminals.
However, all kernels for graph separation problems based on representative sets are
randomized, due to the randomized nature of all known polynomial-time algorithms
that obtain a linear representation of a gammoid. As a corollary, all such kernels have
exponentially small probability of turning an input yes-instance into a no-instance.

The question of deterministic polynomial kernels for the cut problems that have
randomized kernels due to the representative sets framework remains widely open.
Saket Saurabh, at the open problem session during the Recent Advances in Param-
eterized Complexity school (December 2017 in Tel Aviv) [30], asked whether a de-
terministic polynomial kernel for Odd Cycle Transversal exists when the input
graph is planar. In this paper, we answer this question affirmatively and prove an
analogous result for the Multiway Cut problem.

Theorem 1.1. Odd Cycle Transversal and Vertex Multiway Cut, when
restricted to planar graphs and parameterized by the solution size, admit deterministic
polynomial kernels.

Recall that the Odd Cycle Transversal problem, given a graph G and an
integer k, asks for a set X \subseteq V (G) of size at most k such that G \setminus X is bipartite.
For the Multiway Cut problem, we consider the Vertex Multiway Cut variant
where, given a graph G, a set of terminals T \subseteq V (G), and an integer k, we ask for a
set X \subseteq V (G) \setminus T of size at most k such that every connected component of G \setminus X
contains at most one terminal. In other words, we focus on the vertex-deletion variant
of Multiway Cut with undeletable terminals. In both cases, the allowed deletion
budget, k, is our parameter. (A deterministic polynomial kernel for Edge Multiway
Cut in planar graphs is known [28, Theorem 1.4].)

Note that in general graphs, Vertex Multiway Cut admits a randomized poly-
nomial kernel with \scrO (k| T | +1) terminals [22], and whether one can remove the depen-
dency on | T | from the exponent is a major open question in the area. Theorem 1.1
answers this question affirmatively in the special case of planar graphs.

Our motivation stems not only from the aforementioned question of Saurabh [30]
but also from a second, more challenging question of a polynomial kernel for the
Vertex Planarization problem. Here, given a graph G and an integer k, one asks
for a set X \subseteq V (G) of size at most k such that G \setminus X is planar. For this problem,
an involved 2\scrO (k log k) \cdot n-time fixed-parameter algorithm is known [20], culminating a
longer line of research [20, 21, 26]. The question of a polynomial kernel for the problem
has not only been posed by Saurabh during the same open problem session [30],
but also comes out naturally in another line of research concerning vertex-deletion
problems to minor-closed graph classes.

Consider a minor-closed graph class \scrG . By the celebrated Robertson--Seymour
theorem, the list of minimal forbidden minors \scrF of \scrG is finite, i.e., there is a finite set
\scrF of graphs such that a graph G belongs to \scrG if and only if G does not contain any
graph from \scrF as a minor. The \scrF -Deletion problem, given a graph G and an integer
k, asks us to find a set X \subseteq V (G) of size at most k such that G \setminus X has no minor
belonging to \scrF , i.e., G \setminus X \in \scrG . If \scrF contains a planar graph or, equivalently, \scrG has
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bounded treewidth, then the parameterized and kernelization complexity of the \scrF -
Deletion problem is well understood [11]. However, our knowledge is very partial in
the other case, when \scrG contains all planar graphs. The understanding of this general
problem has been laid out as one of the future research directions in a monograph of
Downey and Fellows [6]. The simplest not fully understood case is when \scrG is exactly
the set of planar graphs, that is, \scrF = \{ K3,3,K5\} , and the \scrF -Deletion becomes
the Vertex Planarization problem. The question of a polynomial kernel or a
2\scrO (k) \cdot n\scrO (1)-time FPT algorithm for Vertex Planarization remains open [15, 30].

In section 6, we observe that there is a simple polynomial-time reduction from
Planar Vertex Multiway Cut to Vertex Planarization that keeps the pa-
rameter k unchanged. If Vertex Planarization would admit a polynomial kernel,
then our reduction would transfer the polynomial kernel back to Planar Vertex
Multiway Cut. In the presence of Theorem 1.1, such an implication is trivial, but
the reduction itself serves as a motivation: a polynomial kernel for Planar Ver-
tex Multiway Cut should be easier than for Vertex Planarization, and one
should begin with the first before proceeding to the latter. Furthermore, we believe
the techniques developed in this work can be of use for the more general Vertex
Planarization case.

Techniques. On the technical side, our starting point is the toolbox of [28] that
provides a polynomial kernel for Steiner Tree in planar graphs, parameterized by
the number of edges of the solution. The main technical result of [28] is a sparsification
routine that, given a connected plane graphG with infinite face surrounded by a simple
cycle \partial G, provides a subgraph of G of size polynomial in the length of \partial G that, for
every A \subseteq V (\partial G), preserves an optimal Steiner tree connecting A.

Both Odd Cycle Transversal and Vertex Multiway Cut in a plane graph
G translate into Steiner forest--like questions in the overlay graph \scrL (G) of G: a su-
pergraph of G that has a vertex vf for every face of G, adjacent to every vertex of
G incident with f . To see this, consider a special case of Planar Vertex Multi-
way Cut where all terminals lie on the infinite face of the input embedded graph.
Then, an optimal solution is a Steiner forest between some tuples of vertices on the
outer face lying between the terminals; cf. Figure 1.1. Following [28], this suggest the
following approach to kernelization of vertex-deletion cut problems in planar graphs:

(1) By problem-specific reductions, reduce to the case of a graph of bounded radial
diameter.

(2) Using the diameter assumption, find a tree in the overlay graph that has
size bounded polynomially in the solution size and that spans all ``important""

Fig. 1.1. When all terminals (blue squares) lie on the infinite face, a solution to Vertex
Multiway Cut (black circles) becomes a Steiner forest (red dashed connections) in the overlay
graph.
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2390 JANSEN, PILIPCZUK, AND VAN LEEUWEN

objects in the graph (e.g., neighbors of the terminals in the case of Multiway
Cut or odd faces in the case of Odd Cycle Transversal).

(3) Cut the graph open along the tree. Using the Steiner forest--like structure
of the problem at hand, argue that an optimal solution becomes an optimal
Steiner forest for some choice of tuples of terminals on the outer face of the
cut-open graph.

(4) Sparsify the cut-open graph with a generic sparsification routine that preserves
optimal Steiner forests, glue the resulting graph back, and return it as a kernel.

However, contrary to the Steiner tree problem [28], these Steiner forest--like ques-
tions optimize a different cost function than merely number of edges, namely the
number of vertices of G, with the ``face"" vertices vf \in V (\scrL (G)) \setminus V (G) being for free.
This cost function is closely related to (half of) the number of edges in case of paths
and trees with constant number of leaves, but may diverge significantly in the case of
trees with high-degree vertices.

For this reason, we need an analogue of the main technical sparsification routine
of [28] suited for our cost function. We provide one in section 3. To this end, we
reuse most of the intermediate results of [28], changing significantly only the final
divide\&conquer argument.

The application of the obtained sparsification routine to the case of Odd Cycle
Transversal, presented in section 4, follows the phrasing of the problem as a T -join-
like problem in the overlay graph due to Fiorini et al. [10]. For the sake of reducing
the number of odd faces, we adapt the arguments of Such\'y [31] for Steiner tree.

The arguments for Vertex Multiway Cut are somewhat more involved and
are presented in section 5. Here, we first use known LP-based rules [4, 14, 16, 29] to
reduce the number of terminals and neighbors of terminals to \scrO (k) and then use an
argument based on outerplanarity layers to reduce the diameter.

2. Preliminaries. A finite undirected graph G consists of a vertex set V (G)

and edge set E(G) \subseteq 
\bigl( 
V (G)

2

\bigr) 
. We denote the open neighborhood of a vertex v in G

by NG(v). For a vertex set S \subseteq V (G) we define its open neighborhood as NG(S) :=\bigcup 
v\in S NG(v) \setminus S. For all standard terms related to planar graph but not defined here

we refer to [28].
For vertex subsets X,Y of a graph G, we define an (X,Y )-cut as a vertex set Z \subseteq 

V (G) \setminus (X \cup Y ) such that no connected component of G \setminus Z contains both a vertex
of X and a vertex of Y . An (X,Y ) cut Z is minimal if no proper subset of Z is
an (X,Y )-cut and minimum if it has minimum possible size.

2.1. Planar graphs. In a connected embedded planar (i.e., plane) graph G, the
boundary walk of a face f is the unique closed walk in G obtained by going along the
face in a counterclockwise direction. Note that a single vertex can appear multiple
times on the boundary walk of f and an edge can appear twice if it is a bridge. We
denote the number of edges of this walk by | f | ; note that bridges are counted twice in
this definition. The parity of a face f is the parity of | f | . Then a face is odd (even) if
its parity is odd (even). The boundary walk of the outer face of G is called the outer
face walk and denoted \partial G.

We define the radial distance in plane graphs, based on a measure that allows
us to hop between vertices incident on a common face in a single step. Formally
speaking, a radial path between vertices p and q in a plane graph G is a sequence of
vertices (p = v0, v1, . . . , v\ell = q) such that for each i \in [\ell ], the vertices vi - 1 and vi
are incident on a common face. The length of the radial path equals \ell , so that a
trivial radial path from v to itself has length 0. The radial distance in plane graph G
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between p and q, denoted d\scrR G(u, v), is defined as the minimum length of a radial
pq-path.

For a plane graph G, let F (G) denote the set of faces of G. For a plane (multi-)
graph G, an overlay graph G\prime of G is a graph with vertex set V (G) \cup F (G) obtained
fromG as follows. For each face f \in F (G), draw a vertex with identity f in the interior
of f . For each connected component C of edges incident on the face f , traverse the
boundary walk of C starting at an arbitrary vertex. Every time a vertex v is visited
by the boundary walk, draw a new edge between v and the vertex representing f ,
without crossing previously drawn edges. Doing this independently for all faces of G
yields an overlay graph G\prime . Observe that an overlay graph may have multiple edges
between some f \in F (G) and v \in V (G), which occurs, for example, when v is incident
on a bridge that lies on f . The resulting plane multigraph G\prime is in general not unique,
due to different homotopies for how edge bundles may be routed around different
connected components inside a face. For our purposes, these distinctions are never
important. We therefore write \scrL (G) to denote an arbitrary fixed overlay graph of G.
Observe that F (G) forms an independent set in \scrL (G).

Apart from the overlay graph, we will also use the related notion of radial graph
(also known as face-vertex incidence graph). A radial graph of a connected plane
graph G is a plane multigraph \scrR (G) obtained from \scrL (G) by removing all edges with
both endpoints in V (G). Hence a radial graph of G is bipartite with vertex set V (G)\cup 
F (G), where vertices are connected to the representations of their incident faces. From
these definitions it follows that \scrL (G) is the union of G and \scrR (G), which explains the
terminology.

We need also the following simple but useful lemma.

Lemma 2.1. Let G be a connected graph, let T \subseteq V (G), and assume that for each
vertex v \in V (G), there is a terminal t \in T that can reach v by a path of at most K
edges. Then G contains a Steiner tree of at most (2K +1)(| T |  - 1) edges on terminal
set T , which can be computed in linear time.

Proof. Observe that there exists a spanning forest in G where each tree is rooted
at a vertex of T , and each tree has depth at most K. Such a spanning forest can be
computed in linear time by a breadth-first search in G, initializing the BFS-queue to
contain all vertices of T with a distance label of 0. Consider the graph H obtained
from G by contracting each tree into the terminal forming its root. Since G is con-
nected, H is connected as well. An edge t1t2 between two terminals in H implies that
in G there is a vertex in the tree of t1 adjacent to a vertex of the tree of t2. So for
each edge in H, there is a path between the corresponding terminals in G consisting
of at most 2K + 1 edges.

Compute an arbitrary spanning tree of the graph H, which has | T |  - 1 edges
since H has | T | vertices. As each edge of the tree expands to a path in G between the
corresponding terminals of length at most 2K + 1, it follows that G has a connected
subgraph F of at most (2K+1)(| T |  - 1) edges that spans all terminals T . To eliminate
potential cycles in F , take a spanning subtree of F as the desired Steiner tree.

Lemma 2.2 ([19, Lemma 1]). Let G be a planar bipartite graph with biparti-
tion V (G) = X \uplus Y for X \not = \emptyset . If all distinct u, v \in Y satisfy NG(u) \not \subseteq NG(v),
then | Y | \leq 5| X| .

3. Sparsification.

3.1. Overview. A plane partitioned graph is an undirected multigraph G, to-
gether with a fixed embedding in the plane and a fixed partition V (G) = A(G)\uplus B(G)
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where A(G) is an independent set. Consider a subgraph H of a plane partitioned
graph G. The cost of H is defined as cost(H) := | V (H) \cap B(G)| , that is, we pay for
each vertex of H in the part B(G). We say that H connects a subset A \subseteq V (G) if
A \subseteq V (H) and A is contained in a single connected component of H.

Our main sparsification routine is the following.

Theorem 3.1. Given a connected plane partitioned graph G, one can in time
| \partial G| \scrO (1) \cdot \scrO (| G| ) find a subgraph \widehat G in G with the following properties:

(1) \widehat G contains all edges and vertices of \partial G,

(2) \widehat G contains \scrO (| \partial G| 212) edges,
(3) for every set A \subseteq V (\partial G) there exists a subgraph H of \widehat G that connects A and

has minimum possible cost among all subgraphs of G that connect A.

In the subsequent sections, given a connected plane graph G, we will apply The-
orem 3.1 to a graph G\prime that is either the overlay graph of G without the vertex
corresponding to the outer face or the radial graph of G. In either case, A(G\prime ) =
V (G\prime )\setminus V (G) is the set of face vertices and B(G\prime ) = V (G), i.e., we pay for each ``real""
vertex, not a face one. If the studied vertex-deletion graph separation problem in G
turns into some Steiner problem in G\prime , then we may hope to apply the sparsification
routine of Theorem 3.1.

After this brief explanation of the motivation of the statement of Theorem 3.1, we
proceed with an overview of its proof. We closely follow the divide\&conquer approach
of the polynomial kernel for Steiner Tree in planar graphs [28].

We adopt the notation of (strictly) enclosing from [28]. For a closed curve \gamma on
a plane, a point p /\in \gamma is strictly enclosed by \gamma if \gamma is not continuously retractable to
a single point in the plane punctured at p. A point p is enclosed by \gamma if it is strictly
enclosed by or lies on \gamma . The notion of (strict) enclosure naturally extends to vertices,
edges, and faces of a plane graph G being (strictly) enclosed by \gamma ; here a face (an
edge) is strictly enclosed by \gamma if every interior point of a face (every point on an edge
except for the endpoints, respectively) is strictly enclosed. We also extend this notion
to (strict) enclosure by a closed walk W in a plane graph G in a natural manner.
Note that this corresponds to the natural notion of (strict) enclosure if W is a cycle
or, more generally, a closed walk without self-intersections.

We start with restricting the setting to G being bipartite and \partial G being a simple
cycle. Theorem 3.1 follows from Lemma 3.2 by simple manipulations.

Lemma 3.2. The statement of Theorem 3.1 is true in the restricted setting with
G being a connected bipartite simple graph with \partial G being a simple cycle and A(G)
being one of the bipartite color classes (so that B(G) is an independent set as well).

We now sketch the proof of Lemma 3.2.
First observe that the statement of Lemma 3.2 is well suited for a recursive di-

vide\&conquer algorithm. As long as | \partial G| is large enough, we can identify a subgraph S
of G such that

(1) the number of edges of S is \scrO (| \partial G| );
(2) for every set A \subseteq V (\partial G) there exists a subgraph H of G that connects A,

has minimum possible cost among all subgraphs of G that connect A, and for
every finite face f of S\cup \partial G, if Gf is the subgraph of G consisting of the edges
and vertices embedded within the closure of f , then one of the following holds:
(a) | \partial Gf | \leq (1 - \delta )| \partial G| for some universal constant \delta > 0;
(b) H does not contain any vertex of degree more than 2 that is strictly inside

f .
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Similarly as in the case of [28], we show that such a subgraph S is good for recursion.

First, we insert S into the constructed sparsifier \widehat G. Second, we recurse on Gf for every
finite face f of S \cup \partial G that satisfies point (2)(a). Third, for every other finite face f

(i.e., one satisfying point (2)(b)), we insert into \widehat G a naive shortest-paths sparsifier: for

every two vertices u1, u2 \in V (\partial Gf ), we insert into \widehat G a minimum-cost path between
u1 and u2 in Gf . Property (1) together with the multiplicative progress on | \partial G| in
point (2)(a) ensures that the final size of \widehat G is polynomial in | \partial G| , with the exponent of
the polynomial bound depending on \delta and the constant hidden in the big-\scrO notation
in property (1).

The main steps of constructing S are the same as in [28]. First, we try minimum-
size (i.e., with minimum number of edges, as opposed to minimum-cost) Steiner trees
for a constant number of terminals on \partial G. If no such trees are found, the main
technical result of [28] shows that one can identify a cycle C in G of length \scrO (| \partial G| )
with the guarantee that for any choice of A \subseteq V (\partial G), there exists a minimum-size
Steiner tree connecting A that does not contain any Steiner point strictly inside C.
In [28] such a cycle is used to construct a desired subgraph S with the inside of C being
a face satisfying the Steiner tree analogue of point (2)(b). In the case of Lemma 3.2,
we need to perform some extra work here to show that---by some shortcutting tricks
and adding some slack to the constants---one can construct such a cycle C \prime with the
guarantee that the face f inside C \prime satisfies exactly the statement of point (2)(b): that
is, no ``Steiner points"" with regard to minimum-cost trees, not minimum-size ones.

In other words, the extra work is needed to at some point switch from ``minimum-
size"" subgraphs (treated by [28]) to ``minimum-cost"" ones (being the main focus of
Lemma 3.2). In our proof, we do it as late as possible, trying to reuse as much of the
technical details of [28] as possible. Observe that for a path H in G, the cost of H
equals | E(H)| /2 up to an additive \pm 1

2 error. Similarly, for a tree H with a constant
number of leaves, the cost of H is | E(H)| /2 up to an additive error bounded by a con-
stant. Hence, as long as we focus on paths and trees with bounded number of leaves,
the ``size"" and ``cost"" measures are roughly equivalent. However, if a tree H in G
contains a high-degree vertex v \in B(G), the cost of H may be much smaller than half
of the number of edges of H: a star with a center in B(G) has cost one and an arbi-
trary number of edges. For this reason, the final argument of the proof of Lemma 3.2
that constructs the aforementioned cycle C \prime using the toolbox of [28] needs to be
performed with extra care (and some sacrifice on the constants, as compared to [28]).

3.2. From Lemma 3.2 to Theorem 3.1. We start with the formal proof of
Theorem 3.1 from Lemma 3.2.

Proof of Theorem 3.1. Let G be a connected plane partitioned graph G. First, for
every edge uv \in E(G) with u, v \in B(G), we subdivide it with a new vertex x \in A(G).
In this manner, G becomes bipartite withA(G) andB(G) being its bipartition classes,
the minimum possible cost of connecting subgraphs does not change (since the cost
does not count vertices in A(G)), and the length of \partial G at most doubles (so the bound
\scrO (| \partial G| 212) remains the same).

Second, if \partial G is not a simple cycle, then the graph induced by \partial G is a collection
\scrC \geq 3 of simple cycles of length at least three, a collection \scrC 2 of cycles of length two,
and a set C1 of bridges. For every C \in \scrC \geq 3\cup \scrC 2, let GC be the subgraph of G enclosed
by C. Note that \partial GC = C.

For every C \in \scrC \geq 3, we turn GC into a simple graph G\prime C by dropping multiple
edges, but never dropping an edge of C. That is, for every multiple edge e of GC , we
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delete all but one of its multiple copies, but we always keep the one contained in C if
it exists. Since C is a simple cycle of length at least three, no two edges of C connect
the same pair of vertices. Consequently, C = \partial G\prime C and G\prime C satisfies the conditions

of Lemma 3.2. We apply the algorithm of Lemma 3.2, obtaining a graph \widehat GC of size
\scrO (| C| 212).

For C \in \scrC 2, observe that \widehat GC := C trivially satisfies the conditions of Theorem 3.1
for GC : the only nontrivial subset A \subseteq V (\partial GC) consists of the two vertices on C, for

which an edge of C \subseteq \widehat GC forms a minimum-cost connecting subgraph. Consequently,

\widehat G := C1 \cup 
\bigcup 

C\in \scrC 2

C \cup 
\bigcup 

C\in \scrC \geq 3

\widehat GC

satisfies the required properties: the size bound follows from the fact that | \partial G| =
2| C1| +

\sum 
C\in \scrC 2\cup \scrC \geq 3

| C| while the covering property follows easily from the fact that

every minimum-cost connecting subgraph H splits into minimum-cost connecting sub-
graphs in each GC .

We continue with a formal proof of Lemma 3.2. In section 3.3 we recall the
main technical results of [28] we reuse here. In section 3.4 we show how to find the
aforementioned cycle C \prime . Finally, we wrap up the argument in section 3.5.

In this section we implicitly identify every graph G with its set of edges. In
particular, | G| is a shorthand for | E(G)| while H \subseteq G means that H is a subgraph of
G. For a tree H and two vertices x, y \in V (H), by H[x, y] we denote the unique path
from x to y in H. For a cycle C embedded on a plane and two vertices x, y \in V (C),
by C[x, y] we denote the counterclockwise path along C from x to y (which is a trivial
path if x = y).

3.3. Toolbox from the Steiner tree kernel. We start with briefly recalling
the content of section 3 of [28]. A brick is a connected plane graph B whose outer
face is surrounded by a simple cycle \partial B. A subbrick of a plane graph G is a subgraph
B that is a brick and consists of all edges of G enclosed by \partial B. A brick covering
of a plane graph G is a collection \scrB of subbricks of G such that every finite face of
G is a finite face of some brick in \scrB as well. A brick covering \scrB is a brick partition
if every finite face of G is a face of exactly one brick in \scrB . The total perimeter of
a brick covering \scrB is perim(\scrB ) :=

\sum 
B\in \scrB | \partial B| , and a brick covering \scrB is c-short if

perim(\scrB ) \leq c| \partial G| . Furthermore, for a constant \tau > 0, a brick covering is \tau -nice if for
every B \in \scrB we have | \partial B| \leq (1 - \tau )| \partial G| .

A connected subgraph F of a plane graph G is called a connector, and the ver-
tices of \partial G that are incident to at least one edge of F are anchors of F . A connector
F is brickable if the boundary of every finite face of \partial G \cup F is a simple cycle, that
is, these boundaries form subbricks of B. Thus, a brickable connector F induces a
brick partition \scrB F of G. Note that if F is a tree with every leaf lying on \partial G, then
F is a brickable connector in G. Another important observation is that perim(\scrB F ) \leq 
| \partial G| + 2| E(F )| , so if | E(F )| \leq c| \partial G| , then \scrB F is (2c + 1)-short. For brevity, we
say that a brickable connector F is c-short or \tau -nice if \scrB F is c-short or \tau -nice,
respectively.

A technical modification of the algorithm of Erickson, Monma, and Veinott [9]
gives the following.1

1Technically speaking, Theorem 3.4 of [28] is stated with only c = 3, but a quick inspection of
its proof shows that its two ingredients, Lemmas 8.4 and 8.6, are already stated for arbitrary c.
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Theorem 3.3 (Theorem 3.4 of [28]). Let \tau > 0, c \geq 3 be fixed constants. Given
a brick G, in \scrO (| \partial G| 8| G| ) time one either can correctly conclude that no c-short \tau -nice
tree F exist or can find a c-short \tau -nice brick covering of G.

A direct adaptation of the proof of Lemma 3.5 of [28] gives the main recursive
step of the algorithm of Lemma 3.2.

Lemma 3.4 (essentially Lemma 3.5 of [28]). Let c, \tau > 0 be constants. Let G be
a brick, and let \scrB be a c-short \tau -nice brick covering of G. Assume that the algorithm
of Theorem 3.1 was applied recursively to bricks in \scrB , yielding a graph \widehat GB for every
B \in \scrB . Furthermore, assume that for every B \in \scrB we have | \widehat GB | \leq C \cdot | \partial B| \alpha for

some constants C > 0 and \alpha \geq 1 such that (1  - \tau )\alpha  - 1 \leq 1/c. Then \widehat G :=
\bigcup 

B\in \scrB 
\widehat GB

satisfies the conditions of Theorem 3.1 for G and | \widehat G| \leq C \cdot | \partial G| \alpha .

Proof. The condition that \partial G \subseteq \widehat G and the size bound follows exactly as in
the proof of Lemma 3.5 of [28]. For the last condition of Theorem 3.1, the proof
is essentially the same as in [28], but we repeat it for completeness. Consider a
set A \subseteq V (\partial G) and a subgraph H that connects it in G with minimum possible
cost. Without loss of generality, assume that, among subgraphs of G connecting A
of minimum possible cost, H contains the minimum possible number of edges that
are not in \widehat G. We claim that there are no such edges; by contrast, let e be such an
edge. Since \scrB is a brick covering, let B \in \scrB be a brick containing e. Let HB be the
connected component of H\cap intB that contains e, where intB is the subgraph B \setminus \partial B.

Clearly, HB is a connector in B, and let AB be its anchors. By the properties of \widehat GB ,
there exists a subgraph H \prime B \subseteq \widehat GB that connects AB and is of cost not larger than
the cost of HB . Consequently, H

\prime := (H \setminus HB) \cup H \prime B connects A, has cost not larger

than the cost of H, and has strictly fewer edges outside \widehat G than H. This is the desired
contradiction.

We now move to carves and mountains (sections 4 and 5 of [28]). For a constant
\delta \in (0, 1/2), a \delta -carve in a brick G is a pair (P, I) such that P is a path in G of length
at most (1/2 - \delta )| \partial G| with both endpoints on \partial G, and I is a path on \partial G between the
endpoints of P with length at most 1/2 \cdot | \partial G| . The interior of a \delta -carve (P, I) is the
subgraph of G enclosed by the closed walk P \cup I. The main result of section 4 of [28]
is the following.

Theorem 3.5 (Theorem 4.7 of [28]). For any \tau \in (0, 1/4) and \delta \in [2\tau , 1/2), if
a brick G has no 3-short \tau -nice tree, then there exists a finite face of B that is never
in the interior of a \delta -carve in G. Furthermore, such a face can be found in \scrO (| G| )
time.

Section 5 of [28] treatsmountains, a special case of \delta -carves. The definitions of [28]
are general to accommodate the edge-weighted setting as well; here we are content
with only the unweighted setting. Let G be a brick and let \delta \in (0, 1/2). A \delta -carve
M = (P, I) with endpoints l and r of P (so that I is the counterclockwise traverse
along \partial G from l to r) is a \delta -mountain with summit vM \in V (P ) if for PL := P [l, vM ]
and PR = P [vM , r] we have that PL is a shortest l  - PR path in the subgraph of G
enclosed by M and PR is a shortest r - PL path in the subgraph enclosed by M . The
main structural result of section 5 of [28] is the following.

Theorem 3.6 (Theorem 5.3 of [28]). Let \tau \in (0, 1/4) and \delta \in [2\tau , 1/2). Let G
be a brick that does not admit a 3-short \tau -nice tree and let l, r \in V (\partial G) such that
the counterclockwise walk I along \partial G from l to r has length strictly less than | \partial G| /2.
Then, there exists a closed walk Wl,r in G of length at most 3| I| that contains I and

D
ow

nl
oa

de
d 

05
/2

4/
22

 to
 1

31
.2

11
.1

05
.2

26
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2396 JANSEN, PILIPCZUK, AND VAN LEEUWEN

such that, for each finite face f of G, f is enclosed by Wl,r if and only if f is enclosed
by some \delta -mountain with endpoints l and r. Furthermore, the set of faces enclosed
by Wl,r can be found in \scrO (| G| ) time.

3.4. Finding the middle cycle. Armed with the toolbox from the previous
section, we now reengineer the argument of section 6 of [28] to our setting. This is
the place where the arguments of this work and [28] mostly diverge, as here we build
the interface between the cost and size (number of edges) measures.

Let G be a brick. Consider a set A \subseteq V (\partial G) and a subgraph H of G connecting
A of minimum possible cost. Without loss of generality, we can assume that H is a
tree and, furthermore, all its leaves are in A. Furthermore, assume that H contains
a vertex x \in V (H) \cap V (\partial G) that is not a leaf. Then H can be partitioned into
two trees H1 and H2, E(H) = E(H1) \uplus E(H2), V (H1) \cap V (H2) = \{ x\} . Observe
that if H is a tree that is a subgraph of G connecting A of minimum possible cost,
then Hi is a subgraph of G connecting (A \cap V (Hi)) \cup \{ x\} of minimum possible cost
for every i = 1, 2. Furthermore, if for i = 1, 2, H \prime i is a subgraph of G connecting
(A \cap V (Hi)) \cup \{ x\} of minimum possible cost, then H \prime := H \prime 1 \cup H \prime 2 is a subgraph
of G connecting A \cup \{ x\} of minimum possible cost. Since x \in V (H), we infer that
cost(H) = cost(H \prime ) and H \prime is also a minimum-cost subgraph of G connecting A.

The paragraph above motivates the following definitions. A tree H \subseteq G such
that V (H) \cap V (\partial G) is exactly the set of leaves of H is called boundary-anchored. A
boundary-anchored tree H that is a minimum-cost subgraph of G connecting A :=
V (H) \cap V (\partial G) is called a minimum-cost tree (connecting A).

From the discussion above, the following is immediate.

Lemma 3.7. Let G be a bipartite brick with bipartition classes A(G) and B(G).
Let A \subseteq V (\partial G) and let H be a minimum-cost subgraph of G that connects A that,
among all minimum-cost subgraphs of G connecting A, has the minimum possible
number of edges. Then, H is a tree with all its leaves in A, and H can be decomposed
as H = H0 \uplus H1 \uplus . . . H\ell , where H0 \subseteq \partial G and for every 1 \leq i \leq \ell , Hi is a minimum-
cost tree connecting Ai := V (Hi) \cap V (\partial G). Furthermore, for every 1 \leq i \leq \ell , Hi

has the minimum possible number of edges among all minimum-cost subgraphs of G
connecting Ai.

We also have the following bound.

Lemma 3.8. Let G be a bipartite brick with bipartition classes A(G) and B(G).
Let A \subseteq V (\partial G) and let H be a minimum-cost tree connecting A. Then the cost of H
is at most | \partial G| /2 and | H| \leq 3

2 | \partial G| . In particular, H is a 4-short brickable connector.

Proof. For the first claim, it suffices to observe that \partial G is a subgraph connecting
any A \subseteq V (\partial G) of cost | \partial G| /2. For the second claim, root H in an arbitrary vertex,
and compute | H| as follows. First, there are at most | A \cap A(G)| \leq | \partial G| /2 edges of
H that are incident to a leaf of H belonging to A(G). For every edge e that is not as
above, if e connects v with its parent u, then charge e to v if v \in B(G) and otherwise
charge e to any of the children of v (which exist and are in B(G)). In this manner,
every edge of H that is not incident with a leaf of H in A(G) is charged to some
vertex in B(G)\cap V (H) and every vertex w \in B(G)\cap V (H) is charged at most twice:
once by the edge from w to its parent, and once possibly from the parent of w to the
grandparent of w. Since the number of vertices of B(G) \cap V (H) is the cost of H,
which is at most | \partial G| /2, the bound on | H| follows. Finally, following the observations
preceding Theorem 3.3, H is a brickable connector that is 4-short.
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We are now ready to find the cycle C \prime whose existence was promised in section 3.

Theorem 3.9 (analogue of Theorem 6.1 of [28]). Let \tau \in (0, 1
44 ] be a fixed

constant. Let G be a brick that does not admit a 4-short \tau -nice tree, is bipartite with
bipartition classes A(G) and B(G), and has perimeter at least 4/\tau . Then one can in
\scrO (| G| ) time compute a simple cycle C in G with the following properties:

(1) the length of C is at most 64
\tau 2 | \partial G| ;

(2) for each vertex v \in V (C), the distance from v to V (\partial G) in G is at most
(1/4 - 2\tau )| \partial G| and, furthermore, there exists a shortest path from v to V (\partial G)
that does not contain any edge strictly enclosed by C;

(3) C encloses fcore, where fcore is any arbitrarily chosen face of G promised by
Theorem 3.5 that is not enclosed by any 2\tau -carve;

(4) for any A \subseteq V (\partial G), there exists a minimum-cost subgraph H of G connecting
A such that no vertex of degree at least 3 is strictly enclosed by C.

Proof. For two vertices x, y \in V (\partial G), by \partial G[x, y] we denote the path that is the
counterclockwise traverse of \partial G from x to y.

We start by computing a set of pegs P \subseteq V (\partial G) \cap A(G) in the following greedy
manner. We start with arbitrary v0 \in V (\partial G) \cap A(G) and traverse \partial G starting from
v0 twice, once clockwise and once counterclockwise. In each pass, we take as a next
peg the first vertex in A(G) that is at distance (along \partial G) larger than \tau | \partial G| /4 from
the previously placed peg. With two passes, we have | P| \leq 8/\tau , which is a constant.
Furthermore, we have that for every v \in V (\partial G) there exist pegs p\leftarrow (v), p\rightarrow (v) \in P
with v \in \partial G[p\leftarrow (v), p\rightarrow (v)] and

| \partial G[p\leftarrow (v), v]| , | \partial G[v, p\rightarrow (v)]| \leq \tau | \partial G| /4 + 1 \leq \tau | \partial G| /2.

In the above, the first inequality stems from the way we place pegs (including the
requirement than pegs are in A(G)) and the second inequality is implied by | \partial G| \geq 
4/\tau . Note that p\leftarrow (v) is the first peg in the clockwise direction from v and p\rightarrow (v) is
the first peg in the counterclockwise direction from v.

We set \delta = 4\tau . For any l, r \in P, l \not = r, | \partial G[l, r]| < | \partial G| /2, we apply Theorem 3.6
to l, r, and \delta , obtaining a set of faces MRl,r. We define MR =

\bigcup 
l,rMRl,r. Clearly,

fcore /\in MR. We define \widehat fcore to be the connected component of G\ast  - MR that contains
fcore, where G

\ast is the dual of G without the infinite face. Furthermore, let C1 be the

closed walk in G around \widehat fcore.
Consider a face f \in MR. By definition, there exists l, r with f \in MRl,r, and by

Theorem 3.6 there exists a \delta -mountain M = (P, I) enclosing f . Since P is a simple
path, there exists a path Qf in G\ast from f to a face incident to an edge of \partial G, with
all faces on Qf enclosed by M . This implies that C1 is a simple cycle.

Furthermore, since every edge on C1 is an edge of \partial G or some edge of the walk
Wl,r obtained from Theorem 3.6, we have that

| C1| \leq 
\bigm| \bigm| \bigm| \partial G \cup 

\bigcup 
\{ Wl,r \setminus \partial G[l, r] | l, r \in P \wedge l \not = r \wedge | \partial G[l, r]| < | \partial G| /2\} 

\bigm| \bigm| \bigm| 
\leq | \partial G| + | P| \cdot (| P|  - 1) \cdot 2 \cdot | \partial G| /2

\leq 64

\tau 2
| \partial G| .

The above estimation is also the sole need for introducing the pegs. If one picks MR
to be the union of MRl,r for every l, r \in V (\partial G) with | \partial G[l, r]| < | \partial G| /2, then the
above estimate will be cubic, not linear in | \partial G| . The linear dependency on | \partial G| is
essential for the final polynomial bound on the size of the kernel.
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So far, all computations can be done in \scrO (| G| ) time due to P being of constant
size and the time bounds of Theorems 3.5 and 3.6. We now compute the subgraph
Gclose induced by all vertices of G that are within distance at most (1/4  - 2\tau )| \partial G| 
from V (\partial G). This subgraph can be easily computed by breadth-first search in linear
time.

Since for the sake of defining MRl,r, we used \delta -mountains for \delta = 4\tau , all vertices
of any such \delta -mountain are contained in Gclose and, consequently, C1 is contained in
Gclose. Let GC be the subgraph of Gclose enclosed by C1; note that GC is a brick.

Furthermore, let fG
C

core be the face of GC that contains fcore. We define C to be some

shortest cycle in GC separating fG
C

core from the infinite face of GC . Since C corresponds
to a minimum cut in a dual of GC , C can be computed in linear time [8]. We claim
that C satisfies the desired conditions.

Clearly, the length of C is at most the length of C1 (as C1 is a good candidate for
C) and hence satisfies the desired length bound. Also, C encloses fcore by definition.
For the second property, the fact that C is a cycle in GC ensures that every v \in V (C)
is within distance (1/4  - 2\tau ) from V (\partial G). Let Pv be a shortest path from v to
V (\partial G) that minimizes the number of edges strictly enclosed by C. We claim that
there are no such edges; by contradiction, assume that there exists a subpath Q of
Pv with endpoints x, y \in V (C) and all edges and internal vertices strictly enclosed
by C. If | Q| \geq C[x, y] or | Q| \geq C[y, x], then we reach a contradiction with the
choice of Pv by replacing Q with C[x, y] or C[y, x] respectively on Pv. Otherwise, if
| Q| < | C[x, y]| , | C[y, x]| , then, as Pv \subseteq Gclose and thus Q \subseteq GC , either Q \cup C[y, x] or
Q \cup C[x, y] is a strictly better candidate for C, a contradiction.

We are left with the last desired property. Consider a set A \subseteq V (\partial G) and a
subgraph H of G connecting A of minimum possible cost. Furthermore, we choose
H that satisfies the following minimality property: H has minimum number of edges
among all minimum-cost subgraphs connecting A and, subject to that, has minimum
number of edges strictly enclosed by C. We claim that this choice of H satisfies the
desired properties.

Lemma 3.7 implies that it suffices to consider the case when H is actually a
minimum-cost tree.

Since every tree in G with all leaves on \partial G is a brickable connector, Lemma 3.8
implies that every minimum-cost tree in G is 4-short. Since G does not admit a
4-short \tau -nice tree, every minimum-cost tree in G is not \tau -nice.

Consequently, we infer that H is not \tau -nice, that is, there exists a brick B \in \scrB H

with | \partial B| > (1  - \tau )| \partial G| . Since H is a minimum-cost tree, there exist a, b \in V (\partial G)
such that \partial B \setminus H = \partial G[a, b].

Observe that \partial G[b, a] connects A; hence\biggl\lceil 
| \partial G[b, a]| 

2

\biggr\rceil 
\geq cost(\partial G[b, a]) \geq cost(H) = cost(H[a, b]) + cost(V (H) \setminus V (H[a, b]))

\geq | H[a, b]| 
2

+ cost(V (H) \setminus V (H[a, b]))

\geq cost(V (H) \setminus V (H[a, b])) +
| \partial B| 
2

 - | \partial G[a, b]| 
2

.

Consequently, as | \partial B| > (1 - \tau )| \partial G| , we have that

cost(V (H) \setminus V (H[a, b])) <
1

2
+
\tau 

2
| \partial G| .(3.1)D
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Let Z be the union of \{ a, b\} and the set of vertices of V (H[a, b]) that are of degree
at least 3 in H. Let va, vb be the vertices on H[a, b] with

| H[a, va]| , | H[b, vb]| \leq min (| H[a, b]| /2, (1/2 - 7\tau )| \partial G| )

such that H[a, va] and H[b, vb] are as long as possible. Note that it may happen that
va = vb, but a, va, vb, b lie on H[a, b] in this order and va \not = b, vb \not = a.

Let wa be the vertex of Z on H[a, va] that is closest to va and similarly define wb

on H[b, vb]. Let Ha be the subtree of H being the connected component of H  - ea
containing wa, rooted at wa, where ea is the edge of H[a, b] incident with wa but not
lying on H[a,wa]. Traverse \partial G in a clockwise direction from a, and let c be the last
vertex of Ha encountered (before returning back to a); note that it may happen that
c = a if wa = a.

Note that from (3.1) we infer that | H[c, wa]| < 2 + \tau | \partial G| and, consequently,

| H[a, c]| \leq 2 + (1/2 - 6\tau )| \partial G| \leq (1/2 - 5\tau )| \partial G| ,(3.2)

where the last inequality follows from the fact that | \partial G| \geq 4/\tau .

Claim 3.10. Either a = wa = c or c \not = a and | \partial G[c, a]| < | \partial G| /2.
Proof. Assume otherwise. Following (3.2), (H[c, a], \partial G[a, c]) is a \delta -carve. We have

| \partial G[c, a]| + | H[c, a]| > (1 - \tau )| \partial G| , as otherwise H[c, a] would be a 3-short \tau -nice tree
in G. By (3.2), this implies | \partial G[c, a]| > (1/2+4\tau )| \partial G| , so | \partial G[a, c]| < (1/2 - 4\tau )| \partial G| .
Let D = H[c, a]\cup \partial G[a, c] be a closed walk and let H \prime be constructed from H by first
deleting all edges enclosed by D, and then adding D \setminus \partial G[a, b] instead. Clearly, H \prime 

connects A as well. Let K be the set of vertices of B(G)\cap V (H) that are not enclosed
by D. Since B is enclosed by D, and | \partial B| > (1 - \tau )| \partial G| , we have that

cost(H \prime ) \leq | K| +
\biggl\lceil 
| D|  - | \partial G[a, b]| 

2

\biggr\rceil 
\leq | K| + 1

2
+

1 - 9\tau 

2
| \partial G|  - | \partial G[a, b]| 

2

< | K| + | \partial B|  - | \partial G[a, b]| 
2

= | K| + | H[a, b]| 
2

\leq cost(H).

Here, we again used the fact that | \partial G| \geq 4/\tau . The above inequality contradicts the
choice of H. \lrcorner 

In the second case of Claim 3.10 (i.e., c \not = a and | \partial G[c, a] < | \partial G| /2), we have
that (H[c, a], \partial G[c, a]) is a \delta -carve using (3.2). Similarly as before, this implies that
| \partial G[c, a]| \leq | H[c, a]| + \tau | \partial G| \leq (1/2  - 4\tau )| \partial G| , as otherwise H[c, a] is a 3-short \tau -
nice tree. We now use the pegs p\leftarrow (c) and p\rightarrow (a). Let P = \partial G[p\leftarrow (c), c] \cup H[c, a] \cup 
\partial G[a, p\rightarrow (a)] and I = \partial G[p\leftarrow (c), p\rightarrow (a)]. Note that the placement of pegs ensures
that | \partial G[p\leftarrow (c), c]| + | \partial G[a, p\rightarrow (a)]| \leq \tau | \partial G| . Consequently, | I| \leq (1/2  - 3\tau )| \partial G| ,
| P | \leq (1/2 - 4\tau )| \partial G| , and (P, I) is a \delta -carve. Note that the path H[a, c] contains no
vertex of \partial G[p\leftarrow (c), c] \cup \partial G[a, p\rightarrow (a)] (as H is a minimum-cost tree) and thus P is a
simple path.

Claim 3.11. (P, I) is a \delta -mountain with wa as a summit.

Proof. Assume the contrary. Let P \circ L = P [p\leftarrow (c), wa] and P \circ R = P [p\rightarrow (a), wa].
Assume that there exists a path Q\circ from p\leftarrow (c) to P \circ R, enclosed by P \cup I that is
strictly shorter than P \circ L; the proof for the symmetric case of a short path from p\rightarrow (a)
to P \circ L is analogous and thus omitted. See Figure 3.1 for an illustration. Since P
and I overlap on \partial G[p\leftarrow (c), c]\cup \partial G[a, p\rightarrow (a)], this implies that there exists a subpath

D
ow

nl
oa

de
d 

05
/2

4/
22

 to
 1

31
.2

11
.1

05
.2

26
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2400 JANSEN, PILIPCZUK, AND VAN LEEUWEN

p←(c) c a p→(a)

wa

P ◦L P ◦R

∂G

Q

Fig. 3.1. Situation in the proof of Claim 3.11.

Q of Q\circ from c to PR := H[a,wa] that is strictly shorter than PL := H[c, wa] and
is enclosed by H[a, c] \cup \partial G[c, a]. Let x \in V (H[a,wa]) be the other endpoint of Q.
Construct a graph H \prime from H as follows: replace in H all edges enclosed by Q\cup H[x, c]
by H[wa, x] \cup Q. By the choice of c, H \prime connects A. As for the cost, note that since
| Q| < | H[c, wa]| while Q and H[c, wa] share c as an endpoint in the bipartite graph
G, we have

| B(G) \cap (V (Q) \setminus \{ x\} )| \leq | B(G) \cap (V (H[c, wa]) \setminus \{ wa\} )| .

Consequently, since H \prime \subseteq (H \setminus H[c, wa]) \cup Q, we have that cost(H \prime ) \leq cost(H).
Furthermore, as | Q| < | H[c, wa]| but H \prime \subseteq (H \setminus H[c, wa]) \cup Q, we have | H \prime | < | H| ,
contradicting the choice of H. This finishes the proof of the lemma. \lrcorner 

We infer from Theorem 3.5 and Claim 3.11 that fcore is not enclosed by H[a, c]\cup 
\partial G[c, a] and no edge of Ha is strictly enclosed by C1 (and thus not by C either). A
symmetric argument holds for b and wb and a subtree Hb defined symmetrically.

If H[va, vb] does not contain any internal vertex from Z, we are done, as all
vertices of degree at least three in H are then contained in Ha or Hb. Otherwise, the
choice of wa and wb implies that va \not = vb, | H[va, vb]| > 1. Consequently, the choice of
va and vb implies that | H[a, b]| > (1  - 14\tau )| \partial G| . Since cost(H) \leq cost(\partial G[b, a]), we
have that | H[a, b]| \leq | \partial G[b, a]| (note that these two paths share endpoints). Hence,
| \partial G[a, b]| < 14\tau | \partial G| .

Consider two consecutive vertices w1, w2 from Z on H[a, b]. Note that H \prime :=
(H \setminus H[w1, w2]) \cup \partial G[a, b] connects A, and

cost(H \prime ) \leq cost(H) + 1 - | H[w1, w2]| 
2

+
| \partial G[a, b]| 

2
.

By the choice of H and the assumption | \partial G| \geq 4/\tau , we have that

| H[w1, w2]| \leq 15\tau | \partial G| .(3.3)

We claim the following.

Claim 3.12. For every v \in V (H) there exists a path from v to \partial G contained in
H that is of length at most (1/4 - 2\tau )| \partial G| . In particular, H \subseteq Gclose.

Proof. (3.1) implies the claim for every v \in V (H)\setminus V (H[a, b]) as a path in H from
v to the closest vertex of H on V (\partial G) \setminus V (H[a, b]) is of length at most \tau | \partial G| + 2 \leq 
(1/2 - 2\tau )| \partial G| as | \partial G| > 4/\tau and \tau \leq 1

44 .
Let then v \in V (H[a, b]) and consider a path that traverses H[a, b] from v to

the closest vertex z \in Z and then, if z /\in \{ a, b\} , follow the path from z to \partial G in
E(H) \setminus E(H[a, b]). By (3.3) and (3.1) this path is of length at most 2 + \tau | \partial G| +
15
2 \tau | \partial G| \leq 9\tau | \partial G| \leq (1/4 - 2\tau )| \partial G| as \tau \leq 1

44 . This finishes the proof of the claim.\lrcorner 
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Using the fact that H \subseteq Gclose we complete the proof. If H does not contain
any edge strictly enclosed by C, then we are done, so assume otherwise. Consider the
subgraph of H consisting of edges strictly enclosed by C, and let HC be a connected
component of this subgraph. Then HC is a tree with leaves on V (C). The tree HC

partitions the disk bounded by C into faces, of which exactly one face fCcore contains
face fcore (since C encloses fcore). Let x, y \in V (C)\cap V (HC) be the unique two leaves
of HC that lie on fCcore, and choose them in such an order that H[x, y] \cup C[x, y] does
not enclose fcore, that is, C \prime := H[x, y] \cup C[y, x] encloses fcore. Since H \subseteq Gclose,
the cycle C \prime \subseteq Gclose was a candidate for the separating cycle C. By the minimality
of C, we have | C \prime | \geq | C| and therefore | H[x, y]| \geq | C[x, y]| . Consider a graph H \prime 

constructed from H by replacing every edge of H enclosed by H[x, y] \cup C[x, y] with
C[x, y]. Clearly, H \prime connects A. Since | H[x, y]| \geq | C[x, y]| and these paths have the
same endpoints, we have that cost(H \prime ) \leq cost(H) and | H \prime | \leq | H| . Furthermore, H \prime 

contains strictly fewer edges enclosed by C than H, which is a contradiction with the
choice of H.

Consequently, no edge of H is strictly enclosed by C, and we are done. This
finishes the proof of Theorem 3.9.

We conclude this section with a remark about the possibility of minimum-cost
trees using edges strictly enclosed by C. Although the above proof replaced a graph H
with vertices of degree at least 3 strictly enclosed by C with a subgraph H \prime that does
not contain any edge strictly enclosed by C (not even using degree-2 vertices strictly
enclosed by C), this does not imply that any subset A \subseteq V (\partial G) can be connected
by a minimum-cost tree H that uses no edges strictly enclosed by C. We used the
assumption of a vertex of degree at least 3 on H to show that H \subseteq Gclose. This may
not be the case in the following example, leading to situations where all minimum-cost
connecting subgraphs use edges strictly enclosed by C.

Let A = A1 \uplus A2 with a1 \in A1, a2 \in A2 such that | \partial G[a1, a2]| = | \partial G| /2 and
for every i = 1, 2 and a \in Ai we have that min(| \partial G[a, ai]| , | \partial G[ai, a]| ) < 0.001| \partial G| .
That is, A consists of two antipodal ``clouds"" of vertices. Then, there may exist a
way of connecting A that is slightly cheaper than taking an appropriate subpath of
\partial G, namely connecting each Ai with a small tree Hi and then connecting roots of Hi

via a path of length almost | \partial G| /2 through the middle of G and C. Effectively, the
existence of a shorter path through the middle of G shows that a cycle even shorter
than C exists in G that separates the infinite face of G from fcore. But this shorter
cycle contains vertices that do not belong to Gclose and therefore we cannot use this
cycle in our recursive step, as the lengths of paths to and from the cycle would grow
prohibitively large.

3.5. Wrapping up the argument. With Theorem 3.9 and Lemma 3.4 in hand,
we now wrap up the proof of Lemma 3.2 essentially in the same way as in section 7
of [28].

We fix \tau = 1/44 and choose \alpha such that

(1 - \tau )\alpha  - 1 <
1

4

and

(1 - 3\tau )\alpha  - 1 < 2 857 536 - 1.

We show a recursive algorithm for Lemma 3.2 that runs in time \scrO (| \partial G| \alpha | G| ) and
returns a subgraph of size at most \beta \cdot | \partial G| \alpha for a constant \beta > 0 satisfying

D
ow

nl
oa

de
d 

05
/2

4/
22

 to
 1

31
.2

11
.1

05
.2

26
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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2 857 536(1 - 3\tau )\alpha  - 1 + 123 9042/\beta < 1

and

\beta (1 - 3\tau )\alpha  - 1 \geq 1.

In particular, \alpha = 212 and \beta = 1013 suffices.
First, consider the base case | \partial G| \leq 4/\tau = 176. For each A \subseteq V (\partial G) we compute

a minimum-cost subgraph HA connecting A in \scrO (| G| ) time using a straightforward
adaptation of the algorithm of Erickson, Monma, and Veinott [9] and insert HA into\widehat G.2 Furthermore, we insert \partial G into \widehat G. Lemma 3.8 implies that | HA| \leq 264, and

thus | \widehat G| \leq 176 + 2176 \cdot 264 which is at most \beta | \partial G| \alpha for any \alpha \geq 176, | \partial G| \geq 2, and
\beta \geq 265.

In the recursive case, if | \partial G| > 4/\tau , we apply Theorem 3.3 to look for a 4-short \tau -
nice brick covering. If a brick covering \scrB is found, then we recurse on each brick B \in \scrB 
separately, obtaining a graph \widehat GB , and return \widehat G :=

\bigcup 
B\in \scrB 

\widehat GB . Lemma 3.4 ensures

that the size bound on \widehat G holds. For the time bound, assume that the application of
Theorem 3.3 runs in time bounded by c1 \cdot | \partial G| 8 \cdot | G| . Then, the total time spent is
bounded by\Biggl( 

c1| \partial G| 8 +
\sum 
B\in \scrB 

c| \partial B| \alpha 
\Biggr) 
| G| \leq | \partial G| \alpha \cdot | G| \cdot 

\bigl( 
c1 + 4c(1 - \tau )\alpha  - 1

\bigr) 
.

This is at most c \cdot | \partial G| \alpha \cdot | G| for sufficiently large c by the choice of \alpha .
We are left with the case that the application of Theorem 3.3 returned that

no 4-short \tau -nice tree exists. Then, we invoke Theorem 3.5 to find a face fcore and
Theorem 3.9 to find the cycle C enclosing fcore. We have | C| \leq 64

\tau 2 | \partial G| \leq 123 904| \partial G| .
Mark a small set X \subseteq V (C) such that the distance between two consecutive vertices
of X on C is at most 2\tau | \partial G| = | \partial G| /22. As | \partial G| > 176, we may greedily mark

such a set X of size at most | C| 
2\tau | \partial G| \cdot 

9
8 \leq 3 066 624. For every x \in X, compute a

shortest path Px from x to V (\partial G) that does not use any edge strictly enclosed by C.
This can be done by a single breadth-first search from V (\partial G) in G with the edges
strictly enclosed by C removed. In this manner, we obtain also the property that the
intersection of two paths Px and Py for any x, y \in X is a (possibly empty) suffix. For
x \in X, let \psi (x) be the second endpoint of Px. By the properties of C, we have that
| Px| \leq (1/4 - 2\tau )| \partial G| = 9

44 | \partial G| .
Consider two consecutive (in the counterclockwise order) vertices x, y \in X on C

and consider a walk P = Px \cup C[x, y]\cup Py from \psi (x) to \psi (y). The length of this walk
is at most (2 \cdot 9

44 + 2
44 )| \partial G| =

5
11 | \partial G| . We claim that

| \partial G[\psi (x), \psi (y)] \cup P | \leq (1 - 3\tau )| \partial G| .(3.4)

If \psi (x) = \psi (y), then the claim is trivial. Otherwise, Px and Py do not intersect. Let x\prime 

be the vertex on Px\cap V (C[x, y]) that is closest to \psi (x) on Px and similarly define y\prime . As

2The algorithm of Erickson, Monma, and Veinott [9] is the classic Dreyfus--Wagner dynamic
programming algorithm for Steiner tree that, for every subset B \subseteq A and r \in V (G), computes a
minimum-cost tree connecting B and r. The essence of the result of [9] lies in an observation that
if A lies on a single face of a planar graph, it suffices only to consider sets B that correspond to a
set of consecutive vertices of A on the said face. This limits the number of states of the dynamic
programming algorithm from n \cdot 2| A| to roughly | A| 2n. The same observation holds in our setting
and it is straightforward to adapt the Dreyfus--Wagner dynamic programming algorithm to our cost
function.
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Px and Py do not intersect, x, x\prime , y\prime , y lie on C[x, y] in this order; it may happen that
x = x\prime or y = y\prime but x\prime \not = y\prime . Then, P \prime = Px[\psi (x), x

\prime ]\cup C[x\prime , y\prime ]\cup Py[y
\prime , \psi (y)] is a simple

path of length at most 5
11 | \partial G| \leq (1/2  - 2\tau )| \partial G| . Hence, either (P \prime , \partial G[\psi (x), \psi (y)])

or (P \prime , \partial G[\psi (y), \psi (x)]) is a (2\tau )-carve. In the latter case, such a carve would enclose
fcore, which is impossible. Consequently, | \partial G[\psi (x), \psi (y)]| \leq | \partial G| /2. We then have
| \partial G[\psi (x), \psi (y)]| \leq (1/2 - \tau )| \partial G| as otherwise | \partial G[\psi (y), \psi (x)]| < (1/2+ \tau )| \partial G| which
would make P \prime a 4-short \tau -nice brickable connector. Together with | P \prime | \leq | P | \leq 
5
11 | \partial G| \leq (1/2 - 2\tau )| \partial G| this finishes the proof of (3.4).

Let Wx = \partial G[\psi (x), \psi (y)] \cup P be a closed walk. Let Hx be the subgraph of Wx

consisting of all edges of Wx that are incident with the infinite face of Wx treated as
a plane graph.3 Each doubly connected component of Hx is a simple cycle (of length
at least 3, as G is simple) or a bridge. For each simple cycle, we construct a brick B
consisting of all edges enclosed by this cycle, and denote by \scrB x the family of all bricks
obtained in this manner. Let Dx be the set of bridges. We have

2| Dx| +
\sum 

B\in \scrB x

| \partial B| \leq | Wx| \leq (1 - 3\tau )| \partial G| .

Hence,

\sum 
x\in X

\Biggl( 
| Dx| +

\sum 
B\in \scrB x

| \partial B| 

\Biggr) 
\leq | X| 41

44
| \partial G| \leq 2 857 536| \partial G| .

We recurse on each B \in 
\bigcup 

x\in X \scrB x, obtaining a graph \widehat GB . Furthermore, for each
x, y \in V (C), we mark one shortest path Qx,y between x and y in G if its length is at
most | \partial G| . We define

\widehat G =

\left(  \bigcup 
x,y\in V (C)

Qx,y

\right)  \cup 

\Biggl( \bigcup 
x\in X

Dx \cup 
\bigcup 

B\in \scrB x

\widehat GB

\Biggr) 
.

Note that every finite face of G that is not enclosed by C is enclosed by exactly one
walk Wx. Hence, Theorem 3.9 ensures that for every A \subseteq V (\partial G), there exists a

minimum-cost subgraph H connecting A that is contained in \widehat G. In particular, every
connection in H strictly enclosed by C may be realized by one of the chosen shortest
paths Qx,y.

For the bound on the size of \widehat G, we have that

| \widehat G| \leq \sum 
x\in X

\Biggl( 
| Dx| +

\sum 
B\in \scrB x

\beta \cdot | \partial B| \alpha 
\Biggr) 

+

\biggl( 
| C| 
2

\biggr) 
| \partial G| 

\leq \beta | \partial G| \alpha  - 1(1 - 3\tau )\alpha  - 1 \cdot 
\sum 
x\in X

\Biggl( 
| Dx| +

\sum 
B\in \scrB x

| \partial B| 

\Biggr) 
+

\biggl( 
| C| 
2

\biggr) 
| \partial G| 

\leq \beta \cdot | \partial G| \alpha \cdot 2 857 536 \cdot (1 - 3\tau )\alpha  - 1 + 123 9042| \partial G| 3

\leq \beta | \partial G| \alpha .

Here, the last inequality follows from the choice of \alpha and \beta while the second inequality
uses that \beta (1 - 3\tau )\alpha  - 1 \geq 1.

3It can be shown that in fact E(Hx) = E(Wx) here, but it is not necessary for the argument.
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Regarding the time bound, note that all computations, except for the recursive
calls, can be done in time c2 \cdot | \partial G| 3 \cdot | G| for some constant c2. Therefore, the total
time spent is bounded by\Biggl( 

c2| \partial G| 3 + c
\sum 
x\in X

\sum 
B\in \scrB x

| \partial B| \alpha 
\Biggr) 
| G| \leq | \partial G| \alpha | G| 

\bigl( 
c2 + 2857 536c(1 - 3\tau )\alpha  - 1

\bigr) 
.

This is smaller than c| \partial G| \alpha | G| for sufficiently large c.

4. Odd cycle transversal. To understand the Odd Cycle Transversal
problem, we rely on the correspondence between odd cycle transversals and T -joins.
This correspondence was originally developed by Hadlock [17] for the edge version of
Odd Cycle Transversal on planar graphs; for the vertex version discussed here,
we build on the work of Fiorini et al. [10]. Given a graph H and set T \subseteq V (H), a
T -join in H is a set J \subseteq E(H) such that T equals the set of odd-degree vertices in the
subgraph of H induced by J . It is known that a connected graph contains a T -join if
and only if | T | is even.

Lemma 4.1 ([10, Lemma 1.1]). Let T be the set of odd faces of a connected
plane graph G. Then C \subseteq V (G) is an odd cycle transversal of G if and only if
\scrR (G)[C \cup F (G)] contains a T -join, that is, each connected component of \scrR (G)[C \cup 
F (G)] contains an even number of vertices of T .

This leads to the following problem:4

Bipartite Steiner T -join Parameter: k

Input: A connected bipartite graph G, a fixed partition V (G) = A(G) \uplus B(G),
T \subseteq A(G), and an integer k.

Question: Does there exist a set C \subseteq B(G) of size at most k such that G[C \cup 
A(G)] contains a T -join, that is, each connected component of G[C \cup A(G)]
contains an even number of vertices of T?

In particular, we are interested in the problem when G is a plane graph, which
we call Plane Bipartite Steiner T -join. We call T the set of terminals of the
instance; A(G) \setminus T is the set of nonterminals. We call C \subseteq B(G) a solution to an
instance of Bipartite Steiner T -join if | C| \leq k and G[C\cup A(G)] contains a T -join.

Lemma 4.2. If Plane Bipartite Steiner T -join has a polynomial kernel, then
Plane Odd Cycle Transversal has a polynomial kernel.

Proof. By Lemma 4.1, the answer to a plane instance (G,T, k) of Odd Cycle
Transversal is equivalent to the answer of the Plane Bipartite Steiner T -join
instance on the graph \scrR (G), with the face vertices F (G) taking the role of A, V (G)
taking the role of B, and T \subseteq F (G) being the odd faces. So if Plane Bipartite
Steiner T -join has a polynomial kernel, then an instance of Plane Odd Cycle
Transversal can be compressed to size polynomial in k by transforming it into an
instance of Plane Bipartite Steiner T -join and applying the kernel to it. Since
Plane Bipartite Steiner T -join is in NP and Plane Odd Cycle Transversal
is NP-hard, by standard arguments (cf. [2]) the T -join instance can be reduced back
to an instance of the original problem of size polynomial in k, which forms the kernel.

4Lokshtanov, Saurabh, and Wahlstr\"om [25] call this the L-join problem. We prefer this name,
given the prevalence of the use of the letter T and the Steiner-like nature of the problem.
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Below, we will give a polynomial kernel for Plane Bipartite Steiner T -join.
Combined with Lemma 4.2, this implies a polynomial kernel for Plane Odd Cycle
Transversal. For most reduction rules, we will be able to give a direct analogue
for Plane Odd Cycle Transversal, which yields slightly lower constants.

4.1. Reducing the number of terminals. Let (G,A(G),B(G), T, k) be an
instance of Plane Bipartite Steiner T -join. As a first step, we show that the
graph can be reduced so that there remain at most 6k2 terminals. To this end, we
adapt the rules that Such\'y [31] developed for Plane Steiner Tree parameterized
by the number of Steiner vertices of the solution tree. Each of the rules is applied
exhaustively before a next rule will be applied.

Observation 4.3. Let C be a solution for the instance. Then each vertex of T has
a neighbor in C.

This is the analogue of [31, Lemma 2] and is immediate from the bipartiteness
of G. For Plane Odd Cycle Transversal, the equivalent idea is the trivial
observation that each odd face is incident to a vertex of the solution.

Observation 4.4. If k < 0 or there is a connected component containing exactly
one terminal t \in T , then we can safely answer NO.

The equivalent rule for Plane Odd Cycle Transversal is to answer NO when
k < 0. The second part is irrelevant, because any plane graph has an even number of
odd faces and we assumed that the graph is connected.

We now deal with sets of (false) twins.

Lemma 4.5. Let X \subseteq T be a maximal set such that NG(x) = NG(y) for all x, y \in 
X. Remove all but 2 - (| X| mod 2) vertices of X from the graph and T . The resulting
instance (G\prime ,A(G\prime ),B(G\prime ), T \prime , k) has a solution if and only if (G,A(G),B(G), T, k)
has a solution.

Proof. Let Y \subseteq X be the set of remaining vertices of X. Observe that | X| \equiv | Y | 
(mod 2) and that | Y | \geq 1. The equivalence is now immediate.

The equivalent rule for Plane Odd Cycle Transversal is to check whether
G itself is an odd cycle and then answer YES if k \geq 1 and NO otherwise. Indeed,
twin face vertices only appear in the radial graph of G if G is just a single cycle.

Lemma 4.6. Let u, v \in B(G) and let L = NG(u) \cap NG(v) \cap T with L \not = \emptyset .
If a connected component X of G \setminus (L \cup \{ u, v\} ) exists that contains no terminals,
then remove X from the graph. The resulting instance (G\prime ,A(G\prime ),B(G\prime ), T, k) has a
solution if and only if (G,A(G),B(G), T, k) has a solution.

Proof. If (G\prime ,A(G\prime ),B(G\prime ), T, k) has a solution C, then C is a solution for the
instance (G,A(G),B(G), T, k), as G\prime is an induced subgraph of G with the same
terminal set.

Suppose that C is a minimal solution for (G,A(G),B(G), T, k). We construct a
solution for (G\prime ,A(G\prime ),B(G\prime ), T, k) such that C \prime \cap X = \emptyset . Suppose that C \cap X \not = \emptyset ;
otherwise, let C \prime = C. Let C \prime = (C \setminus X) \cup \{ v\} . In either case, | C \prime | \leq | C| \leq k. We
claim that C \prime is still a solution for (G,A(G),B(G), T, k). To this end, first consider
C\cup \{ v\} . All connected components of G[C\cup A(G)] that neighbor v will then be unified
into a single connected component Z of G[C \cup \{ v\} \cup A(G)]. The parity of | Z \cap T | is
equal to the sum (mod 2) of the parities of | Z \prime \cap T | of the connected components Z \prime 

of G[C \cup A(G)] neighboring v. Since these parities are 0, their sum is 0, and | Z \cap T | 
is even. Now consider the connected component ZZ of G[C \prime \cup A(G)] that contains

D
ow

nl
oa

de
d 

05
/2

4/
22

 to
 1

31
.2

11
.1

05
.2

26
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2406 JANSEN, PILIPCZUK, AND VAN LEEUWEN

v. Clearly, ZZ \cap T = Z \cap T , because X \cap T = \emptyset and any path in G[C \cup \{ v\} \cup A(G)]
that intersects X can be rerouted through v and the vertices of L \subseteq A(G). The claim
follows, and thus the lemma as well.

The equivalent rule for Plane Odd Cycle Transversal is to consider any two
odd faces f, f \prime that share at least two vertices. Now consider any simple cycle Y in
G[V (f)\cup V (f \prime )] such that the closure R of one of the two regions of the plane obtained
after the removal of Y contains no odd face (and in particular does not contain f nor
f \prime ). Since R contains no odd faces, a parity argument shows that Y is an even cycle.
Moreover, Y contains exactly two (nonadjacent) vertices u, v of V (f)\cup V (f \prime ). If such
faces and cycle exist, then remove all vertices in the interior of R and add the edge uv.
In case the two paths between u and v on Y are both odd, we additionally subdivide
the newly added edge uv to ensure that f and f \prime remain odd.

We now present the final two reduction rules. Each relies on the following oper-
ation.

Lemma 4.7. Let v \in B(G). Let G\prime be obtained from G by contracting all edges
between v and its neighbors in G. Let v\prime be the resulting vertex, and let A(G\prime ) and
B(G\prime ) be the resulting color classes, where v\prime \in A(G\prime ). Let T \prime be obtained from T by
removing NG(v) \cap T and adding v\prime to T \prime if and only if | NG(v) \cap T | \equiv 1 (mod 2).

\bullet If (G,A(G),B(G), T, k) has a solution C with v \in C, then

(G\prime ,A(G\prime ),B(G\prime ), T \prime , k  - 1)

has a solution;
\bullet if (G\prime ,A(G\prime ),B(G\prime ), T \prime , k - 1) has a solution, then (G,A(G),B(G), T, k) has
a solution.

Proof. Suppose there is a solution C to (G,A(G),B(G), T, k) such that v \in C.
Then the vertices of T\cap NG(v) are in the same connected component Z of G[C\cup A(G)].
Let C \prime = C \setminus \{ v\} and let Z \prime be obtained from Z by contracting all edges between v
and NG(v). Then Z

\prime is a connected component of G\prime [C \prime \cup A(G\prime )]. By the construction
of T \prime , Z \prime contains an even number of vertices of T \prime . Moreover, | C \prime | = | C|  - 1 \leq k - 1.
Hence, C \prime is a solution to (G\prime ,A(G\prime ),B(G\prime ), T \prime , k  - 1).

Suppose there is a solution C \prime to (G\prime ,A(G\prime ),B(G\prime ), T \prime , k - 1). Let C = C \prime \cup \{ v\} .
Let Z \prime be the connected component of G\prime [C \prime \cup A(G\prime )] that contains v\prime , and let Z
be obtained from Z \prime by adding NG[v] and removing v\prime . Then Z is a connected
component of G[C \cup A(G)]. Moreover, by the construction of T \prime , Z contains an even
number of vertices of T . Finally, | C| = | C \prime | + 1 \leq k. Hence, C is a solution to
(G,A(G),B(G), T, k).

The equivalent operation for Plane Odd Cycle Transversal is simply the
deletion of the vertex v and reducing k by 1.

Lemma 4.8. Let u, v \in B(G) and let L = NG(u) \cap NG(v) \cap T with L \not = \emptyset . If a
connected component X of G \setminus (L \cup \{ u, v\} ) exists for which all terminals in X \cap T
neighbor v and there is a solution C to the instance (G,A(G),B(G), T, k), then there
is a solution that contains v.

Proof. Assume that v \not \in C, or the lemma would already follow. Since the rule
of Lemma 4.6 is inapplicable, there is a terminal in X. Moreover, no terminal in
X\cap T neighbors u, because any such terminal would be in L and thus not in X. Since
every terminal has to have a neighbor in C, it follows that C \cap X \not = \emptyset . Therefore,
C \prime = (C \setminus X) \cup \{ v\} is not larger than C. We claim that C \prime is still a solution. To this
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end, first consider C \cup \{ v\} . All connected components of G[C \cup A(G)] that neighbor
v will then be unified into a single connected component Z of G[C \cup \{ v\} \cup A(G)]. In
particular, Z contains X \cap T . The parity of | Z \cap T | is equal to the sum (mod 2) of the
parities of | Z \prime \cap T | of the connected components Z \prime of G[C \cup A(G)] that neighbor v.
Since these parities are 0, their sum is 0, and | Z \cap T | is even. Now consider the
connected component ZZ of G[C \prime \cup A(G)] that contains v. Clearly, ZZ \cap T = Z \cap T ,
because any path in G[C \cup \{ v\} \cup A(G)] that intersects X can be rerouted through v
and the vertices of L. The claim follows and thus the lemma as well.

Lemma 4.9. If there is a vertex v \in B(G) adjacent to more than 6k terminals and
there is a solution C to the instance (G,A(G),B(G), T, k), then there is a solution
that contains v.

Proof. The proof is completely analogous to the proof of [31, Lemma 11]. If
v \in C, then we are done. So assume that v \not \in C. Let B \subseteq C be the set of vertices
in C adjacent to at least two terminals in NG(v). Given b \in B, let x, y be any two
terminals in NG(b) \cap NG(v) and consider the region R that is enclosed by the cycle
x, b, y, v and that does not contain the outer face. If R does not contain any other
terminal of NG(b)\cap NG(v), then R is called the (internal) eye of x, b, y, v. The support
of b \in B, denoted supp(b), is the set of vertices a \in B such that a is contained inside
an eye R of b, but not inside an eye of any b\prime \in B \setminus \{ b\} for which b\prime is inside R. The
bound of 6k (instead of 5k) ensures that the proof of [31, Lemma 16] can be modified
(straightforwardly) to yield a vertex b \in B(G) adjacent to more than 2 | supp(b)| + 4
vertices of T . The further arguments then imply the existence of a twin set in T of
size at least 3, thus contradicting the exhaustive execution of the rule of Lemma 4.5.

For Plane Odd Cycle Transversal, the rule is already true for a bound of
5k, because T contains no twins.

Lemmas 4.8 and 4.9, when combined with Lemma 4.7, naturally lead to two
reduction rules. After exhaustively applying all the reduction rules in this section,
each vertex of B(G) neighbors at most 6k terminals.

Observation 4.10. If | T | > 6k2, then we can safely answer NO.

This rule is immediate from Observation 4.3 and the fact that any solution con-
tains at most k vertices that are each adjacent to at most 6k terminals by Lemma 4.9.
For Plane Odd Cycle Transversal, the rule is already true for a bound of 5k2.

4.2. Reducing the diameter and obtaining the kernel. We now reduce the
diameter of the graph. Our arguments here are a generalization of the arguments of
Fiorini et al. [10] in their FPT-algorithm for Plane Odd Cycle Transversal.

Lemma 4.11. Suppose there is a solution for (G,A(G),B(G), T, k). Let C be a
minimal solution. Then each vertex v \in C has distance at most k+1 in G[C \cup A(G)]
to a vertex of T .

Proof. Suppose for the sake of contradiction that v \in C has distance at least k+1
to each vertex of T in G[C \cup A(G)]. Since C is minimal, there are two connected
components X and Y of G[(C \setminus \{ v\} ) \cup A(G)] with an odd number of terminals. Let
x \in X \cap T and y \in Y \cap T . Consider a shortest path in G[C \cup A(G)] from x to
v. This path P is fully contained in G[V (X) \cup \{ v\} ] and has length at least k + 1.
As P connects vertices on opposite sides of the bipartite graph, | V (P )\cap C| \geq 1+k/2.
Hence, | V (X) \cap C| \geq k/2. Similarly, | V (Y ) \cap C| \geq k/2. Since X and Y are vertex
disjoint, it follows that | C| \geq 2k/2 + 1 > k, a contradiction.
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Corollary 4.12. Suppose there is a solution for (G,A(G),B(G), T, k). Let C
be a minimal solution. Then every vertex of C \cup T has distance at most k+2 to T in
G[C \cup A(G)].

Lemma 4.13. We can safely answer NO, or we can compute, in polynomial time,
disjoint subgraphs G1, . . . , G\ell of G for some \ell \leq k such that

(1) the graphs Gi jointly contain all terminals;
(2) for each i and for each vertex v \in V (Gi), there is a terminal t \in T \cap V (Gi)

that can reach v by a path of at most k + 2 edges;
(3) for any solution C for (G,A(G),B(G), T, k), C \cap V (Gi) is a solution for

(Gi,A(Gi), B(Gi), T \cap V (Gi), ki) for each i, where ki = | C \cap V (Gi)| ;
(4) if (Gi,A(Gi),B(Gi), T \cap V (Gi), ki) has a solution for each i for some integers

k1, . . . , k\ell \geq 0 that sum up to at most k, then (G,A(G),B(G), T, k) has a
solution.

Proof. For each terminal t \in T , let B(t) be the set of all vertices within distance
k + 2 of t. Let G1, . . . , G\ell be the connected components of G[

\bigcup 
t\in T B(t)]. If \ell > k,

then G has more than k terminals with disjoint neighborhoods in B(G), and we can
safely answer NO. We now consider the properties set forth in the lemma statement:

(1) True by construction and the definition of the function B.
(2) True by construction and the definition of the function B.
(3) True by construction, the definition of the function B, and Corollary 4.12.
(4) We take the union C of the solutions Ci of the subinstances. Note that the

subgraphs Gi are disjoint and thus contain disjoint sets of terminals. Hence,
any connected component of G[C\cup A(G)] that contains connected components
of G[Ci \cup A(G)] for multiple i, still contains an even number of terminals.

This finishes the proof.

For Plane Odd Cycle Transversal, we make sure to define B(t) as the set of
all faces and vertices within distance k+2 or k+3 in \scrR (G) of an odd face, depending
on whether k is odd or even, respectively. This ensures that the graphs Gi each
correspond to a union of faces of G and their incident vertices.

Property (2) of Lemma 4.13 implies that each constructed subgraph Gi has di-
ameter \scrO (k \cdot | T \cap V (Gi)| ), which is \scrO (k3) using Observation 4.10. The proof of
Theorem 4.14 employs an additional argument to obtain a quadratic-size Steiner tree
to cut open.

We are now ready to present the kernel.

Theorem 4.14. Plane Bipartite Steiner T -join has a kernel of size \scrO (k425).

Proof. We first exhaustively apply the reduction rules of subsection 4.1 until each
vertex of B(G) neighbors at most 6k terminals. The rules can clearly be executed
exhaustively in polynomial time. As per Observation 4.10, we may assume that
| T | \leq 6k2. Then we apply Lemma 4.13 and consider each of the \ell subgraphs Gi

separately. Let Ti = T \cap V (Gi); note that | Ti| \leq 6k2. Moreover, we can assume that
| Ti| is even, or we can safely answer NO.

We construct a small set Ai \subseteq V (Gi) such that G[Ai] is connected and contains
Ti. Start by adding Ti to Ai. Then, we find a subset T \prime i of Ti such that the sets
NGi(t) are pairwise disjoint for t \in T \prime i by the following iterative marking procedure:
Add any unmarked t \in Ti to T \prime i and then mark all terminals in NGi

(NGi
(t)). It

follows from Observation 4.3 that | T \prime i | \leq k, or we can safely answer NO. Now apply
Lemma 2.1 to find a Steiner tree of at most (2(k+2)+1) (| T \prime i |  - 1) edges (and vertices)
on T \prime i . Add these vertices to Ai. Finally, for each t \in Ti, let t

\prime \in T \prime i be a terminal
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such that t \in NGi
(NGi

(t\prime )) \cup \{ t\prime \} and add an arbitrary vertex of N(t) \cap N(t\prime ) to Ai.
Then | Ai| \leq 6k2 + 6k2 + (2k + 5) | T \prime i | = \scrO (k2). Moreover, by construction, Gi[Ai] is
connected and contains Ti.

Let Si be a spanning tree of Gi[Ai]. Note that Si has size \scrO (k2) by the construc-
tion of Ai and contains Ti. We cut the plane open along Si and make the resulting
face the outer face. Let \^Gi denote the resulting plane graph. That is, we create a
walk Wi on the edges of Si that visits each edge of Si exactly twice. This walk has
\scrO (k2) edges. Then we duplicate the edges of Si and duplicate each vertex v of Si

exactly dSi
(v) - 1 times, where dSi

(v) is the degree of v in Si. We can then create a
face in the embedding that has Wi as boundary. Then we obtain \^Gi by creating an
embedding in which this new face is the outer face. See Figure 4.1. This also yields
a natural mapping \pi from E( \^Gi) to E(Gi) and from V ( \^Gi) to V (Gi). Finally, we
observe that the terminals Ti are all on the outer face of \^Gi and that \^Gi is a connected
plane partitioned graph.

Now apply Theorem 3.1 to \^Gi and let \~Gi be the resulting graph. Let Fi = \pi ( \~Gi).
Note that \~Gi has \scrO (| \partial \^Gi| 212) = \scrO (| Wi| 212) = \scrO (k424) edges, and thus so has Fi.

Finally, let F =
\bigcup \ell 

i=1 Fi. Clearly, | F | = \scrO (k425), as \ell < k. Also note that each of
the reduction rules, the above marking procedures, and F itself can be computed in
polynomial time.

We claim that (F,A(F ),B(F ), T, k) is a kernel. Since F is a subgraph of G, it
follows that if (F,A(F ),B(F ), T, k) has a solution, then so does (G,A(G),B(G), T, k).
Now let C be a minimum solution for (G,A(G),B(G), T, k). Then Ci = C \cap V (Gi)
is a solution for (Gi,A(Gi),B(Gi), T \cap V (Gi), ki) for each i, where ki = | C \cap V (Gi)| .
Consider some i and let Ji be a T -join of Gi[Ci \cup A(Gi)].

Let Z be a connected component of Gi[Ji]. We show how to find a connected
subgraph Z \prime of Fi (and thus of Gi) such that V (Z \prime ) \cap Ti \supseteq V (Z) \cap Ti and | V (Z \prime ) \cap 
B(Gi)| \leq | V (Z) \cap B(Gi)| . Consider the subgraph \^Z of \^Gi formed by \pi  - 1(V (Z) \cup 
E(Z)). Note that any connected component Y of \^Z connects A = V (Y )\cap \partial \^Gi. Then
by Theorem 3.1, there is a subgraph H(Y ) of \~Gi that connects A and has minimum
possible cost among all subgraphs of Gi that connect A. Hence, | V (H(Y ))\cap B(Gi)| \leq 
| V (Y )\cap B(Gi)| . Now let H be the union of H(Y ) over all connected components Y of
\^Z. Observe that H is a subgraph of \~Gi. Let Z

\prime = (\pi (V (H)), \pi (E(H))). Observe that,
by construction, Z \prime is a subgraph of Fi with the claimed properties. In particular,
observe that although \^Z can be much larger than Z due to the duplication of vertices
of Z \cap Si when Gi was cut open along Si, we de-duplicate these vertices when using
\pi (V (H)).

Consider the union J \prime i of all these connected subgraphs Z \prime over all connected
components Z of Gi[Ji]. Then | V (Gi[J

\prime 
i ]) \cap B(Gi)| \leq | V (Gi[Ji]) \cap B(Gi)| = | Ci| .

Moreover, by construction, for each connected component ZZ of Gi[J
\prime 
i ] there exists

Si

Gi Ĝi

Fig. 4.1. The process of cutting open the graph Gi along the tree Si. Adapted from [27] with
permission.
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a set \scrZ (ZZ) of connected components Z of Gi[Ji] such that ZZ \cap T is the union
of Z \cap T over all these connected components Z. We note that the sets \scrZ (ZZ)
induce a partition of the connected components of Gi[Ji]. Observe that the parity of
| ZZ \cap T | is equal to the sum (mod 2) of the parities of the corresponding connected
components of Gi[Ji] and, thus, equal to 0. It follows that Gi[J

\prime 
i ] contains a Ti-join.

Hence, V (Gi[J
\prime 
i ]) \cap B(Gi) is a solution for (Gi,A(Gi),B(Gi), Ti, ki). By repeating

this procedure for all i, it follows from the proof of Lemma 4.13 that the union of
these solutions is a solution for (G,A(G),B(G), T, k). Moreover, any T -join that is
contained in this solution is fully contained in F . Hence, (F,A(F ),B(F ), T, k) has a
solution, and the claim follows.

Combining Lemma 4.2 and Theorem 4.14, we obtain the following.

Corollary 4.15. Plane Odd Cycle Transversal has a polynomial kernel.

5. Vertex multiway cut. In this section we develop a polynomial kernel for
Planar Vertex Multiway Cut, which is formally defined as follows.

Planar Vertex Multiway Cut (MwC) Parameter: k.

Input: A planar graph G, a set of terminals T \subseteq V (G), and an integer k.

Question: Is there a vertex set X \subseteq V (G) \setminus T of size at most k such that each
connected component of G \setminus X contains at most one terminal?

We refer to a vertex multiway cut for terminal set T as a T -multiway cut. Before
presenting the technical details, we describe the main idea in applying the Steiner tree
sparsification to Planar Vertex Multiway Cut. Let G be a plane graph whose
outer face walk \partial G is a simple cycle and let X \subseteq V (G). Obtain \^G from G by inserting
a vertex vf inside every finite face f , making vf adjacent to all vertices that lie on f ;

that is, \^G is an overlay graph after removal of the vertex corresponding to the outer
face. Let F denote the set of inserted face vertices. Suppose that set X \prime \subseteq V (G)
mimics the set X in the following way: for each Y \subseteq X \cap V (\partial \^G) which is contained
in a single connected component of \^G[X \cup F ], the set Y is contained in a single
connected component of \^G[X \prime \cup F ]. Then for every pair of vertices u, v \in V (\partial G), if X
is a (u, v)-cut in G, then X \prime is also a (u, v)-cut in G. Hence by preserving minimum
connectors for subsets of boundary vertices of \^G, we can preserve minimum solutions
to Planar Vertex Multiway Cut in the setting that all terminals lie on the outer
face. In combination with a cutting-open step to achieve such a setting, this yields
the kernel.

5.1. Preparing the graph to be cut open. To allow the graph to be ``cut
open"" to obtain a face of size k\scrO (1) that contains all neighbors of the terminals, we
employ a preprocessing step based on outerplanarity layers of the graph.

Definition 5.1. Let G be a plane graph. The outerplanarity layers of G form a
partition of V (G) into L1, . . . , Lm defined recursively. The vertices incident with the
outer face of G belong to layer L1. If v \in V (G) lies on the outer face of the plane
subgraph obtained from G by removing L1, . . . , Li, then v belongs to layer Li+1. For
a vertex v \in V (G), the unique index i \in [m] for which v \in Li is the outerplanarity
index of v and denoted idxG(v).

Definition 5.2. For a plane graph G, let \BbbT (G) be the simple graph obtained by
simultaneously contracting all edges uv whose endpoints belong to the same outerpla-
narity layer, discarding loops and parallel edges. For a node u \in V (\BbbT (G)), let \kappa (u) \subseteq 
V (G) denote the vertex set of G whose contraction resulted in u. Let idxG(u) denote
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the outerplanarity index that is shared by all nodes in \kappa (u). For a subtree \BbbT \prime of \BbbT (G),
define \kappa (\BbbT \prime ) :=

\bigcup 
v\in V (\BbbT \prime ) \kappa (v).

For nonadjacent nodes x, y of a tree \BbbT \prime , let int\BbbT \prime (x, y) denote the set of internal
nodes on the unique simple xy-path in \BbbT \prime . We define the following:

\bullet \BbbT \prime [xy, x] is the tree in the forest \BbbT \prime \setminus int\BbbT \prime (x, y) that contains x.
\bullet \BbbT \prime [xy, int] is the tree in the forest \BbbT \prime \setminus \{ x, y\} that contains int\BbbT \prime (x, y).

We omit the argument G when it is clear from the context. We utilize several
properties of this definition.

Lemma 5.3. For a connected plane graph G and the associated contraction \BbbT (G)
based on the outerplanarity layers L1, . . . , Lm, the following holds:

(1) \BbbT (G) is a tree.
(2) For any node u \in V (\BbbT (G)), the graph G[\kappa (u)] is connected.
(3) If x, y are distinct vertices of \BbbT (G), then for any internal node z of the unique

xy-path in \BbbT (G), the set \kappa (z) is a (\kappa (x), \kappa (y))-cut in G.
(4) There is a unique node v1 \in V (\BbbT (G)) such that \kappa (v1) = L1.
(5) Root \BbbT (G) at vertex v1. If u \in \BbbT (G) is a child of p \in \BbbT (G), then idxG(u) =

1 + idxG(p).

Proof. (1) Proof by induction on the number m of outerplanarity layers of G.
If m = 1, then all vertices are in the same outerplanarity layer. The contraction
process therefore contracts all edges, which results in the 1-vertex tree since G is
connected.

For m > 1, let L1, . . . , Lm be the outerplanarity layers of G and let G\prime := G \setminus 
V (L1). Let G1, . . . , Gt be the connected components of G\prime . Since G is connected,
the graph G[L1] is connected and will be contracted to a single vertex by the process
that builds \BbbT (G). Again using connectivity, each connected component Gi of G\prime is
adjacent to a vertex on L1. By planarity of the embedding, vertices of L1 are only
adjacent to vertices of L2. Hence \BbbT (G) can be obtained by taking the disjoint union
of \BbbT (G1), . . . ,\BbbT (Gt), adding a new root node r to represent the contraction of L1,
and for each i \in [t] making r adjacent to the unique node of \BbbT (Gi) that represents
the contraction of L2 \cap V (Gi). Since each \BbbT (Gi) is a tree by induction, the resulting
graph \BbbT (G) is a tree.

(2) By definition, for a node u \in V (\BbbT (G)) the set \kappa (u) consists of the vertices
in G whose contraction resulted in u. So any two vertices of \kappa (u) are connected in G
by a path of contracted edges.

(3) By the nature of contractions we have for any edge uv in G that u and v are
contracted to the same node of \BbbT (G) or are contracted to adjacent nodes of \BbbT (G). This
means that any uv-path in G projects to a walk in \BbbT (G) connecting the contraction
of u to the contraction of v. So if x, y are distinct vertices of \BbbT (G) and z is an
internal node of the xy-path in \BbbT (G), then any \kappa (x)\kappa (y)-path P in G projects to
an xy-walk in \BbbT (G), which therefore visits z. Consequently, P contains a vertex
of \kappa (z). Hence \kappa (z) intersects every path between \kappa (x) and \kappa (y) in G and forms
a (\kappa (x), \kappa (y))-cut.

(4) Since G is connected, the graph G[L1] is connected. Hence all vertices of L1

are contracted into a single node v1 when forming \BbbT (G), while by definition no vertices
of
\bigcup 

i\geq 2 Li are contracted into v1.
(5) Proof by induction on idxG(p). If idxG(p) = 1, then \kappa (p) is the set of

vertices on the outer face of G. Since up is an edge of \BbbT (G) that was obtained by
contractions, there is a vertex vu \in \kappa (u) that is adjacent in G to a vertex vp \in \kappa (p).
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2412 JANSEN, PILIPCZUK, AND VAN LEEUWEN

When removing L1 and all its incident edges from G, the vertex vp disappears from
the outer face, and also the drawing of the edge vuvp disappears from the outer face,
thereby placing vu on the outer face of the resulting graph. It follows that idxG(u) =
idxG(vu) = 2 = 1 + idxG(vp) = 1 + idxG(p).

For idxG(p) > 1, consider the graph G\prime obtained from G by removing the vertices
on the outer face. Since (4) shows that the root v1 is the unique vertex of \BbbT (G)
with idxG(v1) = 1, while idxG(p) > 1, it follows that \kappa (p) is disjoint from L1. Since u
is a child of p and therefore not the root, we also know that \kappa (u) is disjoint from L1.
From the given definitions, it follows that for all vertices of G\prime , their outerplanarity
index in G\prime is one smaller than in G. Moreover, from the construction of \BbbT (G) and the
proof of (1) it follows that \BbbT (G) can be obtained from the trees \BbbT (G\prime i) of the connected
components G\prime i of G by inserting a root vertex and attaching it to the single vertex in
each of the trees \BbbT (G\prime i) that represents vertices of L2. Hence there is a component G\prime i
of G\prime that contains \kappa (u) and \kappa (p), and \BbbT (G\prime i) corresponds to a subtree of \BbbT (G) rooted
at a child of the root. Since the outerplanarity index of vertices in G\prime is exactly one
lower than in G, while u is a child of p in \BbbT (G\prime i), (5) follows by induction.

At several points in the remainder, we will consider \BbbT (G) to be a rooted tree
rooted at the node identified in (4). We also utilize the following property of the
contraction \BbbT (G).

Observation 5.4. If G is a connected plane graph and node u is a child of a node p
in \BbbT (G), then for every vertex vu \in \kappa (u) \subseteq V (G) there is a vertex vp \in \kappa (p) \subseteq V (G)
such that vu and vp are incident on a common face of G.

Definition 5.5. Let G be a connected plane graph, let T \subseteq V (G) be a set of
terminals, and consider the contraction \BbbT (G). We call a node u \in V (\BbbT (G)) a terminal
node if \kappa (u)\cap T \not = \emptyset . We call a node u \in \BbbT (G) important if it is a terminal node, if it
is the root of \BbbT (G), or if at least two subtrees rooted at distinct children of u contain
a terminal node.

The above definition implies that the set of important nodes is closed under
taking lowest common ancestors. Standard counting arguments on trees show that the
number of nonroot nonterminal important nodes is less than the number of terminal
nodes. This yields the following.

Observation 5.6. For any connected plane graph G and terminal set T , there are
at most 2| T | important nodes in \BbbT (G).

The following lemma shows how this tree structure helps to identify vertices that
can be avoided by an optimal solution.

Lemma 5.7. Let (G,T, k) be a connected plane instance of MwC. Let u, v be
distinct important nodes of \BbbT := \BbbT (G) and w1, . . . , wr be the internal nodes of the uv-
path in \BbbT in their natural order, such that r \geq 2(k + 1) and none of the nodes
in \BbbT [uv, int] are important. For each pair of nodes x \in \{ w1, . . . , wk+1\} and y \in 
\{ wr - k, . . . , wr\} , let Kxy be a minimum (\kappa (x), \kappa (y))-cut in G if such a cut has size at
most k, and let Kxy := \emptyset otherwise.

Then for any T -multiway cut X \subseteq V (G) \setminus T in G of size at most k, there is a
T -multiway cut X \prime such that

(1) | X \prime | \leq | X| ,
(2) X \setminus \kappa (\BbbT [uv, int]) = X \prime \setminus \kappa (\BbbT [uv, int]),
(3) X \prime \cap \kappa (\BbbT [wk+1wr - k, int]) \subseteq 

\bigcup 
x,yKxy where x, y ranges over combinations as

above.
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The lemma essentially says that in the subgraph H of G corresponding to a long
path of \BbbT (G) without important nodes, any multiway cut X of size at most k in G can
be rearranged so that from the vertices represented in the middle of the path (strictly
between wk+1 and wr - k), it only removes vertices from one of the size-at-most-k
cuts Kxy.

Proof of Lemma 5.7. Assume the stated conditions hold and let X be a multiway
cut of size at most k. The sets \kappa (w1), . . . , \kappa (wr) are vertex-disjoint, implying that X
is disjoint from one of the first k + 1 and one of the last k + 1 sets. Choose x from
the first k+ 1 sets and y from the last k+ 1 sets such that X \cap \kappa (x) = X \cap \kappa (y) = \emptyset .
We distinguish two cases, depending on whether X forms a (\kappa (x), \kappa (y))-cut or not.

Claim 5.8. If X is not a (\kappa (x), \kappa (y))-cut in G, then X \prime := X \setminus \kappa (\BbbT [xy, int]) is a
multiway cut in G.

Proof. Suppose that X is not a (\kappa (x), \kappa (y))-cut in G, implying that there is a
path from a vertex in \kappa (x) to a vertex in \kappa (y) in G \setminus X. Since the sets G[\kappa (x)]
and G[\kappa (y)] are connected by Lemma 5.3, every vertex of \kappa (x) can reach every vertex
of \kappa (y) in G \setminus X.

Assume for a contradiction that X \prime is not a multiway cut in G and let t, t\prime be
distinct terminals that are connected by a path P in G \setminus X \prime . Since X is a multiway
cut while X \prime is not, we know X \cap \kappa (\BbbT [xy, int]) contains a vertex of P . We make
a further distinction on where t and t\prime are represented in \BbbT . Let ut, ut\prime \in V (\BbbT )
such that t \in \kappa (ut) and t\prime \in \kappa (ut\prime ). Observe that \BbbT [xy, int] \subseteq \BbbT [uv, int] contains
no important nodes; in particular, \kappa (\BbbT [xy, int]) contains no terminals. Moreover,
\BbbT [xy, x],\BbbT [xy, y],\BbbT [xy, int] partition the node set of \BbbT . It follows that each of \{ ut, ut\prime \} 
belongs to \BbbT [xy, x] or \BbbT [xy, y]. We make a distinction depending on whether these
important nodes belong to the same tree or to different trees.

First, suppose ut and ut\prime belong to the same tree and assume without loss of
generality (by symmetry) that ut, ut\prime \in V (\BbbT [xy, x]). This implies that in \BbbT , node x
intersects every path from ut to int(x, y) and also intersects every path from ut\prime 

to int(x, y). Since P contains a vertex from X \cap (\kappa (\BbbT [xy, int])), by Lemma 5.3
this implies that starting from t, path P visits a vertex from \kappa (x) before any vertex
of \kappa (\BbbT [xy, int]). Similarly, traversing P backward from t\prime we have that P visits a
vertex from \kappa (x) before any vertex of \kappa (\BbbT [xy, int]). Let Pt denote the subpath from t
to the first vertex in \kappa (x) and Pt\prime denote the subpath from the last vertex of \kappa (x) to t\prime .
Then paths Pt and Pt\prime are disjoint from X, since they are disjoint from \kappa (int(x, y))
while X \setminus \kappa (int(x, y)) equals X \prime \setminus \kappa (int(x, y)). But then we can find a path from t
to t\prime in G \setminus X by first traversing Pt, moving from the \kappa (x)-endpoint of Pt to the \kappa (x)-
endpoint of Pt\prime through G[\kappa (x)] which is connected and disjoint from X, and ending
with Pt\prime . This contradicts that X is a solution in G.

Now suppose that ut and ut\prime belong to different trees, say, ut \in V (\BbbT [xy, x])
and ut\prime \in V (\BbbT [xy, y]). Since P visits a vertex of \BbbT [xy, int], while x separates ut
from \BbbT [xy, int] in \BbbT , we know P passes through \kappa (x); let Pt be the subpath from P
starting at t to its first occurrence of \kappa (x), which is disjoint from \kappa (\BbbT [xy, int]). Simi-
larly, y separates \BbbT [xy, int] from ut\prime in \BbbT , and therefore the subpath Pt\prime from the last
occurrence of \kappa (y) to t\prime is disjoint from \BbbT [xy, int]. Let Pxy be a path in G \setminus X from
the \kappa (x)-endpoint of Pt to the \kappa (y)-endpoint of Pt\prime , which exists by the observation
in the beginning of the proof. But then the concatenation of Pt, Pxy, and Pt\prime forms
an xy-path in G \setminus X, contradicting that X is a multiway cut. \lrcorner D
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Claim 5.9. If X is a (\kappa (x), \kappa (y))-cut in G, then X \prime := (X \setminus \kappa (\BbbT [xy, int]))\cup Kxy

is a T -multiway cut in G with | X \prime | \leq | X| .
Proof. We first show that X \cap \kappa (\BbbT [xy, int]) is also a (\kappa (x), \kappa (y))-cut in G. This

follows from the fact that all minimal paths from a vertex of \kappa (x) to a vertex of \kappa (y)
have their interior vertices in \kappa (\BbbT [xy, int]) as a consequence of Lemma 5.3. This also
implies that Kxy \subseteq \kappa (\BbbT [xy, int]). Since | X| \leq k and X is a (\kappa (x), \kappa (y))-cut in G, a
minimum (\kappa (x), \kappa (y))-cut in G also has size at most k and therefore Kxy is such a
cut, rather than \emptyset .

Since X \cap \kappa (\BbbT [xy, int]) is a (\kappa (x), \kappa (y))-cut in G, which is replaced by the min-
imum (\kappa (x), \kappa (y))-cut Kxy to obtain X \prime , it follows that | X \prime | \leq | X| . It remains to
prove that X \prime is a multiway cut in G.

Assume for a contradiction that P is a path between distinct terminals t, t\prime in G\setminus 
X \prime , and let ut, ut\prime \in V (\BbbT ) such that t \in \kappa (ut) and t\prime \in \kappa (ut\prime ). If ut and ut\prime both
belong to the same tree of \{ \BbbT [xy, x],\BbbT [xy, y]\} , then the same argument as in the proof
of Claim 5.8 yields a contradiction, since we have not changed the solution outside the
set \kappa (\BbbT [xy, int]). So each of the two trees contains one of the important nodes ut, ut\prime ,
as important nodes cannot be in \BbbT [xy, int]. This implies that both x and y lie on
the path in \BbbT from ut to ut\prime . By Lemma 5.3, both \kappa (x) and \kappa (y) are (t, t\prime )-cuts in G.
So P intersects both \kappa (x) and \kappa (y), and provides a path from \kappa (x) to \kappa (y) in G\setminus Kxy.
But this contradicts that Kxy is a (\kappa (x), \kappa (y))-cut in G. \lrcorner 

Using these two claims, we complete the proof. In both cases, we have shown
that X \prime is a multiway cut not larger than X. We only remove or replace a part of X
within \kappa (\BbbT [uv, int]), while the replacement cut Kxy is contained in \kappa (\BbbT [xy, int]) \subseteq 
\kappa (\BbbT [uv, int]) as noted in the second claim. Hence we have (2). Finally, we built X \prime 

from X by removing all vertices from \kappa (\BbbT [xy, int]) and inserting some cut Kxy.
Since x is one of the first k + 1 nodes on the uv-path in \BbbT , and y is one of the
last k+1 nodes, it follows that the intersection of X \prime with the nodes in the middle is
a subset of a cut Kxy, which yields (3). This concludes the proof of Lemma 5.7.

Using Lemma 5.7 we can identify a set of nodes R \subseteq V (\BbbT (G)) in a connected
instance (G,T, k) of MwC, with the guarantee that if there is a solution of size at
most k, there is one contained in \kappa (R). If we treat vertices outside \kappa (R) as ``forbid-
den to be deleted,"" then we can safely contract edges between such vertices without
changing the answer. As we show later, these contractions reduce the diameter of the
plane graph and allow us to find a bounded-size tree in an overlay graph that can be
used to cut the graph open.

Lemma 5.10. There is a polynomial-time algorithm that, given a connected plane
instance (G,T, k) of MwC, outputs R \subseteq V (\BbbT (G)) containing all important nodes
such that

(1) for any T -multiway cut X \subseteq V (G) \setminus T of size at most k in G, there is a
T -multiway cut X \prime \subseteq V (G) \setminus T of size at most | X| with X \prime \subseteq \kappa (R),

(2) for each important node u of \BbbT (G), the path in \BbbT (G) from u to the root con-
tains \scrO (| T | k3) nodes from R.

Proof. Consider \BbbT := \BbbT (G). From \BbbT we derive a related tree \BbbT \prime whose vertex set
consists solely of the important nodes of \BbbT (Definition 5.5) by repeatedly contracting
edges that have one important endpoint and one nonimportant endpoint. We think
of contracting such edges into the important endpoint, whose identity is preserved.
The resulting tree \BbbT \prime has at most 2| T | nodes by Observation 5.6. Since the set of
important nodes is closed under taking lowest common ancestors, for each edge uv
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of \BbbT \prime , either u and v are adjacent in \BbbT or \BbbT [uv, int] contains only nonimportant nodes.
Define R \subseteq V (\BbbT ) as follows:

\bullet Initialize R \subseteq V (\BbbT ) as the important nodes of \BbbT .
\bullet Add every node of \BbbT that does not lie on a simple path between important
nodes to R.

\bullet For each edge uv of \BbbT \prime between important nodes u and v, do the following.
-- If int\BbbT (u, v) contains at most 2(k+1) nodes, add all nodes of \BbbT [uv, int]

to R.
-- If int\BbbT (u, v) contains more than 2(k+1) nodes w1, . . . , wr, then add all

nodes of \BbbT [uv, int] \setminus \BbbT [wk+1wr - k, int] to R. (The added nodes are the
first and last k+1 internal nodes of the uv-path, together with all nodes
that do not lie on the simple uv-path but belong to pendant trees that
attach to the first or last k + 1 internal nodes of the uv-path.) Then
consider the set of at most (k + 1)2 cuts Kxy \subseteq \kappa (\BbbT [uv, int]) of size at
most k described in Lemma 5.7. Add to R each node z of \BbbT [uv, int] for
which \kappa (z) \cap (

\bigcup 
x,yKxy) \not = \emptyset .

It is straightforward to implement this procedure in polynomial time. We prove
that the set R defined in this way has the desired properties.

First consider (1). The only nodes of T that do not belong to R are those nodes z
that belong to int\BbbT (u, v) for an edge uv of \BbbT \prime , but which are among neither the first
nor the last (k+1) nodes of int\BbbT (u, v), are not contained in trees that attach to one of
the first or last k+1 nodes of int\BbbT (u, v), and for which \kappa (z) contains no vertex of a se-
lected cut Kxy. If there is a multiway cut X in G of size at most k, then we can apply
Lemma 5.7 once for each edge uv of \BbbT \prime to transform this into another multiway cut X \prime 

with | X \prime | \leq | X| . Applying the lemma to an edge uv with int\BbbT (u, v) = \{ w1, . . . , wr\} 
ensures that X \prime \cap \kappa (\BbbT [wk+1wr - k, int]) \subseteq 

\bigcup 
x,yKxy \subseteq \kappa (R). Since the second prop-

erty of Lemma 5.7 ensures that the solution stays the same outside \kappa (\BbbT [uv, int]), by
applying the lemma for each edge of \BbbT \prime we find a multiway cut X \prime with | X \prime | \leq | X| 
and X \prime \subseteq \kappa (R).

To prove (2), consider an important node u of \BbbT . If u is the root, then the desired
property is trivial. Otherwise, let u = v1, . . . , vs be the important nodes that lie on the
path from u to the root and recall that the root itself is important. Then \BbbT \prime contains
edges vivi+1 for i \in [s  - 1]. The nodes visited by path P are exactly \{ v1, . . . , vs\} \cup 
(
\bigcup 

i\in [s - 1] int\BbbT (vi, vi+1)). By Observation 5.6 we have s \leq 2| T | . For each i \in [s  - 1],

we have | R\cap int\BbbT (vi, vi+1)| \leq \scrO (k3): the first and last k+1 nodes on the vivi+1-path
belong to R, along with each node z of \BbbT for which \kappa (z) \cap (

\bigcup 
x,yKxy) \not = \emptyset . Since we

considered \scrO (k2) cuts Kx,y, each of size at most k, the claimed bound of \scrO (k3) nodes
for each i \in [s - 1] follows. As s \leq 2| T | , this proves (2).

Definition 5.11. Let (G,T, k) be a connected plane instance of MwC and \BbbT :=
\BbbT (G). For a set R \subseteq V (\BbbT ), define G/R as the simple plane graph G\prime obtained by
simultaneously contracting each edge for which neither endpoint belongs to \kappa (R) (and
removing loops and parallel edges).

Recall that d\scrR G(u, v) denotes the radial distance between u and v in a plane
graph G.

Lemma 5.12. Let (G,T, k) be a connected plane instance of MwC. Let R \subseteq 
V (\BbbT (G)) be a superset of the important nodes such that each path in \BbbT (G) from
an important node to the root contains at most \ell vertices from R, and consider the
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graph G/R. Then for each terminal t \in T , for each vertex x on the outer face of G/R,
we have d\scrR 

G/R
(t, x) \leq 2\ell .

Proof. Consider an arbitrary terminal t \in T and vertex x on the outer face
of G/R. Note that G and G/R have exactly the same vertices on their outer face,
since the outer face corresponds to the root of \BbbT (G), which is an important node by
definition and whose vertices are therefore not contracted.

We first construct a radial path PG from t to x in G and then argue it can be
transformed to a bounded-length radial path in G/R. Let u1 be the node of \BbbT (G) for
which t \in \kappa (u1), and let u1, u2, . . . , um with um the root of \BbbT (G) denote the simple
path from u1 to the root.

By Observation 5.4, vertex t is incident on a common face with a vertex of \kappa (u2),
where u2 is the parent of u1 in \BbbT (G). Hence a radial path in G can move from t to
a vertex of \kappa (u2) in a single step. Repeated application of Observation 5.4 yields a
radial path consisting of vertices t = v1 \in \kappa (u1), v2 \in \kappa (u2), . . . , vm \in \kappa (um) with vm
on the outer face of G. As vm and x are both on the outer face, a radial path can
connect them in a single step. Hence PG := v1, . . . , vm, x is a radial path in G. Next
we show how PG transforms into a bounded-length radial path between t = v1 and x
in G/R.

Consider i < j \in [m] such that no nodes of ui, ui+1 . . . , uj belong to R. Then
the construction of G/R contracts all edges between vertices in \kappa (\{ ui, . . . , uj\} ). Each
set \kappa (u\ell ) for i \leq \ell \leq j induces a connected subgraph of G by Lemma 5.3. As ui, . . . , uj
is a path in \BbbT (G), which is a contraction of G, there is an edge between \kappa (u\ell )
and \kappa (u\ell +1) for each i \leq \ell < j. Hence \kappa (\{ ui, . . . , uj\} ) induces a connected sub-
graph of G and is contracted to a single vertex vU when building G/R. This implies
that every vertex of \kappa (R) that shares a face of G with a vertex of \kappa (\{ ui, . . . , uj\} ) will
share a face with vU in G/R.

The above argument shows that, in the radial path PG, we can replace any max-
imal sequence vi, . . . , vj of consecutive vertices that do not belong to \kappa (R), by the
single vertex vU into which vi, . . . , vj are all contracted, while ensuring that vU shares
a face of G/R with vi - 1 \in \kappa (R) and vj+1 \in \kappa (R). Since PG \setminus x contains at most \ell 
vertices from R by assumption, we have that PG itself uses at most \ell + 1 vertices
of R and hence there are at most \ell maximal consecutive subsequences of vertices
not in \kappa (R). Replacing each of these subsequences by a single vertex yields a radial
path of (\ell + 1) + \ell vertices in G/R connecting t = v1 to vertex x on the outer face.
Hence d\scrR 

G/R
(t, x) \leq 2\ell .

We are almost ready to state the main result of this subsection. It will show
how a planar instance of MwC can be preprocessed so that it can be cut open by a
small tree in an overlay graph that contains all the neighbors of the terminals, thereby
ensuring that they appear on a single face. To allow a tree containing all of NG(T )
to have size polynomial in k, we need existing linear-programming-based reduction
rules to decrease the number of terminals and their degrees in terms of k. These were
presented in earlier work [4, 14, 16, 29] and are summarized in the following lemma.

Lemma 5.13. There is a polynomial-time algorithm that, given an instance
(G,T, k) of Planar Vertex Multiway Cut, either correctly determines that the
answer is no or outputs an equivalent planar instance (G\prime , T \prime , k\prime ) such that k\prime \leq 
k, | T \prime | \leq 2k\prime , and each vertex of T \prime has at most k\prime neighbors in G\prime .

Proof. Exhaustively apply Reductions 1, 2, 3, and 5 by Cygan et al. [4] to reduce
an instance.
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Since these reductions involve vertex deletions and edge contractions and never
increase k, they preserve planarity of the graph and ensure k\prime \leq k. If k\prime \leq 0, then
the answer to the instance is no as all rules they employ are proven to be safe. The
bound on the number of terminals in T \prime follows from their Lemma 2.7. Their Lemma
2.4 proves that after exhaustive reduction, for any terminal t \in T \prime the set NG\prime (t) is
the unique minimum (t, T \prime \setminus \{ t\} ) cut in G\prime . Hence if any terminal has more than k\prime 

neighbors, it cannot be separated from the remaining terminals by k deletions and
the answer is no.

Using Lemma 5.13 and the contraction reductions described above, we prove the
main result of this subsection. It shows how to prepare an instance to be cut open.
Recall that \scrL (G) denotes an overlay graph of G.

Lemma 5.14. There is a polynomial-time algorithm that, given an instance (G,T, k)
of Planar Vertex Multiway Cut, either correctly decides its answer is no or
constructs a plane graph G\prime , a terminal set T \prime \subseteq V (G\prime ) of size at most | T | , an in-
teger k\prime \leq k, a vertex set Z \subseteq V (G\prime ) \setminus T \prime , and a subgraph H of \scrL (G\prime \setminus T \prime ) with the
following properties:

(1) Graph G has a T -multiway cut X \subseteq V (G) \setminus T of size at most k if and only
if G\prime has a T \prime -multiway cut X \prime \subseteq V (G\prime ) \setminus (T \prime \cup Z) of size at most k\prime .

(2) H is a tree of \scrO ((k\prime )5) edges in \scrL (G\prime \setminus T \prime ) of maximum degree \scrO (k\prime ) that spans
all vertices of NG\prime (T \prime ).

Proof. Let (G,T, k) be an instance of Planar Vertex Multiway Cut. Apply

Lemma 5.13 to obtain the answer no or an equivalent instance ( \^G, \^T , \^k) with | \^T | \leq 
2\^k \leq 2k in which each terminal has degree at most \^k. Compute a plane embedding
of \^G using a polynomial-time algorithm for planar embedding (e.g., [18]). If \^G consists
of multiple connected components \^G1, . . . , \^Gm, then compute a plane embedding of
each component individually and draw it in the infinite (outer) face, thereby ensuring
that no connected component is drawn within a face bounded by the drawing of
another component.

Apply Lemma 5.10 with parameter \^k to each component \^Gi of \^G, using \^T \cap V ( \^Gi)
as the terminal set. Each application results in a set Ri \subseteq \BbbT ( \^Gi) containing all
important nodes. Let G\prime be the disjoint union of \^Gi/Ri for all i \in [m], with the
embedding of the contracted graphs naturally inherited from the embedding of \^G.
Let Z be the vertices of G\prime that were involved in edge contractions, so that V (G\prime ) =
Z \cup (

\bigcup 
i\in [m] \kappa (Ri)). The graph G\prime with vertex set Z, terminal set T \prime := \^T , and

budget k\prime := \^k are output by the procedure. Since all vertices involved in edge
contractions belong to Z, any T \prime -multiway cut X \prime \subseteq V (G\prime )\setminus (T \prime \cup Z) in G\prime also forms
a T \prime -multiway cut in \^G. In the other direction, if \^G has a \^T -multiway cut of size at
most k, then by (1) of Lemma 5.10 there is a T \prime -multiway cut of G\prime disjoint from Z.

By the equivalence of (G,T, k) and ( \^G, \^T , \^k) this establishes (1).
To complete the proof, we describe the construction of the tree H in \scrL (G\prime \setminus T \prime ).

The connected components of G\prime are \^Gi/Ri for i \in [m]. The combination of Lem-
mas 5.10 and 5.12 ensures that each terminal of T \prime \cap V (G\prime i) has radial distance \scrO (| T \prime \cap 
V (G\prime i)| \^k3) to a vertex on the outer face of G\prime i, which is also the outer face of G\prime . Since
the overlay graph of G\prime has a vertex inside each face of G\prime i that connects to the ver-
tices incident to that face, a radial uv-path in G\prime i of length \ell yields a normal uv-path
in \scrL (G\prime ) with at most 2\ell edges. By Lemma 5.12 and the guarantee on Ri provided by

Lemma 5.10, each terminal of G\prime i has radial distance \scrO (| T \prime \cap V (G\prime i)| \^k3) \in \scrO (\^k4) to a
vertex on the outer face of G\prime i. Consequently, for each terminal of T \prime there is a path
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of \scrO (\^k4) edges in \scrL (G\prime ) to a vertex on the outer face of G\prime , which can be found in poly-
nomial time by breadth-first search in the radial graph. Since all vertices on the outer
face of G\prime are connected by a path of two edges in \scrL (G\prime ), the union of these paths for

all | T \prime | \leq 2\^k, together with connecting edges via the outer face-representative, yields

a subgraph H \prime of \scrL (G\prime ) with \scrO (\^k5) edges that spans all vertices of T \prime . Since H \prime is

the union of \scrO (\^k) simple paths, its maximum degree is \scrO (\^k).
We turn H \prime into the desired tree H as follows. Observe that the removal of

a terminal t \in T \prime from G\prime creates a face ft incident with all vertices of NG\prime (t).
Since an overlay graph contains a vertex vft inside this face, for each t \in T \prime there
is a star subgraph St in \scrL (G\prime \setminus T \prime ) centered at vft containing all vertices of NG\prime (t),

which has | NG\prime (t)| \leq \^k edges. For each t \in T \prime , replace the edge(s) incident on t
in H \prime by the star subgraph St. This results in a connected subgraph of \scrL (G\prime \setminus T \prime )
on \scrO (\^k5)+

\sum 
t\in T \prime | NG\prime (t)| \leq \scrO (\^k5)+\scrO (\^k2) \leq \scrO (\^k5) edges that spans NG\prime (T \prime ). Since

each of the star centers has degree \scrO (\^k) in this connected subgraph, while the degree
of the other vertices increases by at most one for each terminal compared to H, this
connected subgraph still has maximum degree \scrO (\^k). We obtain the desired tree H
by taking a spanning tree of this connected subgraph.

5.2. Obtaining a kernel.

Theorem 5.15. Planar Vertex Multiway Cut has a polynomial kernel.

Proof. Let (G0, T0, k0) be an instance of Planar Vertex Multiway Cut. Ap-
ply Lemma 5.14 to obtain an instance (G,T, k) with k \leq k0, along with a vertex
set Z \subseteq V (G)\setminus T and a tree H on \scrO (k5) edges of maximum degree \scrO (k) in the multi-
graph \scrL (G \setminus T ) containing all vertices of NG(T ). Then G0 has a T0-multiway cut of
size at most k0 if and only if G has a T -multiway cut of size at most k that is disjoint
from Z. We assume that T is an independent set in G, as otherwise we may output a
constant-size no-instance. We cut the tree H in \scrL (G \setminus T ) open to produce a graph \^G,
as follows. Create an Euler tour W of H that traverses each edge twice, in different
directions, and respects the plane embedding of H. Duplicate each edge of H, replace
each vertex v of H with dH(v) copies of v, where dH(v) is the degree of v in H, and
distribute the copies of edges and vertices in the plane embedding to obtain a new
face B whose boundary is a simple cycle corresponding to the Euler tour W . Let \^G
denote the resulting graph, and embed it so that B is the outer face \partial \^G of G. There
is a natural surjective mapping \pi from E( \^G) \cup V ( \^G) to E(\scrL (G \setminus T )) \cup V (\scrL (G \setminus T )),
which maps edges and vertices of \^G to the edges and vertices of \scrL (G \setminus T ) from which
they were obtained. We denote by \pi  - 1 the inverse mapping, which associates to ev-
ery edge or vertex of \scrL (G \setminus T ) the set of its copies in \^G, and extend this notation to
subsets of V (\scrL (G \setminus T )) and E(\scrL (G \setminus T )). Since H spans all vertices of NG(T ), all
vertices of \pi  - 1(NG(T )) appear on the outer face of \^G.

In the following, we refer to the vertices of a path P that are not endpoints as the
interior vertices of the path. Path P avoids a vertex set Y in its interior if the interior
vertices are disjoint from Y . The construction of \^G gives the following property.

Observation 5.16. Let X \subseteq V (G) \setminus T and let u, v \in V (G) \cap V (H) be distinct.
Then u and v are connected by a path Puv in (G \setminus T ) \setminus X that avoids V (H) in its
interior if and only if there exist \^u \in \pi  - 1(u), \^v \in \pi  - 1(v) that are connected by a
path P\^u\^v in \^G[\pi  - 1(V (G) \setminus (T \cup X))] that avoids V (\partial \^G) = V (\pi  - 1(H)) in its interior.

The following claim shows that vertices incident on a common finite face of \^G are
adjacent or have a common neighbor that is a representative of a face of G \setminus T .
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Claim 5.17. If \^p, \^q are distinct vertices of \^G that are incident on a common finite
face of \^G, then \^p\^q \in E( \^G) or N \^G(\^p) \cap N \^G(\^q) \cap \pi  - 1(F (G \setminus T )) \not = \emptyset .

Proof. By definition of an overlay graph, if a face-representative f \in V (\scrL (G \setminus 
T )) \cap F (G \setminus T ) shares a face of \scrL (G \setminus T ) with a vertex-representative v \in V (\scrL (G \setminus 
T )) \cap V (G \setminus T ), then f is adjacent to v in \scrL (G \setminus T ). If two vertex-representatives
share a common face in \scrL (G \setminus T ), then they share a common face in G \setminus T and have
the representative of that face as a common neighbor in \scrL (G \setminus T ). The claim follows
from the fact that the composition of faces of \^G only differs from that of \scrL (G \setminus T ) by
the newly created infinite face, while the claim only makes a statement about vertices
sharing finite faces. (The correctness of the statement relies on the fact that \scrL (G\setminus T )
is a multigraph if there are bridges lying on a face. When splitting the tree open to
create a new face, the multiedges to a single vertex may be distributed among several
copies to provide each copy with an edge to a face-representative.) \lrcorner 

In the following claim we show how a separation of vertices on \partial \^G corresponds
to a connectivity property of the separator in the cut-open overlay graph. Later, we
will use this to characterize multiway cuts in G by Steiner trees connecting terminals
from \partial \^G. Recall that F (G \setminus T ) is the set of faces of G \setminus T and that \scrL (G \setminus T ) has a
vertex for each such face.

Claim 5.18. For any X \subseteq V (G)\setminus T and distinct vertices \^u, \^v \in V (\partial \^G) with \^u, \^v \in 
\pi  - 1(V (G) \setminus (T \cup X)), the following are equivalent:

(1) There is no path between \^u and \^v in the graph \^G[\pi  - 1(V (G) \setminus (T \cup X))], i.e.,
there is no path between \^u and \^v in the cut-open graph \^G that traverses only
copies of vertices of G \setminus (T \cup X) and avoids the copies of face-representatives
from \scrL (G \setminus T ).

(2) There is a connected component C of the graph \^G[\pi  - 1(X \cup F (G \setminus T ))] con-
taining vertices \^x, \^y \in V (\partial \^G) \cap V (C) such that \^x, \^y, \^u, \^v are all distinct and
their relative order on \partial \^G is (\^u, \^x, \^v, \^y).

Proof. (2)\Rightarrow (1) Suppose there is such a connected component C, consisting solely
of vertices of the cut-open graph \^G that are copies of the cut X or copies of face-
vertices of the overlay graph. Let P be a path from \^x to \^y within C. Then we can
obtain a closed curve \gamma that traces along path P from \^x to \^y and connects \^y back
to \^x around the outside of the disk bounded by \partial \^G. The relative order of (\^u, \^x, \^v, \^y)
ensures that the curve \gamma separates the plane into one region containing \^u and another
containing \^v. Since \gamma does not intersect the drawing of \^G[\pi  - 1(V (G) \setminus (T \cup X))], this
shows there is no path between \^u and \^v in that graph.

(1)\Rightarrow (2) Suppose there is no path between \^u and \^v with the prescribed prop-
erties. This means that in the subgraph of \^G obtained by removing (copies of)
face-representatives and removing copies of X, vertices \^u and \^v belong to different
connected components C\^u and C\^v. Hence there exists a closed curve \gamma in the plane
that does not intersect the drawing of \^G[\pi  - 1(V (G)\setminus (T \cup X))], such that the drawing
of C\^u is contained in the interior of \gamma and C\^v is contained in the exterior. Recall
that \partial \^G is a simple cycle containing points \^u and \^v. Hence the drawing of \partial \^G\setminus \{ \^u, \^v\} 
consists of two open intervals I1, I2. To separate \^u from \^v, the separating curve \gamma 
must contain a segment \gamma \prime that connects a point x\prime on I1 to a point y\prime on I2 through
the interior of \partial \^G; see Figure 5.1. By locally adjusting the curve \gamma \prime , we can obtain
a curve \gamma \ast through the interior of the disk bounded by \partial \^G that connects a vertex \^x
whose drawing lies on I1, to a vertex \^y whose drawing lies on I2, such that \gamma \ast does
not intersect the drawing of \^G at edges and does not intersect the drawing at ver-
tices of \pi  - 1(V (G) \setminus (T \cup X)). Hence \gamma \ast only intersects the drawing of \^G at vertices
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û

v̂
I1 I2

γ

x′ y′

Fig. 5.1. Curve \gamma separating \^u from \^v in the proof of Claim 5.18.

of the form \pi  - 1(X \cup F (G \setminus T )), representing copies of X and copies of representa-
tives of faces of G \setminus T . Let C \prime \subseteq \pi  - 1(X \cup F (G \setminus T )) denote the vertices intersected
by \gamma \ast . We claim that all vertices of C \prime belong to a common connected component
of \^G[\pi  - 1(X \cup F (G \setminus T ))], which will establish (2). To prove the desired connectivity
of C \prime , it suffices to argue that any two vertices p, q of C \prime that are visited successively
by \gamma \ast are either adjacent in \^G, or have a common neighbor in \pi  - 1(F (G \setminus T )). But
this follows directly from Claim 5.17, since successive vertices on C \prime share a finite face
of \^G. \lrcorner 

The following claim shows how T -multiway cuts of G relate to Steiner trees in \^G.

Claim 5.19. For any X \subseteq V (G) \setminus T , the following are equivalent:
\bullet X is a T -multiway cut in G.
\bullet For any pair of distinct terminals t, t\prime \in T , for any path P in G from a vertex
in NG(t) to a vertex in NG(t

\prime ), at least one of the following holds:
(i) Set X contains a vertex of V (P ) \cap V (H).
(ii) Path P contains distinct vertices u, v \in V (H), such that the subpath

of P between u and v contains no other vertices of V (H), and for
any \^u \in \pi  - 1(u), \^v \in \pi  - 1(v) there is a connected component C of the
graph \^G[\pi  - 1(X\cup F (G\setminus T ))] containing vertices \^x, \^y \in V (\partial \^G)\cap V (C)
such that \^x, \^y, \^u, \^v are all distinct and their relative order on \partial \^G
is (\^u, \^x, \^v, \^y).

Proof. Observe that if X fails to be a T -multiway cut in G, then there are distinct
terminals t, t\prime \in T in the same connected component of G \setminus X, implying there is a
path P from NG(t) \subseteq V (H) to NG(t

\prime ) \subseteq V (H) in G \setminus T that is not intersected by X.
Hence V (P ) \cap V (H) \cap X = \emptyset , and if we enumerate the vertices of V (P ) \cap V (H)
by x1 \in NG(t), . . . , xn \in NG(t

\prime ) in their natural order along P , then each successive
pair xi, xi+1 is connected by a subpath of P in (G \setminus T ) \setminus X whose internal vertices
are disjoint from V (H). With this in mind, the following series of equivalences proves
the claim.

The set X \subseteq V (G) \setminus T is a T -multiway cut of G.
\leftrightarrow For any distinct t, t\prime \in T , set X hits each path Ptt\prime in G \setminus T connecting NG(t)

to NG(t
\prime ).
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\leftrightarrow For each such path Ptt\prime , set X contains a vertex of V (Ptt\prime ) \cap V (H) or there is
a subpath Puv of Ptt\prime whose interior avoids V (H) that starts and ends at
distinct vertices u, v \in V (H), such that (G \setminus T ) \setminus X contains no path from u
to v that avoids V (H) in its interior.

\leftrightarrow For each such path Ptt\prime , set X contains a vertex of V (Ptt\prime ) \cap V (H) or there
is a subpath Puv as above, such that for all \^u \in \pi  - 1(u) and \^v \in \pi  - 1(v),
there is no path between \^u and \^v in the graph \^G[\pi  - 1(V (G) \setminus (T \cup X))] that
avoids V (\partial \^G) = \pi  - 1(V (H)) in its interior. (We use Observation 5.16.)

By the equivalence of Claim 5.18, this concludes the proof. \lrcorner 

We will use Claim 5.19 to argue for the correctness of the kernelization later. We
now prepare for the sparsification step. Rather than invoking Theorem 3.1 directly,
we need to perform one additional step to encode the requirement that in the in-
stance (G,T, k), we are looking for a multiway cut that avoids vertex set Z. So we
have to ensure that the connecting subgraphs preserved by Theorem 3.1 do not use
vertices of Z. To achieve that, we will subdivide the edges incident on vertices of Z
so that using connections over Z would have prohibitively large cost, implying that
low-cost Steiner trees avoid Z.

Formally, obtain a plane graph G\ast from \^G as follows. Fix a constant \alpha such that
the maximum degree of the tree H we cut open is strictly less than \alpha \cdot k, which exists
by the degree-bound \scrO (k) for H. Since the number of copies into which a vertex is
split when cutting open H is bounded by its degree in H, this implies | \pi  - 1(v)| < \alpha \cdot k
for all v \in V (\scrL (G \setminus T )).

For each edge uv \in E( \^G) for which at least one endpoint belongs to Z, replace the
direct edge uv by a path of \alpha \cdot k2 new vertices. Refer to the vertices inserted in this step
as Z \prime . To apply Theorem 3.1, we need to interpret G\ast as a plane partitioned graph.
Since the outer face of \^G was a simple cycle, so is the outer face of G\ast . Since \scrL (G\setminus T ) is
connected, so are \^G and G\ast . The face-representatives F (G\setminus T ) formed an independent
set in \scrL (G \setminus T ), and therefore \pi  - 1(F (G \setminus T )) forms an independent set in \^G and
therefore G\ast . Hence G\ast is a plane partitioned graph withB(G\ast ) := Z \prime \cup \pi  - 1(V (G\setminus T ))
and A(G\ast ) := \pi  - 1(F (G \setminus T )). Since the tree H we cut open to produce \^G has \scrO (k5)
edges, we have | \partial \^G| \leq \scrO (k5). The transformation to G\ast increases this by at most a
factor k2, so | \partial G\ast | \leq \scrO (k7).

Apply Theorem 3.1 to G\ast to obtain a sparsifier subgraph \widetilde G on \scrO (| \partial G\ast | 212) \leq 
\scrO (k1484) edges. Let D := V (G \setminus (T \cup Z)) \cap \pi (V ( \widetilde G) \setminus Z \prime ) be the nonterminal non-Z

vertices of the original graph G for which a copy was selected in the sparsifier \widetilde G,
so that | D| \leq \scrO (k1484). The key to the correctness of the kernelization will be the
following.

Claim 5.20. If G has a T -multiway cut X \subseteq V (G) \setminus (T \cup Z) of size at most k,
then G has a T -multiway cut X \prime \subseteq D \subseteq V (G) \setminus (T \cup Z) of size at most k.

Proof. Suppose X is a T -multiway cut X \subseteq V (G) \setminus (T \cup Z) of size at most k.
We construct the desired cut X \prime . Let C1, . . . , Cm be the connected components
of \^G[\pi  - 1(X\cup F (G\setminus T ))] that contain at least one vertex of \pi  - 1(X\cup F (G\setminus T ))\cap V (\partial \^G).
Note that C1, . . . , Cm could equivalently have been defined by replacing \^G with G\ast :
this makes no difference since X\cap Z = \emptyset . Hence Ci\cap (\pi  - 1(Z)\cup Z \prime ) = \emptyset for 1 \leq i \leq m.

For each i, consider component Ci and define Si := V (Ci) \cap V (\partial \^G) = V (Ci) \cap 
V (\partial G\ast ) as the vertices from the outer face contained in the component. Vertices
in Si correspond to vertices and face-representatives of G \setminus T . Recall that the cost
of a subgraph Ci of the plane partitioned graph G\ast was defined as | V (Ci) \cap B(G\ast )| .
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2422 JANSEN, PILIPCZUK, AND VAN LEEUWEN

Since Ci contains no vertices of Z \prime , while each vertex x \in X \cap V (G \setminus T ) contributes
at most | \pi  - 1(x)| < \alpha \cdot k vertices to the cost, the cost of Ci is strictly less than \alpha \cdot k2.
Since Ci connects Si in G

\ast , Theorem 1.1 guarantees there is a connected subgraph Ai

of \widetilde G with cost(Ai) \leq cost(Ci) that connects Si. We claim that Ai \setminus (Z \prime \cup \pi  - 1(Z)) still
connects Si in G

\ast (and therefore in \^G). This follows from the fact that vertices of Z \prime 

each contribute one to the cost measure and form degree-two paths of \alpha \cdot k2 vertices
in G\ast . Therefore a subgraph of cost less than \alpha \cdot k2 cannot contain an entire chain
of such vertices, and since the vertices of Z are buffered from the remainder of the
graph by such chains, no vertices of Z appear in Ai.

Using these sets Ai, we define X \prime :=
\bigcup 

i\in [m] \pi (Ai \setminus (Z \prime \cup \pi  - 1(Z))) \cap V (G \setminus T ): it
consists of the vertices in \scrL (G\setminus T ) that represent vertices of G\setminus T not belonging to Z,
for which at least one copy in the cut-open graph was selected in a connector Ai. By
construction we have X \prime \subseteq D \subseteq V (G) \setminus (T \cup Z). It remains to prove that | X \prime | \leq | X| 
and that X \prime is a T -multiway cut.

For the size bound, let us consider how | X \prime | relates to
\sum 

i\in [m] cost(Ai). For

a vertex x \in V (G \setminus T ), let fC(x) :=
\sum 

i\in [m] | \pi  - 1(x) \cap V (Ci)| denote the num-

ber of occurrences of a copy of x in a subgraph Ci, and similarly let fA(x) :=\sum 
i\in [m] | \pi  - 1(x) \cap V (Ai)| denote the number of occurrences of a copy of x in a sub-

graph Ai.
Since x \in X \prime contributes fA(x) to

\sum 
i\in [m] cost(Ai) but only one to | X \prime | , we have

| X \prime | =

\left(  \sum 
i\in [m]

cost(Ai)

\right)   - 

\Biggl( \sum 
x\in X\prime 

fA(x) - 1

\Biggr) 
.

Similarly,

| X| =

\left(  \sum 
i\in [m]

cost(Ci)

\right)   - 

\Biggl( \sum 
x\in X

fC(x) - 1

\Biggr) 
.

Now, since the Ai are minimum-cost connecting subgraphs, we have
\sum 

i\in [m] cost(Ai) \leq \sum 
i\in [m] cost(Ci). For the second term, observe that the only vertices x \in X for

which fC(x)  - 1 > 0 belong to the tree H that was cut open. Indeed, if x does not
belong to V (H), then | \pi  - 1(x)| = 1, and since at most one connected component Ci

contains x (for x would merge two such components together) we have fC(x) - 1 = 0.
But for x \in X \cap V (H), all vertices of \pi  - 1(x) are on \partial \^G and therefore on \partial G\ast . Hence
for each occurrence of x\prime \in \pi  - 1(x) in a component Ci, we have x\prime \in Si and the
replacement component Ai also contains x\prime . So we have\sum 

x\in X\prime 

fA(x) - 1 \geq 
\sum 
x\in X

fC(x) - 1,

which together with the above proves that | X \prime | \leq | X| .
As the last step of the proof of Claim 5.20, we prove that X \prime is a T -multiway cut

in G. By Claim 5.19 it suffices to prove that for each pair of distinct terminals t, t\prime \in T ,
for any path P in G\setminus T from a vertex in NG(t) to a vertex in NG(t

\prime ), one of conditions
(i)--(ii) from Claim 5.19 holds. Consider such a path P . Since X is a multiway cut,
one of (i)--(ii) holds for X. We conclude by a case distinction.

\bullet Suppose (i) holds for X since x \in X \cap V (P )\cap V (H). Then \pi  - 1(x) consists of
one or more vertices on \partial \^G and therefore of \partial G\ast , so that there is at least one
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connected component Ci containing a vertex of \pi  - 1(x), implying \pi  - 1(x) \cap 
Si \not = \emptyset . Since the replacement subgraph Ai contains Si, it follows that Ai

contains a vertex of \pi  - 1(x) and therefore x \in X \prime . Hence (i) also holds for X \prime .
\bullet Suppose (ii) holds for X: there is a subpath P \prime of P between distinct ver-
tices u, v \in V (H) that contains no other vertices of V (H), such that for
any u\prime \in \pi  - 1(u) and v\prime \in \pi  - 1(v) there is a connected component C of the
graph \^G[\pi  - 1(X \cup F (G \setminus T ))] containing x\prime and y\prime satisfying the given order-
ing condition. But for any choice of u\prime and v\prime , the witness vertices x\prime and y\prime 

belong to a common connected component Ci considered in our construction
above. As x\prime and y\prime appear on the outer face of \^G and therefore G\ast , they
appear in a common set Si. Hence the replacement subgraph Ai connects
both x\prime and y\prime , showing that X \prime satisfies (ii).

This completes the proof of Claim 5.20. \lrcorner 

Using Claim 5.20 we can finally shrink the graph to size polynomial in k. Obtain
a graph G1 from G by contracting all edges between vertices of V (G)\setminus (T \cup D). Parti-
tion V (G1) into T \uplus D\uplus U1, where U1 are the vertices resulting from the contractions
of nonterminal non-D vertices.

Observation 5.21. Graph G has a T -multiway cut of size at most k disjoint from Z
if and only if G1 has a T -multiway cut of size at most k that is disjoint from U1.

Initialize U2 as a copy of U1, and shrink it by exhaustively applying the following
reduction rule: while there are distinct u, v \in U2 with NG1(u) \subseteq NG1(v), then remove
vertex u from U2. Let G2 := G1[T \cup D\cup U2]. Since the removed vertices u can always
be bypassed using the preserved vertices v, we have the following.

Observation 5.22. Graph G1 has a T -multiway cut of size k disjoint from U1 if
and only if G2 has one that is disjoint from U2.

Claim 5.23. | U2| \leq \scrO (k1484).

Proof. Derive a planar bipartite graph Q from G2 with bipartition into X :=
(T \uplus D) and Y := U2. Since U1 was an independent set in G1, while vertices of U2

have pairwise incomparable neighborhoods in G2, it follows that NQ(u) \not \subseteq NQ(v) for
distinct u, v \in U2. Hence by Lemma 2.2 we have | U2| = | Y | \leq 5| X| \leq \scrO (k1484). \lrcorner 

We find that G2 on vertex set T \uplus D \uplus U2 has \scrO (k1484) vertices. To obtain the
final kernelized instance of the original Planar Vertex Multiway Cut problem, we
replace vertices U2 which a solution is not allowed to delete, by grid-like substructures
whose interconnections simply cannot be broken by a budget of k deletions. Observe
that the vertex set U2 is an independent set in G2. Obtain graph G3 from G2 as
follows: for each u \in U2, let v

1
u, . . . , v

du
u be the neighbors of u in their cyclic order

around u in the embedding. Replace u by a grid with k + 1 rows and (k + 1)du
columns. Let xu,1, . . . , xu,(k+1)du

be the vertices of the bottom row of this grid, and
insert edges between viu and xu,(k+1)(i - 1)+\ell for all 1 \leq i \leq du and 1 \leq \ell \leq k+1. Due
to our choice of ordering, these edges can be drawn planarly.

Claim 5.24. Graph G2 has a T -multiway cut of size at most k that is disjoint
from U2 if and only if G3 has a T -multiway cut of size at most k.

Proof. In the forward direction, any T -multiway cut X \subseteq V (G2)\setminus (T \cup U2) is also
a T -multiway cut in G3, since any path over an inserted grid in G3 can be replaced
by a vertex of U2 to provide an equivalent path in G2. The reverse direction is more
interesting.
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2424 JANSEN, PILIPCZUK, AND VAN LEEUWEN

Consider a vertex u \in U2. For any two distinct neighbors viu, v
j
u \in NG2

(u), the
grid that was inserted into G3 to replace vertex u contains k + 1 pairwise internally
vertex-disjoint paths P1, . . . , Pk+1 between viu and vju. Each row of the grid supports
one such path; a path starts at viu, moves to a neighbor at the bottom row of the
grid, moves up to the appropriate row, moves horizontally through the grid, moves
down to the neighbor of vju, and ends in vju. The leftmost neighbor of viu in the grid
connects to the rightmost neighbor of vju over the top row, so that the paths form a
nested structure in the grid.

Using these k + 1 pairwise internally vertex-disjoint paths in G3 between any
pair viu, v

j
u \in NG2(u), we complete the proof. Suppose that X \subseteq V (G3) \setminus T is a

T -multiway cut in G3 of size at most k. We show that X \prime := (X \cap V (G2))\setminus U2 is a T -
multiway cut in G2 of size at most k. Assume for a contradiction that G2\setminus X \prime contains
a path P between distinct terminals t, t\prime . For every occurrence of a vertex u \in U2

on P , the predecessor viu and successor vju of u on P are connected by k+1 internally
vertex-disjoint paths in G3. Hence X avoids at least one of these paths, showing
that viu and vju are also connected in G3 \setminus X. But by replacing each occurrence of
a vertex from U2 by a path through a replacement grid that is disjoint from X, we
obtain a tt\prime -path in G3 that is not intersected by X a contradiction. \lrcorner 

Claim 5.24 is the last link in a chain of equivalences, which shows that the answer
to the original input (G0, T0, k0) is identical to the answer to (G3, T, k). Each step of
the transformation can be carried out in polynomial time. It remains to bound the
size of G3. Its vertex set consists of T (size at most 2k), of D (size \scrO (k1484)), and the
vertices of the grids inserted to replace members of U2. Observe that the grid to replace
a vertex u \in U2 consists of (k + 1)2du vertices, where du is the degree of u in G2.
The total number of vertices in replacement grids is therefore

\sum 
u\in U2

(k + 1)2du =

(k + 1)2
\sum 

u\in U2
du. Note that

\sum 
u\in U2

du is exactly the number of edges in the planar

bipartite graph Q defined in the proof of Claim 5.23. Since Q has \scrO (k1484) vertices,
while the number of edges in a bipartite planar graph is at most twice the number
of vertices, we have

\sum 
u\in U2

du = | E(Q)| \leq \scrO (k1484). Hence the number of vertices

in replacement grids is \scrO (k1486), giving a total bound of \scrO (k1486) on the number of
vertices in G3. This completes the proof of Theorem 5.15.

6. Reductions to vertex planarization. In this section we show two reduc-
tions from Planar Vertex Multiway Cut: one to the disjoint version of Vertex
Planarization and one to the regular one. We start with recalling formal problem
definitions.

Vertex Planarization Parameter: k

Input: A graph G and an integer k.

Question: Does there exist a set X \subseteq V (G) such that G \setminus X is planar?

Disjoint Vertex Planarization Parameter: k + | S| 
Input: A graph G, a set S \subseteq V (G) such that G \setminus S is planar, and an integer k.

Question: Does there exist a set X \subseteq V (G)\setminus S of size at most k such that G\setminus X
is planar?

In the next two subsections, we show polynomial-parameter transformations from
Planar Vertex Multiway Cut to Disjoint Vertex Planarization and Ver-
tex Planarization.
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Fig. 6.1. The graph H0 of Observation 6.1 with the K5 minor model on the right.

Both reductions rely on the same idea: if a Vertex Planarization instance
contains a large grid, the budget of k deletions is not able to effectively break it,
and there is essentially only one way to embed it in the plane. If some parts of the
graph are attached to vertices of the grid incident to faces far away from each other,
a solution to Vertex Planarization needs to separate such parts from each other.
This allows us to embed a Planar Vertex Multiway Cut instance.

Formally, we rely on the following observation (see Figure 6.1).

Observation 6.1. Consider the following graph H0: we start with H0 being a
4\times 4 grid with vertices xa,b, 1 \leq a, b \leq 4 (i.e., the vertex xa,b lies in the ath row and
bth column of the grid) and then add an edge x2,2x2,4 but delete edges x1,2x2,2 and
x1,4x2,4. Then H0 contains a K5 minor and is therefore not planar.

6.1. From planar vertex multiway cut to disjoint vertex planarization.

Lemma 6.2. Given a Planar Vertex Multiway Cut instance (G,T, k), one
can in linear time compute an equivalent Disjoint Vertex Planarization instance
(G\prime , S, k) with | S| \leq 8| T | .

Proof. If | T | \leq 1, then the input instance is trivial, and we can output G\prime =
S = \emptyset . Otherwise, let T = \{ t1, t2, . . . , t| T | \} . We start by constructing a 4 \times 2| T | 
grid H. Denote S = V (H); note that | S| = 8| T | as promised. For 1 \leq i \leq | T | ,
let xi be the (2i)th vertex in the second row of H. We construct the graph G\prime 

from G \uplus H by identifying ti with xi for every 1 \leq i \leq | T | . We claim that the
resulting Disjoint Vertex Planarization instance (G\prime , S, k) is equivalent to the
input Planar Vertex Multiway Cut instance (G,T, k). Note that V (G) \setminus T =
V (G\prime ) \setminus S.

In one direction, let X \subseteq V (G) \setminus T be a solution to Planar Vertex Multiway
Cut on (G,T, k). We show that X is also a solution to Disjoint Vertex Pla-
narization on (G\prime , S, k) by showing a planar embedding of G\prime \setminus X. First, embed
H in the natural way. Second, for every connected component C of G \setminus X, proceed
as follows. If C contains a terminal ti, then fix a planar embedding of C that keeps
ti incident to the infinite face, and embed C in one of the faces of H incident with
xi. Otherwise, if C does not contain any terminal, embed C in the infinite face of
H. Since every connected component C contains at most one terminal, this is a valid
planar embedding of G\prime \setminus X.

In the other direction, let X \subseteq V (G\prime ) \setminus S be a solution to Disjoint Vertex
Planarization on (G\prime , S, k). We claim that X is also a solution to Planar Vertex
Multiway Cut on (G,T, k). Assume the contrary; since | X| \leq k and X \subseteq V (G\prime ) \setminus 
S = V (G) \setminus T by assumption, we have two terminals ti, tj \in T and a ti  - tj path P
in G \setminus X. Consider the subgraph H \cup P of G\prime \setminus X and contract P to a single edge
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titj . Then, this minor of G\prime \setminus X contains H0 from Observation 6.1 as a minor. By
Observation 6.1, G\prime \setminus X contains K5 as a minor, contradicting its planarity.

6.2. From planar vertex multiway cut to vertex planarization.

Lemma 6.3. Given a Planar Vertex Multiway Cut instance (G,T, k), one
can in polynomial time compute an equivalent Vertex Planarization instance
(G\prime , k) with | E(G\prime )| + | V (G\prime )| \leq \scrO (k(| E(G)| + | V (G)| )).

Proof. We proceed as in the proof of Lemma 6.2, but we need to make H thicker
in order not to allow any tampering.

If | T | \leq 1, then the input instance is trivial, and we can output G\prime = \emptyset . Similarly,
we output a trivial no-instance if two terminals of T are adjacent. Otherwise, fix a
planar embedding \phi of G and let T = \{ t1, t2, . . . , t| T | \} . For every 1 \leq i \leq | T | , let di
be the degree of ti in G and let v1i , . . . , v

di
i be the neighbors of ti in G in clockwise

order around ti in \phi . Let D =
\sum | T | 

i=1 di.
We define a graphH as follows. We start withH being a 4(k+1)\times (D+| T | )(k+1)-

grid with vertices xa,b, 1 \leq a \leq 4(k+1), 1 \leq b \leq (D+ | T | )(k+1) (i.e., the vertex xa,b
lies in the ath row and bth column). For every 1 \leq i \leq | T | , let b\leftarrow i = (i+

\sum 
j<i dj)(k+1)

and b\rightarrow i = b\leftarrow i + di(k + 1); additionally, let b\rightarrow 0 = 0. For every 1 \leq i \leq | T | and every
b\leftarrow i < b \leq b\rightarrow i , we delete from H the edge xk+1,bxk+2,b; see Figure 6.2.

We now define the graph G\prime as follows. We start with G\prime = H \uplus (G \setminus T ). Then,
for every 1 \leq i \leq | T | and every 1 \leq j \leq di, we make vji adjacent to xk+2,b for
every b\leftarrow i + (j  - 1)(k + 1) < b \leq b\leftarrow i + j(k + 1). This finishes the construction of
the Vertex Planarization instance (G\prime , k). We now show that it is equivalent to
Planar Vertex Multiway Cut on (G,T, k).

In one direction, let X be a solution to Planar Vertex Multiway Cut on
(G,T, k). We show that X is also a solution to Vertex Planarization on (G\prime , k) by
constructing a planar embedding of G\prime \setminus X. First, we embed H naturally and for every
1 \leq i \leq | T | let fi be the face of the embedding that is incident with vertices xk+2,b

for every b\leftarrow i < b \leq b\rightarrow i . Then, for every connected component C of G \setminus X we proceed
as follows. If C does not contain a terminal, then since X \cap T = \emptyset , component C
contains no neighbors of terminals either; hence the vertices of C are not adjacent
to H in G\prime . We embed C in the infinite face of H. Otherwise, assume that the only
terminal of C is ti. We take the embedding of C induced by \phi , change the infinite
face so that ti is incident with the infinite face, and embed C \setminus ti with the induced

u v

w

u v w

Fig. 6.2. Embedding neighbors of a terminal (blue square) into a hole cut out in a large grid.
Every neighbor of a terminal is connected to k + 1 vertices of the grid (k + 1 = 4 in the figure).
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embedding into fi. The fact that v
1
i , . . . , v

di
i are embedded around ti in \phi in this order

allows us now to draw all edges between vertices of NG(ti) and \{ xk+2,b| b\leftarrow i < b \leq b\rightarrow i \} 
in a planar fashion.

In the other direction, let X \prime be a solution to Vertex Planarization on (G\prime , k).
We claim that X := X \prime \cap (V (G) \setminus T ) is a solution to Planar Vertex Multiway
Cut on (G,T, k). If this is not the case, then there exist two terminals ti1 , ti2 ,
1 \leq i1 < i2 \leq | T | and a path P from ti1 to ti2 in G \setminus X. Let vj1i1 be the neighbor of

ti1 on P and vj2i2 be the neighbor of ti2 on P . Since | X \prime | \leq k, there exist
\bullet indices 1 \leq a1 \leq k + 1, k + 2 \leq a2 \leq 2k + 2, 2k + 3 \leq a3 \leq 3k + 3,
3k + 4 \leq a4 \leq 4k + 4 such that no vertex of X \prime is in rows numbered a1, a2,
a3, nor a4 of H;

\bullet for every 1 \leq i \leq | T | , an index b\rightarrow i - 1 < bi \leq b\leftarrow i with no vertex of X \prime in the
bith column of H; and

\bullet for every 1 \leq i \leq | T | and every 1 \leq j \leq di an index b\leftarrow i + (j  - 1)(k + 1) <

bji \leq b\leftarrow i + j(k + 1) with no vertex of X \prime in the bji th column of H.
We conclude by observing that the graph H0 from Observation 6.1 is a minor of a
subgraph of G\prime \setminus X induced by P , the a1th, a2th, a3th, and a4th rows of H and
columns of H with numbers bi1 , b

j1
i1
, bi2 , b

j2
i2
.

7. Conclusions. We conclude with several open problems. First, the exponents
in the polynomial bounds of our kernel sizes are enormous, similarly as for planar
Steiner tree [28]. Thus, we reiterate the question of reducing the bound of the
main sparsification routine of [28] to quadratic. Second, we hope that our tools can
pave the way to a polynomial kernel for Vertex Planarization, which remains
an important open problem. Third, nothing is known about the kernelization of
Multiway Cut parameterized above the LP lower bound [4], even in the case of
planar graphs and edge deletions.
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