
1 Introduction

Multinomial discrete models play a key role in transport and land use modeling. Almost every analyst 
aiming at disentangling the relationships between transport and land use from a disaggregated perspec-
tive will be confronted with multinomial discrete choice models at some point of their research, as most 
transport (e.g., destination choices, modal choices, acquisition of mobility tools, etc.) and land use deci-
sions (e.g., residential location, allocation of space, etc.) are of discrete nature. Consequentially, almost 
all transport and land use modelers may have faced issues regarding the inclusion of spatial correlation 
into multinomial discrete models. However, and despite its importance, within the discrete modeling 
literature, spatial correlation among different outcomes1 and observations has not nearly received a 
similar level of attention as correlation among possible outcomes given their own characteristics (e.g., 
red bus / blue bus problem), correlation among different decision levels (e.g., simultaneous mode and 
destination choice), or correlation among the answers provided by the same individual (e.g., panel or 
pseudo-panel data). 
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A brief discussion on the treatment of spatial correlation in  
multinomial discrete models

Abstract: Spatial dependence plays a key role in all phenomena 
involving the geographic space, such as the social processes associated 
with transport and land use. Nevertheless, spatial dependence in 
multinomial discrete models has not received the same level of attention 
as have the other kinds of correlations in the discrete modeling literature, 
mainly due to the complexity of its treatment. This paper aims at 
offering a brief discussion on the different kinds of spatial correlation 
affecting multinomial discrete models and the different ways in which 
spatial correlation has been addressed in the discrete modeling literature. 
Furthermore, the paper offers a discussion on the advantages and 
limitations of the different approaches to treat spatial correlation and it 
also proposes a compromise solution among complexity, computational 
costs, and realism that can be useful in some specific situations.
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1 In the discrete modeling literature is customary to refer to the different possible outcomes of a model as alternatives. However, 
not all possible outcomes of a discrete model are necessarily alternatives. As spatial correlation is a phenomenon affecting a 
wide range of applications, the more general wording outcome will be preferred in this work.
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The consensus seems to be that treating spatial correlation is possible and straightforward from a 
theoretical viewpoint (as, for instance, using a fully specified Probit model would completely capture the 
spatial correlation among the different outcomes), but not easy to address given data and computational 
limitations. Consequentially, in practice, as stated by Sener et al. (2011) spatial correlation ends up being 
completely ignored in many applications (with destination choice models being a paradigmatic exam-
ple; Ortúzar & Willumsen, 2011) or treated in an overly simplified fashion. Certainly, it does not help 
that many approaches that have been proposed to deal with spatial correlation in multinomial discrete 
models rely upon specifications of the error terms (and consequentially upon kernels) that are not easy 
to deal with, be it because of the estimation time and complexity, such as the fully (or densely) specified 
Probit model (Schnier & Felthoven, 2011) or because of limitations in software availability, as in the case 
of the generalized extreme value model (GEV) (Bhat & Guo, 2004; Sener, Pendyala, & Bhat, 2011).

Consequentially, the main goal of this paper is to offer a brief discussion on the different kinds of 
spatial correlation affecting multinomial discrete models and on different ways in which spatial correla-
tion has been addressed in the discrete modeling literature, highlighting its particularities which charac-
teristically differentiate spatial correlation from other correlation problems. Furthermore, the paper of-
fers a discussion on the advantages and limitations of the different approaches to treat spatial correlation 
and it also proposes a compromise solution between complexity, computational costs, and realism that 
can be useful in some specific situations.

2 Spatial correlation in  multinomial discrete models

Tobler’s First Law of Geography (Tobler, 1970) postulates that “everything is related to everything else, 
but near things are more related than distant things.” Basically, it postulates that from a geographic per-
spective, spatial units located closer to each other exhibit a larger degree of interdependence that spatial 
units located farther away. Furthermore, it states that all spatial units exhibit some degree of spatial 
interdependence. When dealing with geographic data, as in the case of transport and land use models, 
and attempting to estimate statistical models, this spatial interdependence takes the form of spatial cor-
relation among the data.

While spatial correlation has been extensively studied in the context of the estimation of continu-
ous models (see, for instance, kriging processes, Cressie, 1993), the treatment of discrete outcomes poses 
different challenges. Furthermore, the treatment of multinomial discrete outcomes substantially differs 
from the treatment of binary discrete outcomes (e.g., LeSage, 2000; Ward & Gleditsch, 2002) as in 
multinomial discrete models each possible outcome or alternative is associated with an independent 
latent variable. Consequentially, within a given observation, there exist several functions characterizing 
the aforementioned latent variables, each with a deterministic component and an error term. Thus, the 
treatment of spatial correlation substantially differs from the treatment in models for which there is only 
one error component per observation (such as linear or binary discrete models).

For modeling purposes, the existence of spatial correlation (or correlation in general) is not neces-
sarily a problem as long as the correlation is associated with the deterministic component of the latent 
variables. However, if the error terms are subject to (spatial) correlation, the usual modeling hypotheses 
of stochastic independence are violated, leading to biased estimators. Hence, it is necessary to explicitly 
address correlation in the specification of the model. In certain occasions, it would be possible to reduce 
the (spatial) correlation affecting the error terms by improving the specification of the deterministic 
component of the latent variables, or in other words, by including additional variables into the model 
with the goal of explicitly capturing the causes of the (spatial) correlation, and therefore disentangling 
(spatial) correlation from unexplained variability (e.g., in some transport and land-use applications, 
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spatial correlation may be somehow reduced by considering build environment attributes in the deter-
ministic component of latent variable). However, in many cases, such variables may not exist, may not 
be available to the modeler, or, even if they exist and are available, they may not completely/majorly 
capture the underlying (spatial) correlation at the level of the error terms.

Given the particularities of spatial correlation, it is important, as a first step, to establish the kind of 
outcomes being modeled and the level at which spatial correlation arises. In the context of multinomial 
discrete models, spatial correlation may arise at three different levels, namely:

a) spatial correlation among dependent variables (among possible outcomes or alternatives), within 
a given observation.

b) spatial correlation among observations.
c) spatial correlation among independent variables.

It is important to note that all three kinds of spatial correlation may coexist, which further compli-
cates their treatment. In the following, I will briefly discuss the three types of spatial correlation.

a) Spatial correlation among dependent variables (among possible outcomes)
This kind of correlation implies that the different possible discrete outcomes (or alternatives when 

framing a discrete model as a discrete choice model2) within each observation are spatially correlated. 
Hence, this form of correlation necessarily suggests that there must exist a spatial dependence among 
the different possible outcomes being modeled. Consequentially, this form of correlation is likely to ap-
pear when the outcomes are spatial units, i.e., the model aims at establishing the probability that a given 
spatial unit is observed as dependent variable.

This kind of spatial correlation is fairly common in transport and land use models, as it character-
izes processes such as travel destination or residential/work locations choices, in which different spatial 
units are precisely the possible outcomes of the model (i.e., in residential/work locations the modeler 
would expect a larger degree of correlation among nearly located spatial units). In the context of the 
former examples, the existence of spatial correlation would imply that the error terms associated with 
the underlying utility of nearly located spatial units are similar; thus, if a given spatial unit is character-
ized by a larger probability than predicted by the model, nearly located spatial units are likely to exhibit 
a positive deviation as well.

Note that this kind of spatial correlation notably differs from the kind of correlation usually consid-
ered in continuous models, as in this case every observation could be considered to be spatially indepen-
dent (provided no spatial correlation among observations coexists, as discussed at the end of the section). 

b) Spatial correlation among observations
This kind of correlation most closely resembles a kriging process of continuous models, in which 

are not the possible outcome (or alternatives) that exhibits a pattern of spatial correlation, but the dif-
ferent observations. Hence, in this particular case, the spatial dependence is associated with the different 
observations and not with the different possible outcomes of the model. A good example of the former, 
in transport and land-use modeling, would be given by an urban space distribution model, in which 

2 While the wording “alternative” is customarily used in the literature to refer to the possible outcomes of multinomial discrete 
models, this wording is only accurate when dealing with choice models. In the literature on transport and land-use, there also 
exist models, whose possible outcomes can hardly be considered as alternatives, as they are not the result of a decision-making 
process (e.g., the use given to a space unit as defined by regulation or the availability of different services in a given area). Conse-
quentially, and for the sake of completeness, throughout this paper the wording “possible outcomes” is preferred, but the reader 
is instructed to note that the intended meaning is equivalent to the wording “alternative” in the choice modeling literature.
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the outcome is the use given to spatial unit (for instance, whether a given patch of land is dedicated to 
residential, industrial or commercial purposes, among others). In this particular case, no (spatial) cor-
relation would be expected among different outcomes (the possible uses given to the spatial units), but, 
obviously, a modeler would expect that units that are nearly located would have a large probability of 
exhibiting the same outcome.

When modeling choices (i.e., considering discrete choice models) this kind of correlation may also 
appear every time the decision maker is associated with a given spatial distribution, e.g., when assessing 
the decisions of individuals or companies based on different geographic areas.

c) Spatial correlation among independent variables 
This kind of correlation arises when spatially correlated variables are used as explanatory variables 

in the model. As it was previously discussed, independent variables affect the deterministic component 
of the model do not violate the hypotheses of independence among error terms. Hence, under perfect 
circumstances, the existence of this kind of correlation will lead to losses in efficiency and in domain 
(akin to multicollinearity issues in linear models), but to unbiased estimators. However, in most cases 
the modeler cannot rely on absolutely accurate information, and, consequentially, the explanatory vari-
ables also include a small measurement/imputation error.

In most modeling situations, small measurement/imputation errors are likely to be harmless for 
modeling purposes; however, if these measurement/imputation errors are also subject to spatial correla-
tion (as they are likely to be; think, for instance, of property prices in a large geographic area), they will 
induce correlation in the entire model (depending on the characteristics of the model, the correlation 
will be induced at the level of the possible outcomes, at the level of the observations or at both). Fur-
thermore, as the errors normally depend on the magnitude of the variable being measured, they are also 
likely to induce (or increase the) heteroscedasticity.

As previously mentioned, these different kinds of correlation may coexist leading to a highly in-
volved modeling situation. A well-known example of a situation, in the field of transport and land-use, 
in which the three aforementioned types of spatial correlation are likely to coexist are relocation deci-
sions of companies currently based on different locations of a geographic area (spatial correlation among 
observations: companies based on closely related locations prior to relocation are likely to behave more 
similarly than companied located farther away), which may or may not decide to relocate to a new loca-
tion within the same area (spatial correlation among possible outcomes: closely related possible reloca-
tion targets are likely to exhibit similar unobserved properties), for which price information is estimated 
on the basis of aggregated values (correlation among independent variables: closely related locations are 
likely to exhibit similar prices, and consequentially exhibit a similar level of error if the estimation is not 
accurate).

3 Econometric frameworks 

The customary approach to address multinomial discrete outcomes is based upon the assumption that 
they are an expression of an underlying latent variable (or utility function, when framing the discrete 
model as a discrete choice model in accordance with Random Utility Theory, Thurstone, 1927; McFad-
den, 1974). Hence, it is assumed that a given discrete outcome i, belonging to a set of possible outcomes 
A(n) will be observed for the observation n if and only if its underlying latent variable Uin is larger than 
the latent variables Ujn associated with all remaining outcomes j belonging to A(n). The aforementioned 
Uin, in turn, will be expressed as the sum of a representative component (Vin) and an error term (εin), 
which leads to the following expression (Train, 2009; Ortúzar & Willumsen, 2011):
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           (1)

Here, the representative component (Vin) represents all attributes that can be quantified by an 
observer, and it is usually characterized through concrete and measurable properties of the outcomes 
(alternatives in choice models) and the observations (decision-makers in choice models); the error term 
(εin), in turn, represents all unknown or abstract elements affecting the decision.

It is customary to assume that the error terms follow an independent and identically distributed 
Normal distribution or an EV Type 1 distribution, leading either to the homoscedastic Probit model or 
to the Multinomial Logit model (MNL; Domencich & McFadden, 1975), respectively. The assumption 
of independent and identically distributed error terms inherent to the homoscedastic Probit and Logit 
models basically implies that the deviation of the observed values from the values predicted by the model 
do not relate to the deviations observed for any other observation or outcome. It also implies that the 
variability of the deviations between the observed and predicted values is constant across observations/
possible outcomes. These assumptions, however, are clearly violated by the existence of spatial correla-
tion, which postulates the existence of special dependence between nearly located spatial units.

In the following we will consider three econometric approaches (regarding the distribution of the 
error terms) that has been used to capture spatial correlation in the literature.

a) The fully specified Probit model
The Probit model is based upon the assumption that error terms follow a Normal distribution. 

Opposite to the homoscedastic Probit, the fully specified Probit model allows for a fully specified cor-
relation pattern among error terms (i.e., a fully specified covariance matrix).

According to the fully specified Probit model, the probability of outcome i for the observation n is 
given by (Train, 2009):

       (2)

where I(%) is a logic operator indicating whether % holds or not, while  ε~in is a vector of differences 
between εin and εjn , Ω represents the covariance matrix and J stands for the cardinality of A(n) 
(i.e., the total number of possible outcomes for observation n). This integral has no closed-form and it 
must be evaluated numerically. The integral must be computed over J-1 dimensions and the covariance 
matrix will consist of J∙(J-1)/2 parameters to be estimated.

As the reader may have already noticed, in eq. 2 the covariance matrix Ω refers exclusively to the 
error terms associated with the latent variables of the different outcomes; hence, this formulation only 
allows capturing spatial correlation among outcomes and not among different observations. Neverthe-
less, it is straightforward to adapt eq. 2 to consider correlation among observations by defining  ε~in as a 
vector of differences between εin and εim  and Ω as the covariance matrix among different obser-
vations, whose cardinality is given by the number of observations N. In this case, the integral must be 
computed over N-1 dimensions (and the covariance matrix will consist of N∙(N-1)/2 elements, forcing 
the modeler to impose some restrictions).
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b) The GEV and the GNL models
The Generalized Extreme Value model (GEV) (McFadden, 1978) bases upon the assumption that 

the error terms follow an EV1 distribution. While still retaining closed-form probability functions, op-
posite to the MNL, it allows relaxing the assumption of independently distributed (i.i.d.)  error terms. 
Under the GEV model, the probability of a certain outcome is given by (Daly & Bierlaire, 2003): 

        (3)

where G may be any function satisfying the following properties:

It can be shown that the Nested Logit models (NL) (Williams, 1977; Daly & Zachary, 1978), the 
Paired Combinatorial Logit (PCL) (Chu, 1989) or the Cross-Nested Logit (CNL) (Bierlaire, 2001) 
are particular cases of the GEV. However, for the purpose of this paper we will focus on the Generalize 
Nested Logit model (GNL) (Wen & Koppelman, 2001), as it seems to be the most suitable model of 
the GEV family to address spatial correlation (and the one whose use has been reported in the literature 
to deal with it).

Basically, the GNL is a particular case of the GEV, which assumes the following generator function 
(following the formulation by Bhat & Guo, 2004):

     (4)

Here, 0 < µ ≤ 1 represents a correlation parameter that can be estimated. Correlation increases as 
µ approaches zero and collapses to the MNL, when µ approaches one. 0 < ai,ij ≤ 1 is known as the al-
location parameter and, as , it roughly represents the proportion to which the error term εi is 
associated with the correlated pair (i.e., nest) εi ,εj. The correlation between εi and εj increases as ai,ij and 
aj,ij get larger. Consequentially, the GNL model allows estimating the degree of correlation between any 
pair of latent variables in a discrete model, without sacrificing the closed-form probabilities that charac-
terize GEV models.

c) The Mixed Logit (ML) model
Mixed logit models (Cardell & Dunbar, 1980) assume that the stochastic component of the model 

is given by the sum of an i.i.d. error term (εin) following an EV1 distribution and another stochastic 
element ʋin (known as mixing distribution) that can follow any desired distribution. It allows not only 
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to account for heteroscedasticity and correlation between different possible outcomes and observations 
(as the additional stochastic elements are not subject to homoscedasticity and no-autocorrelation restric-
tions) but to consider any desired functional form. This way, the latent variable of a given outcome 
would be given by:

         (5)

In this case, and opposite to the models of the GEV family, the probability of a given outcome 
cannot be longer depicted through a closed-form expression and it is necessary to integrate the prob-
abilities over the probability density function of the mixing distribution. Hence, the probability takes 
the following form (Train, 2009):

      (6)

where the first component P*in stands for the usual MNL probabilities and f(ʋn) is the probability 
density function of the mixing distribution. In this representation, Vn and ʋn represent vectors account-
ing for the latent variables associated with all possible outcomes of the model and for all mixing distri-
butions included in the model, respectively. As usually this integral cannot be analytically solved, it is 
necessary to compute it relying on numerical techniques.

Depending on the assumptions regarding the mixing distributions, the ML framework allows ad-
dressing correlation among outcomes, observations as well as interactions between error terms and inde-
pendent variables. However, this high flexibility does not come at no-costs as every mixing error term to 
be considered implies that the integral depicted in eq. 6 increases in one dimension. 

4 Treating spatial correlation in multinomial discrete models 

As previously outlined, the main reason why spatial autocorrelation has received much less attention 
than other correlation problems is its high degree of complexity. Opposite to other problems in which 
possible outcomes are correlated, problems in which spatial correlation arise, are normally characterized 
by a very large number of possible outcomes; for instance, a residential location model can easily have a 
couple hundred possible outcomes. Thus, considering spatial correlation may require the evaluation of 
integrals in several dimensions (when following the Probit or the ML approaches) and the estimation of 
an unwieldy large number of parameters (the number of parameters in the covariance matrix increases 
quadratically with the number of possible outcomes). This curse of dimensionality leads to prohibitive 
computational costs. Similarly, when treating spatial correlation among observations, the size of the 
problem widely differs from other problems such as panel data, in which only the answers provided by 
the same individual are assumed to be correlated (and consequentially are assumed to be independent 
of the answers provided by different individuals). Yet, the dimensionality problem is even more grievous 
when treating spatial correlation among observations, as the correlation matrix has n more parameters 
to be estimated (N∙(N-1)/2 parameters with N representing the total amount of observations) than the 
number of available observations, meaning that estimating a fully specified correlation matrix is not only 
prohibitively expensive but also theoretically impossible.

Given the aforementioned problems, spatial correlation is considered making use of spatial weight-
ing matrices. Instead of estimating all elements of the correlation matrix (without considering addi-
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tional information), spatial weighting matrices (W) are used to establish the degree of spatial correlation 
among different outcomes/observations. Then, W is used to estimate the correlation matrix taking ad-
vantage of relationships established in W (i.e., without the necessity of estimating all elements of a fully-
specified covariance matrix). Spatial weighting matrices are normally defined exogenously (Bhat & Guo, 
2004; Schnier & Felthoven, 2011; Weiss & Habib, 2017; among many others), but they can also be 
defined parametrically, imposing a functional form (Sener et al., 2011; Zhou, Wang, & Holguín-Veras, 
2016). The latter approach still allows for estimating the degree of interdependence among outcomes/
observation but it substantially reduces the amount of parameters to be estimated (compared with the 
estimation of a fully-specified covariance matrix).

The spatial weighting matrix is defined in such a way, that the degree of spatial dependence between 
two possible outcomes/observations diminishes (i.e., approaches zero) as the distance between them 
increases, hence, satisfying Tobler’s First Law of Geography. However, as Zhou et al. (2016) extensively 
discuss, the concept of distance between two spatial units (especially in social sciences) may go beyond 
Euclidean distance, encompassing concepts such as economic or demographic distance, among others. 
The extent to which the spatial dependence is affected by different distances between spatial units de-
pends on the model itself. Consequentially, it seems appropriate to allow for the model to endogenously 
determine the best way to establish the distance between spatial units and to utilize a parametric depic-
tion of the spatial weighting matrix.

As previously mentioned, different approaches have been utilized to capture different kinds of spa-
tial correlation in the past. In the following, and without claiming completeness, I will discuss some of 
them, in light of their advantages and limitations.

a) Probit model to capture spatial correlation among possible outcomes
As previously mentioned, a fully specified Probit model would require the estimation of J∙(J-1)/2 

parameters, where J represents the total number of possible outcomes. As the former would require an 
implausible large number of observations, the covariance matrix Ω (see eq. 2) is usually specified making 
use of the aforementioned spatial weighting matrix W, so that: 

 � = (I – ρ . W) -1 . σ2 . (I – ρ . W)-T        (7)

where 𝘱 is a parameter to be estimated and σ2 a vector of variances of independently distributed distur-
bances 𝜀 following a Normal distribution. The elements of vector σ2 may be both homoscedastic (Gar-
rido & Mahmassani, 2000) or heteroscedastic (Schnier & Felthoven, 2011). While most applications 
define the structure of W exogenously (e.g., Schnier & Felthoven, 2011, define the elements of W as the 
inverse of the squared distance between two possible outcomes or Garrido & Mahmassani, 2000, define 
the elements of W on the basis of adjacency), there are no theoretical restrictions preventing the analyst 
from using a parametrical definition of the elements, to be estimated endogenously (although empirical 
restrictions may indeed exist).  

While the specification of the model is not complex, from a theoretical perspective, the same can-
not be said for the estimation, which will require solving a multidimensional integral in J-1 dimensions. 
As this integral must be solved numerically, it would lead to prohibitive costs as the number of possible 
outcomes increases. Hence, most applications relying on the Probit model to consider spatial correlation 
among outcomes limit the number of possible spatial units: e.g., Schnier and Felthoven (2011) consider 
up to 24 possible outcomes, while Garrido and Mahmassani (2000) considered up to 41.
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b) Probit model to capture spatial correlation among observations
Basically, the same considerations mentioned in the previous point also apply when the Probit 

model is used to capture spatial correlation among observations. However, the main difference, in this 
case, is that the size of the covariance matrix and the degree of the multidimensional integral cannot 
be limited, as it is directly given by the number of observations N (note that as a corollary, in this case, 
the error terms cannot be considered to be heteroscedastic, as it would require the estimation of N-1 
parameters, completely exhausting the degrees of freedom of the model).

To tackle this problem, the authors relying upon this approach have focused their effort on the 
computation of the multidimensional integral. For this purpose, some studies rely upon the Bayesian 
Markov Chain Monte Carlo (MCMC) estimation (Chakir & Parent, 2009; Zhou et al., 2016), while 
others use the Maximum Approximate Composite Marginal Likelihood (MACML) (Sidharthan & 
Bhat, 2012; Bhat, 2015). Both estimations techniques offer significantly faster results than the conven-
tional numerical integration, but their implementation is cumbersome (requiring a significant coding 
effort) and is outside the reach of the majority of the analysts.

c) GEV-GNL model to capture spatial correlation among possible outcomes
Considering spatial correlation among possible outcomes is straightforward when using the GNL 

model. Basically, the analysis simply has to specify the structure of ai,ij, which are indicative for the in-
terdependence between the outcomes i and j (see eq. 4). While the elements ai,ij and aj,ij do not directly 
correspond to the elements of the spatial weighting matrix is W or of the covariate matrix Ω, they are 
indeed related (Bhat & Guo, 2004 – to which the reader is referred for a detailed explanation – include 
a tabulation of the correlation for several combinations of µ, ai,ij, and aj,ij) and the considerations apply-
ing to the specification of W or Ω  also apply to the specification of ai,ij and aj,i. So, for instance, Bhat 
and Guo (2004) specified those elements exogenously, on the basis of adjacency, while Parady and Hato 
(2016) used an endogenous specification including two variables (Euclidean distance and altitude). 
Similarly, Sener et al. (2011) define a generalized parametric formulation, which they call Generalized 
Spatially Correlated Logit (GSCL).

Given that the models of the GEV family lead to closed-form kernels, the use of this approach to 
capture spatial correlation among possible outcomes is not doomed by the curse of dimensionality, or, 
more precisely, the GNL is affected to a much lesser extent than other models by the increase of dimen-
sions. Consequentially, the computational costs are much less compared with any existent alternative 
and treating a large number of spatially correlated outcomes is not an impending limitation. For in-
stance, Bhat and Guo (2004) considered more the 900 spatially correlated spatial units.

The main limitation of the model is, however, the lack of software availability, which implies that 
the analyst would necessarily be forced to code the model. Furthermore, while also an advantage regard-
ing the numbers of parameters to be estimated, the GNL imposes a homoscedastic error structure (i.e., 
it imposes that the variability of the error is constant for all spatial unis), which can be disadvantageous 
when dealing with spatial correlation (especially when the correlation is induced by spatially correlated 
explanatory variables, which are not equally variated themselves).

d) GEV-GNL model to capture spatial correlation among observations
Given their structure, models of the GEV family can only be used to establish the probabilities of 

different possible outcomes within a given observation (the probability functions of the GEV family 
assume independent error terms across observations). Hence, the approach cannot be used to capture 
spatial correlation among observations.
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e) ML model to capture spatial correlation among possible outcomes
The approach closely resembles the treatment of spatial correlation given in the Probit model. Basi-

cally, the approach considers error terms of the form:

ε̃  =(I – ρ .W ) -1 . ʋ + 𝜀          (8)

where 𝜀 is a vector of i.i.d errors following an EV1 distribution and ʋ is a vector of error terms fol-
lowing any desired distribution. It is customary to assume that ʋ follows a Normal distribution, which 
greatly increases the resemblance to the Probit treatment (even Bolduc et al., 1996, following the ML 
approach, claimed to rely on a Probit structure). As usual in ML models, the error term ʋ is considered 
via simulation leading to probabilities of the form depicted in eq. 6 and it is necessary to generate as 
many random disturbances as possible outcomes (or as latent variables to be considered). Consequen-
tially, the approach is necessarily heteroscedastic and requires the computation of a (J-1)-dimensional 
integral.

While the computation of the integral depicted in eq. 6 is slightly easier than the computation of 
the integral associated with the Probit model, the approach still suffers from the curse of dimensionality, 
which greatly limits the number of possible outcomes than can be handled relying upon this structure 
(e.g., Bolduc, Fortin, & Fournier, 1996 considered 18 spatial units only). The treatment of the spatial 
weighting matrix W is analogous to the Probit model and it also can be defined exogenously or endog-
enously (using a parametric specification), although, to my best knowledge, for this approach no studies 
considering an endogenous representation of W have been reported in the literature.  

Weiss and Habib (2017) present a specification based on a Cholesky decomposition of W, which 
they call Spatially Weighted Error Correlation (SWEC) error model, but it basically follows the same 
principles proposed by Bolduc et al. (1996; both considered exogenously defined W matrix). Weiss, 
Hasnine, and Habib (2019) showed that, for their dataset, the ML treatment outperforms the GNL 
treatment, but that is probably due to the heteroscedastic structure of the model (opposite to the ho-
moscedastic GNL), which adds a substantial number of degrees of freedom (parameters to be estimated).

While in terms of computational costs the ML treatment does not majorly differ from the Probit 
treatment, it certainly offers (in comparison with the Probit) a potential advantage that (to my best 
knowledge) has not yet been considered in the literature. If the analyst defines a structure of block-
correlation (e.g., by grouping together spatial units expected to have a high degree of correlation, given 
their generalized distance or other considerations, such as political divisions) with all possible outcomes 
belonging to a given block being affected by the same disturbance (note that it does not imply perfect 
correlation within the block, given the existence of the error 𝜀), the analyst would be able to reduce the 
number of elements to be considered (and the dimensions of the integral) to the number of blocks (as 
it would be necessary to estimate only one parameter per block and not one parameter per each pair of 
outcomes). The block-correlation structure can also be overlapping. This treatment, while an exogenous 
approximation of the approach proposed by Bolduc et al. (1996), would offer significant gains in terms 
of computational costs and allow considering a much larger number of spatially correlated outcomes as 
it has been possible in the past.

f) ML model to capture spatial correlation among observations
Given that the ML treatment requires to generate a random disturbance for any element to be 

correlated in the covariance matrix, it implies that using the ML to capture spatial correlation among 
observations requires generating a random disturbance for all observations, which would completely 
exhaust the degrees of freedom of the model. Consequentially, the (fully specified) ML treatment cannot 
be used to capture spatial correlation among observations and it has not been used in the past.
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Nevertheless, if, akin to the block-correlated representation introduced in the previous point, the 
modeler would be able to exogenously define a structure of block correlated observations affected by the 
same disturbance, they would be able to reduce of number of disturbances to be considered via simula-
tion, enabling the treatment of spatially correlated observations on the basis of the ML. This approach 
has not been previously reported in the literature.

g) Capturing spatial correlation induced by spatially correlated independent variables
To my best knowledge, no existent study has directly and explicitly dealt with correlation induced 

by spatially correlated independent variables.3 However, depending on the kind of correlation being 
induced, the treatment should be akin to the treatment of spatial correlation among possible outcomes 
or observations.

Basically, problems associated with spatial correlation among independent variables will only lead 
to biased estimators when they also include spatially correlated measurement/imputation errors. Let’s 
consider a model including a vector of explanatory variables Xin with spatially correlated measurement/
imputation errors and a vector Yin of independent variables no with spatially correlated measurement/
imputation errors, so that: 

         (9)

where X~in stands for the values available to the modeler and Xin for the actual values without errors, 
while ʋin is a vector of spatially correlated measurement/imputation errors. In this case, the latent vari-
able Uin associated with outcome i and observation n can be expressed as:

    (10)

Then, considering the following Taylor expansion:

     (11)

the underlying latent variable can be expressed as:
 

     (12)

where ε~in is a spatially correlated error term, despite the fact that 𝜀in may have been not spatially 
correlated (note that the correlation is only due to the spatially correlated measurement/imputation 
errors ʋin). Hence, the problem is akin to the previous cases, depending on whether the correlation has 
been induced at the level of the possible outcomes or of the observations. Nevertheless, the nature of the 

3 Although Czajkowski, Budzinski, Campbell, Giergiczny, and Hanley (2017), and successive studies by the same group, 
introduced a method to capture spatial correlation among parameters to be estimated, which lead to the same mathematical 
representation, but the interpretation of the model is different (see Ortúzar & Willumsen, 2011 for a good discussion on ran-
dom error components and random coefficients).



532 JOURNAL OF TRANSPORT AND LAND USE 14.1

correlation must be taken into account in the definition of the spatial weighting matrix W.

h) Spatial correlation among possible outcomes and observations
Again, to my best knowledge, no study reported in the discrete model literature has considered 

spatial correlation among possible outcomes and observations simultaneously. While, as previously out-
lined, such situations indeed occur in reality, their treatment is extraordinarily complex and computa-
tionally prohibitive. 

From the previously discussed approaches, only two alternatives are suitable to treat this kind of 
correlation: the Probit specification considering the MCMC or the MACML estimation techniques and 
the ML specification considering spatially correlated blocks for outcomes and observations. The compu-
tational costs of both approaches would be extremely large, although the method of correlation blocks 
can reduce the number of blocks to any number desired by the modeler at expenses of the precision.

5 Conclusions

The treatment of spatial correlation in multinomial discrete models is not a “sexy” problem: its treatment 
is complicated, is associated with large computational costs, requires the use of advanced econometric 
techniques (many of them no easily available from an operational viewpoint), and the results are not 
particularly appealing given that the focus of the analysis is mostly not set upon demonstrating the exis-
tence or quantifying the spatial correlation, but to establish causal relationships in data that happens to 
be spatially correlated. Therefore, spatial correlation has become a stumbling block for many modelers, 
which, for the sake of simplicity, simply prefer to ignore the issue. The goal of this paper is certainly not 
to overcome these issues, which are real and substantial, but to offer a discussion on the advantages and 
limitations of different approaches that have been proposed to deal with spatial correlation in mutlino-
mial discrete models.

When the possible outcomes of a discrete model exhibit spatial correlation, the most appealing 
option, from a computational viewpoint, seems to be relying on the GNL structure, as it is associated 
with a closed-form probability kernel, which offers substantial computational advantages. Moreover, the 
Generalized Spatially Correlated Logit (GSCL), which allows for a parametric specification of the cor-
relation structure is highly appealing, given the endogenous estimation of the spatial dependence. The 
main inconvenient of the GNL is its lack of computational availability and, therefore, the necessity of 
coding the algorithms. Alternative approaches (Probit, ML), while adding flexibility (the GNL is char-
acterized by a homoscedastic error structure) are computationally costly and can only handle a limited 
number of possible outcomes. As a compromise solution between complexity, computational costs, and 
realism, this paper introduces the use of an exogenous block correlated ML, which allows reducing the 
number of dimensions over which the ML probabilities must be integrated.

In the case of spatial correlation at the level of the observations, no closed-form expression can be 
derived, and the computation of multidimensional integrals associated with the Probit and ML models 
are usually costlier than in the previous case, given the large dimensions of the covariance matrix. The 
only plausible ways to treat spatial correlation among alternatives seems to be to rely on advanced nu-
merical integration techniques (requiring a substantial coding effort) such as MCMC or MACML, or 
to (over)simplify the correlation structure using a block correlated ML structure. 

Correlation at the level of explanatory variables does not have modeling implications, unless they 
are subject to measurement/imputation errors. In such case, it would result in either correlation at the 
level of the outcomes, at the level of the observations or both. Finally, if spatial correlation affects both 
outcomes and observations, the options are the same but the computational costs are even larger. 
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Further research is required to assess the different approaches discussed in this work with regard 
to the efficiency of the estimators as well as their resilience to misspecification. Along these lines, it is 
necessary to define measures of spatial correlation specific to the particularities of multinomial discrete 
models.
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