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Abstract
High-performance numerical codes are an indispensable tool for hydrogeologists when modeling subsurface

flow and transport systems. But as they are written in compiled languages, like C/C++ or Fortran, established
software packages are rarely user-friendly, limiting a wider adoption of such tools. OpenGeoSys (OGS), an open-
source, finite-element solver for thermo-hydro-mechanical–chemical processes in porous and fractured media, is
no exception. Graphical user interfaces may increase usability, but do so at a dramatic reduction of flexibility
and are difficult or impossible to integrate into a larger workflow. Python offers an optimal trade-off between
these goals by providing a highly flexible, yet comparatively user-friendly environment for software applications.
Hence, we introduce ogs5py, a Python-API for the OpenGeoSys 5 scientific modeling package. It provides a
fully Python-based representation of an OGS project, a large array of convenience functions for users to interact
with OGS and connects OGS to the scientific and computational environment of Python.

Introduction
The scientific-computing project OpenGeoSys

(OGS) provides methods for the simulation of subsurface
processes like groundwater flow, soil moisture dynamics,
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transport of contaminants, and energy extraction (Kolditz
et al. 2012). It features state-of-the-art finite-element
solvers with an open-source approach. Yet potential users
without a strong background in computer science may
find themselves confronted with a steep learning curve.
While providing a Graphical User Interface may lower
the threshold for some and therefore widen the potential
user base, it would significantly reduce flexibility in
the development process, require the allocation of
manpower needed elsewhere and make OGS far less
platform-independent.

In order to strike a balance between usability,
flexibility, effort and efficiency, the use of a Python-based
interface for OGS has emerged as the best choice. There
are a number of reasons that make Python such a dominant
candidate for this purpose. It provides a powerful
environment for scientific and engineering applications.
It is easy to learn, easy to code and easy to communicate.
It has strong momentum in the highly competitive market
of programming languages. It is a perfect glue language,
meaning that complex workflows can be created and
maintained. Finally, it is open source with a huge user
community and community-supported infrastructure.

These reasons combine to make Python an almost
uniquely suited tool for scientific and engineering
applications due to its mediating position between
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Figure 1. Schematic of the different input files associated with an OGS project.

compiled languages, like C/C++, Fortran, and Java, on
the one hand and tightly integrated software suites with a
GUI on the other (Perez et al. 2011). The most recent
ranking from IEEE Spectrum substantiates this notion,
calling Python the best programming language overall
(Cass 2019), as do the increasing number of scientific
and engineering software tools that rely on Python, rather
than a fully fledged GUI, to achieve a better user experi-
ence (O’Boyle et al. 2008; Chaudhury et al. 2010; Dalcin
et al. 2011; Cornelis et al. 2012; Müller et al. 2012; Zam-
belli et al. 2013; Roest et al. 2014; Bakker et al. 2016;
Schlömer 2018).

Therefore we introduce ogs5py, a Python package
that provides a Python representation of the full modeling
process of OGS 5. Here, a full modeling process means
the preparation of the OGS input files, initiating and
inspecting the run of an OGS model and, finally, the
import and visualization of the results. In addition,
ogs5py can import already existing OGS 5 applications
and turn them into a fully Python-based workflow.
Many OGS 5 applications are provided in the related
ogs5py_bechmarks project, which we will also detail
below. We chose OGS 5 as the target platform, since
the newest version OGS 6, although already released,
is still under development and therefore in flux. Using
the latest version of OGS 5 guarantees a stable and
mature numerical engine for any modeling effort. As
examples, we cite such modeling efforts as the simulation
of a groundwater system (Jing et al. 2018), its use as a
data-generating forward model in a Bayesian inference
(Savoy et al. 2017) or as part of a decision-making tool
for water management services. There are ogs5py scripts
for nearly all benchmarks of OGS 5 as well as a number
of convenience functions in particular for working with
mesh generation, inspection and manipulation.

OpenGeoSys 5
OpenGeoSys 5 is a scientific computing project,

comprising numerical methods for the simulation of
thermo-hydro-mechanical-chemical processes in porous
and fractured media. OGS has found application in diverse
fields like the modeling of groundwater contaminants,
water resources, geothermal energy systems and energy

storage. At its core, OGS 5 uses the finit-element method
to solve the partial differential equations that govern flow
and transport processes in the subsurface.

The first versions of OGS were known as RockFlow.
They were created in the late 1980ies and early 1990ies,
together with the early development of FEFLOW (Trefry
and Muffels 2007). Both tools were initially written in
FORTRAN but later development switched to C and
eventually C++ as the main language. For a detailed
overview of the development of OGS, we refer to Kolditz
et al. (2012).

An OGS 5 project is specified by a number of
ASCII files, which can be grouped according to their
function (see Figure 1). At the center is the process
file .pcs. It contains the processes being simulated
and consequently determines the equation(s) that need(s)
specification. Additional information is provided by the
other input files, depending on the type of problem to
be solved. Initial conditions, boundary conditions, and
external source terms are specified in the .ic, .bc,
and .st files, respectively. Properties are defined in the
.mfp, .mcp, and .mmp files for the fluid, component,
and material properties, respectively. The .num and
.tim files contain specifications for the numerical solvers
as well as time stepping in case of transient problems. The
numerical mesh is given in the .msh file, whereas the
.gli file serves to define spatial positions, for example,
for the sinks and sources from the .st file.

OGS 5 provides a number of tangible benefits
for potential users. Compared to FEFLOW (Trefry and
Muffels 2007), OGS 5 is fully open-source. As regards
MODFLOW (Hughes et al. 2017), OGS 5 is a finite-
element solver and can handle complex geometries
naturally by irregular Finite Element Method meshes.
Although the newest version MODFLOW6 has mitigated
some on this limitation, its meshes do still fall short
when compared with the full flexibility of a FEM mesh.
Such meshes, built using the Delaunay triangulation,
use triangles or tetrahedra of appropriate sizes that can
conform to the often irregular geometry of geological
structures. In addition, the FEM is a general paradigm for
partial-differential equations and OGS 5 can consequently
solve a series of subsurface problems, like saturated and
unsaturated flow, solute transport and heat transport; all
using the same numerical paradigm.
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Figure 2. Schematic of the different steps of running an OGS
5 project and how they are controlled by ogs5py.

The ogs5py Package

Structure
Figure 2 shows how ogs5py runs an OGS 5 project

in a three-step process: writing the input files, passing
them on to the OGS 5 executable, and importing the
resulting output files.

First, the structure of the OGS 5 project is represented
by creating an OGS class. Its attributes correspond to the
OGS 5 file structure as outlined in Figure 1. Then, the
corresponding input files are written into the project folder
and the project can be run. In a third step, the user can
import the results into ogs5py and use Python functions
for visualization and post-processing.

Users familiar with the FloPy package, which
provides a similar Python-based interface for MODFLOW
(Bakker et al. 2016), will recognize the similarities in this
interaction. This is due to the shared design goals, i.e.,
providing a Python interface for a numerical modeling
suite, as well as the fact that both modeling suites
use ASCII-based input files. We provide and discuss
two example scripts in the Supporting Information to
exemplify ogs5py and familiarize potential users with it.

Installation
ogs5py is compatible with Python versions 2.7 and

3.4 or higher. Since Python 2 is on its way out, we
strongly encourage the use of Python 3. The source code
is maintained under a GitHub account to optimize team
efforts. Furthermore, we allow users to raise issues or
improving the code by making pull requests with the aid
of GitHub’s infrastructure. It can be found under https://
github.com/GeoStat-Framework/ogs5py.

The package can be installed via the command line on
Linux, MacOS and Windows using conda or pip. The
latest version is installed by typing one of the commands:

pip install ogs5py
# or
conda install ogs5py

While ogs5py can run on any platform given the
correct Python version and libraries are installed, the same
is not necessarily true for OGS 5. ogs5py provides tools
to automatically download a platform-specific version of

the OGS executable for many popular Linux and Windows
systems. If you have a Macintosh computer, an unusual
CPU or do not want to use the prebuild binary; the source
code of the newest version of OGS 5 can be downloaded
from the website and compiled locally. Instructions can
be found on the GitHub page of the project https://github
.com/ufz/ogs5.

To obtain an OGS5 executable, you can run the
following script:

from ogs5py import download_ogs

download_ogs ()

This command will store a system-dependent exe-
cutable in the ogs5py config path and will be called
automatically when a model is run. One can pass a version
statement to the download routine (e.g. “5.7” [default] or
“5.8”). Also “latest” and “stable” versions can be down-
loaded from the OGS 5 Jenkins CI system. OGS “5.7”
provides executables for Windows, Linux, and MacOS.
For “5.8,” “latest,” and “stable” there are no MacOS pre-
builds.

Resources
Self-compiled versions of OGS 5 can be added

to the ogs5py config path with the following script:

from ogs5py import add_exe
add_exe ("path / to / your / ogs / exe")

The source code is formatted by the “Black” code
formatter. This tool guarantees a code style that is
transparent and unified, thus making it easier for users
to understand, review and contribute to the code. The
documentation of ogs5py, as well as tutorials explaining
the features, can be found at https://geostat-framework
.readthedocs.io/projects/ogs5py.

Continuous Integration is established through Travis-
CI. Python wheels are prebuilt to make installation as easy
as possible. Also, unit tests run Travis-CI for each commit
to the GitHub repository and code coverage is determined.
Every new release on GitHub is directly deployed to the
Python package index and gets a DOI by Zenodo. Version
1.0, discussed here, can be found under Müller (2019).

Licensing
We selected the MIT license for ogs5py, due

to it being a well established and very permis-
sive license. Since the benchmarks found in the
ogs5py_bechmarks project are derived from OGS,
we use its license. This license is unique to OGS but
shows strong similarities to the LGPL.

Example Applications for ogs5py
In general, an ogs5py script is a succession

of block-wise definitions of the different OGS5
input files. A generic model script looks as follows.

from ogs5py import OGS
# create the base class
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model = OGS (task_root = "project",
task_id = "model")
# define the model settings
model.pcs.add_block ( # set the pro-
cess type

PCS_TYPE = "GROUNDWATER_FLOW",
NUM_TYPE= "NEW",

)
model.msh. generate ( . . .) # define mesh
model.gli.generate ( . . .) # define geom-
etry
model.mmp.add_block ( . . .) # medium prop-
erties
model.bc.add_block ( . . .) # bound-
ary condition (if any)
model.st.add_block ( . . .) # source
term (if any)
model.ic.add_block ( . . .) # ini-
tial condition (transient)
model.tim.add_block ( . . .) # timestep-
ping (transient)
model.out.add_block ( . . .) # out-
put settings
model.num.add_block ( . . .) # numeri-
cal solver settings
# list of other inputs, set-
tings and interfaces
. . .

# write input, run OGS5, read output
model.write_input ()
success = model.run_model ()
output = model.readvtk ()

Within an add_block call, the subkeywords of the
associated OGS5 input file can be addressed and provided
with information.

We exemplify the workflow and application of
ogs5py by virtue of two examples. They are part of
the ogs5py package itself and can be found at https://
github.com/GeoStat-Framework/ogs5py/tree/master/
examples/. They also serve as tutorials for the ogs5py
documentation.

The first example is a simple two-dimensional
numerical model of a pumping test. It allows potential
users to become familiar with the general workflow and
introduces the main features of the package. The second
example provides a three-dimensional numerical model
of a pumping test in a heterogeneous porous medium.
Heterogeneities are generated by another Python package
called GSTools. This example shows the abilities of
Python to connect different tools into a larger workflow.
Both examples are presented and discussed in detail in the
Supporting Information.

Additionally, we provide a large number of OGS 5
benchmarks transformed into their equivalent ogs5py
projects. They can be found under https://github.com/
GeoStat-Framework/ogs5py_benchmarks. Users can
obtain them using git and clone them directly from

the GitHub repository git clone https://

github.com/GeoStat-Framework/
ogs5py_benchmarks.git

These benchmarks cover a wide range of applications.
Examples are saturated and unsaturated flow, sorption
using Freundlich and Langmuir isotherms, solute trans-
port, density-dependent flow, reactive transport, multi-
phase flow, ion exchange and many more. In total, several
hundreds of benchmarks can be found. Depending on the
specific needs of a practitioner, they can serve as a starting
point for building models for specific case studies.

Additional Advantages of ogs5py
In addition to the general advantages of a Python

environment, ogs5py offers a number of specific benefits
for this project.

Mesh Handling
Discretizing the spatial domain to a numerical mesh

is usually the first step and thus of great importance.
Accordingly, ogs5py provides a range of internal
methods to generate, manipulate and import meshes. It
also provides close integration with the pygmsh package
(Schlömer 2018), which is a powerful Python tool for
mesh generation. For example, the user can quickly
generate a grid adapter, to refine a rectangular grid in
a given domain by:

from ogs5py import MSH

mesh = MSH ()
mesh.generate (
" grid_adapter2D", # adapter
generator
out_dim=(100.0, 100.0), # outer
dimension
in_dim=(50.0, 50.0), # inner
dimension
out_res=(10.0, 10.0), # outer
x-y resolution
in_res=(1.0, 1.0), # inner
x-y resolution
out_pos=(0.0, 0.0), # outer
block position
in_pos =(25.0, 25.0), # inner
block position
out_mat=1, # outer
material ID
in_mat=0, # inner
material ID
fill=True, # fill the inner

block
)
mesh.show (show_material_id=True)

Here, a transition zone is created with gmsh by
triangulation to adapt the grid resolutions. The adapter
was filled with a rectangular mesh. Furthermore, different
material IDs for both mesh parts were set. The resulting
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Figure 3. A generated adapter to locally refine a rectangular grid from a coarse to a fine resolution.

mesh in Figure 3 shows the adaptive mesh behavior. Other
examples utilizing pygmsh can be found in the package
documentation.

High-Performance Computing
Flow and transport simulations are based on partial-

differential equations and thus computationally demand-
ing. Realistic models can have in excess of 106 mesh
cells, which can quickly exceed the limits of regular
desktop computers. Uncertainty assessment demands the
simulation of a large number of scenarios, dramatically
increasing the computational costs.

ogs5py meets this challenge of computational
efficiency by using OGS 5 for the high-performance
computing and Python for user interaction. Python
supports the use of parallelization techniques, e.g. for
uncertainty assessment studies, as well as the use of
supercomputers for the simulation of large numerical
models.

Import and Conversion of Existing OGS Projects
The associated ogs5py_benchmarks project does

not only provide the OGS benchmarks but also has the
ability to convert most existing OGS 5 projects into
their ogs5py counterparts. To do so, the OGS class
provides gen_script, that creates ogs5py python
script for the specified model, which is loaded first:

from ogs5py import OGS
model = OGS (task_root = " root ",
task_id = " model ")
model.load_model ("path / to / your /
old / model")
model.gen_script ()

Through gen_script, users can easily convert
their existing projects with minimal effort to benefit from
the abilities of ogs5py.

Conclusions
The ogs5py package provides a Python-based

interface for the OGS 5 software suit. In both design and
functionality, ogs5py is similar to the popular FloPy
suite, which provides a Python-based interface for the
MODFLOW software package. The salient features of
ogs5py are determined by OGS 5. OGS 5 provides
a large collection of open-source, numerical tools for
solving subsurface problems and these functionalities are
the main assets of ogs5py. Compared to MODLFOW,
OGS 5 provides a number of well-tested FEM solvers.
This enables the use of flexible grids as well as the joint
modeling of coupled subsurface processes, like flow and
transport or reactive transport systems.

The ogs5py package also provides a close inte-
gration with the pygmsh package. This allows for a
seamless interaction with its meshing abilities. Finally,
the ogs5py_benchmarks package, developed together
with ogs5py provides a number of OGS benchmarks, as
well as the ability to convert existing OGS 5 projects into
their Python counterparts.
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