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General introduction 
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CHAPTER 1



per this framework, DCM (and HNDC) have genetic (±30%) and non-genetic (±70%) causes, 
of which the latter includes toxic substances (medication (antineoplastic, psychiatric 
antiretroviral), alcohol, cocaine, amphetamines, ecstasy, iron overload, nutritional deficiency, 
endocrinologic causes, tachycardiomyopathy, peripartum cardiomyopathy, infection and 
auto-immune disorders.1,6,7 

Diagnosis of DCM and differential diagnostic considerations
DCM is diagnosed in the presence of 1) LV dilatation (indexed LV end-diastolic diameter 
(LVEDd) >117% for age and sex, or the LV end-diastolic volume (LVEDV) ≥ 2 standard 
deviations from normal according to normograms); and 2) LV systolic dysfunction (LVEF 
<45% and/or LV fractional shortening <25%). Full diagnostic work-up for DCM typically 
includes a focused history, laboratory evaluation, electrocardiography (ECG), Holter 
monitoring, echocardiography, cardiovascular magnetic resonance imaging (CMR) (with 
late gadolinium enhancement (LGE)) and genetic testing. In addition, differential diagnoses 
should be ruled out (e.g. ischemia detection to exclude coronary artery disease).1 Given that 
LV dilatation and dysfunction are the final common pathways in many heart diseases, other 
cardiomyopathies (arrhythmogenic cardiomyopathy (ACM), hypertrophic cardiomyopathy 
(HCM), non-compaction cardiomyopathy (NCCM) and restrictive cardiomyopathy (RCM)) may 
mimic the DCM phenotype.8 For instance, end-stage HCM may show overlapping clinical 
characteristics (LV dilatation and reduced LVEF) and ACM may present with a biventricular 
or left-dominant phenotype.9–13 To distinguish DCM from common differential diagnostic 
considerations, CMR has proven to be very useful in recent years as it provides a good 
visualisation of not only the LV but also the right ventricular (RV) myocardium.10 In addition, 
LGE patterns on CMR may assist in determining the aetiology: while not mutually exclusive, 
LV midwall LGE may be seen in genetic forms of DCM or myocarditis, whereas subepicardial 
LGE may be caused by myocarditis, sarcoidosis or chemotherapy.14 

Genetic testing in DCM
Genetic testing has greatly increased our understanding of the aetiologies of DCM and 
has led to the identification of individuals at risk of developing disease.15–17 In recent years, 
next generation sequencing (NGS) has tremendously accelerated genetic testing in DCM 
given its low-cost, flexibility, short turnaround time, and genome-wide coverage. NGS gene 
panels and a whole-genome sequencing can be used to identify pathogenic point variants, 
small insertions and deletions, or large structural copy number variations.9,18,19 As a result 
NGS is now the clinical gold standard for genetic evaluation of DCM. 

Most common pathogenic variants in DCM patients are identified in genes encoding 
sarcomere proteins (e.g., Titin (TTN) and Myosin Heavy Chain 7 (MYH7)); Z-disk components 
(e.g., Filamin-C (FLNC) and BLC2 Associated Athanogene 3 (BAG3)); and in the Lamin A/C 
(LMNA) gene, encoding a structural protein of the nuclear envelope.15–17 Variant interpretation, 

INTRODUCTION

Electronic health records (EHR) have adjusted the nature of clinical medicine and research, 
allowing continuous capture of clinical data and improving research infrastructures. EHRs 
contain data that can progress our understanding of disease aetiology, classification, and 
prognosis. From the EHRs, data can be entered manually into registries by experts, or raw 
EHR data can automatically be exported into big data platforms. Then, novel methods 
such as machine and deep learning can model complex interactions by identifying new 
phenotypes, predicting prognosis or help create big data research infrastructures by 
extracting data from medical text. This thesis focusses on the use of data from clinical 
registries to investigate the epidemiology and prognosis of dilated cardiomyopathy (DCM) 
and proceeds with exciting methods to create and use big data from EHRs. 

Historic overview of DCM 
DCM constitutes an anatomic description of abnormal left ventricular (LV) morphology 
and function in the absence of common pathophysiologic conditions (i.e., coronary artery 
disease or abnormal loading conditions). As such, it may be a final common pathway to 
many disease entities where outcome is strongly influenced by aetiology.1 One of the first 
DCM descriptions may be found in a case series by William Evans in 1948, describing 
“familial cardiomegaly” after excluding valvular, hypertensive, and congenital heart disease 
as causes of cardiac enlargement.2 An autopsy in a subsequent family of two young sisters 
with “idiopathic cardiomegaly” also revealed dilatation of the LV.3 

DCM Definitions
In the last decades, both European and American professional societies have proposed 
classifications of cardiomyopathic disorders (Figure 1). In 2006, the American Heart 
Association (AHA) published a seminal document describing the genetic basis of 
cardiomyopathies.4 Subsequently in 2008, the European Society of Cardiology (ESC) 
emphasized that morphofunctional phenotype is the basis for cardiomyopathy classification 
and recognized extra-cardiac manifestations such as skeletal myopathy in cardiomyopathy 
patients.4 The MOGE(S) classification was next proposed in 2013, which subclassified each of 
the cardiomyopathies into genetic forms and emphasized the necessity to further subdivide 
the DCM phenotype as it may affect prognosis and treatment.5 While these position 
documents have greatly influenced our understanding of the phenotypic heterogeneity of 
DCM, the existing definitions remained limited in case of intermediate phenotypes, such as 
in carriers of pathogenic genetic variants who may have incomplete disease expression. 
Similarly, LV systolic dysfunction or dilatation can be very mild or even absent in some 
acquired diseases, such as myocarditis. For these reasons, the ESC Working Group on 
Myocardial and Pericardial Disease proposed a revised definition including “hypokinetic 
non-dilated cardiomyopathy” (HNDC) as a marker of early or preclinical DCM in 2016.6 As 
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however, requires due diligence, as pathogenic variants may have been overreported in 
the past and variant reclassification has direct implications on patients and at-risk relatives. 
To this end, the ClinGen consortium has re-evaluated reported pathogenic variants to 
generate international consensus on variant interpretation.20 However, even with first-rate 
variant curation, genetic variation only explains up to 40% of DCM cases. In patients without 
a family history of DCM (i.e., sporadic DCM), this yield can decrease to 10%, suggesting a 
bigger role for non-genetic causes including cardiotoxic medication (anthracycline), alcohol, 
and inflammation (figure 2).6,21–24

G
enetic factors

Polymorphisms with genetic risks

Pathogenic variants in TTN Pathogenic variants in “high penetrance” 
genes, such as LMNA, BAG3 and FLNC

Mendelian risk

En
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ro
nm

en
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l 
fa
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Cardiotoxic antineoplastic agents

Smoking Diabetes Mellitus

Alcohol
Hypertension

Chest Radiation

Multifactorial risk

FIGURE 2. Schematic overview of genetic susceptibility and environmental factors affecting dilated 
cardiomyopathy. This schematic overview illustrates on the right a more mendelian risk profile with 
pathogenic variants in “high penetrance” genes versus a more multifactorial risk profile on the 
left. Importantly, the truth may be a combination of both, e.g. TTN variants in patients with Dilated 
Cardiomyopathy with alcohol abuse. Polygenic risks may also affect disease in pathogenic variants in 
“high penetrance” genes.

In recent years, we have come to appreciate genotype-phenotype associations within the 
spectrum of DCM.25 For instance, microvoltages and frequent ventricular extrasystoles on 
ECG and Holter monitoring are often seen in carriers of PLN pathogenic variants, while 
in LMNA variant carriers a low p-wave amplitude and prolongation of the PR interval with 
narrow QRS complexes are typically observed.25–27 The combination of distinct phenotypic 
features together with their genetic aetiology resulted a new nomenclature of these clinical 
entities, such as: “PLN-cardiomyopathy” and “LMNA-cardiomyopathy”.28–30 

DCM Prognosis
Historically, DCM had a 1-year mortality of ±30% and 5-year mortality of up to ±50%.31 
Because of therapeutic advancements, however, mortality rates have been decreasing, 
leading to 5-year mortality rates of 20% nowadays.32 In general, patients with DCM are 
at risk of frequent hospitalisation and overt heart failure, for which left ventricular assist 
devices and orthotopic heart transplantation are the effective last resort treatments33. 
Independent predictors of progressive heart failure include low LVEF, RV dilatation, global 
segmental wall motion abnormalities, high New York Heart Association (NYHA) class, older 
age, male sex, the presence of conduction disorders, and LGE on CMR (i.e., fibrosis).31,34 
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THESIS OUTLINE

PART ONE Real world data from registries
Registries are an important source of clinical data that can be used in prospective and 
retrospective research studies to answer pertinent clinical questions. In part one, we use data 
from various (inter)national and historical registries to investigate the clinical heterogeneity of 
DCM and to ultimately develop a risk calculator to predict the risk for LTVA In chapter 2, we 
investigate end-stage heart failure in a cohort of patients who underwent heart transplantation. 
Based on thirty years of experience in the University Medical Centre Utrecht, we describe 
the population and the gradually changing indications for heart transplantation throughout 
the years from ischemic to non-ischemic heart failure. In chapter 3, we gather data from 
the ESC Eurobservational Research Programme for Cardiomyopathy & Myocarditis registry 
to investigate clinical and genetic differences between familial and non-familial DCM. This 
chapter also studies the role of family history in the context of clinical presentation and genetic 
yield. As patients with DCM have increased risk of life-threatening ventricular arrhythmias, we 
subsequently performed a systematic review and meta-analysis to find predictors for these 
events, which are described in chapter 4. In chapter 5, we used these predictors as well 
as other clinically relevant parameters to create a “risk calculator” for patients with DCM to 
predict ventricular arrhythmias. We created several models that may be used: a model using 
easily accessible clinical data and two additional models where additional phenotype and 
genotype information may be used, such as LGE on CMR and pathogenic genetic variants.

PART TWO Data infrastructure for clinical applications of artificial intelligence
Big data infrastructures comprising EHRs can now be used with new techniques, such 
as deep and machine learning. In part two, we design a research data platform, apply 
text-mining techniques, and ultimately develop a deep learning model for prediction of 
LTVA. In chapter 6 we portrayed the design of our UNRAVEL big data analytics research 
data platform and specify its data infrastructure design and methods. This data platform 
includes structured (i.e. laboratory results) and unstructured (clinical text) data of patients 
with (suspected) inherited cardiomyopathies and their relatives. In chapter 7, we developed 
neural networks for automatic multilabel detection of diagnoses codes (international 
classification of disease, version 10) from discharge letters from this data platform. In 
chapter 8, we investigate methods to identify patients with hypertrophic cardiomyopathy 
in the EHR using text-mining and machine learning. In chapter 9, we developed neural 
networks to identify patients with DCM at risk of LTVA using ECGs and investigate the ECG 
characteristics that drive these predictions. 

In part three, I discuss how future studies should progress with diagnosis and risk prediction 
of DCM using EHR data in cardiovascular research, illustrated by the work presented in this 
thesis and related literature.

Other predictors include reduced exercise capacity, low systolic blood pressure, and low 
haemoglobin.35 

Patients with DCM are at risk of life-threatening ventricular arrhythmias (LTVA) and may 
therefore benefit from implantable cardioverter-defibrillator (ICD) implantation.36 Current 
guidelines provide a Class IIA recommendation for ICD implantation in symptomatic (NYHA 
≥ II) DCM patients with an LVEF ≤35%, despite ≥3 months of optimal pharmacological 
therapy.37 However, not all patients with a low LVEF derive benefit from ICD implantation, 
and improved selection of these patients is warranted.38 It seems obvious that those with 
prior sustained ventricular arrhythmias (i.e., secondary prevention) should receive an 
ICD, whereas recommendations for primary prevention cases are less straightforward as 
illustrated by the negative DANISH trial.39 Improvement of patient selection may be reached 
with clinical risk prediction models, including exploration of artificial intelligence models.
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Thirty years of heart transplantation at 
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INTRODUCTION

Orthotopic heart transplantation (HTx) has been an effective treatment for end-stage heart 
failure for many years and was performed in more than 120,000 patients worldwide up 
until 2015. [1] Since 1967, when the first HTx was performed by Christiaan Barnard in South 
Africa, survival rates have increased significantly. [2] In the early days, this was mainly due 
to improvements in diagnosis and treatment of complications such as acute rejection. [3] 
These improvements were led by the introduction of the calcineurin inhibitors cyclosporine 
in 1980, and tacrolimus several years later, and the development of the bioptome, allowing 
diagnostic endomyocardial biopsies for the histological diagnosis of rejection. A systematic 
grading scale for the classification of rejection was also very important. [4]

Nowadays, the main limitation of HTx is the lack of donor hearts worldwide. In the Netherlands 
the first HTx was performed in Rotterdam in 1984 and in Utrecht in 1985, after a long period 
of decision-making by the government. To date, around 100 patients are on the national 
waiting list, whereas approximately 45-50 patients are transplanted each year. This lack of 
donor hearts leads to prolonged waiting times. The limited availability of donor hearts is 
partly compensated for by left ventricular assist devices (LVADs), which are used to bridge 
patients with advanced heart failure until a donor heart becomes available. Interestingly, the 
improved durability of LVADs makes them suitable as a long-term alternative for HTx. [3,5,6]

In this article we describe the demographics, indications, survival, and donor characteristics 
over the past 30 years in patients who were transplanted at our centre. 

ABSTRACT
 
Purpose
To analyse patient demographics, indications, survival, and donor characteristics for heart 
transplantation (HTx) during the past 30 years at the University Medical Centre Utrecht 
(UMCU).

Methods
Data have been prospectively collected for all patients who underwent HTx at the UMCU 
from 1985 until 2015. Patients who were included underwent orthotopic HTx at an age >14 
years. 

Results
In total, 489 hearts have been transplanted since 1985; 120 patients (25%) had left ventricular 
assist device (LVAD) implantation prior to HTx. A shift from ischaemic heart disease to 
dilated cardiomyopathy has been seen as the leading indication for HTx since the year 
2000. Median age at HTx was 49 years (range 16-68). Median waiting time and donor age 
have also increased from 40 to 513 days and from 27 to 44 years respectively (range 11-65). 
Donor cause of death is now primarily stroke, in contrast to head and brain injury in earlier 
years. Estimated median survival is 15.4 years (95% confidence interval 14.2-16.6) There is 
better survival throughout these years.

Conclusion
Over the past 30 years, patient and donor demographics and underlying diseases have 
shifted substantially. Furthermore, the increase in waiting time due to lack of available 
donor hearts has led to a rise in the use of LVADs as bridge to transplant. Importantly, 
an improvement in survival rates is found over time which could be explained by better 
immunosuppressive therapy and improvements in follow-up care.
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Referral End stage heart failure not remediable by 
conservative measures

Screening for contra-indications
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Re-evaluation every six 
months

FIGURE 1. From referral to transplantation. LVAD Left Ventricular Assist Device. 

Statistical analysis
Re-transplanted patients (n=8) were listed as having one primary indication, and a secondary 
indication named ‘other’. Survival data were gathered using the hospital patient information 
system. Group comparisons were made using the chi-square test for categorical variables, 
the one-way ANOVA and post-hoc test for normally distributed continuous variables, and 
the Kruskal-Wallis or Mann-Whitney U test for non-normally distributed continuous variables 
when appropriate. Survival rates were calculated using the Kaplan-Meier method and 
tests for trends were performed using the log-rank test. Conditional survival curves were 
analysed for patients surviving the first year after HTx. Statistical significance was assumed 
at p < 0.05. Statistical analyses were performed using IBM SPSS version 21 for Windows 
(SPSS Inc., Chicago, Illinois, USA). Graphs and sub-analysis were performed using GraphPad 
Prism version 6.02 for Windows. 

METHODS

Study design
This single-centre retrospective analysis included all patients ≥14 years of age who 
underwent orthotropic HTx at our centre from 1985 until 2015. Data were collected from a 
database containing prospectively registered heart transplantations performed after 1985, 
and missing data were collected from patient charts. For comparison over time, patients 
were grouped into six clusters by year of transplantation: (I) 1985-1989, (II) 1990-1994, (III) 
1995-1999, (IV) 2000-2004, (V) 2005-2009 and (VI) 2010-2014.

Screening, definition, and in-house protocol
Patients were considered for HTx according to national guidelines, last updated in 2008. 
[7] Briefly, indication for HTx is end-stage heart disease not amenable by more conservative 
measures. Since HTx is an intensive medical treatment, the patient must be willing, capable, 
and emotionally stable to withstand the uncertainties likely to occur both before and after 
transplantation. Furthermore, the expected 1-year mortality of the potential patient should 
exceed the 1-year mortality after HTx, which is 10-15%. An estimation of the prognosis in 
patients with end-stage heart failure is difficult but can be estimated using, for instance, the 
Heart Failure Survival Score (HFSS) which consists of a combination of several non-invasive 
measures such as peak VO2, ejection fraction and intraventricular conduction delay, and 
the Seattle Heart Failure Model. [8,9]

Contraindications for HTx are defined as high pulmonary vascular resistance (PVR), active 
systemic infection, active malignancy, inability to comply with complex medical regimen, 
severe peripheral or cerebrovascular disease and irreversible dysfunction of another organ. 
[6] Nonetheless, these contraindications are generally not absolute but only temporary and 
have to be judged in relation to the clinical picture of the patient. As an example, irreversible 
elevated PVR increases the risk of right-sided failure of the transplanted heart. However, 
there is no absolute cut-off value, so it has to be seen as an incremental risk factor. 

After referral, the first step is optimisation of medical therapy after which patients undergo 
screening for contraindications. Eligibility of patients is assessed by a dedicated team 
consisting of at least a cardiologist trained in end-stage heart failure and transplantation, 
a cardiothoracic surgeon, and specialised nurses. According to the guidelines for HTx, 
patients are considered either: (1) not eligible for HTx, (2) a future candidate for HTx or (3) 
listed for HTx. [7] 

Patients on the waiting list, as well as the patients who were deemed too good for 
transplantation at prior evaluation, will be regularly re-evaluated given the dynamic nature 
of the clinical course (Fig. 1).
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HTx were non-ischaemic dilated cardiomyopathy (DCM) (220 patients, 45%) and ischaemic 
heart disease (214 patients, 44%), followed by hypertrophic cardiomyopathy (21 patients, 
4.3%), acquired valvular disease (14 patients, 2.9%), congenital heart disease (8 patients, 
1.6%), restrictive cardiomyopathy (4 patients, 0.8%) and re-transplants (8 patients, 1.6%) (Fig. 
2c, Table 1). Comparing indication for HTx, a significant shift can be seen (p = 0.028) in the 
number of recipients, from ischaemic heart disease to DCM over the course of the groups 
(Fig. 2b, table 1). Whereas only 40% of recipients were of DCM origin in the first 5 years, this 
indication now comprises 57% of cases. Ischaemic heart disease, however, decreased from 
52% to 30% (Fig. 2b, Table 2). Eight patients have had re-transplantations due to primary 
graft failure of the first donor heart. BMI increased from 22 to 24 over the years (p = 0.01). 
Mean PVR did not show changes.

LVAD implantation in our centre began in 1993, first on a small scale. In total 120 patients 
(25%) received LVAD implantation prior to HTx and given the low numbers in the early years, 
a significant increase (p<0.0001) in use can be observed later on with a median of 133 in 
1990-1994 to a median of 594 days in 2010-2014. The average LVAD support time was a 
mean of 364±313 days, ranging from 9-1384 days. 

FIGURE 2. Number of transplants, indication for transplantation and median waiting time

RESULTS

This analysis includes 489 heart transplants in 481 patients in the UMCU from 1985 until 
2015 (Fig. 2, Table 1). 

TABLE 1. Characteristics of heart transplantation recipients
Patient characteristics
Averages presented as means ±SD or median (IQ) when appropriate

HTx patients 
n=489

Range or 
percentage

Median age at transplantation (IQ)
 < 20 years (n, %)
 20-40 years (n, %)
 40-60 years (n, %)
 > 60 years (n, %)

49 (IQ 39-56) 
10
126
306
47

16-68
2.0%
25.8%
62.6%
9.6%

Male n, % 372 76%

Pretransplant diagnosis (n, %)
Non-ischaemic dilated CMP
Ischaemic heart disease
Hypertrophic CMP
Restrictive CMP
Congenital heart disease
Valvular heart disease
Re-transplant

220
214
21
4
8
14
8

45%
43.8%
4.3%
0.8%
1.6%
(2.9%
1.6%

Pretransplant BMI (±SD) 23.5 (±3.3) 13.7 – 34.9

Pretransplant PVR without intervention (±SD); (n=471)
Pretransplant PVR with intervention (±SD); (n=18)
Median pretransplant creatinine (n=483)

177 (±88)
230 (±92)
106 (IQ 89-127) 

16-561
65-419
40-328

LVAD bridging, n (%)
Median time with LVAD on waiting list in days (IQ); (n=117)

120
266 (IQ 147-484)

25%
(9-1384)

Median waiting time for transplantation in days, (IQ), (n=486)
 1985-1989
 1990-1994
 1995-1999
 2000-2004
 2005-2009
 2010-2014

150 (IQ 48-301)
40 (IQ 16-84)
107 (IQ 41-162)
119 (IQ 43-249)
158 (IQ 56-259)
287 (IQ 119-463)
513 (IQ257-806)

0-1688
0-262
3-653
0-559
1-1509
1-1235
1-1688

SD standard deviation; IQ interquartile range; CMP cardiomyopathy; BMI body mass index; PVR pulmonary vascular 
resistance; LVAD left ventricular assist device

Recipient characteristics
Over time a gradual increase in numbers of transplantations per year can be seen, with 
a peak in 1996 and declining afterwards (Fig. 2a). Median age at HTx was 49 with an 
interquartile range (IQ) of 39-56 and has remained constant throughout the years. Over 
60% of our patients were between 40-60 years of age at the time of transplant. Our cohort 
was predominantly male (76%) with no significant change over time. Primary indications for 
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65 years; 207 (43%) of our donors were female and 280 (57%) were male (Table 3). The 
cause of death was mainly cerebral stroke (272, 57%) and head and brain injury (163, 34%). 
The remaining causes were brain tumours (14 = 3%), suicide (11, 2%), gunshot wounds (3, 1%) 
and 15 (3%) of unregistered cause. A significant (p<0.001) shift in cause of death, however, 
can be observed. In the early years of HTx the major cause of death was head and brain 
injury (over 60% of donors), this has come down to 18% in recent years. The opposite holds 
true for stroke as a cause of death for donors (29 to 65%) (Table 2).

TABLE 2. Significant change in demographics from 1985 to 2015
Change in demographics from 1985-1990 to 2010-2015
Averages presented as means ±SD or median [IQ] and p-value when appropriate P-value1985-1989 2010-2014

Pretransplant diagnosis
Non-ischaemic dilated CMP
Ischaemic heart disease
Hypertrophic CMP
Restrictive CMP	
Congenital heart disease
Valvular heart disease
Other

40.5% 
52.4% 
2.4% 
2.4%
2.4% 
-%
-%

56.7%
29.9%
6.0%
1.5%
3.0%
-%
3.0%

0.028

Pretransplant BMI (±SD) 22(±3.5) 24(±3.7) 0.01

Median waiting time for transplantation in days (IQ) (n=486) 40[16-84] 513[257-
806]

<0.001

Donor cause of death (n=484)
Brain tumour (%)
Stroke (%)
Gunshot wound, (%)
Suicide (%)
Head and brain injury (%)
Unknown (%)

0%
30%
0%
2%
61%
7%

6%
65%
1%
10%
18%
3%

<0.001

SD standard deviation; IQ interquartile range; CMP cardiomyopathy; BMI body mass index; 

TABLE 3. Significant change in demographics from 1985 to 2015
Change in demographics from 1985-1990 to 2010-2015
Averages presented as means ±SD or median [IQ] when appropriate N Range or percentage
Donor age in years (n=482) 40 [28-48] 11-65
Male, n (%) 280 57%

Donor cause of death (n=477)
Brain tumour, n (%)
Stroke, n (%)
Gunshot wound, n (%)
Suicide, n (%)
Head and brain injury, n (%)
Unknown, n (%)

14
272
3
11
162
15

3%
57%
1%
2%
34%
3%

SD standard deviation; IQ interquartile range

Waiting time to transplantation
Overall median waiting time for transplantation was 150 (IQ 48-301) days with a range of 
0-1688 days. A significant (p<0.001) increase in waiting time can be seen from a median of 
40 days in 1985-1990 to 513 days in 2010-2014. Since the introduction of continuous flow 
LVADs in 2006, with proven longer durability, the waiting time has increased even further 
(p = 0.001) (Fig. 2d, Table 1).

Survival
Kaplan-Meier data of total survival and conditional survival (those patients who survived the 
first year after HTx) are presented in Fig. 3. Median survival was 15.4 years (95% confidence 
interval 14.2-16.6) for the entire cohort, including 13 patients who have survived for over 25 
years after HTx. There is a significant trend towards better survival when comparing the 
groups over time (Fig. 3).

FIGURE 3. Overall survival, conditional survival, and survival in groups

Donor characteristics
Median donor age was 40 [IQ 28-48] years for the whole cohort but has increased 
significantly (p<0.001) from 27 years to 44 years from 1985 to 2014. The oldest donor was 
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inseparable part of it. Due to the extremely long waiting time until transplantation, many 
patients deteriorate while on the waiting list. A large number of these patients can now 
be treated by mechanical circulatory support, using an LVAD as bridge to transplantation, 
which potentially causes deleterious displacement effects for the waiting time. The dilemma 
now conceived is an even longer waiting time as more patients survive until transplantation 
without an accompanying increase in donor hearts. But without the use of LVADs, many 
patients with acute heart failure would not have made it to transplantation or even to the 
waiting list at all. Clearly, implantation of an LVAD also implies perioperative risk but this 
outweighs the mortality of progressive acute heart failure by far. [17] Furthermore, it has to 
be realised that due to the improvements in technology and design the durability of LVADs 
has increased substantially, allowing the longer waiting time until transplantation, with a 
remarkable good quality of life and exercise tolerance. [18,19]

Conclusion
Over the past 30 years, substantial differences can be noted in HTx. Patient demographics 
show a shift from ischaemic heart disease to DCM. The donor situation has completely 
changed from younger trauma victims to older patients dying from a cerebrovascular 
accident with a higher chance of pre-existing cardiovascular abnormalities. Due to the 
longer waiting time, an increasing number of patients have to be bridged to transplantation 
by a LVAD. 

Despite these potentially adverse aspects, there is an improvement in survival rates which 
could be explained by better immunosuppressive therapy and improvements in follow-up 
care.

DISCUSSION

In this article we describe the demographics, indications, and survival of HTx and donor 
characteristics over the past 30 years.

Firstly, addressing to demographic trends, we see that over the years DCM has replaced 
ischaemic heart disease as the main reason for HTx in our cohort. Worldwide this same 
trend can be observed. [1,7,10–14] One possible explanation might be the better treatment 
of coronary artery disease, resulting in less patients with end-stage heart failure at an age 
that still allows HTx. Overall, the other characteristics of the recipients did not change very 
much over time; as can be expected, it concerns more men than women and the median 
age at which patients were transplanted was around 50. These figures are comparable with 
those from other European countries. [12,14] 

Donor characteristics, however, did change dramatically from predominantly traumatic 
events as cause of death in the past to largely cerebrovascular events in more recent 
years, accompanied by a significant increase in donor age (median age 27 years in 1985, 
vs 44 years in 2014, with extremes to 65 years.) This change encompasses an entirely 
different risk profile of donors since hearts of older patients with stroke, by definition, have 
more vascular comorbidities, affecting not only the eligibility of the donor heart, but also 
result in an increased risk of coronary allograft vasculopathy after transplantation. [15,16] 
With respect to donor age, Europe and especially the Netherlands completely diverge from 
the international data, as the median age of all cardiac donors used worldwide (including 
European data) is still only 35 years. [1] This has to be explained by the low mortality of traffic 
accidents in the Netherlands in comparison with other countries. [3] But without using those 
older donor hearts, almost no heart transplantations would be performed in the Netherlands.
Despite the significantly higher donor age, we demonstrate improved survival after HTx. This 
can be attributed to several factors. Apart from the availability of better immunosuppressive 
therapy and growing experience with this specific patient category in general, an important 
aspect is that all our follow-up is performed in-house and not elsewhere as in many 
other centres. Furthermore, international statistics are negatively biased by many smaller 
centres performing only a few transplantations per year and lacking this experience. This 
improved experience is also related to the treatment of complications such as cardiac 
allograft vasculopathy, renal failure and malignancies. [3,10] Furthermore, because of the 
lack of donor hearts there is more stringent selection of recipients in comparison with other 
countries, potentially resulting in a younger transplantation cohort than reported by the 
International Society for Heart and Lung Transplantation (54 years). [1]

Another remarkable change over time is the use of LVADs as bridge to transplantation. 
This option was not available at the start of the program in 1985, but nowadays is an 
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INTRODUCTION

Dilated cardiomyopathy (DCM), defined as left ventricular dilation and systolic left ventricular 
(LV) impairment unexplained by coronary artery disease or abnormal loading conditions, is 
a leading cause of heart failure and heart transplantation with an estimated prevalence of 
~36 cases per 100,000 in Europe.1 

Prior studies on clinical characteristics of patients with non-familial (sporadic) forms of DCM 
(SDCM) and familial DCM (FDCM) have reported that FDCM presents at earlier age, but 
presented conflicting evidence regarding phenotype severity. Some studies found more 
favourable clinical profiles in FDCM compared to SDCM whereas others report similar 
baseline phenotypes without any distinctive features2–5 Due to genotype-phenotype 
associations, such as frequent ventricular arrhythmias in LMNA and PLN mutation carriers, 
heterogeneity in prognosis however may be expected between FDCM and SDCM.6 Others 
postulated that FDCM present as SDCM and that proper active family screening is needed 
to distinguish true SDCM from undetected FDCM. This screening has been shown to 
effectively identify DCM and improve prognosis.3

Many studies have shown that DCM can be inherited as a genetic trait1,7–11 and that structural 
or functional LV abnormalities are present in 20% of asymptomatic relatives of patients with 
DCM.12,13 Genetic mutations are reported in more than a third of index patients with FDCM 
and in 8-25% of SDCM.8,14 The most common disease causing variants are found in genes 
coding for sarcomere proteins such as TTN, MYH7 and FLNC, and the nuclear envelope 
gene LMNA.15–17 Evidence also suggests that genetic predisposition in DCM may interact 
with extrinsic disease triggers such as toxin exposure (ethanol, chemotherapy, cocaine), 
viral infection and pregnancy.1,18,19 Nonetheless, toxin exposure may also be the sole putative 
trigger of DCM, for instance in alcoholic cardiomyopathy.18 

The ESC EORP Cardiomyopathy & Myocarditis Registry is a prospective observational 
multinational survey of consecutive patients with cardiomyopathies.20 To investigate the 
complexity in clinical characteristics and genetic yield, the current analysis of this registry 
aims to: (i) study clinical cardiovascular differences in adult FDCM and SDCM; (ii) report 
the frequency of genetic testing across Europe and (iii) report differences in genetic yield 
between familial and sporadic DCM.

ABSTRACT

Aims
Dilated cardiomyopathy (DCM) is a complex disease where genetics interplay with extrinsic 
factors. This study aimed to compare the phenotype, management and outcome of familial 
DCM (FDCM) and non-familial (sporadic) DCM (SDCM) across Europe.

Methods & Results
Patients with DCM that were enrolled in the prospective ESC EORP Cardiomyopathy & 
Myocarditis Registry were included. Baseline characteristics, genetic testing, genetic yield 
and outcome, were analysed comparing FDCM and SDCM. 
 
1260 adult patients were studied (238 FDCM, 707 SDCM, 315 not disclosed). Patients with 
FDCM were younger (p<0.01), had less severe disease phenotype at presentation (p<0.02), 
more favourable baseline cardiovascular risk profiles (p ≤ 0.007) and less medication 
use (p≤0.042). Outcome at one year was similar and predicted by NYHA class (HR 0.45; 
95%CI[0.25-0.81]) and LVEF per % decrease (HR 1.05; 95%CI[1.02 - 1.08]. Throughout 
Europe, patients with FDCM received more genetic testing (47% vs 8%, p<0.01) and had 
higher genetic yield (55% vs 22%, p<0.01). 

Conclusion
We observed that FDCM and SDCM have significant differences at baseline, but similar 
short-term prognosis. Whether modification of associated cardiovascular risk factors 
provide opportunities for treatment remains to be investigated. Our results also show a 
prevalent role of genetics in FDCM and a non-marginal yield in SDCM although genetic 
testing is largely neglected in SDCM. Limited genetic testing and heterogeneity in panels 
provides a scaffold for improvement of guideline adherence. 
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outcome were performed. Cox proportional hazards model was used for survival estimates 
reporting hazard ratios (HR’s) and 95% confidence intervals (95%CI’s) in univariable and 
multivariable analysis. As the goal was to report covariates and their association to outcome 
rather than a clinical risk calculator, both multivariable results as well as variable selection 
(p<0.05) were reported. To compare to external datasets, comparison of proportions was 
calculated using the “N-1” Chi-squared test. A two-sided P-value of <0.05 was considered 
as statistically significant. For sensitivity analyses, probands of FDCM were compared to 
SDCM. Analyses were performed using SAS statistical software version 9.4 (SAS Institute, 
Inc., Cary, NC, USA). 

METHODS

The general policy as well as baseline results of the new EURObservational Research 
Programme (EORP) cardiomyopathy registry of the ESC have been previously published. 
In short, the EORP cardiomyopathy registry is a multicentre registry where participating 
centres were asked to enter baseline, follow-up and genetic data of about 40 consecutive 
patients with cardiomyopathy per centre.20 Patients were included from December 1st 2012 
until December 30th 2016.

Inclusion/exclusion criteria
Adult patients with DCM defined by ESC consensus criteria were studied. Specifically: (1) 
left ventricular ejection fraction <45% (>2 SD) and/or fractional shortening <25% (>2 SD), as 
ascertained by echocardiography, radionuclide scanning or cardiac magnetic resonance 
imaging; and (2) left ventricular end-diastolic diameter >117% of the predicted value 
corrected for age and body surface area (Henry’s formula), which corresponds to 2 SD of 
the predicted normal limit +5%. Patients with heart failure attributable to coronary artery 
disease and clinically suspected or biopsy-proven myocarditis were excluded.20,21

Definitions
Familial dilated cardiomyopathy (FDCM) was defined by the presence of two or more 
affected individuals in a single family or the presence of an index patient with DCM and a first 
degree relative with documented unexplained sudden cardiac death at <35 years of age. 
Patients that did not meet these criteria were deemed sporadic DCM (SDCM). Patients with 
missing data concerning familial status (n=315) were compared to both FDCM and SDCM 
for clinical differences to account for bias. Primary outcome was defined as a composite 
of cardiovascular death, implantation of a ventricular assist device or heart transplantation. 
Secondary end-point was hospitalization for urgent cardiac reason. Genetic testing and 
variant classification was planned and performed according to clinician’s judgement. Genetic 
variants and their classifications were reported by individual researchers representing their 
centres. Since lab techniques and genetic coordinates were not recorded, centralized 
variant classification was not possible. The definitions of included variables have been 
listed in prior EORP publications and are included in the supplementary file S1.20,27

Statistical Analysis
Univariable analysis was applied to both continuous and categorical variables. 
Continuous variables were reported as mean ± standard deviation and/or as median and 
interquartile range (IQR) when appropriate. Among-group comparisons were made using 
a non-parametric test (Kruskal–Wallis). Categorical variables were reported as counts and 
percentages. Among-group comparisons were made using a χ2  test or a Fisher’s exact 
test if any expected cell count was less than 5. Plots of Kaplan-Meier curves for primary 
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TABLE 1. Continued
All (N=1260) FDCM (n=238) SDCM (n=707) p-value*

ECG parameters
QRS Duration (ms), median, IQR 105 (92-130) 100 (90-112) 104 (90-130) 0.02
LBBB 219 (21%) 18 (9%) 133 (22%) <0.01
RBBB 41 (4%) 6 (3%) 24 (4%) 0.53

Echocardiography parameters
LVEF (%), median (IQR) 31 (25-40) 37 (29-45) 31 (24-40) <0.01
LVEDD (mm), median (IQR) 64 (58-70) 60 (54-67) 64 (59-70) <0.01
Diastolic Dysfunction (grades) Normal 209 (25%) 63 (38%) 97 (20%)

<0.01
I (impaired relaxation) 299 (37%) 57 (35%) 169 (35%)
II (pseudonormal) 152 (19%) 28 (17%) 108 (22%)
III/IV (restrictive) 156 (19%) 16 (9%) 109 (22%)

Laboratory parameters
Haemoglobin (g/dL), median 
(IQR)

14 (13-15) 14 (13-15) 14 (13-15) 0.23

BNP (pg/mL), median (IQR) 297 (72-717) 108 (36-555) 404 (106-718) 0.03
NT-proBNP (pg/mL), median 
(IQR)

1102 (312-3341) 589 (156-1663) 1276 (452-
3527)

<0.01

Cardiac Magnetic Resonance Imaging
Performed 259 (21%) 66 (28%) 148 (21%) 0.04
Abnormal 237 (19%) 57 (24%) 136 (19%) 0.04
Late gadolinium enhancement 153 (64%) 41 (65%) 92 (67%) 0.83

Medication
β -blockers 1130 (90%) 203 (85%) 644 (91%) 0.01
Diuretics 895 (72%) 123 (54%) 540 (77%) <0.01
ACE-inhibitors or ATII-receptor 
blockers

1121 (89%) 208 (88%) 634 (89%) 0.329

Mineralocorticoid receptor 
antagonists

795 (63%) 119 (50%) 470 (67%) <0.01

Other antiarrhythmics 361 (29%) 56 (24%) 215 (30%) 0.04
Data are presented as number and percentages of valid. Patients with missing family status were not included in the 
subgroup SDCM in this table since their status was unknown. They have been included in the supplementary file S2 
table 1 both a separate group and combined with SDCM. Continuous data are presented as medians. NYHA: New York 
Heart Association. SCD: Sudden Cardiac Death. BMI: Body Mass Index. LBBB: Left Bundle Branch Block. RBBB: Right 
Bundle Branch Block. LVEF: Left Ventricular Ejection Fraction. LVEDD: Left Ventricular End Diastolic Diameter. Median 
presented with first and third interquartiles (IQR). Mean presented with ±Standard Deviation (SD). *FDCM vs SDCM

Follow-up data were available in 1105 (88%) cases (median follow-up duration: 372 days; 
interquartile range (IQR) 363-428). There were no differences observed in primary and 
secondary outcomes, or all-cause mortality when comparing FDCM (n=209) to SDCM (n=611) 
(supplementary table 3Bis). Age at first primary event was also similar for FDCM and SDCM 
(Figure 1). 

In multivariable analysis, BMI per unit decrease (HR 1.11; 95% CI[1.02-1.22]) and LVEF per % 
decrease (HR 1.08; 95%CI[1.03-1.11]) were associated with primary and secondary outcome. 
After stepwise selection NYHA class I/II versus III/IV (HR 0.45; 95%CI[0.25-0.81]) and LVEF 
per % decrease (HR 1.05; 95%CI[1.02 - 1.08] were predictive. There were no significant 
associations for all-cause mortality. Results of all analyses are available in the Supplementary 
file S2, table 10.

RESULTS

The cohort comprised 1260 patients, of whom 238 had FDCM, 707 SDCM and 315 were 
unclassified (unknown). Patients with unknown status were compared to FDCM and SDCM. 
The analysis revealed the “unknown” group to be similar to SDCM. These results as well as 
head to head group-comparisons are available in the supplementary file S2. 

The characteristics and treatment of patients with FDCM and SDCM are reported in Table 1. 
Compared to SDCM, patients with FDCM were younger (44 years [IQR 31-52]) vs 51 years[IQR 
41-58], p<0.001), had lower NYHA class (p<0.001) and BNP and NT-proBNP levels (p<0.028), 
less frequent left bundle branch block (9% vs 22%, p<0.001), smaller left ventricular end 
diastolic diameter (p<0.001) and higher left ventricular ejection fraction (LVEF) (37% vs 31%, 
p<0.001). Sixty percent of FDCM patients were index cases compared to 99% of SDCM 
patients (p < 0.001). Patients with SDCM had a higher burden of cardiovascular risk factors 
(hypertension, dyslipidaemia, diabetes, smoking, alcohol intake and high BMI than FDCM 
(all p≤0.007). A larger proportion of patients with SDCM received β-blockers, diuretics, 
mineralocorticoid receptor antagonists and other anti-arrhythmic agents (p ≤ 0.042) 
compared to FDCM. A sensitivity analysis comparing solely FDCM index patients with 
SDCM showed that all characteristics except BMI remained significantly different between 
the groups (Supplementary file S2, Table 1.1.A).

TABLE 1. Baseline table of patient characteristics, pharmacotherapy and outcome
All (N=1260) FDCM (n=238) SDCM (n=707) p-value*

Age at diagnosis (years), median 
(IQR)

49 (40-58) 44 (31-52) 51 (41-58) <0.01

Male 935 (74%) 165 (69%) 536 (76%) <0.05
NYHA class I 198 (19%) 65 (35%) 84 (14%) <0.01

II 448 (43%) 79 (42%) 261 (44%)
III 316 (30%) 37 (20%) 187 (31%)
IV 87 (8%) 6 (3%) 65 (11%)

Family history of SCD 132 (12%) 65 (29%) 28 (4%) <0.01
Cardiovascular risk factors

Hypertension 479 (38%) 54 (23%) 288 (41%) <0.01
Dyslipidaemia 472 (38%) 62 (26%) 274 (39%) <0.01
Diabetes Mellitus 211 (17%) 25 (11%) 127 (18%) <0.01
Alcohol use ≥ 1 units/day 174 (16%) 20 (10%) 124 (20%) <0.01
Smoking (current and former) 507 (42%) 71 (31%) 323 (47%) <0.01
Renal impairment 172 (14%) 24 (10%) 94 (13%) 0.20

Cardiovascular history
History of Atrial Fibrillation 356 (28%) 63 (27%) 202 (29%) 0.53
History of Stroke 87 (7%) 12 (5%) 47 (7%) 0.38
History of resuscitation 61 (5%) 15 (6%) 32 (5%) 0.28

ECG parameters
Atrioventricular block 1st 108 (9%) 20 (9%) 57 (8%) 0.02

2nd 6 (1%) 3 (1%) 2 (0%)
3rd 14 (1%) 6 (3%) 4 (1%)
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Genetic testing
In total, 214 out of 1260 (17%) cases were genetically tested (58 out of 707 (8%) SDCM 
and 114 out of 238 (48%) of FDCM). In 110 cases, the information on genetic testing was 
missing. Genetic testing was less frequently performed in Eastern Europe and North Africa 
(respectively 4 and 0%), whereas North, South and West Europe performed genetic testing 
in 21-27% of their population (Table 3). 

In 63 out of 114 (55%) tested cases of FDCM, at least one disease causing variant was 
reported compared to 13 out of 58 (22%) in SDCM. These variants were most prevalent 
in sarcomere (n=42) and nuclear genes (n=27), with most variants being discovered in 
LMNA (16% yield in FDCM, 3% yield in SDCM) and MYH7 (14% yield in FDCM, 0% in SDCM) 
(Supplementary file S2, Table 7). 

TABLE 3. Regional differences for genetic testing in DCM
All (N=1260) FDCM (N=238) SDCM (N=707) P-value*

North Europe (n=179) 37 (21%) 19 (56%) 11 (16%) <0.001
South Europe (n=425) 116 (27%) 74 (59%) 23 (14%) <0.001
West Europe (n=206) 48 (23%) 15 (56%) 24 (16%) <0.001
East Europe (n=302) 13 (4%) 6 (18%) 0 (0%) <0.001
North Africa (n=38) 0 (0%) 0 (0%) 0 (0%) NC
Total (1150) 214 (17%) 114 (48%) 58 (8%) <0.001

In 110 cases, genetic testing was unknown. NC: not calculable. *FDCM vs SDCM

FIGURE 2. Summary of the main findings of this study

FIGURE 1. Survival probability curves for primary outcome plotted over both time and age comparing 
SDCM to FDCM. 

TABLE 2. Multivariable analysis for primary outcome.
Variable Pval Hazard Ratio Hazard Ratio (95% CI)
Age at diagnosis per year increase 0.040 (S) 0.973 (0.949;0.999)
LBBB 0.635 (NS) 0.804 (0.327;1.977)
NYHA class I or II vs. III or IV 0.061 (NS) 0.483 (0.226;1.035)
Alcohol intake 1 unit per day or more 0.618 (NS) 1.224 (0.553;2.705)
Body Mass Index (kg/m²) per unit increase 0.012 (S) 0.896 (0.823;0.977)
Diabetes mellitus 0.029 (S) 2.815 (1.111;7.131)
Hypertension 0.859 (NS) 1.070 (0.509;2.251)
Smoking current of former 0.921 (NS) 0.964 (0.472;1.970)
LVEF per % decrease <0.001 (S) 1.073 (1.031;1.117)

Primary end-point was defined as a composite of cardiovascular death, implantation of a ventricular assist device or 
heart transplantation. 
Cox proportional hazards model is presented (hazard ratio’s and 95% confidence intervals). NS: not significant. S: 
Significant. NYHA: New York Heart Association. LBBB: Left Bundle Branch Block. LV: Left Ventricular Ejection Fraction.
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function in mutation carriers. In a recent report including 716 DCM cases, excessive alcohol 
consumption resulted in an absolute LVEF reduction of ±9% in patients with a truncating 
TTN variant.18 These results support the hypothesis that cardiovascular risk factors and 
external toxic substances interplay with genetic frailty, (auto)immunity or endocrinological 
disorders in the DCM phenotype.1 Whether modification of cardiovascular risk factors 
provide opportunities for treatment remains to be investigated.

Differences in prognosis between FDCM and SDCM remain controversial with most follow-
up studies of DCM not dividing populations in familial and non-familial categories.3,28,29 
Conflicting results of prior studies may be due to the absence of reliable clinical or 
morphological parameters to differentiate between FDCM and SDCM.1,3,28,29 Genotype-
phenotype associations affecting prognosis in DCM have been reported: mutations in 
LMNA and RBM20 predispose for more/younger heart transplantations.6 Mutations in FLNC, 
LMNA and PLN have been associated with sustained ventricular arrhythmias in DCM.30 
Nonetheless, our analysis did not yield a significant difference in outcome between FDCM 
and SDCM. 

Genetic mutations in DCM
Mutations in over 40 genes are causally related to DCM and explain up to 61% of cases in 
FDCM and up to 25% in SDCM.1,8,14,16,31 Our data confirm the higher yield in FDCM.8 At present, 
genetic screening is advised in patients with family history of DCM or a personal history 
of atypical features such as conduction/rhythm-disturbances7,8,11,31 and yet, less than 50% 
of all cases in the registry were tested. Moreover, the fact that heterogeneous screening 
strategies were used may have impacted on the yield of testing.20 For instance, mutations 
in Titin (TTN) have been implicated in up to 22% of SDCM, but this gene was only tested in 
19% of our patients with SDCM.32,33 The selective nature of genetic testing may explain the 
high prevalence of mutations in genes coding for sarcomere genes and LMNA. 

Genetic testing in Europe
We observed differences in genetic testing between European centres. Genetic testing was 
most prevalent in Northern, Southern and Western Europe (around 20% of the cohort) and 
least common in Eastern Europe and North Africa. Importantly, Southern Europe included 
a majority (54%) of the patients with FDCM in this cohort, which could have led to sampling 
bias.34,35 These shortcomings should by accounted for in terms of external validity of this 
study. Furthermore, the regional differences in our study as well as differences described by 
prior EORP studies provide opportunities to improve guideline adherence in Europe.20,35,36 
Even though guideline adherence is highest in secondary and tertiary centres and higher 
for cardiologists than other specialities, care may be fragmented in highly complex diseases 
such as inherited cardiomyopathies.37 This fragmentation can cause unwanted protocol 
deviations which may deteriorate quality of care. Several strategies have been suggested 

DISCUSSION

The three main findings of this study are: (i) patients with FDCM present at younger age with 
a less severe phenotype and lower burden of cardiovascular risk factors but similar short 
term prognosis to SDCM; (ii) patients with FDCM are genetically tested more frequently and 
with higher diagnostic yield than SDCM and; (iii) there are important differences in the use of 
genetic testing across European centres enrolled in the ESC cardiomyopathy registry. For 
a central illustration, these findings are summarized in Figure 2.

Disease burden
Overall, DCM patients included in this cohort had similar demographic and clinical 
characteristics compared to DCM populations described in the literature.2,4,5,12,22 However, 
in contrast to some studies, we found that patients with FDCM were diagnosed at a 
younger age and have a less severe phenotype than patients with SDCM but have similar 
cardiovascular prognosis.2,5 This was also seen in the prescribed medication, where we 
observed that patients with FDCM received less β-blockers, diuretics and mineralocorticoid 
receptor antagonists. These findings may reflect of cascade family screening in patients with 
suspected FDCM. However, when comparing FDCM index patients to SDCM patients, the 
clinical differences remained significant. Because family screening has shown to effectively 
identify DCM patients at earlier stages of disease, potentially benefiting prognosis, genetic 
counselling remains an important pillar of care in patients with DCM and their relatives.3 
Prognosis of DCM has been improving for the end-point of cardiovascular death of heart 
transplantation/assist device implantation, arguably because of better cardiovascular care 
and the early identification and classification of disease.23 Our observations however 
are more in line with earlier reports and less favourable outcome, which may be caused 
because of a selection bias towards more expert/tertiary centres.22

A relevant finding of this study was that patients with SDCM had a higher burden of 
cardiovascular risk factors, such as hypertension, hypercholesterolaemia and smoking. 
Because it is well known that these risk factors are more prevalent with increasing age and 
our patients with SDCM were significantly older than FDCM this result might be expected.24 
However, the age difference between SDCM and FDCM does not fully account for the 
observed increase in risk factors. When comparing our patients with SDCM to external 
cohorts from the same age group, we still observe a significantly increased burden of 
cardiovascular factors (p<0.01) in our patients with SDCM.24,25 In addition, the presence 
of common cardiovascular risk factors is also associated with worse outcome in SDCM. 
Smoking, for instance, independently increased sudden cardiac death in SDCM26 and 
diabetes confers a two- to five-fold added risk for heart failure development, even after 
adjustment for other traditional risk factors such as coronary heart disease.27 Alcohol is 
also known to be the both sole cause of cardiomyopathy and may negatively affect cardiac 
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INTRODUCTION

Non-ischemic dilated cardiomyopathy (DCM) is characterized by systolic dysfunction and 
dilatation of the left ventricle (LV) in the absence of coronary artery disease or abnormal 
loading conditions.(1) Patients with DCM are at increased risk of sudden cardiac death (SCD) 
and may benefit from an implantable cardioverter-defibrillator (ICD).(2, 3) Prior studies have 
shown that ICD implantation substantially reduces mortality in patients with heart failure, 
and consequently LV ejection fraction (LVEF) continues to be the main criterion to select 
patients for prophylactic ICD implantation.(1, 2, 4) However, these prior data were primarily 
obtained in patients with ischemic heart disease as illustrated by the DANISH trial.(4) Even 
though an updated meta-analysis on ICD trials still showed ICD implantation is effective, it 
shows these recommendations cannot be rightfully extrapolated to those with non-ischemic 
DCM.(4, 5) 

Over the past years, many studies described risk factors for ventricular arrhythmias in non-
ischemic DCM. These studies uniformly reported previous sustained ventricular arrhythmias 
and late gadolinium enhancement (LGE) on cardiac magnetic resonance imaging (CMR) as 
important predictors of arrhythmic events.(6) Of note, the prognostic value of many other 
investigated clinical risk factors remains unclear. In addition, most results were obtained in 
observational cohorts with relatively small patient numbers and high variation in reported 
associations. Prior reviews summarizing the available evidence dealt with this issue by 
combining both arrhythmic and heart failure outcomes, which however limits their ability to 
draw definite conclusions about SCD prevention.(7, 8)

In light of these shortcomings, we performed a meta-analysis and systematically reviewed 
the studies that assessed predictors of sustained ventricular arrhythmias in DCM. We 
evaluated quality of evidence and summarized the reported associations using pooled 
analysis where appropriate. The obtained results may be of value for making management 
recommendations for this growing group of at-risk DCM subjects.

ABSTRACT

Aims
Patients with non-ischemic dilated cardiomyopathy (DCM) are at increased risk of sudden 
cardiac death (SCD). Identification of patients that may benefit from implantable cardioverter-
defibrillator (ICD) implantation, remains challenging. In this study we aimed to determine 
predictors of sustained ventricular arrhythmias in patients with DCM.

Methods
We searched MEDLINE/EMBASE for studies describing predictors of sustained ventricular 
arrhythmias in patients DCM. Quality and bias were assessed using the QUIPS tool, articles 
with high risk of bias in ≥2 areas were excluded. Unadjusted hazard ratios (HR) of uniformly 
defined predictors were pooled, while all other predictors were evaluated in systematic 
review. 

Results
We included 55 studies (11451 patients and 3.7±2.3 years follow-up). Crude annual event 
rate was 4.5%. Younger age (HR 0.82), hypertension (HR 1.95), prior sustained ventricular 
arrhythmia (HR 4.15), left ventricular ejection fraction (LVEF) on ultrasound (HR 1.45), left 
ventricular (LV) dilatation (HR 1.10), and presence of late gadolinium enhancement (LGE) (HR 
5.55) were associated with arrhythmic outcome in pooled analyses. Prior non-sustained 
ventricular arrhythmia and several genotypes (mutations in Phospholamban (PLN), Lamin 
A/C (LMNA), and Filamin-C (FLNC)) were associated with arrhythmic outcome in non-
pooled analyses. Quality of evidence was moderate and heterogeneity among studies was 
moderate to high.

Conclusions
In DCM patients the annual event rate of sustained ventricular arrhythmias is approximately 
4.5%. This risk is considerably higher in younger patients with hypertension, prior (non-)
sustained ventricular arrhythmia, decreased LVEF, LV dilatation, LGE, and genetic mutations 
(PLN, LMNA, FLNC). These results may help determine appropriate candidates for ICD 
implantation.
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contacted to obtain these data. The obtained associations on RRs, ORs and p-values were 
systematically reported in a table format and summarized in the text. Second, we performed 
a meta-analysis of all studies that reported HRs, provided that the risk factor in question had 
uniform definitions across studies. We excluded studies only reporting ORs from the meta-
analysis, as ORs can only be reliably pooled when follow-up time is equal. Furthermore, 
since adjustment of HRs was performed differently in studies, only crude (i.e. unadjusted) 
HRs were included in the meta-analysis. 

Using the meta package in R (version 3.5.1 R Core Team (2018)), random-effects meta-analysis 
for the HRs were conducted.(12) Statistical heterogeneity between studies was assessed 
using the χ2 test for homogeneity, expressed by I2 index. P-values were interpreted in a 
descriptive manner using a significance value of <0.05.

Subgroup analyses were performed to assess the influence of ICD implantation. For 
sensitivity analyses, fixed-effect meta-analyses were performed and the difference to the 
results of the random-effects analysis were discussed.

METHODS

We performed a systematic search of MEDLINE and Embase in February 2018 for clinical 
studies on risk factors for sustained ventricular arrhythmias in patients with DCM which 
was updated on January 2020. In short, ischemia detection was mandatory for diagnosis 
of DCM in adult patients and since our outcome of interest is sustained ventricular 
arrhythmia, articles with only a composite outcome of heart failure without sub analysis of 
arrhythmic outcome were excluded (e.g. DANISH trial). A detailed description of our search 
strategy, inclusion, and exclusion criteria, as well as data extraction table can be found in 
the Supplementary Material. This study was performed in accordance with the Preferred 
Reporting Items for Systematic Reviews and Meta-Analyses.(9)

Study eligibility
Any original study involving an adult population with DCM as defined by the European 
Society of Cardiology(10) that investigated an association of more than one risk factor with 
a predefined arrhythmic outcome was considered eligible for inclusion. Bibliographies of 
relevant reviews were checked for additional references. Only studies that specifically 
reported outcome associations for ventricular arrhythmias were included, hence those 
studies with composite endpoints that included non-arrhythmic events were not considered 
eligible for inclusion. 

Primary outcome
Our primary outcome of interest was sustained ventricular arrhythmias, which was defined as 
spontaneous sustained ventricular tachycardia (VT), ventricular fibrillation (VF), (resuscitated) 
SCD, or appropriate ICD intervention for a ventricular arrhythmia. Non-sustained VT was 
excluded as an outcome. Since the majority of studies exclusively reported risk estimates 
for combined arrhythmic outcome, we were obliged to consider all arrhythmic outcomes 
as equal. 

Quality assessment
Individual study quality and risk of bias were assessed using the Quality in Prognostic 
Studies tool (QUIPS).(11) Study quality was assessed independently by two investigators 
(A.S. and E.K.); in case of disagreement, a third investigator (F.S.) also assessed study quality 
to reach consensus.

Statistical analysis
Our analyses were divided into two components: (1) a systematic review, and (2) a meta-
analysis of studies that were amenable for pooled analyses. First, we extracted all 
study characteristics, risk ratios (RRs), odds ratios (ORs), hazard ratios (HRs), confidence 
intervals (CIs) and p-values per risk factor. If HRs and CIs were not reported, authors were 
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crude annual event rate of 4.29% (95%CI [4.02-4.57]). 

Quality assessment
Using the QUIPS tool, the risk of bias was evaluated in six areas in observational prognostic 
research: (1) study participation, (2) study attrition, (3) prognostic facture measurement, (4) 
outcome measurement, (5) study confounding, and (6) statistical analysis and reporting. 
Results are shown in Figure 2. The highest risk of bias was introduced by study attrition, 
limited adjustment for confounders, and limitations in statistical analysis. Details can be 
found in the Supplementary Material.

Risk factors for life-threatening arrhythmias
The main risk factor associations are reported by category below. All extracted data are available 
in the Supplementary Material. The pooled HRs from our meta-analyses are summarized in 
Figure 3; the corresponding forest plots can be found in the Supplementary Material. 

History and Demographics 
Age was investigated as a predictor in nine studies, of which seven were pooled in the 
meta-analysis. This resulted in a small yet significant protective effect of age per 10 years 
increase (pooled HR 0.82; 95%CI [0.74-0.1.00]) with moderate heterogeneity (I2=51%). The 
remaining three studies that were not meta-analysed reported the same direction of effect, 
although this did not reach statistical significance .S31, S47, S40

Male sex was investigated as a predictor in 16 studies, of which eight were pooled in the 
meta-analysis. The pooled results revealed a non-significant higher risk of arrhythmias in 
males (pooled HR 1.51; 95%CI [0.96-2.37]) with moderate heterogeneity (I2=57%). In two of 
the remaining eight studies that were not meta-analysed, male sex was associated with an 
increased risk in arrhythmia .S51, S43

NYHA class was investigated as a predictor in ten studies. Meta-analysis of five of these 
studies showed an increased arrhythmic risk for NYHA classes III/IV compared to classes 
I/II, but this did not reach statistical significance (pooled HR 1.37; 95%CI [0.77-2.46]). The 
heterogeneity was significant (I2=65%). Likewise, four additional studies that were not meta-
analysed did not show a significant association between NYHA class and arrhythmic risk in 
the long-term.S41, S43, S42, S44, S55 

Hypertension was investigated as a predictor in four studies, of which two were meta-
analysed.S13, S23 Both of these studies reported a significant association of hypertension with 
life-threatening ventricular arrhythmias, leading to a pooled HR of 1.95 (95%CI [1.26-3.00]). 
The two remaining studies that were not pooled did not show any significantly increased 
risk.S51, S7

RESULTS

Search results
Figure 1 shows our search results and selection process. In short, our literature search 
yielded 1996 unique citations that were carefully screened based on title and abstract. 
Of these, 1793 citations were excluded as they did not report risk factors for arrhythmic 
outcomes in the appropriate population. The remaining 203 candidate publications 
received a thorough full-text assessment, resulting in a total of 51 studies that met the 
inclusion criteria. After updating the search in 2020, this yielded an additional four papers 
totalling 55 included studies. Of the included studies, 29 reported HRs uniformly and were 
thus included in the meta-analysis. 

FIGURE 1. Flowchart of search results and selection process

Study characteristics
Study characteristics are provided in Supplementary Table 1. The 55 included studies were 
published between 1992 and 2019 and comprised a total number of 11451 DCM patients of 
whom 76% were male and had mean age of 54±7.9 years. Mean follow-up time was 3.7±2.3 
years with a crude annual event rate of 4.5% (95%CI [4.30-4.76]). The 28 meta-analysed 
studies included a total number of 6287 DCM patients with 73% male and a mean age of 
55.0±4.3 years. Mean follow-up time of the meta-analysed studies was 3.9±2.6 years with a 
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FIGURE 3. Summary of meta-analysis. Pooled hazard ratios with 95% CIs are plotted. Results are 
grouped in “Demographics and History”, “Electrophysiology” and “Imaging”. For references and 
individual study data, see supplementary materials. 
Abbreviations: CI: confidence interval | NYHA: New York Heart Association | VT: ventricular tachycardia | sVT: sustained 
ventricular tachycardia| OHCA: out-of-hospital cardiac arrest | EPS: electrophysiological study | LVEF: Left Ventricular 
Ejection Fraction | LVEDD: Left Ventricular End Diastolic Diameter | LVEDV: Left Ventricular End Diastolic Volume | 
LVESV: Left Ventricular End Systolic Volume | LGE: Late Gadolinium Enhancement.

Family history of DCM was investigated as a predictor in four studies, which were all pooled 
in the meta-analysis. Pooled results did not direct towards an increased risk of arrhythmia 
(HR 0.90; 95%CI [0.52-1.54]) with moderate heterogeneity (I2=31%).

History of sustained ventricular arrhythmia was investigated as a predictor in ten studies, 
of which four were pooled in the meta-analysis. All these studies revealed an association 
between history of sustained ventricular arrhythmia and recurrent future arrhythmias, resulting 
in a strong pooled HR of 4.15 (95%CI [1.32-13.02]), however significant heterogeneity was 
observed (I2=93%). Of the six remaining studies, three showed a significantly higher arrhythmic 
risk (p≤0.03), whereas the other studies did not reach statistical significance. S9, S22, S29, S37, S47, S49

Syncope was investigated as a predictor in two studies, which were not meta-analysed due 
to missing HRs. None of these studies show any significant associations between syncope 
and arrhythmic outcome.S44, S14

Genetics
Mutations in genes coding for Lamin A/C (LMNA) Phospholamban (PLN), RNA binding motif 
protein 20 (RBM20), Myosin Binding Protein C (MYBPC3), Myosin Heavy Chain (MYH7), 

FIGURE 2. Quality assessment using Quality in Prognostic Studies tool of 51 articles included in the 
systematic review and meta-analysis. 
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risk factor in 14 studies which were not pooled due to missing HRs. In the majority of these 
studies (n=9), nsVT directed towards a significantly increased arrhythmic risk (p≤0.05).S29, S36, 

S37, S38, S41, S42, S46, S12, S51

Heart Rate Variability Standard Deviations of all NN intervals (HRV SDNN) was defined as 
the standard deviation of intervals between normal sinus beats on Holter monitoring. While 
six studies investigated HRV as a predictor, none were pooled in the meta-analysis due to 
the use of different cut-off values and definitions. Three of six studies showed a significant 
association between HRV and arrhythmic risk, while the other three studies reported no 
significant association.S21, S36, S37, S42, S44, S46

T-wave alternans (TWA) was defined as a change in T-wave morphology that occurs in 
each alternant beat and measured during exercise test by spectral analysis. TWA was 
investigated as a predictor in six studies, of which three were pooled in the meta-analysis. 
This resulted in a significant association with ventricular arrhythmias (pooled HR 6.5; 
95%CI [2.46 – 17.14]). The remaining three studies confirmed this association by reporting a 
significantly increased arrhythmic risk in the presence of TWA. S33, S42, S45

Signal-averaged ECG was investigated as a predictor in three studies, which were not pooled 
given the inconsistent methods of measurement and variable definitions of late potentials. 
None of the studies showed significant association with arrhythmic events.S29.S41,S42

Imaging
LV ejection fraction
LVEF per 10% decrease was investigated as a predictor in 13 studies using both 
echocardiography and cardiac magnetic resonance imaging (cMRI), of which eight were meta-
analysed. This showed a non-significant association with ventricular arrhythmias (pooled HR 
1.30; 95%CI [0.98-1.71]) with moderate heterogeneity (I2=58%). When pooling LVEF that was 
measured solely on echocardiography, this led to a significant association with ventricular 
arrhythmias (pooled HR 1.45; 95%CI [1.19-1.78]) with little heterogeneity (I2=0%). Additionally, 
seven other studies investigated LVEF per 5 or 10% decrease of which four reported a 
statistically significant effect directed towards increased arrhythmic risk. S43, S42, S46, S55

LVEF <30% was investigated as a predictor in six studies of which three were meta-analysed. 
The heterogeneity was large (I2=96%), leading to a non-significant pooled HR of 1.52 (95%CI 
[0.78 – 2.97]). In contrast, the three remaining studies all described a statistically significant 
increased arrhythmic risk. S41, S44, S47 

LVEF < 35% was investigated as a predictor in three studies, which were all meta-analysed 
leading to a pooled HR of 2.4 (95%CI [0.81 – 7.69]). S4, S5, S28

Cardiac Troponin T (TNNT2), and cardiac troponin I (TNNI3) were studied in a previously 
published meta-analysis.(13) Mutations in LMNA and PLN significantly led to more ventricular 
arrhythmias (p <0.05). Truncating mutations in Filamin C (FLNC) were investigated in three 
studies which reported frequent premature sudden death and ventricular arrhythmias (82%) 
in the study participants.(14, 15) 

Additionally, Ser96Ala polymorphisms in Histidine-Rich Calcium binding protein were 
investigated by one study, and were strongly associated with life threatening ventricular 
arrhythmias (HR 9.62; 95%CI [2.18 – 42.39]).S2

Electrophysiology
Atrial fibrillation was investigated as a predictor in seven studies, of which three were 
pooled in the meta-analysis. While all these studies reported an increased risk of ventricular 
arrhythmias in DCM patients with atrial fibrillation, none of them reached statistical 
significance, resulting in a non-significant pooled HR of 1.44 (95%CI [0.77 – 2.70]). Of the 
four remaining studies that were not pooled, only one reported a significant association 
between atrial fibrillation and ventricular arrhythmias.S41, S47, S51, S34

QRS duration per 10ms increase was investigated as a predictor in five studies of which 
four were meta-analysed. Three studies directed towards an increased risk, but only two 
reached statistical significance leading to a non-significant pooled HR of 1.12 (95%CI [0.95-
1.32]) with significant heterogeneity (I2=84%). One additional study showed no long-term 
increased risk with an HR of 1.00 (95%CI [0.98-1.02).S55 

QRS duration >110ms was investigated as a predictor in two studies which were both meta-
analysed. The pooled HRs however did not reach statistical significance and direction of 
effect contrasted QRS duration per 10ms increase (pooled HR 0.84; 95%CI [0.56-1.25]).S7, S25

Fragmented QRS (fQRS) was defined as any QRS morphology <120ms with additional R 
waves or notching of the R or S waves in at least two contiguous leads. fQRS was investigated 
as a predictor in two studies, which were both meta-analysed leading to a non-significant 
association with arrhythmic events (pooled HR 4.11; 95%CI [0.40 – 42.41]). S19, S5

Left Bundle Branch Block (LBBB) on 12-lead ECG was investigated as a predictor in seven 
studies, which were all pooled in the meta-analysis. This resulted in a non-significant 
association between LBBB and ventricular arrhythmias (pooled HR 1.05; 95%CI [0.532 – 
2.09]), although significant heterogeneity was observed (I2=81%).

Nonsustained VT (nsVT) was defined as ≥3 ventricular beats at ≥100 beats per minute either 
in patient’s history or observed on 24hour-Holter monitoring. nsVT was investigated as a 
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Miscellaneous
Several blood biomarkers such as atrial natriuretic peptide (ANP), B-type natriuretic peptide 
(BNP), estimated glomerular filtration rate (GFR), norepinephrine, and potassium did not 
significantly affect arrhythmic risk.S47, S31, S13, S22, S4 One study reported that plasma creatinine 
per µmol/litre increase was associated with increased arrhythmic risk (HR 1.01; 95%CI 
[1.00 – 1.02]).S13 Another study reported every one standard deviation increase of Growth 
Differentiation Factor 15 (GDF-15) in blood was associated with increased arrhythmic risk 
(HR 2.1; 95%CI [1.1-4.3])S52

Sensitivity Analyses
Since 18 out of 29 studies included ICD recipients, all analyses were repeated by excluding 
studies with ICD carriers. As shown in the Supplementary Materials, this revealed that 
pooled effects remained similar for all meta-analysed risk factors. In addition, changing our 
meta-analysis strategy from random-effects model to fixed effects model did not reveal any 
considerable differences in pooled risk estimates. 

FIGURE 4. Predictors of sustained ventricular arrhythmias in non-ischemic DCM. 

LV volumes
Left Ventricular End Diastolic Diameter (LVEDD) per mm increase on echocardiography 
was investigated as a predictor in four studies which were all meta-analysed. While all 
studies were directed towards an increased arrhythmic risk with increasing LVEDD, only 
one reached statistical significance resulting in a non-significant pooled HR (HR 1.07; 95%CI 
[0.97 – 1.17]) with significant heterogeneity (I2=86%). 

Left Ventricular End Diastolic Volume (LVEDV) and Left Ventricular End Systolic Volume 
(LVESV) per 10ml/m2 increase on cMRI were assessed as a predictor in two studies which 
were pooled in the meta-analysis. Both parameters led to a small but significantly increased 
arrhythmic risk (pooled HR 1.10 (95%CI [1.10 – 1.11]) for LVEDV per 10ml/m2, and pooled HR 1.10 
(95%CI [1.00 – 1.22]) for LVESV per 10ml/m2). 

Late Gadolinium Enhancement (LGE)
The presence of LGE was investigated as a predictor in eight studies which were all pooled 
in the meta-analysis. This revealed a strong association between presence of LGE and 
ventricular arrhythmias (pooled HR 5.55; 95%CI [4.02 – 7.67]). Since definitions of localisation 
patterns of LGE were not uniform, the association of its specific patterns with arrhythmic 
events could not be further evaluated. 

LGE per 5% increase in absolute LV mass was investigated in two studies which were 
both meta-analysed. Pooled results showed a non-significant increased risk for ventricular 
arrhythmias (HR 1.61; 95%CI [0.90 –2.93]), however with significant heterogeneity (I2=91%). 
The combined presence of LGE and QRS duration >120ms was investigated in one study 
and was associated with an increased arrhythmic risk (HR 9.53, 95%CI [2.84 – 31.98]).S52

Other imaging parameters
Global Longitudinal Strain (GLS) was defined by the average maximum systolic shortening 
in a 16-segment LV model. GLS per 1% increase was assessed as a predictor in two studies, 
which were both meta-analysed leading to a non-significant pooled HR of 1.21 (95%CI [0.97 
– 1.51]] with high heterogeneity (I2=82%). 

Other imaging parameters on echocardiography and right heart catheterisation were not 
associated with arrhythmic risk. One study investigated myocardial tissue damage in Single 
Photon Emission Computed Tomography (SPECT) using a semi-quantified myocardial 
severity index and reported a mild, yet significantly increased arrhythmic risk for higher 
severity indices (HR 1.01; 95%CI [1.00 – 1.02]).S26Subjective description of segmental wall 
motion abnormalities on echocardiography was associated with an increased arrhythmic 
risk (HR 4.1; 95%CI [1.90 – 9.00]). S39 
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History and demographics 
Younger age was associated with ventricular arrhythmias, which is in line with literature on 
other cardiomyopathies and primary arrhythmia syndromes. This finding may reflect faster 
conduction in younger heart and lower thresholds for arrhythmia due to changes in Ca2+ 
handling. (19) Given the competing risks of heart failure and arrhythmic outcome, the exact 
influence and mechanism of young age remains up to investigation. 

Male sex was not significantly predictive of arrhythmias although the results do indicate an 
association. This is similar to HCM but distinctly different from ACM, in which male sex was 
a strong predictor of arrhythmias.(17, 20). There is a growing body of literature suggesting 
sex differences in cardiovascular diseases and a lower incidence of sudden cardiac death 
in women. Suggested mechanisms may be related to hormonal effects on Ca2+ handling, 
shorter QT interval in adult males and differences in underlying pathology such as coronary 
artery disease. 18 However, studies on direct effects of sex differences have not been 
conclusive and its exact involvement in ventricular arrhythmia remains unclear.(21, 22) 

In our pooled data, hypertension was significantly associated with outcome. This effect may 
be caused by cardiac remodelling with persistent systemic hypertension as experimental 
clinical studies have provided evidence for myocardial fibrosis and changes in LV function.
(23) Whether this constitutes an opportunity for arrhythmia prevention by antihypertensive 
medication (i.e. risk factor modulation) remains up for investigation.

Genetics
The evidence for an association between genotype and outcomes has been recently 
reported in a meta-analysis.13 Ventricular arrhythmias in PLN, LMNA and FLNC in DCM 
patients are markedly higher.(13, 14) Phospholamban is known for an overlap syndrome 
between DCM and ACM.(24) It regulates the sarcoplasmic reticulum Ca2+ ATPase (SERCA2a) 
pump and interplays with Na+/Ca2+ exchanger (SLC8A1 or NCX1), which is important for 
maintaining calcium homeostasis in cardiomyocytes.(25) Calcium dysregulation can elicit 
early/delayed after depolarisations thereby increasing arrhythmogenicity.(26) Lamin A/C is 
a nuclear envelope protein and has been association with arrhythmias in many studies.(13) 
Mutations in Lamins A and C may lead to nuclear abnormalities. Because these proteins 
also interact with the cytoskeleton and extracellular matrix, they can affect the structural 
myocardial stability, which explains the detrimental effect in the heart.(27) Filamin C is 
essential for cardiomyocyte structuring, anchoring membrane proteins to the cytoskeleton 
and binding several proteins in the Z-disk of the sarcomere. Mutations in Filamin C may lead 
to an overlapping DCM and ACM phenotype with LV dysfunction and frequent ventricular 
arrhythmias.(14) These association of genotype with outcome suggest a potential for 
individualized treatment strategies.

DISCUSSION

This study aimed to systematically review predictors of sustained ventricular arrhythmias 
in non-ischemic DCM, examine the quality of evidence, and establish potential risk factors 
of adverse clinical outcome. We found an annual risk of 4.5% of sustained ventricular 
arrhythmias, which underlines the importance of ICD implantation in this cohort. Of note, 
arrhythmic risk is considerably higher in younger patients with hypertension, prior (non)
sustained ventricular arrhythmia, decreased LVEF in ultrasound, LV dilatation, the presence 
of LGE, and genetic mutations (PLN, LMNA, FLNC). While these findings may help select 
appropriate candidates for ICD implantation, they must be interpreted in light of 1) the 
quality of evidence; 2) clinical utility of promising risk factors; and 3) future directives. 

Quality of Evidence
An important limitation of prior studies is the lack of statistical power and limited adjustment 
for confounders. Because the number of events per variable in our included studies was 
often less than ten (a number generally recommended in regression analysis), statistical 
models had limited power for adequate confounder adjustment.(11, 16) This resulted 
in variable risk of bias in overall studies which may in part explain the inconsistency of 
reported results. Furthermore, some included reports are up to 20 years old. During this 
period, medical treatment for heart failure has changed substantially and event rates have 
changed too. In addition, diagnostic methods have evolved over the years, which may have 
led to more frequent diagnosis of DCM. 

To compensate for power limitations, we attempted to pool results from studies that report 
HRs into a quantitative meta-analysis. Our decision to only meta-analyse studies that report 
HRs resulted in a lower risk of bias given their use of recommended statistical methods. 
However, since pooling is only appropriate in the setting of uniform definitions, the number 
of studies included in our meta-analysis was unfortunately limited. Given these constraints 
in individual study quality, historical changes in heart failure workup and our inability to pool 
all available results, we deem overall quality of evidence to be moderate, which should be 
taken into consideration when assessing the results of our study. 

Promising risk factors
For a prognostic model to be useful in daily clinical practice, its predictors must be reproducible 
and easy to obtain. In this light, the utility of parameters limited in standardisation such as TWA 
and HRV remains limited, whereas conventional measurements have consistently performed 
better in recently published risk prediction models for hypertrophic (HCM) and arrhythmogenic 
cardiomyopathy (ACM).(17, 18) Based on our findings, promising risk factors include younger 
age, hypertension, prior (non)sustained ventricular arrhythmia, decreased LVEF, LV dilatation, 
LGE, and presence of genetic mutations in PLN, LMNA, and FLNC (Figure 4).
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37) The role of newer parameters that quantify diffuse fibrosis (e.g. T1 mapping) remains to 
be investigated.

Prognostic model for ICD implantation in DCM
The results obtained from this meta-analysis may help for further model building to 
improve risk assessment in DCM. Since patients with DCM can experience both heart 
failure related outcomes (heart transplantation, assist device, heart failure related death) 
as well as arrhythmic endpoints (VT, VF, SCD) they are considered to be competing: one 
event hinders the occurrence of another event of interest. (28) Quite logically, when a 
patient dies from heart failure, this hinders the occurrence of a possible VT and at any 
time before experiencing either one of them, patients are simultaneously at risk of both 
events. Nonetheless, included articles solely reported HR’s which can overestimate the 
probabilities of both event of interest as well as the competing events. To adequately 
capture real clinical risks, future modelling should focus more on competing risks using 
methods such as the cumulative incidence competing risk or subdistribution hazards. (38) 
Future clinical decision support tools for ICD implantation in non-ischemic DCM should 
incorporate a multitude of relevant variables as well as perform competing event analyses 
to better reflect real clinical practice.

Conclusion
The annual risk of life-threatening ventricular arrhythmia in DCM is approximately 4.5% and 
is considerably higher in patients at younger age, patients with hypertension, prior (non)
sustained VT, decreased LVEF, LV dilatation, presence of LGE and pro-arrhythmic genetic 
mutations (PLN, LMNA, FLNC). These results may help for further prognostic model building 
to improve personalized risk assessment in non-ischemic DCM. 

Perspectives
Clinical competency in heart failure patient care and preventive medicine: 
SCD risk assessment in non-ischemic DCM can be improved using multiple tests rather 
than solely relying on LVEF which is in line with the neutral results from the DANISH trial.(4)

Translational outlook
The examples set by the HCM/ACM risk calculators should be followed to enable personalized 
risk assessment.(17, 20) Such a model should be built by including the promising risk factors 
of our study but also several other suggested risk factors including sex. 
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Electrophysiology
In our meta-analysed data, prior (non-)sustained ventricular arrhythmias were strongly 
associated with future arrhythmias. It seems obvious that those with prior sustained ventricular 
arrhythmias (i.e. the secondary prevention population) should receive an ICD, which is 
incorporated as a recommendation in many guidelines.(3) However, recommendations for 
the primary prevention population are less straightforward. Our results suggest that also 
prior non-sustained VT is associated with subsequent sustained ventricular arrhythmias 
which is in line with the AMIOVIRT and DEFINITE trials that solely included patients with 
prior non-sustained VTs or frequent extrasystoles therefore increasing the arrhythmic 
burden.(28, 29) In addition, it is important to keep in mind that VTs and VF may reflect a 
different underlying substrate. Recently, a large study in ACM showed that prior VT did not 
predict subsequent VF events, which appeared to be more stochastic.(30) 
Although currently implantation of an ICD is recommended for primary prevention in patients 
with DCM and LV ejection fraction < 35% and NYHA class II-III who have expected survival 
of at least 1 year, catheter ablation (CA) of ventricular tachycardia (VT) might be a potential 
therapeutic approach in the future as stand-alone therapy or as first step before implanting 
ICD.(31) Tung et al. showed that CA of monomorphic VTs in patients with structural heart 
disease (ischemic or non-ischemic cardiomyopathy) resulted in 70% freedom from VT 
recurrence, and that freedom from VT recurrence was associated with improved transplant-
free survival, independent of heart failure severity.(32) In a more recent study Santoro et 
al. showed that whereas VT recurrence without clustering had no prognostic implication 
in patients with non-ischemic DCM, incidence of VT clustering (VTc) was an independent 
predictor of mortality. This group might be the better candidate for ICD implantation.(33)	
TWA was strongly associated with outcome which may reflect autonomic dysfunction. Even 
though it holds potential in identifying high risk patients, its clinical role has not been fully 
defined therefore limiting its utility in daily clinical practice.(34) 

Imaging
Non-ischemic DCM is defined diagnostically as either increased LV dilatation or decreased 
LV function (LVEF<45%) and our pooled results showed that both LV dilatation and 
decreased LV function confer prognostic information.(35) Even though this was expected, 
the effect size was relatively small. To date, six trials have investigated the survival benefit of 
ICD therapy for primary prevention that included patients with DCM. All had an LVEF ≤35%, 
with an average of 24% in a recently updated meta-analysis therefore limiting its value in 
patients with an LVEF higher than 35%.(5, 35) Identification of patients with high arrhythmic 
risk with preserved or slightly reduced LVEF therefore remains uncertain. Reduced LVEF 
is related to extent of fibrosis, a substrate for zig-zag pathways and re-entrant arrhythmias 
and its relation to arrhythmia seems logical.(36) CMR has the ability to perform tissue 
characterization by LGE reflecting presence of localised (segmental) fibrosis.(6) Logically, 
the presence of LGE is strongly associated with arrhythmia throughout different studies.(8, 
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INTRODUCTION

Besides progressive heart failure, non-ischemic dilated cardiomyopathy (DCM) patients 
are at increased risk for developing sustained ventricular arrhythmias (SVAs) and sudden 
cardiac death (SCD) and may benefit from primary preventive implantable cardioverter-
defibrillator (ICD) implantation (1,2). While left ventricular ejection fraction (LV-EF) has been 
prospectively validated in ICD implantation guidelines (3,4), the clinical value of other risk 
factors and cut-off free estimates has not been shown convincingly. The importance of new 
approaches is, however, imminent: The contemporary Danish-Trial failed to show survival 
benefit in DCM patients after primary preventive ICD implantation, which questioned the 
usefulness of LV-EF as sole risk marker in non-ischemic etiologies (5). In sub-group analysis, 
it became evident that the concurrent mortality risk from heart failure and the stage of the 
disease is important. In a recent position statement by the European Society of Cardiology, 
the continuum of DCM phenotypes is appreciated by introducing the concept of dynamic 
disease expression, highlighting that arrhythmogenic stages can precede ventricular 
dysfunction and dilatation (6). Nearly one third of DCM patients, for example, develop 
ventricular arrhythmias without having severely reduced LV-EF (<35%) and hence are not 
fulfilling guideline criteria for primary prevention (7).

Several clinical and molecular factors for risk prediction in DCM have already been 
suggested (8-10). Furthermore, a systematic review and meta-analysis of 55 studies was 
conducted within the European Network DETECTIN-HF in search for independent and 
robust risk factors (1). For hypertrophic cardiomyopathy (HCM), the European Society 
of Cardiology (ESC) introduced successfully a cut-off-free, multivariable risk model for 
predicting life-threatening arrhythmias (11) and 6 years after its introduction several studies 
have validated its clinical applicability (12,13). However, in case of DCM there is lack of 
a suitable risk calculator that allows easy integration of the individual factors and that is 
validated in a sufficiently large cohort. Hence, in daily practice, LV-EF remains the main 
determinant in decision making for ICD implantation in these patients. 

To aggregate commonly available clinical risk factors and aggregate their individual weight 
to predict ventricular arrhythmia, we aimed to develop a risk calculator for clinical decision 
making. We restricted the model to broadly available clinical parameters. Our multi-stage 
model is, however, able to integrate further information such as presence of CMR-derived 
late gadolinium enhancement (LGE) if available. 

ABSTRACT

Background
Non-ischemic dilated cardiomyopathy (DCM) can be complicated by sustained ventricular 
arrhythmias (SVA) and sudden cardiac death (SCD). By now, left-ventricular ejection fraction 
(LV-EF) is the main guideline criterion for primary prophylactic ICD implantation, potentially 
leading either to overtreatment or failed detection of patients at risk without severely 
impaired LV-EF. The aim of the European multi-center study DETECTIN-HF was to establish 
a clinical risk calculator for individualized risk stratification of DCM patients. 

Methods
1,393 patients (68% male, mean age 50.7±14.3y) from four European countries were included. 
The outcome was occurrence of first potentially life-threatening ventricular arrhythmia. 
The model was developed using Cox proportional hazards, and internally validated using 
cross validation. The model included seven independent and easily accessible clinical 
parameters sex, history of non-sustained ventricular tachycardia, history of syncope, family 
history of cardiomyopathy, QRS duration, LV-EF, and history of atrial fibrillation. The model 
was also expanded to account for presence of LGE as the eight8h parameter for cases with 
available cMRI and scar information. 

Results
During a mean follow-up period of 57.0 months, 193 (13.8%) patients experienced an 
arrhythmic event. The calibration slope of the developed model was 00.97 (95% CI 0.90-
1.03) and the C-index was 0.72 (95% CI 0.71-0.73). Compared to current guidelines, the 
model was able to protect the same number of patients (5-year risk ≥8.5%) with 15% fewer 
ICD implantations.

Conclusions
This DCM-SVA risk model could improve decision making in primary prevention of SCD 
in non-ischemic DCM using easily accessible clinical information and will likely reduce 
overtreatment. 
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and potentially life-threatening arrhythmia, terminated by adequate anti-tachycardia pacing 
(ATP). The endpoint for a patient was reached in case of the first event. ICD implantation 
during follow-up, heart transplantation (HTX), implantation of ventricular assist devices 
(VAD), and all-cause mortality were also reported. 

Selection of predictors and sample size
Clinical variables were pre-selected based on the results of a systematic literature review 
and meta-analysis (1,8-10,14-21), clinical expertise, as well as their availability in clinical 
practice. The following 10 variables were selected: gender, age at first visit, history for 
syncope, non-sustained ventricular tachycardia (nsVTs) in patients’ history or in Holter 
performed within 14 days after first visit, family history for cardiomyopathy (CMP), family 
history for SCD, native QRS duration (QRS duration without pacing), LV-EF and LVEDD in 
echocardiography, as well as history of atrial fibrillation (AF). Although significantly different 
between patients with and without events, left atrial (LA) size was not included in the model 
since LA enlargement predisposes to AF and correlated to this in our cohort. An additional 
model was built by adding LGE presence as a marker for myocardial scar.

To ensure model’s accuracy and precision, a minimum number of 10 events per variable 
(EPV) are recommended (22). In our study cohort 194 first events were observed, which 
would allow estimation of 19 variables. 

Data collection and statistical analysis
Patients were followed-up prospectively every 6-12 months or earlier if clinical symptoms 
worsened. Patients’ medical records were extracted from the hospital information systems 
and study databases and critically reviewed by two experienced cardiologists/residents 
from each center (E.K and F.S from Germany, A.S and F.A from the Netherlands, P.C and Z.B 
from Poland, and P.C. and P.S from France). Data are available upon request and approval 
by the data access committee of the Detectin-HF consortium for external analyses. More 
information about data proposal requests may be found on www.Detectin-HF.eu.

All analyses were performed in Python 3.7. Statistical tests utilized the Scipy 1.4.1 package. 
Categorical variables were checked for significance with χ2-tests and continuous variables 
with t-tests. For developing the Cox regression model Lifelines 0.24.5 was used. The follow-
up duration was calculated from the date of first visit to the date of last visit at center or 
date of reaching an endpoint. In case of missing data points, Multiple Imputation by Chained 
Equations (MICE) was used for imputation. Patients with more than two missing variables 
were excluded from model development. The scikit-learn 0.22.1 implementation of MICE 
was used for the data imputation. The imputation model included all pre-selected predictors 
and the outcome variable. Overall, 30 datasets were imputed for different random states of 
the imputer. The imputed datasets were combined according to Rubin’s rules (23). 

MATERIALS AND METHODS

Study design 
The demographic and clinical data used for this study was retrieved from local registries 
(retrospective). For follow-up, patients were investigated at the recruiting center during their 
routine clinical visit or were contacted by phone during this study. The study was handled in 
accordance with the Declaration of Helsinki. The ethics committee and institutional review 
boards of all four centers approved the inclusion and study of biomaterials and collected 
clinical data and all patients had given informed written consent. After data harmonization 
and cleaning, a model based on previously identified and selected variables was developed 
using the Cox proportional hazards model. An internal validation was performed using cross 
validation. 

Study population and participating centers
The study cohort originated from specialized cardiomyopathy centers across Europe: (i) 
Institute for Cardiomyopathies (ICH), Heidelberg, Germany (iia) Department of Cardiology, 
Division Heart & Lungs, University Medical Center Utrecht, the Netherlands (UNRAVEL) 
(iib) Netherlands Heart Institute, Utrecht, the Netherlands (iii) Unit for Screening Studies 
in Inherited Cardiovascular Diseases, National Institute of Cardiology, Warsaw, Poland 
(OBP-NIKARD) and (iv) Referral Center for hereditary heart disease, Pitié Salpêtrière 
Hospital & Sorbonne University, Paris, France (CEREFCOEUR). Patients were all evaluated 
and followed-up if they (i) were diagnosed with definite non-ischemic DCM and (ii) had 
not experienced haemodynamically significant sustained ventricular arrhythmia or aborted 
SCD before the first visit. All recruiting centers defined non-ischemic DCM according to the 
guidelines which applied to the time of recruitment. These cohorts include patients with 
left ventricular or biventricular systolic dysfunction and dilatation that are not explained by 
abnormal loading conditions or coronary artery disease as well as patients with hypokinetic 
non-dilated cardiomyopathy with left ventricular or biventricular global systolic dysfunction 
without dilatation (defined as LVEF<45%), not explained by abnormal loading conditions or 
coronary artery disease (6). Patients with assured diagnosis of cardiac sarcoidosis, acute or 
fulminant myocarditis, as well as assured chronic myocarditis were excluded. Only patients 
≥18 and <80 years at first visit were included in the model generation. Since we aim to 
introduce a model that is applicable at first clinical visit, we took the age at first visit as 
inclusion age. All patients with childhood cardiomyopathy, defined as disease onset in the 
first 10 years of life, were excluded from the analysis. 

Study outcomes
The study outcome was sustained ventricular arrhythmia (SVA) following first visit and 
included a composite of occurrence of SCD, aborted cardiac arrest (SCA), hemodynamically 
relevant ventricular tachycardia (VT), which had to be defibrillated internally or externally, 
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performance with current stratification strategies. According to most recent ESC guidelines, 
ICD implantation is indicated for LV-EF ≤35% + NYHA II/III or for asymptomatic patients with 
LV-EF ≤30% (25). 

Model development and validation
Multivariable Cox regression was used for the model development. To eliminate problems 
associated with predictor selection, a significance level of 0.15 was defined. The final risk 
model was then built with the help of backward elimination. In order to make efficient use 
of the data, we used the entire cohort to build the risk model. 

10-fold cross validation was used to internally validate the model. Furthermore, the cross 
validation was looped for ten times with different data splits to increase the accuracy of the 
performance estimation. The degree of agreement between the observed and predicted 
5-year risk for SVA was estimated by the average calibration slope, with a value close to 
1 showing good overall agreement (24). A calibration plot was also created to graphically 
evaluate the agreement between predicted and observed outcome. C index and D statistic 
were used as indicators of how well the model discriminates between high and low risk 
patients, with a value of 0.5 for C-index indicating no discrimination and 1 for perfect 
discrimination and increasing values for D-statistic meaning better discriminatory ability of 
the model.  

Model
The following equation calculates the risk of SVA at 5 years for each individual:

P(VA at time t) = 1- S0(t)exp(LP)

S0(t): the average survival probability at time t, LP: prognostic index which is the sum of the 
products of the predictors and their associated coefficients for each given patient.

Secondary model development and further validation 
For further validation, patients of 3 centers were used for model development and the ones 
from the remaining center were used for validation. This was performed 4 times so that 
each center was used once for validation. C index, D-statistic and calibration slope were 
calculated for each model to evaluate the homogeneity between centers.

For sensitivity analysis penalized Cox regression was used. Four different models were 
trained to estimate the center effect. Models were built with and without the information 
about the center. Furthermore, these two scenarios were evaluated on the subset of patients 
with complete information and additionally the imputed dataset. To eliminate overestimation 
of risk by including ATPs as event, a further sensitivity analysis was performed excluding 
ATP events. Additionally, a sensitivity analysis was performed to investigate the model 
performance in patients without CRT.

To assess any potential superiority of our developed risk model, we compared its 
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FIGURE 1. Cumulative event-free survival of the entire cohort (SVA). Shaded area shows 95% 
confidence intervals. 

TABLE 1. Clinical characteristics of patients with and without the endpoint SCD
Variable Overall Patients with event Patients with no event P-Value
Demographics
Number of patients, n 1393 193 1200
Male sex, n (%) 950 (68.2%) 144 (74.6%) 806 (67.2%) 0.04*
Mean age at first visit, years ± SD 50.7 ± 14.3 51.0 ± 14.2 50.6 ± 14.3 0.7
Mean age at diagnosis, years ± SD 48.7 ± 14.7 47.4 ± 15.2 49.0 ± 14.6 0.2
Non-sustained VT before first visit, n (%) 225 (20.6%) 58 (46.8%) 167 (17.2%) <0.0001*
History of unexplained syncope, n (%) 92 (6.6%) 21 (10.9%) 71 (5.9%) 0.01
Family history for CMP, n (%) 275 (25.2%) 35 (28.2%) 240 (24.8%) 0.4
Family history for SCD, n (%) 93 (6.7%) 15 (7.8%) 78 (6.5%) 0.5
NYHA class, n (%) 0.02*
  I 376 (27.4%) 37 (19.5%) 339 (28.6%) 0.04*
  II 573 (41.7%) 82 (43.2%) 491 (41.5%)
  III 346 (25.2%) 56 (29.5%) 290 (24.5%)
  IV 79 (5.7%) 15 (7.9%) 64 (5.4%)
Medication at first visit
 ACE inhibitor/AT1 antagonist 1051 (96.2%) 121 (97.6%) 930 (96.0%) 0.4
 Aldosteron antagonist 534 (48.9%) 76 (61.3%) 458 (47.3%) 0.003*
 Other diuretics 561 (51.3%) 75 (60.5%) 486 (50.2%) 0.03*
 Beta blocker 986 (90.2%) 117 (94.4%) 869 (89.7%) 0.09*
Medication at follow-up
 ACE inhibitor/AT1 antagonist 766 (82.1%) 95 (81.9%) 671 (82.1%) 0.9
 Aldosteron antagonist 484 (51.9%) 85 (73.3%) 399 (48.8%) <0.0001*
 Other diuretics 452 (48.4%) 85 (73.3%) 367 (44.9%) <0.0001*
 Beta blocker 808 (86.6%) 108 (93.1%) 700 (85.7%) 0.03*
ECG
History of atrial fibrillation, n (%) 380 (27.4%) 72 (37.7%) 308 (25.8%) 0.0006*
Native QRS duration, mean ± SD 116.2 ± 29.2 122.5 ± 31.3 115.3 ± 28.7 0.003*

RESULTS

Baseline clinical characteristics of study population
Our study population included 1,393 patients with non-ischemic dilated cardiomyopathy. 
Table 1 lists baseline clinical, electrocardiographic and echocardiographic characteristics of 
the study cohort. Sixty-eight percent of the patients were male with a mean age of 50.7±14.3 
years at first visit. An unexplained syncope before first visit was reported in 6.6% of the 
patients. 25.2% had positive family history for CMP, and 6.7% had positive family history 
for SCD. 27.4% were asymptomatic (NYHA I) at time of first visit, 66.9% reported obvious 
dyspnoea on exertion (NYHA II or III) and 5.7% were symptomatic at rest (NYHA IV). 27.4% 
had history of atrial fibrillation and the mean native QRS duration was 116±29ms. Mean 
left ventricular ejection fraction measured using echocardiography was 31±12%. Altogether 
around two-thirds had an LV-EF ≤35%. Mean left ventricular end-diastolic diameter (LVEDD) 
was 61.4±10.1mm. Mean atrial size was increased with 43.5±8.1mm, measured in parasternal 
long axis view (PLAX). Definitions of the pre-selected variables and their codings are 
summarized in Table 2. Altogether, 1,051 patients had complete data for the 10 pre-selected 
model parameters and 1,114 for the final model with 7 parameters. None of these 7 parameters 
correlated significantly with each other (Online Figure 1). 

The ICDs were programmed in each center based on its standard clinical practice routine 
including one VF zone and one or two VT zones with ATP that could be followed by 1 or 2 
ICD shocks. 

Outcomes (SVA/SVA equivalent events during follow-up)
The minimum follow-up time was one month. During a mean follow-up period of 57.0 months 
[IQR 25.0; 93.0 months], 193 (13.8%) patients reached the endpoint of first SVA/equivalent. 
Figure 1 shows Kaplan Meier survival plots of the study population. The study outcome 
consisted of 7 (0.5%) SCD, 27 (1.9%) aborted cardiac arrest, 96 (6.8%) hemodynamically 
relevant ventricular tachycardias that had to be defibrillated internally or externally, and 63 
(4.5%) potentially life-threatening arrhythmia, which were terminated by adequate ATPs. The 
mean cycle length of VT at ATP response was available in 35 cases (320±28ms) and the 
mean cycle length at ICD shock in 32 cases (274±81ms). At last follow-up, 169 (12.1%) patients 
had died, 61 (4.6%) had undergone HTX, 35 (2.6%) had received VADs, and 583 (44.9%) had 
received ICD/CRT-D. 244 (17.5%) patients received at some point a CRT-P/CRT-D. Clinical 
characteristic of patients with and without the endpoint SVA are shown in Table 1. 
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and D-Statistic of 1.29 (95% CI 1.17-1.40). This shows that our model performs very well in 
DCM patients, regardless of whether they carry a CRT or not (Online Table 5).

FIGURE 2. Agreement between observed (y axis) and predicted (x axis) 5-year risk for the compound 
outcome measure. Kaplan–Meier estimates with 95% CI intervals for quintiles of predicted risk are 
shown by triangles. Number of patients with a predicted risk is shown as spike histogram on x axis. 

TABLE 2. Definitions of the pre-selected variables and their codings
Predictor variable Definition Coding
Sex (male)           Patients‘ reported sex Binary (male/female)
Age Age at evaluation Continuous, years
History for nsVT     3 or more consecutive ventricular beats with a rate of >100 beats 

per minute with the duration of less than 30 seconds without 
haemodynamic compromise

Binary (yes/no)

History for syncope   Transient loss of consciousness, unexplained or probably cardiac Binary (yes/no)
Family history for CMP  At least one 1st and/or 2nd degree family member <65 years of age 

with proven DCM, HCM or ACM Binary (yes/no)

Family history for SCD At least one 1st degree family member with proven SCD or aborted 
SCD <50 years of age Binary (yes/no)

QRS duration           Duration in ms Continuous, ms
LV-EF          Determined by echocardiography Continuous, %
LVEDD Determined by echocardiography Continuous, mm
History of AT Proven atrial fibrillation in history on ECG, or on ECG during regular 

checkup Binary (yes/no)

TABLE 1. Continued
Variable Overall Patients with event Patients with no event P-Value
Holter 685 83 602
nsVT on 24h holter, n (%) 244 (35.9%) 56 (68.3%) 188 (31.4%) <0.0001*
Echocardiography
LV-EF ≤ 35%, n (%) 792 (64.8%) 140 (82.4%) 652 (62.0%) <0.0001*
LV-EF, mean ± SD (%) 31.1 ± 12.3 25.5 ± 10.6 32.0 ± 12.3 <0.0001*
LVEDD, mean (mm) 61.4 ± 10.1 65.7 ± 10.9 60.8 ± 9.8 <0.0001*
Left atrium size, mean (mm) 43.5 ± 8.1 45.8 ± 8.8 43.1 ± 7.9 0.0003*

Model development and validation
Table 3 shows the exploratory univariable analyses with estimates of the hazard ratios and 
their corresponding confidence intervals. Only sex, history of nsVT and syncope, family 
history of cardiomyopathy, QRS duration (ms), as well as LV-EF (%) and history of AT were 
significantly associated with outcome at the preselected significance level and were 
included in the multivariable analyses to build the final model. The risk of SVA in 5 years 
for an individual with DCM was finally calculated using following equation: P(VA at 5 years) 
= 1- 0.9044804exp(LP), where LP = Sex * 0.25 + History for nsVT * 0.84 + History for Syncope 
* 0.57 + Family history for CMP * 0.47 + QRS * 0.007 + LV-EF * -0.04 + History of AT * 0.38.  

Cross validation revealed a calibration slope of 0.97 (95% CI 0.90-1.03). The good overall 
agreement between the predicted and observed 5-year risk is shown in Figure 2. The 
C-index of the model was 0.72 (95% CI 0.71-0.73). The D-statistic was 1.27 (95% CI 1.19-
1.34). This suggests that the hazard of SVA as predicted by the model is 3.6 times higher 
in the high-risk group compared with the hazard in the low risk group. Table 4 shows the 
categorical Net Reclassification Improvement (NRI). 

Secondary model development with further validation and sensitivity analyses
The overall further validation C-index was 0.65 (95% CI 0.49-0.81) with a calibration slope 
of 0.79 (95% CI -0.24-1.83) (Online Tables 1A-1D). For sensitivity analyses, we estimated the 
hazard ratios from the model by adjusting for study center effect. Those were similar to the 
initial model without attributing the individual center (Online Table 2). The C-index for this 
model was 0.72 (95% CI 0.71-0.73). We repeated this process for patients with complete 
data, without and with the data label center. This also resulted in only small changes to 
the coefficients with a C-index of 0.72 (95% CI 0.71-0.73) and C-index of 0.72 (95% CI 0.70-
0.73) respectively (Online Table 3). A further sensitivity analysis was performed excluding 
patients with ATPs as event. This included 63 fewer patients. The coefficients did not 
significantly change and the model showed a C-index of 0.71 (95% CI 0.69-0.72), calibration 
slope of 0.95 (95% CI 0.87-1.03), and D-statistic of 1.27 (95% CI 1.17-1.37) (Online Table 4). 
We also performed an additional sensitivity analysis to investigate our model performance 
in patients without CRT. This included 1,149 patients with 134 events. The C-index of the 
resulting model was 0.72 (95% CI 0.70-0.73) with calibration slope of 0.97 (95% CI 0.88-1.06) 
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FIGURE 3. Outcome depending on model-based ICD implantation thresholds. Bars show implications 
of ICD implantation in 0-97.5% of patients (based on the calculated risk), as well as in patients with 
LV-EF ≤35% + NYHA II/III or asymptomatic patients with LV-EF ≤30% (current ESC guideline). The black 
triangles represent number needed to treat (NNT, right y axis). The dotted line shows the reference 
NNT. Left y axis shows patient fraction. The percentages refer to the light red section (no ICD, event). 

  

Addition of LGE presence as marker for myocardial scar 
We aimed to establish a broadly applicable risk score and show its superiority compared to 
traditional stratification. To address emerging or specialized diagnostic tools and their value 
to improve risk stratification, we tested our model performance after adding LGE presence 
as marker for myocardial scar. As DCM is considered as a dynamic disease with time-related 
structural and clinical evolution, we only included the MRIs which have been performed 
within 6 months before or after first visit (N=667). By doing so, hazard ratio confidence 
interval and p-value further improved (HR 1.72, 95% CI 1.08-2.77, P=0.02), suggesting that 
LGE is a useful additional predictor and should be included in risk stratification once 
available (C-index=0.73; 95% CI 0.71-0.74 and D-statistic=1.31; 95% CI 1.23-1.39). Online 
Table 6 shows model performance after adding presence of LGE to the initial model. The 
comparison of this 8-parameter model, including LGE, to current stratification strategies 
showed even more superiority than the 7- parameter model (Online Figure 3). This analysis 
could be performed in 778 patients of our cohort, in whom 5-year follow-up information 
was available. 124 patients had an event. By applying the guideline criteria, 472 out of 778 
patients (60.7%) would have been treated with an ICD and 95 patients with events would 
have been protected. To avoid under-treatment and provide the same level of protection, 
the developed model would indicate 370 device implantations (47.5%), thereby reducing 
the total number of ICD implants by 21.6% [(472–370)/472] (P=2.1e-07). When implanting the 
same number of patients with ICDs as current guidelines (n=472) but use the new model for 

TABLE 3. Univariable Cox regression model
Predictor variable Univariable model Multivariable model

Hazard ratio (95% CI) P-value Hazard ratio (95% CI) P-value
Sex (male)           1.24 (0.88-1.75) 0.22 1.28 (0.92-1.78) 0.14
Age 1.00 (0.99-1.01) 0.88 Not included in the final model
History for nsVT     2.33 (1.71-3.18) <0.005 2.31 (1.70-3.14) <0.005
History for syncope   1.85(1.16-2.93) 0.01 1.78 (1.12-2.81) 0.01
Family history for CMP  1.53 (1.08-2.17) 0.02 1.59 (1.13-2.24) 0.01
Family history for SCD 1.24 (0.72-2.14) 0.45 Not included in the final model
QRS duration           1.01 (1.00-1.01) 0.03 1.01 (1.00-1.01) 0.01
LV-EF          0.96 (0.95-0.98) <0.005 0.96 (0.94-0.97) <0.005
LVEDD 1.01 (0.99-1.03) 0.27 Not included in the final model
History of AT 1.46 (1.07-2.00) 0.02 1.47 (1.09-1.99) 0.01

TABLE 4 Categorical Net Reclassification Improvement (NRI)
1	 Event 2	 Guideline

3	 Total, split 4	 Total
5	 Non-event 6	 Abnormal 7	 Normal

8	 DCM-SVA
9	 Risk Calculator

10	Abnormal 
11	 95 12	 116 13	 211

14	 268
15	 10 16	 47 17	 57

18	Normal
19	 11 20	 279 21	 290

22	 524
23	 11 24	 223 25	 234

26	Total, split
27	 106 28	 395 29	 501
30	 21 31	 270 32	 291

33	Total 34	 127 35	 665 36	 792
37	Bold indicates subjects correctly classified by both tests. White indicates subjects incorrectly classified by both 
tests. Green indicates subjects correctly reclassified by test 2. Red indicates subjects incorrectly reclassified by 
test 2. NRIe: net proportion of events assigned a higher risk or risk category; NRIne: net proportion of nonevents 
assigned a lower risk or risk category
38	NRIe = (116 - 11) / 127 = 0.827, NRIne = (11 - 47) / 665= -0.054, NRI = NRIe + NRIne = 0.773

Comparison with conventional risk factors
To underline the performance of the suggested model, Figure 3 shows the impact of 
potential 5-year SVA risk thresholds for ICD implantation in our 7-parameter model vs. 
current stratification strategies (ICD implantation in DCM patients with LV-EF ≤35% + NYHA 
II/III or in asymptomatic patients with LV-EF ≤30%) (25). This analysis could be performed in 
792 patients of our cohort, in whom 5-year follow-up information was available. 127 patients 
had an event. By applying the guideline criteria, 501 out of 792 patients (63.3%) would have 
been treated with an ICD and 106 patients with events would have been protected. To avoid 
under-treatment and provide the same level of protection, the developed model would 
indicate 426 device implantations (53.8%), thereby reducing the total number of ICD implants 
by 15% [(501–426)/501] (P=0.0001). When implanting the same number of patients with ICDs 
as current guidelines (n=501) but use the new model for selection of patients, 113 patients 
with end-point SVA would have been protected. These analyses were repeated in patients 
with available 3-year follow-up and showed similar significant results (Online Text). Online 
Figure 2 shows number of events missed when applying our model vs. conventional risk 
factors. Choosing a threshold of 8.5% predicted 5-year risk would result in equal number of 
missed events using each method, while implanting 75 fewer ICDs when using our model.  
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DISCUSSION

The utility of ICDs in DCM patients has been controversially discussed. Whereas the DANISH 
trial showed no significant improvement in all-cause mortality after primary preventive 
ICD implantation in DCM patients in comparison to contemporary medical and cardiac 
resynchronization therapy (5), meta-analyses that were performed since then showed 
significant mortality reduction of up to 24% after primary prophylactic ICD implantation 
(2,26). Although the overall mortality was not reduced in DANISH trial, SCD was reduced by 
approx. 50% in the ICD group (5). It is therefore important to identify those patients at high 
risk for SVAs. 

In the current study, we developed and internally validated a clinical risk calculator for 
estimating 5-year risk of sustained ventricular arrhythmia in patients with non-ischemic 
DCM. Altogether 1,393 patients from 4 European countries have been used for model 
development. High-quality retrospective clinical data and prospective follow-ups were 
available and the proportion of missing data was satisfactorily low. The clinical model 
predictors were selected relying on previous studies, systematic reviews, meta-analyses, 
and expert consensus. The model was designed to include only parameters that are 
broadly available in clinical routine worldwide. There was no exclusion of patients with 
comorbidities so that the model is applicable to the majority of adult DCM patients. The 
final model included 7 predictors including sex, history for nsVT, history for syncope, 
family history for cardiomyopathy, QRS duration, LV-EF, and history of atrial fibrillation. The 
C-index of our developed model was 0.72 (95% CI 0.71-0.73), showing a good discrimination 
between patients with and those without SVA. The calibration analysis also showed a good 
agreement between predicted and observed SVA risk and sensitivity analyses showed no 
significant center bias.

By comparing the model performance with current stratification strategies, the improvement 
in risk stratification becomes evident. Applying our model would have resulted in implanting 
15% fewer ICDs, while protecting the same number of patients. Additionally, our cut-off-free 
model could be particularly helpful for decision making in patients who do not fulfil ICD 
criteria based on current guidelines, e.g. when having LV-EF of >35% in presence of several 
other risk factors. Besides the 7 clinical model parameters, imaging biomarkers such as 
presence of LGE have been found to have prognostic value in cardiomyopathy patients, 
but are not readily available in many primary or secondary centers (8). Adding LGE as an 
eighth parameter further improved the model (HR 1.72, 95% CI 1.08-2.77, P=0.02) and could 
be integrated in the risk calculator. 

Carrying pathogenic variants in high-risk genes such as Lamin A/C (LMNA), sodium 
channel protein type 5 subunit alpha (SCN5A), RNA binding motif protein 20 (RBM20), 

selection of patients, 111 patients with end-point SVA would have been protected instead of 
95 (14.4% more protection, P=0.007). This shows that our 8-parameter model including LGE 
can even predict those DCM patients who are at risk to sudden cardiac death (SCD), but not 
eligible to ICD implantation according to the current guidelines. 
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phospholamban (PLN), or filamin-C (FLNC) have been repeatedly associated with higher 
rates of life-threatening arrhythmia (27-32). This information is, however, often not available 
due to missing consent and since current guidelines do not encourage genotyping in DCM 
patients. Genetic testing including LMNA, SCN5A, RBM20, and PLN were performed in 702 
patients (50.4%) of our cohorts, from which 71 (10.1%) patients had at least one pathogenic or 
likely pathogenic variant in a high-risk gene. While this relatively low number is insufficient to 
reach statistical power in a generalized model, it still has considerable impact on individual 
patients and should not be neglected, but incorporated into each patient’s management.  

Potential limitations
A recruitment bias cannot be ruled out, since all participating centers are specialized 
for treating cardiomyopathies. In a comparable study on HCM, the applicability of our 
approach was underlined and results were validated in several succeeding studies (11). 
Generalizability, however, will depend on further studies applying our risk model and we are 
already planning a validation study within the German DZHK TORCH-Plus registry. Including 
ATP as outcome might have resulted in an overestimation of risk as ATP stimulation 
depends upon ICD programming. However, most recorded VTs were fast paced and thus 
likely becoming hemodynamically relevant. These assumptions are also reflected in current 
expert consensus statements on implantable cardioverter-defibrillator programming (33). 
Importantly, sensitivity analysis excluding ATPs showed similar performance. Lastly, cardiac 
resynchronization was shown to positively impact on reverse remodeling of DCM and is 
able to reduce arrhythmia associated outcomes. Still, our model performs well regardless 
of whether patients were implanted with CRT-P/D or not.  
 
Conclusions
By carefully developing and validating a novel risk stratification model, we aimed to improve 
decision making for primary preventive ICD implantation in DCM patients. Further DCM 
cohorts are needed to externally validate this model and further prospective studies are 
needed to evaluate its impact on mortality, avoidance of ICD complications and costs-
effectiveness. 

Acknowledgment
We thank all involved medical students, study nurses and technicians for their great work. 
We thank Ibticem Raji as clinical research associate. We also thank the participating patients 
for their contribution. 

Sources of funding
This work was supported by grants from the Deutsches Zentrum für Herz-Kreislauf-
Forschung (German Center for Cardiovascular Research, DZHK), the German Ministry of 
Education and Research (CaRNAtion, FKZ 031L0075B), Informatics for Life (Klaus Tschira 

88 | CHAPTER 5 RISK CALCULATOR FOR POTENTIALLY LIFE-THREATENING ARRHYTHMIAS IN DCM | 89

5 5



24.	 Royston P, Sauerbrei W. A new measure of prognostic separation in survival data. Stat Med 2004;23:723-
48.

25.	 Ponikowski P, Voors AA, Anker SD et al. 2016 ESC Guidelines for the diagnosis and treatment of acute 
and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart 
failure of the European Society of Cardiology (ESC)Developed with the special contribution of the Heart 
Failure Association (HFA) of the ESC. European Heart Journal 2016;37:2129-2200.

26.	 Wolff G, Lin Y, Karathanos A et al. Implantable cardioverter/defibrillators for primary prevention in 
dilated cardiomyopathy post-DANISH: an updated meta-analysis and systematic review of randomized 
controlled trials. Clin Res Cardiol 2017;106:501-513.

27.	 van Rijsingen IA, Arbustini E, Elliott PM et al. Risk factors for malignant ventricular arrhythmias in lamin a/c 
mutation carriers a European cohort study. J Am Coll Cardiol 2012;59:493-500.

28.	 van Spaendonck-Zwarts KY, van Rijsingen IA, van den Berg MP et al. Genetic analysis in 418 index 
patients with idiopathic dilated cardiomyopathy: overview of 10 years’ experience. Eur J Heart Fail 
2013;15:628-36.

29.	 Kayvanpour E, Sedaghat-Hamedani F, Amr A et al. Genotype-phenotype associations in dilated 
cardiomyopathy: meta-analysis on more than 8000 individuals. Clin Res Cardiol 2017;106:127-139.

30.	 Hey TM, Rasmussen TB, Madsen T et al. Pathogenic RBM20-Variants Are Associated With a Severe 
Disease Expression in Male Patients With Dilated Cardiomyopathy. Circ Heart Fail 2019;12:e005700.

31.	 Peters S, Kumar S, Elliott P, Kalman JM, Fatkin D. Arrhythmic Genotypes in Familial Dilated Cardiomyopathy: 
Implications for Genetic Testing and Clinical Management. Heart Lung Circ 2019;28:31-38.

32.	 Begay RL, Graw SL, Sinagra G et al. Filamin C Truncation Mutations Are Associated With Arrhythmogenic 
Dilated Cardiomyopathy and Changes in the Cell-Cell Adhesion Structures. JACC Clin Electrophysiol 
2018;4:504-514.

33.	 Wilkoff BL, Fauchier L, Stiles MK et al. 2015 HRS/EHRA/APHRS/SOLAECE expert consensus statement 
on optimal implantable cardioverter-defibrillator programming and testing. Europace 2016;18:159-83.

REFERENCES
1.	 Sammani A, Kayvanpour E, Bosman LP et al. Predicting sustained ventricular arrhythmias in dilated 

cardiomyopathy: a meta-analysis and systematic review. ESC Heart Fail 2020.
2.	 Shun-Shin MJ, Zheng SL, Cole GD, Howard JP, Whinnett ZI, Francis DP. Implantable cardioverter 

defibrillators for primary prevention of death in left ventricular dysfunction with and without ischaemic 
heart disease: a meta-analysis of 8567 patients in the 11 trials. Eur Heart J 2017;38:1738-1746.

3.	 Bansch D, Antz M, Boczor S et al. Primary prevention of sudden cardiac death in idiopathic dilated 
cardiomyopathy: the Cardiomyopathy Trial (CAT). Circulation 2002;105:1453-8.

4.	 Schaechter A, Kadish AH, Evaluation DEIN-ICT. DEFibrillators In Non-Ischemic Cardiomyopathy Treatment 
Evaluation (DEFINITE). Card Electrophysiol Rev 2003;7:457-62.

5.	 Kober L, Thune JJ, Nielsen JC et al. Defibrillator Implantation in Patients with Nonischemic Systolic Heart 
Failure. N Engl J Med 2016;375:1221-30.

6.	 Pinto YM, Elliott PM, Arbustini E et al. Proposal for a revised definition of dilated cardiomyopathy, 
hypokinetic non-dilated cardiomyopathy, and its implications for clinical practice: a position statement of 
the ESC working group on myocardial and pericardial diseases. Eur Heart J 2016;37:1850-8.

7.	 Spezzacatene A, Sinagra G, Merlo M et al. Arrhythmogenic Phenotype in Dilated Cardiomyopathy: 
Natural History and Predictors of Life-Threatening Arrhythmias. J Am Heart Assoc 2015;4:e002149.

8.	 Di Marco A, Anguera I, Schmitt M et al. Late Gadolinium Enhancement and the Risk for Ventricular 
Arrhythmias or Sudden Death in Dilated Cardiomyopathy: Systematic Review and Meta-Analysis. JACC 
Heart Fail 2017;5:28-38.

9.	 Akhtar M, Elliott PM. Risk Stratification for Sudden Cardiac Death in Non-Ischaemic Dilated 
Cardiomyopathy. Curr Cardiol Rep 2019;21:155.

10.	 Goldberger JJ, Subacius H, Patel T, Cunnane R, Kadish AH. Sudden cardiac death risk stratification in 
patients with nonischemic dilated cardiomyopathy. J Am Coll Cardiol 2014;63:1879-89.

11.	 O’Mahony C, Jichi F, Pavlou M et al. A novel clinical risk prediction model for sudden cardiac death in 
hypertrophic cardiomyopathy (HCM risk-SCD). Eur Heart J 2014;35:2010-20.

12.	 Ruiz-Salas A, Garcia-Pinilla JM, Cabrera-Bueno F et al. Comparison of the new risk prediction model 
(HCM Risk-SCD) and classic risk factors for sudden death in patients with hypertrophic cardiomyopathy 
and defibrillator. Europace 2016;18:773-7.

13.	 Vriesendorp PA, Schinkel AF, Liebregts M et al. Validation of the 2014 European Society of Cardiology 
guidelines risk prediction model for the primary prevention of sudden cardiac death in hypertrophic 
cardiomyopathy. Circ Arrhythm Electrophysiol 2015;8:829-35.

14.	 Adachi K, Ohnishi Y, Yokoyama M. Risk stratification for sudden cardiac death in dilated cardiomyopathy 
using microvolt-level T-wave alternans. Jpn Circ J 2001;65:76-80.

15.	 Bansch D. [Risk stratification of sudden cardiac death in dilated cardiomyopathy. Programmed ventricular 
stimulation]. Herzschrittmacherther Elektrophysiol 2015;26:8-11.

16.	 Goldberger JJ. Sudden cardiac death risk stratification in dilated cardiomyopathy: climbing the pyramid 
of knowledge. Circ Arrhythm Electrophysiol 2014;7:1006-8.

17.	 Grimm W. [Risk stratification for sudden cardiac death in post-infarct patients and in patients with dilated 
cardiomyopathy]. Z Kardiol 2000;89 Suppl 10:11-9; discussion 19-20.

18.	 Gulati A, Jabbour A, Ismail TF et al. Association of fibrosis with mortality and sudden cardiac death in 
patients with nonischemic dilated cardiomyopathy. JAMA 2013;309:896-908.

19.	 Marume K, Noguchi T, Tateishi E et al. Mortality and Sudden Cardiac Death Risk Stratification Using the 
Noninvasive Combination of Wide QRS Duration and Late Gadolinium Enhancement in Idiopathic Dilated 
Cardiomyopathy. Circ Arrhythm Electrophysiol 2018;11:e006233.

20.	 Shekha K, Ghosh J, Thekkoott D, Greenberg Y. Risk stratification for sudden cardiac death in patients 
with non-ischemic dilated cardiomyopathy. Indian Pacing Electrophysiol J 2005;5:122-38.

21.	 Li X, Fan X, Li S et al. A Novel Risk Stratification Score for Sudden Cardiac Death Prediction in Middle-
Aged, Nonischemic Dilated Cardiomyopathy Patients: The ESTIMATED Score. Can J Cardiol 2019.

22.	 Peduzzi P, Concato J, Feinstein AR, Holford TR. Importance of events per independent variable in 
proportional hazards regression analysis. II. Accuracy and precision of regression estimates. J Clin 
Epidemiol 1995;48:1503-10.

23.	 Rubin DB. Multiple imputation for nonresponse in surveys: John Wiley & Sons, 2004.

90 | CHAPTER 5 RISK CALCULATOR FOR POTENTIALLY LIFE-THREATENING ARRHYTHMIAS IN DCM | 91

5 5



2 DATA INFRASTRUCTURE FOR 
CLINICAL APPLICATIONS 
OF ARTIFICIAL INTELLIGENCE

PART I I



UNRAVEL: big data analytics research 
data platform to improve care of 
patients with cardiomyopathies using 
routine electronic health records and 
standardised biobanking

A. Sammani, M. Jansen, M. Linschoten, A. Bagheri, N. de Jonge, H. Kirkels, L.W. van Laake,
A. Vink, J.P van Tintelen, D. Dooijes, A.S.J.M. te Riele, M. Harakalova, A.F. Baas, 
F.W. Asselbergs 

Netherlands Heart Journal 2019 Sep;27(9):426-434.
doi: 10.1007/s12471-019-1288-4.

CHAPTER 6



INTRODUCTION

Cardiomyopathies (CMPs) are internationally defined as heart diseases with structurally and 
functionally abnormal myocardium not explained by coronary artery disease, hypertension 
or valvular heart disease [1, 2]. Many CMP patients have a familial history of disease, 
which typically follows an autosomal dominant inheritance pattern. In the Netherlands, 
it is estimated that 1 in 200 individuals carry a genetic predisposition for a CMP [3–5]. 
However, penetrance is incomplete and clinical expression of CMPs is heterogeneous, 
ranging from overt heart failure and lethal arrhythmias to being asymptomatic [2, 6]. Despite 
major advances in our understanding of the genetics of these diseases, our knowledge of 
the pathophysiological substrate of CMPs is limited, and CMPs remain a leading cause of 
premature sudden cardiac death and end-stage heart failure in persons below the age of 
60 years [7].

By integrating electronic health records (EHRs) with research data platforms (RDPs), new 
insights into disease penetrance, risk assessment and disease pathophysiology can be 
obtained. In their current format, EHRs comprise both structured and unstructured electronic 
data that have been gathered, captured and assessed during routine clinical care [8]. Major 
opportunities lie in the standardisation of unstructured data, such as clinical notes and 
investigations [8–10]. Integrating these data with other data sources, including outcome 
registries, imaging, wearables, and research measurements (-omics), has the potential of 
offering higher-resolution data regarding disease epidemiology, onset and progression.

In this article, we present the design of the UNRAVEL RDP, in which a large dataset of 
CMP patients is enriched by text mining and linked to biomaterials. The UNRAVEL RDP 
aims to improve the daily care of CMP patients and their family members by (1) providing 
a standardised database with routine health care data linked to research-generated data 
that are easily accessible for big data analytics; (2) facilitating harmonisation of data, clinical 
care protocols and sharing of algorithms on www.unravelrdp.nl; and (3) providing the basis 
for approaching patients for in-depth biological research through the generation of induced 
pluripotent stem cells.

ABSTRACT

Introduction
Despite major advances in our understanding of genetic cardiomyopathies, they remain the 
leading cause of premature sudden cardiac death and end-stage heart failure in persons 
under the age of 60 years. Integrated research databases based on a large number of 
patients may provide a scaffold for future research. Using routine electronic health records 
and standardised biobanking, big data analysis on a larger number of patients and 
investigations are possible. In this article, we describe the UNRAVEL research data platform 
embedded in routine practice to facilitate research in genetic cardiomyopathies.

Design
Eligible participants with proven or suspected cardiac disease and their relatives are asked 
for permission to use their data and draw blood for biobanking. Routinely collected clinical 
data are included in a research database by weekly extraction. A text-mining tool has been 
developed to enrich UNRAVEL with unstructured data in clinical notes.

Preliminary results
Thus far, 828 individuals with a median age of 57 years have been included, 58% of whom 
are male. All data are captured in a temporal sequence amounting to a total of 18,565 
electrocardiograms, 3619 echocardiograms, data from 20,000 radiological examinations 
and 650,000 individual laboratory measurements.

Conclusion
Integration of routine electronic health care in a research data platform allows efficient 
data collection, including all investigations in chronological sequence. Trials embedded 
in the electronic health record are now possible, providing cost-effective ways to answer 
clinical questions. We explicitly welcome national and international collaboration and have 
provided our protocols and other materials on www.unravelrdp.nl.

96 | CHAPTER 6 UNRAVEL RESEARCH DATA PLATFORM | 97

6 6



FI
G

U
RE

 1
. S

ch
em

at
ic

 o
ve

rv
ie

w
 o

f d
iff

er
en

t t
yp

es
 o

f i
nc

lu
de

d 
da

ta
. I

n 
sh

or
t, 

da
ta

 o
n 

in
ve

st
ig

at
io

ns
 a

nd
 m

et
ad

at
a 

ar
e 

au
to

m
at

ic
al

ly
 e

xt
ra

ct
ed

 a
fte

r 
in

fo
rm

ed
 

co
ns

en
t h

as
 b

ee
n 

pr
ov

id
ed

. A
dd

iti
on

al
ly,

 p
at

ie
nt

 d
em

og
ra

ph
ic

s 
an

d 
sp

ec
ifi

c 
ev

en
ts

, s
uc

h 
as

 d
at

e 
of

 a
dm

is
si

on
, a

re
 in

cl
ud

ed
. I

nf
or

m
at

io
n 

fro
m

 th
e 

m
un

ic
ip

al
ity

 
re

gi
st

ry
 c

an
 b

e 
re

qu
es

te
d 

co
nc

er
ni

ng
, f

or
 e

xa
m

pl
e,

 d
ea

th

DESIGN

Ethics and registration
The UNRAVEL RDP follows the Code of Conduct and the Use of Data in Health Research and 
has been approved by the Biobank Board of the Medical Ethics Committee of the University 
Medical Centre Utrecht (no. 12-387 UNRAVEL Biobank). As a part of UNRAVEL, the use of 
already existing text files (e.g. clinical notes) is exempt from the Medical Research Involving 
Human Subjects Act (WMO) as per judgement of the Medical Ethics Committee (Text mining in 
cardiovascular notes, 18/446, Utrecht, the Netherlands). Eligible patients (see below) are asked 
to provide written informed consent for use of their clinical data and previously stored material. 
Consent is required prior to using the clinical (meta) data. In addition, consent is requested 
to draw blood via venepuncture during routine investigations, to minimise the impact on the 
patient, and to request information from other medical centres and municipality registries. 
For additional stem-cell-related research, an informed consent form has been developed 
and approved by the Medical Ethics Committee. After inclusion, patients are registered as 
UNRAVEL enrolees in the EHR, and all their clinical data are automatically collected in the 
RDP (Fig. 1). Data governance is secured by a data management plan. More information on 
protocols, data governance and informed consent is provided on www.unravelrdp.nl.

Study population
Eligible participants are individuals with proven or suspected genetic cardiac disease, and 
their relatives. UNRAVEL also includes family members who are not mutation carriers or 
show no signs of disease; these serve as healthy controls. Participants must be able to 
provide written informed consent and be at least 18 years of age.

In order to minimise selection bias, patients and relatives from both in- and outpatient 
clinics are prospectively screened and asked to participate. If a participant is deemed 
eligible after discharge, the patient is contacted by the managing physician by mail and/or 
phone to retrospectively request consent. Additionally, previously eligible individuals were 
retrospectively identified and asked to participate using registered diagnoses in the EHR 
and a database of all CMP patients who visited the outpatient clinic of a clinical geneticist or 
had DNA analysis performed at the University Medical Centre (UMC) Utrecht.

Research data platform
Consent is required prior to the extraction of data. Based on in-house clinical protocols, 
phenotyping of participants includes medical history, family history, physical examination, 
routine laboratory testing, 12-lead electrocardiography, chest radiography, cardiac 
ultrasonography, computed tomography (CT) and magnetic resonance imaging (MRI). These 
tests are performed at the discretion of the managing physician and have multiple time points 
in the EHR (Fig 2). In contrast to manually maintained registries, all available data are captured. 
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FIGURE 3. Two data tables from the UNRAVEL research data platform as samples of electrocardiogram 
and ultrasound output in SAS enterprise guide. ECG electrocardiogram, ECH echocardiogram

Text mining
The UNRAVEL RDP includes all structured data from the EHR. However, some data remain 
unstructured, such as free text. These texts might harbour valuable variables to extract, 
such as New York Heart Association (NYHA) class or other clinical symptoms. To enrich the 
UNRAVEL RDP with these unstructured data from clinical notes, a text-mining prototype 
tool was developed. In short, we defined pre-set variables for the tool to extract from 
clinical notes, e.g. NYHA classification and cardiovascular risk factors such as diabetes, 
hypercholesterolaemia and hypertension. The pre-set variables are now in accordance with 
the variables in the TORCH registry but can be defined at the discretion of the researcher 
[12]. The algorithm and further explanation are provided open source on www.unravelrdp.
nl. Since the tool is under development, it should only be used with caution and under the 
supervision of medical and text-mining experts until further evaluation. A sample output of 
this automated tool is presented in Fig. 4. Future perspectives include the use of natural 
language processing for automated standardised diagnosis registration from clinical notes 
based on the International Classification of Disease (ICD) 10 classification mapped to the 
diagnosis thesaurus and reimbursement codes set by the project group DHD diagnosis 

For example, during a visit to the in-patient clinics several electrocardiograms (ECGs) can 
be produced per day. Not all data might be entered into manually maintained registries, 
since this is a meticulous and laborious task.

Raw data is gathered, processed and standardised for all cardiological, electrophysiological, 
imaging and genetic modalities (Fig. 1). On a weekly basis, these (numeric) data are 
automatically extracted to the RDP. Metadata is specific information describing the data (such 
as date of visit, type of ECG or managing physician) which have been gathered for logistical 
and administrative purposes. These meta-data harbour valuable information and are also 
stored in the RDP. Data are viewed, combined, linked to external databases and analysed 
using query-based searches for data extraction using SAS Enterprise Guide (Fig 3).

ECG
Echocardiogram

MRI

BNP
CRP

Scheduled visits
Admission

Operations/Procedures

Hb

...

...

...

Investigations

Lab results

Events

Registry baseline

Disregarded data in registry Disregarded data in registry

Registry follow-up Registry follow-up

time

FIGURE 2. Temporal character of health care data. Schematic overview of a temporal window in 
which patients visit the centres. In contrast to manually maintained registries where data may be 
disregarded, the UNRAVEL research data platform includes all (meta)data and investigations. ECG 
electrocardiogram, MRI magnetic resonance imaging, Hb haemoglobin, BNP brain natriuretic peptide, 
CRP C-reactive protein

Outcomes
The UNRAVEL RDP contains multiple outcome measures that can be used for primary or 
secondary outcome analyses. All-cause death and date of death are extracted from the EHR 
and retrieved from the municipality registry [11]. Other outcome measures such as diagnoses, 
date of diagnosis, occurrence of clinical events such as acute heart failure, arrhythmia or 
hospitalisation, ventricular assist device implantation and clinical interventions, including 
heart transplantation, can be extracted from the UNRAVEL RDP.

100 | CHAPTER 6 UNRAVEL RESEARCH DATA PLATFORM | 101

6 6



FI
G

U
RE

 4
. S

am
pl

e 
da

ta
 fr

om
 th

e 
te

xt
-m

in
in

g 
to

ol
, w

he
re

 b
as

ed
 o

n 
th

e 
cl

in
ic

al
 n

ot
es

 in
 th

e 
EH

R 
(D

EC
U

RS
U

S)
 a

n 
ou

tp
ut

 fi
le

 is
 c

re
at

ed
 w

ith
 d

iff
er

en
t s

ta
nd

ar
di

se
d 

va
ria

bl
es

, s
uc

h 
as

 a
rte

ria
l h

yp
er

te
ns

io
n,

 d
ia

be
te

s 
an

d 
dy

sl
ip

id
ae

m
ia

. V
ar

ia
bl

es
 a

re
 h

ar
m

on
is

ed
 w

ith
 th

e 
G

er
m

an
 T

O
RC

H
 re

gi
st

ry
, b

ut
 c

an
 b

e 
ch

an
ge

d 
as

 d
ee

m
ed

 
ne

ce
ss

ar
y. 

Th
e 

ap
pl

ic
at

io
n 

is
 w

rit
te

n 
fo

r D
ut

ch
 c

ar
di

ov
as

cu
la

r n
ot

es

thesaurus-DBC-ICD 10 of the Dutch Society of Cardiology [13]. Data standardisation will 
be harmonised with the OMOP Common Data Model to allow for systematic analysis of 
disparate observational databases [14].

Blood biobank
All patients are asked concerning the collection of biomaterials for the UNRAVEL Blood 
Biobank. The exact laboratory protocol is available on www.unravelrdp.nl. In short, the 
standardised biobank protocol consists of one 10 ml serum, one 4.5 ml citrate, one 2 ml 
ethylenediaminetetraacetic acid (EDTA), one 10 ml EDTA and one 10 ml Na-heparin blood 
collection tube. These are processed and aliquoted to two vials of 0.5 ml whole blood from 
EDTA tubes, four vials of 0.5 ml plasma from citrate tubes, six vials of 0.5 ml plasma from 
EDTA and heparin tubes and six vials of 0.5 ml serum. All samples are stored at -80°C. 
Availability, type and storage of material is linked to the RDP for easy accessibility.

Cardiac tissue database
Cardiac tissue of patients that have received a left ventricular assist device or undergone 
heart transplantation, and received donor spleen tissue during heart transplantation are 
routinely stored by the Department of Pathology. Samples are paraffin embedded and 
frozen at -80°C. All samples are stored according to protocol available on www.unravelrdp.
nl and explanted hearts are divided into slides and cubes accordingly. The registration of 
these samples is performed using an electronic case registration form in Redcap in the 
cardiac tissue database which is linked to the UNRAVEL RDP. Further information can be 
found on www.unravelrdp.nl.

Preliminary results
An overview of the preliminary results is provided in Table 1. By October 2018, 1928 
individuals had been asked to participate in the UNRAVEL RDP. Of these, 828 individuals 
provided consent, of which 58% are male. Median current age is 57 years [interquartile 
range (IQR) 45-67]. Overall, the available data comprises 18,565 ECGs with a median of 74 
per patient (IQR 32-105), 3619 different echocardiograms with a median of 12 per patient (IQR 
5-18), over 20,000 radiological examinations including 389 cardiac MRI scans and 650,000 
individual laboratory results. Data from other non-cardiac examinations, e.g. orthopaedic 
MRI or endoscopy, are also available. In 356 participants, a diagnosis of heart failure had 
been registered according to the diagnosis thesaurus described earlier: 222 have dilated 
CMP, 38 hypertrophic CMP. Blood from 267 patients has thus far been stored in the biobank 
according to protocol. To date, 323 mutations have been identified, primarily in PKP2 (23%), 
PLN (17%) and TTN (13%).
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DISCUSSION

There is still limited knowledge on the aetiology, diagnostic performance of clinical 
investigations and disease modifiers in CMPs, complicating the clinical care of these patients 
[2, 6, 7]. Research databases based on large numbers of patients provide the infrastructure 
for new insights into these diseases. To date, patient registries have typically often had 
fixed time points at which data are manually inputted, data entry is at the discretion of 
the researcher and a vast amount of (meta)data gathered during routine clinical care is 
inherently disregarded. The current advanced EHR systems provide exciting opportunities 
to access all data gathered in routine clinical care which can be linked to research data. 
The resulting datasets will have larger resolution and may provide new insights into 
disease penetrance, risk assessment and disease pathophysiology [8, 15]. The UNRAVEL 
RDP incorporates these large automated and standardised datasets of CMP patients, 
enriched with language processing and text retrieval. Advantages include (1) automation 
and efficiency, (2) featuring temporal or sequential data, (3) allowing for EHR-embedded 
trials and (4) mining unstructured data using text analysis.

EHR data are extracted and standardised in the UNRAVEL RDP, which has thus far led to a 
dataset comprising 828 patients with a total of 18,565 ECGs, 3619 echocardiograms, 389 
cardiac MRI scans and 323 patients with mutated genes (Table 1). The RDP automatically 
provides these raw (meta)data. This obviates the laborious need for manually maintained 
registries, saving the precious time of (medical) experts and reducing transcription errors. 
Furthermore, since outcomes such as admission, heart transplantation and (cardiac) death 
are automatically extracted from the EHR, obtaining follow-up will be less time-consuming, 
thereby reducing costs [11].

With the RDP, these data can be integrated into a detailed longitudinal picture of the clinical 
course of a patient, a ‘human phenome sequence’ [8]. In previous studies, (semi-)supervised 
and unsupervised machine learning on linked EHR data was able to solve problems in 
prediction and pattern recognition [8, 16, 17]. However, routine clinical records can be 
sparsely filled and (ontological) definitions of disease may differ over time. To counter these 
issues, a semi-supervised machine learning method has been proposed by Beaulieu-Jones 
et al. [18] to analyse these high-dimensional EHR data, constructing phenotypes based on 
unsupervised learning, then clustering these patients in sub-phenotypes and performing 
survival analyses. Furthermore, large datasets such as the UNRAVEL RDP are prone to 
generate associations with uncertain causal relevance. To address causality, the addition of 
our stem-cell informed consent serves as a stepping stone for functional follow-up studies 
using induced pluripotent stem cells. Additional statistical frameworks such as instrumental 
variables and Mendelian randomisation, or further research in randomised clinical trials may 
also provide further support to observed associations [19].

TABLE 1. Clinical characteristics and available tests of 828 patients included in UNRAVEL. Data are 
presented as number (median, IQR)
Men 480 (58%)
Median age 57 years (IQR 45-67)
Diagnosis as registered in EHR

Heart failure 356
DCMP 222
HCMP 38
Cardio-oncology 95
Not specified 308
Cardiogenetic screening 165

Cardiac ultrasound images 3619 (12, IQR 5-18)
Electrocardiograms 18,565 (74, IQR 32-105)
Radiological examinations 20,318

Chest radiography 512
CT thorax 274 (7, IQR 3-15)
MRI cardiac 389 (2, IQR 1-3)

Laboratory tests 650,000
Biobanking 267
Device therapy 241

LVAD 46
ICD/CRT 195

Heart transplantation 72
Genes mutated 323

PKP2 76
PLN 54
TTN 41
MYBPC3 38
MYH7 13
LMNA 10
Other 91

IQR interquartile range, EHR electronic health record, DCMP dilated cardiomyopathy, HCMP 
hypertrophic cardiomyopathy, CT computed tomography, MRI magnetic resonance imaging, LVAD left 
ventricular assist device, ICD internal cardiac defibrillator, CRT cardiac resynchronisation therapy
MRI cardiac includes both MRI cardiac and stress MRI (adenosine/dobutamine). Radiological 
examinations include all examinations performed in-house, e.g. chest, abdominal, thyroid radiography 
etc.
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To embed clinical trials, data in the UNRAVEL RDP can be used for trial feasibility, patient 
recruitment, but also for remote data monitoring, potentially reducing clinical trial costs 
and selection bias (pragmatic trials). Using the UNRAVEL RDP, it is possible to perform 
interventions and measure outcomes during routine health care, ranging from life-style 
interventions to logistical questions on how often a patient should be followed up. EHR 
can be an alternative to electronic case registration forms providing data is consistently 
collected in routine clinical care, including data on (adverse) events [20].

Structured EHR data such as encoded diagnosis and cardiac ultrasound are the easiest 
data sources to process, but advances in text mining have made it possible to also use 
unstructured clinical data, such as patient medical histories, discharge summaries and 
clinical notes [10, 14]. Using a text-retrieval algorithm, we have developed a tool to extract 
standardised data from clinical notes. This tool is, however, still under development and 
was implemented on clinical notes from the Department of Cardiology at the UMC Utrecht. 
Therefore, the tool should be used with caution and under the supervision of a medical 
expert in other centres.

EHR data that are subjected to robust pre-processing and cleaning have been shown to 
offer a common scaffold upon which research questions can be built and linked to datasets, 
enabling new areas of research [9, 21]. With these ‘big’ EHR data, however, great challenges 
and responsibilities arise: data governance, data access, public trust, definitions of disease 
and development of replicable scientific tools. Furthermore, these large datasets are prone 
to generating associations with great uncertainty regarding causality. Therefore, analysis 
of data and interpretation must be performed by a multidisciplinary team including medical 
experts, epidemiologists and data scientists. Only if the data are understood and carefully 
evaluated can new models explaining onset and progression of disease be developed [8].

In conclusion, the UNRAVEL RDP is an enriched data platform for CMPs that combines EHR 
data with a standardised blood biobank and text-mining tools. This integration of EHR data 
into the RDP allows novel analysis of the onset and progression of disease and can embed 
performance measures in clinical practice. Laboratory protocols, informed consent forms 
and algorithms are available on www.unravelrdp.nl. Protocols have been shared thus far 
with the University Medical Centre Groningen, Amsterdam University Medical Centre and 
Bergman Clinics, and we explicitly welcome national and international cooperation with the 
UNRAVEL team to harmonise protocols.
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INTRODUCTION

Electronic health records enable fast information retrieval and contain both structured (e.g. 
laboratory values, numeric measurements) and unstructured data (free text in clinical notes).1 
Clinical discharge letters are an important source of information, but the translation from 
free text to structured data remains challenging.2 To structure diagnoses, the international 
classification of diseases (ICD-10) coding system was created. This classification system is 
hierarchical and multiple codes may be assigned to a single discharge letter (multilabel). 
ICD-10 is alphanumerically structured, with seven possible digits arranged hierarchically as 
shown in Figure 1.3 The classification is performed by practitioners, managers or medical 
coders and serves worldwide in clinical practice (e.g. medical history and billing), research 
(e.g. trial recruitment) and (inter)national epidemiological studies.2–5 Manual classification is 
an enormously costly endeavour, its quality depends on the expertise of who is performing 
the classification task and the reliability for terminal parts of ICD-10 codes can be poor, even 
among trained medical coders.5 

FIGURE 1. ICD-10 structure

Natural language processing (NLP) together with machine learning allows to automate 
ICD-10 coding for discharge letters.2 This task is particularly challenging because of: (i) 
the unstructured nature of free text, (ii) the multilabel setting of ICD10 codes and (iii) the 
large number of terminal ICD-10 codes.4 Several attempts have been made to automatically 
assign ICD-10 codes to medical documents ranging from rule-based to machine learning 
approaches.2,6 Generally speaking, rule-based methods have good performance, which 
is however restricted to conditions that seldomly occur in free-text clinical notes (given 
possibly ambiguous wording/spelling, multilabel classification and sparsity). Machine 
learning techniques on the other hand have shown increasingly promising results.2,4,6,7 
Supervised classification can often be simplified by considering only top-level “chapters” 

ABSTRACT

Standard reference terminology of diagnoses and risk factors is crucial for billing, 
epidemiological studies and inter/intranational comparisons of diseases. The International 
Classification of Disease (ICD) is a standardized and widely used method, but manual 
classification is an enormously time-consuming endeavour. Natural language processing 
together with machine learning allows automated structuring of diagnoses using ICD-10 
codes, but limited performance of machine learning models, the necessity of gigantic 
datasets and poor reliability of terminal parts of these codes restricted clinical usability. We 
aimed to create a high performing pipeline for automated classification of reliable ICD-10 
codes in free medical text in cardiology. We focussed on frequently used and well defined 
three- and four-digit ICD-10 codes that still have enough granularity to be clinically relevant 
such as atrial fibrillation (I48), acute myocardial infarction (I21) or dilated cardiomyopathy 
(I42.0). Our pipeline uses a deep neural network known as a Bidirectional Gated Recurrent 
Unit Neural Network and was trained and tested with 5,548 discharge letters and validated 
in 5,089 discharge and procedural letters. As in clinical practice discharge letters may be 
labelled with more than one code, we assessed the single- and multilabel performance 
of main diagnoses and cardiovascular risk factors. We investigated using both the entire 
body of text and only the summary paragraph, supplemented by age and sex. Given the 
privacy sensitive information included in discharge letters, we added a de-identification 
step. Performance was high, with F1 scores of 0.76 – 0.99 for three-character and 0.87-0.98 
for four-character ICD-10 codes and was best by using complete discharge letters. Adding 
variables age/sex did not affect results. For model interpretability, word coefficients were 
provided and qualitative assessment of classification was manually performed. Because 
of its high performance, this pipeline can be useful to decrease administrative burden of 
classifying discharge diagnoses and may serve a scaffold for reimbursement and research 
applications.
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TABLE 1. Performance of machine learning classifiers in literature
Author (reference) F1-score Classifier Dataset

Atutxa 2019 (4) 0.84 – 0.95 RNN Death certificates from CépiDc (France), 
ISTAT (Italy) and a Hungarian database*

Blanco 2020 (6) 0.70 RNN Osakidetza Spanish basque public 
health system

Cao 2019 (9) 0.68 HCAML Internal Chinese EHR dataset
Chen 2017 (10) 0.63 Longest Common Subsequence ICD-10 National Chinese dataset
Lin 2019 (14) 0.73 CNN Tri-service General Hospital Taipei 

dataset with ICD-10 labels
Du 2019 (11) 0.43 CNN Multiparameter Intelligent Monitoring in 

Intensive Care II (MIMIC II)#

Duarte 2018 (12) 0.65 “combined neural network” Cause of death autopsy reports (three-
character)

Karimi 2017 (13) 0.81 CNN ICD-9 radiology reports
Koopman 2015 (7) 0.94 binary SVM classifier for 4 

different codes
Australian Bureau of Statistics dataset 

with ICD-10 cause of deaths%

Pakhomov 2006 (15) 0.54 Naïve Bayes Classifier Random sample of HICDA (A mayo-
clinics adaptation of ICD-8) dataset 

Perotte 2014 (16) 0.40 Hierarchy-based SVM Multiparameter Intelligent Monitoring in 
Intensive Care II (MIMIC II)#

Singh 2020 (17) 0.86 BERT model implemented in 
PyTorch

Medical Information Mart for Intensive 
Care III (MIMIC III)

Sonabend 2020 (8) 0.71 “unsupervised knowledge 
integration (UNITE)”

Medical Information Mart for Intensive 
Care III (MIMIC III) and Partners 

HealthCare (PHS) Biobank$

RNN: Recurrent Neural Network | HCAML: Hierarchical Convolutional Attention for Multi-Label 
classification | EHR: Electronic Health Record | ICD: International Classification of Disease | SVM: 
Support Vector Machine | CNN: Convolutional Neural Network | HICDA: Hospital Adaptation of the 
International Classification of Diseases. *Using 128•000 training data. #Using the same dataset. %Using 
447•336 training data and only four ICD-10 codes to predict as outcome. $193•677 and 52•691 training 
data for six disease groups

of ICD-10 hierarchy or by only considering a single label or disease groups as output. By 
doing so, some models do not depict a real-world situation and are less applicable in daily 
clinical practice.4,7–16 

More recently, multilabel classification of detailed ICD-10 codes has been improved greatly 
with deep learning, showing better performance when using recurrent neural networks. These 
improved models however rely on enormous labelled datasets (Table 1).2,4,6,17 Unsupervised or 
semi-supervised classification algorithms are not dependent on curated Electronic Health 
Record (EHR) datasets and may even reduce bias from practice and coding behaviour. 
Recent work by Sonabend and colleagues illustrated an unsupervised knowledge integration 
algorithm by using pre-existing clinical knowledge sources such as Medscape, and mapped 
identified terms to concept unique identifiers. This resulted in a well-performing classification 
algorithm for six entities.8 In general, clinically relevant granularity in predicted labels and 
reliability of terminal parts of ICD-10 codes is challenging to model performance (Table 1).2,4,6–16 
Contextual word embeddings (ELMo and BERT) are derived from pre-trained bidirectional 
language models and show substantial performance improvements in many NLP tasks.18,19 
Fine-tuning of these pre-trained models is, given the language and context of the training data, 
in essence efficient and performant but poses challenges when contextual embeddings in a 
subdomain and language are lacking.6,18,20 Furthermore, patient privacy may be compromised 
if these language models are published online. 21 

In our prior work, we assessed the performance of different machine and deep learning 
models from literature to this dataset. We employed two vectorization methods (bag of words 
and word embeddings) and used support vector machines for each of the representations. 
We also employed several neural network architectures, from which the Bidirectional Gated 
Recurrent Unit (BGRU) performed best.2 In this work, we focus on clinical usability which 
requires high performance, sufficient clinical granularity and interpretability. We focussed 
on well-defined and frequently used three- and four-character ICD-10 codes that are 
clinically relevant such as atrial fibrillation (I48), acute myocardial infarction (I21) or dilated 
cardiomyopathy (I42.0). Since privacy sensitive clinical data is being used, we embedded a 
pseudonymization algorithm in the pipeline for GDPR compliance. The main contributions 
of this work are: (i) addressing imbalanced data by using a binary relevance method for 
multiclass/multilabel classification and a combination of binary classifiers into a multilabel 
clinically relevant presentation, (ii) a combination of word embeddings and bi-directional 
gated recurrent unit neural network that encompasses neighbourhood and context of 
words and (iii) “explainability” of the model with word coefficients and manual assessment 
of classification. We assessed three- and four-character performance using solely the 
summary paragraph of discharge letters (conclusion), adding clinical variables (age/sex) 
and multilabel classification, as is the case in clinical practice and compared our proposed 
embedding to ELMo as a contextual embedding layer in the neural network model.

114 | CHAPTER 7 AUTOMATIC ICD10 DETECTION USING DNNs | 115

7 7



TABLE 2. UMCU Cardiology Dataset
Variable Description
Taxonomy International Classification of Disease version 10
Language Dutch
Number of unique records 5,548
Number of unique tokens 148,726
Average number of tokens per record 936
Number of rolled-up labels (i.e. I42) 608
Average number of codes per letter 4,7
% of labels with >50 letters 8,03%
Cohen’s Kappa 4-character: 0.78, 95% CI [0.72, 0.84]

3-character: 0.85, 95% CI [0.79, 0.89]
Age. Median (IQs)
Sex (% Female)

68 (1st: 58, 3rd: 77) years
36% Female

Performance of models
The performance in test and validation (F1-score) of our best performing model (BGRU) is 
summarized in Figure 3. Overall, performance was remarkably high for all selected ICD-10 
codes in both test and validation and was optimal using the entire corpus of the discharge 
letters rather than using just the conclusion/summary section. Adding variables age and 
sex did not affect performance. Leveraging the model by using ELMo as the embedding 
layer did not improve performance (figure 4). The performance of multilabel three-character 
classification in the test set was 0.75 for sensitivity, 0.92 for specificity with an F1-score 
of 0.74 and decreased in external validation (0.72, 0.61, 0.69 respectively, Supplementary 
Table 5).

Three and four-character ICD-10 labels
Table 3 contains a description all three and four-character ICD-10 labels. Performance for 
main diagnosis (I21, I25, I42, I48, I50) and cardiovascular risk factors (I10, E11, E78) was high 
(Figure 3 and Supplementary table 2) in both test and validation. F1-scores range from 
0.76 (I10) to 0.99 (N18). Performance for the four-character codes was also high, with F1 
scores ranging from 0.87 (Z95.5: presence of coronary angioplasty implant graft and I25.1: 
atherosclerotic heart disease of native coronary artery) to 0.98 for I48.1 (persistent atrial 
fibrillation). Sensitivity in external validation ranged from 90% for presence of cardiac and 
vascular implants and grafts (Z95) to 100% for cardiomyopathy (I42) (supplementary tables 
3 and 4). Specificity was lower in the validation set which would indicate false positives, or 
over-classification by our model. For all three-character ICD-codes these putative “false” 
positives were assessed. Many (83% on average) of the putative “false” positives were in 
fact true positives after manual review, indicating that the model had successfully identified 
additional cases. Of the putative “false” positives, 93% were correct for E11, 87% were 
correct for E78, 60% were correct for I10 and 97% correct for I21. This pattern was seen for 
the rest of the codes as well (supplementary table 7).

RESULTS

Datasets
In total, 5,548 discharge letters from in-house cardiology patients were included in the 
dataset with an average of 4.7 codes per letter (cardinality). Median age at discharge was 
68 years (1st and 3rd quartiles [58-77]) and 36% of patients were female. For sanity check, 
Cohen’s Kappa was calculated for three- and four-character ICD-10 codes and was high: 
0.78 (95% Confidence Intervals (CI) [0.72-0.84]) for four-character codes and 0.85 (95%CI 
[0.79-0.89]) for three-character codes. Table 2 summarizes the characteristics and an 
example (box 1) is given after de-identification. 64 different ICD-10 codes have at least 200 
records in this dataset. Most common ICD-10 code was I25 (Chronic ischemic heart disease) 
followed by Z95, I10 and I48 (Presence of cardiac vascular implants and grafts, primary 
hypertension and atrial fibrillation/flutter, respectively) with all at least 1000 individual 
counts. The validation dataset contained an additional 5,089 discharge and procedural 
letters from cardiology. Most common ICD-10 code in the validation set were comparable to 
the training set (I25, followed by Z95, I10, I48, I50, etc) and are depicted in supplementary 
file (Supplementary Figure 1).

Box 1: An example of a Dutch discharge letter from the dataset
Bovengenoemde patiënt was opgenomen op <DATUM-1> op de <PERSOON-1> voor het specialisme 
Cardiologie.
Reden van opname STEMI inferior
Cardiale voorgeschiedenis . Blanco
Cardiovasculaire risicofactoren : Roken(-) Diabetes(-) Hypertensie(?) Hypercholesterolemie (?)
Anamnese. Om 18.30 pijn op de borst met uitstraling naar de linkerarm, zweten, misselijk. Ambulance 
gebeld en bij aansluiten monitor beeld van acuut onderwandinfarct.
AMBU overdracht. 500 mg aspegic iv, ticagrelor 180 mg oraal, heparine, zofran eenmalig, 3× NTG 
spray. HD stabiel gebleven.Medicatie bij presentatie.Geen.
Lichamelijk onderzoek. Grauw, vegetatief, Halsvenen niet gestuwd. Cor s1 s2 geen souffles.Pulm 
schoon. Extr warm en slank.
Aanvullend onderzoek. AMBU ECG: Sinusritme, STEMI inferior III)II C/vermoedelijk RCA.Coronair 
angiografie. (…). Conclusie angio: 1-vatslijden..PCI
Conclusie en beleid
Bovengenoemde <LEEFTIJD-1> jarige man, blanco cardiale voorgeschiedenis, werd gepresenteerd 
vanwege een STEMI inferior waarvoor een spoed PCI werd verricht van de mid-RCA. Er bestaan 
geen relevante nevenletsels. Hij kon na de procedure worden overgeplaatst naar de CCU van 
het <INSTELLING-2>…Dank voor de snelle overname…Medicatie bij overplaatsing. Acetylsalicylzuur 
dispertablet 80 mg; oraal; 1× per dag 80 milligram; <DATUM-1>. Ticagrelor tablet 90 mg; oraal; 2× per 
dag 90 milligram; <DATUM-1>. Metoprolol tablet 50 mg; oraal; 2× per dag 25 milligram; <DATUM-1> .
Atorvastatine tablet 40 mg (als ca-zout-3-water); oraal; 1× per dag 40 milligram; <DATUM-1>
Samenvatting
Hoofddiagnose: STEMI inferior wv PCI RCA. Geen nevenletsels. Nevendiagnoses: geen.
Complicaties: geen Ontslag naar: CCU <INSTELLING-2>.
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FIGURE 3. F1 scores for test and validation for three- and four-digit ICD-10 codes
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FIGURE 2. Codes with more than 400 appearances in the dataset 

TABLE 3. Selected three-character and four-digit ICD-10 codes
ICD10 code three digit and 
(four digit)

Description of codes

E11* (E11.9) Type 2 diabetes mellitus (Type 2 diabetes mellitus without mention of complications)
E78* (E78.0) Disorders of lipoprotein metabolism and other lipidemias (Pure hypercholesterolemia)
I10* Primary hypertension
I21 (I21.1, I21.4) Acute myocardial infarction (ST elevation myocardial infarction, Non-ST elevation 

myocardial infarction)
I25 (I25.1, I25.1, I25.5) Chronic ischemic heart disease (Atherosclerotic heart disease of native coronary 

artery, Old myocardial infarction, Ischemic cardiomyopathy)
I42 (I42.0) Cardiomyopathy (Dilated cardiomyopathy)
I48 (I48.0, I48.1, I48.2, I48.9) Atrial fibrillation and flutter (Paroxysmal atrial fibrillation, Persistent atrial fibrillation, 

Chronic atrial fibrillation, Unspecified)
I50 (I50.1) Heart failure (Left ventricular failure)
N18* Chronic kidney disease
Z95 (Z95.0, Z95.1, Z95.5) Presence of cardiac and vascular implants grafts (Presence of cardiac pacemaker, 

Presence of aortocoronary bypass graft, Presence of coronary angioplasty implant and 
graft)

* Risk factor for cardiovascular disease
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type 2 diabetes when “type ii” was used in another context (type 2 ischemia or type 2 
atrial septal defect). This detection of prescribed medication in text was also present for 
hypertension (I10) and dyslipidemias (E78). The detection of medication however also led 
to over-classification, since some prescribed drugs (amlodipine, perindopril or rosuvastatin) 
are often also prescribed as a means of treatment or primary/secondary prevention in 
other diseases than hypertension, for example in heart failure or ischemic heart disease. 
In case of acute myocardial infarction (I21), the model accurately identified procedures for 
which acute ischemia was an indication (STEMI and non-STEMI). Our model seemed to 
struggle with shorter ambiguous procedural letters. In case of I50 (heart failure) relatively 
short discharge letters (e.g., for device implantation) may include an abbreviation of 
cardiac decompensation (“decomp cor”) but was missed by our model. As expected, if 
more words were used to describe the patient’s condition (“CRT-D replacement for non-
reversible perfusion defects that led to a dilated and poorly functioning asynchronous LV”) 
the model did accurately predict the ICD-10 class. Over-classification was present in case 
of other reasons for decompensation than cardiac (pulmonary, hepatic or renal), or in case a 
cardiomyopathy was not yet diagnosed but the discharged patient was still undergoing the 
work-up. Supplementary table 8 contains a description of all three-character ICD-10 codes 
and their qualitative assessments.

FIGURE 4. Comparison between ELMo and our proposed method

Word coefficients
To interpret the model, word coefficients have been plotted per ICD-10 code. Words that 
increase the prediction probability are delineated in green. For Type 2 diabetes (E11) these 
words are either related to the use of medication (“metformin”, “gliclazide”, “insulin”), are 
synonyms for E11 (“diabetes”, “mellitus”, “dmii”) or are words that co-occur with cardiovascular 
risk factors (“overgewicht” (translation: overweight), “stenoses”). For hypertension (I10), the 
highest coefficients were reached with the synonyms and medication for hypertension as 
well (“hypertensie”, “amlodipine”, “valsartan”, “ht”). This pattern can be seen for all ICD-
10 codes. The words “blanco”, “normale” and “nee” all have negative coefficients which 
illustrates the negative effect of these words in the ICD-10 codes E11, E78, I10, I21, Z95. The 
coefficients of all ICD-10 codes are visible in the supplementary files.

Manual qualitative assessment of classification
For qualitative assessment of over-, under- and improved classifications all three-character 
ICD-10 codes were investigated manually by a clinical doctor. The model performed 
remarkably well in prediction ICD-10 codes of patients in case medication use indicated 
specific diagnoses. For E11 (Type 2 diabetes) for example, in case metformin or gliclazide 
were prescribed, the model accurately identified them whereas the medical coders 
missed them in the validation set. The model seemed to overestimate the probability of 
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in the summary paragraph of discharge letters. By building on prior work and using 
BGRU which is computationally less expensive, our reported performance is substantially 
higher than previously seen in smaller datasets, making it a useful and scalable tool for 
administrative and research support.2,4,12 We argue that this is caused by the high-quality 
of the selected training data, our pre-processing pipeline and the binary classification 
method together with a potent BGRU. Contextual word embeddings (ELMo and BERT) have 
shown substantial performance improvements in many NLP tasks.6,18,19 Recently, Blanco 
and colleagues assessed the performance of a BGRU combined with ELMo, showing 
an improvement in model performance. Their trained language was in Spanish which in 
terms of NLP is under strong growth and therefore they were able to train their embedding 
sets on the strong Spanish Billion Word Corpus.6 In this regard however, the lack of large 
Dutch (medical) language models for embeddings poses an important challenge. This 
is especially understandable as in our case privacy sensitive information in the medical 
field may be compromised if these language models are published online.21 Interestingly, 
ELMo did not positively affect our results which may be due to a variety of reasons. First, 
our pipeline was already optimized for this specific task of medical ICD-10 labelling and 
included word-embedding in the first layer of the BGRU, performing quite well with a binary 
relevance method. Next, given the fact that our model is trained and validated in a specific 
field of expertise (cardiology), there is little word ambiguity to be expected (the case when 
contextual word embeddings would be most beneficial). Third, the ELMo pipeline may still 
be suboptimal and have room for improvement for this task. Using language specific pre-
trained embeddings in the field of medicine, multi-language support or by trying meta-
embeddings as proposed by Blanco may further improve performance of these pipelines.6,24 
A recently published standardized benchmarking by Peng and colleagues evaluated BERT 
and ELMo on ten datasets, showing substantial better performance using pre-trained BERT 
models than other state-of-the-art models.25 Sing and colleagues implemented BERT as well 
on de-identified data from the MIMIC-III dataset (58.000 admissions). They demonstrated 
that with fine tuning based transfer learning of a pretrained bidirectional transformer 
language model, very high overall performances can be reached for both top 10 and top 50 
ICD-10 codes. They advocate working on interpretability for models’ prediction and further 
deployment to more coding systems (e.g. CPT and SNOMED).17

An important consideration is model interpretability. State-of-the-art deep learning models 
are challenging to grasp with no specialised knowledge in neural networks, and practice 
has shown that the easier the model, the wider its acceptance. There has been a significant 
increase in the use of machine learning methods but a notable proportion of works still 
use relatively simple methods: shallow classifiers, or combined with rule-based methods 
for higher interpretability.23 Interpretable results however may provide experts with 
supporting evidence when confronted with coding decisions.4 We therefore attempted 
to provide insight into the model by using word coefficients and manual assessment of 

DISCUSSION

We created a deep learning pipeline for automatic multilabel ICD-10 classification in free 
medical text using Dutch cardiology discharge letters. Given the sensitive nature of these 
data, we included a de-identification step.22 

Prior work on NLP in cardiology was focussed on specific relevant indicators such as 
hypertension, algorithms to identify Framingham heart failure signs and symptoms or 
identification of cardiovascular risk factors and outcomes.23 The use of Recurrent Neural 
Networks (RNN) for cardiovascular diagnoses, risk factors and complications, however, 
remained relatively uncharted. Partially, this is due to rather low performance of some 
models limiting clinical usefulness.7,9–16 Recent methodological developments in neural 
networks lead to high performing models, but they rely on limiting the number of codes 
(four) to predict, or require huge datasets of up to 128,000 training data points (Table 1).4,7 
Limited performance of some models, the necessity of gigantic datasets for (pre-)training 
and lack of interpretability withhold them from replacing or aiding a human coder. 

In this work, we used a deep neural network and focussed on clinical usefulness with both 
single and multilabel prediction in a relatively small dataset of 5,548 clinical discharge 
notes. We extracted frequently used, well defined and clinically relevant three- and four-
digit ICD-10 codes.5 These three-character codes still have enough granularity to include 
relevant diagnoses such as atrial fibrillation (I48) or acute myocardial infarction (I21). Next, 
we assessed and improved an already potent type of RNN (BGRU) by using semi-structured 
parts of text, by adding clinical variables (age and sex) and by adding an ELMo embedding 
layer. We then sought to explain our model using word coefficients and manual review 
of misclassifications. Even though our dataset focussed on cardiology, the pipeline is 
generalizable and may be trained with data from any other speciality. 

A comparison of several state-of-the-art RNN ICD coding systems reported that classification 
performance is higher for ICD chapters than rolled-up codes. The previously reported F1-
scores of ICD-10 chapters for this dataset were around 50-60% at best and limited to 20-30% 
for rolled-up, more terminal codes.2 BGRU has been promising for classification of medical 
text and prior experiments advocate either reducing granularity or increasing training 
data to improve performance.2,4,6 Additionally, the use of co-occurrences (association rule 
mining) for the initialization weights also positively impacted performance.12 Unfortunately, 
in most settings training data are limited. Therefore, we tried reducing granularity of our 
dataset whilst remaining clinically relevant without reducing the label-set size. By doing so, 
our pipeline reached F1 scores for rolled-up codes of 97%. Using the entire corpus of text 
rather than semi-structured parts also improved classification performance, especially for 
conventional risk factors such as diabetes and hypertension that are seldomly mentioned 
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than solely focusing on methodological fine-tuning as suggested by Singh and colleagues.17

Our proposed model may be limited by the quality of the data. Even though they were 
coded by an experienced medical coder, given the character of the dataset it is prone to 
have human error. As this work involves privacy sensitive data, we are restricted by the 
Dutch version of the European GDPR (AVG) which inhibits us from using external Dutch 
datasets. Nonetheless, within this small country and the fact that medical staff rotate we do 
not believe this poses a major limitation to the validation. Future studies may improve this 
model by using contextual word embeddings pre-trained on Dutch medical corpora, assess 
performance in other datasets as well as the use of other coding systems.

We propose a novel automated ICD-10 classifier BGRU pipeline with a de-identification step. 
Interpretation of the BGRU pipeline is made possible by using word coefficients. Because 
of its high performance, this pipeline can be useful to decrease administrative burden of 
classifying discharge diagnoses and may serve a scaffold for reimbursement and research 
applications.

classifications. These results illustrate that synonyms of ICD-10 diagnoses or medication 
specifically prescribed for these diseases have the highest positive probabilities. Negative 
words (negation), such as “normal” or “no” decrease the probability of ICD-10 diagnoses, 
more noticeably for cardiovascular risk factors. Interestingly, in a recent study published 
by Lin and colleagues, their results also suggest that BERT subsumes domain adaptation 
for negation detection and further fine-tuning on specific corpora does not lead to much 
overfitting.20

Most ICD-10 codes are used rarely in clinical practice, while a small amount of diagnoses 
comprise the majority of patients seen in cardiology clinics.3,5 To aid administrative support, 
our focus was directed towards multilabel classification and we argue that the model is 
interpretable and its performance is high enough to aid medical coders. From a clinical 
perspective, the high single label performance allows for patient identification in EHRs by 
using only the clinical discharge letters as a first step towards building research cohorts of 
interest. Less frequent ICD-10 codes, for rare diagnoses for instance, still require datasets 
large enough for machine learning and deep learning algorithms to perform well in ICD-
10 classification.2 For these diagnoses, rule-based methods may be a more viable option, 
given that the terms in text follow regular patterns and the task is limited to single-label 
classification.4 To accurately capture rare diagnoses, other more structured parts of the 
EHR may be useful such as laboratory results. A well-performing example is a simple 
classification algorithm for identification of patients with Systemic Sclerosis in the EHR by 
using positive antinuclear antibody titre thresholds.26 

Automated coding system that combine simple classifiers with machine learning models 
are not new, as they have been successfully implemented in 2006 at the Mayo Clinic and 
resulted in an 80% reduction of staff engaged in manual coding.15 More recently, a similar 
system for veterinary electronic health records (VetTag) was built, which classified veterinary 
clinical notes with diagnosis codes. Authors argue that processing these clinical notes has 
a tremendous impact on (veterinary) clinical data sciences.27 Nonetheless, these promising 
results have not led to widespread use of automatic coding systems for discharge letters.23 
It is clear that human coders can benefit by reviewing suggested ICD-10 codes rather 
than reading all discharge letters and translating them to proper ICD-10 codes.15 Saved 
time can then be used to dive deeply into the correct terminal and detailed coding or 
additional structuring of data, leading to better research infrastructure. However, there 
are two long-term concerns: the first is the actual implementation of these algorithms into 
software. Implementation is more than solely installing an automation pipeline. It requires 
new software which is embedded in existing workflows and prolonged maintenance. The 
second is the improvement of technology to for more complex and less frequent ICD-10 
codes ICD-10 codes with high accuracy, which would require larger datasets and feedback 
algorithms. We underline the importance of further efforts to focus on implementation, rather 
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Netherlands rotate from hospitals within the country frequently, the letters were written by 
other clinicians and teams. Additionally, sentence structures as well as diagnosis coding 
structures are interchangeable in hospitals. Therefore, this temporal dataset was deemed 
fit for external validation. For this set, clinical letters from 01-07-2018 until 04-09-2019 were 
included. Because the dataset is solely constructed on discharge letters and ICD-10 codes, 
the pipeline is not EHR system or vendor specific and may be interoperable. 

Machine learning pipeline for ICD-10 classification. 
The pipeline is summarized in Figure 5. Before feeding data into the different machine 
learning or deep learning algorithms, we first applied the following steps:

(i)	 We de-identified the letters using DEDUCE. 22

(ii)	 We pre-processed the text (trimmed whitespaces, numbers and converted all characters 
to lowercase) using the tm and tidytext packages in R.29 

To transform text into data a machine can understand (text representation), the output of 
our pre-processed text was then vectorised using word embedding. This method allows to 
represent words in such a way that it captures meanings, semantic relationships and context 
that words are used in. It is a dense feature representation in a low dimensional vector and 
has been proven to be a robust solution for most NLP issues. Word embedding is also 
the first layer in a neural network (NN) based classifier. After k-fold cross-validation (k = 5)  
we implemented a bidirectional gated recurrent unit (BGRU) neural network.

Bidirectional Gated Recurrent Unit (BGRU) Neural Network
The general architecture of a BGRU model is shown in Figure 6. In this model, the input 
layer is the text from discharge letters and the output layer is the ICD-10 label. The model 
uses deep recurrent neural networks (RNN) in its hidden layers, called gated recurrent 
units (GRUs). GRU is a type of RNN that can model sequential data. The GRU network 
receives an input at each timestep, updates its hidden state, and makes a prediction. By 
using recurrent connections, information can cycle inside these networks for an arbitrarily 
long time. However, RNNs are known to have difficulties learning the interactions between 
distant words because of long-range dependencies. This problem is known as the vanishing 
gradient problem. Extensions for neural networks, such as Long-Short Term Memory (LSTM) 
and GRU were specifically designed to combat this issue through a gating mechanism. 
Using GRUs also leads to a reduced number of parameters, faster convergence and a more 
generalizable model in comparison to other methods.12

We used the Keras library to implement the BGRU model for automated ICD-10 coding.30 
Vector dimensionality was set to 300, windows size to five and we discarded words that 
only appeared once in the training set. We experimented with the model directly on the 

METHODS

Medical ethical regulations and GDPR
This study was exempt from medical ethical regulations by the Medical Ethical Committee 
of the University Medical Center Utrecht (UMCU) (no. 18-446). A data management plan 
was created and reviewed by the privacy security board to meet institutional and national 
requirements in the Netherlands for GDPR compliance. 

Dataset
Discharge letters were retrieved from the electronic health records in the University 
Medical Centre Utrecht (UMCU) and were available from the start of the electronic health 
record on 08-09-2013 until data extraction on 30-06-2018, written by a total of 84 different 
medical doctors. All letters were manually classified with multilabel/multiclass ICD-10 codes 
by an experienced medical coder that works solely in the field of cardiology. The discharge 
letters were matched to the corresponding ICD-10 classification by using patient ID and 
dates of admission/discharge from within the UMCU Research Data Platform. We removed 
ICD-10 codes with less than 50 observations.28 Since the reliability of terminal codes is 
poor, simplification of ICD-10 codes is important to receive a valid image of health care 
reality.5 Selection of specific ICD codes was based on availability and clinical usability 
(sufficient granularity) of higher level rolled-up codes (e.g. I42 (cardiomyopathy) rather than 
I42.3 (endomyocardial (eosinophilic) disease)). The 10 selected codes account for six main 
diagnoses (acute myocardial infarction, chronic ischemic heart disease, cardiomyopathy, 
atrial fibrillation/flutter, heart failure and presence of cardiovascular implant grafts) and four 
cardiovascular risk factors (type 2 diabetes, hyper/dyslipidemia, primary hypertension, 
chronic kidney disease). To not oversimplify the task, from these 10 selected codes, 
further four-character ICD-10 codes (e.g. I48.0 (paroxysmal atrial fibrillation) rather than 
I48) were also considered to assess performance for very granular labels with at least 100 
appearances in both the training and validation set. The ICD-10 codes are depicted in Table 
3. Dataset quality for both three- and four-character ICD-10 codes was manually assessed 
using an adaptation of Cohens Kappa previously described and used for ICD-10 codes 
(AS).5 100 clinical discharge notes were randomly selected, stripped from patient-IDs and 
reclassified by a medical coder (DK) that was blinded to the correct codes. 

Validation
To assess the performance of the model in a new dataset, a non-overlapping temporal 
validation dataset was created consisting of letters and ICD-10 codes. This validation set 
contains new clinical discharge and procedural letters written by 46 different medical 
doctors. Given GDPR restrictions and the nature of this privacy sensitive work, extracting 
letters from other hospitals was not possible. However, because clinical staff in the 
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Code availability
The code used in this study can be found at GitHub: https://github.com/bagheria/cardio-
icd-assignment
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word sequence of all the discharge letters. As in previous studies on textual data, the fact 
that our data contains long texts creates a challenge for preserving the gradient across 
thousands of words. Therefore, we used dropout layers to mask the network units randomly 
during the training.31 We set the number of hidden units in the RNN layers at 100. Dropout 
and recurrent dropout were added to avoid overfitting, both at a 0.2 rate. On the output of 
the recurrent layer, a fully connected neural network (two dense layers) was applied for the 
classification of the ICD-10 codes. The hidden dense layer contains 128 units and uses the 
relu activation function, and the output layer uses a softmax function to determine if the ICD 
code should be assigned to the letter. 

Contextual Word Embeddings
A dense neural network using word vectors from contextual embeddings based on ELMo 
has been used for the comparison study.19 These word vectors are learned functions of the 
internal states of a deep bidirectional language model trained on our original dataset. In this 
representation, the vector obtained for each word depends on the entire context in which 
it is used. Using a bi-directional LSTM, instead of a fixed embedding for each word, ELMo 
looks at the entire sentence before assigning each word an embedding (Supplementary 
figure 2). 

Assessment of performance and experiments
We investigated performance by randomly splitting the dataset in a training (0.80) and 
testing (0.20) set. The model was then again evaluated in external validation. Sensitivity 
(recall), specificity, positive predictive value (PPV, precision), negative predictive value 
(NPV), and F1-score (a harmonic mean between sensitivity and positive predictive value) 
were calculated. We performed four experiments with different input variables: (I) using only 
the summary paragraph parts of discharge letters (conclusion), (II) using the entire corpus 
of discharge letters, (III) using the entire corpus of discharge letter and adding the variables 
age and sex, and (IV) multilabel classification of experiment III. For an administrative support 
tool, it is important to suggest the right diagnoses, ranked by the prediction probabilities. 
For multilabel assessment we considered every ICD label above a probability threshold as 
a positive. We assigned this threshold in such a way that the label cardinality for the test 
set is similar to the label cardinality in the training set. When performance discrepancies 
were present, a clinical doctor (AS) manually assessed these errors in a descriptive manner. 
False positives were either all manually assessed, or a subset of 100 letters in case of >100 
putative false positives. 

Data availability
The dataset is not available due to patient privacy restrictions. However, the model may be 
shared to qualified researchers from academic or university institutions upon request via 
the corresponding author.
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INTRODUCTION

Left ventricular hypertrophy (LVH) is a condition characterised by thickening of the left 
ventricular (LV) wall and can be identified using echocardiography (defined as an LV wall 
thickness of >12mm). The disease has a prevalence of ±15% in the normal population.(1–3) 
LVH in the absence of abnormal loading conditions (i.e. hypertension or valvular disease) 
has an estimated prevalence of ±0.2% and is named as unexplained LVH (ULVH) or 
hypertrophic cardiomyopathy (HCM).(3,4) ULVH is an important cause of sudden cardiac 
death and is caused by autosomal dominant genetic mutations in genes encoding proteins 
of the cardiac sarcomere in 40-60% of patients.(5–7) Some ULVH cases are explained by a 
variety of rare, genetic and non-genetic aetiologies that may produce isolated or syndromic 
LVH, such as cardiac amyloidosis (CA) in an estimated 5-10% and Fabry’s disease in 0.5-1% 
of cases.(3,8–11) These specific aetiologies are also referred to as phenocopies. 

Identification of patients with ULVH is important to allow risk stratification for sudden 
cardiac death and screening of at-risk family members.(12–14) Early identification of 
cardiac amyloidosis and Fabry’s disease is essential to initiate targeted treatment to slow 
disease progression and improve patient prognosis.(15–17) However, timely identification 
is hampered by low disease prevalence, intrinsic phenotypic heterogeneity, presence of 
comorbidities or absence of an indicative family history.(18–22)

Electronic Health Records (EHR) consist of a variety of data including both structured tables 
with results from clinical investigations and unstructured text data (i.e., discharge letters, 
clinical consultation notes, etcetera). Text-mining is a method to extract data from unstructured 
datasets while machine learning (ML) algorithms can be deployed on structured datasets. 
Both approaches rely on research infrastructures, however the research infrastructure for 
text-mining may be easier to deploy than ML because it only needs one data source (clinical 
discharge letters) whereas ML requires a multitude of standardized clinical measurements 
(i.e., laboratory values, electrocardiograms, and echocardiography). Both text-mining and 
ML have been proposed as methods to extract diagnoses and assist in classification of 
patients using real-life EHR data.(23–26) In this proof-of-concept-study, we aimed to assess 
the performance of (i) a text-mining approach and (ii) a data-driven ML approach to identify 
patients with ULVH, such as amyloidosis and other phenocopies.

ABSTRACT 

Background
Unexplained Left Ventricular Hypertrophy (ULVH) may be caused by genetic and non-genetic 
aetiologies (e.g. sarcomere variants, cardiac amyloid or Fabry’s disease). Identification of 
ULVH patients allows for early targeted treatment and family screening. 

Aim
To automatically identify patients with unexplained LVH in electronic health record (EHR) 
data using two computer methods: text-mining and machine learning (ML).

Methods
Adults with echocardiographic measurement of interventricular septum thickness (IVSt) 
were included. A text-mining algorithm was developed to identify patients with ULVH. 
An ML algorithm including a variety of clinical, ECG and echocardiographic data was 
trained and tested in an 80%/20% split. Clinical diagnosis of ULVH was considered the 
gold standard. Misclassifications were reviewed by an experienced cardiologist. Sensitivity, 
specificity, positive and negative likelihood ratios (LHR+ and LHR-) of both text-mining and 
ML were reported.

Results
In total, 26954 subjects (median age 61 years, 55% male) were included. HCM was 
diagnosed in 204/26954 (0.8%) including 56 patients with amyloidosis and two with Fabry. 
Text-mining flagged 8192 patients with possible ULVH, of whom 159 were true positives 
(sensitivity, specificity, LHR+ and LHR-of 0.78, 0.67, 2.36 and 0.33). Machine learning resulted 
in a sensitivity, specificity, LHR+ and LHR- of 0.32, 0.99, 32 and 0.68 respectively. Important 
variables included IVSt, systolic blood pressure and age.

Conclusions
Automatic identification of patients with ULVH is possible with both Text-mining and ML. Text-
mining may be a comprehensive scaffold but can be less specific than machine learning. 
Deployment of either method depends on existing infrastructures and clinical applications.
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females, in line with current guidelines.(3,18,21)

Computer algorithms
Two computer algorithms were used in this study: one computer algorithm used text-mining, 
and the other used machine learning. The details of these algorithms are available in the 
Supplemental Materials. In short, the text-mining algorithm was designed using CTCue (a 
Boolean retrieval text-mining tool) to identify patients with unexplained LVH, defined as LVH 
excluding hypertension and aortic stenosis using clinical discharge letters and notes. The 
ML algorithm was trained on patients with echocardiographic LVH to identify patients with 
unexplained LVH. Parameters for the ML algorithm are depicted in supplemental Table 1. As 
ML algorithms require training on one dataset and testing in another, the model was trained 
on a random selection of 80% of data (stratified by outcome) and tested in 20%. To assess 
the added value of text-mining, “identification by text-mining” was also investigated as a 
dichotomous (yes/no) variable in the ML algorithm. 

Statistical analysis
Data are presented as counts (percentages) for count data and means ± standard deviation 
for normally distributed or medians (interquartile range) for non-normally distributed 
continuous data. Performance of the ML models was assessed on the holdout set (20% 
of patients, stratified on outcome) after manual review of overclassified (false-positive) and 
missed (false-negative) subjects. Manual review was performed by a panel of experienced 
cardiologists in the fields of ULVH and amyloidosis (M.I.F.J.O. and F.W.A). Qualitative 
assessment of reasons for misclassification by the text-mining algorithm was performed 
by A.S.. Sensitivity, specificity, positive likelihood ratio (LHR+) and negative likelihood ratio 
(LHR-) were reported for the models. Positive and Negative predictive values (PPV and 
NPV) are provided in the supplements. All analyses were performed in R version 4.0.3 (R 
Development Core Team, 2020) using RStudio version 1.3.1093 (RStudio Team, 2020).

MATERIALS AND METHODS

Subject inclusion
In this single-centre, retrospective study, consecutive patients referred to Department of 
Cardiology of the University Medical Centre Utrecht (UMCU) were included. Inclusion criteria 
were an age ≥18 years and availability of an echocardiographic interventricular septum 
thickness measurement before 6 December 2019 (date of text-query deployment). This 
study was conducted in accordance with the principles laid out in the Declaration of Helsinki 
and in line with guidelines provided by ethics committees and national GDPR legislature. 
Due to its retrospective nature and the large number of participants, this study was exempt 
from the Medical Research Involving Human Subjects Act (WMO) as per judgement of 
the Medical Ethics Committee (18/446 and 19/222 UMCU, the Netherlands) including the 
requirement for informed consent. Patients who had opted out of retrospective studies 
were excluded. 

Study data and infrastructure
Using the research data platform, available data on diagnosis, demographics, 
electrocardiograms (ECG) and echocardiography parameters, and unstructured text 
were retrieved from the EHR in a standardised research data platform. The design of this 
infrastructure has been previously published.(27) Data for the ML model were restricted to 
a basic set of variables on these modalities to comply with a standard diagnostic workup for 
patients presenting for cardiological screening and to minimize the chance of data leakage. 
An overview of the intended parameters, methods used to handle outliers and missingness 
is provided in Supplemental Table 1. 

Gold standard (study outcome)
The outcome of this study was ULVH diagnosis or related phenocopies cardiac amyloidosis 
and Fabry’s disease. Three reference lists were used to adjudicate diagnoses: first, patients 
with ULVH diagnosis codes were extracted from the EHR (I42.1 and I42.2, International 
Statistical Classification of Diseases (ICD10) codes).(28) This list was then supplemented by 
a retrospective list of genetically-confirmed ULVH patients from the Department of Genetics. 
Patients were considered genetically-confirmed if a pathogenic or likely-pathogenic variant 
was identified, in accordance with the 2015 American College of Medical Genetics and 
Genomics and the Association for Molecular Pathology Standards and guidelines for 
the interpretation of sequence variants(29), in one or more genes with definitive, strong 
or moderate evidence for an association to ULVH (by M.J. and A.F.B).(30) Third, a list of 
consecutive patients with cardiac amyloidosis in accordance with the recently published 
2021 ESC position statement on diagnosis and treatment of cardiac amyloidosis (by 
M.I.F.J.O.).(18) Echocardiographic LVH was defined as a maximum wall thickness of >12 mm 
or a left ventricular mass indexed to body surface area >115g/m2 in males and >95g/m2 in 
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  ULVH
(n = 204)

No ULVH
(n = 26,750)

p-value

Echocardiography
IVS thickness (cm) 1.69 [1.38, 2.00] 1.03 [0.89, 1.20] <0.001
IVS/LV posterior wall ratio 1.32 [1.09, 1.69] 1.09 [0.99, 1.24] <0.001
LV posterior wall thickness (cm) 1.31 [1.16, 1.54] 0.98 [0.86, 1.12] <0.001
LV mass (g) 275.10 [219.59, 326.55] 177.34 [140.01, 225.58] <0.001
Indexed LV mass (g/m2) 144.21 [116.27, 177.16] 91.76 [74.82, 114.39] <0.001
LV end-diastolic diameter (cm) 4.58 (0.87) 4.93 (0.80) <0.001
LV end-diastolic volume (mL) 96.93 [74.49, 119.04] 109.99 [87.55, 137.02] <0.001
LV end-systolic diameter (cm) 3.00 [2.41, 3.63] 3.16 [2.72, 3.72] 0.003
LV end-systolic volume (mL) 39.64 [28.30, 57.71] 42.57 [30.14, 61.62] 0.048
LV ejection fraction (%) 55.87 [45.07, 66.53] 58.58 [48.98, 67.44] 0.026
LV fractional shortening (%) 32.77 [24.01, 43.53] 34.94 [27.18, 41.74] 0.226
LV outflow tract gradient (mmHg) 5.14 [3.36, 8.21] 4.02 [3.01, 5.33] <0.001
Aortic valve gradient (mmHg) 8.42 [5.42, 14.33] 7.08 [5.26, 10.56] 0.01
LA diameter (cm) 4.51 [4.02, 5.09] 3.92 [3.48, 4.47] <0.001
E/A 1.21 [0.83, 1.89] 1.02 [0.77, 1.41] <0.001
Average E/e’ 12.95 [9.85, 18.27] 8.06 [6.41, 10.69] <0.001
Lateral E/e’ 10.54 [6.96, 15.29] 6.87 [5.33, 9.32] <0.001
Septal E/e’ 14.74 [11.06, 19.46] 9.15 [7.19, 12.13] <0.001
MV deceleration time (s) 0.17 [0.14, 0.22] 0.18 [0.15, 0.22] 0.009
TAPSE (cm) 2.05 (0.54) 2.21 (0.52) <0.001
 
Criterium on which “outcome” was defined
Echocardiographic LV hypertrophy 196 (96.1) 12085 (45.2) <0.001
Maximum wall thickness >12 mm 174 (85.3) 6010 (22.7) <0.001
Indexed LV mass >115 (males)  
or >95 (females) g/m2 170 (90.4) 10408 (45.2) <0.001

Identified by CTCue population finder 159 (77.9) 8033 (30.0) <0.001
Patient characteristics, shown as means (standard deviation), medians [interquartile range] or counts 
(%), stratified by ULVH diagnosis according to the reference lists (amyloidosis, genetically confirmed 
and classified based on World Health Organization International Statistical Classification of Diseases 
and Related Health Problems, tenth revision). P-values <0.05 are shown in bold. IVS, interventricular 
septum; LV, left ventricular; LA, left atrial; MV; TAPSE, tricuspid annular plane systolic excursion.

Text-mining 
From the 26,954 subjects, the CTCue population finder algorithm flagged a total of 8,192 
patients with possible ULVH, of whom 159 had ULVH and incorrectly excluding 45 ULVH 
cases. Patient characteristics stratified by identification by the CTCue population finder are 
provided in Supplemental Table 3. Patients that were identified by CTCue had characteristics 
that were comparable to patients with ULVH, for example with larger IVSt (1.14cm vs 1.00 cm 
(p<0.001), larger LA dimensions (4.00cm vs 3.90 cm (p<0.001) and longer PQ intervals (165ms 
vs 158 ms, p<0.001). Given the identified 159 patients and missed 45 ULVH cases, Sensitivity, 
specificity, LHR+ and LHR- of the CTCue text-mining algorithm was 0.78, 0.67, 2.36 and 
0.33 respectively. Manual reclassification revealed one additional case of unexplained LVH 
which was not present in our gold standard. Reasons for under classification are provided 
in Supplemental Table 4, and were mostly a diagnosis of (pulmonary) hypertension (n=15, 

RESULTS

Study population
From the electronic health record (n = 40,598), adult patients were included in the dataset if 
a measurement of interventricular septal thickness (IVSt) was available (n = 26,954). A flow 
diagram of subject inclusion is provided in Figure 1. Subject characteristics are provided 
in Table 1. In total, 204 patients (1 in ±130) were diagnosed with ULVH of which 56 patients 
were diagnosed with CA and two with Fabry disease. Genotypes of ULVH patients are 
summarised in Supplemental Table 2, with a total of 41 genotype positive patients and most 
pathogenic variants in MYBPC3 (56%) and MYH7 (20%). Most patients with ULVH were male 
(69%) and had a significantly lower mean systolic blood pressure compared to non-ULVH 
patients (121 vs 129 mmHg, p<0.001). ECG measurements associated with LVH were also 
more present in ULVH (R and S amplitudes, p < 0.007) as well as septal hypertrophy (1.69 
vs 1.03 cm, p<0.001). All the patients with an IVSt measurement available (n = 26,954) were 
included in the text-mining dataset. To mimic clinical work-up, only patients with LVH on 
echocardiography were included in the ML dataset (n = 12,281) resulting in an exclusion of 
eight patients that were diagnosed with ULVH according to our gold standard (of whom 2 
had CA, 3 had genetically proven ULVH and 3 were identified using ICD-10 coding). 

TABLE 1. Patient characteristics
  ULVH

(n = 204)
No ULVH

(n = 26,750)
p-value

Demographics
Male sex 141 (69.1) 14792 (55.3) <0.001
Age (years) 62.05 [53.75, 69.90] 61.06 [46.88, 72.10] 0.591
Body surface area (m2) 1.92 [1.82, 2.10] 1.92 [1.76, 2.07] 0.053
Mean systolic blood pressure (mmHg) 121.14 (18.37) 129.10 (17.85) <0.001
Mean diastolic blood pressure (mmHg) 71.76 (10.53) 74.43 (10.57) 0.001
 
Electrocardiography
Atrial rate (bpm) 71.00 [61.00, 84.00] 72.00 [62.00, 84.00] 0.675
Ventricular rate (bpm) 70.00 [61.00, 82.00] 71.00 [62.00, 83.00] 0.383
P axis (°) 54.00 [30.00, 70.50] 54.00 [37.00, 68.00] 0.982
R axis (°) 19.00 [-38.00, 68.00] 31.00 [-8.00, 63.00] 0.114
T axis (°) 94.00 [46.00, 135.50] 51.00 [30.00, 72.00] <0.001
PQ interval (ms) 176.00 [152.00, 206.00] 160.00 [142.00, 182.00] <0.001
QRS duration (ms) 118.00 [98.00, 148.00] 96.00 [86.00, 110.00] <0.001
QT interval (ms) 432.00 [394.00, 465.00] 396.00 [370.00, 422.00] <0.001
QTc (Fredericia) (ms) 448.00 [425.25, 484.00] 417.00 [400.00, 439.00] <0.001
R amplitude V6 (µV) 693.00 [363.50, 1176.00] 937.00 [634.00, 1274.00] <0.001
S amplitude V2 (µV) 1254.00 [649.00, 2094.00] 1098.00 [717.00, 1557.00] 0.007

 

TABLE 1. Continued
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Machine learning
From the 12,281 patients with echocardiographic LVH, 196 patients were previously diagnosed 
with ULVH. Subject characteristics stratified by echocardiographic LVH are provided in 
Supplemental Table 5. Patients with echocardiographic LVH were more frequently male 
(66.1 vs 46.7%, p<0.001), with larger LA dimensions (4.23cm vs 3.69cm, p<0.001), longer PQ 
interval (166ms vs 154ms, p<0.001) and longer QRS duration (102ms vs 92ms, p<0.001). The 
tuned hyperparameters for the trained models are provided in Supplemental Table 6. The 
performance of the machine learning models is shown in Table 6. The test set included 
39 patients with ULVH, in which machine learning correctly identified 10 out of 39 (26%) 
patients with ULVH and 2412 (99.8% of total) without ULVH. Manual review of overclassified 
(false-positive, n = 5) cases in the test-set revealed that three were in fact true positives and 
missed by our golden standard list. Manual review of the misclassified (false-negatives, n 
= 29) in the test-set revealed that one case of the false-negatives was in fact sufficiently 
explained by hypertension resulting in a true-negative by the model. This led to a total of 
two false positives and 28 false negatives. Additionally, one novel case of ULVH was also 
identified that, in retrospect, required further work-up of LVH. Final sensitivity, specificity, 
LHR+ and LHR- after manual review were 0.32, 0.99, 32 and 0.69 respectively. Important 
variables for classification included IVSt, systolic blood pressure and age (Figure 2). 

Added value of text-mining
As shown in Supplemental Table 6, including identification by CTCue as a dichotomous 
variable (yes/no) did not improve performance over the baseline ML model (sensitivity, 
specificity, LHR+ and LHR- of 0.18, 0.99, 18, 0.83 respectively). Coefficients and explanation of 
Lasso logistic regression were provided in Supplemental Table 7 and showed that including 
identification by CTCue as a dichotomous variable (yes/no) slightly decreased performance, 
correctly identifying the same number of subjects with ULVH and misclassifying one.

33%) and ambiguous notation of LVH (i.e. “important hypertrophy”; n=7, 16%). However, in 
22 patients (49%) the reason for under classification was not apparent which is discussed 
in the study limitations.

FIGURE 1. Flow diagram of patient inclusion
Flow diagram showing the patients excluded in each step. For the text-mining algorithm, 26,954 
patients were included. The machine learning algorithm was trained on patients with echocardiographic 
LVH. IVSt, interventricular septum thickness; LVH, left ventricular hypertrophy; ULVH, Unexplained Left 
Ventricular Hypertrophy; HCM: Hypertrophic Cardiomyopathy; G+, genetically-confirmed; ICD10, World 
Health Organization International Statistical Classification of Diseases and Related Health Problems, 
tenth revision.
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FIGURE 2. Feature importance
Relative importance for the top 25 variables of each of the three XGBoost models (41 variables in total), 
measured by gain. Numbers denote the rank of the top 25 variables for each model (1 being the most 
important). LVH, left ventricular hypertrophy.
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would easily identify cases when presented to them (as illustrated in the reasons for under-
classification, Supplemental Table 4). In our study, text-mining identified patients with ULVH 
with reasonable sensitivity and LHR- which, given the epidemiology of unexplained LVH, 
translates to identification of most patients with ULVH while reducing the number of patient 
files needed to be screened (high negative predictive value). Our results are in line with 
other studies using the same approach, for instance reducing the number of patients 
that needed to be screened for trial inclusion by 80% and a yield of 2-5% for inclusion.
(25) Other applications for such algorithms include retrospective cohort building, further 
emphasizing the supportive role of text-mining applications rather than a comprehensive 
solution replacing human assessment of patient inclusions.(25,38,39) Whether queries for 
specific phenocopies (such as Cardiac Amyloidosis and Fabry’s disease) can be improved 
by ancillary search terms (e.g., neuropathy for amyloidosis and kidney failure for Fabry’s 
disease) remains to be investigated.

Machine learning algorithms build a model based on training data to make decisions on 
new data without being explicitly told how to do so (learning). Our existing research data 
platform provided structured and standardised data to train our machine learning (XGBoost) 
algorithm.(27) It identified ULVH patients with high specificity, however at the cost of 
sensitivity compared to the text-mining algorithm. Artificial intelligence (AI) models have 
previously been developed to identify patients with heart failure, or to identify patients with 
PLN p.Arg14del cardiomyopathy.(40,41) Our final model was efficient in identifying patients 
with ULVH, with a specificity of 0.99, LHR+ of 32 resulting in a positive predictive value of 
0.72. Moreover, the model identified a previously undiagnosed patient with ULVH. A highly 
specific model like this would be better suited for clinical applications that require high 
degrees of certainty, e.g., when selecting patients to perform expensive diagnostic testing 
(such as Whole Genome Sequencing) or in the context of ethical considerations (whether to 
inform family members of a potentially inheritable phenotype).(3) As expected, coefficients 
were generally positive for echocardiographic characteristics of ULVH ((septal) wall 
thickness, LV outflow tract pressure gradient, diastolic dysfunction, and LA diameter) and 
negative for variables associated with abnormal loading conditions (age, blood pressure 
and aortic pressure gradient). 

Infrastructure and clinical considerations
Big-data infrastructures improve accessibility of EHR data and methods such as machine 
and deep learning can model complex interactions, find new phenotype clusters, or predict 
prognosis.(34,42) The phenotypic data usually included in EHR systems complies with the 
definitions of big data and include detailed laboratory, investigations, ECG data, device data, 
questionnaires and (unstructured) text.(27,34,43) Importantly, text-mining requires little data 
infrastructure: it requires only one database (clinical discharge letters) and can already be 
implemented using a single piece of open-sourced software.(44) This advantage enables 

DISCUSSION

In this study, we evaluated computer methods (text-mining and machine learning) in EHR 
data to identify patients with unexplained LVH. These methods are feasible strategies to 
assist in patient screening for research databases, trial recruitment or clinical follow-up.
(26,31,32). Our results suggest that both methods can reduce the bulk of patients needed 
to screen with a high negative predictive value.

Unexplained LVH
LVH is an echocardiographic abnormality often encountered in the normal population 
(±15%).(1–3) As abnormal loading conditions, such as hypertension and valvular disease 
are also quite common, the distinction between LVH that is sufficiently explained by these 
conditions and ULVH requires further investigation.(3,4) Early detection of ULVH is essential 
to initiate targeted treatment, for instance in Fabry’s disease and cardiac amyloidosis, for 
risk stratification of sarcomeric HCM and for family screening.(3,5–11) As Fabry’s disease and 
cardiac amyloidosis are rare and therefore difficult to detect, the imperative to recognize 
them largely depends on availability of specific therapeutic workflows.(11,17,20) More likely, 
patients present to non-experts with their initial symptoms, leading to an operational 
challenge to construct systems that can facilitate identification of these rare phenocopies.
(33) Automatic strategies to augment unexplained LVH detection can therefore provide a 
systematic framework for further cardiogenetic screening of patients and relatives. With 
accessible EHR data approaches like text-mining or machine learning are practicable.(34)

Computer algorithms
Text-mining is the process of deriving high quality information from text, in this case from 
clinical discharge letters. It can range from simple rule-based algorithms, to complex 
computer models that understand semantics and word ambiguity.(26) State-of-the-art deep 
neural networks offer the best performance but require large amounts of language specific 
training data, mostly lacking for rare diseases and especially in Dutch.(26,35–37) For less-
frequent diagnoses such as ULVH, rule-based methods may be a more viable option, 
given that the terms in text follow regular patterns.(26,31) A well-performing example is a 
simple classification algorithm to identify patients with systemic sclerosis using data from 
the EHR.(31) However, the broad definition of ULVH, including phenocopies and allowing 
presence of concomitant abnormal loading conditions (not explaining the degree of left 
ventricular hypertrophy), makes precise identification of ULVH an especially challenging 
task.(3) Furthermore, Dutch terminology for ULVH is heterogeneous, including different 
ways of denoting hypertrophy and spelling of hypertrophic cardiomyopathy. By using a 
Boolean retrieval algorithm software (CTCue), clinical criteria for unexplained LVH were 
entered: excluding cases when patients had hypertension or aortic stenosis. These retrieval 
algorithms may be hampered by ambiguous spelling in the EHR whereas medical experts 

146 | CHAPTER 8 AUTOMATIC IDENTIFICATION OF UNEXPLAINED LVH IN THE EHR | 147

8 8



easily set-up in terms of infrastructure and observed that it had reasonable sensitivity 
when deployed to identify patients with ULVH, (ii) machine learning was more specific and 
could be used to efficiently identify patients with ULVH though at the cost of sensitivity and 
infrastructure needs. Deployment depends on specific requirements of pre-existing data 
infrastructure, clinical framework, and ethical considerations. 
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Contribution to the field
Left ventricular hypertrophy is a commonly found echocardiographic abnormality 
in the normal population (±15%). The absence of abnormal loading conditions (such 
as hypertension and valvular disease) however suggests other aetiologies, such as 
sarcomeric pathogenic variants, Fabry disease and cardiac amyloidosis. Early detection 
of these diseases is essential to initiate targeted treatment, risk stratification and for family 
screening. As some causes are rare, the imperative to recognize them largely depends 
on availability of therapeutic workflows and expertise. Automatic strategies to augment 
unexplained left ventricular hypertrophy can provide a systematic framework for further 
cardiogenetic screening of patients and relatives. With electronic health record data now 
accessible, we investigated text-mining and machine learning methods to identify patients 
with unexplained left ventricular hypertrophy. Our results suggest that these methods are 
viable options to reduce the bulk of patients needed to screen. We conclude that (i) text-
mining can be easily set-up in terms of infrastructure and observed that it had reasonable 
sensitivity when deployed to identify patients with ULVH, (ii) machine learning was more 
specific and could be used to efficiently identify patients with ULVH though at the cost of 
sensitivity and infrastructure needs. Deployment depends on specific requirements of pre-
existing data infrastructure, clinical framework, and ethical considerations. 
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easier dissemination to other centres than complex machine learning pipelines which often 
require a multitude of standardized data. Future developments for data infrastructures 
should focus on interoperability between EHR systems to enable validation of (complex) 
machine and deep learning models.(34,45) 

While using text-mining and machine learning for patient identification and possible treatment, 
there are considerations limiting widespread adoption in clinical setting which including (i) 
algorithm performance and (ii) clinical follow-up of identified patients.(42,46) AI-algorithms 
may fail if selection bias occurred in dataset, reducing external validity and performance 
of the model. Dealing with rare diseases may for instance lead to underrepresentation in 
training data and subsequently be missed by AI algorithms.(46) While algorithms with high 
positive predictive value and LHRs would accurately capture true cases, this is usually at 
the expense of sensitivity.[32] By focussing on the needle in the haystack, the learning 
metric for AI algorithm must encompass a combination of both positive predictive value 
and sensitivity, both summarized in the F1-score. External validation in non-tertiary centres 
may also be necessary in rare diseases to compare effectiveness of screening algorithms. 
Furthermore, clinical follow-up of selected cases within a common care pathway may 
improve effective implementation of these algorithms compared to fragmented clinical 
care.(47,48) 

Study limitations
As we used real-world data, it is possible that values in our dataset were wrong or biased due 
to clinical, billing, or administrative interests. Even though our centre employs specialised 
coders to classify cardiology diagnoses (kappa of 0.78)(26), given the nature of this work, 
human errors in classifying disease may have added noise to the training data which is 
resembled by the fact that 3 genotype positive patients were diagnosed with ULVH without 
LVH. As the CTCue population finder algorithms remain proprietary (essentially a black box), 
this poses a major limitation in assessing algorithm shortcomings, exemplified by the fact 
that in 22 (49%) of patients the reason for under classification was not apparent. Additionally, 
our manual review was restricted to misclassified subjects. The (academic) single-centre 
study design with internal validation may limit external validity. Given GDPR compliance 
and the use of privacy sensitive clinical text, external validation was not available. However, 
our aim was not to train and publish a model that can be used, but rather to assess the 
feasibility of such a pipeline. Further work may be specific for data capturing systems per 
EHR/hospital system. 

Conclusion
In this study, we investigated two methods (text-mining and machine learning) to identify 
ULVH patients using EHR data. Our results suggest that these methods are viable options 
to reduce the bulk of patients needed to screen. We conclude that (i) text-mining can be 
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SUPPLEMENTAL METHODS

Text-mining
For the text mining method, an algorithm was created using the software program: 
CTcue population finder version 2.0.12 (CTcue, Amsterdam, The Netherlands). This tool 
uses Boolean retrieval method to search through unstructured EHR data such as clinical 
discharge letters and in-hospital consultations. The output of the tool is a list of flagged 
patients that meet the inclusion criteria or the query using a proprietary (black box) 
algorithm. The query was designed to identify patients with unexplained LVH, defined as 
LVH excluding hypertension and aortic stenosis and can be summarised as: ([Age > 17] 
AND [LVH-synonyms OR ULVH-synonyms] AND [patient at cardiology]) NOT ([hypertension-
synonyms] OR [aortic stenosis-synonym]). Synonyms included suggestions by the built-in 
synonym expander supplemented with commonly used synonyms and abbreviations. 

Machine learning algorithm
Within subjects with LVH on echocardiography, an XGBoost algorithm was trained. The 
model was trained on a random selection of 80% of data (train set, stratified on outcome). 
Echocardiographic LVH was defined as a maximum wall thickness of >12 mm or a left 
ventricular mass indexed to body surface area >115 in males and >95 in females, in line with 
current guidelines.[3,21,31] An additional model was built using identification by CTCue as a 
dichotomous variable (yes/no) to address added value of CTCue in identifying ULVH within this 
subset dataset with LVH. XGBoost is an ensemble ML algorithm that uses extreme gradient 
boosting framework to convert a set of weak tree classifiers into a single strong classifier. It 
iterates through a process of re-weighting, adding terminal node penalisation (gamma) to allow 
variability in the numbers of terminal nodes per tree, additional regularisation of terminal node 
weights, Newton boosting to fit subsequent trees and column subsampling as an additional 
randomisation parameter.[1,2] Hyperparameters were tuned using consecutive 5-fold cross-
validated grid-searches (provided in the Supplemental Methods) with the caret package.[3] 
The model was tested in 20% of the data. To provide a readily interpretable model, logistic 
regression was fitted on the train set using the top 50 best performing variables. Missing data 
were imputed using iterative Random forest imputations consisting of 100 trees per forest 
and a maximum of 10 iterations, using the missForest package.[4] Logistic regression was 
performed using 5-fold cross-validated Lasso regression to attenuate multicollinearity effects, 
using the caret and glmnet packages.[5]
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XGBoost hyperparameter tuning
Hyperparameter tuning was performed using grid searches in five steps, as detailed on 
Pelkoja (2018). “Visual XGBoost Tuning with caret.” (Retrieved 19-10-2020, from https://www.
kaggle.com/pelkoja/visual-xgboost-tuning-with-caret).

Step 1. Temporarily fixing learning rate
Number of iterations 200 to 1000, per 50
Learning rate 0.025, 0.05, 0.1, 0.3
Maximum tree depth 2, 3, 4, 5, 6
Gamma 0
Subsample ratio of columns 1
Subsample ratio of rows 1
Minimum sum of instance weight required in a child 1

Step 2. Maximum tree depth & minimum sum of instance weights required in a child 
Number of iterations 50 to 1000, per 50
Learning rate Step 1 best
Maximum tree depth 2-4 step 1 best was 2,

otherwise step 1 best -1 to step 1 best +1
Gamma 0
Subsample ratio of columns 1
Subsample ratio of rows 1
Minimum sum of instance weight required in a child 1, 2, 3

 
Step 3. Subsample ratios
Number of iterations 50 to 1000, per 50
Learning rate Step 1 best
Maximum tree depth Step 2 best
Gamma 0
Subsample ratio of columns 0.4, 0.6, 0.8, 1.0
Subsample ratio of rows 0.5, 0.75, 1.0
Minimum sum of instance weight required in a child Step 2 best

 
Step 4. Gamma
Number of iterations 50 to 1000, per 50
Learning rate Step 1 best
Maximum tree depth Step 2 best
Gamma 0, 0.05, 0.1, 0.5, 0.7, 0.9, 1.0
Subsample ratio of columns Step 3 best
Subsample ratio of rows Step 3 best
Minimum sum of instance weight required in a child Step 2 best

Step 5. Reducing the learning rate eta & determining number of iterations
Number of iterations 100 to 10,000, per 100
Learning rate 0.01, 0.015, 0.025, 0.05, 0.1
Maximum tree depth Step 2 best
Gamma Step 4 best
Subsample ratio of columns Step 3 best
Subsample ratio of rows Step 3 best
Minimum sum of instance weight required in a child Step 2 best

3.	 Kuhn M. Building predictive models in R using the caret package. J Stat Softw [Internet]. 2008;28:1–26. 
Available from: http://www.jstatsoft.org/v28/i05/

4.	 Stekhoven DJ, Buhlmann P. MissForest--non-parametric missing value imputation for mixed-type data. 
Bioinformatics [Internet]. 2012;28:112–8. Available from: https://academic.oup.com/bioinformatics/article-
lookup/doi/10.1093/bioinformatics/btr597

5.	 Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear models via coordinate 
descent. J Stat Softw [Internet]. 2010;33:1–22. Available from: http://www.ncbi.nlm.nih.gov/
pubmed/20808728
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SUPPLEMENTAL TABLE 1. Parameters & outlier handling
Variable Outlier handling Values Missingness
Demographics      
Sex - - 0.000
Age (years) Values < 18 excluded At last echo 0.000
Mean systolic blood pressure (mmHg) Values < 1 & > 300 excluded Min, mean, max 0.255
Mean diastolic blood pressure (mmHg) Values < 1 excluded Min, mean, max 0.255
Body surface area (m2) Values > 5 & < 0.5 excluded First, last, min, median, max 0.102
Electrocardiography      
Atrial rate (bpm) - First, last, min, median, max 0.013
Ventricular rate (bpm) - First, last, min, median, max 0.013
P axis (°) - First, last, min, median, max 0.037
R axis (°) - First, last, min, median, max 0.014
T axis (°) - First, last, min, median, max 0.014
PQ interval (ms) - First, last, min, median, max 0.037
QRS duration (ms) - First, last, min, median, max 0.013
QT interval (ms) - First, last, min, median, max 0.013
QTc (Bazett) (ms) - First, last, min, median, max 0.013
QTc (Fredericia) (ms) - First, last, min, median, max 0.047
P peak amplitude (II) - first, last, min, median, max 0.013
PP peak amplitude (V1) - first, last, min, median, max 0.013
Q peak amplitude (aVL, V5, V6) - First, last, min, median, max 0.013
Q peak area (I-III, aVF/-L, V5, V6) - First, last, min, median, max 0.013
R max. amplitude (I, aVL, V5, V6) - First, last, min, median, max 0.013
S max. amplitude (III, aVR, V1-3) - First, last, min, median, max 0.013
ST minimum (I, aVL, V5, V6) - First, last, min, median, max 0.013
T peak amplitude (I, aVL, V5, V6) - First, last, min, median, max 0.013
Echocardiography      
IVS thickness (cm) Values < 0.2 & >4.0 excluded First, last, min, median, max 0.010
IVS/LV posterior wall ratio Values < 0.2 & >4.0 excluded First, last, min, median, max 0.031
LV posterior wall thickness (cm) Values < 0.1 & >5.0 excluded First, last, min, median, max 0.016
LV mass (g) Values < 20 & > 400 excluded First, last, min, median, max 0.023
Indexed LV mass (g/m2) Values < 10 & > 300 excluded First, last, min, median, max 0.132
LV end-diastolic diameter (cm) Values < 0 & > 15 excluded First, last, min, median, max 0.012
LV end-diastolic volume (mL) * Values <30 & > 1000 excluded First, last, min, median, max 0.012
LV end-systolic diameter (cm) Values < 0 & > 10 excluded First, last, min, median, max 0.200
LV end-systolic volume (mL) * Values < 5 & > 500 excluded First, last, min, median, max 0.151
LV ejection fraction (%) * Values < 10 & > 80 excluded First, last, min, median, max 0.193
LV fractional shortening (%) Values < 5 & > 80 excluded First, last, min, median, max 0.206
LV outflow tract gradient (mmHg) Values < 0 & > 200 excluded First, last, min, median, max 0.100
Aortic valve gradient (mmHg) Values < 0 & > 200 excluded First, last, min, median, max 0.073
LA dimension (cm) Values < 1 & > 9.9 excluded First, last, min, median, max 0.409
LA volume (mL) Excluded (missingness) 0.617
Indexed LA volume (mL/m2) Excluded (missingness) 0.629
E/A Values < 0 & > 5 excluded First, last, min, median, max 0.143
Average E/e’ Values < 0 & > 40 excluded First, last, min, median, max 0.260
Lateral E/e’ Values < 0 & > 40 excluded First, last, min, median, max 0.252
Septal E/e’ Values < 0 & > 40 excluded First, last, min, median, max 0.253
MV deceleration time (s) Values < 0.030 & 0.600 

excluded
First, last, min, median, max 0.257

TAPSE (cm) Values < 1 & > 40 excluded First, last, min, median, max 0.232
List of the variables (a priori) intended for modelling, showing outlier handling strategies, values taken 
from longitudinal measurements and missingness. Missingness >0.50 is indicated in red.
* Taken from available methods, in the following order: (i) Modified Simpson, (ii) 3D-methods, (iii) other 
biplane methods, (iv) Teichholz’s/cubed formula.
IVS, interventricular septum; LV, left ventricular; LA, left atrial; MV, mitral valve; TAPSE, tricuspid annular 
plane systolic excursion.

Final model
Number of iterations Step 5 best
Learning rate Step 5 best
Maximum tree depth Step 2 best
Gamma Step 4 best
Subsample ratio of columns Step 3 best
Subsample ratio of rows Step 3 best
Minimum sum of instance weight required in a child Step 2 best
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SUPPLEMENTAL TABLE 3. Baseline characteristics stratified by CTCue
Identified by CTCue Not identified by CTCue p-value

(n = 8,123) (n = 18,583)
Demographics
Sex (male) 4744 (58.4) 10027 (54.0) <0.001
Age (years) 63.43 [50.81, 73.01] 59.86 [45.20, 71.52] <0.001
Body surface area (m2) 1.93 [1.78, 2.09] 1.91 [1.75, 2.06] <0.001
Systolic blood pressure (mmHg) 132.15 (17.83) 127.42 (17.70) <0.001
Diastolic blood pressure (mmHg) 75.71 (10.77) 73.74 (10.40) <0.001
Electrocardiography
Atrial rate (bpm) 70.00 [62.00, 81.00] 72.00 [63.00, 85.00] <0.001
Ventricular rate (bpm) 70.00 [62.00, 80.00] 72.00 [63.00, 84.00] <0.001
P axis (°) 54.00 [36.00, 67.00] 54.00 [38.00, 68.00] 0.01
R axis (°) 24.00 [-13.00, 58.00] 34.00 [-6.00, 65.00] <0.001
T axis (°) 53.00 [31.00, 75.00] 50.00 [29.00, 71.00] <0.001
PQ interval (ms) 164.00 [146.00, 186.00] 158.00 [140.00, 180.00] <0.001
QRS duration (ms) 98.00 [88.00, 110.00] 96.00 [86.00, 110.00] <0.001
QT interval (ms) 398.00 [376.00, 424.00] 394.00 [368.00, 422.00] <0.001
QTc (Fredericia) (ms) 417.00 [401.75, 439.00] 416.00 [399.00, 440.00] 0.034
Echocardiography
IVS thickness (cm) 1.14 [0.98, 1.32] 1.00 [0.86, 1.14] <0.001
IVS/LV posterior wall ratio 1.14 [1.02, 1.31] 1.07 [0.97, 1.21] <0.001
LV posterior wall thickness (cm) 1.06 [0.92, 1.20] 0.96 [0.84, 1.08] <0.001
LV mass (g) 195.66 [154.39, 246.17] 171.43 [135.78, 218.29] <0.001
Indexed LV mass (g/m2) 99.82 [81.06, 123.98] 88.10 [72.33, 109.34] <0.001
LV end-diastolic diameter (cm) 4.83 (0.76) 4.97 (0.83) <0.001
LV end-diastolic volume (mL) 106.69 [84.82, 133.81] 111.27 [88.53, 138.11] <0.001
LV end-systolic diameter (cm) 3.12 [2.68, 3.65] 3.17 [2.74, 3.74] <0.001
LV end-systolic volume (mL) 42.49 [29.67, 60.52] 42.39 [30.16, 62.04] 0.006
LV ejection fraction (%) 58.81 [50.17, 68.37] 59.86 [49.36, 69.62] 0.137
LV fractional shortening (%) 34.90 [27.25, 41.92] 34.81 [26.67, 41.58] 0.029
LV outflow tract gradient (mmHg) 3.60 [2.64, 4.89] 3.55 [2.59, 4.68] <0.001
Aortic valve gradient (mmHg) 6.97 [5.05, 10.90] 6.37 [4.78, 9.03] <0.001
LA dimension (cm) 4.00 [3.56, 4.54] 3.90 [3.45, 4.45] <0.001
E/A 0.95 [0.73, 1.32] 1.07 [0.79, 1.46] <0.001
Average E/e’ 8.45 [6.75, 11.21] 7.89 [6.28, 10.51] <0.001
Lateral E/e’ 7.22 [5.58, 9.74] 6.72 [5.23, 9.17] <0.001
Septal E/e’ 9.62 [7.57, 12.80] 8.96 [7.04, 11.91] <0.001
MV deceleration time (s) 0.19 [0.16, 0.23] 0.18 [0.15, 0.21] <0.001
TAPSE (cm) 2.21 (0.53) 2.19 (0.54) 0.022
Outcome criteria
Left ventricular hypertrophy 4767 (58.7) 7090 (38.2) <0.001

Maximum wall thickness ≥13 mm 2491 (30.7) 2483 (13.4) <0.001
LV mass/BSA >115 (male), >95 (female) 
g/m2

4241 (57.0) 6336 (40.2) <0.001

ULVH diagnosis 159 (2.0) 45 (0.2) <0.001
Amyloidosis 37 19
G+ HCM 35 6
ICD10 100 26

Subject characteristics, shown as means (standard deviation), medians [interquartile range] or counts 
(%), stratified by identification by text mining. P-values <0.05 are shown in bold. IVS, interventricular 
septum; LV, left ventricular; LA, left atrial; MV; TAPSE, tricuspid annular plane systolic excursion; ICD10, 
World Health Organization International Statistical Classification of Diseases and Related Health 
Problems, tenth revision; ULVH:Unexplained Left Ventricular Hypertrophy. 

SUPPLEMENTAL TABLE 2. Genotypes
  All G+ HCM G+ Echocardiographic LVH G+ Text mining
  (n = 41) (n = 38) (n = 35)
  P LP P LP P LP
Definitive        
MYBPC3   22 (56.4) *†     21 (56.8) *†     19 (57.6) *†
MYH7 4 (11.1) 3 (8.6) 3 (9.1) 3 (9.1) 4 (13.3) 3 (10.3)
TNNT2   1 (2.8)   1 (2.9) 0 (0.0)
TNNI3 1 (2.8)   1 (2.9)   0 (0.0)
MYL3 1 (2.9) 1 (2.9) 1 (3.0) 1 (3.0) 1 (3.4) 1 (3.4)
MYL2 1 (2.8)   0 (0.0)   1 (3.3)
GLA (Fabry disease) 2 (5.6)   2 (5.9)   2 (6.7)
TTR (amyloidosis) 1 (2.7)   1 (2.9)   1 (3.2)

       
Moderate        
CSRP3  4 (11.1) *    4 (11.8) *    4 (13.3) *
ACTN2    2 (5.6) †    2 (5.9) †  1 (3.3) †

Number of patients with pathogenic or likely pathogenic variants (per gene), showing variants 
identified in the overall study population and in the subpopulations identified by selecting patients with 
echocardiographic left ventricular hypertrophy or using text mining. 
* including one patient with a pathogenic variant in MYBPC3 and a pathogenic variant in CSRP3; † 
including one patient with a pathogenic variant in MYBPC3 and a likely pathogenic variant in ACTN2. 
G+, genetically-confirmed; HCM, hypertrophic cardiomyopathy; P, pathogenic; LP, likely pathogenic; 
LVH, left ventricular hypertrophy
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SUPPLEMENTAL TABLE 5. Baseline characteristics stratified by left ventricular hypertrophy
Left ventricular hypertrophy No left ventricular hypertrophy p-value

(n = 11857) (n = 14849)
Demographics
Sex (male) 7841 (66.1) 6930 (46.7) <0.001
Age (years) 66.30 [54.35, 75.35] 56.29 [41.03, 68.34] <0.001
Body surface area (m2) 1.94 [1.79, 2.09] 1.88 [1.74, 2.04] <0.001
Systolic blood pressure (mmHg) 129.72 (18.46) 128.42 (17.32) <0.001
Diastolic blood pressure (mmHg) 74.18 (10.79) 74.63 (10.36) 0.003
Electrocardiography
Atrial rate (bpm) 72.00 [62.00, 85.00] 72.00 [63.00, 84.00] 0.134
Ventricular rate (bpm) 71.00 [62.00, 83.00] 71.00 [63.00, 83.00] 0.633
P axis (°) 54.00 [35.00, 68.00] 55.00 [38.00, 67.00] 0.098
R axis (°) 17.00 [-22.00, 57.00] 40.00 [4.00, 66.00] <0.001
T axis (°) 56.00 [29.00, 89.00] 48.00 [30.00, 65.00] <0.001
PQ interval (ms) 166.00 [146.00, 190.00] 154.00 [138.00, 174.00] <0.001
QRS duration (ms) 102.00 [92.00, 128.00] 92.00 [84.00, 102.00] <0.001
QT interval (ms) 404.00 [378.00, 436.00] 390.00 [366.00, 414.00] <0.001
QTc (Fredericia) (ms) 425.00 [406.00, 454.00] 411.00 [396.00, 429.00] <0.001
Echocardiography
IVS thickness (cm) 1.20 [1.05, 1.38] 0.93 [0.82, 1.04] <0.001
IVS/LV posterior wall ratio 1.15 [1.02, 1.32] 1.05 [0.96, 1.18] <0.001
LV posterior wall thickness (cm) 1.11 [0.99, 1.25] 0.90 [0.80, 1.00] <0.001
LV mass (g) 229.74 [198.44, 274.01] 145.78 [121.43, 171.08] <0.001
Indexed LV mass (g/m2) 115.55 [102.54, 136.77] 75.63 [65.10, 84.90] <0.001
LV end-diastolic diameter (cm) 5.18 (0.94) 4.72 (0.63) <0.001
LV end-diastolic volume (mL) 123.63 [95.20, 156.26] 102.16 [83.59, 123.08] <0.001
LV end-systolic diameter (cm) 3.43 [2.89, 4.18] 3.00 [2.62, 3.40] <0.001
LV end-systolic volume (mL) 51.17 [34.76, 79.80] 37.47 [27.34, 50.23] <0.001
LV ejection fraction (%) 55.78 [42.91, 66.99] 62.02 [54.12, 70.62] <0.001
LV fractional shortening (%) 32.54 [22.62, 40.76] 36.17 [29.91, 42.32] <0.001
LV outflow tract gradient (mmHg) 4.09 [2.98, 5.65] 3.97 [3.02, 5.16] <0.001
Aortic valve gradient (mmHg) 8.06 [5.68, 14.27] 6.55 [5.02, 8.85] <0.001
LA dimension (cm) 4.23 [3.78, 4.82] 3.69 [3.30, 4.11] <0.001
E/A 0.96 [0.71, 1.37] 1.08 [0.81, 1.44] <0.001
Average E/e’ 9.23 [7.09, 12.69] 7.44 [6.03, 9.32] <0.001
Lateral E/e’ 7.79 [5.85, 10.92] 6.35 [5.05, 8.20] <0.001
Septal E/e’ 10.44 [7.97, 14.57] 8.39 [6.76, 10.63] <0.001
MV deceleration time (s) 0.19 [0.15, 0.23] 0.18 [0.15, 0.21] <0.001
TAPSE (cm) 2.12 (0.57) 2.27 (0.51) <0.001
Outcome criteria
Identified by CTCue population finder 4767 (40.2) 3356 (22.6) <0.001
ULVH diagnosis 193 (1.6) 11 (0.1) <0.001
Amyloidosis 53 3
G+ HCM 38 3
ICD10 121 5

Subject characteristics, shown as means (standard deviation), medians [interquartile range] or counts 
(%), stratified by presence of echocardiographic left ventricular hypertrophy (maximum wall thickness 
of >12 mm or a left ventricular mass indexed to body surface area >115 in males and >95 in females). 
P-values <0.05 are shown in bold. IVS, interventricular septum; LV, left ventricular; LA, left atrial; MV; 
TAPSE, tricuspid annular plane systolic excursion; ICD10, World Health Organization International 
Statistical Classification of Diseases and Related Health Problems, tenth revision.

SUPPLEMENTAL TABLE 4. Qualitative assessment of under classification by CTCue 

10 
 

Supplemental Table 4. Qualitative assessment of under classification by CTCue  
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SUPPLEMENTAL TABLE 7. Performance measures Lasso regression

 
Coefficients without 
text mining variable

Coefficients with 
text mining variable

Intercept -10.2 -12.5
Age (years) -0.0212 -0.0186
Systolic blood pressure (mmHg), max -0.0157 -0.0165
Systolic blood pressure (mmHg), mean -0.0117 -0.0151
P axis (°), last -1.64E-04 -
T axis (°), first 2.17E-03 2.30E-03
T axis (°), last 3.03E-03 3.67E-03
PQ interval (ms), median 2.76E-03 2.24E-03
QT interval (ms), median 0.0118 0.0103
QTC Fredericia (ms), last 1.50E-03 3.17E-03
P area II, max - 2.54E-06
P area II, median 4.04E-04 4.24E-04
Q amplitude aVL, max 5.73E-05 1.02E-04
R amplitude aVL, median -2.25E-04 -3.11E-04
R amplitude I, first 2.07E-04 2.02E-04
R amplitude V6, first -4.10E-04 -4.18E-04
S amplitude V3, first -5.76E-05 -9.40E-05
T amplitude aVL, last -2.35E-04 -2.30E-04
T amplitude aVL, median -4.89E-04 -3.03E-04
T amplitude V5, first -5.05E-04 -5.29E-04
T amplitude V5, median -6.49E-04 -4.54E-04
IVS thickness (cm), first 0.274 0.472
IVS thickness (cm), max 1.02 0.768
IVS thickness (cm), median 0.816 0.699
LV posterior wall thickness (cm), first 0.556 0.259
LV posterior wall thickness (cm), max 1.04 0.705
LV posterior wall thickness (cm), median 0.152 0.903
LV end-diastolic diameter, median -8.05E-03 -
LV end-diastolic volume (mL), max - -2.51E-03
LV end-diastolic volume (mL), median -5.21E-03 -2.25E-03
LV end-systolic volume (mL), first -7.33E-03 -5.66E-03
LVOT pressure gradient (mmHg), first 7.41E-03 0.0103
LVOT pressure gradient (mmHg), median 1.86E-03 2.60E-03
Aortic pressure gradient (mmHg), median -0.0351 -0.0381
LA diameter (cm), max 0.187 0.225
E/A, max 0.292 0.305
E/e’ average, max 7.24E-03 0.0129
E/e’ lateral, median 9.83E-03 0.0121
E/e’ septal, max 0.0309 0.0297
MV deceleration time (ms), min -0.386 -0.814
Identified by text mining - 1.60

Coefficients of the logistic Lasso regression fitted to the train data of the subjects with echocardiographic
left ventricular hypertrophy (n = 9,825). Coefficients correspond to each unit increase of variable. The 
Lasso logistic regression fitted on the subjects with echocardiographic LVH (best lambda = 0.001) 
using the top 50 XGBoost variables correctly identified 6 out of 39 subjects with and 2,412 out of 2,417 
subjects without ULVH (sensitivity 0.154, specificity 0.998, PPV 0.545, NPV 0.987). Inclusion of text 
mining as a variable (best lambda = 0.001) slightly decreased performance, correctly identifying the 
same numbers of subjects with ULVH but misclassifying one additional subject without ULVH (2411 out 
of 2417; specificity 0.998, PPV 0.500).

SUPPLEMENTAL TABLE 6. Performance measures XGBoost

 
Echocardiographic LVH 

(n = 2,456)

Echocardiographic LVH 
(text mining as variable) 

(n = 2,456)
Text mining 
(n = 1,637)

Before manual review      
Sensitivity 0.2564 0.1795 0.1290
Specificity 0.9979 0.9979 0.9988
Positive predictive value 0.6667 0.5833 0.6667
Negative predictive value 0.9881 0.9869 0.9834
Likelihood ratio + 26 18 13
Likelihood ratio - 0.75 0.83 0.88
After manual review
Sensitivity 0.32
Specificity 0.99
Positive predictive value 0.72
Negative predictive value 0.99
Likelihood ratio + 32
Likelihood ratio - 0.69

Performance of the three hypertuned XGBoost models on the holdout set (20% of total subjects 
identified through each method), before and after reclassification by manual review. LVH, left ventricular 
hypertrophy.
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INTRODUCTION

Patients with non-ischaemic dilated cardiomyopathy (DCM) have an estimated annual risk 
of life-threatening ventricular arrhythmias (LVTAs) of 4.5% and may potentially benefit from 
implantable cardioverter-defibrillator (ICD) implantation.1,2 A novel risk model (DCM-SVA 
risk) for predicting LTVA was recently published and includes easily accessible clinical 
parameters, such as history of non-sustained ventricular tachycardia (VT), QRS duration 
and left ventricular ejection fraction (LVEF).3 More complex electrocardiogram (ECG) 
characteristics such as fragmented QRS waves, heart rate variability and t-wave alternans 
have also been associated with LTVA, but rely on manually derived ECG parameters that 
remain difficult to standardize, hampering their integration into daily clinical practice.2,4 By 
using raw ECG signals and machine learning techniques, manual feature extraction is not 
necessary, and novel, more subtle parameters may be detected.5 

Deep neural networks (DNN) have proven to be potent machine learning algorithms for 
diagnostic classification tasks using raw ECGs signals. Previous studies using DNNs on 
raw ECG signals in cardiomyopathies report high performance in disease classification 
and triaging.6–9 However, because of the inherent lack of “explainability” of DNNs, clinical 
implementation remains limited.10 Different techniques may assist in interpreting DNNs. A 
recently introduced pipeline for fully explainable DNNs for ECG analysis uses variational 
auto-encoders (VAE)11,12, that can compress the ECG into a lower number of explanatory 
and independent generative factors (factorECG), which can subsequently be used in 
interpretable algorithms (such as Cox regression).9

In this study, we aimed (i) use an inherently interpretable DNN for predicting potentially 
LTVA based on ECGs in patients with non-ischemic DCM, assess its added value above 
conventional ECG parameters and current guidelines, and (ii) interpret the model by 
visualizing pivotal ECG features.

ABSTRACT

Aims
While electrocardiogram (ECG) characteristics have been associated with life-threatening 
ventricular arrhythmias (LTVA) in dilated cardiomyopathy (DCM), they typically rely on human 
derived parameters. Deep neural networks (DNN) can discover complex ECG patterns, but 
interpretation is hampered by their ‘black-box’ characteristics. We aimed to detect DCM 
patients at risk of LTVA using an inherently explainable DNN. 

Methods and Results
In this two-phase study we first developed a variational auto encoder DNN on more 
than 1 million 12-lead median beat ECGs, compressing the ECG into 21 different factors 
(F): factorECG. Next, we used two cohorts with a combined total of 695 DCM patients 
and entered these factors in a Cox regression for the composite LTVA outcome, which 
was defined as sudden cardiac arrest, spontaneous sustained ventricular tachycardia, or 
implantable cardioverter-defibrillator treated ventricular arrhythmia. Most patients were 
male (n=442, 64%) with a median age of 54 years [interquartile range (IQR) 44-62], and 
median left ventricular ejection fraction of 30% [IQR 23-39]. A total of 115 patients (16.5%) 
reached the study outcome. Factors F8 (prolonged PR-interval and P-wave duration, p < 
0.005), F15 (reduced P-wave height, p = 0.04), F25 (increased right bundle branch delay, 
p = 0.02), F27 (P-wave axis p < 0.005) and F32 (reduced QRS-T voltages p = 0.03) were 
significantly associated with LTVA.

Conclusion
Inherently explainable DNNs can detect patients at risk of LTVA which is mainly driven by 
P-wave abnormalities.
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is enforced with a specific function to reach maximum disentanglement of lower-
dimensional representation (i.e., to produce generative factors in the ECG that operate 
independently: factorECG).11 Resting 12-lead 10-second ECGs of 251,473 unique patients 
(1,114,331 ECGs) were exported from the UMCU ECG system and trained in an encoder-
decoder convolutional DNN architecture. In a prior study, the optimal number of dimensions 
was set to 21, considering the trade-off of good reconstruction disentanglement and 
encoding for visible ECG abnormalities.(van de Leur et al, submitted) Visualisation of these 
individual dimensions was obtained by varying their values while reconstructing median 
beat ECGs. By starting every visualization with zeros for all representations, a mean ECG 
was reconstructed (as the embedding space was forced to be a Gaussian distribution with 
zero mean and standard deviation of one). Then, for every individual representation, values 
between -5 and 5 were assigned, while keeping others at zero. The architecture and model 
training process were implemented using PyTorch (version 1.7.0+cu110) in Python (version 
3.6.7). All training was performed using an NVIDIA Xp GPU. 

DCM Subject inclusion
In the training phase, we included consecutive adult patients with DCM as defined by the 
European Society of Cardiology (ESC) guidelines if a baseline non-paced 12-lead ECG was 
available before Left Ventricular Assist Device (LVAD) implantation or Heart Transplantation 
(HTx) from the UMCU and MUMC+.1 Patients that opted-out for research were excluded. 
Patients with a cardiac resynchronisation therapy (CRT) were also excluded, as it positively 
affects reverse remodelling which may reduce arrhythmias.13 This study was conducted 
in accordance with the principles laid out in the Declaration of Helsinki and in line with 
guidelines provided by ethics committees and national GDPR legislature. The UMCU 
cohort was exempt from the Medical Research Involving Human Subjects Act (WMO) as per 
judgement of the Medical Ethics Committee (18/446 and 19/222 UMCU, the Netherlands) 
including the requirement for informed consent. The participants of the Maastricht cohort 
signed informed consent at enrolment.

Outcome definitions
The primary study outcome was LTVA with similar definitions to a prior study, defined as the 
composite outcome of sustained ventricular tachycardia (VT) >100 bpm lasting >30sec or 
with hemodynamic compromise, ventricular fibrillation (VF), sudden cardiac death (SCD) or 
appropriate ICD therapy.3

Data acquisition
For all subjects, the ECG closest to the date of diagnosis was obtained, which was 
considered “baseline” for the purpose of this study. All ECGs were exported from the 
MUSE ECG system (version 8; GE Healthcare, Chicago, IL, USA) in raw voltage format. The 
recordings were made using a General Electric MAC V, 5000 or 5500 device and acquired 

METHODS

Study Design
This was a two-phase study with a pre-training step, followed by a training step. In the pre-
training phase, we first developed a VAE DNN (factorECG) on ECGs of patients from the 
University Medical Centre (UMCU). Next, the results of the factorECG were entered in an 
interpretable statistical model (Cox-regression), for patients with DCM from two different 
centres: UMCU and Maastricht University Medical Centre (MUMC+) for the outcome of LTVA. 
The complete pipeline is illustrated in figure 1.

FIGURE 1. General training architecture of the VAE model and generative factors 
The general architecture of the Variational Auto Encoder (VAE) is depicted here. In the pre-training 
phase, 1.1 million 12-lead median beat ECGs were included in the training of the VAE. The VAE 
network is enforced with a specific function to reach maximum disentanglement of lower-dimensional 
representation (i.e. to produce generative factors in the ECG that operate independently). Of the 695 
patients, median beat ECGs were encoded into 21 generative factors, that were used as an input in 
an explainable statistical model: Cox regression. These factors were used for both prediction of life-
threatening ventricular arrhythmias and reconstructions of these factors were used for interpretation. 

Variational auto encoder 
VAEs are unsupervised deep learning encoder-decoder convolutional neural networks that 
are optimized to reconstruct their training data with a lower-dimensional representation 
(i.e., using less data) than the original training data (in this case ECGs). The VAE network 
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RESULTS

Patient characteristics
Baseline characteristics stratified by centre and outcome are depicted in Table 1. A total of 
695 patients were included from the UMCU and MUMC+, which were predominantly male 
(n=442, 64%) with a median age of 54 years [interquartile range (IQR) 44-62] and median 
LVEF of 30% [IQR 23%-39%]. A total of 115 (17%) reached the study outcome. In summary, 
patients from the MUMC+ cohort had less severe symptoms at baseline with primarily New 
York Heart Association classes I and II as opposed to the UMCU cohort with primarily II and 
III, and a median LVEF of 33% [IQR 25-40]. During a median follow-up of 4.3 years [IQR 2.0 
– 7.5], a lower proportion of MUMC+ patients (25, 6%) reached the study outcome of LTVA 
compared to 90 (28%) UMCU patients.

TABLE 1. Patient characteristics at baseline (first evaluation) stratified by centre and outcome
UMCU all 
(n=317)

UMCU without 
LTVA (n=227)

UMCU with 
LTVA (n=90)

MUMC all 
(n=378)

MUMC without 
LTVA (353)

MUMC with 
LTVA (25)

Age, median [Q1-Q3] 52 [42 – 61] 51 [41 – 60] 52 [42-62] 55 [47 – 63] 56 [47-63] 54 [49-63]
Male Sex 195 (62%) 129 (57%) 66 (74%) 247 (65%) 228 (65%) 19 (76%)
NYHA-class

I 53 (17%) 36 (16%) 17 (19%) 158 (42%) 150 (43%) 8 (32%)
II 102 (32%) 71 (31%) 31 (19%) 175 (46%) 163 (47%) 12 (48%)
III 79 (25%) 56 (25%) 23 (26%) 37 (10%) 32 (9%) 5 (20%)
IV 27 (9%) 36 (16%) 4 (4%) 8 (2%) 8 (2%) 0 (0)%

Diabetes (I and II) 42 (13%) 31 (13%) 11 (12%) 52 (14%) 50 (14%) 2 (8%)
Hypercholesterolemia 37 (13%) 26 (13%) 11 (13%) 41 (11%) 38 (11%) 3 (12%)
(Ever) smoked 203 (64%) 145 (64%) 57 (63%) 77 (20%) 72 (20%) 5 (20%)
Alcohol abuse 19 (6%) 14 (6%) 5 (6%) n/a n/a n/a
History of LTVA 42 (13%) 17 (7%) 25 (27%) 8 (2%) 7 (2%) 1 (4%)
Family history of DCM 133 (42%) 97 (43%) 36 (40%) 47 (14%) 39 (11%) 8 (32%)

ICD implantation 233 (74%) 145 (63%) 88 (97%) 0 (0%) 0 (0%) 0 (0%)
LVEF, median [Q1-Q3] 25% [20%-

33%]
25% [20%-33%] 25% [20%-

33%]
33% [25-
40%]

28 [22-37] 33 [25-41]

MRI LGE 84 (56%**) 60 (51%*) 24 (71%**) n/a n/a n/a
Baseline characteristics of the included cohorts. NYHA = New York Heart Association; LTVA = Life 
Threatening Ventricular Arrhythmia; ICD = Implantable Cardioverter-Defibrillator; LVEF = Left Ventricular 
ejection fraction; MRI LGE = Magnetic Resonance Imaging Late Gadolinium Enhancement. ** = of valid, 
in patients with cardiac MRIs. 

Prediction of LTVA with established ECG variables
Established ECG variables (such as ventricular rate, PR-interval, QRS-duration, and QTc-
time) were entered in a “baseline” cox-regression model (complete case analysis (n = 577), 
excluding patients without a measurable PR-interval (n = 118). This baseline model had a low 
C-statistic of 0.59 and no significant effects of: ventricular rate (HR 1.00; 95%CI[0.98-1.01], p 
= 0.61), QRS-duration (HR 1.01; 95%CI[1.00-1.02], p=0.10) and QTc-time (HR 1.00; 95%CI[0.99-
1.00], p = 0.24). The PR-interval was however significantly associated with LTVA (HR 1.01; 

at either 250 or 500 Hz. Resampling to 500 Hz was performed via linear interpolation and 
transformation into 1.2-second median beats was achieved by aligning all QRS-complexes 
of the same shape (e.g., excluding premature ventricular complexes) and taking the median 
voltage to generate a representative P-QRS-T complex. Echocardiographic measurements 
were extracted from the electronic health record using methods described before.14

Statistical analyses
For interpretability of FactorECG, each baseline ECG’s generative factors (as computed 
by the VAE encoder) were included in a Cox proportional hazards model (Figure 1). The 
proportional hazards assumption was tested. Hazard Ratio’s (HR) were reported, and 95% 
confidence intervals were computed using 2000 bootstrap samples. To rule out that the 
VAE model was solely considering already established ECG characteristics (ventricular rate, 
PR-interval, P-wave duration, QRS-duration and Bazett corrected QT-interval), a baseline 
Cox proportional hazard model was also fitted using these variables in a complete case 
analysis. The correlations of the significant ECG factors were plotted against the left atrial 
(LA) dimension and left atrial volume index (LAVI) measured on standard care clinical 
echocardiography using both the first (closest to baseline) and last (closest to follow-up) 
available measurements.13 Additionally a Kaplan Meier curve was plotted for one of the 
significant VAE generative factors. These analyses were performed using Python (version 
3.8.5). 
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TABLE 2. Continued
Factors Factor descriptions Hazard 

Ratio
95% Confidence 
Interval

P-value

F27* P- and R- axis deviation (low values associated with AF, junctional 
bradycardia, ventricular tachycardia, and left axis deviation) 0.71 0.57-0.88 <0.005

F30 QR interval 0.92 0.74-1.16 0.48
F31 QRS-T amplitudes 0.86 0.71-1.05 0.15
F32* QRS-T amplitudes (high values associated with microvoltages) 1.26 1.02-1.55 0.03

Results of Cox-regression and explanation of (significant) factors including their association with known 
electrocardiographic and echocardiographic pathologies as described in Van de Leur et al
*significant

FIGURE 2. Reconstructions of the generative factors significant in Cox regression
The reconstructions of a standard ECG were made, depicting leads I, II, V1, V3 and V6. The values for 
each of the significant factors were set between -5 and +5 whilst all others were 0. 

LA dimensions
To investigate the possibility that the identified factors were an effect of anatomical 
substrates of P-wave abnormalities, such as atrial remodelling, first and last LAVI and LA 
dimensions (by outcome) of complete UMCU cases (n = 219) were plotted (supplementary 
figures 4, 5, 6 and 7 respectively). LA’s were significantly larger in the last echocardiography, 
compared to the first (p = 0.02, supplement figure 6). Next, the LA dimensions were plotted 
to these factors (supplement figure 8) which showed no association between F8, F15, F25, F27 
and F32 and LA dimensions.

95%CI[1.00-1.02], p = 0.01) The results of this model were depicted in supplementary table 2. 

Prediction of LTVA with FactorECG
The VAE compressed the ECG data into 21 different ECG factors and their reconstructions 
are available in supplementary figure 1. In Cox-regression, F8 (HR 1.60; 95%CI [1.29-1.99], p < 
0.005), F15 (HR 0.81; 95%CI [0.66-0.99], p = 0.04), F25 (HR 0.77 95%CI [0.62 – 0.95], p = 0.02), 
F27 (HR 0.71, 95%CI[0.57–0.88], p < 0.005) and F32 (HR 1.26, 95%CI [1.03–1.55], p = 0.03) were 
significantly associated with the outcome after correcting for guideline indication (NYHA 
II/III and LVEF < 35%, p = 0.84). A reconstruction of the significant generative factors (F8, 
F15, F25, F27 and F32) has been illustrated in figure 2. F8 encodes for PR-interval and P-wave 
morphology, where high values increase PR-interval and broaden the P-wave. F15 encodes 
for P-wave height and P/T-overlap, where low values are correlated with atrial fibrillation 
and third-degree AV-block. F25 encodes for conduction delays in the right bundle (right 
bundle branch block), where low values increase the block. F27 encodes for P- and R- axis 
deviation, where low values flatten out the P-wave. F32 encodes for QRS-T amplitudes, with 
low values reconstruct QRS-T microvoltages. Results of the Cox-regression model and the 
descriptions of the generative factors are present in Table 2 and supplementary table 1. The 
partial effects on outcome per significant factor have been plotted in supplementary figure 
2. As an example, the ECGs and their corresponding values of the generative factors of two 
patients were plotted in figure 3. A summary figure of this study was depicted in figure 4.

TABLE 2. Cox proportional hazards model of generative factors in both cohorts 
Factors Factor descriptions Hazard 

Ratio
95% Confidence 
Interval

P-value

F1 Inferolateral ST deviation 0.91 0.72-1.14 0.39
F5 Inferolateral T-wave height and orientation 1.17 0.92-1.48 0.19
F6 P-wave height and/or shape 1.14 0.90-1.44 0.27
F8* PR-interval (high values associated with first degree AV-block and 

reduced LVEF) 1.61 1.29-1.99 <0.005
F9 T-wave height and orientation 1.12 0.89-1.39 0.34
F10 Ventricular rate 0.93 0.76-1.13 0.46
F11 Subtle P- and T-wave changes 1.00 0.83-1.21 0.97
F12 Onset of depolarisation 1.08 0.86-1.36 0.50
F13 Anterior ST deviation 0.85 0.68-1.06 0.14
F15* P-wave height and P/T-overlap (low values associated with third 

degree AV-block and junctional tachycardia) 0.81 0.66-0.99 0.04
F16 T-wave morphology 1.14 0.94-1.40 0.19
F17 Lateral ST-deviation 1.08 0.85-1.38 0.51
F19 Precordial R-wave progression and combined P-QRS-T-amplitude 1.07 0.87-1.33 0.51
F22 Subtle T-wave changes 1.02 0.83-1.25 0.85
F23 P-wave height and/or shape 1.13 0.93-1.37 0.21
F25* Right bundle branch delay (low values associated with ventricular 

tachycardia, RBBB and reduced LVEF) 0.77 0.62-0.95 0.02
F26 Left bundle branch delay 1.02 0.81-1.29 0.85

172 | CHAPTER 9 DNNs ON ECGs TO PREDICT POTENTIALLY LIFE-THREATENING ARRHYTHMIAS IN DCM  | 173

9 9



FIGURE 4. Summary figure
Study summary figure, including the methods and results. LVAD = Left Ventricular Assist Device. HTx 
= Heart Transplantation, CRT = Cardiac Resynchronisation Therapy. ECG = electrocardiogram. VT = 
Ventricular Tachycardia. VF = Ventricular Fibrillation. SCD = Sudden Cardiac Death. ICD = Implantable 
Cardioverter-Defibrillator. HR = Hazard Ratio. UMCU = University Medical Centre Utrecht. MUMC+ = 
Maastricht University Medical Centre. 

FIGURE 3. Two examples of ECGs with and their generative factor values
A Kaplan Meier (A) for factor 8 and (B) two examples with a low and high predicted five-year LTVA 
risk were depicted. The example on the left had a low predicted risk of LTVA and did not reach the 
endpoint. Factor 8 was low, which causes the short PR duration and P-wave length. The example on the 
right had a high predicted risk of LTVA and reached the outcome, for which factor 8 is highly positive. 
In the ECG we see a broad P wave with a long PR interval.
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recently published population study of 13580 participants, abnormal P-wave indices were 
independently associated with LTVA, after adjustment for age, sex, race and study centre.21 
As it is likely that these P-wave indices are caused by atrial remodelling, we investigated the 
association of anatomical LA characteristics and our identified ECG factors. As expected, 
LA dimensions increased significantly over time, indicating disease progression. However, 
we did not find any association to the significant ECG factors, suggesting an exclusive 
electrophysiological substrate. This is in line with other studies, in which individual ECG 
P-wave changes were not reliable predictors of anatomic atrial enlargement.22,23 Future 
studies are warranted to prospectively validate the identified ECG abnormalities and their 
electrophysiological substrate for LTVA prediction in DCM.

Genotype-phenotype associations
DCM has a genetic basis in ±30-50% of cases and specific genotype-phenotype 
associations are known to lead to arrhythmogenic phenotypes.2,24–26 One study analysed 
over 75.000 ECGs from the UK Biobank and established several genetic ECG signatures. 
A polygenic effect on PR-interval for instance, was identified, as well as genetic variants 
related to the Q-wave in DCM. The strongest Q-wave locus was discovered in BAG3: a 
gene in which pathogenic variants have been described for DCM with high penetrance and 
a high risk of progressive heart failure.27,28 As our VAE model assessed the entire ECG, an 
interesting significant factor included QRS-T voltages (F32), with high values in this factor 
associated with microvoltages. These microvoltages are an established ECG characteristic 
for phospholamban cardiomyopathy, which can lead to both a highly arrhythmogenic DCM 
phenotype and arrhythmogenic cardiomyopathy.29 Integrating genome and phenome 
provides unique opportunities to study ECG biology in relation to genetic risk which can 
be explored by future studies using DNNs.28–31 Furthermore, these studies may pave the 
way for using artificial intelligence models for risk prediction in DCM patients to estimate an 
individual’s lifetime (genetic) risk of developing a specific arrhythmogenic DCM phenotype.

Limitations
The results of this study must be evaluated in light of its limitations. Even though the cohorts 
were consecutively constructed, data may be heterogeneous with missingness not-at-
random given the nature of retrospective cohorts. As the UMCU is a heart transplantation 
centre, this may have caused a selection bias. To account for this, an external cohort was 
added from the MUMC+ (non-heart transplantation centre) of which the patients logically 
presented with less severe phenotypes (table 1). Since ICD shocks are not a true surrogate 
for sudden cardiac death in patients with DCM, the results need confirmation in a study 
population with fewer ICD carriers or considering only fast events (i.e., >200/min).32 Because 
DCM is relatively rare, the results may be due to sample size and require confirmation in 
larger (prospective) studies. 

DISCUSSION

This is the first study to use DNNs trained with (baseline) ECGs for LTVA prediction in DCM 
patients on a multicentre dataset. By using an inherently explainable DNN architecture, 
we were able to distinguish patients at risk for LTVA whilst allowing interpretation and 
visualisation of pivotal ECG features.10 The model was able to identify patients at highest risk 
with a predominant network focus on P-wave abnormalities. Furthermore, these identified 
P-wave abnormalities did not correlate to their anatomical analogues (LA dimension/LAVI), 
suggesting an electrophysiological substrate.

Prior studies
There is emerging evidence suggesting that risk stratification for LTVA in DCM is a viable 
strategy using easily accessible clinical markers, such as LVEF, QRS duration and late 
gadolinium enhancement on magnetic resonance imaging.2–4,15,16 The use of more complex 
ECG markers (fragmented QRS waves, heart rate variability and t-wave alternans) however is 
withheld by measuring and standardization difficulties which may be assisted by (automatic) 
interpretation using DNNs.2,4,17,18 As these networks are generally “black-box” algorithms that 
need very large datasets for training, a strategy of reducing the ECG into its generative 
factors was used. These interpretable factors were then used in a common statistical model 
(Cox regression), that allowed for pivotal ECG features to be visualized. 

DNN Findings
The FactorECG encompasses the entire ECG including all its features. This novel strategy 
allows to simultaneously evaluate all characteristics that make up an ECG, rather than using 
solely human derived ECG features. Nonetheless, the factors that were most predictive for 
LTVA primarily encoded for several P-wave characteristics, such as PR-duration, P-wave 
morphology, and P-wave axis (figure 2). The combination of reconstructed ECGs together 
with the hazard ratios allow for a novel in-depth interpretation of a DNN’s features. A high 
value in F8 for instance, leads to PR-prolongation with a broadened P-wave, whereas a 
low value in F27 leads to removal of the P-wave, which is associated with atrial fibrillation, a 
known clinical risk factor for LTVA in DCM.3 Because the baseline model using established 
ECG variables performed poorly, this indicated that the VAE generative factors are more 
complex than solely the standard ECG intervals. The combination of the 21 generative 
factors as well as their interpretation allow for LTVA prediction and feature detection (figure 
3).

The fact that atrial (i.e. P-wave) abnormalities predict ventricular events (i.e. LTVA) may be 
considered remarkable. However, this association has been described before, and has been 
thought to be due to shared mechanistic pathologies between atria and ventricles, such as 
ion-channel abnormalities, or atrioventricular fibrosis due to atrial remodelling.2,3,19,20 In a 

176 | CHAPTER 9 DNNs ON ECGs TO PREDICT POTENTIALLY LIFE-THREATENING ARRHYTHMIAS IN DCM  | 177

9 9



REFERENCES
1.	 Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS, et al. 2016 ESC Guidelines for the 

diagnosis and treatment of acute and chronic heart failure. Eur Heart J 2016;37:2129–2200m.
2.	 Sammani A, Kayvanpour E, Bosman LP, Sedaghat-Hamedani F, Proctor T, Gi WT, et al. Predicting 

sustained ventricular arrhythmias in dilated cardiomyopathy: a meta-analysis and systematic review. Esc 
Hear Fail 2020;7:1430–41.

3.	 Kayvanpour E, Sammani A, Sedaghat-Hamedani F, Lehmann DH, Broezel A, Koelemenoglu J, et al. 
A novel risk model for predicting potentially life-threatening arrhythmias in non-ischemic dilated 
cardiomyopathy (DCM-SVA risk). Int J Cardiol 2021;

4.	 Halliday BP, Cleland JGF, Goldberger JJ, Prasad SK. Personalizing Risk Stratification for Sudden Death in 
Dilated Cardiomyopathy: The Past, Present, and Future. Circulation 2017;136:215–31.

5.	 Leur RR van de, Boonstra MJ, Bagheri A, Roudijk RW, Sammani A, Taha K, et al. Big Data and Artificial 
Intelligence: Opportunities and Threats in Electrophysiology. Arrhythmia Electrophysiol Rev 2020;9:146–
54.

6.	 Bleijendaal H, Ramos LA, Lopes RR, Verstraelen TE, Baalman SWE, Pool MDO, et al. Computer versus 
cardiologist: Is a machine learning algorithm able to outperform an expert in diagnosing a phospholamban 
p.Arg14del mutation on the electrocardiogram? Heart Rhythm 2021;18:79–87.

7.	 Ko W-Y, Siontis KC, Attia ZI, Carter RE, Kapa S, Ommen SR, et al. Detection of Hypertrophic Cardiomyopathy 
Using a Convolutional Neural Network-Enabled Electrocardiogram. J Am Coll Cardiol 2020;75:722–33.

8.	 Leur RR van de, Blom LJ, Gavves E, Hof IE, Heijden JF van der, Clappers NC, et al. Automatic Triage of 
12-Lead ECGs Using Deep Convolutional Neural Networks. J Am Heart Assoc 2020;9:e015138.

9.	 Leur R van de, Taha K, Bos MN, Heijden JF van der, Gupta D, Cramer MJ, et al. Discovering and Visualizing 
Disease-specific Electrocardiogram Features Using Deep Learning: Proof-of-concept in Phospholamban 
Gene Mutation Carriers. Circulation Arrhythmia Electrophysiol 2021;14:CIRCEP.120.009056.

10.	 Rudin C. Stop explaining black box machine learning models for high stakes decisions and use 
interpretable models instead. Nat Mach Intell 2019;1:206–15.

11.	 Higgins I, Matthey L, Pal A, Burgess C, Glorot X, Botvinick M, et al. beta-VAE: Learning Basic Visual 
Concepts with a Constrained Variational Framework. Conference Track Proceedins 5th International 
Conference on Learning Representations; 2018.

12.	 Leur RR van de, Bos MN, Taha K, Sammani A, Duijvenboden S van, Lambiase PD, et al. Explainable deep 
neural network for enhanced interpretation of 12-lead electrocardiograms. Submitted 2021;

13.	 Sapp JL, Parkash R, Wells GA, Yetisir E, Gardner MJ, Healey JS, et al. Cardiac resynchronization therapy 
reduces ventricular arrhythmias in primary but not secondary prophylactic implantable cardioverter 
defibrillator patients: Insight from the resynchronization in ambulatory heart failure trial. Circulation 
Arrhythmia Electrophysiol 2017;10:e004875.

14.	 Sammani A, Jansen M, Linschoten M, Bagheri A, Jonge N de, Kirkels H, et al. UNRAVEL: big data analytics 
research data platform to improve care of patients with cardiomyopathies using routine electronic health 
records and standardised biobanking. Neth Heart J 2019;27:426–34.

15.	 Akhtar M, Elliott PM. Risk Stratification for Sudden Cardiac Death in Non-Ischaemic Dilated 
Cardiomyopathy. Curr Cardiol Rep 2019;21:155.

16.	 Younis A, Goldberger JJ, Kutyifa V, Zareba W, Polonsky B, Klein H, et al. Predicted benefit of an 
implantable cardioverter-defibrillator: the MADIT-ICD benefit score. Eur Heart J 2021;42:ehaa1057.

17.	 Disertori M, Gulizia MM, Casolo G, Delise P, Lenarda AD, Tano GD, et al. Improving the appropriateness 
of sudden arrhythmic death primary prevention by implantable cardioverter-defibrillator therapy in 
patients with low left ventricular ejection fraction. Point of view. J Cardiovasc Med 2016;17:245–55.
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3 DISCUSSION

PART I I I



Discussion and future perspectives

Adapted from: Sammani A, Baas AF, Asselbergs FW, te Riele ASJM. 

Diagnosis and Risk Prediction of Dilated Cardiomyopathy in the Era of Big Data and 
Genomics. Journal of Clinical Medicine. 2021; 10(5):921.
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recovery.12,15,16 To this end, (inter)national collaborations for clinical registries are imminent.

As patients harbour a risk for LTVA, we extensively investigated the risk factors for LTVA 
in DCM. They include Left Ventricular (LV) dilatation, decreased LV ejection fraction (LVEF), 
late gadolinium enhancement (LGE) on CMR, prior (non)sustained ventricular arrhythmia, 
and pathogenic variants in PLN, LMNA, FLNC, and TTNtv.17–20 A recently published post 
hoc analysis of the MADIT trials in heart failure patients (including those with ischemic 
aetiology) confirmed that low LVEF (≤25%), male sex, prior non-sustained ventricular 
tachycardia, atrial arrhythmia, and myocardial infarction are potent predictors of LTVA.21 
An important consideration would be the confounding effect of cardiac resynchronisation 
therapy defibrillator (CRT-D) devices as these devices influence the risk of LTVA (including 
appropriate device therapy) in two ways: (1) they may decrease the risk of arrhythmia 
(improved LVEF with LV remodelling) and (2) they increase the detection chance ventricular 
arrhythmias, including self-terminating and possibly non-life-threatening ones.22,23 In this 
thesis, we developed the DCM-SVA risk calculator: a multiparametric prediction model 
incorporating easily accessible clinical data to predict LTVA in patients with DCM.19 As the 
newer techniques, such as LGE on CMR and genetic sequencing, are gaining ground in the 
work-up of DCM, we also provided an additional model including LGE.19,20 It is now important 
to evaluate this prediction model in a prospective clinical study for DCM and specifically 
include high risk pathogenic gene variants.

Genetic risk scores of DCM
In up to 40% of patients with DCM a causative pathogenic variant is identified, which 
decreases to 10% in patients without a positive family history for DCM.3,24–27 An explanation 
for the limited diagnostic yield of monogenetic causes and incomplete penetrance of 
DCM-associated variants is a common genetic variation and multifactorial inheritance.28 To 
understand the relationship between these common genetic variants and DCM, researchers 
conducted several case-control genome-wide association studies (GWASs) and one exome-
wide association study (EWAS).29–32 The three GWASs identified several loci including the 
following genes: HSPB7, BAG3, HCG22, SLC6A6, and SMARCB1.30–32 The EWAS reported 
eight loci independently associated with sporadic DCM, five of which included genes that 
harbour rare DCM causing variants (TTN, ALPK3, BAG3, FLNC, and FHOD3).29 Additionally, a 
recent GWAS conducted in individuals from the UK Biobank investigated the role of genetic 
associations in CMR-derived LV measurements. They identified 45 previously unreported 
common genetic loci that were associated with cardiac function and dimensions in 
individuals without cardiovascular disease.28 The results of these studies indicate that 
common genetic variation plays an important role in DCM development and progression.

To this end, genetic risk scores may be used to estimate an individual’s lifetime genetic risk 
of a disease, which can be a useful tool to discriminate subjects that require more frequent 

DISCUSSION

Dilated cardiomyopathy (DCM) is characterized by systolic dysfunction in the absence of 
coronary artery disease. DCM affects 1:250-500 individuals and its patients harbour a risk 
of frequent hospitalisation, overt heart failure and life-threatening ventricular arrhythmias 
(LTVA).1 The classification of DCM has been subject to change in the last decades. Its 
first descriptions were non-specific and included “idiopathic cardiomegaly” and “familial 
cardiomegaly” in the 1940’s2. With electrocardiograms (ECG), echocardiography, and later 
with cardiac magnetic resonance imaging (CMR) and genetic testing, descriptions became 
more specific (i.e. “PLN-cardiomyopathy”) and early diagnoses (i.e. hypokinetic non-dilated 
cardiomyopathy) became detectable.3–5 Artificial intelligence (AI) models trained with big 
data from electronic health records (EHR) may be considered to be a new modality as 
well. Though AI models require data generated by beforementioned investigations, given 
the right setting and infrastructure, they may identify new phenotype clusters, predict 
prognosis, and shine light on novel important clinical variables, for instance by automatic 
feature extraction with ECGs.6–8 In this chapter, I discuss how future studies should progress 
with predicting prognosis in DCM and use electronic health record (EHR) data, illustrated by 
the work presented in this thesis and related literature. 

DCM prediction models
To facilitate prognostic assessments, several clinical prediction models have been 
constructed for heart failure related mortality in the general cardiology population. The 
Seattle Heart Failure Model (SHFM)9, MAGGIC risk score10, and the BCN bio-HF calculator11 
are three models with comparable risk prediction performance.12 The performance of 
these models in DCM may, however, be suboptimal because their derivation also included 
patients with ischemic aetiology who are known to have a higher mortality risk than DCM 
patients (3-year mortality between 24–40%, compared to a 5-year mortality of ±20% in 
DCM).12,13 Indeed, a recent comparison of these prediction models in an external DCM 
cohort produced an area under the curve (AUC) of ≥0.6, with the more sophisticated risk 
models (BCN Bio-HF and SHFM) yielding the highest accuracies.9,11,12 As expected, the risk 
models typically overestimated mortality risk in DCM patients, likely caused by a difference 
in age (DCM patients tend to be younger (±15 years) than other heart failure aetiologies), 
which is one of the strongest variables affecting mortality.12,13 Moreover, there is a distinct 
subgroup of DCM patients who experience LV function recovery and have a subsequent 
mild clinical course during follow-up.14 These patients typically have higher LV contractile 
reserve and are more often women, whereas the presence of LGE on CMR in patients with 
DCM often represents an ominous marker.14,15 Larger prospective studies are warranted for 
two purposes: (1) to discriminate patients who may recover and better understand their 
physiologic substrates which may impact new treatment strategies, and (2) to develop a risk 
stratification tool dedicated for DCM patients that also incorporates variables reflecting LV 
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population datasets to gather real-world evidence.45 As EHR systems are continued to be 
used as research data platforms, interoperability is important for continuous collaborations 
and validation of algorithms. When validated, these algorithms can then be entered into 
prospective clinical trials and implemented in clinical practice given that their big data 
infrastructure is already in place. Integrated data repositories and consensus-based 
approaches for data modelling and a variety of data models have been developed to 
provide standardisation, the latest being the OMOP Common Data Model and HL7 FHIR.46

Artificial Intelligence in Cardiomyopathy research and clinical implementation
Deep neural networks can discover complex patterns in data and be trained (and tested) to 
classify diseases. For example, a recent deep neural network accurately classified pathogenic 
PLN variants based on 12-lead ECGs in patients with cardiomyopathy.6 The network showed 
excellent discriminatory performance and visualised both established ECG features (low 
QRS voltage and T-wave inversions) and a novel disease-specific ECG feature (increased 
PR duration) [98]. Another deep neural network was able to accurately triage ECG into four 
categories (normal, abnormal not acute, subacute, and acute).47 An important consideration 
in these techniques is their interpretability. As they are generally black-box algorithms, their 
inherent lack of “explainability” hampers clinical implementation.48 Different techniques 
may assist in interpreting DNNs. In this thesis, we used a recently introduced pipeline for 
fully explainable DNNs for ECG analysis based on variational auto-encoders (VAE)49,50, that 
compressed the ECG into a lower number of explanatory and independent generative factors 
(factorECG).51 We then used these factors in an interpretable algorithm for the prediction of 
LTVA in patients with DCM. We observed that the VAE network combined with an interpretable 
Cox-regression can distinguish patients at risk of LTVA and predictions were mainly driven by 
P-wave abnormalities. Future studies are warranted to validate these findings and elucidate 
their electrophysiological substrate to improve LTVA prediction in DCM.

Unsupervised clustering algorithms may also be able to help our understanding of phenotypic 
heterogeneity in DCM, as they can identify pathophysiologically similar individuals who may 
respond in a uniform and predictable way to treatment.8 Indeed, a recent study identified four 
different DCM phenotype subgroups (“phenogroups”) using an unsupervised hierarchical 
clustering algorithm, which was validated in two external registries: the Italian Trieste Registry 
and a cohort from Madrid.7 The four identified phenogroups were summarised as (i) mild systolic 
dysfunction, (ii) auto-immune disease, (iii) arrhythmic, and (iv) severe systolic dysfunction. The 
latter three groups had comparable and relatively unfavourable outcome compared to the 
first phenogroup.7 Whether these subgroups can be used to guide clinical decision-making 
remains to be investigated.3 Since the prevalence of subtle systolic and diastolic dysfunction 
is present in genotype-positive phenotype-negative DCM relatives, using machine and deep 
learning for early detection of disease may be an important next step.52 

surveillance and more aggressive treatment.3,33 Polygenic risk scores were constructed 
based on the identified loci that were linked to DCM, one of which comprised 28 single 
nucleotide polymorphisms that was able to predict DCM with a hazard ratio (HR) of 1.58 
per standard deviation increase in the risk score. Moreover, LV end systolic volume and 
LVEF of TTNtv carriers were also shown to be influenced by this polygenic risk score.28 
This study, however, also underscored the particularly challenging clinical validation and 
implementation of polygenic risk scores: (1) the scores were mostly developed in patients 
with European/Western ancestry, and (2) interpretation was based on the distribution of 
risk, which may limit information on an individual’s lifetime risk.34 As previously mentioned, 
whether a carrier of a pathogenic variant develops DCM will also depend on the influence 
of environmental and cardiotoxic factors, further complicating risk predictions. Future 
research in large, well-phenotyped cohorts of pathogenic variants is required to define the 
utility of these genetic risk scores for individual prognosis.

Infrastructures, the prerequisite for artificial intelligence
Big data are usually described as data that are high in volume (e.g., by number of patients) 
and high in complexity (e.g., by temporality or number of variables).35 The phenotypic data 
in an EHR system complies with this definition, as it may include detailed data on laboratory 
values, investigations, raw imaging and ECG data, device data, (unstructured) text, and 
questionnaires in many patients.36 As each patient has a multitude of time-stamped events 
and data points that are performed upon discretion of the treating physician, these data 
are high dimensional, sparse (with varying intervals between data points), irregular, and 
temporal. Furthermore, data may be biased because of administrative or financial interests 
or because of a highly variable yet meaningful missingness.37

These challenges may be overcome by several methods. Phenotype-classifying algorithms 
may be able to cope with conflicting or missing data by combining multiple data sources 
and integrating information on treatment and comorbidities to infer diagnoses, as shown by 
a case study in atrial fibrillation.38 Furthermore, clinically repetitive, or administrative tasks 
can be automated39 —for instance, EchoNet is a deep learning network that can accurately 
extract LV volume and function, and other algorithms have been deployed for automatic 
CMR multi-structure segmentation.40,41 Registration of diagnoses can also be automated, 
for example by interpreting clinical discharge letters and extracting diagnoses using deep 
learning.42,43 Of note, these pipelines do not always need to rely on complex algorithms. 
Boolean retrieval methods or regular expressions are two examples of simpler algorithms 
that are also capable of extracting data from medical text.44 These pipelines help creating 
big data research infrastructures by extracting previously messy data and structuring 
them for clinical research and patient care. Big data research infrastructures can also be 
a combination of conventional cohorts, e.g., EHR in population settings, disease registries, 
and trial data. BigData@Heart is an example that combines these different research and 
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FUTURE PERSPECTIVES

With advancing technology, temporal EHR data, eHealth and wearables provide exciting new 
opportunities for patient-tailored predictive and preventive medicine (figure 1). Furthermore, 
because wearables are generally non-invasive, they can be used by the general population 
and measure the first onset of disease, creating a feasible opportunity for early detection. 
For example, carriers of pathogenic variants that causes cardiomyopathy may already 
have unnoticed arrhythmias62 which can be detected using wearables that detect heart 
rhythm. Importantly, these data can be incorporated into the EHR, allowing big research 
data platforms to investigate AI-algorithms. However, “big data” are accompanied by “big 
responsibilities” and diminishing risks of biases requires a multi-disciplinary effort, including 
data scientists (who make the models), “hybrid physicians” (who speak the “AI language”), 
and information technology (IT) specialists (who provide the infrastructure).35 The use of 
explainable algorithms and prospective validation of their clinical impact are imminent steps 
to guide further implementation.

Nonetheless, it is already possible to take advantage of IT infrastructures in research and 
daily clinical practice. Rather than seeing patients with the relatively scarce information 
preceding (outpatient) appointments, we can pro-actively start data collection from the 
moment of referral (or even before, with wearables). Data from their referring physicians 
can be automatically extracted (text-mining) to already suggest further diagnostic work-up 
and may include (poly)genic profiles harbouring baseline risks of disease and potential 
drug responsiveness in the future. With patient questionnaires, basic data (i.e. medical 
history and cardiovascular risk factors) may already be collected before an appointment 
and actively involves patients to maintain the accuracy of their EHR data. In this setting, 
the role of specialists will change, requiring more “hybrid physicians” that understand the 
complexity of healthcare data and its means to standardize them (figure 2). With validated 
AI models, these physicians will be selecting the right care pathways and predict patients’ 
risk of adverse events. Furthermore, guideline adherence can be ingrained into these 
systems, actively guiding clinicians to their evidence-based treatment options and even 
retrospectively selecting cases that require further attention. Nonetheless, these “hybrid 
physicians” must not fail to realize the need for a human touch: using IT and AI systems to 
improve efficiency, whilst keeping healthcare humane.

Wearables
Wearables and smartphones are embedded with (and connected to) many sensors that 
can play a leading role in healthcare, ranging from accelerometers, temperature/heart rate 
detectors, and ECGs. To engage clinicians to use these data, platforms have been created 
to facilitate data storage and connectivity with these wearables, such as RADAR-base 
(an open-source mobile health platform) or the Harvard Forhealth application.53,54 These 
applications allow for dynamic informed consents with patients and direct connection 
to researchers, while simultaneously providing the infrastructure for the assessment of 
telemonitoring devices. These initiatives mark the beginning of the paradigm shift from 
“one-size-fits-all” to personalised care supported by AI.55 

Indeed, the last year has brought an exponential increase in studies using various forms of 
eHealth, which are now moving from research to implementation.56 A recent meta-analysis 
estimated that telemonitoring systems reduce all-cause mortality in heart failure patients by 
±20%, with optimal results if ≥3 simple biologic parameters (body weight, blood pressure, 
or ECG) are measured.57 For heart failure hospitalisations in patients with CRT devices, 
however, older data indicate that more complex diagnostic indices are necessary: decreased 
intrathoracic impedance, low patient activity, and low heart rate variability (HRV).58 More 
specifically, a HRV of <50 ms (standard deviation of the 5-min atrial–atrial intervals) was 
associated with high mortality and hospitalisation risk.59 Non-invasive disposable patches 
were also shown to accurately provide early detection of impending rehospitalisation when 
combined with a machine learning algorithm.60 Whether these innovative approaches can 
mitigate rehospitalisation (if acted upon) remains to be investigated. In addition, the benefit 
of wearables for arrhythmia detection or pre-clinical disease detection (e.g., by ECGs) in at-
risk individuals needs to be evaluated in large prospective studies. 61
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more events. We used these results to create an international cohort of Dutch, French, 
German and Polish patients with DCM, and construct a clinical risk prediction model in 
Chapter 5. We included a total of 1,393 patients that were primarily male (68%) with a mean 
age of ±50 years. We constructed a clinical risk model that included six independent and 
easily accessible clinical variables. Comparing this model to current guidelines resulted in 
the same protection of patients while implanting 12% fewer ICDs. We also provided a cut-
off-free model that could be helpful for decision making in patients who do not fulfil ICD 
criteria based on existing guidelines, for instance having LVEF >35% in presence of other 
risk factors. Even though pathogenic variants in high-risk genes have repeatedly been 
associated with higher rates of life-threatening arrhythmias, we argue that genotyping DCM 
patients should be encouraged, despite current guideline recommendations to only do so 
in case of established conduction or rhythm disturbances. 

In the next part of this thesis, we focussed on big health records for clinical research using 
exciting techniques, such as text-mining and deep learning. In Chapter 6 we developed 
the UNRAVEL research data platform and biobank. This platform is an extraction of the 
EHR data and constitutes both structured and unstructured data in chronological sequence, 
such as electrocardiograms (ECG) and free text from doctors’ notes. The integration of these 
data into a research data platform allows efficient data collection. Furthermore, the biobank 
includes the use of residual material (for instance after heart transplantation), venepuncture 
and protocols are shared on www.unravelrdp.nl. 

Standard reference terminology of diagnoses and risk factors is crucial for epidemiological 
studies and inter/intranational comparisons of disease. The International Classification 
of Disease (ICD-10) is a standardized and widely used method, where doctors’ notes are 
manually classified. In Chapter 7, we developed a natural language processing pipeline 
that automatically classifies ICD-10 codes in free medical text. We focussed on three- and 
four-digit codes, such as atrial fibrillation (I48) and DCM (I42.0). We observed that the 
performance was best when using the entire discharge letters and discuss implementation 
of this technique to decrease administrative burden and further use in research applications. 
Another technique is the use of more simple text-mining algorithms for the identification 
of rare diseases. In Chapter 8 we described the use of a Boolean retrieval algorithm for 
the identification of unexplained left ventricular hypertrophy to allow for early targeted 
treatment and family screening. We discuss the use of computer algorithms as an exciting 
next era of patient identification and discuss infrastructure and clinical implications. 

Using structured data from the research data platforms enables novel deep learning 
methods. Specific ECG characteristics have been associated with LTVA but require hand-
crafted feature extraction. Deep neural networks (DNN) can discover complex patterns 
without the necessity of manual extraction, but clinical use is hampered by model 

ENGLISH SUMMARY

Electronic health records (EHR) have adjusted the nature of clinical medicine and research, 
allowing continuous capture of clinical data improving research infrastructures. These 
“real world” data can be manually captured in clinical registries or be used as big health 
records for clinical research using exciting techniques, such as text-mining and deep 
learning. These techniques were applied to investigate dilated cardiomyopathy (DCM): a 
heterogeneous common final pathway and its patients harbour a risk of life-threatening 
ventricular arrhythmias (LTVA). 

The first chapters of this thesis focus on using “real world” data from registries to understand 
the clinical heterogeneity of DCM. In Chapter 2 we used data from the University Medical 
Centre Utrecht Heart Transplantation cohort, focussing on end-stage heart failure. We 
showed that throughout the years DCM has become the primary indication of heart 
transplantation and that survival after heart transplantation has been increasing, possibly 
due to better post-transplantation care. Importantly, the lack of available donor hearts 
continues to lead to increased waiting lists. Ventricular assist devices offer a valuable 
bridge to transplantation, and more recently as “destination” therapy. 

DCM is a complex disease where genetics interplay with extrinsic factors. In Chapter 3 we 
investigated the phenotype, management, and outcome of familial DCM compared to non-
familial (sporadic) DCM across Europe. We observed that there are important differences at 
baseline, such as younger age, less severe phenotypes at presentation and more favourable 
baseline cardiovascular risk profiles for patients with familial DCM. Logically, patients with 
familial DCM received more genetic testing with subsequently a higher genetic yield but 
remained limited for sporadic DCM. We discussed the opportunities of cardiovascular risk 
factors as means of treatment. Furthermore, we argued that limited genetic testing and 
heterogeneity throughout genetic panels throughout Europe provide a scaffold to improve 
genetic counselling and testing.

The risk of LTVA in patients with DCM has led to an established guideline (left ventricular 
ejection fraction (LVEF) <35%, NYHA class II/III) indication for implantable cardiac defibrillators 
(ICD). As LVEF remains the main guideline criterion for primary prophylactic ICD implantation, 
this could lead to overtreatment or failed detection of patients at risk of LTVA without 
impaired LVEF. As a first step towards a risk-calculator, we performed a systematic review 
and meta-analysis for predictors of LTVA in DCM in Chapter 4. We identified 55 studies 
which had an average crude annual event rate of 4.5%. We identified important risk factors 
(young age, hypertension, prior sustained arrhythmia, LVEF, left ventricular dilation and the 
presence of late gadolinium enhancement) that were associated with LTVA. Furthermore, 
several genotypes (Phospholamban, Lamin A/C and Filamin-C) were also associated with 
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NEDERLANDSE SAMENVATTING

Het elektronisch patiëntendossier (EPD) heeft het verrichten van klinisch cardiovasculair 
onderzoek getransformeerd door continuïteit en toegankelijkheid van data te garanderen. 
Deze “echte wereld” data kunnen handmatig worden ontsloten in registraties of 
toegankelijk worden gemaakt via “big data” platforms, waarbij technieken zoals text-
mining en deep learning worden toegepast. In dit proefschrift zijn zowel registratie data 
als big-data platforms gebruikt in cardiovasculair onderzoek naar met name dilaterende 
cardiomyopathie (DCM): een heterogeen ziektebeeld waarbij patiënten een significant 
risico hebben op levensbedreigende hartritmestoornissen en hartfalen.

Het eerste deel van dit proefschrift focust zich op de “echte wereld” data die ontsloten 
zijn in klinische registraties om de heterogeniteit van DCM te onderzoeken. In Hoofdstuk 
2 hebben we data van het harttransplantatie cohort van het Universitair Medisch Centrum 
Utrecht gebruikt, met als focus eindstadium hartfalen. In dit stuk beschreven wij de transitie 
van ischemisch hartfalen naar non-ischemisch hartfalen in de loop der jaren als primaire 
indicatie voor harttransplantaties. We bediscussiëren de verbeterende overleving van 
patiënten na harttransplantatie, mogelijkerwijs door verbeterde post-transplantatie-zorg. 
Van belang is het tekort van donorharten, wat leidt tot langere wachtlijsten. Assist devices 
zijn hierin cruciaal als bridge-to-transplantation behandeling, waarbij steeds recenter de 
therapie ook als “destination therapy” wordt ingezet.

DCM kent een complexe etiologie, waarbij genetische en omgevingsfactoren een rol 
spelen. In Hoofdstuk 3 vergelijken we het fenotype, behandeling en uitkomsten van 
familiaire DCM met non-familiaire (sporadische) DCM in Europa. Opvallende observaties 
zijn verschillen tijdens presentatie, zoals een jongere leeftijd met bijbehorend milder 
ziektebeeld en een gunstiger cardiovasculair ziekteprofiel (bv. minder roken, minder hoge 
bloeddruk) bij patiënten met familiaire DCM. Logischerwijs worden patiënten met DCM 
vaker genetisch onderzocht met bijbehorende hogere vangst van pathogene varianten. 
We bespreken de mogelijkheid van cardiovasculaire risicofactoren voor een aanvullende 
focus van behandeling en bediscussiëren het relatief lage aantal genetische testen en 
heterogeniteit van de genetische panels in Europa als mogelijkheid om de genetische 
counseling te verbeteren. 

Het significante risico van levensbedreigende ritmestoornissen bij patiënten met DCM heeft 
geleid tot een richtlijn indicatie (linkerventrikel ejectiefractie (LVEF)) <35%, NYHA-klasse II/III) 
voor het implanteren van een implanteerbare cardiale defibrillator (ICD). Een tekortkoming 
van deze richtlijn is dat deze slechts 1 criterium (LVEF) bevat, waarbij er mogelijke 
overbehandeling is van patiënten met slechte kamerfunctie of onderbehandeling is van 
patiënten met relatief behouden kamerfuncties. Dit zou kunnen worden opgelost door 

interpretation. In Chapter 9, we developed an inherently explainable DNN in patients with 
DCM for the outcome of LTVA. We observed that the network was able to predict events 
and predictions were driven by P-wave abnormalities. This paves the way for future studies 
to improve identification of patients at risk of LTVA and elucidate the electrophysiological 
substrates. 

In the last chapter of this thesis (Chapter 10) I further discussed on how to progress with 
diagnosis and risk prediction of DCM using big data and artificial intelligence.
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(I48) en DCM (I42.0). Deze modellen presteerden het beste als er gebruik werd gemaakt 
van gehele brieven. We beargumenteren de implementatie van deze technieken om de 
administratielast in de zorg te verlichten en bediscussiëren verder gebruik als research 
applicatie. Een andere techniek betreft het gebruik van simpelere text-mining methoden. 
In Hoofdstuk 8 beschrijven wij het gebruik van een Boolean Retrieval algoritme voor 
het identificeren van patiënten met onverklaarde linkerventrikel hypertrofie voor 
vroege behandeling en familiescreening. In de discussie gaan wij in op het gebruik van 
computeralgoritmen voor patiëntidentificatie met bijbehorende infrastructuur en klinische 
implicaties. 

Het gebruik van al gestructureerde grote datasets van het research data platform geeft 
ruimte voor deep learning methoden. Eerder beschreven wij bepaalde ECG kenmerken die 
geassocieerd zijn met levensbedreigende aritmieën, waarbij handmatige interpretatie een 
beperking is van deze techniek. Door Deep Neural Networks (DNN) te gebruiken kunnen 
we complexe patronen in ECG’s herkennen zonder dat daar handmatige interpretatie aan 
te pas komt. Deze modellen zijn echter beperkt te interpreten, wat klinische implementatie 
bemoeilijkt. In Hoofdstuk 9 hebben wij een inherent explainable DNN (waarbij voorspellers 
inzichtelijk kunnen worden gemaakt) ontworpen om levensbedreigende ritmestoornissen bij 
patiënten DCM te voorspellen. Wij zagen dat het netwerk inderdaad accurate voorspellingen 
kan doen op basis van P-golf afwijkingen. Deze bevinding opent de weg om hoog-risico 
patiënten beter te kunnen identificeren en het elektrofysiologische mechanisme van P-golf 
afwijkingen en plotse hartdood beter te begrijpen. 

In het laatste hoofdstuk van deze thesis (Hoofdstuk 10) bediscussieer ik 
toekomstperspectieven voor diagnose en risicovoorspelling bij DCM met behulp van big 
data en kunstmatige intelligentie.

een voorspelmodel te maken voor ritmestoornissen waarin verschillende factoren worden 
meegenomen. Als eerste stap naar zo’n voorspelmodel hebben wij in Hoofdstuk 4 een 
systematische review en meta-analyse verricht naar voorspellers van levensbedreigende 
ritmestoornissen bij patiënten met DCM. Uit de 55 geïncludeerde studies kwam een grof 
jaarlijks risico op levensbedreigende ritmestoornissen van ±4.5%. Uit de studie kwam 
naar voren dat jonge leeftijd, hoge bloeddruk, eerdere aanhoudende ritmestoornis, LVEF, 
linkerventrikel verwijding en de aanwezigheid van late gadolinium aankleuring op MRI-scan 
(littekenvorming in het hart) geassocieerd zijn met levensbedreigende ritmestoornissen. 
Bovendien is er bij bepaalde gen-afwijkingen een groter risico op ritmestoornissen, 
bijvoorbeeld bij pathogene varianten in Phospholamban, Lamin A/C en Filamine-C. Met deze 
resultaten hebben wij in Hoofdstuk 5 binnen een internationaal cohort van Nederlandse, 
Franse, Duitse en Poolse patiënten met DCM een klinisch risicopredictiemodel ontworpen. In 
het cohort waren 1,393 patiënten geïncludeerd, met name mannen (68%) van gemiddeld ±50 
jaar. Het model omvatte toegankelijke klinische variabelen zoals leeftijd, QRS-duur en LVEF. 
Vergeleken met de bestaande richtlijnen zou dit nieuwe model hetzelfde aantal patiënten 
beschermen met 12% minder implantaties. Bovendien publiceerden wij een model dat geen 
ICD-implantaties oplegt, maar een numeriek risico geeft op ritmestoornissen. Dit kan helpen 
bij gedeelde besluitvorming tussen arts en patiënt, bijvoorbeeld in het geval van een LVEF 
>35% maar wel de aanwezigheid van andere risicofactoren. Hoewel pathogene varianten 
in hoog-risico genen vaker zijn beschreven bij levensbedreigende ritmestoornissen, wordt 
genetisch onderzoek binnen de huidige richtlijnen nog niet aanbevolen bij alle patiënten 
met DCM, tenzij ze bekend zijn met ritme- of geleidingsstoornissen. Echter vanwege het 
risico op levensbedreigende ritmestoornissen betogen wij het verrichten van genetisch 
onderzoek bij alle patiënten met DCM. 

In het volgende deel van het proefschrift ligt de focus op big data voor klinisch onderzoek 
waarbij gebruik wordt gemaakt van technieken als text-mining en deep learning. In 
Hoofdstuk 6 beschrijven we het ontwerp van het UNRAVEL research data platform en 
de biobank. Dit platform extraheert zowel gestructureerde als ongestructureerde data uit 
het EPD in chronologische sequentie, zoals elektrocardiogrammen (ECG) en vrije tekst 
van bijvoorbeeld ontslagbrieven. Integratie van deze data in een research data platform 
ondersteunt efficiëntere collectie van data. Daarnaast kan restmateriaal, bijvoorbeeld na 
harttransplantatie, worden gebruikt, is bloedafname onderdeel van de biobank en zijn alle 
protocollen gedeeld via www.unravelrdp.nl. 

Gestandaardiseerde terminologie voor diagnosen en risicofactoren is cruciaal voor 
epidemiologische studies. Hiervoor wordt vaak de International Classification of Disease 
(ICD-10) gebruikt, waarbij ontslagbrieven manueel worden geannoteerd met een ICD-10 
code. In Hoofdstuk 7 hebben wij een natural language processing pipeline ontworpen die 
klinische ontslagbrieven automatisch annoteert met een ICD-10 code, zoals atriumfibrilleren 
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