
Parameterized Problems Complete for
Nondeterministic FPT time and Logarithmic Space

Hans L. Bodlaender, Carla Groenland and Jesper Nederlof

Department of Information and Computing Sciences
Utrecht University

Utrecht, The Netherlands
Email: h.l.bodlaender@uu.nl, c.e.groenland@uu.nl, j.nederlof@uu.nl

Céline M. F. Swennenhuis

Department of Mathematics and Computer Science
Eindhoven University of Technology

Eindhoven, The Netherlands
Email: c.m.f.swennenhuis@tue.nl

Abstract—Let XNLP be the class of parameterized prob-
lems such that an instance of size n with parameter k can
be solved nondeterministically in time f(k)nO(1) and space
f(k) log(n) (for some computable function f ). We give a wide
variety of XNLP-complete problems, such as LIST COLORING

and PRECOLORING EXTENSION with pathwidth as parame-
ter, SCHEDULING OF JOBS WITH PRECEDENCE CONSTRAINTS,
with both number of machines and partial order width as
parameter, BANDWIDTH and variants of WEIGHTED CNF-
SATISFIABILITY and reconfiguration problems. In particular,
this implies that all these problems are W[t]-hard for all t. This
also answers a long standing question on the parameterized
complexity of the BANDWIDTH problem.

Keywords-Parameterized complexity; XNLP; Bandwidth; W-
hierarchy

I. INTRODUCTION

Already since the 1970’s, an important paradigm in clas-

sical complexity theory has been that an increased num-

ber of alternations of existential and universal quantifiers

increases the complexity of search problems: This led to the

central definition of the polynomial hierarchy [1], whose

study resulted in cornerstone results in complexity theory

such as Toda’s theorem and lower bounds for time/space

tradeoffs for SAT [2]. In their foundational work in the early

1990s, Downey and Fellows introduced an analogue of this

hierarchy for parameterized complexity theory, called the

W-hierarchy. This hierarchy comprises of the complexity

classes FPT, the parameterized analogue of P, W[1], the

parameterized analogue of NP, and the classes W[2], . . . ,

W[P], XP (see e.g. [3]–[5]).

While in the polynomial hierarchy only the classes with

no quantifier alternation (i.e. P,NP and co-NP) are promi-

nent, many natural parameterized problems are known to

be hard or even complete for W[i] for some i > 1. Thus,

the W-hierarchy substantially differentiates the complexity

of hard parameterized problems. And such a differentiation

has applications outside parameterized complexity as well:

For example, for problems in W[1] we can typically improve

over brute-force enumeration algorithms, while for problems

in W[2] we can prove lower bounds under the Strong

Exponential Time Hypothesis excluding such improvements

(see e.g. the discussion in [6]).1

For several problems, completeness for a class is known,

e.g., CLIQUE is W[1]-complete [4] and DOMINATING SET is

W[2]-complete [3]. However, there are also several problems

known to be hard for W[1], W[2], or even for W[t] for all

positive integers t, but which are not known to be in the

class W[P]; in many cases, only membership in XP was

known. For such problems, it is an intriguing question to

establish their exact position within the W-hierarchy as it

can be expected to shed light on their complexity similarly

as it did for the previous problems.

One example of such a problem is the BANDWIDTH

problem. It has been known to be hard for all classes

W[t] since 1994 [7], with a recently published proof that

this already holds for a special subclass of trees (namely,

caterpillars with hair length at most three [8]). However,

already in the midst of the 1990s, Hallett argued that it

is unlikely that BANDWIDTH belongs to W[P], see the

discussion by Fellows and Rosamond in [9]. The argu-

ment intuitively boils down to the following: BANDWIDTH

‘seems’ to need certificates with Ω(n) bits, while problems

in W[P] have certificates with O(f(k) log n) bits. A similar

situation applies to several other W[1]-hard problems.

A (largely overlooked) breakthrough was made a few

years ago by Elberfeld et al. [10], who studied several classes

of parameterized problems, including a class which they

called N[f poly, f log]: parameterized problems that can be

solved with a non-deterministic algorithm with simultane-

ously, the running time bounded by f(k)nc and the space

usage bounded by f(k) log n, with k the parameter, n the

input size, c a constant, and f a computable function. For

easier future reference, we denote this class by XNLP.

Elberfeld et al. [10] showed that a number of problems are

complete for this class, including the LONGEST COMMON

SUBSTRING problem. Since 1995, LONGEST COMMON

1For example the naı̈ve algorithm O(nk+1) time algorithm for finding
cliques on k vertices on n-vertex graphs can be improved to run in
n0.8k time, but similar run times for DOMINATING SET refute the Strong
Exponential Time Hypothesis.

193

2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS)

2575-8454/21/$31.00 ©2021 IEEE
DOI 10.1109/FOCS52979.2021.00027

20
21

 IE
EE

 6
2n

d 
An

nu
al

 S
ym

po
siu

m
 o

n 
Fo

un
da

tio
ns

 o
f C

om
pu

te
r S

ci
en

ce
 (F

O
CS

) |
 9

78
-1

-6
65

4-
20

55
-6

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
 D

O
I: 

10
.1

10
9/

FO
CS

52
97

9.
20

21
.0

00
27



SUBSTRING is known to be hard for all W[t] [11], but

its precise parameterized complexity was unknown until the

result by Elberfeld et al. [10].
Our contribution: We show that the class XNLP (i.e.,

N[f poly, f log]) can play an important role in establish-

ing the parameterized complexity of a large collection of

well studied problems, ranging from abstract problems on

different types of automata (see e.g. [10] or later in this

paper), logic, graph theory, scheduling, and more. In this

paper, we give a number of different examples of problems

that are complete for XNLP. These include BANDWIDTH,

thus indirectly answering a question that was posed over 25

years ago.
Figure 1 shows for the problems from which problem the

reduction starts to show XNLP-hardness.

Precoloring Extension(pw)

List Coloring(pw)

Chained Multicolored Clique

Log-Pathwidth Dominating Set

Accepting NNCCM

Bandwidth

Timed DS Reconfiguration

Uniform Emulation of Weighted Paths Scheduling with Precedence Constraints

Chained Weighted CNF-Satisfiability

Timed ND Cellular Automaton

Acyclic Finite State Automata Intersection

Figure 1. Reductions between XNLP-hard problems from this paper.
Several variants of problems are not shown.

Often, membership in XNLP can be seen by looking

at the algorithm that establishes membership in XP. Many

problems in XNLP typically have a dynamic programming

algorithm that sequentially builds tables, with each indi-

vidual table entry expressible with O(f(k) log n) bits. We

then get membership in XNLP by instead of tabulating all

entries of a table, guessing one entry of the next table —

the step resembles the text-book transformation between a

deterministic and non-deterministic finite automaton.
Interestingly, hardness for the class XNLP also has con-

sequences for the use of memory of deterministic parame-

terized algorithms. Pilipczuk and Wrochna [12] conjecture

that LONGEST COMMON SUBSEQUENCE (variant 1) has no

XP algorithm that runs in f(k)nc space, for a computable

function f and constant c; if this conjecture holds, then no

XNLP-hard problem has such an algorithm. See Section V

for more details.
When a problem is XNLP-hard, it is also hard for each

class W[t] (see Lemma II.2). Thus, XNLP-hardness proofs

are also a tool to show hardness for W[t] for all t. In

this sense, our results strengthen existing results from the

literature: for example, LIST COLORING and PRECOLORING

EXTENSION parameterized by pathwidth (or treewidth) were

known to be W[1]-hard [13], and PRECEDENCE CON-

STRAINT K-PROCESSOR SCHEDULING parameterized by

the number of processors K was known to be W[2]-hard

[14]. Our XNLP-hardness proofs imply hardness for W[t]
for all t. Moreover, our XNLP-hardness proofs are often

simpler than the existing proofs that problems are hard for

W[t] for all t.

Related to the class XNLP is the class XNL: the param-

eterized problems that can be solved by a nondeterministic

algorithm that uses f(k) log n space. There is no explicit

time bound, but we can freely add a time bound of 2f(k) logn,

and thus XNL is a subset of XP. XNL can be seen as the

parameterized counterpart of NL. Amongst others, XNL was

studied by Chen et al. [15], who showed that COMPACT

TURING MACHINE COMPUTATION is complete for XNL.

Hardness for a class is always defined with respect to

a class of reductions. In our proofs, we use parameterized

logspace reductions (or, in short, pl-reductions). A brief dis-

cussion of other reductions can be found in Subsection V-B.

Paper overview.: In Section II, we give a number

of preliminary definitions and results. In Section III we

introduce three new problems that are XNLP-complete. In

Section IV we then use these problems as building blocks,

to prove other problems to be either XNLP-complete or

XNLP hard. For each of the problems, its background and

a short literature review specific to it will be given inside

its relevant subsection. Final comments and open problems

are given in Section V. Proofs have been omitted and can

be found in the full version of the paper [16].

II. PRELIMINARIES

In this section we formally define the class XNLP and

give some preliminary results.

The section is organized as follows: first we introduce

some basic notions in Subsection II-A, next we formally de-

fine the class XNLP in Subsection II-B. In Subsection II-C

we then introduce the type of reductions that will be used

in this paper and in Subsection II-D we go over some

preliminary results. Subsection II-E ends the section with

a discussion of Cellular automata, for which Elberfeld et

al. [10] already established it was XNLP complete. From

this problem we will (indirectly) derive the XNLP-hardness

for all other XNLP-hard problems in this paper.

A. Basic notions

We assume the reader to be familiar with a number of

notions from complexity theory, parameterized algorithms,

and graph theory. A few of these are reviewed below, along

with some new and less well-known notions.

We use interval notation for sets of integers, i.e., [a, b] =
{i ∈ Z | a ≤ i ≤ b}. All logarithms in this paper have base

2. N denotes the set of the natural numbers {0, 1, 2, . . .},
and Z+ denotes the set of the positive natural numbers

{1, 2, . . .}.

194



B. Definition of the class XNLP

In this paper, we study parameterized decision problems,

which are subsets of Σ∗ ×N, for a finite alphabet Σ. The

following notation is used, also by e.g. [10], to denote classes

of (non-)deterministic parameterized decision problems with

a bound on the used time and space. Here, we use the

following notations: poly for a polynomial function in the

input size; log for O(log n); n for the input size; f for a

computable function of the parameter; ∞ if there is no a

priory bound for the resource. Let D[t, s] denote the class

of parameterized decision problems that can be solved by a

deterministic algorithm in t time and s space and let N[t, s]
be analogously defined for non-deterministic algorithms.

Thus, FPT can be denoted by D[f poly,∞]; we can denote

XP by D[nf ,∞], NP by N[poly,∞], L by D[∞, log],
etcetera.

A special role in this paper is played by the class

N[f poly, f log]: the parameterized decision problems that

can be solved by a non-deterministic algorithm that simul-

taneously uses at most f(k)nc time and at most f(k) log n
space, on an input (x, k), where x can be denoted with n
bits, f a computable function, and c a constant. Because of

the special role of this class, we use the shorter notation

XNLP.
XNLP is a subclass of the class XNL, which was studied

by Chen et al. [15]. XNL is the class of problems solvable

with a non-deterministic algorithm in f(k) log n space (f ,

k, n as above), i.e, XNL is the class N[∞, f log].
We assume that the reader to be familiar with notions from

parameterized complexity, such as XP, W[1], W[2], . . . ,

W[P] (see e.g. [5]). For classes of parameterized problems,

we can often make a distinction between non-uniform (a

separate algorithm for each parameter value), and uniform.

Throughout this paper, we look at the uniform variant of

the classes, but we also will assume that functions f of the

parameter in time and resource bounds are computable —

this is called strongly uniform by Downey and Fellows [5].

C. Reductions
Hardness for a class is defined in terms of reductions.

We mainly use parameterized logspace reductions, which

are a special case of fixed parameter tractable reductions.

Both are defined below; the definitions are based upon the

formulations in [10]. Two other types of reductions are

briefly discussed in the Conclusion (Section V-B.)

• A parameterized reduction from a parameterized prob-

lem Q1 ⊆ Σ∗1 ×N to a parameterized problem Q2 ⊆
Σ∗2×N is a function f : Σ∗1×N→ Σ∗2×N, such that

the following holds.

1) For all (x, k) ∈ Σ∗1 ×N, (x, k) ∈ Q1 if and only

if f((x, k)) ∈ Q2.

2) There is a computable function g, such that for

all (x, k) ∈ Σ∗1 ×N, if f((x, k)) = (y, k′), then

k′ ≤ g(k).

• A parameterized logspace reduction or pl-reduction is a

parameterized reduction for which there is an algorithm

that computes f((x, k)) in space O(g(k)+ log n), with

g a computable function and n = |x| the number of

bits to denote x.

• A fixed parameter tractable reduction or fpt-reduction
is a parameterized reduction for which there is an

algorithm that computes f((x, k)) in time O(g(k)nc),
with g a computable function, n = |x| the number of

bits to denote x and c a constant.

In the remainder of the paper, unless stated otherwise,

completeness for XNLP is with respect to pl-reductions.

D. Preliminary results on XNLP

We give some easy observations that relate XNLP to other

notions from parameterized complexity. The following easy

observation can be seen as a special case of the fact that

N[∞, S(n)] ⊆ D[2S(n),∞], see [2, Theorem 4.3].

Lemma II.1. XNLP is a subset of XP.

The idea is to transform the non-deterministic algorithm

to a deterministic algorithm that employs dynamic program-

ming: tabulate all reachable configurations of the machine

(a configuration is a tuple, consisting of the contents of the

work tape, the state of the machine, and the position of

the two headers). From a configuration, we can compute all

configurations that can be reached in one step, and thus we

can check if a configuration that has an accepting state can

be reached.

Lemma II.2. If a parameterized problem Q is XNLP-hard,
then it is hard for each class W[t] for all t ∈ Z+.

For this, we show that WEIGHTED t-NORMALIZED SAT-

ISFIABILITY (a W[t]-complete problem) is in XNLP. We

have a Boolean formula with parenthesis-depth t and ask if

we can satisfy it by setting exactly k variables to true and

all others to false. We can non-deterministically guess which

of the k Boolean variables are true; verifying whether this

setting satisfies the formula can be done with O(t+k log n)
bits of space, see e.g. [5].

Lemma II.3 (Chen et al. [15]). If NL �= P, then there are
parameterized problems in FPT that do not belong to XNL
(and hence also not to XNLP).

Chen et al. [15] introduce the following problem.

CNTMC

Input: the encoding of a non-deterministic Turing

Machine M ; the encoding of a string x over

the alphabet of the machine.

Parameter: k.

Question: Is there an accepting computation of

M on input x that visits at most k cells of the

work tape?

195



Theorem II.4 (Chen et al. [15]). CNTMC is XNL-complete
under pl-reductions.

It is possible to show XNLP-completeness for a ‘timed’

variant of this problem.

TIMED CNTMC

Input: the encoding of a non-deterministic Turing

Machine M ; the encoding of a string x over

the alphabet of the machine; an integer T given

in unary.

Parameter: k.

Question: Is there an accepting computation of

M on input x that visits at most k cells of the

work tape and uses at most T time?

The fact that the time that the machine uses is given in unary,

is needed to show membership in XNLP.

Theorem II.5. TIMED CNTMC is XNLP-complete.

We state the result without proof, as the proof is similar

to the proof of Theorem II.4 from [15], and we do not build

upon the result. We instead start with a problem on cellular

automata which was shown to be complete for XNLP by

Elberfeld et al. [10]. We discuss this problem in the next

subsection. Elberfeld et al. [10] show a number of other

problems to be XNLP-complete, including a timed version

of the acceptance of multihead automata, and the LONGEST

COMMON SUBSEQUENCE problem, parameterized by the

number of strings. The latter result is discussed in the

Conclusion, Section V-A.

E. Cellular automata

In this subsection, we discuss one of the results by

Elberfeld et al. [10]. Amongst the problems that are shown

to be complete for XNLP by Elberfeld et al. [10], of cen-

tral importance to us is the TIMED NON-DETERMINISTIC

CELLULAR AUTOMATON problem. We use the hardness

of this problem to show the hardness of CHAINED CNF-

SATISFIABILITY in Subsection III-A.

In this subsection, we describe the TIMED NON-

DETERMINISTIC CELLULAR AUTOMATON problem, and a

variant. We are given a linear cellular automaton, a time

bound t given in unary, and a starting configuration for the

automaton, and ask if after t time steps, at least one cell is

in an accepting state.

More precisely, we have a set of states S. We assume

there are two special states sL and sR which are used for

the leftmost and rightmost cell. A configuration is a function

c : {1, . . . , q} → S, with c(1) = sL, c(q) = sR and for i ∈
[2, q− 1], c(i) ∈ S \ {sL, sR}. We say that we have q cells,

and in configuration c, cell i has state c(i). The machine is

further described by a collection of 4-tuples T in S × (S \
{sL, sR})×S× (S \{sL, sR}). At each time step, each cell

i ∈ [2, q] reads the 3-tuple (s1, s2, s3) of states given by the

current states of the cells i−1, i and i+1 (in that order). If

there is no 4-tuple of the form (s1, s2, s3, s4) for some s4 ∈
S, then the machine halts and rejects; otherwise, the cell

selects an s4 ∈ S with (s1, s2, s3, s4) ∈ T and moves in this

time step to state s4. (In a non-deterministic machine, there

can be multiple such states s4 and a non-deterministic step is

done. For a deterministic cellular automaton, for each 3-tuple

(s1, s2, s3) there is at most one 4-tuple (s1, s2, s3, s4) ∈ T .)

Note that the leftmost and rightmost cell never change state:

their states are used to mark the ends of the tape of the

automaton.

TIMED NON-DETERMINISTIC CELLULAR AU-

TOMATON

Input: Cellular automaton with set of states S and

set of transitions T ; configuration c on q cells;

integer in unary t; subset A ⊆ S of accepting

states.

Parameter: q.

Question: Is there an execution of the machine for

exactly t steps with initial configuration c, such

that at time t at least one cell of the automaton

is in A?

We will build on the following result.

Theorem II.6 (Elberfeld et al. [10]). TIMED NON-

DETERMINISTIC CELLULAR AUTOMATON is XNLP-
complete.

We recall that the class, denoted by XNLP in the current

paper, is called N[f poly, f log] in [10].

Elberfeld et al. [10] state that asking that all cells are

in an accepting state does not make a difference, i.e., if

we modify the TIMED NON-DETERMINISTIC CELLULAR

AUTOMATON problem by asking if all cells are in an

accepting state at time t, then we also have an XNLP-

complete problem.

We also discuss a variant that can possibly be useful as

another starting point for reductions.

TIMED NON-HALTING NON-DETERMINISTIC

CELLULAR AUTOMATON

Input: Cellular automaton with set of states S and

set of transitions T ; configuration c on q cells;

integer in unary t; subset A ⊆ S of accepting

states.

Parameter: q.

Question: Is there an execution of the machine

for exactly t steps with initial configuration c,
such that the machine does not halt before time

t?

Corollary II.7. TIMED NON-HALTING NON-

DETERMINISTIC CELLULAR AUTOMATON is XNLP-
complete.

196



III. BUILDING BLOCKS

In this section, we introduce three new problems and

prove that they are XNLP-complete, namely CHAINED

CNF-SATISFIABILITY, CHAINED MULTICOLORED

CLIQUE and ACCEPTING NNCCM. These problems

are called building blocks, as their main use is proving

XNLP-hardness for many other problems (see Figure 1).

A. CHAINED CNF-SATISFIABILITY

In this subsection we give a useful starting point for

our transformations: a variation of SATISFIABILITY which

we call CHAINED WEIGHTED CNF-SATISFIABILITY. The

problem can be seen as a generalization of the W[1]-hard

problem WEIGHTED CNF-SATISFIABILITY [3].

CHAINED WEIGHTED CNF-SATISFIABILITY

Input: r disjoint sets of Boolean variables

X1, X2, . . . Xr, each of size q; integer k ∈ N;

Boolean formulas F1, F2, . . . , Fr−1, where

each Fi is an expression in conjunctive normal

form on variables Xi ∪Xi+1.

Parameter: k.

Question: Is it possible to satisfy the formula F1∧
F2 ∧ · · · ∧Fr by setting exactly k variables to

true from each set Xi and all others to false?

Theorem III.1. CHAINED WEIGHTED CNF-

SATISFIABILITY is XNLP-complete.

In the proof, F2 = F3 = · · · = Fr−2, and more specifically,

we have a condition on X1, a condition on Xr, and identical

conditions on all pairs Xi ∪ Xi+1 with i from 1 to r − 1.

Thus, we also have XNLP-completeness of the following

special case:

REGULAR CHAINED WEIGHTED CNF-

SATISFIABILITY

Input: r sets of Boolean variables X1, X2, . . . Xr,

each of size q; an integer k ∈ N; Boolean

formulas F0, F1, F2 in conjunctive normal

form, where F0 and F2 are expressions on

q variables, and F1 is an expression on 2q
variables.

Parameter: k.

Question: Is it possible to satisfy the formula

F0(X1) ∧
∧

1≤i≤r−1

F1(Xi, Xi+1) ∧ F2(Xr)

by setting exactly k variables to true from each

set Xi and all others to false?

Moreover, we can also reduce to the case where there is

only one set of constraints (by ‘adding the constraints from

F0 and F2 to F1 and ensuring that they are only verified at

the start and at the end of the chain’). Another simplification

that we can make is as follows. Each set of variables Xi can

be partitioned into k subsets, and a solution has exactly one

true variable for each subset, e.g., for each t′, exactly one

xt′,r,s is true in the proof of Theorem III.1. This still holds

after the modification in the proofs of the later results. We

define the following variant.

PARTITIONED REGULAR CHAINED WEIGHTED

CNF-SATISFIABILITY

Input: r sets of Boolean variables X1, X2, . . . Xr,

each of size q; an integer k ∈ N; Boolean

formula F1, which is in conjunctive normal

form and an expression on 2q variables; for

each i, a partition of Xi into Xi,1, . . . , Xi,k

with for all i1, i2, j: |Xi1,j | = |Xi2,j |.
Parameter: k.

Question: Is it possible to satisfy the formula
∧

1≤i≤r−1

F1(Xi, Xi+1)

by setting from each set Xi,j exactly 1 variable

to true and all others to false?

For all these problems, there are also the special

cases in which all literals that appear in the formu-

las Fi are positive, i.e., we have no negations. We call

these special case CHAINED WEIGHTED POSITIVE CNF-

SATISFIABILITY, REGULAR CHAINED WEIGHTED POSI-

TIVE CNF-SATISFIABILITY and PARTITIONED REGULAR

CHAINED WEIGHTED POSITIVE CNF-SATISFIABILITY re-

spectively. All problems above are shown to be XNLP-

complete in the full version of this paper [16].

B. Chained Multicolored Clique

The MULTICOLORED CLIQUE problem is an important

tool to prove fixed parameter intractability of various pa-

rameterized problems. It was independently introduced by

Pietrzak [17] (under the name PARTITIONED CLIQUE) and

by Fellows et al. [18].

In this paper, we introduce a chained variant of MULTI-

COLORED CLIQUE. In this variant, we ask to find a sequence

of cliques, that are overlapping with the previous and next

clique in the chain.

CHAINED MULTICOLORED CLIQUE

Input: Graph G = (V,E); partition of V into sets

V1, . . . , Vr, such that for each edge {v, w} ∈
E, if v ∈ Vi and w ∈ Vj , then |i − j| ≤ 1;

function f : V → {1, 2, . . . , k}.
Parameter: k.

Question: Is there a subset W ⊆ V such that for

each i ∈ [1, r], W ∩(Vi∪Vi+1) is a clique, and

for each i ∈ [1, r] and each j ∈ [1, k], there is

a vertex w ∈ Vi ∩W with f(w) = j?

Thus, we have a clique with 2k vertices in Vi∪Vi+1 for each

i ∈ [1, r − 1], with for each color a vertex with that color

in Vi and a vertex with that color in Vi+1. Importantly, the

same vertices in Vi are chosen in the clique for Vi−1 ∪ Vi

197



as for Vi ∪Vi+1 for each i ∈ [2, r− 1]. Below, we call such

a set a chained multicolored clique.

Theorem III.2. CHAINED MULTICOLORED CLIQUE is
XNLP-complete.

A simple variation is the following. We are given a graph

G = (V,E), a partition of V into sets V1, . . . , Vr with

the property that for each edge {v, w} ∈ E, if v ∈ Vi

and w ∈ Vj then |i − j| ≤ 1, and a coloring function

f : V → {1, 2, . . . , k}. A chained multicolored independent
set is an independent set S with the property that for each

i ∈ [1, r] and each color j ∈ [1, k], the set S contains

exactly one vertex v ∈ Vi of color f(v) = j. The CHAINED

MULTICOLORED INDEPENDENT SET problem asks for the

existence of such a chained multicolored independent set,

with the number of colors k as parameter. We have the

following simple corollary.

Corollary III.3. CHAINED MULTICOLORED INDEPEN-

DENT SET is XNLP-complete.

C. Non-decreasing counter machines

In this subsection, we introduce a new simple machine

model, which can also capture the computational power of

XNLP (see Theorem III.4). This model will be a useful

stepping stone when proving XNLP-hardness reductions in

Section IV.

A Nondeterministic Nondecreasing Checking Counter
Machine (or: NNCCM) is described by a 3-tuple (k, n, s),
with k and n positive integers, and s = (s1, . . . , sr) a se-

quence of 4-tuples (called checks). For each i ∈ {1, . . . , r},
the 4-tuple si is of the form (c1, c2, r1, r2) with c1, c2 ∈
{1, 2, . . . , k} positive integers and r1, r2 ∈ {0, 1, 2, . . . , n}
non-negative integers. These model the indices of the coun-

ters and their values respectively.

An NNCCM (k, n, s) with s = (s1, . . . , sr) works as

follows. The machine has k counters that are initially 0. For i
from 1 to r, the machine first sets each of the counters to any

integer that is at least its current value and at most n. After

this, the machine performs the ith check si = (c1, c2, r1, r2):
if the value of the c1th counter equals r1 and the value of

the c2th counter equals r2, then we say the ith check rejects

and the machine halts and rejects. When the machine has

not rejected after all r checks, the machine accepts.

The nondeterministic steps can be also described as fol-

lows. Denote the value of the cth counter when the ith check

is done by c(i). We define c(0) = 0. For each i ∈ {1, . . . , r},
c(i) is an integer that is nondeterministically chosen from

[c(i− 1), n].
We consider the following computational problem.

ACCEPTING NNCCM

Given: An NNCCM (k, n, s) with all integers

given in unary.

Parameter: The number of counters k.

Question: Does the machine accept?

Theorem III.4. ACCEPTING NNCCM is XNLP-complete.

The ACCEPTING NNCCM problem appears to be a very

useful tool for giving XNLP-hardness proofs. Note that one

step where the k counters can be increased to values at

most n can be replaced by kn steps where counters can

be increased by one, or possibly a larger number, again to

at most n. This modification is used in some of the proofs

in the following section.

IV. APPLICATIONS

In this section, we consider several problem, which we

prove to be XNLP-complete.

A. List Coloring Parameterized by Pathwidth

LIST COLORING and PRECOLORING EXTENSION prob-

lems parameterized by treewidth or pathwidth belong to XP

[19]. Fellows et al. [13] have shown that LIST COLORING

and PRECOLORING EXTENSION parameterized by treewidth

are W[1]-hard. (The transformation in their paper also works

for parameterization by pathwidth.) We strengthen this result

by showing that LIST COLORING and PRECOLORING EX-

TENSION parameterized by pathwidth are XNLP-complete.

Note that this result also implies W[t]-hardness of the

problems for all integers t.
Given a graph G = (V,E) with lists Lv for vertex v ∈

V (G), a list coloring for G is a choice of color f(v) ∈ Lv

for each vertex v such that f(v) �= f(w) when {v, w} ∈ E.

A path decomposition of a graph G = (V,E) is a se-

quence (X1, X2, . . . , Xr) of subsets of V with the following

properties.

1)
⋃

1≤i≤r Xi = V .

2) For all {v, w} ∈ E, there is an i ∈ I with v, w ∈ Xi.

3) For all 1 ≤ i0 < i1 < i2 ≤ r, Xi0 ∩Xi2 ⊆ Xi1 .

The width of a path decomposition (X1, X2, . . . , Xr) equals

max1≤i≤r |Xi| − 1, and the pathwidth of a graph G is the

minimum width of a path decomposition of G.

Theorem IV.1. LIST COLORING and PRECOLORING EX-

TENSION parameterized by pathwidth are XNLP-complete.

We assume that a path decomposition of the input graph

G is given as part of the input. We conjecture that such a

path decomposition can be found with a non-deterministic

algorithm using logarithmic space and ‘fpt’ time, but the

details need a careful study. Elberfeld et al. [20] show that

for each fixed k, determining if the treewidth is at most k,

and if so, finding a tree decomposition of width at most k
belongs to L.

From Theorem IV.1, we can also directly conclude

that LIST COLORING and PRECOLORING EXTENSION are

XNLP-hard when parameterized by the treewidth. However,

198



we leave membership of these problems when parameterized

by treewidth as an open problem.

B. Logarithmic Pathwidth

There are several well known problems that can be solved

in time O(ckn) for a constant c on graphs of pathwidth or

treewidth at most k. Classic examples are INDEPENDENT

SET and DOMINATING SET (see e.g., [21, Chapter 7.3]),

but there are many others, e.g., [22], [23].

In this subsection, rather than bounding the pathwidth by a

constant, we allow the pathwidth to be linear in the logarithm

of the number of vertices of the graph. We consider the

following problem.

LOG-PATHWIDTH DOMINATING SET

Input: Graph G = (V,E), path decomposition of

G of width �, integer K.

Parameter: ��/ log |V |�.
Question: Does G have a dominating set of size

at most K?

The independent set variant and clique variants are defined

analogously.

Theorem IV.2. LOG-PATHWIDTH DOMINATING SET

and LOG-PATHWIDTH INDEPENDENT SET are XNLP-
complete.

We now briefly discuss the LOG-PATHWIDTH CLIQUE

problem. We are given a graph G = (V,E) with a path

decomposition of width �, and integer K and ask if there is

a clique in G with at least K vertices. Let k = ��/ log |V |�.
The problem appears to be significantly easier than the

corresponding versions of DOMINATING SET and INDEPEN-

DENT SET, mainly because of the property that for each

clique W , there must be a bag of the path decomposition

that contains all vertices of W (see e.g., [24].) Thus, the

problem reverts to solving O(n) instances of CLIQUE on

graphs with O(k log n) vertices. This problem is related

to a problem called MINI-CLIQUE where the input has a

graph with a description size that is at most k log n. MINI-

CLIQUE is M[1]-complete under FPT Turing reductions (see

[25, Corollary 29.5.1]), and is a subproblem of our problem,

and thus LOG-PATHWIDTH CLIQUE is M[1]-hard. However,

instances of LOG-PATHWIDTH CLIQUE can have description

sizes of Ω(log2 n). The result below shows that it is unlikely

that LOG-PATHWIDTH CLIQUE is XNLP-hard.

Proposition IV.3. LOG-PATHWIDTH CLIQUE is in W [2].

C. Scheduling with precedence constraints

In 1995, Bodlaender and Fellows [14] showed that the

problem to schedule a number of jobs of unit length with

precedence constraints on K machines, minimizing the

makespan, is W[2]-hard, with the number of machines as

parameter. A closer inspection of their proof shows that

W[2]-hardness also applies when we take the number of

machines and the width of the partial order as combined

parameter. In this subsection, we strengthen this result,

showing that the problem is XNLP-complete (and thus also

hard for all classes W[t], t ∈ Z+.) In the notation used

in scheduling literature to characterize scheduling problems,

the problem is known as P |prec, pj = 1|Cmax, or, equiva-

lently, P |prec, pj = p|Cmax.

SCHEDULING WITH PRECEDENCE

CONSTRAINTS

Given: K,D positive integers; T set of tasks; ≺
partial order on T of width w.

Parameter: K + w.

Question: Is there a schedule f : T → [1, D]
with |f−1{i}| ≤ K for all i ∈ [1, D] such that

t ≺ t′ implies f(t) < f(t′).
In other words, we parametrise P |prec, pj = 1|Cmax by the

number of machines and the width of the partial order.

Theorem IV.4. SCHEDULING WITH PRECEDENCE CON-

STRAINTS is XNLP-complete.

We remark that it is unclear if the problem is in XNLP
when we take only the number of machines as parameter. In

fact, it is a longstanding open problem whether SCHEDUL-

ING WITH PRECEDENCE CONSTRAINTS is NP-hard when

there are three machines (see e.g., [26], [27]).

D. Uniform Emulation of Weighted Paths

In this subsection, we give a proof that the UNIFORM

EMULATION OF WEIGHTED PATHS problem is XNLP-

complete. The result is a stepping stone for the result that

BANDWIDTH is XNLP-complete even for caterpillars with

hair length at most three (see the discussion in Subsec-

tion IV-E).

The notion of (uniform) emulation of graphs on graphs

was originally introduced by Fishburn and Finkel [28] as a

model for the simulation of computer networks on smaller

computer networks. Bodlaender [29] studied the complexity

of determining for a given graph G and path Pm if there

is a uniform emulation of G on Pm. In this subsection, we

study a weighted variant, and show that already determining

whether there is a uniform emulation of a weighted path on

a path is hard.

An emulation of a graph G = (V,E) on a graph H =
(W,F ) is a mapping f : V → W such that for all edges

{v, w} ∈ E, f(v) = f(w) or {f(v), f(w)} ∈ F . We say

that an emulation is uniform if there is an integer c, such

that |f−1{w}| = |{v | f(v) = w}| = c for all w ∈ W . We

call c the emulation factor.

Determining whether there is a uniform emulation of a

graph H on a path Pm is NP-complete, even for emulation

factor 2, if we allow H to be disconnected. The problem

to determine for a given connected graph H if there is a

uniform emulation of H on a path Pm belongs to XP with

the emulation factor c as parameter [29].

199



Recently, Bodlaender [8] looked at the weighted variant

of uniform emulation on paths, for the case that H is a path.

Now, we have a path Pn and a path Pm, a weight function

w : [1, n] → Z+ and ask for an emulation f : [1, n] →
[1,m], such that there is a constant c with

∑
i∈f−1{j} w(i) =

c for all j ∈ [1,m]. Again, we call c the emulation factor.

It is not hard to see that the problem, given n, m, and

weight function w : [1, n] → Z+, to determine if there is a

uniform emulation of Pn on Pm with emulation factor c is in

XP, with the emulation factor c as parameter; the dynamic

programming algorithm from [29] can easily be adapted.

As an intermediate step for a hardness proof for BAND-

WIDTH, Bodlaender [8] showed that UNIFORM EMULATION

OF WEIGHTED PATHS is hard for all classes W[t], t ∈ Z+.

In the current subsection, we give a stronger result, and

show the same problem to be XNLP-complete. Our proof

is actually simpler than the proof in [8] — by using

ACCEPTING NNCCM as starting problem, we avoid a

number of technicalities.

UNIFORM EMULATION OF WEIGHTED PATHS

Input: Positive integers n, m, c, weight function

w : [1, n]→ [1, c].
Parameter: c.
Question: Is there a function f : [1, n] → [1,m],

such that f is a uniform emulation of Pn

on Pm with emulation factor c, i.e., |f(i) −
f(i + 1)| ≤ 1 for all i ∈ [1, n − 1] and∑

i∈f−1{j} w(i) = c for all j ∈ [1,m]?

Theorem IV.5. UNIFORM EMULATION OF WEIGHTED

PATHS is XNLP-complete.

E. Bandwidth

In this subsection, we discuss the XNLP-completeness

problem of the BANDWIDTH problem. The question where

the parameterized complexity of BANDWIDTH lies was actu-

ally the starting point for the investigations whose outcome

is reported in this paper; with the main result of this

subsection (Corollary IV.7) we answer a question that was

asked over a quarter of a century ago.

In the BANDWIDTH problem, we are given a graph

G = (V,E) and an integer k and ask if there is a

bijection f : V → [1, |V |] such that for all {v, w} ∈ E:

|f(v) − f(w)| ≤ k. The problem models the question to

permute rows and columns of a symmetric matrix, such that

all non-zero entries are at a small ‘band’ along the main

diagonal. Already in 1976, the problem was shown to be

NP-complete by Papadimitriou [30]. Later, several special

cases were shown to be hard; these include caterpillars with

hairs of length at most three [31]. A caterpillar is a tree

where all vertices of degree at least three are on a common

path; the hairs are the paths attached to this main path.

We are interested in the parameterized variant of the

problem, where the target bandwidth is the parameter:

BANDWIDTH

Given: Integer k, undirected graph G = (V,E)
Parameter: k
Question: Is there a bijection f : V → [1, |V |]

such that for all edges {v, w} ∈ E: |f(v) −
f(w)| ≤ k?

BANDWIDTH belongs to XP. In 1980, Saxe [32] showed

that BANDWIDTH can be solved in O(nk+1) time; this was

later improved to O(nk) by Gurari and Sudborough [33].

In 1994, Bodlaender and et. [7] reported that BANDWIDTH

for trees is W[t]-hard for all t ∈ Z+ — the proof of that

fact was published 26 years later [8]. A sketch of the proof

appears in the monograph by Downey and Fellows [5].

More recently, Dregi and Lokshtanov [34] showed that

BANDWIDTH is W[1]-hard for trees of pathwidth at most

two. In addition, they showed that there is no algorithm for

BANDWIDTH on trees of pathwidth at most two with running

time of the form f(k)no(k) assuming the Exponential Time

Hypothesis. Recently, Bodlaender [8] published a proof that

BANDWIDTH is W[t]-hard for all t, even for caterpillars with

hairs of length at most three. That result is obtained by first

showing that UNIFORM EMULATION OF WEIGHTED PATHS

is W[t] hard for all t, and then giving a transformation from

that problem to BANDWIDTH for caterpillars with maximum

hair length tree. The latter transformation uses gadgets from

the NP-completeness proof by Monien [31].

Lemma IV.6. BANDWIDTH is in XNLP.

One proof of this is via the XP algorithms for BAND-

WIDTH from [32] or [33], observing that when instead of

making full tables in the dynamic programming algorithm,

we guess from each table one entry, one obtains an algorithm

in XNLP.
We now obtain our main result as a corollary of Lemma

IV.6 and a reduction from UNIFORM EMULATION OF

WEIGHTED PATHS with the exact same transformation as

given in the proof of Theorem 4.1 in [8] (which is in fact a

pl-reduction).

Corollary IV.7. BANDWIDTH for caterpillars with hairs of
length at most three is XNLP-complete.

F. Timed Reconfiguration
We now consider yet another very different setting: re-

configuration.
Given a graph G and dominating sets S and S′, we wish

to know whether we can go from one dominating set to the

other via a sequence of dominating sets. All dominating sets

are of the same size k (which is our parameter) and can be

visualised by placing k ‘tokens’ on the vertices of the graph.

The following two rules that are commonly considered for

when dominating sets S1 and S2 are adjacent (that is, can

be consecutive in the sequence).

• Token Jumping (TJ). We may ‘jump’ a single token,

that is, the dominating sets S1 and S2 of size k are

200



adjacent if S1 = S2 \{u}∪{v} for some u, v ∈ V (G).
This rule is equivalent2 to Token Addition and Removal

(TAR), in which a token can be either added or re-

moved, as long as the total number of tokens does not

go above k + 1.

• Token Sliding (TS). We may ‘slide’ a single token along

an edge, that is, the dominating sets S1 and S2 of size

k are adjacent if S1 = S2 \ {u} ∪ {v} for some uv ∈
E(G).

The TJ/TAR rule has been most widely studied, and the

problem is known to be PSPACE-complete (even for simple

graph classes such as planar graphs and classes of bounded

bandwidth) [35] and W[2]-hard with parameter k+ �, for k
the number of tokens and � the length of the reconfiguration

sequence [36]. Under TS, the problem is also known to be

PSPACE-complete even for various restricted graph classes

[37].

It turns out that these problems are XNLP-complete

when we bound the number of steps in the reconfiguration

sequences as follows.

TIMED TS-DOMINATING SET RECONFIGURA-

TION

Given: Graph G = (V,E); dominating sets S, S′

of size k; integer T given in unary.

Parameter: k.

Question: Does there exist a sequence S =
S1, S2, . . . , ST = S′ of dominating sets of size

k, with for all i ∈ [2, T ], Si = Si−1\{u}∪{v}
for some uv ∈ E(G)?

TIMED TJ-DOMINATING SET RECONFIGURA-

TION

Given: Graph G = (V,E); dominating sets S, S′

of size k; integer T given in unary.

Parameter: k.

Question: Does there exist a sequence S =
S1, S2, . . . , ST = S′ of dominating sets of size

k, with for all i ∈ [2, T ], Si = Si−1\{u}∪{v}
for some u, v ∈ V (G)?

Variants for independent set and clique instead of dominat-

ing set are defined analogously.

Independent set reconfiguration has been widely studied

and is known to be PSPACE-complete for both TJ [38] and

TS [39], and W[1]-hard for TJ when parameterized by the

number of tokens [40].

Theorem IV.8. TIMED TS-DOMINATING SET RECONFIG-

URATION, TIMED TJ-DOMINATING SET RECONFIGURA-

TION, TIMED TS-CLIQUE RECONFIGURATION, TIMED TJ-

CLIQUE RECONFIGURATION, TIMED TS-INDEPENDENT

SET RECONFIGURATION and TIMED TJ-INDEPENDENT

SET RECONFIGURATION are XNLP-complete.

2Formally, there is a reconfiguration sequence for TJ with k tokens
between S1 and S2 if and only if there is one for TAR with upper bound
k + 1.

We remark that token jumping with k tokens is equivalent

to the token addition-removal rule where the solution always

needs to contain at least k − 1 vertices. On the other

hand, token sliding and token jumping are not equivalent.

If complements cannot be taken efficiently, specific graph

classes are studied or the token sliding rule is used, the

clique reconfiguration and the independent set reconfigura-

tion could have different complexities. Many other solution

concepts have also been studied for reconfiguration, such as

satisfiability and coloring versions, and we refer the reader

to the survey [41] for more information.

G. Acyclic Finite State Automata Intersection

In the FINITE STATE AUTOMATA INTERSECTION prob-

lem, we are given k deterministic finite state automata on

an alphabet Σ and ask if there is a string s ∈ Σ∗ that is

accepted by each of the automata.

In the overview of the parameterized complexity of vari-

ous problems in [5], the problem is mentioned to be hard for

all classes W[t], t ∈ Z+, when either parameterized by the

number of machines k or by the combination of the number

of machines k and the size of the alphabet Σ; the result is

due to Hallett, but has not been published.

More recently,the problem and many variations were stud-

ied by Wehar [42]. Amongst others, he showed that FINITE

STATE AUTOMATA INTERSECTION with the number of

machines as parameter is XNL-complete. He also considered

the variant where the automata are acyclic.

ACYCLIC FINITE STATE AUTOMATA INTERSEC-

TION

Input: k deterministic finite state automata on an

alphabet Σ for which the underlying graphs are

acyclic (except for self-loops at an accepting

or rejecting state).

Parameter: k.

Question: Is there a string s ∈ Σ∗ that is accepted

by each of the automata?

Wehar [42, Chapter 5] showed that ACYCLIC FI-

NITE STATE AUTOMATA INTERSECTION is equivalent un-

der LBL-reductions (parameterized reductions that do not

change the parameter) to a version of TIMED CNTMC (see

Section II-D) where the given time bound T is linear. The

proof technique of Wehar [42] can also be used to show

that ACYCLIC FINITE STATE AUTOMATA INTERSECTION is

XNLP-complete. We use a different, simple reduction from

LONGEST COMMON SUBSEQUENCE.

Theorem IV.9. ACYCLIC FINITE STATE AUTOMATA IN-

TERSECTION is XNLP-complete.

In fact, the problem remains XNLP-complete when re-

stricted to a binary alphabet.

201



V. CONCLUSION

We end the paper with some discussions and open prob-

lems. We start by discussing a conjecture on the space usage

of XNLP-hard problems, then discuss the type of reductions

we use, and then give a number of open problems.

A. Space efficiency of XNLP-hard problems

Pilipczuk and Wrochna [12] made the following conjec-

ture. In the LONGEST COMMON SUBSEQUENCE problem,

we are given k strings s1, . . . , sk over an alphabet Σ and an

integer r and ask if there is a string t of length r that is a

subsequence of each si, i ∈ [1, k].

Conjecture V.1 (Pilipczuk and Wrochna [12]). The
LONGEST COMMON SUBSEQUENCE problem has no al-
gorithm that runs in nf(k) time and f(k)nc space, for a
computable function f and constant c, with k the number
of strings, and n the total input size.

Interestingly, this conjecture leads to similar conjectures

for a large collection of problems. As LONGEST COMMOM

SUBSEQUENCE with the number of strings k as parameter

is XNLP-complete [10], Conjecture V.1 is equivalent to the

following conjecture. Recall that the class XNLP is the same

as the class N[f poly, f log].

Conjecture V.2. N[f poly, f log] �⊆ D[nf , f poly].

If Conjecture V.1 holds, then no XNLP-hard problem has

an algorithm that uses XP time and simultaneously ‘FPT’

space (i.e., space bounded by the product of a computable

function of the parameter and a polynomial of the input

size). Thus, XNLP-hardness proofs yield conjectures about

the space usage of XP algorithms, and Conjecture V.1 is

equivalent to the same conjecture for BANDWIDTH, LIST

COLORING parameterized by pathwidth, CHAINED CNF-

SATISFIABILITY, etc.

B. Reductions

In this paper, we mainly used parameterized logspace

reductions (pl-reductions), i.e., parameterized reductions that

run in f(k)+O(log n) space, with f a computable function.

Elberfeld et al [10] use a stronger form of reduc-

tions, namely parameterized first-order reductions or pFO-

reductions, where the reduction can be computed by a loga-

rithmic time-uniform para ACO-circuit family. In [10], it is

shown that TIMED NON-DETERMINISTIC CELLULAR AU-

TOMATON and LONGEST COMMON SUBSEQUENCE (with

the number of strings as parameter) are XNLP-complete

under pFO-reductions. We have chosen to use the easier to

handle notion of logspace reductions throughout the paper,

and not to distinguish which steps can be done with pl-

reductions and which not.

One might want to use the least restricted form of

reductions, under which XNLP remains closed, and that

are transitive, in order to be able to show hardness for

XNLP for as many problems as possible. Instead of using

O(f(k)+log n) space, one may want to use O(f(k) · log n)
space — thus allowing to use a number of counters and

pointers that depends on the parameter, instead of being

bounded by a fixed constant. However, it is not clear that

XNLP is closed under parameterized reductions with a

O(f(k) · log n) space bound, as the reduction may use

O(nf(k)) time.

To remedy this, we can simultaneously bound the time and

space of the reduction. A parameterized tractable logspace
reduction (ptl-reductions) is a parameterized reduction that

simultenously uses O(f(k) · log n) space and O(g(k) · nc)
time, with f and g computable functions, k the parameter,

and n the input size. One can observe that the same

argument (‘repeatedly recomputing input bits when needed’)

that shows transitivity of L-reductions (see [2, Lemma

4.15]) can be used to show transitivity of parameterized

tractable logspace reductions (and of parameterized logspace

reductions).

We currently are unaware of a problem where we would

use ptl-reductions instead of pl-reductions. However, the

situation reminds of a phenomenon that also shows up for

hardness proofs for classes in the W-hierarchy. Pl-reductions

allow us to use time that grows faster than polynomial in

the parameter value. If we have an fpt-reduction that uses

O(f(k)nc) time with c a constant, and f a polynomial
function, then this reduction is also a many-to-one reduc-

tion, and could be used in an NP-hardness proof for the

unparameterized version of the problem. Most but not all
fpt-reductions from the literature have such a polynomial

time bound. However, in the published hardness proofs, the

distinction is usually not made explicit.

C. Candidate XNLP-complete problems

In this paper, we introduced a new parameterized com-

plexity class, and showed a number of parameterized prob-

lems complete for the class, including BANDWIDTH. We

expect that there are more problems complete for XNLP.

Typical candidates are problems that are known to be hard

for W[t] for all integers t. Possibly, in some cases, only

small modifications of proofs may be needed, but in other

cases, new proofs have to be invented. A number of such

candidates are the following:

• Linear graph ordering problems, like COLORED

CUTWIDTH (and variants), FEASIBLE REGISTER AL-

LOCATION, TRIANGULATING COLORED GRAPHS (see

[43]), TOPOLOGICAL BANDWIDTH.

• DOMINO TREEWIDTH, see [44]. (We conjecture that

XNLP-hardness can be proved with help of ACCEPT-

ING NNCCM; membership in XNLP is unclear due to

the tree-like structure of positive instances.)

• SHORTEST COMMON SUPERSEQUENCE as mentioned

in [5].

202



• RESTRICTED COMPLETION TO A PROPER INTERVAL

GRAPH WITH BOUNDED CLIQUE SIZE, see [45],

• Problems parameterized by treewidth or pathwidth that

are known to be in XP but not in FPT. Membership in

XNLP for several problems parameterized by treewidth

is also open (including DOMINATING SET and INDE-

PENDENT SET). See e.g. [46] for some candidates for

problems that might be XNLP-hard when parameter-

ized by treewidth or pathwidth.

ACKNOWLEDGMENT

The authors would like to thank the referees for useful

comments.

REFERENCES

[1] L. J. Stockmeyer, “The polynomial-time hierarchy,” Theor.
Comput. Sci., vol. 3, no. 1, pp. 1–22, 1976. [Online].
Available: https://doi.org/10.1016/0304-3975(76)90061-X

[2] S. Arora and B. Barak, Computational
Complexity: A Modern Approach. Cambridge
University Press, 2007. [Online]. Available:
https://theory.cs.princeton.edu/complexity/book.pdf

[3] R. G. Downey and M. R. Fellows, “Fixed-parameter
tractability and completeness I: Basic results,” SIAM J.
Comput., vol. 24, no. 4, pp. 873–921, 1995. [Online].
Available: https://doi.org/10.1137/S0097539792228228

[4] ——, “Fixed-parameter tractability and completeness II:
On completeness for W [1],” Theoretical Computer Science,
vol. 141, no. 1&2, pp. 109–131, 1995. [Online]. Available:
https://doi.org/10.1016/0304-3975(94)00097-3

[5] ——, Parameterized Complexity. Springer, 1999.

[6] A. Abboud, K. Lewi, and R. Williams, “Losing weight by
gaining edges,” in Algorithms - ESA 2014 - 22th Annual
European Symposium, Wroclaw, Poland, September 8-10,
2014. Proceedings, ser. Lecture Notes in Computer Science,
A. S. Schulz and D. Wagner, Eds., vol. 8737. Springer, 2014,
pp. 1–12. [Online]. Available: https://doi.org/10.1007/978-3-
662-44777-2 1

[7] H. L. Bodlaender, M. R. Fellows, and M. Hallett, “Beyond
NP-completeness for problems of bounded width: Hardness
for the W hierarchy,” in Proceedings of the Twenty-Sixth
Annual ACM Symposium on Theory of Computing, STOC
1994. New York: ACM Press, 1994, pp. 449–458.

[8] H. L. Bodlaender, “Parameterized complexity of bandwidth of
caterpillars and weighted path emulation,” arXiv:2012.01226,
2020, to appear in Proceedings WG 2021. [Online]. Available:
https://arxiv.org/abs/2012.01226

[9] M. R. Fellows and F. A. Rosamond, “Collaborating with
Hans: Some remaining wonderments,” in Treewidth, Kernels,
and Algorithms - Essays Dedicated to Hans L. Bodlaender
on the Occasion of His 60th Birthday, ser. Lecture Notes
in Computer Science, F. V. Fomin, S. Kratsch, and E. J.
van Leeuwen, Eds., vol. 12160. Springer, 2020, pp.
7–17. [Online]. Available: https://doi.org/10.1007/978-3-030-
42071-0 2

[10] M. Elberfeld, C. Stockhusen, and T. Tantau, “On the space
and circuit complexity of parameterized problems: Classes
and completeness,” Algorithmica, vol. 71, no. 3, pp. 661–701,
2015. [Online]. Available: https://doi.org/10.1007/s00453-
014-9944-y

[11] H. L. Bodlaender, R. G. Downey, M. R. Fellows, M. T.
Hallett, and H. T. Wareham, “Parameterized complexity
analysis in computational biology,” Comput. Appl. Biosci.,
vol. 11, no. 1, pp. 49–57, 1995. [Online]. Available:
https://doi.org/10.1093/bioinformatics/11.1.49

[12] M. Pilipczuk and M. Wrochna, “On space efficiency of
algorithms working on structural decompositions of graphs,”
ACM Trans. Comput. Theory, vol. 9, no. 4, pp. 18:1–18:36,
2018. [Online]. Available: https://doi.org/10.1145/3154856

[13] M. R. Fellows, F. V. Fomin, D. Lokshtanov, F. A.
Rosamond, S. Saurabh, S. Szeider, and C. Thomassen, “On
the complexity of some colorful problems parameterized by
treewidth,” Inf. Comput., vol. 209, no. 2, pp. 143–153, 2011.
[Online]. Available: https://doi.org/10.1016/j.ic.2010.11.026

[14] H. L. Bodlaender and M. R. Fellows, “W [2]-hardness of
precedence constrained K-processor scheduling,” Operations
Research Letters, vol. 18, no. 2, pp. 93–97, 1995. [Online].
Available: https://doi.org/10.1016/0167-6377(95)00031-9

[15] Y. Chen, J. Flum, and M. Grohe, “Bounded nondeterminism
and alternation in parameterized complexity theory,” in
18th Annual IEEE Conference on Computational Complexity
(Complexity 2003), 7-10 July 2003, Aarhus, Denmark. IEEE
Computer Society, 2003, pp. 13–29. [Online]. Available:
https://doi.org/10.1109/CCC.2003.1214407

[16] H. L. Bodlaender, C. Groenland, J. Nederlof, and
C. M. F. Swennenhuis, “Parameterized problems complete
for nondeterministic FPT time and logarithmic space,”
arXiv:2105.14882, 2021.

[17] K. Pietrzak, “On the parameterized complexity of the
fixed alphabet shortest common supersequence and longest
common subsequence problems,” J. Comput. Syst. Sci.,
vol. 67, no. 4, pp. 757–771, 2003. [Online]. Available:
https://doi.org/10.1016/S0022-0000(03)00078-3

[18] M. R. Fellows, D. Hermelin, F. A. Rosamond, and
S. Vialette, “On the parameterized complexity of multiple-
interval graph problems,” Theoretical Computer Science,
vol. 410, no. 1, pp. 53–61, 2009. [Online]. Available:
https://doi.org/10.1016/j.tcs.2008.09.065

[19] K. Jansen and P. Scheffler, “Generalized coloring for tree-like
graphs,” Discret. Appl. Math., vol. 75, no. 2, pp. 135–155,
1997. [Online]. Available: https://doi.org/10.1016/S0166-
218X(96)00085-6

[20] M. Elberfeld, A. Jakoby, and T. Tantau, “Logspace versions
of the theorems of Bodlaender and Courcelle,” in 51th
Annual IEEE Symposium on Foundations of Computer
Science, FOCS 2010, October 23-26, 2010, Las Vegas,
Nevada, USA. IEEE Computer Society, 2010, pp. 143–152.
[Online]. Available: https://doi.org/10.1109/FOCS.2010.21

203



[21] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov,
D. Marx, M. Pilipczuk, M. Pilipczuk, and S. Saurabh,
Parameterized Algorithms. Springer, 2015. [Online].
Available: https://doi.org/10.1007/978-3-319-21275-3

[22] H. L. Bodlaender, M. Cygan, S. Kratsch, and J. Nederlof,
“Deterministic single exponential time algorithms for
connectivity problems parameterized by treewidth,” Inf.
Comput., vol. 243, pp. 86–111, 2015. [Online]. Available:
https://doi.org/10.1016/j.ic.2014.12.008

[23] J. A. Telle and A. Proskurowski, “Algorithms for vertex
partitioning problems on partial k-trees,” SIAM J. Discret.
Math., vol. 10, no. 4, pp. 529–550, 1997. [Online]. Available:
https://doi.org/10.1137/S0895480194275825

[24] H. L. Bodlaender and R. H. Möhring, “The pathwidth
and treewidth of cographs,” SIAM J. Discret. Math.,
vol. 6, no. 2, pp. 181–188, 1993. [Online]. Available:
https://doi.org/10.1137/0406014

[25] R. G. Downey and M. R. Fellows, Fundamentals of Parame-
terized Complexity, ser. Texts in Computer Science. Springer,
2013. [Online]. Available: https://doi.org/10.1007/978-1-
4471-5559-1

[26] M. R. Garey and D. S. Johnson, Computers and Intractability:
A Guide to the Theory of NP-Completeness. W. H. Freeman,
1979.

[27] D. Prot and O. Bellenguez-Morineau, “A survey on how
the structure of precedence constraints may change the
complexity class of scheduling problems,” Journal of
Scheduling, vol. 21, no. 1, pp. 3–16, 2018. [Online].
Available: https://doi.org/10.1007/s10951-017-0519-z

[28] J. P. Fishburn and R. A. Finkel, “Quotient networks,” IEEE
Trans. Comput., vol. C-31, pp. 288–295, 1982.

[29] H. L. Bodlaender, “The complexity of finding uniform emu-
lations on paths and ring networks,” Information and Com-
putation, vol. 86, no. 1, pp. 87–106, 1990.

[30] C. H. Papadimitriou, “The NP-completeness of the bandwidth
minimization problem,” Computing, vol. 16, pp. 263–270,
1976.

[31] B. Monien, “The bandwidth minimization problem for cater-
pillars with hair length 3 is NP-complete,” SIAM Journal on
Algebraic and Discrete Methods, vol. 7, pp. 505–512, 1986.

[32] J. B. Saxe, “Dynamic programming algorithms for recogniz-
ing small-bandwidth graphs in polynomial time,” SIAM J.
Algebraic and Discrete Methods, vol. 1, pp. 363–369, 1980.

[33] E. M. Gurari and I. H. Sudborough, “Improved dynamic
programming algorithms for bandwidth minimization and the
MinCut linear arrangement problem,” J. of Algorithms, vol. 5,
pp. 531–546, 1984.

[34] M. S. Dregi and D. Lokshtanov, “Parameterized complexity
of bandwidth on trees,” in 41st International Colloquium
on Automata, Languages, and Programming, ICALP 2014,
ser. Lecture Notes in Computer Science, J. Esparza,
P. Fraigniaud, T. Husfeldt, and E. Koutsoupias, Eds., vol.
8572. Springer, 2014, pp. 405–416. [Online]. Available:
https://doi.org/10.1007/978-3-662-43948-7 34

[35] A. Haddadan, T. Ito, A. E. Mouawad, N. Nishimura,
H. Ono, A. Suzuki, and Y. Tebbal, “The complexity
of dominating set reconfiguration,” Theor. Comput. Sci.,
vol. 651, no. C, pp. 37–49, 2016. [Online]. Available:
https://doi.org/10.1016/j.tcs.2016.08.016

[36] A. E. Mouawad, N. Nishimura, V. Raman, N. Simjour, and
A. Suzuki, “On the parameterized complexity of reconfigu-
ration problems,” Algorithmica, vol. 78, no. 1, pp. 274–297,
2017.

[37] M. Bonamy, P. Dorbec, and P. Ouvrard, “Dominating sets re-
configuration under token sliding,” arXiv:1912.03127, 2019.

[38] T. Ito, E. D. Demaine, N. J. Harvey, C. H. Papadimitriou,
M. Sideri, R. Uehara, and Y. Uno, “On the complexity
of reconfiguration problems,” Theoretical Computer Science,
vol. 412, no. 12, pp. 1054–1065, 2011.

[39] R. A. Hearn and E. Demaine, “Pspace-completeness of
sliding-block puzzles and other problems through the non-
deterministic constraint logic model of computation,” Theor.
Comput. Sci., vol. 343, pp. 72–96, 2005.

[40] T. Ito, M. Kamiński, H. Ono, A. Suzuki, R. Uehara, and
K. Yamanaka, “Parameterized complexity of independent
set reconfiguration problems,” Discrete Applied Mathematics,
vol. 283, pp. 336–345, 2020.

[41] J. van den Heuvel, “The complexity of change,”
arXiv:1312.2816, 2013.

[42] M. Wehar, “On the complexity of intersection non-emptiness
problems,” Ph.D. dissertation, University at Buffalo, State
University of New York, 2016.

[43] H. L. Bodlaender, M. R. Fellows, M. T. Hallett,
T. Wareham, and T. J. Warnow, “The hardness of
perfect phylogeny, feasible register assignment and other
problems on thin colored graphs,” Theor. Comput. Sci.,
vol. 244, no. 1-2, pp. 167–188, 2000. [Online]. Available:
https://doi.org/10.1016/S0304-3975(98)00342-9

[44] H. L. Bodlaender and J. Engelfriet, “Domino treewidth,”
J. Algorithms, vol. 24, no. 1, pp. 94–123, 1997. [Online].
Available: https://doi.org/10.1006/jagm.1996.0854

[45] H. Kaplan and R. Shamir, “Pathwidth, bandwidth,
and completion problems to proper interval graphs
with small cliques,” SIAM J. Comput., vol. 25,
no. 3, pp. 540–561, 1996. [Online]. Available:
https://doi.org/10.1137/S0097539793258143

[46] S. Szeider, “Not so easy problems for tree decomposable
graphs,” arXiv:1107.1177, 2011. [Online]. Available:
http://arxiv.org/abs/1107.1177

204


