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“Parler de ce qu’on ignore finit par vous l’apprendre.”1

(Camus, 1953, préface)

1English translation: Discussing what we do not know will end up teaching it to us.
Nederlandse vertaling: Bespreken wat we niet weten zal het ons uiteindelijk leren.



viii



Contents

Preface xiii

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

Chapter acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Goal and scope of this thesis . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.1 Marshall’s agglomeration determinants . . . . . . . . . . . . . . 10

1.3.2 Trade, technology, and transportation costs . . . . . . . . . . . 12

1.3.3 Complex activities concentrate in large cities . . . . . . . . . . . 13

1.3.4 Technological diversification in times of crisis . . . . . . . . . . . 15

1A Appendix: extended theoretical background . . . . . . . . . . . . . . . 17

2 The dynamics of industry agglomeration: evidence from 44 years of

coagglomeration 35

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.2 Empirical framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.2.1 Step 1: Determinants of industry agglomeration . . . . . . . . . 41

2.2.2 Step 2: Changes in agglomeration determinants . . . . . . . . . 43

2.2.3 Step 3: Exploring industry-level and temporal heterogeneity . . 44

2.3 Data and descriptives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.3.1 Determinants of industry agglomeration . . . . . . . . . . . . . 47

2.3.2 Trade, technology, and transportation costs . . . . . . . . . . . 50

2.3.3 Descriptive statistics . . . . . . . . . . . . . . . . . . . . . . . . 51

2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.4.1 Step 1: Determinants of industry agglomeration . . . . . . . . . 53

2.4.2 Step 2: Changes in agglomeration determinants . . . . . . . . . 58

2.4.3 Robustness of Step 1 and 2 . . . . . . . . . . . . . . . . . . . . 58

ix



x CONTENTS

2.4.4 Step 3: Exploring industry-level and temporal heterogeneity . . 61

2.4.5 Robustness of Step 3 . . . . . . . . . . . . . . . . . . . . . . . . 66

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2A Appendix A: Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

2B Appendix B. Sensitivity analyses . . . . . . . . . . . . . . . . . . . . . 81

3 Complex activities concentrate in large cities 109

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

3.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

3.2.1 Complexity, proximity and the division of labour . . . . . . . . 115

3.2.2 Complexity measures . . . . . . . . . . . . . . . . . . . . . . . . 119

3.2.3 Complexity and urban scaling over time . . . . . . . . . . . . . 119

3.3 Data and Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

3.3.1 Patent data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

3.3.2 Industry data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

3.3.3 Scientific research data . . . . . . . . . . . . . . . . . . . . . . . 122

3.3.4 Employment data . . . . . . . . . . . . . . . . . . . . . . . . . . 122

3.3.5 Empirics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

3.4.1 Baseline results . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

3.4.2 Robustness of the first step . . . . . . . . . . . . . . . . . . . . 131

3.4.3 Concentration of complex economic activities in large cities . . . 131

3.4.4 Robustness of the second step . . . . . . . . . . . . . . . . . . . 136

3.4.5 Density results . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

3.4.6 Concentration of complex economic activities in large cities over

time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

3.4.7 Robustness of the third step . . . . . . . . . . . . . . . . . . . . 140

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

3A Appendix: additional results and robustness checks . . . . . . . . . . . 142

4 Technological diversification of U.S. cities during the great historical

crises 177

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

4.2 Resilience of Regions and Diversification in Times of Crisis . . . . . . . 180

4.3 Data and Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

4.3.1 Crises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

4.3.2 Diversification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

4.3.3 Relatedness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

4.3.4 Control variables . . . . . . . . . . . . . . . . . . . . . . . . . . 187



CONTENTS xi

4.3.5 Empirics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

4.4.1 Diversification in times of crisis . . . . . . . . . . . . . . . . . . 190

4.4.2 Robustness and extensions . . . . . . . . . . . . . . . . . . . . . 195

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

4A Appendix: additional results and robustness checks . . . . . . . . . . . 199

5 Conclusion 223

5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

5.1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

5.2 Policy implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

5.2.1 Industrial policies . . . . . . . . . . . . . . . . . . . . . . . . . . 229

5.2.2 Market failures . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

5.2.3 Reducing income inequality . . . . . . . . . . . . . . . . . . . . 233

5.2.4 Reducing spatial inequality . . . . . . . . . . . . . . . . . . . . 234

5.2.5 Diversification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

5.3 Limitations and future research . . . . . . . . . . . . . . . . . . . . . . 238

5.3.1 Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

5.3.2 Paradigms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

Bibliography 260

A Improvement on the association strength 287

A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288

A.2 Normalising co-occurrence data . . . . . . . . . . . . . . . . . . . . . . 290

A.3 Refinement to the association strength . . . . . . . . . . . . . . . . . . 293

A.4 Theoretical exploration of the overestimation. . . . . . . . . . . . . . . 296

A.5 Simulational exploration of the overestimation . . . . . . . . . . . . . . 299

A.6 Real world data-based exploration . . . . . . . . . . . . . . . . . . . . . 303

A.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308

Nederlandse samenvatting 309

Curriculum Vitae 322





Preface

This thesis embodies the journey I made as a Ph.D. student. It not only reflects

the developments in research I made over the past seven years but also those in my

personal life. When I started in early 2015, I came fresh out of the STREEM M.Sc.

programme of the Vrije Universiteit Amsterdam (VU) and was hoping to further

develop my research skills to the example of the authors of the works I admired during

my studies, like Gilles Duranton and Ed Glaeser. Also, Amsterdam, my city of birth,

had undergone great changes during my life time and was recovering after the 2008

crisis and the population loss of the 1960s-1980s. I was curious what forces made that

some cities exerted a growing force of attraction on people while other cities did not

and was not yet satisfied by the answers learned in class.

At Utrecht University, I found the opportunity to start a Ph.D. trajectory with Frank

van Oort, Ron Boschma, and Pierre-Alexandre Balland on regional resilience, the

ability of regions to withstand or overcome crises. With this position I got introduced

not only to a slightly new topic but also a new field: Evolutionary Economic Geography

(EEG), which was not covered in my spatial economics Master programme at the

VU nor in my urbanism Master programme at l’institut d’urbanisme de Paris. Even

though there was a shared topic of interest the difference in paradigms was larger than

I expected and misunderstandings back and forth were numerous in the beginning

and I had to learn a whole new vocabulary in some respects. Looking back, now I

have overcome these epistemological barriers, I conclude that there are many places of

common ground and respective advantages to each approach, to which I have dedicated

section 5.3.2 in the conclusion.

The first project of the Ph.D. on changes in trade between European regions during

the 2008 crisis was a bit of a false start as my first major finding was the rather

disappointing conclusion that the datasets on trade were not sufficiently accurate to

properly measure this effect. However, in the mean time I got picked up by Sergio

Petralia, Pierre-Alexandre Balland, and David Rigby to help with their project on

gathering the geographical locations of historical patents. This project was a great

xiii
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start to get familiar with EEG and in mastering R. In the end, that knowledge resulted

in two scientific papers, one on technological diversification of cities during the great

historical crises with Pierre-Alexandre Balland, Ron Boschma and David Rigby, see

Chapter 4, and the other on methodological improvements to calculate relatedness,

a fundamental concept of EEG, see the single-authored additional Chapter A. The

development of R skills accumulated over time and resulted in, among others, skills in

data cleaning/handling/analysing, (contributions to) R-packages, a personal website

with 3D interactive maps, the ability to scrape data from websites and digitalized

documents, and to automate emails for teaching purposes.

The collaboration on patent data also led to me joining the project of Sergio Petralia,

Pierre-Alexandre Balland, and David Rigby on looking into the relation between

patented inventions and agglomeration advantages over the large time span one could

examine with geolocalised patent data. The idea to take the time and look into

many possible angles to write something that could make impact was fitting for the

exploratory phase I was in and my academic ambitions. The exploration of different

angles meant that I got introduced to innovation studies, which is strongly linked

to EEG, and that I witnessed how, over time, complexity studies, with its origins

in physics, became more and more incorporated in the line of research at Utrecht

University. This last part also led to César Hidalgo and Cŕıstian Jara-Figueroa joining

the project, which culminated in a publication in Nature human behavior that forms

the basis of Chapter 3.

My interest in agglomeration advantages from the perspective of urban economics

was not abated by the new perspectives I learned. Therefore, I set out on another

project around 2016 with Frank van Oort and Hans Koster of the VU, who later

also became one of my promoters.2 Its goal was to map and understand the changes

in agglomeration determinants as classified by the influential Alfred Marshall, see

Marshall (1890). From the beginning, I felt that this paper, which became Chapter 2,

was a great opportunity to extend the work of the authors I read during my studies

and develop myself to possibly write something that would make an impact in the

field.

As economic geographers know, most of the intellectual progress is not done by just

reading the articles of others but by engaging in conversation with them. This is

very much ingrained in the Utrecht approach to doing research through international

collaboration. This had the downside that it was sometimes rather quiet at the Uithof

in Utrecht but the upside that it allowed me to see and connect to many inspiring

2Funnily, at that time Hans sometimes joked that I was already too strongly influenced by the
“Utrecht” way of thinking.
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scholars. At seminars and conferences, I could not only listen to the authors whose

work I had read but also talk to them in the breaks! During my Ph.D., I visited many

research institutes, conferences, and Ph.D. schools, which brought me on short trips

to places like Dublin, Toulouse, Bordeaux, San Francisco, Boston, Barcelona, New

York, Cambridge (U.S.A.), and Groningen and longer stays in Medelĺın, Los Angeles,

Buenos Aires, Rio de Janeiro, and Cambridge (U.S.A.). In the visits to these South

American cities I could combine my research activities with spending free time on

a continent that is dear to me. The U.S.A. visits were more based on the Utrecht

network. Notably, with one or more supervisors, I spent over a month at UCLA with

David Rigby after the AAG 2016 conference in San Francisco and several weeks at

the Harvard Kennedy School (HKS), the home of former Utrecht researchers Frank

Neffke, Matté Hartog, and Dario Diodato, after the AAG 2017 in Boston. These trips

were not only characterised by hard work but also fun leisure time like night outs (I

will likely never forget my first moment seeing famous professors dance), swimming,

(foot)ball games, and hiking trips.

By building on this network I got to develop my own. At the AAG 2017 in Boston

I got to meet Gilles Duranton, who was really helpful and provided me with large

amounts of data for my quest on changes in Marshall’s agglomeration determinants.

At HKS I got to meet Bill Kerr of the Harvard Business School (HBS), who was one

of the authors of Ellison et al. (2010), which was the main inspiration for that article.

He invited me for a five-month Visiting Research Fellowship at his department in

2018, which I consider as one of the highlights of my Ph.D. Harvard is a breathtaking

environment for a young scholar. There is a large concentration of inspiring scholars

working in the direct vicinity, which also includes MIT and other renowned universities.

Furthermore, most other researchers in the world that do groundbreaking work want

to present their work in that place. This means that there are tons of seminars and

lunches every week to listen to these scholars or occasions to meet them. One could

go listen to former presidents and ministers or academic “superstars”, like Thomas

Piketty or Daron Acemoglu, live. At HBS and HKS I also connected to researchers in

labour economics. Funnily, I met Anna Salomons, a researcher in labour economics of

the Utrecht School of Economics, in Cambridge! Next to that, it was always easy to

bike the few kilometres to the MIT media lab to hang out and learn on developments

in complexity science with several of the co-authors of Chapter 3.

Inspired by these meetings, I set out to gather data from the many sources, including

hundreds of pages of scanned historical documents, needed to calculate the importance

of each of Marshall’s agglomeration determinants between 1970 to 2014. This also

included finding the best method in accommodating the many administrative changes in
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industry codes and county layout over time. The results proved interesting and inspired

questions on what was underlying the trends in these agglomeration determinants. A

topic that interested not only Bill Kerr but also Ed Glaeser, another author of Ellison

et al. (2010) and one of the authors that inspired me during my studies. I was very

grateful for the several precisely timed 15-minute meetings with him. Although these

meetings were relatively short due to his busy agenda, I was impressed by the sharp,

insightful and eloquent feedback I would receive every time.

More than I could have hoped for at the beginning of my Ph.D., I found that the article

in progress was getting attention of many renowned scholars with useful feedback. In

particular, I was honoured to present at HKS, MIT media lab, the NBER, and the

UEA congresses in New York and Amsterdam in sessions with authors like William

Strange, Stuart Rosenthal, and Gabriel Ahlfeldt.

On the other hand, this success also came at a cost. Travelling around the world and

working hard in an inspiring environment also meant being far away from friends and

family. I was lucky enough to always make new friends relatively easily, wherever I

came, but I also came to understand that it takes time to develop good friendships.

As a result, I started to appreciate more my life in Amsterdam, where I’m strongly

rooted and life was less work-oriented.

Also, after 2018 my research time became less abundant. I originally started on a

three year Ph.D. contract and managed to extend that to four years by taking up some

teaching activities. However, by 2019, I had to dedicate almost 0.8FTE to teaching

to finance my research activities, although I am very thankful to Fred Toppen and

Bouke van Gorp for accommodating more research time in certain time periods. I very

much enjoy teaching and I see it as critical in an academic career and in universities

in general. In particular, I enjoyed the economics of cities course I coordinated and

the dynamic atmosphere with the many (young) colleagues involved in teaching. At

the same time, this also took a lot of time, especially the courses that were further

away from my expertise like those in human geography, which was detrimental for my

research progress and work-life balance.

Furthermore, the projects on technological diversification during crises and on Mar-

shall’s agglomeration determinants stalled around the same time. The former required

the finding, understanding and programming of more rare econometric methods fit for

the research set-up. While with the latter it was possible to apply the methodology by

Ellison et al. (2010) to measure the changes in Marshall’s agglomeration determinants

over time but it was hard to find an explanation for these changes that survived the

test of rigid econometric methods and the standards of the economic literature I was
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aiming for. Most of the literature on urban economics is based on transportation costs

but the standard measures in this line proved irrelevant. Measures on the literature

on manufacturing, covering the industries in the study, gave some insight but were

hard to fit in the line of literature and sometimes yielded seemingly counter-intuitive

results. Interestingly, answers came from labour economics and innovation studies, as

I discuss in greater length in the introduction of this thesis. These studies describe

channels of economic change that often come about during technological revolutions,

which also proved to be the common denominator that tie together the chapters of my

dissertation on agglomeration determinants.

To improve on these ideas, I got a few months without teaching and a visiting position

at Northeastern University in 2020 with Gregory Wassall. Here I could reconnect with

Bill Kerr, Ed Glaeser and also meet David Autor, a leading author in labour economics.

They regularly publish in top journals, like the American Economic Review, and some

of them saw a chance for my paper to make the cut, which I was willing to take. Then,

the start of the corona pandemic meant an abrupt end to my stay in Boston but with

their tips in my suitcase I headed home to finish the paper.

The corona pandemic, especially in the beginning, was a confusing time. With the

restrictions on physical interaction, teaching became much more time-intensive and

less rewarding and social activities were greatly limited. Despite all this, I found

inspiration in the time I got for sport, hobbies like fixing up a 1980s racing bike,

reading, and my research. In the summer of 2020, when lock-down measures were

lifted, I took the 1980s racing bike on a bicycle trip from my stamkroeg de Spuyt to the

Alpe d’Huez and back, while visiting friends and family on the way. When in the early

winter there was a new lock down it was harder to remain optimistic. The thought of

spending another few months at home was hard. Also for my students, as we went

back to online teaching. Nevertheless, I finished Chapter 2 with my co-authors and

we submitted it to the American Economic Review. I knew chances were not great

but was hopeful that the hard work of incorporating virtually every advice of some of

the most influential researchers would pay off. The paper made it to a first round of

feedback, which is already a big sign of appreciation for which I feel honoured, but

was then rejected. Shortly after it was rejected by another general interest journal.

However, in the Journal of Urban Economics, which is, as the name suggests, more

strongly dedicated to my field, I found more valuable feedback and an outlet that

makes me feel that my work is very much appreciated.

Nevertheless, the earlier rejection set-backs that are common in academia but were

new to me were tougher than I expected, likely also because they occurred during the

isolated times of a corona lock-down. The one thing that makes the ups of an academic
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researcher higher is also the one that makes the downs lower. The possibility to pursue

one’s personal research interests and develop oneself to meet these research interests

also ties ones personal happiness more firmly to the outcomes of one’s professional

endeavours than any other job I had before.

Furthermore, I came to realise that there were aspects to urban growth that I was not

sufficiently paying attention to in my thesis. I had come to understand much better

the questions I posed myself at the beginning of my Ph.D. on the local factors that

contribute to growth and how their relevance changes over time but felt that I and most

of the literature I was building on were overlooking how the benefits of that growth

was distributed over people. At the start of my Ph.D. in early 2015, Amsterdam

was a city that was recovering from the 2008 crisis and, longer ago, the population

loss during the 1960s-1980s. With housing prices that were slowly increasing after

having been relatively stagnant for almost 5 years. By the end of my Ph.D., housing

prices had skyrocketed. Amsterdam was a city that was increasingly unaffordable

for a large number of people and it was becoming clear that its growth had not

benefited a considerable part of its population. The works I read of Thomas Piketty,

see Piketty (2013) and Piketty (2019), Mariana Mazzucato, see Mazzucato (2019),

labour economists, and the class materials of my master in urbanism and for the courses

I taught in globalisation and human geography showed me that there were factors

and topics that were not sufficiently taken into account in my line of research, such

as distributional issues, governmental policies and the possibility of different societal

groups to access the local sources of growth I was investigating. On the other hand,

these other lines of study were missing many points made in Economic Geography.

Also, it was certainly not necessary for the chapters to tackle all of these issues as

limiting the scope by specialising is necessary to make progress, as also discussed in

Chapter 3, but to understand the importance and potential societal impact the results

can have it is necessary to understand the role of agglomeration mechanisms in society.

Therefore, I felt that my Ph.D. was not at its end without understanding these aspects

and how research is used in policy-making to put my thesis in the right context and

to find a line of future research in which I could possibly make contributions. This

is why I dedicated the introduction and conclusion of this thesis to making the links

between the scientific fields of the different epistemological communities on which I

based my research and identifying other relevant perspectives on cities that could

be incorporated to build a more complete image of economic development that can

improve information for decision making. These building blocks formed the starting

point for the post-doctoral trajectory I started in early 2022 on social mobility and

collective facilities in the Amsterdam area at the VU, which also allows me to work
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closer to home.

All in all, I look back on a journey that took me to many places around the world,

allowed me to connect to new persons and new ideas, and in the end allowed me to

develop myself in a way I know is not accessible for many others on this planet and

for which I’m very grateful. In the end, research is not only about getting to know

the unknown but just as much about getting to know what still remains unknown.

Therefore the challenge is perhaps equally large in finding the answers to questions

as in finding the right questions. Like the topic of my thesis, this Ph.D. trajectory

taught me that goals in research or even in life are dynamic and provided me with

many useful experiences to continue this trajectory wherever it may take me.
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Chapter 1

Introduction

1.1 Motivation
The unequal distribution of human activities over space is the foremost raison d’être of

urban economics and economic geography. A key focus in understanding (changes in)

this spatial distribution is the role of economies of agglomeration, which are the pro-

ductivity advantages activities experience when colocated. The trade-off that activities

face in their location choice between these advantages and localised disadvantages, such

as higher land prices, underpins our understanding of the concentration of activities in

space since the development of the first cities.

Recently, most attention is given to the so-called great divergence, the growing disparity

in welfare over space (Moretti, 2012). Around 1980, a clear structural break in the role

of economies of agglomeration occurred. On the one hand, large innovative cities in

high-income countries saw their population increase again after decades of decline. This

triumph of the city, as labelled by Glaeser (2011), indicates that colocation has become

more important, exactly in times of unprecedented reductions in transportation costs,

innovations in communication technologies, and global integration (Gaspar and Glaeser,

1998; Storper and Venables, 2004; Rodŕıguez-Pose and Crescenzi, 2008; McCann, 2008;

Glaeser, 2011; Moretti, 2012; PBL, 2015).

On the other hand, not all cities are triumphing, which suggests that this structural

break is more complex than just an increase in the relevance of economies of agglomer-

ation. The shining success of innovative cities is eclipsed by the fate of cities hosting

less competitive activities. The same forces that allowed New York, Paris, and my

birthplace Amsterdam to grow took a heavy toll on cities like Detroit, Amiens, and

Heerlen. Around 1980, human capital levels, income levels, life expectancy, and living

conditions stopped converging and started diverging between U.S. regions (Berry and

1
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Glaeser, 2005; Moretti, 2012; Austin et al., 2018; Autor, 2019). Similar, albeit less

strong, diverging trends have been denoted for French regions (Guilluy, 2014; Catin

and Van Huffel, 2019), and Dutch regions (PBL, 2016; De Groot, 2019).1

The societal consequences of these locational trends put the understanding of economies

of agglomeration in the limelight of attention. The “triumphing” regions are confronted

with soaring housing costs, gentrification, segregation and growing local inequality

(Florida, 2017; Milikowski, 2018), while the lagging regions are confronted with all

kinds of social issues due to income and employment losses. Notably the rise in

so-called deaths of despair, i.e. the premature mortality, in particular of young men,

related to suicide, drug and alcohol abuse, liver diseases, and homicide (Case and

Deaton, 2015; Austin et al., 2018; Autor et al., 2019; Pierce and Schott, 2020).

Furthermore, these issues have a clear spatial character and reinforce resentments

between societal groups and regions, as exemplified by the regional rise of support for

anti-establishment movements of the likes of Trump, Bolsonaro, Le Pen, and Wilders,

the gilets jaunes movement in France, Brexit vote, and the rise of anti-gentrification

mobilisations. As a consequence, academics working on understanding the spatial

distribution of human activities are pressed to step up (Guilluy, 2014; Autor et al.,

2016; The Economist, 2016; Florida, 2017; Austin et al., 2018; Le Figaro, 2018; Rodrik,

2018; Rodŕıguez-Pose, 2018; Storper, 2018; De Groot, 2019).

1.2 Goal and scope of this thesis
Economies of agglomeration are the centrepiece topic of urban economics and economic

geography and have been described for centuries. Most cited is Marshall (1890) and his

categorisation of agglomerational benefits in three categories: labour market pooling,

input-output linkages, and knowledge spillovers. But the existence of some form of

economies of agglomeration has already been denoted by Smith (1776) and has even

been mentioned by Plato and Xenophon in Ancient Greece (Finley, 1973; Silvermintz,

2010).

1The U.S.A. do not have the largest divergence rates as Eastern European countries, notably
Poland, have actually experienced stronger divergence rates (PBL, 2016). Storper (2018) notes that
between NUTS-2 regions within the European Union inequality fell between 1980 and 1990, due
to European integration, but went sharply up afterwards. However, within E.U. countries spatial
inequality has generally increased (PBL, 2016; Catin and Van Huffel, 2019). Interestingly, PBL
(2016) classifies France as a county where regional convergence occurs, because of the relatively slow
growth of the capital region. Catin and Van Huffel (2019) confirms that Paris did not experience a
large relative growth in the number of jobs but that this is mostly the case when one compares the
growth to other large cities, notably Toulouse, Montpelier, and Nantes. A strong divergence does
exist between larger cities and “la France périphérique”, as coined and denoted by Guilluy (2014).
This also explains why PBL (2016) classifies Belgium as a country of convergence whereas this likely
is not the case when considering other large cities.
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Despite this long track record and relevance in understanding locational patterns,

economies of agglomeration are still largely considered to be a black box (Duranton and

Puga, 2004a; Combes and Gobillon, 2015; Davis and Dingel, 2019). The lion’s share of

research focusses on (changes in) agglomeration patterns and the size of agglomeration

effects but there are actually “only rare attempts to distinguish the various channels

behind agglomeration economies” (Combes and Gobillon, 2015, p.249).

Furthermore, even rarer are the attempts to distinguish changes in the relevance of

these agglomeration mechanisms, despite the extensive documentation on changes in

agglomeration patterns (Ellison et al., 2010, p.1210, Moretti, 2012, p.124, and Storper,

2018, p.255). Most notably, the rising importance of knowledge spillovers has never

been demonstrated convincingly even though it is suggested by a large literature to

have led to the so-called triumph of the city. Also, mixed and sometimes contradictory

suggestions have been made on changes in other agglomeration mechanisms, see

McCann and Fingleton (1996); Glaeser and Kohlhase (2004); Duranton and Storper

(2008); Glaeser (2011); Moretti (2012); Combes and Gobillon (2015) and Faggio et al.

(2017).

Lastly, even less developed than our understanding of (changes in) the mechanisms of

economies of agglomeration is our knowledge on the factors significantly interacting

with the relevance of these mechanisms (Combes and Gobillon, 2015, p.336). In other

words, what are the channels of economic change that make that certain mechanisms

become more or less important. Therefore this thesis combines addressing the gaps in

both the changes in agglomeration mechanisms and on the identification of possible

causes.

A window of opportunity exists to make progress on these issues as the recent online

publication of scanned old documents and recently published data combined with novel

data collection methods allow for the development of consistent datasets over long time

periods. In this thesis, industry statistics, concordance tables, and geolocalised data

on activities by type, such as patents by technology class or the number of employees

per industry, are gathered, cleaned and harmonised over time. In some cases, it allows

me to go back as far as 1790. As a result, it is possible not only to unveil changes in

the relevance of agglomeration mechanisms over time but also to test its association

to possible channels of economic change.

Within the objective of assessing the extent and reasons for changes in the roles of

economies of agglomeration, a number of more narrowly defined research questions are

formulated bringing together insights of urban economics and evolutionary economic

geography, but also from labour economics, international trade, innovation studies,
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and complexity theory. The remainder of this section is a general treatise on how these

fields are combined and have led to the research questions of this thesis. Readers that

are less familiar with one or more of these fields are advised to also read the extended

theoretical background in Appendix 1A.

As said, economies of agglomeration are the productivity gains one experiences when

colocated. This suggests that the roles are likely to change when the productivity gains

of a certain agglomeration channel or the extent to which one needs to be colocated to

obtain these gains changes, i.e. the possibility to transport these gains changes.

As economies of agglomeration increase the productivity of an agent (e.g. individual,

establishment), it is in economics logically presented as a shifter of the production

function: g(A)f(x) (Rosenthal and Strange, 2004). Where f(x) is the regular produc-

tion function, with x being the land, capital, labour, and material inputs, to which

the agent adds value in its productive activities, and g(A) the enhancement due to

agglomeration effects. Rosenthal and Strange (2004) capture the productivity gains

due to agglomeration A of agent j, as follows:

Aj =
∑
k∈K

q(xj, xk)a(dGjk, d
I
jk, d

T
jk) (1.1)

Here, the economies of agglomeration are the sum of the advantages and disadvantages

of the interactions with all other agents K. The importance of an interaction with

agent k depends on a function of the sizes x of agents j and k: q(xj, xk). and on

three scopes or distances, as Rosenthal and Strange (2004) label them: geographical,

industrial, and temporal. The first is just the physical distance between j and k. The

second relates to distance in type of productive activities, the more dissimilar the less

likely that colocation is useful argue Rosenthal and Strange (2004), although this will

be nuanced further on in this thesis. The latter relates to distance in time. Previous

colocation of productive activities may influence the present productivity of an agent.

Notable examples are skills learned when in proximity to others and applied at a

later time period, see for example Glaeser (1999) and De la Roca and Puga (2017),

or the development of new productive activities by regions building on the routines

it obtained in the past, see for example Vernon (1960) and Glaeser (2005). When

agglomeration economies benefit current activities, i.e. dTjk = 0, these are labelled

static economies of agglomeration, when there is an effect of past activities on more

recent activities then these are labelled dynamic economies of agglomeration.

The industrial distance and the temporal distance are particularly considered in

evolutionary economic geography. From this viewpoint, agents are heterogeneous
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collections of routines, or in other words, capabilities, obtained at a temporal distance

and with varying industrial and geographical distances. In parallel with evolutionary

theory, agents develop new routines and shed those that become redundant through

survival of the fittest (Nelson and Winter, 1982; Boschma and Frenken, 2006). This

thesis builds on ideas from this literature on these distances, in particular on the

concept of relatedness to measure industrial distance, but also to acknowledge the

existence of other forms of relevant distances such as social, organisational, and

institutional, following Boschma (2005), that Rosenthal and Strange (2004) do not

consider.

Although evolutionary economic geography and urban economics are in my eyes too

much separate lines of research, a topic further discussed in the conclusion, this thesis

demonstrates that ideas can be applied and combined when one understands the

different perspectives. After all, both consider similar topics, such as the channels

of economics of agglomeration, the topic of this thesis. In fact, by combining these

insights it became possible to achieve the goal of shedding light on the dynamics of

agglomeration economies and the channels of economic change.

A large share of previous research in urban economics and economic geography of

the last decades focussed on using more refined data and identification strategies

on estimating the productivity gains A over space and its geographical attenuation,

or deducing these from agglomeration patterns (Puga, 2010; Combes and Gobillon,

2015). Thereby particular attention is paid to differences in workers, establishments,

industries, and regions by building on works on heterogeneity from the 1960s by

Vernon (1960), Chinitz (1961) and Jacobs (1969), which is relevant here as these

may help to explain differences over time. From this literature, an image arises

that so-called young production activities that compete on the basis of product and

timing differentiation are often small-scale, innovative, and highly dependent on flexible

external relations, involving face-to-face contact with agents at some industrial distance

whereas mature production activities that compete on the basis of low prices and

standardised production are often large-scale, routine intensive, with most interaction

internal to the firm and external relations being characterised by long-term standard

exchanges that can take place without face-to-face contact, e.g. telephone calls.

These differences in production types also lead to differences in agglomeration patterns.

From the classic seminal works by Weber (1922); von Thünen (1826); Alonso (1960,

1964); Muth (1969), and Mills (1967), we know respectively that short distances

between agents, high rents, and high densities indicate that locational benefits are

large and hard to transport. This is mostly the case for the young production activities

that are often in more expensive dense areas with a large variety of sectors and agents
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within a short geographical distance, whereas the mature production activities are

often in less expensive low-dense areas with other agents of the same industrial sector

at relatively larger geographical distances, see Vernon (1960); Chinitz (1961); Jacobs

(1969); Breschi and Lissoni (2001); Duranton and Puga (2001); Arzaghi and Henderson

(2008); Neffke et al. (2011b); Castaldi et al. (2015).

A large literature suggests that the younger type of production activities has become

more important by showing that densities, local wages and local rents have increased

while the distance between interacting agents has decreased or at least remained

comparable, see Duranton and Storper (2008); McCann (2008); Rodŕıguez-Pose and

Crescenzi (2008); Glaeser (2011); Moretti (2012). This line of research in particular

counters ideas that geographical proximity no longer matters like “the death of distance”

(Cairncross, 1997) and that “the world is flat” (Friedman, 2007) by showing that, even

though unprecedented improvements in communication and transportation technologies

have put the world within arm’s reach, geographical proximity still matters and actually

increasingly does so, notably for sharing ideas.

However, these works do not actually measure the changes in determinants of ag-

glomeration and authors even suggest contradictory expectations on the direction

of changes in the relevance of some mechanisms, see Glaeser and Kohlhase (2004);

Duranton and Storper (2008); Glaeser (2011); Moretti (2012); Faggio et al. (2017). To

address this gap, this thesis brings down the barrier of the lack of data and extends

the application over a larger time period of a small but solid base on how to analyse

agglomeration channels, see Combes and Gobillon (2015) for an overview.

When it comes to the reasons for these changes, the varying suggestions on changes

in agglomeration channels show that our understanding is greatly underdeveloped.

Therefore, the greatest challenge was identifying the potential channels of economic

change for have impacted agglomeration mechanisms. Most of urban economics and

economic geography considering the spatial concentration trend that started in the

1980s focus on transportation costs, which are fundamental to the field ever since the

classic works by Smith (1776); von Thünen (1826); Marshall (1890) and Weber (1922).

Transportation costs consist of the pecuniary transportation costs like fares and the

harder to estimate opportunity costs of the foregone value of time not being (fully)

productive while travelling (Glaeser et al., 2001; Glaeser and Kohlhase, 2004; Small,

2012).2 According to a large literature the opportunity costs of not having face-

2Note that people are often not fully unproductive while travelling as work and leisure, e.g.
enjoying the ride, are often still possible (Small, 2012). In particular, in public transport, the
possibility of being productive while travelling has increased with the democratisation of connected
devices and improved connection (Adoue, 2016).
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to-face contact, i.e. the value of time, have increased due to the possibilities for

product and timing differentiation unleashed by the development of communication

and transportation technologies, notably the internet McCann and Fingleton (1996);

Leamer and Storper (2001); Glaeser and Kohlhase (2004); Duranton and Storper

(2008); McCann (2008); Glaeser (2011); Moretti (2012).

However, changes in communication and transportation technologies are insufficient

to explain recent dynamics in agglomeration for two reasons: (1) the divergence in

agglomeration trends starts around 1980, which is many years before the first notable

breakthroughs in communication are made; and (2) for a brief period between 1950

and 1980 forces for dispersion actually were overtaking forces for agglomeration, see

Anas et al. (1998); Berry and Glaeser (2005); Glaeser (2011), despite (or thanks to) an

increase in transportation speed due to the democratisation of the combustion engine

and telephone lines.

Therefore, I will argue that other trends, well documented in labour economics and

innovation studies on the division and types of tasks executed by workers and the

functioning of technological revolutions, are very insightful on how the value of time

of different agents changed and with that the determinants of agglomeration and

importance of geographical proximity.

Of particular interest is the computer revolution, as it is associated with a shift in

profitability towards creative high-skilled jobs and niche customised products and away

from routine middle-skilled jobs and mass production facilities in the 1980s more likely

due to the general automation of routine tasks rather than just the automation of tasks

related to communication and transportation (Storper and Scott, 1992; Pine, 1993;

Goldin and Katz, 1998; Brynjolfsson and Hitt, 2000; Autor et al., 2003; Deming, 2017).

This shift towards high-skilled product-and-timing-differentiated-forms of production

is further encouraged by globalisation due to off-shoring and trade competition, as

low-wage countries are cheaper alternatives for the production of standardised products

and allow for the development of intricate global value chains, which requires the

organisational capabilities of high-skilled workers (Storper and Scott, 1992; Pine, 1993;

Bernard et al., 2006; Glaeser and Ponzetto, 2007; McCann, 2008; Holmes and Stevens,

2014; Autor et al., 2015; Pierce and Schott, 2016; Bloom et al., 2016). The structural

break in the college wage premium, i.e. the wage difference between a worker with

college education and a worker with high school education, that started increasing

again in the 1980s after decades of decrease is a clear confirmation that the value of

time of workers specialised in idea-intensive interactive tasks has increased (Freeman

and Hollomon, 1975; Autor et al., 2003; Deming, 2017; Autor, 2019).
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Thus, the changes in production methods and labour tasks attributed to the computer

revolution coincide with the great divergence in agglomeration patterns and have similar

characteristics in line with young production activities that most of urban economics

and economic geography have observed but attribute mostly to the development of

communication and transportation technologies instead of the larger movement of

technological change of the computer revolution. The rising prominence of cities since

the 1980s can not be separated from the rising importance of innovative knowledge-

intensive activities (Glaeser, 2011).

Figure 1.1 – The computer set to revolutionise cities as visualised by
Mikko Kuiper.

The structural break in agglomeration and wage trends following the computer rev-

olution is a reminder that economic change is not a continuous incremental process

but often punctuated by radical innovations that replace old technologies and pro-

duction processes (Helpman and Trajtenberg, 1998). A force that Schumpeter (1942,

pp.82-83) has dubbed creative destruction, the ”process of industrial mutation that

continuously revolutionises the economic structure from within, incessantly destroying

the old one, incessantly creating a new one”. A better understanding of how these

channels of economic change interact with agglomeration mechanisms will improve

our understanding of the spatial distribution of human activities in general and of the

recent rise in spatial inequality in particular.
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1.3 Research questions
Within this setting, four research questions are selected divided over three chapters. In

each chapter, the focus is on a particular type of agglomeration economies, namely, the

categorisation by Marshall (1890) of labour market pooling, input-output linkages and

knowledge spillovers in Chapter 2 and the division of labour as often attributed to Smith

(1776) in Chapter 3. In these two chapters, static sources of agglomeration benefits

are considered. In Chapter 4, the benefits of past colocation, dynamic agglomeration

benefits, are considered. More specifically, the development of new specialisations by

regions based on past industrial activity.

All three chapters have in common that economic change plays a key role. Notably,

industrial revolutions. Chapter 2 looks at the effect on Marshall’s agglomeration forces

of: routine-biased technological change in labour tasks; trade competition from low-

income countries; and the transportation costs of goods since the computer revolution.

Thereby, building on insights from labour economics on how human work changed

due to technological progress and globalisation and therefore the reasons for local

interaction between humans and transport economics on changing transportation costs

and therefore the need for geographical proximity of different activities.

Chapter 3 evaluates the impact on the need for agglomeration resulting from the

influence of the complexity of knowledge of activities on the division of labour within

industries, jobs, scientific publications and patents. Data on this last activity is

available since 1850, which allows for the examination of this relation over a long time

period including two technological revolutions: the invention of electricity and that of

the semiconductor (computer). This chapter builds on insights from innovation studies

and complexity studies on the qualitative aspect of knowledge and how this affects

team size and the need for face-to-face contact and thus geographical proximity.

Chapter 4 evaluates the difference in the possibility of specialised and diverse regions

to diversify in new activities during the great historical crises of the long depression,

great depression, and oil crisis, which coincide with moments of rapid technological

change (Boschma, 1999). Here a particular focus is on regional resilience, industrial

distance and temporal distance in combination with insights from innovation studies

on technological change.
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In each chapter, contributions are made along five dimensions: theory, data, method-

ology, code, and empirical results to address research gaps around the following four

research questions3:

RQ1: To what extent has the importance of Marshall’s determinants of

agglomeration changed over time?

RQ2: Why has the importance of Marshall’s determinants of agglomeration

changed over time?

RQ3: To what extent do complex activities concentrate in large cities?

RQ4: To what extent do diverse cities differ from more specialised cities in

terms of diversification behaviour during crises?

In the following, the research gaps and the respective contributions are further detailed.

1.3.1 Marshall’s agglomeration determinants
RQ1: To what extent has the importance of Marshall’s determinants of

agglomeration changed over time?

In Chapter 2, with co-authors Hans Koster and Frank van Oort, we evaluate the changes

in the importance of labour market pooling, input-output linkages, and knowledge

spillovers over time. A large literature claims that the increasing importance of

Marshall’s knowledge spillovers is the reason for the trends in spatial concentration

(Gaspar and Glaeser, 1998; Leamer and Storper, 2001; Storper and Venables, 2004;

Rodŕıguez-Pose and Crescenzi, 2008; McCann, 2008; Glaeser, 2011; Moretti, 2012;

Davis and Dingel, 2019). However, this has not been tested yet. Little is also known

on how the relevance of the two other determinants of Marshall has changed: labour

market pooling and input-output linkages, while the literature expresses sometimes

contradictory, but empirically untested, expectations on this point. With respect to

input-output linkages, Glaeser and Kohlhase (2004) suggest that its importance has

decreased, as the transportation costs of goods have strongly decreased. On the other

3Due to the chosen focus many aspects lie outside the scope of this thesis, which are discussed
in detail in the conclusion. Among others, this thesis pays less attention to natural advantages as
a location reason and even less to sorting, the home-market effect, rent-seeking, and consumptive
advantages, see Anas et al. (1998); Glaeser et al. (2001); Rosenthal and Strange (2004); Ellison
et al. (2010) and Combes et al. (2012). This thesis also does not go into the debate if economies of
agglomeration are actually externalities, see Breschi and Lissoni (2003). When it comes to the forces
acting upon the role of economies of agglomeration, this thesis does not consider policy changes or
changes in fiscal and social norms. These are seen as particularly relevant since the 1980s by some,
see Harvey (2006); Raspe and van Oort (2007); Rodrik (2011); Raspe et al. (2012); Piketty (2013);
Milikowski (2018); Piketty (2019); Milikowski (2020). Finally, this thesis focusses mainly on the
U.S.A. due to data availability for a large variety of cities and an extensive time period.
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hand, McCann and Fingleton (1996); Duranton and Storper (2008) and Moretti (2012)

suggest that its relevance has grown as total transportation costs have increased, due

to an increase in the frequency of deliveries, and required face-to-face contact for

coordination and customisation. Labour market pooling, has become more important

due to the rising skill levels of the population argues Moretti (2012). However, the

findings by Faggio et al. (2017) are contradictory to most of these observations.

They find that labour market pooling and input-output linkages matter more for

low-skill/low-technology industries suggesting that when the skill/technology intensity

of society increases these mechanisms should matter less. The finding by Faggio et al.

(2017) that knowledge spillovers matter more for high-skill/high-technology industries

would be in line with a rising importance of sharing ideas. Identifying the trends in

agglomeration determinants addresses a major gap in the literature as mentioned by

Ellison et al. (2010, p.1210), Moretti (2012, p.124), and Storper (2018, p.255).

We build on the approach of Ellison et al. (2010) to evaluate the importance of

Marshall’s agglomeration determinants over time. To do so a novel data set is developed

using, among others, Optical Character Recognition (OCR) and data scraping tools

to make use of the growing availability of scanned old documents and previously

unpublished data sets. As such it is possible to build the coagglomeration index for

140 manufacturing industries, measures for labour market pooling and input-output

linkages, following Ellison et al. (2010), and improve, both theoretically as empirically,

on knowledge spillovers by building a measure based on the relatedness literature, see

Hidalgo et al. (2018). A methodological improvement is made by developing a new

measure to calculate relatedness and publish the relevant code in the EconGeo package

for R maintained by Balland (2016).

We control for omitted variables, by adding dissimilarity indices following Faggio et al.

(2017). The possibility of reverse causality is countered by using spatial instruments,

see Ellison et al. (2010). Methodological improvements are made compared to previous

studies in this line, by using industry-time fixed effects and by estimating bias-adjusted

coefficients, following Oster (2019) further reducing omitted variable bias.

The empirical results show that cross-sectionally labour market pooling is the most

important determinant of agglomeration followed by knowledge spillovers and input-

output linkages. Technological relatedness, the new measure for knowledge spillovers,

outperforms patent citations, used in previous studies. Over time there is a strong

decline in the importance of labour market pooling and input-output linkages, whereas

the importance of knowledge spillovers as an agglomeration determinant increases.

This last finding is strong evidence of the increasing relevance of the sharing of ideas,

which was brought forward but not yet tested by a large line of literature.
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1.3.2 Trade, technology, and transportation costs
RQ2: Why has the importance of Marshall’s determinants of agglomeration

changed over time?

Chapter 2 also explores potential reasons for the trends observed under research

question (1). The literature names many causes for the changes in agglomeration

patterns, notably around the development of communication and transportation

technologies, see McCann and Fingleton (1996); Leamer and Storper (2001); Glaeser

and Kohlhase (2004); Duranton and Storper (2008); McCann (2008); Glaeser (2011);

Moretti (2012). However, given that the structural break in spatial concentration

trends occurred in the 1980s at the time of the computer revolution it is likely that the

general automation of routine tasks and the associated shift towards young production

activities in terms of the product life cycle is more relevant than just the automation

of routine tasks in communication and transportation (Storper and Scott, 1992; Pine,

1993; Goldin and Katz, 1998; Brynjolfsson and Hitt, 2000; Autor et al., 2003; Deming,

2017). Following the results of Faggio et al. (2017), this would agree with the increasing

relevance of knowledge spillovers and the decreasing relevance of labour market pooling

and input-output linkages found under Research Question 1, see Section 1.3.1. However,

the decreasing importance of input-output linkages is also in line with the prediction

of Glaeser and Kohlhase (2004) based on the decreasing transportation costs of goods.

Therefore, the choice is made to focus on trade competition, technological progress,

and the transportation costs of goods. Data are collected on respectively, the routine

employment share following Autor and Dorn (2013), the share of imports from low-

wage countries, following Bernard et al. (2006), and the share of expenditure on

transportation services, following Glaeser and Kohlhase (2004) for each of the 140 SIC

manufacturing industries and each of the eight time periods between 1970 and 2014.

Previous studies on the heterogeneity among industries in the preference for Mar-

shall’s agglomeration determinants by Faggio et al. (2017) and Diodato et al. (2018),

respectively, divide the sample on the basis of a single industrial characteristic or do

suggestions on the basis of literature to explain differences. Thereby running a large

risk of omitted variable bias.

Therefore, this thesis improves methodologically on previous approaches by developing

a two-step estimation procedure, which allows to identify the interaction strength of

multiple variables. In this case: trade, technology, and transportation costs. In the

first step, industry-time-specific coefficients for Marshall agglomeration determinants

are estimated and then used as a dependent variable in the second step where the

independent variables are measures for trade, technology, and transportation costs.
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Once again, Oster-style bias-adjusted coefficients are estimated to counter omitted

variable bias and possible reverse causality is addressed by constructing instrumental

variables using trade data for other high-wage countries, following Autor et al. (2015),

spatial instruments for the routine employment share, following Ellison et al. (2010),

and the mean value of a ton to instrument for transportation costs (see Glaeser and

Kohlhase, 2004), while controlling for its 1970 level.

The empirical results show that technological progress and trade competition are

positively associated with knowledge spillovers and negatively with labour market

pooling. This suggests that as routine labour tasks can be substituted by machines or

offshored a common labour pool becomes less important while knowledge spillovers

become more important to develop ideas and production structures to exploit these

possibilities. There is some evidence that trade competition reduces the importance of

input-output linkages. In robustness analyses, we show that this is more likely because

locally supplied inputs can be substituted by alternatives originating from low-wage

countries instead of a rise in skill/technology intensity as could be expected based on

Faggio et al. (2017). At the same time and perhaps somewhat surprisingly we find

that the decrease in the transportation costs of goods is not associated with the trend

in input-output linkages.

1.3.3 Complex activities concentrate in large cities
RQ3: To what extent do complex activities concentrate in large cities?

In Chapter 3, with co-authors Pierre-Alexandre Balland, Cristian Jara-Figueroa, Sergio

Petralia, David Rigby, and César Hidalgo, we take as starting point the first ever

described mechanism of agglomeration economies, often attributed to Smith (1776):

task specialisation through the division of labour. This division of labour is strongly

related to the complexity of knowledge and technological progress. As this technological

progress is seen as the key to economic growth (Schumpeter, 1942; Solow, 1956; Nelson

and Winter, 1982; Romer, 1986), the extent to which it requires spatial concentration

through the division of labour determines the extent to which cities are the engines of

growth (Arrow, 1962).

Contrary to much previous research understanding the relation between innovation and

spatial concentration requires measuring the qualitative aspect of knowledge instead

of the quantitative aspect. Previous research on the link between innovation and

agglomeration, started by Audretsch and Feldman (1996) and reviewed by Carlino and

Kerr (2015), builds on count measures of inputs, intermediate outputs, and final outputs

of innovation, like the number of patents. Other authors build on self-developed or

borrowed, e.g. from Pavitt (1984) or Evangelista (2000), dichotomies of innovative and
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non-innovative activities/regions, see Glaeser and Ponzetto (2007); McCann (2008);

Caragliu et al. (2016) and Faggio et al. (2017). These have strong limitations in the

sense that count measures do not capture the quality of knowledge of each of the units,

e.g. patents, counted and are time indifferent.4 In this line, Balland and Rigby (2017)

argue that complexity should be based on the qualitative aspect of knowledge.

Here, building on ideas from innovation studies and complexity theory the suggestion is

made that more complex new knowledge requires more face-to-face-contact as it involves

tacit unfamiliar knowledge (Breschi and Lissoni, 2003; Storper and Venables, 2004),

and a finer division of labour as it requires individuals to strongly specialise in a limited

number of tasks because it is impossible for a single person to possess all this knowledge

(Leamer and Storper, 2001; Jones, 2009). As a result, with the advancement of

knowledge over time the connection between complexity and geographical concentration

has likely become more important.

To test these hypotheses, data are gathered on a wide range of activities on which

several continuous non-geographical measures of complexity are applied. The main

results are based on the size of teams involved in scientific papers, the average number

of years of education per occupation or per industry, the average year of introduction

of technology classes for patent categories. The results show that scientific papers

with a larger team, industries and job occupations with more years of education, and

patents with a more recent year of introduction concentrate more strongly in large

cities.

The patent dataset allows for the analysis of the connection between complexity

and spatial concentration since 1850. These results show that over time patents

increasingly concentrate in large cities as technology advances, in particular during the

industrial revolutions of 1870 based on electricity and 1970 based on the semiconductor

(computer). Furthermore, around the time of the computer revolution, a divergence

occurs in which less complex patents concentrate less strongly and more complex

patents concentrate more strongly. This is in line with Leamer and Storper (2001) and

is likely due to the dual effect of the improvement of communication and transportation

technologies that on the one hand allows for the routinisation and dispersion of the

less complex technologies but increases the need for physical connection for the more

complex technologies.

4Note also that count indicators are also influenced by other economic factors, like changing
patenting laws and strategies (Carlino and Kerr, 2015).
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1.3.4 Technological diversification in times of crisis
RQ4: To what extent do diverse cities differ from more specialised cities in

terms of diversification behaviour during crises?

Chapter 4, with co-authors Pierre-Alexandre Balland, David Rigby, and Ron Boschma,

considers dynamic economies of agglomeration. The relevance of regions to develop

new growth paths as old industries fade is demonstrated by the creative destruction

associated with technological change. As Vernon (1960) and Glaeser (2005) discuss

New York, respectively, Boston reinvented itself multiple times during its history by

developing new industries when economic change led to the decline of old industries.

Many large cities like Paris and Amsterdam managed to remain the largest city in

their country over centuries because they were able to reinvent themselves when

technological paradigms changed. Understanding why agglomeration persists also

requires understanding why certain cities are better able than others in overcoming

periods of downturn by developing new growth paths. In contrast to the static model

of Glaeser and Ponzetto (2007) where only good-producing and idea-producing cities

exist, cities have a wide variety of industrial portfolios and are able to develop new

industrial specialisations. The development of new specialisations by regions is the

core topic of Evolutionary Economic Geography.

Regions do not start from scratch when diversifying: they tend to build on existing

local capabilities, a process that has been labelled related diversification (Neffke et al.,

2011a; Boschma, 2015; Rigby, 2015). This is not to say that unrelated diversification

(i.e. the successful development of new activities unrelated to local activities) does

not occur in regions, but the evidence shows it is a rare phenomenon (Hidalgo et al.,

2007; Neffke et al., 2018; Pinheiro et al., 2021), as was already argued by Rosenthal

and Strange (2004).

Where larger and more diverse cities first of all already have less chance of entering

a crisis as “their fortunes are not tied to the fortunes of a few industries.” (Chinitz,

1961, p.281).5 This chapter is concerned with the advantages of diverse cities when

these have entered a crisis. Jacobs (1969) emphasises that diverse cities have more

options for the recombination of ideas, which leads to “adding new work”. The creative

destruction of a technological revolution may exactly be the moment where radical

innovations, “adding new work”, is more advantageous than incremental innovations,

“expanding old work”. This advantage is complemented by the fact that in diverse

regions, industries and vested interests are less likely to dominate the institutional and

5Frenken et al. (2007) find proof for this, but conclude that it holds in particular for unrelated
variety instead of diversity per se.
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policy network that can block new key developments (Grabher, 1993; Boschma, 2015;

Neffke et al., 2018).

However, to this day these ideas have not been put to the test nor if unrelated (more

radical) or related (more incremental) diversification is the norm during crises. Mostly

because studies on dynamic economies of agglomeration relied primarily on case

studies (Rosenthal and Strange, 2004, p.44) as it was empirically hard to quantify

diversification and the industrial distance between former and new industrial activities

before the development of the concept of relatedness, see Hidalgo et al. (2018). Kogler

et al. (2013); Boschma et al. (2015); Balland et al. (2015) and Rigby (2015) already

applied this concept to regions and technologies but have not investigated differences

in diversification behaviour in periods of economic downturn and technological change.

The focus lies on the three great historical crises of the U.S.A., the Long Depression

(1873-1879), the Great Depression (1929-1934), and the Oil Crisis (1973-1975). These

match moments of great technological change (Boschma, 1999). Notably the second

and third industrial revolutions of respectively the 1870s and 1970s.6

For the analysis, data of the HISTPAT database of Petralia et al. (2016) was updated

to be geographically consistent over time and to take into account code changes to

match census records of the time. Also, a R package fastlogitME was developed to

improve on current practices in R to calculate the marginal effects of logit models.

Results show that cities diversify less in new technologies during crises but when

they do these are more likely related technologies. This confirms the demand-pull

hypothesis of Schmookler (1966); Freeman et al. (1982) and Scherer (1982), which

states that the development of new and less familiar technologies happens in periods

of growth when there is more demand to fund these innovative activities. Diverse

cities are shown to outperform more specialised cities in two ways. First, they have

larger technological portfolios and therefore on average more relatedness density to

possible new technologies, which increases the probability of entry. Second, when one

controls for relatedness density diverse cities still outperform their more specialised

counterparts. This suggests that agents in diverse cities are generally more open to

new activities, which is in line with suggestions that vested interests against new

developments are stronger in specialised cities, see (Grabher, 1993; Boschma, 2015;

Neffke et al., 2018). A final analysis shows that there is no significant difference

between more diverse cities, intermediately diverse cities, and specialised cities in the

extent to which they switch to more unrelated diversification when entering a crisis.

6The Great Depression does not match an industrial revolution but economic change did occur
around this time, see Boschma (1999).
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1A Appendix: extended theoretical background
This thesis combines insights on economies of agglomeration, location choice and trans-

portation costs from various subfields of urban economics and (evolutionary) economic

geography with insights from labour economics, international trade, innovation studies,

and complexity theory. As it requires a certain level of acquaintance with these fields

to follow the line of reasoning set out in the goal and scope of this thesis in Section

1.2, this section presents a more elaborated and detailed discussion of the theoretical

background

This section proceeds as follows: in Section 1A the theory behind the mechanisms of

economies of agglomeration is discussed; in Section 1A a more detailed discussion of the

heterogeneity among agents in the functioning of these mechanisms is discussed; Section

1A then discusses how these different agents then face different transportation costs;

where Section 1A discusses how these different transportation costs are associated with

different agglomeration patterns; Section 1A then discusses the evidence gathered by

studies in urban economics and economic geography on changes in these agglomeration

patterns and transportation costs and how these changes are mostly attributed to

changes in communication and transportation technologies; Section 1A discusses how

technological revolutions function and in particular how the computer revolution led to

economic changes through routine-biased technological change and trade competition

that alter the value of time of different agents. All together this provides the reader

with the theoretical background from which the research questions in Section 1.3 are

deduced.

Theoretical mechanisms of economies of agglomeration
Any treatment of economies of agglomeration invariably has as starting point the work

by Marshall (1890). Here I will follow the associated categorisation of the sources of

agglomeration benefits: labour market pooling, input-output linkages, and knowledge

spillovers.7

Labour pooling

Over a century before Marshall (1890), Smith (1776) describes a first mechanism

of agglomeration benefits, namely, the division of labour. When workers divide the

labour tasks in production this creates efficiency gains for three reasons: first, the

workers improve their skills at performing that skill, also known as learning by doing;

second, a worker saves time from not having to switch between tasks; and third, it

7Note that Duranton and Puga (2004a) categorise the benefits by sharing, matching, and learning.
While this categorisation may conceptually be more intuitive, to date it has not been possible to
develop meaningful empirical metrics capturing sharing, matching, and learning.
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allows for labour saving innovations such as the development of specific tools or the

mechanisation of part of the tasks.8 Rotemberg and Saloner (2000) and Duranton and

Jayet (2011) show more recent evidence of the larger division of labour tasks in cities.

A second mechanism of agglomeration benefits is the sharing of risk, as already

mentioned by Marshall (1890) and further worked out by Krugman (1991) as cities

offer a constant market for skill, which means that firms that experience fluctuations

in the demand for their products/services can scale up or down. If one firm faces a

positive shock, workers with similar skills are readily available to join the production

process. If, on the other hand, a firm faces a negative shock, workers can more easily

find another job if similar firms are present. This alleviates negative wage effects a

firm has to face during these shocks and thus the uncertainty.

A third advantage is related to matching, Duranton and Puga (2004a) detail that as

more agents try to match the quality increase the probability of matching, quality

of matches, of the match improves; the chances of matching, in a market with the

chances of finding one that matches one needs increases. Most research on matching

relates to job-seekers and job vacancies (Helsley and Strange, 1990) but Duranton and

Puga (2004a) extend it to input-output linkages and knowledge spillovers. Matching

also mitigates hold-up problems, when more matching parties are available the risk of

hold-up problems decreases as alternatives for uncooperative partners are more readily

available.9

However, there are also disadvantages related to labour market pooling, firms have

less incentive to invest in the human capital of their workers when the risk of losing

them to competitors is higher (Matouschek and Robert-Nicoud, 2005; Combes and

Duranton, 2006). In this respect, labour market pooling acts as a dispersion force

instead of an agglomeration force.

Input-output sharing

Marshall (1890) detailed how customer firms and supplier firms can save on trans-

portation costs and more easily exchange information when colocated. The colocation

of many customers-suppliers also leads to productivity benefits as there is sufficient

demand for the development of niche products, that can more precisely fit specific

8Note that the division of labour itself has already been described in Ancient Greece by Plato
and Xenophon, see Finley (1973) and Silvermintz (2010), but that Smith (1776) is generally more
cited in the literature, see for example Duranton and Jayet (2011) and Hausmann et al. (2014).

9Hold-up problems occur when incomplete agreements between two parties allow one party to
extort the other when that latter party made asset-specific investments in return for future profits
depending on the former party. In this situation, the former party can renegotiate its share of the
profits and has bargaining power if the latter party already has made investments, which it can’t
easily extract or can’t easily replace the former part with a new partner
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needs and because it becomes possible to share the costs of large indivisible goods and

facilities like airports and broad-band internet (Duranton and Puga, 2004a).

Knowledge spillovers

The most famous quote of Marshall (1890, p.198) is: “great are the advantages which

people following the same skilled trade get from near neighbourhood to one another.

The mysteries of the trade become no mysteries; but are as it were in the air, and

children learn many of them unconsciously.”

Individuals working and interacting in close proximity allows less experienced workers

to acquire the skills and knowledge of more experienced workers and become more

productive. This also has a dynamic agglomeration component as knowledge accumu-

lates in a person and the learned skills remain with that person even when one moves

out of an area (Glaeser, 1999; De la Roca and Puga, 2017).

Heterogeneity
The work of Marshall (1890) was inspired by the large industrial complexes following

the second technological revolution based on the invention of electricity. In the

1960s works by Vernon (1960), Chinitz (1961) and Jacobs (1969) pointed out a great

heterogeneity between agents in the functioning of these economies of agglomeration

and its industrial scope, i.e. the originating source.

Raymond Vernon is mostly associated with the product life cycle theory.10 Vernon

(1960) details how New York offers benefits to firms in the young phase of the product

life cycle. This type of firms is engaged in “producing the unpredictable” (p.100).

“From one month to the next, a producer sometimes has no way of knowing what he

may be expected to produce, what materials or processes may be involved, and what

volume may be demanded.” (p.101). These firms are small as they do not invest in

specialised machinery for mass-production or workers specialised in only a few tasks as

knowledge, production capital or inputs may change regularly. Therefore these firms

build on external economies of agglomeration, i.e. unstable relations with other firms

for requirements not in house.11 Their business model is to compete by catering to

small niche markets and being able to meet timely and specific requests for which New

York offers benefits in speed and contact that compensate the high wages and high

rents.

10He elaborated the product life cycle theory in international trade in Vernon (1966), but the
basics of the theory focussed on urban economics were already strongly present in his summary, see
Vernon (1960), of the New York Metropolitan Region study, which he conducted with among others
Benjamin Chinitz.

11External to the firm should not be confused with agglomeration externalities, as these latter
mean that the benefits are not directly paid for and hence are external to the market.
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When a product and its production methods are standardised the product enters the

mature phase of the product life cycle. Here long-term investments in knowledge,

production capital and input production can be made. The economies of agglomeration

are no longer external but internal to the firm.12 The critical competitive question

for these firms is no longer product design but the costs of labour, transport, and

land. Speed and contact are no longer requirements, as Vernon (1960) argues that

phone calls generally suffice for the contact required in this type of production, e.g.

referencing product numbers in catalogues. Firms at the end of the product life cycle

build on large mass production facilities to compete on the basis of low prices.

Chinitz (1961) describes this type of firms in Pittsburgh, which for example have each

their own transportation fleet instead of sharing external transport providers. He

argues this type of specialised city, i.e. few industrial sectors, with large firms inhibits

the development of new firms because these new firms generally cannot make the

large investments to obtain internal economies of scale but there are also no external

economies of scale a firm can make use of, e.g. independent transportation services.

Jacobs (1969) adds that specialised cities have fewer options for the development of

new industry specialisations, known as diversification, because new ideas originate

from the recombination of existing knowledge. Notably by applying ideas from other

sectors, which is more likely to happen in diverse cities. Furthermore, Jacobs (1969)

argues that local economic growth comes from “adding new work”, which are more

radical developments leading to new products/production methods, in comparison

to “expanding old work”, which are incremental developments in more standardised

production processes.

Because this latter type of process is more likely happening in specialised clusters,

which are predominantly featured in the descriptions of Marshall (1890). Jacobs and

Marshall are often contrasted in the literature, with, on one hand, Marshall-based

localisation economies, i.e. economies of agglomeration within the same industrial

sector, versus Jacobs-based urbanisation economies, i.e. economies of agglomeration

between sectors, see Glaeser et al. (1992); van Oort (2002); Beaudry and Schiffauerova

(2009); Caragliu et al. (2016).13

12Also known as economies of scale.
13Other authors, like Rosenthal and Strange (2004) and Faggio et al. (2017), would say that

Marshall’s descriptions of the mechanisms of agglomeration are not necessarily meant to only hold for
specialised cities, despite the use of “same skilled trade” in his most famous quote. The mechanisms
of labour market pooling, input-output linkages and knowledge spillovers can lead to agglomeration
benefits within as well as between sectors, as shown by Faggio et al. (2017). After all, Marshall (1890)
was only describing how they work in the industrial complexes of his time not how they would work
in the future.
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Relatedness

The dichotomy of localisation economies versus urbanisation economies basically forms

the two options in the industrial scope of Rosenthal and Strange (2004). Even though,

it is not hard to imagine that a continuous measure is more in place. Some sectors

complement other sectors more than others do (Frenken et al., 2007). For example,

for a car manufacturer, the ideas used in the semiconductor industry are likely more

relevant than those used in the meat industry.

However, it is very hard to quantify such a qualitative aspect as how related two

industries are in a certain dimension. To give an idea of the extent to which two

activities use similar capabilities, the concept of relatedness is developed by Hidalgo

et al. (2007) and has rapidly gained in popularity (Hidalgo et al., 2018). Hidalgo et al.

(2007) build on the export of products by countries. They argue that if two products

are more often produced together in a country than these likely use similar capabilities

and are therefore more related. The probability of co-occurrence, therefore, gives an

idea of the relatedness between products, which can be visualised as a network.14 In

the case of Hidalgo et al. (2007) called the product space which they use to predict

the development of new specialisations by countries, based on the country’s activities

relatedness, known as relatedness density, to new activities. Since then, a large body of

literature, see Hidalgo et al. (2018) for an overview, shows that for many geographical

units (cities, regions, countries) and many activities (products, patents, occupations,

research areas) the relatedness of an area to an (new) activity is positively associated

with the growth of that activity. This suggests that there are different distances in the

industrial scope than just diverse or specialised.

All in all, the literature on the industrial scope shows that this heterogeneity matters

differently for the productivity gains of different production activities. Productive

activities do not only differ in the industrial scope of economies of agglomeration

but also the extent to which colocation is necessary, i.e. the geographical scope.

Both the productivity gains and the geographical distance are strongly connected to

transportation costs.

Transportation costs
Smith (1776) already wrote that transportation efficiency determines the extent of the

market for each task and therefore the division of labour. A worker that specialises

in a certain task needs to have sufficient demand in trading distance to be able to

purchase other goods and services. As an example, Smith (1776) contrasts the remote

dwellers of his time in the Scottish Highlands that are each their own farmer, brewer,

14Note that an improved formula for this probability is introduced in this thesis.
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butcher and baker to city dwellers who specialise in only one of these tasks.

Marshall (1890) based the categorisation of labour market pooling, input-output

linkages, and knowledge spillovers on the notion that firms can colocate to save on

the transportation costs of people, goods, and ideas. However, each of these channels

may require the transport of more than one of these. For example, sharing ideas may

require exchanging prototypes (transporting goods) and possibly meeting in person

(transporting people).

This last aspect is particularly important as face-to-face contact, is “the most funda-

mental aspect of proximity” (Storper and Venables, 2004, p.351) and therefore essential

for understanding the need for colocation. Storper and Venables (2004) make the

distinction between codifiable information and uncodifiable information, also known

as tacit knowledge. Codifiable information can be easily and cheaply transmitted if

sender and receiver understand that system, e.g. language and mathematical notations,

and have the means of communicating it, e.g. letters, books, e-mail. In contrast,

uncodifiable information can not fully be expressed in a symbol system, as often

different dimensions of the problem at hand are only understood in relation to each

other (Storper and Venables, 2004). This is what (Glaeser, 2011, p.24) calls the

“complex communication curse”, which can be resolved via face-to-face interaction as

“long hours spent one-on-one enable listeners to make sure that they get it right.”. Face-

to-face contact is particularly useful for building trust and communicating complex

information (Storper and Venables, 2004; Glaeser, 2011).15

However, determining to what extent geographical proximity is required to share

information is challenging. Breschi and Lissoni (2001) and Boschma (2005) state that

understanding codifiable information may require long study and shared experiences

to understand jargon and background information and therefore may still require

face-to-face contact. On the other hand, persons that have a great understanding

of the same matter and each other’s roles may be able to mainly communicate via

codified information and video calls.

Where Rosenthal and Strange (2004) distinguish three forms of distances, Boschma

(2005) labels these proximities, of which geographical and cognitive match to geograph-

ical and industrial respectively, while the temporal scope is not explicitly mentioned

15Storper and Venables (2004) summarise the advantages of face-to-face contact stating that it
is an efficient communication technology, as it allows for instant interruption, feedback, and repair
and builds on visual and body language cues; it allows for screening and socializing, which depend
on identifying and assimilating tacit knowledge among group members; it generates psychological
motivation; and it helps build trust as it aids in the detection of lying and meeting face-to-face
requires a larger sacrifice of time to come to the same location compared to other communication
tools, which signals commitment.



1A. APPENDIX: EXTENDED THEORETICAL BACKGROUND 23

by Boschma (2005) but social, organisational and institutional is not mentioned by

Rosenthal and Strange (2004). These last proximities relate, respectively, to sharing

social ties, organisational practices, and values of conduct. When these are well

developed geographical proximity is not necessary. However, geographical proximity

can help overcome barriers in these dimensions.

These barriers hence give clues when geographical proximity is more relevant. In

this line, Breschi and Lissoni (2001) suggest that this holds in the early stages of a

project when the organisation and common language is still under development. This

is in line with Vernon (1960) who discusses that the early stages of the product life

cycle require speed and contact but the mature stages can do with phone calls and

referencing catalogue numbers and the descriptions by Arzaghi and Henderson (2008)

of the advertisement industry in which continuously networking in person is essential

for new projects and new partners. Bridging cognitive/industrial/relatedness and

social distances are likely more important here matching the advantages of face-to-face

contact.

The transfer of ideas may therefore require the movement of people and this may be

necessary not only for knowledge spillovers but also input-output linkages or labour

market pooling. Mutual contact on the customisation and user guidelines of an input

and on matching and dividing labour tasks may require the movement of people.

The transportation costs of people, goods, and ideas consist of two dimensions: pecu-

niary costs and opportunity costs, also known as money costs and time costs (Becker,

1965; Glaeser and Kohlhase, 2004). For example, it costs, at the time of writing, 7.50

euro to travel from Amsterdam Zuid to Utrecht Centraal by train but it also takes 23

minutes of someone’s time, which could have been spent more productively.16 People,

goods and ideas may differ in their opportunity cost depending on context. Small

firms with little inventory competing on timely niche products face larger opportunity

costs for required inputs in knowledge, goods and labour than larger firms with stan-

dardised inputs and large inventories (Vernon, 1960; McCann and Fingleton, 1996).

The opportunity cost of a person, good, or idea is hard to measure as theoretically the

benchmark is the best use of that person, good, or idea at that time.17

16The loss in productivity while travelling has decreased through the democratisation of connected
devices and improved connection in public transport (Adoue, 2016).

17Value of time also explains why Edward Glaeser only allows for meetings of 15 minutes for PhDs,
while other professors are generally more generous with their time.
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Agglomeration patterns
To get an idea of the relevance of total transportation costs, agglomeration patterns

can be revealing. Agents will locate where transportation costs are the lowest, as

already suggested by Weber (1922). von Thünen (1826) build a land-use model stating

that agents that obtain the highest benefits of a location will outbid other agents for

the land closest to that location. However, these other agents with lower benefits and

lower transportation costs may be able to outbid the former agents for pieces of land

further away. In the monocentric city model by Alonso (1960, 1964); Muth (1969) and

Mills (1967) add to this land-use model that agents can substitute land for capital

by building high-rise buildings and therefore allowing more agents on smaller plots

of land, which increases the total willingness to pay for a plot of land. These sources

show that the transportation costs of different agents, in the sense of pecuniary costs

and missed opportunities for not being close to a location, can therefore be deduced

from the distance to inputs, the location, density, and land values.

The empirical evidence on the importance of distance for economies of agglomeration

dates back to Jaffe et al. (1993), who find that patents are more likely to cite patents

in the same Metropolitan Statistical Area (MSA) or county than similar patents

further away.18 More recently, Inoue et al. (2019) show in Japanese patenting activity

that geographical proximity matters more for inter-firm collaboration than intra-firm

collaboration, in particular of small firms, confirming Vernon (1960) ideas on their

needs for speed and contact. Rosenthal and Strange (2003) show that localisation

effects are strong and attenuate more strongly for software industries than industries

working on fabricated metals and machinery, of which the former is arguably more

complex. Arzaghi and Henderson (2008) show that for advertisement agencies in New

York the opportunities for networking attenuate extremely sharply with distance being

equal to zero when located at more than 750 meters of another agency. This indicates

that the opportunity costs of walking 750 meters for interaction are that high that

the willingness to pay for proximity drives up the land prices around Madison Avenue.

Advertisement agencies are relatively easy to stack upon each other, giving rise to the

skyscrapers while Chinitz (1961) describes that the large complex firms in Pittsburgh

described only have limited possibility to substitute land for capital.

In terms of geographical concentration, there is a large literature beginning with

Audretsch and Feldman (1996) who show that the number of patents and R&D

expenditures are more concentrated than production activities. Carlino and Kerr

18Note that Breschi and Lissoni (2003) who reviewed the paper argue that social ties and labour
mobility are more likely to play a role and that geographical proximity per se is not sufficient, in line
with Breschi and Lissoni (2001) and Boschma (2005).
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(2015) review this literature, noting among others that venture capital is even more

spatially concentrated than R&D expenditures and patent production. They argue

that these innovative activities are reasonably more complex than other activities and

therefore require more face-to-face contact. In line with the suggestions of Vernon

(1960); Breschi and Lissoni (2001) and Arzaghi and Henderson (2008) that newer

unfamiliar knowledge requires face-to-face contact, this kind of activities also locate

close to inputs and strongly concentrate in space. However, how to exactly measure

the innovativeness, newness or complexity remains unstated. This is further discussed

in Chapter 3.

All in all, economies of agglomeration play different roles for mature activities compared

to young activities both in the terms of the sources of productivity gains and the

extent to which colocation is required. Localisation economies are associated with

economic growth in low-density and less-knowledge/technology-intensive regions, see

Caragliu et al. (2016), large establishments in the mature phase of the product life cycle

building on internal economies of scale, see Duranton and Puga (2001) and Neffke et al.

(2011b), which are more likely to make use of labour market pooling and input-output

linkages, see Faggio et al. (2017). On the other hand, these studies show, respectively,

that urbanisation economies are associated with dense knowledge/technology intensive

areas and small establishments in the young phase of the product life cycle building on

external economies of scale, which are more likely to make use of knowledge spillovers.

This suggests that transportation costs, likely in the form of opportunity costs, are

lower for mature production activities.

The heterogeneity in the role of economies of agglomeration between activities raises

the main question of this thesis how these change over time and why.

Changes in agglomeration patterns and transportation costs
As a logical consequence of the focus on transportation costs and their relation to

agglomeration patterns, a lot of attention in the literature is given to the role of

communication and transportation technologies.

This relation over time is well detailed by Anas et al. (1998): Prior to 1840 cities were

tied to ports as transportation was the cheapest using waterways. In the 19th century,

trains started competing with ships. Nonetheless, within city transport remained

expensive as it was done by slow and unreliable horse carriage and foot forcing all

activities to cluster tightly around stations and harbours. This changed first around

1850 with the advent of streetcars and then with the development of telephone lines

and the democratisation of motor vehicles. In particular, manufacturing firms left the

transportation hubs to develop large scale assembly line production facilities in the
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cheaper outermost suburbs. Leaving the central cities to start “their painful transition

from manufacturing to service and office centers.”(Anas et al., 1998, p.1430).19

Vernon (1960, p.109) and Leamer and Storper (2001, p.641) argue that technology

has a double role in relation to agglomeration, at the one hand it allows for the

routinisation of complex tasks, i.e. turning them into mature production activities,

and thus allowing for its spatial dispersion, while on the other hand, it increases the

complexity and time-dependence of productive activity, which requires more reliance on

external economies and therefore more agglomeration, like young production activities.

But where (Vernon, 1960, p.109) argues that guessing how the balance between the

two plays out is “predicting the thoroughly unpredictable.” Leamer and Storper (2001)

argue that cities overall will continue to grow with the increasing need for face-to-face

contact, with each infrastructure improvement, even though shedding the jobs that as

a consequence become routine and mobile enough. Thereby, pointing to the urban

concentration trends in relation to transportation developments in earlier centuries, in

a similar fashion as Anas et al. (1998).

Leamer and Storper (2001) in particular predict that the internet will lead to the

opposite of what Cairncross (1997) calls “the death of distance”. Thereby joining a large

literature that face-to-face contact cannot be substituted by communication technology

and that the development of communication and transportation technologies and the

global integration of markets have actually increased the returns on physical encounters

(Gaspar and Glaeser, 1998; Leamer and Storper, 2001; Storper and Venables, 2004;

Rodŕıguez-Pose and Crescenzi, 2008; McCann, 2008; Glaeser, 2011; Moretti, 2012).20

Like Leamer and Storper (2001) these sources unanimously emphasise the increase in

complexity of the information is in one way or another. For example, McCann (2008,

p.357) asserts that “the time (opportunity) costs associated with not having continuous

face-to-face contact have increased with the quantity, variety and complexity of the

information produced.”. In this line, Glaeser and Kohlhase (2004) and Glaeser and

Ponzetto (2007) discuss how the transportation costs of goods decreased over the last

century, allowing for dispersion of certain activities, but that those of people increased,

due to increasing wages and therefore higher opportunity costs of their time, leading

to the concentration of face-to-face activities.

19Anas et al. (1998) note that in European cities less explicit trends in decentralisation occurred,
likely due to the more important role of cultural amenities, as also described in the comparison
between Paris and Detroit by Brueckner et al. (1999). Although better public transportation, less car
accessibility and higher fuel taxes also play a role, see Glaeser et al. (2001), as well as differences in
spatial planning, see Garreau (1991).

20Note also that New Economic Geography models predict a stronger concentration of activities
with stronger local agglomeration economies and lower barriers to trade, both between regions as
between countries (Rodŕıguez-Pose and Crescenzi, 2008; McCann, 2008).
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The most cited piece of evidence is the increase in the spatial concentration of human

activities (Storper and Venables, 2004; McCann, 2008; Rodŕıguez-Pose and Crescenzi,

2008; Glaeser, 2011; Moretti, 2012). Pointing out the trends around the world in

agglomeration and urban concentration is convincing that economies of agglomeration

have increased in importance but is somewhat of a circular argument, to explain why

there is increased concentration one refers to the increasing importance of economies

of agglomeration and the proof is again the increased concentration.

Much evidence is also directed to demonstrating that geographical proximity still

matters, Gaspar and Glaeser (1998) show that business travel increases and that both

denser cities use more communication technologies and that people closer together

are more likely to contact each other by telephone, which indicates that interaction

through technology is a complement instead of replacement to most local physical

interaction. Leamer and Storper (2001); Duranton and Storper (2008) and McCann

(2008) discuss evidence that there is no sign of a reduction but actually an increase

in the importance of distance in international trade. Gaspar and Glaeser (1998);

McCann (2008) and Glaeser (2011) discuss that the industries with access to the best

communication technologies are also the most concentrated, such as those in Silicon

Valley. While at the other hand less complex forms of production such as call centres,

assembly, or back-offices can easily be coordinated from further away, as illustrated by

anecdotes in McCann (2008) and Glaeser (2011).

However, the reasons why complexity and the need for proximity increases are very

much underdeveloped, hampering the correct identification of the (changing) sources of

agglomeration.21,22 Furthermore, just pointing to the development of communication

and transportation technologies is insufficient to explain agglomeration dynamics for

two reasons: (1) the divergence in agglomeration trends starts around 1980, which

is many years before the first notable breakthroughs in communication are made;

and (2) for a brief period between 1950 and 1980 forces for dispersion actually were

overtaking forces for agglomeration, see Anas et al. (1998); Berry and Glaeser (2005);

Glaeser (2011), despite (or thanks to) an increase in transportation speed due to the

democratisation of the combustion engine and telephone lines.

Therefore, before reviewing the evidence on the economies of agglomeration, I will

go in more deeply into the specifics of the computer revolution and the changes

it brought about in the nature of human activities. More specifically, the changes

21With an exception for a part of Leamer and Storper (2001) discussed further on.
22For example, during my master’s program the book by Glaeser (2011) left me inspired but

unsatisfied by claiming but insufficiently backing that (pp.37-38) “as we acquire more efficient
means of transmitting information, like e-mail or Skype, we spend more, not less, time transmitting
information.”



28 CHAPTER 1. INTRODUCTION

in the opportunity costs of routine versus creative abstract labour tasks, and the

balance between the competitive advantages of mature and young production activities.

Thereby building on insights from innovation studies and labour economics.

The computer revolution
The watershed in the trends of spatial concentration and spatial divergence occurred in

the 1980s, which coincides with the democratisation of the computer. This discontinuity

echoes in the innovation literature. Helpman and Trajtenberg (1998) argue that

economists too often treat technological progress as being continuous and incremental,

while it is often punctuated by a radical innovation that replaces old technologies and

production processes. A force that Schumpeter (1942, p.82-83) has dubbed creative

destruction, the ”process of industrial mutation that continuously revolutionises the

economic structure from within, incessantly destroying the old one, incessantly creating

a new one”. Based on the cycles of expansion, boom, recession, and depression by

Kondratieff (1926), Schumpeter (1939) argues that radical innovations cluster in time

and are then followed by a swarming of related innovations until the technology matures

and recession hits. In analogy with the product life cycle theory, entire parts of the

economy can switch to the phase of experimentation.

The most radical of these economic shifts occur during industrial revolutions, which

are based on so-called general purpose technologies (GPTs) as dubbed by Bresna-

han and Trajtenberg (1995). These are technologies of which the usefulness of the

invention is not limited to its domain but spreads through many other fields giving

rise to increasing returns to scale due to technical improvements and complementary

innovations. As such, Bresnahan and Trajtenberg (1995); Helpman and Trajtenberg

(1998) identify three industrial revolutions based on respectively steam, electricity, and

the semiconductor.

The semiconductor technology originates in 1947 but it is the 1971 microprocessor

that made the revolutionary use of this technology (Helpman and Trajtenberg, 1998).

Followed swiftly by the first personal computer, the Altair 8800 in 1975, lending its

name to this industrial revolution.

The nature of the technological revolution can also alter the balance between young

production activities and mature production activities. Where the production methods

of the electrical revolution based on mechanisation employed mainly routine middle-

skilled machine operatives, these workers are virtually redundant in the production

methods of the computer revolution, which instead rely on high-skilled problem-solving

workers (Goldin and Katz, 1998; Autor et al., 2003; Goos et al., 2009; Autor and Dorn,
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2013).23

More specifically, computerised machinery is highly suitable to perform routine tasks

that follow explicitly programmable rules, thereby replacing the middle-skilled workers

that are predominantly involved in these tasks (Autor et al., 2003, 2015).24 At the

same time, computers can not easily perform abstract tasks that require flexibility,

creative thinking, and complex communication. However, it can complement workers

with these tasks as these often require routine informational inputs (Autor et al.,

2003). Tasks as record-keeping, calculation and searching information have been made

infinitely easier due to the computer and related innovations, which mainly boosted

the productivity of high-skilled workers.25

High-skilled workers are further benefited by the arrival of the computer, as the

business value lies not in the trillionfold decline in the real price of computing power,

see Nordhaus (2007), but in leveraging this capability by inventing and managing

new processes and organisational structures, which raises the demand for creative,

communicative and problem-solving skills (Brynjolfsson and Hitt, 2000; Autor et al.,

2003).

These new opportunities include the increased possibility of opening new markets

due to the development of communication and transportation technologies and the

global integration of markets (Leamer and Storper, 2001; Glaeser and Ponzetto, 2007;

McCann, 2008). Manual tasks, often performed by low-skill workers, such as required

in non-routine jobs are hard to automate but when these do not require close proximity

they can be outsourced to lower-income countries (Autor et al., 2003, 2013, 2015).26

It then further increases the demand for idea-intensive workers to develop the complex

coordination of worldwide networks to increase product and timing differentiation

(Leamer and Storper, 2001).27

At the firm level, the computer revolution is associated with a switch from mass

production to mass customisation. Where single product assembly lines, à la Henry

23The switch is verbally put by Austin et al. (2018, p.9): “Henry Ford’s automated assembly lines
depended on tens of thousands of less skilled workers, and hence his skills strongly complemented less
skilled labor. Bill Gates’ innovations primarily employed highly skilled software programmers.”

24This not only includes the mentioned routine machine operatives but also clerical workers in
administration and management.

25For example, much of the literature and data collection, visualisation, and analysis in this thesis
would not have been possible without these innovations.

26Autor et al. (2013) give the example of cooks in restaurants versus cooks that make prepared
meals for grocery stores, which can be done abroad.

27A notable example being the five-page report of Friedman (2007, pp.414-419) who retraces
the origin of his Dell laptop is one of the many perplexing accounts of these possibilities.Friedman
(2007, p.419) finds out that the total supply chain for his “computer, including suppliers of suppliers,
involved about four hundred companies in North America, Europe, and primarily Asia”.
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Ford, were outcompeted by more flexible production processes able to switch and

customise products and as such being able to cater to more fragmented niche markets

and handle volatile demand (Storper and Scott, 1992; Pine, 1993). In accordance,

Brynjolfsson and Hitt (2000) note that less vertically integrated, more knowledge-

intensive, higher-skilled, and less standardised establishments were more effective in

harnessing the potential of the computer.

The competitive advantage of developing new ideas is complemented by trade com-

petition. It is notably the import competition by Japanese export industries such as

machine tools, motorcycles and consumer electrical products in the 1980s that speared

the switch to mass customisation (Storper and Scott, 1992; Pine, 1993). More recently,

the attention has shifted to the rise of China. Between 2001 and 2007, U.S. manufac-

turing industries lost 18% of their workers but the value added kept increasing (Pierce

and Schott, 2016). This is indicative of the major changes western manufacturing

industries underwent due to import competition from low-wage countries. Bernard

et al. (2006); Pierce and Schott (2016), and Bloom et al. (2016) document how U.S.

and European manufacturing industries become more technology- and skill-intensive.

They invest more in R&D and management quality, both through investments within

surviving establishments and the reduction of employment and survival probability of

more labour-intensive low-tech establishments. Relatedly, Holmes and Stevens (2014)

document how larger establishments producing standardised products are outcompeted

by Chinese imports, whereas smaller establishments producing customised goods for

niche markets are less harmed. These traits bear close resemblance to those discussed

earlier, therefore at the firm level, the effects of technological progress are likely to be

similar to those of trade.28 Further increasing the returns to skill (Autor, 2019).

All in all, the democratisation of the computer therefore not only coincides with a

structural break in the divergence of prosperity over space but also with (1) a structural

break in returns to skill and (2) a shift from mature towards young production processes.

The first makes it likely that the opportunity costs of face-to-face contact increased.

The college wage premium, the difference in returns on a college degree versus a high

school degree, can be seen as a reasonable measure of the opportunity cost of the

lost productive time of college-educated workers (Glaeser et al., 2001; Glaeser and

Kohlhase, 2004; Small, 2012). It was decreasing until the 1980s and has grown ever

28At the job level, there are differences in the extent to which jobs are threatened by automation
or trade competition, see Autor et al. (2015).
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since (Freeman and Hollomon, 1975; Autor, 2019).29 Although the details of this

rising wage inequality differ across skills and countries.30 This also makes it likely

that the automation of routine tasks, in general, is affecting these opportunity costs,

complemented by trade competition, instead of just the automation of routine tasks in

communication and transportation technologies. In this line, Autor et al. (2003) and

Deming (2017) already noted an increase in the intensive and extensive margins of

interactive tasks performed by workers and increasing returns to social skills. Michaels

et al. (2019) show that the number of interactive tasks is even stronger in cities and

has risen continuously over time.

The second makes it likely that the relative importance of sources of agglomeration and

industrial scope has shifted to those more important for young production activities.

In this line, Glaeser and Ponzetto (2007) build a model that explains that “the

death of distance” has been beneficial to idea-producing cities but detrimental to

good-producing cities. As proof, they compare the largest industries in New York,

Chicago, San Francisco, Boston, Cleveland, and Detroit and show that the latter two,

which are more strongly specialised in manufacturing, declined in population and real

wages, while the former cities, which are specialised in idea-intensive sectors, grew

in population and real wages. McCann (2008) build a similar model based on high

value-added goods versus low value-added goods.31 Relatedly, cities that had initially

high levels of human capital or abstract skills experience more growth in the number of

high-skilled jobs (Berry and Glaeser, 2005; Berger and Frey, 2016) and the college wage

premium (Moretti, 2012). This clearly shows path dependence and the importance of

the temporal scope. As the dynamic agglomeration effects of previous activities are

strongly associated with the productivity of more recent activities.

But where these changes in agglomeration patterns are rather well documented the

29Ironically, Freeman and Hollomon (1975) published an alarming piece on the continuously
decreasing difference between the wages of college-educated and of those with only high-school degrees.
At this rate, they (p.29) argue “a growing number of people may be destined to remain underemployed
or - by implication - overeducated.”.

30Wage inequality has grown since 1980, mostly at the expense of middle-skilled routine workers
and less for low-skilled in-person service workers (Goos et al., 2009; Acemoglu and Autor, 2011; Autor
and Dorn, 2013; Autor et al., 2015). Note that U.S. workers that did not complete college actually
earn on average less today than they would have in the 1970s, when corrected for inflation (Acemoglu
and Autor, 2011; Moretti, 2012). In the Netherlands and France similar but less pronounced trends
of wage inequality exist, although in France this is only pre-tax (Groot and De Groot, 2011; Verdugo,
2014; Bozio et al., 2016). In this sense, France is an odd duck compared to other advanced countries.
Where a growing inequality in gross labour wages occurred but actually a decrease in net wage
inequality, as changes in taxation more than compensate the underlying growing inequality in labour
costs (Verdugo, 2014; Bozio et al., 2016).

31Interestingly low value-added goods also concentrate in this model due to the home market effect
of the New Economic Geography models resulting in large cities that attract all activity and smaller
cities disappearing, in a sort of extreme winner takes all scenario.
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changes in the roles of the economies of agglomeration are not, which provides the

motivation for the research questions presented in Section 1.3.
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Chapter 2

The dynamics of industry

agglomeration:
evidence from 44 years of coagglomeration

Abstract – Evidence abounds that agglomeration patterns have changed over time,

but little is known on changes in the underlying determinants of agglomeration. We

analyze 44 years of coagglomeration patterns of U.S. manufacturing industries. Our

findings show that over time input-output linkages and labour market pooling become

less important determinants of industry agglomeration, while knowledge spillovers

have become more important. We show that trade and technology shocks are strongly

associated with the decline in the importance of labour market pooling and the growing

importance of knowledge spillovers. The downward trend in the importance of input-

output linkages is associated with increased trade competition but not with a decrease

in the transportation costs of goods.

This chapter is co-authored with Hans Koster and Frank van Oort. It is forthcoming in the Journal

of Urban Economics.
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2.1 Introduction
Economies of agglomeration are key in understanding the spatial distribution of

economic activities (Ellison and Glaeser, 1999; Duranton and Overman, 2005). A

well-established literature documents large changes in agglomeration patterns (see for

example Glaeser, 2011; Moretti, 2012), but pays limited attention to the changing role

of agglomeration determinants explaining these patterns (Ellison et al., 2010; Moretti,

2012; Combes and Gobillon, 2015; Storper, 2018).1

A natural starting point to study changes in agglomeration determinants is the

classification by Marshall (1890) into labour market pooling, input-output linkages,

and knowledge spillovers. Ellison et al. (2010) are the first to empirically distinguish

between the importance of each of these agglomeration determinants by regressing

pairwise coagglomeration intensity of U.S. manufacturing industries in 1987 on the

extent to which they employ similar workers, sell or buy from each other, and use similar

technologies. They find that input-output linkages matter most, followed by labour

market pooling, and knowledge spillovers. Since Ellison et al. (2010), and prior work by

Dumais et al. (2002), there have been a number of studies studying coagglomeration,

but most studies neither allow for heterogeneity in agglomeration determinants between

industries, nor measure changes over time (see e.g. Jacobs et al., 2013; Behrens, 2016;

Hanlon and Miscio, 2017; Aleksandrova et al., 2020). Notable exceptions are Faggio

et al. (2017); Diodato et al. (2018) and Faggio et al. (2020), as they show that there is

strong heterogeneity in the intensity of agglomeration determinants between industries.

Of particular interest here is the finding by Faggio et al. (2017) that technology and skill-

intensive industries value knowledge spillovers more, while labour market pooling and

input-output linkages are more relevant for low-skilled technology-extensive industries.2

Industries have become more technology and skill-intensive, which therefore likely has

changed agglomeration determinants. Hence, we think that analyzing heterogeneity

between industries over time may be important in understanding the changing role

of agglomeration determinants. Industry agglomeration changes through the growth,

closure, opening and relocation of establishments. These establishment dynamics have

1Using historical data, but with different methodologies, studies by Kim (1995); Dumais et al.
(2002); Klein and Crafts (2012, 2020), and Hanlon and Miscio (2017) suggest that agglomeration
patterns, as well as its determinants, may change considerably over time.

2They relate this to the ‘nursery city hypothesis’ as introduced by Duranton and Puga (2001).
The nursery city hypothesis implies that firms first learn about their ideal production process by
making prototypes. They then benefit from being in diverse places. Once firms have found their ideal
process, firms switch to mass production and relocate to specialised cities where production costs
are lower. Faggio et al. (2017) hypothesise that industries in the early developmental phase of the
industry’s life cycle coagglomerate because of knowledge spillovers, when industries become more
mature and standardise their production process they coagglomerate to take advantage of a common
labour pool and input-output linkages.
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likely been influenced by developments in trade competition, technological progress

and transportation costs of goods, following Bloom et al. (2016); Brynjolfsson and Hitt

(2000), and Glaeser and Kohlhase (2004), which are also associated with an increase

in technology and skill intensity.

In this Chapter, we study the dynamic nature of agglomeration economies. We assess

the changes of Marshall’s agglomeration determinants over time and document how

these changes are related to changes in trade competition, technological change, and

transportation costs. Our analysis consists of three steps. First, we exploit panel data

to explain manufacturing agglomeration by proxies for labour market pooling and

input-output linkages, as well as an improved proxy for knowledge spillovers. Second,

we identify changes in sources of agglomeration economies over time by estimating

year-by-year regressions. Third, we explore industry-year heterogeneity and test to

what extent these three channels of economic change can be associated with changes

in agglomeration determinants.

We invest considerable effort to digitise hard-copy data in order to build a unique

balanced panel dataset with consistent geographical units and industries covering

relevant aspects of coagglomeration, occupations, input-output linkages and patented

knowledge, for the years for which data are available: 1970, 1977, 1989 and then for

every 5 years until 2014. Our main analyses focus on coagglomeration in Metropolitan

Statistical Areas (MSA) of the U.S., as these approximately represent functional urban

areas.3

Each of the three steps introduces innovative measures and produces novel insights.

In the first step, we regress coagglomeration on proxies for Marshall’s determinants

of agglomeration. We build on Ellison et al. (2010) in defining coagglomeration and

proxies for labour market pooling, and input-output linkages. For knowledge spillovers,

we improve on Ellison et al.’s (2010) measure by focusing on the co-occurrence of

technologies employed in patented inventions rather than patent citations between

industries. We show that our so-called technological relatedness measure outperforms

patent citations in explaining coagglomeration. Following Faggio et al. (2017), we

control for simultaneous dependencies of industry pairs on non-manufacturing inputs

that may be correlated with coagglomeration.

The preferred specification shows that labour market pooling is the most important

determinant of agglomeration between 1970 to 2014. An increase of one standard

deviation in the extent to which two industries can share workers is associated with an

increase of 0.195 of a standard deviation in the extent to which these two industries

3We show that similar results hold at the county level, which cover the entire U.S.
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are coagglomerated in the same MSA. The impacts of knowledge spillovers and input-

output linkages are comparable in magnitude, as a standard deviation increase in the

respective proxies leads to an increase in coagglomeration of respectively 0.104 and

0.090.

In the second step, we investigate the dynamics in agglomeration determinants. We

estimate year-specific regressions of coagglomeration on Marshall’s sources of agglom-

eration economies. We find that knowledge spillovers have become more important,

as since 1970 the coefficient on knowledge spillovers has almost doubled. This is

strong support for a large literature that suggests that the sharing of ideas is the

reason that geographical proximity is still important despite the developments in

transportation and communication technologies.4 On the other hand, we find a clear

downward trend in the importance of labour market pooling and input-output linkages,

which decreased, respectively, by about 45% and 90%. Hence, the large changes in

agglomeration patterns documented in the literature may have been caused by drastic

changes in agglomeration determinants.

In a third step, we explore why the determinants of industry agglomeration have

changed over time and are different between industries. We estimate industry-year-

specific coefficients for each of the agglomeration determinants and project these on

proxies for three major economic trends that considerably altered the composition

of manufacturing industries. These are increased trade competition from low-wage

countries, routine-biased technological change, as well as a large decrease in the

transportation costs of goods (Glaeser and Kohlhase, 2004; Autor et al., 2013, 2015).5

We then test whether trade, technology, and transportation shocks are associated with

changes in the determinants of industry agglomeration. The results from the third

step show that more intense trade competition is associated negatively with labour

market pooling and positively with knowledge spillovers. Furthermore, the routine

employment share of an industry is associated positively with labour market pooling,

while negatively with knowledge spillovers. For example, a standard deviation increase

in routine employment share and trade competition is associated with an increase

of, respectively, about 100% and 40% of the median coefficient on labour market

4The evidence is in line with suggestions made in Chapter 3 and among others Gaspar and Glaeser
(1998); Storper and Venables (2004); McCann (2008); Glaeser (2011); Moretti (2012); Michaels et al.
(2019) who provide evidence that communication technologies complement face-to-face contact; and
that knowledge-intensive interactive activities increasingly concentrate in space.

5As proxies for trade competition and technological progress, we closely follow Autor et al. (2013)
and Autor et al. (2015). We measure trade through import competition from low-wage countries, and
technological progress by the share of workers with routine task-intensive jobs. For transportation
costs, we follow Glaeser and Kohlhase (2004) by calculating iceberg-like transportation costs for
goods.
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pooling. Hence, the effects are sizable. A likely interpretation is that increased trade

competition and technological progress led to more knowledge-intensive and flexible

industrial production processes, both through investments in surviving establishments

and the closure of the least competitive establishments (see Brynjolfsson and Hitt,

2000; Bloom et al., 2016). The demand for standardised routine tasks, and therefore

access to a ‘common’ labour pool, decreased, while knowledge spillovers related to new

(production) technologies became more important. This interpretation is in line with

the results on high-technology/high-education industries of Faggio et al. (2017).

Interestingly, we find that transportation costs of goods are not strongly associated

with input-output linkages. However, we do find evidence that more intense trade

competition negatively relates to input-output linkages. A standard deviation increase

in trade competition is associated with a decrease of about 50% of the median coefficient

on input-output linkages. An extended analysis provides support for the idea that local

input-linkages are replaced by input-linkages originating in low-wage countries. In

contrast to Faggio et al. (2017), we do not find evidence that the decline in input-output

linkages can be explained by industries becoming more technology and skill-intensive.

Related literature. We contribute in several ways to the existing literature. First,

most previous studies on coagglomeration are cross-sectional, while we use panel

data (Ellison et al., 2010; Faggio et al., 2017, 2020). This enables us to improve on

identification by including industry-by-year fixed effects, which matters for the results.

Second, we improve on the proxy for knowledge spillovers by using a measure based

on the co-occurrence of technologies mentioned on patents instead of patent citations.

Third, compared to Diodato et al. (2018) who also analyse dynamics in coagglomeration

patterns, we use more fine-grained data at the three-digit (SIC) industry level, as well

as at the MSA level, and include a proxy for knowledge spillovers. Fourth, in terms of

investigating industrial heterogeneity in coagglomeration, we improve on Faggio et al.

(2017) and Diodato et al. (2018) by explicitly explaining industry heterogeneity in a

multivariate setting. This is similar to Faggio et al. (2020) but we use more detailed

data and also exploit temporal variation.

We think the Chapter relates to a broader literature on understanding changes in

location patterns of (manufacturing) industries. Most notably, a large literature

suggests that the increased demand for geographical proximity is due to an increasing

importance of knowledge spillovers. Despite large improvements in communication

and transportation technologies, knowledge spillovers still require face-to-face contact

(Gaspar and Glaeser, 1998; Storper and Venables, 2004; Rodŕıguez-Pose and Crescenzi,

2008; McCann, 2008; Glaeser, 2011). The findings of the second step indeed confirm

that localised knowledge spillovers have become more important in the last decades.
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Contradictory predictions exist in the literature on labour market pooling. According

to Moretti (2012), labour market pooling is expected to be on the rise due to the

increase in skill levels of the workforce. By contrast, the results of Faggio et al.

(2017) suggest that a shift towards more high-technology/high-education industries

would lead to a decreasing importance of labour market pooling because labour is less

standardised. Our results are in line with the latter study, as labour market pooling is

becoming a less prominent determinant of industry agglomeration.

Regarding input-output linkages also contradictory predictions exist: on the one hand,

Glaeser and Kohlhase (2004) suggest that because transportation costs of goods have

been greatly reduced input-output linkages are likely less relevant today. On the

other hand, McCann and Fingleton (1996), Duranton and Storper (2008) and McCann

(2008) argue that input-output linkages may have become more relevant as more

competitive knowledge intensive industries require more frequent deliveries, and more

face-to-face interaction, leading to higher coordination costs. Our results suggest that

input-output linkages have become less important, although we cannot attribute this

to the reduction in transportation costs of goods.

The third step of is the analysis is related to a large literature that aims to understand

why and how the spatial organisation of the economy changes. Recall that in this step,

we project industry-year heterogeneity in agglomeration determinants on proxies for

important economic trends related to trade, technology and transportation costs of

goods. The reduction of trade barriers allowed for more intense trade competition

from low-wage countries and meant that low-skilled work has been offshored. Further,

the computer revolution brought about fundamental changes in manufacturing. Entire

production processes and value chains were reinvented to fully exploit the possibilities

of the computer (Brynjolfsson and Hitt, 2000). In the process, computerised machinery

took over much of the performance of routine tasks but raised the productivity of

workers performing abstract tasks, in particular those involving complex communi-

cation and coordination (Autor et al., 2003; Deming, 2017). As a result, both trade

competition and technological progress led to the downsizing and closure of establish-

ments that were more low-skill labour intensive, low-technology, and more likely to

produce standardised products, while surviving establishments increased investments

in R&D, workers’ skills, and capital (Brynjolfsson and Hitt, 2000; Bernard et al., 2006;

Holmes and Stevens, 2014; Bloom et al., 2016; Pierce and Schott, 2016). This change

in the composition of establishments within industries altered colocation patterns

and now particularly represents the location choices of knowledge and skill-intensive

establishments. More specifically, we find that increased import competition and a

decrease in the routine employment share are associated with stronger knowledge
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spillovers and weaker labour market pooling.

Glaeser and Kohlhase (2004) demonstrate that over time the transportation costs of

goods have strongly decreased, which may also incentivise establishments to change

locations. However, we find little evidence that the decline in the transportation costs

of goods can explain the decreasing trend in input-output linkages.6

The rest of the Chapter is organised as follows. In Section 2.2, we introduce the

econometric framework, followed by the discussion of various datasets used in the

analyses in Section 2.3. We report and discuss the results in Section 2.4, while Section

2.5 concludes.

2.2 Empirical framework
This section outlines the econometric framework. We first focus on identifying the

impact of Marshall’s sources of agglomeration economies on coagglomeration patterns.

Second, we aim to study changes over time in agglomeration determinants. Third,

we project industry-year-level estimates of agglomeration determinants on proxies for

trade, technology and transport costs of goods.

2.2.1 Step 1: Determinants of industry agglomeration
We aim to analyse the factors that impact coagglomeration of industries over time.

Following Ellison and Glaeser (1997), coagglomeration Cijt of industries i and j in year

t is:

Cijt =

∑M
m=1(smit − xmt)(smjt − xmt)

1−
∑M

m=1 x
2
mt

, (2.1)

where smit is the share of industry’s i employment in location m in year t. More

specifically, smit = Emit/
(∑M

m=1Emit
)
, where Emit captures employment of industry

i in location m. Further, xmt is the size of location m in year t, measured by the

employment share of the location in the total employment of the nation. Our main

results are based on estimates from 1970 to 2014 at the Metropolitan Statistical Area

(MSA) level, of which there are 363 in our data, but we will also show results at the

county level, which covers the entire U.S.7

6This does not mean that transportation costs do not matter because wages of skilled workers
have strongly increased in the last decades (e.g. due to technological progress Autor, 2019). This
suggests that the transportation costs of people likely increased as their value of time has increased
(Glaeser and Kohlhase, 2004; Koster and Koster, 2015).

7Note that equation (2.1) implies that if both industries are not present in an area, this leads
to positive coagglomeration values. We think this makes sense, as the industries then do not locate
where the other is not present. As a robustness check, in calculating the coagglomeration index,
we also consider to remove areas where both industries are not present, which leads to very similar
results. These results are available upon request.
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Following the literature we will construct proxies for labour pooling, LP ijt, for input-

output linkages, IOijt, and an alternative proxy for knowledge spillovers, which we

refer to as technological relatedness, T Rijt. Regarding labour market pooling, firms

can be located near firms that employ workers with similar skills and expertise. There

are three benefits to this common labour pool: first, employing or laying off workers in

the face of fluctuating demand becomes easier (Krugman, 1991); second, the matches

between available job positions and workers improve (Helsley and Strange, 1990); and,

third, workers will invest more in acquiring industry-specific skills (Rotemberg and

Saloner, 2000). On the other hand, labour market pooling also increases the risk of

losing workers to competitors, so-called labour poaching, which gives firms less incentive

to coagglomerate (Matouschek and Robert-Nicoud, 2005; Combes and Duranton, 2006).

With respect to input-output linkages, industries can coagglomerate with upstream

industries or downstream industries to save on the costs of transporting respectively

inputs or outputs. Finally, colocation of firms that employ similar technologies can

lead to useful ideas ‘spilling over’ from one firm to another.

We address potential correlation of unobservables with our variables of interest in

multiple ways. First, following Faggio et al. (2017), we include dissimilarity indices,

DS ijt,k, to capture shared dependence on various inputs, k = 1, ..., 7.8 Second, we

improve on the previous literature by controlling for the overall tendency of a three-digit

industry to coagglomerate with other industries in a specific year. More specifically, we

include industry i×year and industry j×year fixed effects. Our baseline specification

is given by:

Cijt = αLP ijt + βIOijt + γT Rijt +
7∑

k=1

ζkDS ijt,k + λit + λjt + εijt, (2.2)

where α, β, and γ are the main parameters of interest, ζk, ∀k are additional parameters,

λit and λjt are industry i-by-year and industry j-by-year fixed effects, and εijt is an

error term.9

Furthermore, we test for the presence of omitted variable bias by estimating bias-

adjusted coefficients, following Oster (2019). She shows that the effects of the inclusion

of observable control variables that lead to changes in R2 and coefficient movements

can be used to calculate the bias due to unobserved omitted variables. This relies

8Faggio et al. (2017) argue that these are the most obvious candidates for omitted variables, as
other unobserved location characteristics need to have a very particular structure and imply that
industry agglomeration is correlated to both coagglomeration and the strength of the linkages between
sectors measured by labour market pooling, input-output sharing and knowledge spillovers.

9We also considered to exploit temporal variation in coagglomeration by including industry fixed
effects. However, there is too little meaningful variation to obtain reasonably precise coefficients.
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on two parameters: R2
max, which is the R2 from a hypothetical regressions of the

dependent variables on all observables and unobservables; and δ, which depicts the

relative degree of selection on observed and unobserved variables. Note that R2
max is

very unlikely to be 1 in most empirical applications due to measurement error in the

dependent variable. Following Oster (2019), we set δ to 1 and R2
max to 1.3 times the

R2 of the baseline regression with controls and industry-year fixed effects (see equation

(2.2)).

Reverse causation may be another potential concern in equation (2.2). More specifically,

firms in industries with strong Marshallian links may choose to locate together but,

conversely, firms that are located close together may also forge Marshallian links.10 To

mitigate this issue we follow Ellison et al. (2010) by instrumenting the Marshallian

agglomeration variables with proxies based on areas where one industry is present

but the other is (virtually) not present, and vice versa. Even in industry pairs with

high coagglomeration values, there will typically be some establishments that are not

located near establishments in the other industry. By focusing on establishments in

industry i that are not near establishments in industry j, their labour hiring decisions

and knowledge spillovers are less likely to be driven by joint omitted factors or by the

influence of proximity to the other industry, hence coagglomeration does not affect

labour market pooling or knowledge spillovers11

2.2.2 Step 2: Changes in agglomeration determinants
To identify changes in the determinants of industry agglomeration over time, we

estimate a similar specification as (2.2) but with year-specific coefficients for each of

the agglomeration determinants:

Cijt = αtLP ijt + βtIOijt + γtT Rijt +
7∑

k=1

ζt,kDS ijt,k + λit + λjt + εijt, (2.3)

where αt, βt, and γt are year-specific coefficients.

10Note that Faggio et al. (2017) argue that coagglomeration leading to productive links should
be considered as agglomeration economies. For example, if two firms forge an input-output link
after they have coagglomerated, then this is also a form of input-output sharing. Similar examples
can be given for labour market pooling and knowledge spillovers. Hence, it is questionable whether
reverse causation is really an issue that should be tackled. Fortunately, the OLS results are not
fundamentally different from the IV results.

11Ellison et al. (2010) also mitigate reverse causality concerns by employing data from the United
Kingdom to calculate Marshallian proxies in the U.K. to instrument for the corresponding U.S.
variables. Apart from limited historical data availability for the U.K., we consider the ‘spatial’
instruments to be more convincing, as similar reverse causation issues cannot be ruled out in the
U.K. data.
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2.2.3 Step 3: Exploring industry-level and temporal heterogeneity
We expect that there is considerable heterogeneity in agglomeration forces across

industries, as shown by Faggio et al. (2017); Diodato et al. (2018) and Faggio et al.

(2020). Hence, changes in the economy driven by developments in (i) trade competition,

(ii) technological progress, and (iii) transportation costs of goods likely influenced

the importance of the determinants of industry agglomeration, which in turn altered

coagglomeration patterns.

Trade competition is associated with the displacement of millions of workers within

U.S. manufacturing industries in the last decades, even though value added kept

growing (Pierce and Schott, 2016). So, industries have become more technology and

skill intensive, focus more on niche products, and invest more in R&D. This happened

because of (i) trade-induced technological change within surviving establishments, as

well as (ii) a reduction in employment and survival probability of more labour intensive

low-technology establishments. This change in the composition of establishments

within industries likely altered colocation patterns and now particularly represents the

location choices of knowledge and skill-intensive establishments (Bernard et al., 2006;

Holmes and Stevens, 2014; Pierce and Schott, 2016; Bloom et al., 2016). Following

the literature, we construct a measure – import penetration – that is based on the

exposure of an industry to imports from low-wage countries in year t.

Technological change, particularly the computer revolution, likely fueled changes

in agglomeration determinants (see Glaeser, 2011; Moretti, 2012) and Chapter 1.

Computers excel at performing so-called routine tasks thereby replacing the often

middle-skilled workers performing these tasks. On the other hand, high-skilled workers

are complemented by technological progress (Brynjolfsson and Hitt, 2000; Autor

et al., 2003).12 In particular, the demand for labour performing interactive tasks

increased (Autor et al., 2003; Deming, 2017). As these rely on face-to-face contact, the

demand for geographical proximity increases (Storper and Venables, 2004; McCann,

2008; Glaeser, 2011). Furthermore, technological progress allowed establishments

to vertically disintegrate, relocate and outsource parts of their activities, leading to

fundamental changes in the distribution of remaining establishments and therefore

in coagglomeration patterns (Brynjolfsson and Hitt, 2000; Duranton and Puga, 2005;

Glaeser and Ponzetto, 2007). As a proxy for exposure to technology we therefore take

the share of routine employment in a sector, following Autor et al. (2015).

Marshall (1890) already noted that geographical proximity implies reductions in

12Note that technological progress is routine-biased rather than skill-biased as low-skilled workers,
who generally perform manual tasks, fared better than middle-skilled workers, a phenomenon known
as job polarisation (Goos et al., 2009; Autor and Dorn, 2013).
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transportation costs. Glaeser and Kohlhase (2004) show how the transportation costs

of goods have decreased sharply in the last decades, which could be another reason

for changes in agglomeration determinants. Following Glaeser and Kohlhase (2004),

we proxy for transportation costs of goods by the share of expenditure in each sector

spent on transportation.

We apply a two-step estimation approach, similar to Faggio et al. (2020), to explain the

observed variation in agglomeration determinants by trade competition, technological

progress and transportation costs. First, we estimate a specification, which is again

very similar to the baseline regression (2.2) but with industry-year-specific coefficients

for each of the agglomeration determinants:

Cijt = αitLP ijt + βitIOijt + γitT Rijt +
7∑

k=1

ζit,kDS ijt,k + λit + λjt + εijt. (2.4)

Equation (2.4) yields an estimated coefficient for each Marshallian force for each

industry in each year.

Second, we regress α̂it, β̂it, and γ̂it, of industry i in time period t on the three

industry-level variables capturing trade, technology, and transportation costs ICit
while controlling for time fixed effects µt.

{α̂it, β̂it, γ̂it} =
3∑
`=1

η`ICit,` + µt + ξit, (2.5)

where η`, ∀` are parameters to be estimated, µt are year fixed effects and ξit is an error

term.

We mitigate concerns related to omitted variable bias by estimating Oster-style

bias-adjusted coefficients by adding variables on average establishment size and the

capital-labour ratio. Given that these could be considered as proxy controls, the results

should be interpreted as lower bounds (Angrist and Pischke, 2008).

One may be concerned that reverse causality is also an issue here. Agglomeration

determinants are potentially correlated with local economic conditions that affect the

demand for imports from low-wage countries. To instrument for import penetration,

we follow Autor et al. (2015) by calculating import penetration in other high-wage

countries.13 The predicted part of import penetration due to trade shocks in all of

these countries are likely due to a rising comparative advantage of low-wage countries

13Autor et al. (2015) use data on Australia, Denmark, Finland, Germany, Japan, New Zealand,
Spain and Switzerland. We use data of the U.N. Comtrade database for the same countries but also
include France and the Netherlands, which is to be explained later in more detail.
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and/or a decrease in trade costs rather than import demand changes due to local

conditions.

Furthermore, the investment in technology may be dependent on the size the local

labour pool, which makes it easier to employ or replace workers when necessary. Also,

when firms are coagglomerated because of knowledge spillovers, the availability of new

tacit knowledge is likely to encourage firms not to standardise but to continuously

reinvent production processes (see Duranton and Puga, 2001; Faggio et al., 2017). For

the routine employment share we construct spatial instruments as before by focusing on

areas where an industry does not coagglomerate to make use of, respectively, a common

labour pool, buyer-supplier relations, and knowledge spillovers.14 In these MSAs the

share of routine employment is unlikely to be influenced by these agglomeration

determinants.

Finally, the share of transportation expenditure may be influenced by the extent

to which an industry coagglomerates with buyers or suppliers because stronger co-

agglomeration leads to shorter distances and therefore less transport expenditures.

Transportation expenditures as a share of total expenditure is dependent on the

expenditure on transportation and other expenditures. The latter are unlikely to be

influenced by agglomeration determinants. We capture other expenditures by the

mean value of a ton. Although using value of a ton as an instrument for the share

of transport expenditures addresses reverse causality, it may lead to omitted variable

bias as a higher value of a ton is likely correlated with more knowledge/skill intensive

products, which may not be fully captured by our trade and technology measures.

Therefore, we also add the value of a ton in 1970 as a control variable.

To obtain standard errors, and to address the issue that {α̂it, β̂it, γ̂it} are estimated

parameters, we bootstrap this two-step estimation procedure by randomly selecting

industry ij-ji pairs.

2.3 Data and descriptives
This section discusses the construction of the data. We discuss our proxies for

agglomeration sources, in particular with respect to our alternative proxy for knowledge

spillovers: technological relatedness. We further gather data related to industry-level

proxies for trade competition, technology exposure, and transportation costs of goods.

We close this section by reporting descriptive statistics in Section 2.3.3.

14More specifically, we estimate the impact of agglomeration determinants for each MSA m
separately. We then calculate the routine employment share of each industry in the 50 MSAs where,
{α̂itm, β̂itm, and γ̂itm} are the smallest.
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2.3.1 Determinants of industry agglomeration
Coagglomeration. We calculate industry-pair-specific coagglomeration measures

using the County Business Patterns (CBP) gathered by the U.S. census bureau, which

has made the data available online from 1986 onwards. Raw data from before 1987

was kindly provided by Duranton et al. (2014). We construct a balanced panel dataset

of consistent counties and industries at the 3-digit SIC ’87 classification, which is

discussed in more detail in Appendix 2A.

Labour market pooling. We use the National Industrial-Occupation Employment

Matrix (NIOEM) published by the Bureau of Labour Statistics (BLS). These data are

digitally available online from 1989 onwards for manufacturing employment. Data for

1970 and 1978 are obtained from hard-copy reports by the BLS (1981) using optical

character recognition (OCR). We then manually checked the digitised data to avoid

errors. We built a composite job classification, in which job occupations are consistent

over time (see Appendix 2A for further details). In line with the previous literature,

we then calculate the correlation in the share of employees across occupations between

each industry pair.

Input-output linkages. For the construction of input-output linkages, we employ the

use tables of the U.S. Bureau of Economic Analysis (BEA) and their concordance tables.

We define Inputi←j as the share of industry i’s inputs that come from industry j, while

Outputi→j is the share of output sold to industry j by industry i.15 We then define

input-output linkages between industry i and j as IOij = max(Inputi←j, Outputi→j).

In contrast to previous work, we do not combine IOij and IOji into a single measure

as these are directional and therefore relevant for estimating industry-year-specific

coefficients later on.

Knowledge spillovers. With respect to knowledge spillovers, we show results using

the patent citation measure – which follows the existing literature – but prefer results

based on a novel measure: technological relatedness. Patent citations are used as a

proxy for knowledge spillovers by linking technology classes to industries and then

calculating the share of citations to each industry by patents of each industry. However,

not all technologies, and therefore industrial knowledge, mentioned in cited patents

are actually used in the citing patent. For example, in our sample there are some

patents that cite up to 1, 500 other patents. Hence, it is likely that a large share of

the technological knowledge of these cited industries is irrelevant for the described

invention.

15Like Ellison et al. (2010), we calculate these shares relative to all suppliers and customers, some
of whom may be outside manufacturing, see Appendix 2A for more details.
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Furthermore, the share of patent citations of industry i to industry j only normalises for

the size of industry i in terms of patents, and not for the size of industry j. This turns

out to matter a lot. The correlation between the total number of patents of industry j

and the share of patent citations received from industry i is 0.72. The industry with

the most patents, i.e. SIC356 (General Industrial Machinery and Equipment), is one of

the most important cited industry for about 65% of all the industries. As a result, the

sheer size of industry SIC356 seems to suggest knowledge spillovers between industries

that intuitively do not make much sense. We elabourate on this issue in Appendix 2A.

Instead, we prefer to link technologies in patent documents to industries and then

focus on the co-occurrence of industries in each patent. Note that a single patent can

mention more than one technology class. We do so by estimating a network-based

probability measure, known as relatedness, that normalises for the size of both industry

i and industry j (see Hidalgo et al., 2018).16 As explained in the Additional Chapter

A, we define the technological relatedness, T Rijt, between industry i and industry j in

year t as:

T Rijt =
Oijt(

Sit∑N
n=1 Snt

Sjt
(
∑N
n=1 Snt)−Sit

+
Sjt∑N
n=1 Snt

Sit
(
∑N
n=1 Snt)−Sjt

)∑N
n=1 Snt

2

, i 6= j, (2.6)

where Oijt is the number of co-occurrences on patents between industry i and industry j

in year t, i.e. a count of the number of times that industries i and j are associated with

the same patent. Sit and Sjt are the number of co-occurrences involving respectively

industry i and industry j in t, and n = 1, ..., N also refer to industries. The rationale

behind the measure is to divide the observed number of co-occurrences of two industries

on patents by the expected co-occurrence if all occurrences of industries would have

been assigned to patents randomly. Hence, T Rijt = 1 indicates that exactly the same

amount of co-occurrences has been observed as could be expected from a random

distribution.

To calculate T Rijt we then need to link technologies listed on patents to industries.

We employ the concordance table by Kerr (2008) between the technology classification

by the United States Patent and Trademark Office (USPTO) and the SIC classification.

This concordance is based on a limited time period between 1990 and 1993 that the

Canadian Patent Office recorded both the technology classes involved in the invention

16An argument in favour of using patent citations is that a citation captures an actual spillover.
However, Jaffe et al. (2000) surveyed inventors and found that only 18% of the citations can be
considered as an actual knowledge spillover, defined as the direct contact between inventors or from
attending a product demonstration.
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on the patent and the industry class of the patenting firm (see Silverman, 2002; Kerr,

2008). Data on technology classes per patent is obtained from the USPTO (see Marco

et al., 2015).17

Dissimilarity measures. Faggio et al. (2017) argue that two industries might be

coagglomerated because both depend on an input that is unevenly distributed over

space, such as transportation infrastructure (e.g. ports) or natural resources. As a

result, the two industries end up coagglomerating not because of Marshallian linkages

but because of these location endowments. We follow their approach in addressing

this issue, by measuring how similar two industries are in their dependency on inputs

from agriculture, mining, water, energy, transportation, finance, insurance, and real

estate (FIRE), and other services. We refer to Appendix 2A for details.

Spatial instruments. We develop spatial instruments for labour market pooling

and knowledge spillovers following Ellison et al. (2010) to address reverse causality

concerns between coagglomeration and agglomeration determinants.18 Using the CBP,

we identify MSAs where industry i is present but industry j is (virtually) absent

and vice versa. Then, we calculate the correlation in labour share per occupation of

industry i in the former MSAs with that of industry j in the latter MSAs by employing

the IPUMS census samples by Ruggles et al. (2018). We use the combined 1970 1%

metro fm1 and 1970 1% metro fm2 samples for 1970, the 1980 5% sample for 1977,

the 1990 5% state sample for 1989 and 1994, the 2000 5% sample for 1999 and 2004,

the 2009 ACS 3yr sample for 2009, and the 2014 ACS 5yr sample for 2014. We use

the location of inventors from Petralia et al. (2016) for 1965 to 1975 and from Hall

et al. (2001) for more recent years to construct a spatial instrument for technological

relatedness.

For each industry i, Ellison et al. (2010) select the 25 MSAs for which industry j is

the least present but industry i is strongly present. We choose to increase the number

of MSAs from 25 to 50 as the IPUMS sample size in 1970 is smaller than that of the

17We caution that no patent-based measure can capture the full extent of knowledge spillovers and
that part of the knowledge spillovers operate via input-output linkages, as suggested by Duranton
and Storper (2008), and via labour market pooling, as shown by Serafinelli (2019). We also looked
at the concordance table between technologies and industries of Goldschlag et al. (2020) used by
Diodato et al. (2018). This crosswalk is based on keyword analysis in both technology and industry
classifications. We found that for 1994 the correlation between technological relatedness following the
concordance of Kerr (2008), respectively, of Goldschlag et al. (2020) is only 0.36. This low correlation
coefficient does not give us enough confidence to use the Goldschlag et al. (2020) concordance, as
1994 is the closest to the 1990-1993 reference years of the concordance by Kerr (2008), where Kerr
(2008) should be the most accurate.

18Ellison et al. (2010) used the material input trailers to construct the spatial instruments for
input linkages. These data are unfortunately unavailable to us. On the other hand, Ellison et al.
(2010) did not have data to construct spatial instruments for knowledge spillovers.
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1990 data used in Ellison et al. (2010). Recall that there are 363 MSAs in the data.

2.3.2 Trade, technology, and transportation costs
So far, we discussed the data to estimate the impact of agglomeration determinants

on coagglomeration. In the third step of the analysis, we further aim to explore how

these agglomeration determinants are related to proxies for trade, technology, and

transportation costs.

Trade. The effects of trade on establishments, and therefore coagglomeration patterns,

are thought to result from import competition from low-wage countries (Bernard et al.,

2006; Bloom et al., 2016). Bernard et al. (2006) define these trade partners as countries

that, across the entire time period, have a GDP per capita that is less than 5% of the

GDP per capita in the U.S., but they also consider thresholds of 10% and 15%. We

choose to use this last threshold as, due to our long sample period, China would fall

out of the sample in 2014 if the other thresholds are used. Data on GDP per capita

are obtained from the World Bank and the full list of low-wage countries is shown in

Appendix 2A.

We deviate slightly from Autor et al. (2013, 2015) as our data are at the industry-level.

We follow the value share approach of Bernard et al. (2006) and Bloom et al. (2016)

by calculating the import penetration, IMP it, for industry i in year t as the share of

imports Mit from low-wage countries in the total amount of imports in this industry,

IMP it = MLow-wage countries
it /MWorld

it . Trade data and concordance tables are obtained

from the U.N. Comtrade database.

This measure simplifies import penetration as it ignores nationally produced and con-

sumed goods. Another popular measure is the share of low-wage imports in ‘apparent

consumption’, which is defined as the total of imports plus domestic production minus

exports (Bloom et al., 2016). We will show that similar results hold using this measure,

by employing the NBER-CES manufacturing database by Bartelsman and Gray (1996).

However, we do not prefer this measure as it has limitations and incomplete industrial

coverage (see Appendix 2A).

Technology. We follow Autor and Dorn (2013) and Autor et al. (2013, 2015) in

defining technological progress as the decreasing share of workers performing routine

tasks. To this end, we use the IPUMS census samples by Ruggles et al. (2018).19 The

exact definition of routine task intensity is given in Appendix 2A.

Transport costs of goods. To obtain a proxy for the transport costs of goods, we

employ the BEA’s use tables to calculate the share spend on transportation sectors

19We use the same IPUMS census samples as for the spatial instruments.
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(SIC41-47) of the total use value of an industry i in year t. Note that the total use

(i.e. demand) value of an industry is equal to the total make (i.e. supply) value. We

correct for the underestimation of transport expenditure due to stronger use of private

trucks in earlier time periods by employing the Commodity Flow Surveys (CFS) (see

Appendix 2A for details).

2.3.3 Descriptive statistics
Determinants of industry agglomeration. Before we report descriptives, please

note that the data contain some outliers, which are due to measurement errors and

extreme values. The latter are a result of e.g. strong dependencies in input-output

linkages, or in the case of coagglomeration due to extremely small industries. For

instance, industry SIC237 (fur goods) has about 5, 000 employees in 1970 but only 40

in 2014, which results in extreme coagglomeration values in the latter year.

In what follows, we cap outliers for all variables to limit the disproportionate impact of

a few industries by setting values below the 1st percentile and above the 99th percentile

to the respective 1st percentile and 99th percentile.

Table 2.1 reports the descriptive statistics of the main variables, while histograms

of the variables, as well as the developments over time are reported in Appendix

2A. By construction the mean of the coagglomeration index is close to zero. The

negative minimum value on labour market pooling reveals that some industries such

as SIC241 (logging) and SIC372 (aircraft and parts) have a negative correlation in

employment shares per occupation, while industries SIC233 (women’s, misses’, and

juniors’ outerwear) and SIC231 (men’s and boys’ suits, coats, and overcoats) virtually

use the same type of workers and therefore have a correlation close to 1. The maximum

value on technological relatedness indicates that technologies associated with SIC391

(jewelry, silverware, and plated ware) and SIC344 (secondary smelting and refining of

nonferrous) are 36 times more likely to co-occur on a patent compared to a random

assignment of technologies to patents. The maximum value on patent citations indicates

that 6.6% of citations by patents associated, for example, with SIC201 (meat products)

cite patents associated with SIC356 (general industrial machinery and equipment).

The dissimilarity indices are measured as one half of the absolute difference in the

share of inputs between industry i and industry j. For example, a maximum of 0.341

for the mining dissimilarity index indicates that there is an absolute difference of 68.2%

in the share of inputs received from sectors related to mining between SIC201 (meat

products) and SIC291 (petroleum refining).

Figure 2A2 in Appendix 2A shows that the mean of coagglomeration and each of the

agglomeration determinants are relatively stable over time. Note that the mean of the
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Table 2.1 – Descriptives

Mean St. Dev. Min Max

Coagglomeration 0.0001 0.007 −0.021 0.031
Labour market pooling 0.289 0.229 0.008 0.954
Input-output linkages 0.006 0.018 0.000 0.129
Technological relatedness 1.764 4.160 0.106 36.225
Patent citations 0.007 0.012 0.00001 0.066

Note: The number of observations is 155,680.

Table 2.2 – Descriptives for trade, technology and transportation
costs

Mean St. Dev. Min Median Max

Import penetration 0.181 0.231 0.00001 0.074 0.917
Routine employment share 0.212 0.134 0.066 0.165 0.673
Transportation costs 0.048 0.046 0.001 0.038 0.285

Notes: We report the independent variables here. The number of observations is 1120.

coagglomeration index per time period in Figure 2A2 is not indicative of changes in

overall coagglomeration patterns as it is close to zero by construction. The correlation

between coagglomeration values in 1970 and 2014 is only 0.51, which strongly suggests

that coagglomeration patterns have changed considerably. Furthermore, the variance

decreased by 60% since 1970. As Faggio et al. (2017) show that low-technology

industries have more extreme coagglomeration values (i.e. a larger variance), this

would be in line with industries becoming more technology-intensive over time. Note

that the correlation between the values of 1970 and 2014 for labour market pooling,

input-output linkages, and knowledge spillovers, are, respectively, 0.80, 0.62, and 0.98.

Trade, technology, and transportation costs. Table 2.2 gives the descriptive

statistics of our proxies for trade, technology, and transportation costs. To limit the

effect of outliers, we again cap outliers. As we have 140 industries and 8 time periods

the number of observations is 1,120.

The mean of import penetration tells us that between 1970 and 2014 on average

18.1% of total imports in an industry are originating from low-wage countries. SIC376

(guided missiles and space vehicles and parts) experiences the lowest (capped) import

penetration of 0.1%, while the maximum of 91.7% is in i.a. SIC302 (rubber and

plastics footwear).

The mean routine employment share indicates that on average 21.2% of the employees

have routine task-intensive jobs, which are susceptible to automation. The lowest shares

are found in high-technology sectors like SIC357 (computer and office equipment),

while high values are found in SIC231-239 (apparel and other textile products).
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We show that on average 4.8% of all expenditure is spent on transportation and related

services. The industries with the lowest expenditure share produce relatively expensive

products (e.g. SIC372 (aircraft and parts)). SIC327 (concrete, gypsum, and plaster

products) spends relatively the most on transportation.

Because of possible interdependence between trade, technology, and transportation

costs, we checked the correlation between our measures and find this to be rather small.

The Pearson correlation is 0.33 between trade and technology, −0.22 between trade

and transportation costs, and −0.13 between technology and transportation costs.

Figure 2.1 plots the median value over time for each of the variables. As expected the

median import penetration rises while the share of workers with routine tasks and the

share of expenditure on transportation decreases over time.20

Our data provide several indications of structural changes in establishments within

industries and their locations that drive changes in coagglomeration patterns. When

comparing total employment per industry and MSA between 1970 and 2014 the correla-

tion is only 0.58, which is in line with the low correlation between the coagglomeration

measure. This suggests that indeed large changes occurred in the industry composition

within and between cities.

Furthermore, in data used for robustness checks, we find that the mean average

establishment size across industries in 1970 is about 186 workers while in 2014 this has

been reduced to 77 workers, while R&D expenditure per employee increased from about

3, 282 to 13, 659 (in 1987 dollars). This is in line with the literature, as Brynjolfsson

and Hitt (2000); Bernard et al. (2006); Holmes and Stevens (2014); Bloom et al. (2016)

and Pierce and Schott (2016) show that larger establishments are more likely to engage

in low-skilled standardised production processes and more likely to close down due to

trade competition and technological change, while surviving establishments become

more knowledge and skill-intensive.

2.4 Results

2.4.1 Step 1: Determinants of industry agglomeration
The first step in the analysis is to replicate the results by Ellison et al. (2010), Faggio

et al. (2017) and Diodato et al. (2018) for our data. All variables have been standardised

to have a mean of zero and a standard deviation of one. As coaggij and coaggji are

identical, we cluster standard errors at the industry pair (ij − ji) by year level. We

20We double-checked values in 1999 for transportation costs as the values are somewhat higher
than in the preceding years, but we did not observe any peculiarities. Note that we add year fixed
effects to our regressions to mitigate average year-based measurement issues.
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present the results in Table 2.3.

In column (1), we estimate a naive specification where we only control for year fixed

effects. We find that all proxies have a considerable positive effect on coagglomeration.

For example, we find that a standard deviation increase in labour market pooling on

average increases coagglomeration by 0.114 standard deviations. In contrast to the

results based on 1987 of Ellison et al. (2010), we find a reverse order of importance

for our pooled 1970-2014 data: knowledge spillovers, as proxied by technological

relatedness, is the most important determinant of industry agglomeration, followed by

labour market pooling and input-output linkages.21

Column (2) adds dissimilarity measures, in line with Faggio et al. (2017). The results

do not materially change, which suggests that either omitted variable bias is not a

main issue, or that having similar input requirements outside manufacturing is not a

strong reason to coagglomerate.

In column (3), we present our preferred specification, in which industry i×year and

industry j×year fixed effects are included to control for the overall tendency of an

industry to coagglomerate. The estimated coefficient on labour market pooling is

significantly larger compared to previous specifications. Here, a standard deviation

increase in labour market pooling leads to an increase in coagglomeration of 0.195 of

a standard deviation, which is almost twice as large as in the previous specification.

The coefficient on input-output linkages is essentially unaffected. By contrast, the

coefficient on technological relatedness is about two-thirds of the size compared to the

previous specifications. Hence, this strongly suggests that it is important to control

for unobservables at the industry-year level.

In column (4), we use patent citations instead of technological relatedness as a proxy

for knowledge spillovers. The coefficient on patent citations is less than half of that on

technological relatedness in column (3).22 When including both proxies for knowledge

spillovers in column (5), the coefficient on patent citations is close to zero, while

the coefficient on technological relatedness remains virtually unchanged. Hence, the

technological relatedness measure strongly outperforms patent citations in explaining

coagglomeration.

Column (6) presents the results when including input linkages and output linkages

21We show results by year in Table 2B8 in Appendix 2B. In 1989, which is the closest to 1987,
the year used in Ellison et al. (2010), we find that labour market pooling is the most important
agglomeration force, followed by input-output linkages and knowledge spillovers.

22Note that Ellison et al. (2010) do not use industry fixed effects and only find significant positive
effects for patent citations using univariate regressions in their 1987 sample.
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separately. Output linkages appear to be a significantly stronger determinant of

agglomeration than input linkages, while the coefficients on labour market pooling and

technological relatedness are virtually unchanged.

In column (7), we present omitted variable bias-adjusted estimates, following Oster

(2019). Reassuringly, the coefficients are not materially influenced when using this

alternative estimation procedure. Unsurprisingly, the standard errors are higher as

this methodology is less efficient than OLS.

The instrumental variable regression results are reported in column (8) of Table 2.3.

The agglomeration determinants are instrumented by values taken from areas where

the latter industry is not or hardly present. Recall that we do not have access to data

to construct an instrument for input-output linkages so we only instrument for labour

market pooling and knowledge spillovers. The first stage results are reported in Table

2.4. The coefficient on the spatial instrument of labour market pooling in column

(1) shows that a standard deviation increase in the instrument is associated with

0.718 standard deviations increase in labour market pooling. Regarding the spatial

instrument for technological relatedness in column (2), the effect is almost equal to

one. By looking at the Kleibergen-Paap F-statistic in Table 2.3, we can confirm that

the instruments are strong.

Going back to the second-stage results in column (8) of Table 2.3, we find a significantly

higher coefficient for labour market pooling, in line with Ellison et al. (2010). By

contrast, the coefficient on technological relatedness is somewhat lower.

Table 2.4 – First stage results

Dependent variable:
Labour market Technological

pooling relatedness

(1) (2)

Labour market pooling – spatial instrument 0.718∗∗∗ 0.010∗∗∗

(0.010) (0.002)
Input-output linkages 0.064∗∗∗ −0.001

(0.005) (0.001)
Technological relatedness – spatial instrument 0.129∗∗∗ 0.983∗∗∗

(0.008) (0.003)

Dissimilarity measures Yes Yes
Industry i × year fixed effects Yes Yes
Industry j × year fixed effects Yes Yes
Observations 155,680 155,680
R2 0.758 0.982

Notes: Standard errors are clustered at the industry ij-ji level and in paren-
theses; *** p < 0.01, ** p < 0.5, * p < 0.10.
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2.4.2 Step 2: Changes in agglomeration determinants
So far, we have estimated the average of the coefficients between 1970 and 2014.

However, we are particularly interested in how the determinants of agglomeration have

changed over time. Therefore, we estimate year-specific coefficients for each agglomer-

ation determinant. The estimated coefficients for each Marshallian determinant are

plotted over time in Figure 2.2, while the full regression results are shown in Appendix

2B.

The graphs show a clear and more or less steady decline in labour market pooling and

input-output linkages as determinants of agglomeration, whereas knowledge spillovers

has been relatively stable until 1994 and then significantly increased. The positive

trend in knowledge spillovers is strong evidence that firms aim to increase geographical

proximity to share ideas, despite improvements in communication technologies see

Chapter 3 or Rodŕıguez-Pose and Crescenzi (2008); McCann (2008); Glaeser (2011);

Moretti (2012).

The decrease in labour market pooling is surprising as it is not in line with Moretti (2012)

and Diodato et al. (2018).23 By contrast, our results are in line with Faggio et al. (2017),

who suggest that a shift towards more high-technology/high-education industries would

lead to a decrease in labour market pooling and input-output linkages but an increase

in knowledge spillovers because production is less standardised. However, Section 2.4.4

will show that the decrease in input-output linkages cannot be explained by increased

technology and skill intensity.

2.4.3 Robustness of Step 1 and 2
Constant definition of agglomeration determinants. Our results are robust

regarding several different specifications. A concern may be that the trends in Mar-

shallian proxies found are driven by changes in the measurement quality of the proxies

over time.

To test whether this alternative explanation is important, in Appendix 2B we hold all

variables, except coagglomeration, constant at their 1994 values and reproduce the

main regressions. We choose 1994 as it is in the middle of our time period and the

23Note that suggestion by Moretti (2012) that labour market pooling has become more important is
based on the “thickness” of the labour market, while coagglomeration analyses look at the importance
of each force through the relative shares of industries within cities. Hence, coagglomeration in a
small MSA counts the same as in a large MSA. Therefore, the results here cannot be interpreted
as implying that larger labour markets do not matter more than smaller ones but only that labour
market pooling became a less important determinant of coagglomeration. Furthermore, a decreasing
importance of labour market pooling may not be contradicting the results of Diodato et al. (2018)
as a close inspection of Figure 6 in their work reveals the possibility of a decrease in labour market
pooling since 1970, even though the large standard errors prevent definite conclusions.
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original data of 1994 is classified SIC’87, which reduces the risk of concordance errors.

These show similar results over time, which indicates that the results are not driven by

changes in variable definitions or the exact measurement of independent variables.24

Industry-pair fixed effects. We also consider the inclusion of industry-pair fixed

effects. Including these would imply that we solely rely on temporal variation in

coagglomeration and agglomeration determinants to identify the effects of interest.

However, industry-pair fixed effects also amplify measurement error in the agglom-

eration measures, as there is clearly more measurement error in the variables within

industry pairs than between industry pairs. Hence, our estimates are expected to be

biased towards zero.

We report results with industry-pair fixed effects in Appendix 2B. The inclusion of

these fixed effects captures most of the variation, as suggested by the R2 of over 0.7.

Nonetheless, labour market pooling is positive and significant in both columns, whereas

the effects of the other agglomeration forces are positive but statistically insignificant.

The coefficients on the time trends have the expected sign but are not statistically

significant. Hence, despite large standard errors, the coefficients seem to confirm the

findings with industry-by-year fixed effects.

Coagglomeration at the county level. In Appendix 2B we show that similar

results hold at a more refined geographical level. More specifically, we calculate the

coagglomeration index at the county level instead of at the MSA level, leading to very

comparable results.

Weighted regressions. The baseline results present the results for the average

industry pair. However, industries vary greatly in size. In Appendix 2B, we reproduce

the main results using weighted regressions where we weight observations by the log

of employees, number of establishments, and value added. Because results would be

entirely driven by a few very large industries, we take the log instead of weighting

by the levels of industry size. We find that the weighted results are not statistically

significantly different from the baseline regressions.

Two-way clustering of standard errors. In Appendix 2B, we reproduce the main

results using two-way clustering by industry i and industry j instead of clustering at

the industry pair (ij - ji) level. Unsurprisingly, these results show the same coefficients

and standard errors that are considerably larger than in the main results. Still, all

coefficients remain statistically significant.

24We obtain similar results when using 1970 or 2014 instead of 1994.
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Table 2.5 – Industry-year-specific estimates

Mean Median St.Dev. Min Max

α̂ 0.157 0.111 0.281 -0.476 1.199

β̂ 0.066 0.034 0.129 -0.180 0.575
γ̂ 0.255 0.095 0.570 -0.946 2.624

Notes: We report the estimated dependent variables here. α̂, β̂, and
γ̂ are the coefficients obtained in the first stage on, respectively, labor
market pooling, input-output linkages, and technological relatedness.
The number of observations is 1120.

Dealing with outliers. In the baseline results we have capped the values of the

dependent and independent variables to the 1st percentile or the 99th percentile.

This threshold is obviously somewhat arbitrary. In Appendix 2B, we show that the

results are largely robust when dropping extreme observations and choosing different

thresholds.

2.4.4 Step 3: Exploring industry-level and temporal heterogeneity
In this section, we explore industry-year-level heterogeneity and investigate whether

our measures for trade, technology, and transportation costs are associated with the

(trends in the) importance of agglomeration determinants. In the first step we obtain

industry-year specific-coefficients for each of the determinants of agglomeration (see

equation (2.4)). Table 2.5 reports the descriptive statistics of the industry-year-specific

coefficients and Figure 2.3 shows histograms. As before, we limit the effect of outliers

by capping these to the 1st percentile or the 99th percentile. As we have 140 industries

and 8 time periods the number of observations is 1, 120.

Recall that the variables in the first step are standardised to have a mean value of 0

and a standard deviation of 1. As such, the mean value of the coefficient on labour

market pooling α̂ indicates that an increase of one standard deviation in the extent

to which labour can be pooled is associated with an increase in coagglomeration

of 0.157 of a standard deviation. The means of the other coefficients input-output

linkages β̂, and technological relatedness γ̂ also show that on average, industries have

a positive appreciation for the respective agglomeration determinants. Still, 23.6%,

27.1%, and 30.4% of the values of α̂, β̂, and γ̂, respectively, are negative, although only

very few of these estimates are statistically significant. We find some negative and

significant labour market pooling effects for relatively skilled industries like SIC366

(communications equipment) where labour poaching may be a concern.

Each of the industry-year-specific coefficients is regressed on proxies for trade, tech-

nology, and transportation costs (see equation (2.5)). For each of the coefficients

on Marshall’s agglomeration determinants, Table 2.6 reports estimates from an OLS
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regression, bias-adjusted estimates, and estimates relying on instrumental variables.

The independent variables are again standardised to have a mean of 0 and a standard

deviation of 1, whereas the dependent variables are taken as they are as these are

derived from regressions with standardised variables. Standard errors are obtained

through bootstrapping.

Column (1) reports the OLS results for the coefficient on labour market pooling (α̂); an

increase of a standard deviation in import penetration is associated with a decrease of

0.042 in the size of the coefficient on labour market pooling. As the median coefficient

on labour market pooling is 0.111, a standard deviation increase in import penetration

is associated with a decrease in labour market pooling of about 38% of the median. A

standard deviation increase in routine employment share is associated with an increase

of 0.105, which is almost equal to 100% of the median coefficient on labour market

pooling. Hence, the effects are sizable and suggest that industries facing little trade

competition and with highly routinised job tasks benefit more from a common labour

market pool. The reduction in the number of routine task-intensive jobs, through

technological progress, and the rise in import penetration complement each other and

can explain the decreasing trend in labour market pooling.

Column (2) presents the results of the same specification but using the omitted variable

bias-adjusted approach proposed by Oster (2019).25 The results confirm those of the

previous column. Column (3) presents the 2SLS results. For import penetration we use

import penetration in other high-wage countries as an instrument, while we instrument

for the routine employment share with the routine employment share calculated in

areas where industries do not coagglomerate to make use of a common labour pool.

The first-stage results show plausible signs and are reported in Appendix 2B and are

also very similar to those in column (1).

Column (4) of Table 2.6 focuses on input-output linkages. It shows that import

penetration is negatively and significantly associated with input-output linkages. A

standard deviation increase in trade competition is associated with a considerable

decrease of 56% of the median coefficient on input-output linkages. The coefficient

on routine employment share is close to zero and highly statistically insignificant.

Perhaps more surprisingly, this also holds for the coefficient on transportation costs of

25We compare a regression without controls to a regression with additional controls, namely the
natural logarithm of the average establishment size and the capital-labour ratio, to observe movements
in coefficient size and R2, while R2

max is estimated to be 0.172. Recall that these extra controls can
be seen as proxy controls as these are partly capturing omitted variables but also partly the effect
of trade and technological progress (see Angrist and Pischke, 2008). This procedure is therefore
expected to provide a lower bound of the true effects of the variables of interest.
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goods.26 In column (5), we add extra controls and estimate bias-adjusted coefficients

following Oster (2019). In this specification, none of the coefficients are statistically

significant but they are also not significantly different from the OLS results in the

previous column.

The 2SLS results are reported in column (6), we use the same instruments as before

for trade and technology. For transportation costs we use the natural logarithm of

the average value of a ton as an instrument. We control for the value of a ton in

1970, which mitigates the issue of omitted variable bias as the value of a ton also

captures the complexity of a product. The coefficient on transportation cost is larger

and positive when instrumented but not statistically significantly different from the

OLS results.

Hence, the results unequivocally suggest that the ‘pure’ transportation costs of goods

are not a relevant factor in coagglomerating with suppliers or customers, in contradic-

tion to the expectations of Glaeser and Kohlhase (2004) and Diodato et al. (2018).

However, total trade costs consist of much more than only these ‘physical’ transporta-

tion costs of goods. For instance, McCann and Fingleton (1996) and Duranton and

Storper (2008) show that face-to-face contact and coordination are also important in

sustaining input-output linkages. The transportation costs of persons has actually

increased over time due to the increasing wages of (skilled) workers as Glaeser and

Kohlhase (2004) suggest.

By contrast, we show that import penetration reduces the demand for input-output

linkages. We find suggestive evidence in Appendix 2B that localised input linkages

are replaced by input linkages with low-wage countries, as trade competition for input

negatively affect input linkages while it is positively associated with output linkages

(although coefficients are imprecise).

The decline in input-output linkages cannot be explained by industries becoming more

technology and skill-intensive (see Faggio et al., 2017), as other industry characteristics

closely related to industry skill and technology levels are unrelated to input-output

linkages (see Appendix 2B).

Column (7) in Table 2.6 explores whether the importance of knowledge spillovers can be

linked to changes in trade and technology. Import penetration is positively associated

with the intensity of knowledge spillovers. According to column (7) the effect is about

23% of the median coefficient on technological relatedness (which is equal to 0.095). By

26One may argue that by controlling for the dissimilarity variable capturing transport inputs in
the first stage, the coefficient of transport costs may be reduced. We have estimated regressions where
we excluded the transport dissimilarity measure in the first stage leading to nearly identical results.
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contrast, the routine employment share shows a negative association of about 52% of the

median coefficient. This suggests that the increase in import penetration and ongoing

computerisation that led to more innovative skill technology-intensive manufacturing

establishments have raised the need to coagglomerate in proximity of establishments

that use similar technologies. This is likely due to the increased relevance of new

ideas in the production process and the need to meet face-to-face to exchange ideas

(see Holmes and Stevens, 2014; Storper and Venables, 2004). Column (8), which are

bias-adjusted results, display stronger but not significantly different coefficients. The

2SLS results in column (9) show very similar results as the bias-adjusted estimates.

All in all, the results presented in this section indicate a complementary impact of

increasing import competition and decreasing routinisation of labour tasks on labour

market pooling and knowledge spillovers. Input-output linkages seem unaffected by

the decrease in the pure transportation costs of goods but the increase in import

competition does seem to have had a negative effect.

2.4.5 Robustness of Step 3
In Appendix 2B we further investigate the robustness of the results by showing: (i)

the effects of transportation costs of goods on labour market pooling and knowledge

spillovers; (ii) the effects of the control variables (i.e. average establishment size and

the capital-labour ratio), used in the bias-adjusted estimation procedure; and (iii) the

effects of increased R&D expenditure and skill intensity, following Bloom et al. (2016)

and Pierce and Schott (2016), which are closely associated to trade competition and

technological progress. The results show that the main results are robust to these

specifications. We further find evidence that the decreasing importance of labour

market pooling and increasing importance of knowledge spillovers is likely related

to the rise of the high technology/high education firms, as R&D expenditures are

strongly associated with labour market pooling and knowledge spillovers. By contrast,

none of the additional industry characteristics capturing technology and skill levels

are statistically significantly associated with input-output linkages.

Further, in the main results in Table 2.6, we attach equal weight to each industry-by-

year observation. By contrast, Faggio et al. (2020) weight each observation by the

inverse of the standard deviation of the coefficient obtained in the first step. The

results reported in Appendix 2B are largely similar.

In Appendix 2B, we employ an alternative measure of import penetration, namely the

imports from low-wage countries divided over the so-called apparent consumption in

the U.S. The apparent consumption is equal to domestic production minus exports

plus imports. The results are not significantly different from our main results in Table
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2.6. This demonstrates that there is no issue in using the value share measure, for

which more data and instruments are available.

Appendix 2B finds similar effects if we estimate everything in one step, instead of

our proposed two-stage approach (recall equations (2.4) and (2.5)); the signs on the

coefficients all point in the same direction with only minor differences in significance

levels and effect sizes.

Finally, in Appendix 2B, we further explore the results on input-output linkages

when: (i) using the value of a ton as a proxy for transportation costs instead as an

instrument; (ii) using the import penetration within sectors from which inputs are

obtained instead of import penetration within the own sector; and (iii) calculating

separate coefficients for input linkages and output linkages using these as separate

dependent variables in the second step. The results are similar to the main results and

provide further evidence that the decrease in transportation costs of goods is not a

relevant factor explaining input-output linkages. By contrast, both import competition

within producing industries as well as within supplying industries influence input

linkages. This further suggests that the substitution of inputs from low-wage countries

for local inputs is likely behind the decline in input-output linkages, rather than

the effect of trade competition on increasing the intensity of technology and skill of

industries, (following Faggio et al., 2017).

2.5 Conclusion
In the last 50 years, the economy underwent large and fundamental changes due to more

intense trade competition, technological progress, and reductions in transportation costs

of goods. Evidence abounds that this has resulted in large changes in agglomeration

patterns. In this Chapter, we assess changes in agglomeration determinants over time

and explore whether industry-year-level heterogeneity can be explained by changes in

trade competition, technological progress and reductions in transport costs.

Using an alternative proxy for knowledge spillovers, we find that between 1970 and

2014 knowledge spillovers have become more important. This is strong evidence that

geographical proximity is becoming more relevant for exchanging ideas, despite strong

improvements in communication technologies. On the other hand, we find that labour

market pooling and input-output linkages have become less important agglomeration

determinants.

Furthermore, we show that trade competition and technological progress are strongly

related to labour market pooling and knowledge spillovers. These results suggest

that the computer revolution and trade competition, which led to less standardised,
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less vertically integrated and more knowledge-intensive establishments, altered the

composition of industries and therefore the relevance of labour market pooling and

knowledge spillovers in explaining agglomeration. Maybe surprisingly, we do not find

that transportation costs of goods are associated with input-output linkages. On

the other hand, we find a negative effect of increasing trade competition. We find

suggestive evidence that this is likely due to import substitution of local inputs in

input-output linkages.

Our study opens up avenues for further research. First, future studies could look

more closely into the heterogeneity in agglomeration benefits of establishments within

industries, related to e.g. skill and capital-intensity of establishments. Second, we

note that the current framework overlooks the effects of agglomeration size, because

the coagglomeration index is a relative measure.27 Third, the two-step methodology

introduced to explain changes in the determinants of agglomeration could be expanded

to include various other industrial or regional characteristics. Fourth, a more obvious

step forward would be to include measures of knowledge spillovers in the services

industry. Finally, we note that Duranton and Puga (2004a) distinguish between

sharing, matching, and learning, rather than using Marshall’s categorization. While

Duranton and Puga’s categorisation may conceptually be more intuitive, to date it

has not been possible to develop meaningful empirical metrics. Future research could

aim to find meaningful proxies for sharing, matching, and learning.

All in all, this Chapter demonstrates the importance of explicitly considering the

determinants of agglomeration and underlying economic trends in understanding

(changes in) agglomeration patterns.

27The coagglomeration index considers the relative joint presence of two industries in a city. Hence,
coagglomeration in a small city is just as important as coagglomeration in a large city.



2A. APPENDIX A: DATA 69

2A Appendix A: Data

Coagglomeration
We obtain data on the number of employees per manufacturing industry and county

from the CBP, which is available online from 1986 onwards. Raw data for 1970, 1971,

1977, and 1978 was kindly provided by Duranton et al. (2014). We base ourselves

on their procedure to estimate censored values and accommodate changes in county

boundaries. This procedure also involves taking the county level mean employment

per industry of two subsequent years, i.e. employment of an industry in a county for

1970 is based on the average employment for 1970 and 1971.

Data of 1970 and 1971 uses the SIC ’67 classification, and data of 1977 and 1978 uses

the SIC ’72 classification. We use the Census of Manufactures of 1972 and 1987 to

concord employment values to the 3-digit SIC ’87 classification. For the industrial

concordance between NAICS to SIC ’87, we employ the economic censuses of 1997,

2002, 2007, and 2012 in which a classification change took place. Hence, data are

given according to both classifications, e.g. the economic census 1997 contains data on

the number of establishments, number of employees, value of shipments, and payroll

according to both the NAICS1997 classification as well as the SIC’87 classification.

Our baseline results are based on estimates at the Metropolitan Statistical Area (MSA)

level but we will also show results at the county level.

Agglomeration determinants

labour market pooling

We employ the NIOEM of the BLS to calculate a proxy for the extent to which two

industries can share workers. Data of 1970 and 1978 were published in the hard-copy

BLS (1981) report, along with projected values for 1990. Data was retrieved using

OCR.28 For the other time periods, we try to stay close to the years of the CBP. This

is exactly possible in 1989, 2004, 2009, and 2014. There is no data for 1994, therefore

we combine data from 1992 and 1995, and data for many occupations is missing in

1999, therefore we use data from 1998 instead.

In 44 years, the layout of the NIOEM as well as the occupations recorded underwent

numerous changes. There is a risk that measured changes in the importance of labour

market pooling over time are due to these definition changes rather than actual changes

in the potential to share workers. Therefore, we employ a concordance of the BLS

28This is not without risk as numbers can be misread. However in this case, OCR errors could
easily be manually identified and corrected as the values are stated in percentages, which should add
up to 100%. The tabulizer package for R by Leeper (2018) proved to be particularly useful in our
data collection endeavours.
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between the OES codes used for job occupations in 1989 to 1998 and the SOC codes

used in 2004 to 2014. When multiple occupation categories of one classification match

a single occupation category of another classification, we group these occupations into

the respective single category. We do the same when one or more years publish data

at a more aggregate occupation category. As such, we create a composite classification

consisting of 260 occupations that are (more or less) consistent over time.

Using the Dictionary of Occupation Titles of 1965 and O-NET job descriptions, the

job occupations in 1970 and 1978 are matched to this job classification. When a single

occupation applies to multiple job occupations in BLS (1981) we use the industry-

specific projected 1990 values in comparison to the respective values of 1989 in our

composite classification to estimate the industry-specific share of each occupation that

belongs to the respective occupations.

Input-output linkages

To estimate the share of inputs/outputs bought from/sold to a certain industry we

employ the detailed use tables and accompanying concordance tables between the IO

codes and the industry classification in each year. These are published by the BEA

every 5 years, in years ending on 2 and 7. When multiple SIC codes match a single IO

code we divide the associated values according to the relative employment size of the

involved SIC industries as reported in the CBP at that time period. For data after the

switch to NAICS in 1997, we concord IO codes to NAICS codes and then to SIC codes

using the share of value of shipments obtained from the economic censuses at every

classification update. The data in the SIC ’67 and SIC ’72 classification are taken as

they are as not all values in IO codes have detailed matching SIC codes.

By employing only the use tables, we follow Ellison et al. (2010), who simplify matters

by disregarding the fact that industries can produce other commodities than their

own. Diodato et al. (2018) do take this fact into account by employing both the make

(supply) and use (demand) tables to construct input-output linkages. We also tried

their procedure and found the same trends in agglomeration forces over time but noted

that coefficients on input-output linkages are noticeably smaller when using the latter

approach.

Knowledge spillovers

We build on patent data to develop a proxy for the extent to which two industries

can learn from each other. The historical USPTO data (see Marco et al., 2015) gives

among other the technology classes of each patent between 1836 and 2014. We pool

patents granted between 5 years before and 2 years after each year in our data. For

example, for calculating our measures in 1970, we use patents granted in 1965 to
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Table 2A1 – Source years of the data

CBP Labour market pooling Input and Output Patents

1970 and 1971 1970 1972 1965-1972
1977 and 1978 1978 1977 1972-1979
1989 and 1990 1989 1987 1984-1991
1994 and 1995 1992 and 1995 1992 1989-1996
1999 and 2000 1998 1997 1994-2001
2004 and 2005 2004 2002 1999-2006
2009 and 2010 2009 2007 2004-2011
2014 and 2015 2014 2012 2009-2014

1972. Then we use the probability that the respective technologies were manufactured

by an industry according to the concordance table by Kerr (2008) to associate SIC

’87 industries to each technology. As such, we obtain to what extent industry pairs

co-occur in patents and to which industries patents belong when cited or citing. Note

that each patent can make reference to multiple technology classes.

Data on patent citations before 1975 was kindly provided by Petralia et al. (2016),

whereas more recent data are obtained from the NBER patent database (Hall et al.,

2001). Following the previous literature, we construct the patent citation measure by

calculating the share of patents associated with industry i citing patents associated

with industry j in the total number of patent citations by industry i, for each i and

each j.

Table 2A1 shows the respective years of the data sources per time period.

We decided not to use patent citations because technological relatedness outperforms

this measure both empirically (see Section 2.4), and conceptually. Conceptually, both

proxies for knowledge spillovers build on linking technological classes on patents to

industries, where patents can make reference to multiple technology classes. When

using patent citations as a proxy for knowledge spillovers, we consider the share of

citations of industry i’s patents towards patents of industry j.

However, not al of the technology classes used in the cited patents may be used in the

citing patent. In our sample, some patents cite up to 1, 500 other patents. As a result,

this superfluous information is strongly reducing the quality of the patent citations

proxy as a large share of technologies cited is likely irrelevant. On the other hand,

technological relatedness builds on the co-occurrence of technological classes listed on

the patents and therefore only uses the technological classes that are actually used in

the invention described in the patent.

Furthermore, the patent citations measure is likely distorted as they are only normalised

by the number of patent citations of the industry itself and not by the sizes of other
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industries. It is a directional measure in the sense that PCij 6= PCji where the number

of citations of industry i to industry j is divided over the total number of citations by

patents of industry i. Therefore, the number of patent citations is only normalised by

the size of industry i and not by the size of industry j.

This has strong consequences because industries vary greatly in the number of patents

filed. For example, industry SIC 356 General Industrial Machinery And Equipment

is associated with about 1, 273, 495 (out of 21, 278, 149) patents used to estimate

knowledge spillovers in 1994, while industry SIC 201 Meat Products is only associated

with about 6,194 patents. As a result, a large share of the citations of SIC 201 are in

the direction of industry SIC 356, likely not because these are as useful but because

these are overrepresented in the patent data. Actually, the correlation between the

number of patents of industry j and the share of patent citations by industry i it

receives is substantial with 0.72. As a result, SIC 356 is in the top 3 of the most

important cited industry for almost 65% of the industries.

More specifically, we give a ranking of the industries that are in the top 3 of most

important knowledge spillover partner of other industries in Table 2A2, where the

columns show the industry, the frequency in which it appears in the top 3 of other

industries, and an overview of these corresponding industries. We note that a large

share cites industries with other two digit codes and that many do not make much

sense intuitively. It is highly unlikely that earlier mentioned example SIC 201 (Meat

Products) can learn the most from SIC 283 (Drugs) and SIC 355 (Special Industry

Machinery), next to SIC 356. These industries also happen to be the industries with

the most patents and the most received citations.

On the other hand, technological relatedness normalises the size effect of both industries.

The measure captures how often industries co-occur on patents compared to if industries

were randomly distributed over patents. As industries with more patents are more likely

to be present on a patent if distributed randomly it corrects for the size effect of both.

As a result, technological relatedness is an undirected measure and T Rij = T Rji. The

correlation between the number of patents of industry j or i and how technologically

related it is to industry i, respectively, j is essentially zero (i.e. −0.1).

When looking at the frequency and industries that appear in the top 3 of most

important knowledge partners according to technological relatedness in Table 2A3

industries appear much less often and are more often within the same 2-digit industry.

For example, SIC 271 (Newspaper) is the most important partner for all other industries

in SIC27 (Printing and Publishing): SIC 272-SIC279, which are likely to use similar

technologies. When the 2-digit codes do not match the combinations intuitively make
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Table 2A2 – Industries in the top 3 of most cited by other industries

Industry Frequency Corresponding industries

SIC356
General Industrial Machinery And
Equipment

90

SIC201-SIC223; SIC226-SIC229; SIC239-SIC267; SIC274;
SIC279; SIC291-SIC301; SIC305; SIC308; SIC317; SIC321-
SIC355; SIC358; SIC359; SIC363; SIC371-SIC374; SIC376;
SIC379; SIC391; SIC393; and SIC395-SIC399

SIC308 Misc. Plastics Products 76

SIC202-SIC206; SIC208; SIC209; SIC223-SIC225; SIC227-
SIC238; SIC241-SIC244; SIC249-SIC252; SIC254-SIC267;
SIC273; SIC275-SIC278; SIC282; SIC284; SIC285; SIC289;
SIC295; SIC301-SIC306; SIC311-SIC329; SIC334; SIC341;
SIC344; SIC345; SIC347; SIC348; SIC353; SIC355; SIC375;
SIC391; and SIC394

SIC357 Computer And Office Equipment 37
SIC239; SIC271-SIC279; SIC285; SIC301; SIC306; SIC342;
SIC349; SIC356; SIC358-SIC362; SIC364-SIC369; SIC375;
SIC381-SIC387; and SIC393-SIC399

SIC355
Special Industry Machinery,
Except Metalworking

36

SIC201; SIC227; SIC243; SIC245; SIC249; SIC253; SIC261;
SIC323; SIC325-SIC334; SIC336; SIC339; SIC342-SIC346;
SIC351-SIC354; SIC356; SIC363; SIC371-SIC373; SIC376;
SIC379; and SIC391

SIC382
Laboratory Apparatus And
Instruments

30
SIC221-SIC226; SIC228-SIC239; SIC251; SIC259; SIC262;
SIC267; SIC274; SIC315; SIC349; SIC384; SIC385; SIC387;
SIC393; SIC395; and SIC396

SIC366 Communications Equipment 23
SIC273; SIC275-SIC279; SIC321; SIC322; SIC333; SIC335;
SIC336; SIC357-SIC362; SIC364; SIC365; SIC367; SIC369;
SIC381; SIC386; and SIC399

SIC385 Ophthalmic Goods 17
SIC221; SIC222; SIC224-SIC226; SIC231-SIC238; SIC315;
SIC382; SIC384; and SIC387

SIC283 Drugs 14
SIC201-SIC209; SIC281; SIC282; SIC284; SIC286;
and SIC287

SIC353
Construction, Mining, And
Materials Handling

14
SIC331; SIC332; SIC339; SIC343; SIC351; SIC352; SIC354-
SIC356; SIC363; SIC371-SIC373; and SIC376

SIC289 Misc. Chemical Products 13
SIC207; SIC281-SIC284; SIC286; SIC287; SIC291-SIC299;
SIC308; SIC324; and SIC348

Table 2A3 – Industries in the top 3 of the most technologically related
to other industries

Industry Frequency Corresponding industries

SIC271 Newspaper 14
SIC261; SIC262; SIC272-SIC279; SIC306; SIC375;
SIC394; and SIC399

SIC272 Periodical 13
SIC261; SIC262; SIC271; SIC273-SIC279; SIC306;
SIC394; and SIC399

SIC237 Fur Goods 10 SIC225; SIC231-SIC236; SIC238; SIC315; and SIC391
SIC324 Cement, Hydraulic 10 SIC285; SIC295; SIC321-SIC323; and SIC325-SIC329
SIC202 Dairy Products 9 SIC201; SIC203-SIC209; and SIC283

SIC234
Women’s, Misses’, Children’s, And
Infants’ Undergarments

9 SIC225; SIC231-SIC233; SIC235-SIC238; and SIC315

SIC205 Bakery Products 8 SIC201-SIC204; and SIC206-SIC209

SIC379 Misc. Transportation Equipment 8
SIC239; SIC245; SIC346; SIC352; SIC371; and
SIC373-SIC375

SIC371
Motor Vehicles And Motor Vehicle
Equipment

7
SIC239; SIC245; SIC346; SIC351; SIC372; SIC376;
and SIC379

SIC204 Grain Mill Products 6 SIC202; SIC203; SIC205; SIC206; SIC209; and SIC283

more sense. For example, SIC 261 (Pulp Mills) and SIC 262 (Paper Mills) are likely

to use similar technologies as producers in SIC 271 (Newspaper). Note that the

correlation between patent citations and technological relatedness is actually only

0.146.
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Dissimilarity measures

We control for coagglomeration due to co-dependence on a similar input by developing

dissimilarity measures, following Faggio et al. (2017). We employ the BEA’s use tables

mentioned under input-output linkages. We discern the following groups: Agriculture

related inputs (SIC: 7-9); Mining related inputs (SIC: 10-15); Water related inputs

(SIC: 494); Energy related inputs (SIC: 491 and 492); Transport related inputs (SIC

40-48); Finance, Insurance and Real Estate (FIRE) Services (SIC: 60-67); Other

services (SIC: 70-89). The dissimilarity in dependency on inputs from each of these

groups between industry i and industry j is measured as one half of the absolute value

of the difference in these shares.

Trade, technology, and transportation costs

Trade

To calculate import penetration we employ trade data from the U.N. comtrade database.

As data are available on a yearly basis we use the same years as for the CBP, namely

1970, 1977, 1989, 1994, 1999, 2004, 2009, and 2014. U.N. comtrade also has concordance

tables between the respective product codes and the SIC ’87 classification used here.

We correct imports for re-exports where necessary before dividing imports from low-

wage countries over the total amount of imports, according to the value share approach

(see Bloom et al., 2016).

Table 2A4 reports the names of countries that are defined as low-wage, i.e. they have

a GDP per capita of less than 15% of that of the U.S. over the entire time period. We

use data of the World Bank to obtain the GDP per capita of countries for each time

period in our data.

An alternative measure for import penetration than the one in the main analysis is

to divide imports from low-wage countries over the so-called apparent consumption

in the U.S., which is equal to domestic production minus exports plus imports (see

Bloom et al., 2016). Export data are available as well in the U.N. comtrade database,

while the total value of shipments is obtained from the NBER-CES manufacturing

industry database (see Bartelsman and Gray, 1996). This measure may be closer to

the concept of import penetration as it gives the share of low-wage imports in the

total value of products on the national market, but it has the drawback that data on

the value of shipments for SIC industries 241, and 271 to 277 is missing after 1997, as

these are no longer seen as manufacturing in the NAICS classification adopted in that

year. Furthermore, the two databases derive their data from different sources, leading

to discrepancies in the values. A final advantage of using the value share approach

instead of the share in apparent consumption is that it allows to derive instruments
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Table 2A4 – List of low-wage countries
Afghanistan Albania Algeria
Angola Armenia Azerbaijan
Bangladesh Belize Benin
Bhutan Bolivia Bosnia Herzegovina
Botswana Burkina Faso Burundi
Cabo Verde Cambodia Cameroon
Central African Republic Chad China
Colombia Comoros Congo
Côte d’Ivoire Democratic Republic of the Congo Djibouti
Dominica Dominican Republic Egypt
El Salvador Eritrea Ethiopia
Fiji Gambia Georgia
Ghana Guatemala Guinea
Guinea-Bissau Guyana Haiti
Honduras India Indonesia
Jordan Kenya Kiribati
Kosovo Kyrgyzstan Laos
Lesotho Liberia Madagascar
Malawi Mali Marshall Islands
Mauritania Micronesia Moldova
Mongolia Montenegro Morocco
Mozambique Myanmar Nepal
Nicaragua Niger Nigeria
North Macedonia Pakistan Papua New Guinea
Paraguay Peru Philippines
Rwanda Samoa São Tomé and Principe
Senegal Serbia Sierra Leone
Solomon Islands Somalia South Sudan
Sri Lanka St Vincent and Grenadines Sudan
Syria Tajikistan Thailand
Timor-Leste Togo Tonga
Tunisia Turkmenistan Tuvalu
Uganda Ukraine United Republic of Tanzania
Uzbekistan Vanuatu Vietnam
West Bank and Gaza Yemen Zambia
Zimbabwe

for each industry for the entire time period. Nonetheless, we also present results in the

robustness analysis using the import share in apparent consumption. These confirm

our results, as is the case in Bloom et al. (2016).

Technology

To proxy for technological progress we calculate the routine employment share per

industry and time period, following Autor et al. (2013).29 We use the same IPUMS

census samples of (Ruggles et al., 2018) that were also used for the spatial instruments.

Autor et al. (2013) employ data from the Dictionary of Occupational Titles from 1977

29We note that this measure underestimates the decrease in routine task intensity, because the
task content within occupations also has seen a decrease in routine task intensity, as discussed by
Autor et al. (2003) and Autor and Dorn (2013).
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to estimate the routine (TRk ), manual (TMk ), and abstract (TAk ) task inputs on a scale

from zero to ten per occupation.

Subsequently they derive the routine task intensity (RT Ik) per occupation k through

the following formula:

RT Ik = log(TRk )− log(TMk )− log(TAk ). (2A.1)

Then they apply a binary approach according to which all occupations in the 1980

IPUMS census sample with a routine task intensity value above the employment

weighted 66th percentile are defined as routine task intensive jobs. Like Autor et al.

(2013), we set zero values of task inputs to the score of the 5th percentile.

We follow this approach and then calculate the routine employment share RSHit for

each industry i for each year t, according to the following formula:

RSHit =

∑K
k=1 Likt × 1(RT Ik > RT IP66)∑K

k=1 Likt
, (2A.2)

where Likt is the employment in occupation k in industry i at time t and 1(RT Ik >
RT IP66) is an indicator function, which takes the value one when the occupation is

defined as routine task intensive.

Transportation costs

We employ the use tables of the BEA to calculate the share of expenditure on

transportation sectors (SIC 41-47) in the total use value of an industry.30 This

underestimates the transportation costs because the use of company-owned trucks

driven by company personnel is not included in transportation cost expenditure. This

underestimation is larger in the earlier periods than in the later periods as industries

increasingly outsource transportation services to dedicated firms. For example the

Commodity Flow Survey (CFS) of 1977 indicates that 35.8% of the ton-miles of U.S.

manufacturing was performed by private trucks against 9.3% in the CFS of 2012.

To correct for this underestimation, we first derive expenditure per ton-mile on trucking

by dividing the expenses on SIC 42 Trucking and warehousing in the use table over

the ton-miles executed by motor carriers in the CFS. Then we multiply this by the

number of ton-miles performed by private trucks. This estimated amount spend on

private trucking is deduced from the total use value outside transportation and added

to the expenditure on transportation. Due to coverage limitations and availability

30Note that by definition the total use value is equal to the total make value and therefore this
definition approaches the often used iceberg transportation cost definition used in economic models.
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issues, we only use the CFS of 1977, 1993, 2002, 2007, and 2012.

In a robustness analysis, we also show results using another sectoral transportation

cost measure proposed by Glaeser and Kohlhase (2004), namely the value of a ton. As

a higher value of a ton suggests that transportation costs are a small fraction of the

total price. We use the data from the aforementioned CFS to calculate the value of a

ton. Because data from 2002 onwards is only available at an aggregate industry level

we calculate the measure at the 2-digit level. Furthermore, SIC 27 is not considered in

the CFS so we set its value at the average of all manufacturing and include a dummy

variable to indicate that the value is missing. Next to these data limitations this

measure also has the disadvantage that changes in the value of a ton over time are not

indicative of changes in transportation costs. Nonetheless, we show results using this

measure in Appendix 2B.

Controls

To mitigate omitted variable bias we add extra control variables to the main speci-

fication and follow Oster (2019) in using the changes in coefficients of the variables

of interest, together with changes in the R2, to estimate the effect of other omitted

variables that cannot be observed. We add the natural logarithm of the average

establishment size and the capital-labour ratio per year and industry. The former is

calculated by dividing the number of employees over the number of establishments

in the CBP, while the latter is calculated by dividing the capital value over the total

payroll using the NBER-CES manufacturing database by Bartelsman and Gray (1996).

Note that in this last data set values are missing for SIC 241, and 271 to 277 after

1997, as mentioned earlier.

Additional descriptives
Table 2A5 presents the descriptive statistics of the dissimilarity indices, which indicate

how dissimilar an industry pair is in their dependence on a certain input. The

minimum value of 0, indicates that both industries have the same dependence on an

input. Whereas the maximum of 0.336, after capping, for the agricultural dissimilarity

index indicates that one industry obtains 67.2% more of its inputs from the agricultural

sector (SIC 7) than the other. This is for example the case for the industry pair SIC

201 (Meat Products) and SIC 283 (Drugs), where the former receives 69.9% of its

inputs from the agricultural sector and the latter only 0.2%.

Figure 2A1 presents histograms of the main variables of interest. The more skewed a

distribution is, the larger the risk is that outliers drive results. In this respect, the

distribution of coagglomeration values presents little risk as it resembles more or less a

normal distribution and is only slightly skewed to the right. labour market pooling is
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Table 2A5 – Descriptive statistics cont’d

Statistic Mean St. Dev. Min Max

Agricultural Dissimilarity Index 0.032 0.072 0.000 0.336
Mining Dissimilarity Index 0.020 0.050 0.000 0.341
Water Dissimilarity Index 0.017 0.020 0.0001 0.107
Energy Dissimilarity Index 0.011 0.012 0.0001 0.064
Transport Dissimilarity Index 0.030 0.030 0.0003 0.146
FIRE Dissimilarity Index 0.012 0.018 0.00004 0.096
Other Services Dissimilarity Index 0.0003 0.001 0.000 0.004

Note: The number of observations is 155680.

more strongly right skewed, but particularly input-output linkages and technological

relatedness are right skewed. Note that the variables would be more skewed when

outliers were not capped.

Figure 2A2 depicts the mean and variance of variables of interest over time. The mean

is relatively stable over time for each of the variables. We emphasise that this does

not mean that there are no changes in the extent to which industries coagglomerate,

employ similar workers, buy or sell to each other, and can learn from each other.

Large changes of multiple standard deviations can be found for all variables between

industries. This is obscured in Figure 2A2 because the average value over all industries

remains very much unchanged.

Also, coagglomeration, input-output linkages, and technological relatedness are mea-

sures that are normalised by each year. This means that their average values over

time are not influenced by changes in region size, industry size, total number of

inputs/outputs, total number of co-occurrences of technologies on patents but only by

the relative distribution within these indicators across industries.31 We emphasise that

the main results of this Chapter are not driven by the fluctuations in the independent

variables, as holding them equal at their 1994 values leads to similar results as in the

main analysis, see Appendix 2B.

One can also observe in Figure 2A2 that the variance of each variable is also relatively

stable over time, except in the case of coagglomeration. Here a steady decline over

time occurs to about 40% of its original 1970 value. This observation is particularly

interesting as Faggio et al. (2017) notes that low-technology industries have larger,

more extreme, coagglomeration values. A decrease in the variance over time would

then be in line with coagglomeration patterns becoming less low-technology oriented.

31On the other hand, labour market pooling is not normalised as it is a correlation measure and
therefore its values are technically possible to move freely between 0 and 1 over time. Interestingly,
the correlation of employment shares across job categories between industries is relatively stable.
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Figure 2A1 – Histograms of the variables of interest

Coagglomeration

F
re

qu
en

cy
 (

x1
00

0)

0.0 0.2 0.4 0.6 0.8 1.0

0

5

10

15

20

(a) Coagglomeration

Labor market pooling

F
re

qu
en

cy
 (

x1
00

0)

0.0 0.2 0.4 0.6 0.8 1.0

0

5

10

15

20

(b) labour market pooling

Input−output linkages

F
re

qu
en

cy
 (

x1
00

0)

0.00 0.02 0.04 0.06 0.08 0.10 0.12

0

20

40

60

80

100

120

(c) Input-output linkages

Technological relatedness

F
re

qu
en

cy
 (

x1
00

0)

0 10 20 30

0

20

40

60

80

100

120

(d) Technological relatedness



80 CHAPTER 2. THE DYNAMICS OF INDUSTRY AGGLOMERATION

Figure 2A2 – Mean and variance of the variables of interest over time
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Table 2B1 – Main results w/ 1994 values
(Dependent variable: coagglomeration of industries i and j)

Naive + Dissimilarity + Industry× Time

specification measures year fixed effects trends

(1) (2) (3) (4)

Labour market pooling 0.115∗∗∗ 0.109∗∗∗ 0.163∗∗∗ 0.216∗∗∗

(0.009) (0.009) (0.013) (0.020)
Input-output linkages 0.096∗∗∗ 0.096∗∗∗ 0.098∗∗∗ 0.129∗∗∗

(0.010) (0.010) (0.010) (0.015)
Technological relatedness 0.153∗∗∗ 0.150∗∗∗ 0.106∗∗∗ 0.071∗∗∗

(0.015) (0.015) (0.016) (0.022)
Labour market pooling× −0.022∗∗∗

(year-1970)/10 (0.005)
Input-output linkages× −0.013∗∗∗

(year-1970)/10 (0.003)
Technological relatedness× 0.014∗∗∗

(year-1970)/10 (0.005)

Dissimilarity measures No Yes Yes Yes
Industry i × year fixed effects No No Yes Yes
Industry j × year fixed effects No No Yes Yes
Year fixed effects Yes Yes Yes Yes

Observations 155,680 155,680 155,680 155,680
R2 0.070 0.074 0.122 0.123

Notes: Standard errors are clustered at the industry ij-ji level and in parentheses; ***
p < 0.01, ** p < 0.5, * p < 0.10.

2B Appendix B. Sensitivity analyses

Step 1: Determinants of industry agglomeration

Constant definition of agglomeration determinants

We check that the changes in the importance of agglomeration determinants over time

are not driven by changes in the Marshallian proxies or in the quality of measurement

of these. To this end, we hold all variables but coagglomeration constant at their 1994

values and show the main findings in Table 2B1.

Variables are standardised to have zero mean and a standard deviation of one. As such

the coefficient on labour market pooling in the naive specification shown in column

(1), indicates that a standard deviation increase in the extent to which two industries

can share workers leads on average to an increase of 0.115 of a standard deviation in

coagglomeration. Like in the main results (in Table 2.3), the addition of industry×year

fixed effects increases the coefficient on labour market pooling but decreases that on

technological relatedness.

When we compare the coefficients of our preferred specification, column (3), we note
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that the coefficient on labour market pooling is significantly smaller when using 1994

values for the proxies (0.163 vs. 0.195). On the other hand, the coefficients on input-

output linkages and technological relatedness are slightly larger but these differences

are not statistically significant.

Even though the specific values of a variable in a year do seem to influence the results,

the differences are not that large. Most importantly, column (4) shows that the time

trends are strongly significant and have the same sign as in the main results. This

confirms that changes in the importance of agglomeration over time are not driven by

changes in (the quality of) our Marshallian proxies.

Industry-pair fixed effects

Table 2B2 presents the results when introducing industry-pair fixed effects. Therefore

the coefficients are estimated based on within variation. These fixed effects capture

most of the variation, as suggested by the R2 exceeding 0.7. The coefficients are

greatly reduced compared to all other results. According to column (1), a standard

deviation increase in labour market pooling is only associated with 0.037 of a standard

deviation increase in coagglomeration. The coefficients on input-output linkages and

technological relatedness are also positive but even smaller and highly insignificant.

Hence, the effects are considerably lower than in the preferred specification.

When adding the interaction with the time trends in column (2), the coefficients

on the Marshallian proxies are higher and in the case of labour market pooling and

input-output linkages significantly different from zero. Due to the interaction variables

these coefficients represent the value of the base year 1970. In that year the coefficients

on labour market pooling and input-output linkages were much larger compared to

later years (see Table 2B8). The interaction terms do have the expected sign but are

only significant for labour market pooling and input-output linkages.

Hence, we think the results with industry-pair fixed effects amplify measurement error,

which leads to a strong bias towards zero. Even so, although not all the coefficients

presented here are strongly statistically significant, these results point towards similar

effects.

Coagglomeration at the county level

Table 2B3 reproduces the main results when calculating the coagglomeration index

at the county level instead of the MSA level. When comparing the results of our

preferred specification, we notice that a standard deviation increase in the labour

market pooling measure leads to an increase of 0.223 of a standard deviation in

coagglomeration at the county level versus 0.195 of a standard deviation at the MSA

level. This difference is statistically significant and suggests that labour market pooling
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Table 2B2 – Industry pair results
(Dependent variable: coagglomeration of industries i and j)

Full + Time

model trends

(1) (2)

Labour market pooling 0.037∗∗∗ 0.058∗∗∗

(0.010) (0.014)
Input-output linkages 0.001 0.043∗∗∗

(0.008) (0.013)
Technological relatedness 0.007 0.005

(0.035) (0.051)
Labour market pooling× −0.009∗∗∗

(year-1970)/10 (0.004)
Input-output linkages× −0.017∗∗∗

(year-1970)/10 (0.003)
Technological relatedness× 0.007

(year-1970)/10 (0.006)

Dissimilarity measures Yes Yes
Year fixed effects Yes Yes
Industrypair fixed effects Yes Yes
Observations 155,680 155,680
R2 0.663 0.664

Notes: Standard errors are clustered at the industry ij-ji level and in
parentheses; *** p < 0.01, ** p < 0.5, * p < 0.10.

is a stronger determinant at finer geographical levels. The coefficients on input-output

linkages and technological relatedness are not significantly different with respect to

geography. The interactions with the time trends given in column (4) are also not

significantly different from those at the MSA level in column (3) of Table 2B7. Hence,

our results are robust to the choice of geographical area.

Weighted regressions

The baseline results in Table 2.3 present the results for the average industry pair.

However, industries vary greatly in size. In Table 2B4, we take the log of respectively

the number of employees, number of establishments, and value added to weight

observations.

Columns (1), (3), (5) show our preferred specifications by, respectively, the number

of establishments, employment, and value added. These results are not statistically

significantly different the baseline specification in column (3) of Table 2.3.

In columns (2), (4), (6) we add time trends. These results are also not statistically

significantly different from the corresponding unweighted results in column (3) of Table

2B7. However, note that the trend on technological relatedness is not statistically

significant here because the standard errors are somewhat larger.
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Table 2B3 – Main results at the county level
(Dependent variable: coagglomeration of industries i and j)

Naive + Dissimilarity + Industry× Time

specification measures year fixed effects trends

(1) (2) (3) (4)

Labour market pooling 0.136∗∗∗ 0.132∗∗∗ 0.223∗∗∗ 0.347∗∗∗

(0.008) (0.008) (0.013) (0.021)
Input-output linkages 0.072∗∗∗ 0.072∗∗∗ 0.073∗∗∗ 0.135∗∗∗

(0.008) (0.008) (0.008) (0.015)
Technological relatedness 0.164∗∗∗ 0.163∗∗∗ 0.100∗∗∗ 0.070∗∗∗

(0.014) (0.014) (0.015) (0.023)
Labour market pooling× −0.051∗∗∗

(year-1970)/10 (0.006)
Input-output linkages× −0.026∗∗∗

(year-1970)/10 (0.004)
Technological relatedness× 0.013∗∗

(year-1970)/10 (0.006)

Dissimilarity measures No Yes Yes Yes
Industry i × year fixed effects No No Yes Yes
Industry j × year fixed effects No No Yes Yes
Year fixed effects Yes Yes Yes Yes

Observations 155,680 155,680 155,680 155,680
R2 0.076 0.080 0.153 0.158

Notes: Standard errors are clustered at the industry ij-ji level and in parentheses; ***
p < 0.01, ** p < 0.5, * p < 0.10.
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Table 2B5 – Main results w/ two-way clustering
(Dependent variable: coagglomeration of industries i and j)

Naive + Dissimilarity + Industry× Time

specification measures year fixed effects trends

(1) (2) (3) (4)

Labour market pooling 0.114∗∗∗ 0.109∗∗∗ 0.195∗∗∗ 0.293∗∗∗

(0.018) (0.018) (0.027) (0.040)
Input-output linkages 0.077∗∗∗ 0.076∗∗∗ 0.077∗∗∗ 0.135∗∗∗

(0.015) (0.014) (0.017) (0.029)
Technological relatedness 0.161∗∗∗ 0.159∗∗∗ 0.104∗∗∗ 0.061∗

(0.031) (0.031) (0.031) (0.034)
Labour market pooling× −0.040∗∗∗

(year-1970)/10 (0.009)
Input-output linkages× −0.024∗∗∗

(year-1970)/10 (0.007)
Technological relatedness× 0.017∗

(year-1970)/10 (0.009)

Dissimilarity measures No Yes Yes Yes
Industry i × year fixed effects No No Yes Yes
Industry j × year fixed effects No No Yes Yes
Year fixed effects Yes Yes Yes Yes

Observations 155,680 155,680 155,680 155,680
R2 0.067 0.070 0.116 0.119

Notes: Standard errors are two-way clustered at industry i and industry j, and in parentheses; ***
p < 0.01, ** p < 0.5, * p < 0.10.

Two-way clustering of standard errors

In the main results we cluster the standard errors at the industry pair (ij - ji) level.

This means that each cluster contains 16 observations and coefficients are very precisely

estimated, i.e. the standard errors are rather small. Other choices in clustering likely

leads to larger standard errors. Therefore, we reproduce the main results using two-way

clustering by industry i and industry j in Table 2B5.

Two-way clustering does not affect the estimated coefficients but imply larger standard

errors. Two-way clustering implies that standard errors are roughly twice as large.

Hence, the p-values decrease but virtually all coefficients remain statistically significant

at the 99% confidence level. The exceptions are the coefficient on technological

relatedness and its interaction with the time trend, which is now statistically significant

at the 90% level.

Outliers – levels

In order to limit the influence of extreme values, which are present in all of the main

variables, we cap values to the respective 1st percentile and 99th percentile. We compare

the results of this approach to different alternative thresholds and the possibility of
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dropping outliers instead of capping these in Table 2B6.

Column (1) shows the main results from the preferred specification. Column (2) shows

the results when dropping observations with at least one value below the respective 1st

percentile or above the 99th percentile in coagglomeration, labour market pooling, input-

output linkages or technological relatedness. As a result, the number of observations

decreases from 155, 680 to 146, 274. Without these observations, the coefficients on

all agglomeration determinants are somewhat smaller. In the case of technological

relatedness the coefficient is even less than half the size of column (1). We prefer

capping outliers over dropping as the information of the industry pairs that have high

values for the variable of interest are paramount for understanding agglomeration

patterns.

Columns (3) and (4) show the results when capping at the 0.1th/99.9th percentile. In

this case only 911 observations are capped or dropped, respectively. Only the values

on technological relatedness are significantly larger than when using the 1st and 99th

threshold, see column (1) and (2), whereas labour market pooling and input-output

linkages show more similar results. The differences between capping and dropping are

generally small.

Columns (5) and (6) show the results when capping at the more strict 2.5th/97.5th

percentile. In this case 22, 937 observations are dropped or capped. As this is almost

15% of all observations, excluding further modifications due to capped values on the

control variables, we see this as a rather stringent way of dealing with outliers. The

estimated coefficients in column (5) are not statistically different from those obtained

in the main results, column (1). On the other hand, dropping once again leads to

significantly smaller coefficients on all agglomeration determinants.

We also check the robustness of the trends in agglomeration determinants to these

different outlier treatments in Section 2B.

Step 2: Changes in agglomeration determinants

Year-by-year results

Table 2B8 presents the by-year regression results that underlie Figure 2.2. Variables

are standardised to have zero mean and a standard deviation of one. As such the

coefficient on labour market pooling in 1970, see column (1), indicates that a standard

deviation increase in the extent to which two industries industry can share workers

leads on average to an increase of 0.311 of a standard deviation in coagglomeration.

As became clear from Figure 2.2, the coefficients on labour market pooling and input-
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Table 2B7 – Time trend results
(Dependent variable: coagglomeration of industries i and j)

Naive + Dissimilarity + Industry× Bias- 2SLS

specification measures year fixed effects adjusted specification

(1) (2) (3) (4) (5)

Labour market pooling 0.130∗∗∗ 0.134∗∗∗ 0.293∗∗∗ 0.274∗∗∗ 0.415∗∗∗

(0.014) (0.014) (0.022) (0.027) (0.010)
Input-output linkages 0.137∗∗∗ 0.136∗∗∗ 0.135∗∗∗ 0.134∗∗∗ 0.117∗∗∗

(0.015) (0.014) (0.016) (0.020) (0.006)
Technological rel. 0.151∗∗∗ 0.148∗∗∗ 0.061∗∗∗ 0.059∗∗ 0.014∗∗

(0.021) (0.021) (0.023) (0.027) (0.007)
Labour market pooling× −0.006∗ −0.010∗∗∗ −0.040∗∗∗ −0.051∗∗∗ −0.048∗∗∗

(year-1970)/10 (0.003) (0.004) (0.006) (0.006) (0.004)
Input-output linkages× −0.025∗∗∗ −0.024∗∗∗ −0.024∗∗∗ −0.025∗∗∗ −0.023∗∗∗

(year-1970)/10 (0.003) (0.003) (0.004) (0.005) (0.002)
Technological rel.× 0.004 0.004 0.017∗∗∗ 0.011∗ 0.022∗∗∗

(year-1970)/10 (0.005) (0.005) (0.006) (0.006) (0.002)

Dissimilarity measures No Yes Yes Yes Yes
Year fixed effects Yes Yes Yes Yes Yes
Industry i × year F.E. No No Yes Yes Yes
Industry j × year F.E. No No Yes Yes Yes

Observations 155680 155680 155680 155680 155680
R2 0.069 0.072 0.119 0.114
R2

max 0.154
δ 1
Kleibergen-Paap F -stat. 1093.21

Notes: Standard errors are clustered at the industry ij-ji level and in parentheses. Instrumented variables
are indicated in bold; *** p < 0.01, ** p < 0.5, * p < 0.10.

output linkages become smaller over time, whereas the coefficient on technological

relatedness increases.

Interactions with year trends

Table 2B7 presents the results in which we test for linear time trends by interacting

the determinants of agglomeration with the year of observation, which allows us to

easily evaluate if these trends are statistically significant.

Variables are standardised to have zero mean and a standard deviation of one. The

value of the interaction terms is by definition zero in 1970. The interaction between

labour market pooling and the time trend in column (1) indicates that in ten years

the coefficient on labour market pooling is 0.006 smaller.

Like in the baseline results reported in Table 2.3, the inclusion of dissimilarity mea-

sures has no significant effect on the coefficients (see column (2)). The addition of

industry×year fixed effects in column (3) amplifies the coefficient on labour market
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pooling but decreases the one on technological relatedness. Recall that the specification

in column (3) is our preferred specification as it controls for the year-specific tendency

of each industry to coagglomerate.

Column (4) presents the Oster-style bias-adjusted coefficients. To verify whether other

unobserved omitted variables are important, we use changes in coefficients of the

variables of interest, as well as changes in the R2, once the dissimilarity measures are

included. The results are not significantly different from our preferred specification.

Column (5) presents the results of the instrumental variable regression. Here we

use Marshallian proxies calculated in areas where industry i is present but industry

j is (virtually) absent to instrument our measures for labour market pooling and

technological relatedness. Proxies obtained from these areas preclude reverse causality

in which coagglomeration leads to the formation of Marshallian links. The coefficient

on labour market pooling is stronger, whereas the one on technological relatedness is

smaller. The trends remain strongly significant and of a similar magnitude.

Outliers – trends

In Table 2B9, we repeat a similar exercise as in Section 2B but now include the trends

in agglomeration determinants to the regressions. Column (1) again shows the baseline

specification from the main results. As in Table 2B6, column (2), where outliers are

dropped, we show much smaller coefficients, this also holds for the trends, of which

the trend in technological relatedness even becomes statistically insignificant.

Columns (3) and (4) report the results when capping at the smaller 0.1st/ 99.9th

percentile. Both columns are not statistically significantly different from column (1).

Nonetheless, the coefficients on the base and trend of technological relatedness in

column (3) stand out. Where the trend is positive, but insignificant, and the base

is much higher than in other specifications. This result is mainly driven by the year

1970. The year-by-year results reported in Table 2B8 show that the coefficient on

technological relatedness in 1970 is larger than in 1977 to 1994. Small changes in outlier

treatments can therefore have strong effects on the results. When dropping 1970,

however, the trend on technological relatedness is strong and significantly positive, as

can be seen in Table 2B10. Note as well that the standard errors on the coefficients

are higher, in particular in the case of technological relatedness. This is likely because

outliers still exert a disproportionally large influence on the variation.

Columns (5) and (6) show the results when capping at the more restrictive 2.5st/97.5th

percentile level. As in Table 2B6, coefficients are notably smaller when compared

to the first column, particularly when dropping outliers. The notable exception is

technological relatedness. Once again, this is due to the values of 1970. When removing
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1970 from the data, the base coefficients on technological relatedness decrease and

those on the trends increase. Hence, the presumed absence of a trend in technological

relatedness is entirely due to 1970.

Table 2B10 shows the results of the same specifications as in Table 2B9 but when 1970

is left out of the data. Unsurprisingly, the total number of observations decreases from

155,680 to 136,220 when outliers are not dropped.

The results are particularly interesting with respect to the trend in knowledge spillovers,

which is positive and significant in all instances where outliers are capped and also when

these are dropped using the 0.1st/99.9th percentile thresholds. As said, we find it more

reasonable to cap than to drop outliers as those with more extreme coagglomeration

patterns or Marshallian links should not to be disregarded when trying to understand

coagglomeration.

All in all, the different outlier treatments presented here and in Section 2B reveal that

there is a non-negligible effect of outliers on the regressions and that different ways of

handling these can lead to somewhat different results. Nonetheless, the interpretation

of both levels and trends in agglomeration determinants does not materially change.

Step 3: Exploring industry-level heterogeneity

Including more detailed industry characteristics

In the main results, we have shown the effect of the transportation costs of goods on

input-output linkages but not on labour market pooling and knowledge spillovers. Also,

we add extra control variables, on the average establishment size and the capital-labour

ratio, in the bias-adjusted procedure but did not add these control variables to the

OLS estimation.

The average establishment size is likely to influence the importance of external

economies of agglomeration as large establishments can internalise its benefits re-

ducing the need to coagglomerate (see Vernon, 1960; Chinitz, 1961). For similar

reasons Faggio et al. (2020) use the average establishment size of incumbent firms as

an explanatory variable. However, our data do not allow us to distinguish between new

and incumbent firms. The capital-labour ratio is likely to influence the demand for

certain agglomeration externalities according to the product life cycle (see Duranton

and Puga, 2001; Neffke et al., 2011b).

On the other hand, the establishment size and capital-labour ratio are also clearly

influenced by trade competition and technological progress, (see Brynjolfsson and Hitt,

2000; Holmes and Stevens, 2014; Bloom et al., 2016; Pierce and Schott, 2016), thereby

capturing part of the effect of our proxies for trade and technology. As such, the
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variables added can be seen as proxy controls, which allows us to better control for

omitted variable bias but also absorbs part of the overall effects of trade and technology

(see Angrist and Pischke, 2008). Therefore the estimated coefficients should be seen as

a lower bound of the true effects. The addition of these variables also yields insights

on the channels through which trade and technology influence industrial organisations

and therefore coagglomeration patterns.

We also explore the effects of increased R&D expenditure and increasing skill intensity,

which are also closely associated with trade competition and technological progress.

Industrial R&D expenditure data are obtained from the National Science Foundation

and divided over the number of employees according to the CBP.32 Following Pierce

and Schott (2016), the skill intensity is measured as the ratio of non-production

workers to production workers, which is obtained from the NBER-CES manufacturing

database.This measure is related to the share of highly educated workers used by

Faggio et al. (2020). Results are reported in Table 2B11.

Column (1) shows us that the addition of transportation costs of goods does not change

the coefficients on trade and technology much, in comparison to the main results in

Table 2.6. The coefficient on transportation costs is positive and significant. However,

an industry like SIC 372 (aircraft and parts), which has the lowest transportation

expenditure share, differs in more dimensions than just transportation costs from SIC

327 (concrete, gypsum, and plaster products), which has the highest expenditure share.

Hence, transportation costs of goods are likely negatively correlated to a higher average

product value, which is in turn correlated with trade competition and technological

progress. The coefficient on the capital-labour ratio is positive and strongly statistically

significant, which is at a first glance the opposite of what one would expect given the

increasing trend in this variable and the decreasing trend in labour market pooling.

However, the coefficient is in line with the ‘nursery city hypothesis’ (see Duranton

and Puga, 2001), because an industry that highly invests in machinery is likely to

standardise its production process and therefore move out of the experimental phase

(associated with knowledge spillovers) to the mass producing phase, where labour

market pooling is more important.

In column (3), we also add the R&D expenditure per employee and the skill intensity

to the specification, which are the most clearly associated with trade competition and

32The data are at a more aggregate industry level for most SIC industries, therefore we sum
employment at this industrial level and assign the same R&D expenditures per employee for the
respective SIC industries involved. We deflate the dollar values to 1987 prices using industry-specific
deflators for investments developed in the NBER-CES manufacturing database by Bartelsman and
Gray (1996).
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technological progress. Again, this does not materially influence the coefficients related

to import penetration and routine employment share. We find that R&D expenditure

is strongly and negatively associated with labour market pooling, which is in line

with the nursery city hypothesis. The positive coefficient on skill-intensity cannot

be reconciled with this hypothesis, but we note that it is negative and significant

when using an univariate regression, in line with expectations. Faggio et al. (2020)

find a statistically insignificant coefficient on the share of highly-educated workers

both in an univariate setting as in a multivariate setting. The coefficient on average

establishment size is not statistically significant in columns (2) and (3). This is in

line with Faggio et al. (2020), who also do not find a statistically significant effect of

average establishment size.

Columns (4), (5), and (6) show the results when the coefficient on input-output linkages

is used as the dependent variable. The addition of the other variables in columns (5)

and (6) does not lead to stronger and more significant coefficients. At the same time,

the coefficient on trade competition hardly changes. This is in line with the results of

Faggio et al. (2020), who also do not find statistically significant results for average

establishment size and the share of highly educated workers in explaining input-output

linkages. We further analyze the impacts on input-output linkages in Appendix 2B.

Columns (7), (8), and (9) show the results when the coefficient on technological

relatedness is used as the dependent variable. Transportation costs of goods have a

considerable impact on the importance of knowledge spillovers. The effect is negative,

which is in line with the observation that more sophisticated and high-value products

exhibit relatively low transportation costs, but are knowledge intensive. Relatedly,

Behrens et al. (2018) show that industries with low transport costs are also the

most geographically concentrated, which makes sense given that knowledge spillovers

attenuate sharply over distance and therefore drive concentration. The addition of the

other variables in columns (8) and (9) does reduce the coefficient of transportation

costs, but does not fully explain the effect. This may be because the other proxies

are also imperfect. The coefficients on the capital-labour ratio and R&D expenditure

are particularly strong and significant and in line with expectations. The coefficients

on average establishment size are insignificant just as in Faggio et al. (2020) and the

coefficient on our measure for skill intensity is insignificant here, while Faggio et al.

(2020) find a positive statistically significant coefficient on the share of higher educated

workers.

In Table 2.6 we have also shown results of the effect of transportation on input-output

linkages with bias-adjusted coefficients following Oster (2019) and using instruments.

We have also ran these estimation strategies for labour market pooling and knowledge
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spillovers. We found that these results did not lead to very different insights compared

to the OLS results presented here in columns (1), (4), and (7). Therefore, we chose

not to include them here and focus on other industry characteristics.

Weighted regressions

In the main results, we have shown unweighted regressions. Faggio et al. (2020) weight

their results by the inverse of the standard error. In Table 2B12, we reproduce the

results of Table 2.6 when using this approach.

The interpretation of the coefficients is the same as in the main results. The coefficient

on import penetration in column (1) indicates that an increase of a standard deviation

in import penetration is associated with a decrease of 0.026 in the size of the coefficient

on labour market pooling. This is significantly smaller than the 0.042 found in Table

2.6. However, the interpretation that import penetration strongly negatively influences

the need to coagglomerate to make use of labour market pooling remains valid as both

coefficients are strongly statistically significant. The same holds for the coefficient

on routine employment share, which is significantly smaller here but shows the same

implications.

Column (2) and column (3) shows respectively the bias-adjusted estimates, following

Oster (2019), and the instrumented estimates, where import penetration is instru-

mented by values from other high-income countries and routine employment share by

values from areas where each industry does not coagglomerate to make use of labour

market pooling. These are again significantly smaller than the corresponding estimates

in Table 2.6.

The results on input-output linkages are given in Columns (4), (5), and (6). The

coefficients are not statistically significantly different from corresponding estimates

in Table 2.6. However, they are more precisely estimated. As a result, the negative

association between the relevance of input-output linkages and import penetration

is strongly statistically significant in this set-up. This increases our confidence that

import penetration plays a strong role in the decreasing importance of input-output

linkages over time. The control variable log value of a ton in 1970 is also statistically

significant in this specification.

The results on knowledge spillovers are given in columns (7), (8), and (9). Like with

labour market pooling, these are smaller than the corresponding estimates in Table 2.6.

For input-output sharing we find near-identical results, while for knowledge spillovers

the effect of routine employment share is somewhat smaller and ceases to be strongly

statistically significant.
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Import penetration in apparent consumption

Our main results are based on the value share approach, the share of imports from

low-wage countries in the total of imports. However, this does not actually measure

the import penetration in the economy as the nationally produced and consumed

goods are not taken into account.Therefore, we show results here using the import

penetration in apparent consumption (see Bloom et al., 2016).

We obtain import and export data from the U.N. Comtrade database as before, while

the total value of shipments, i.e. domestic production, is obtained from the NBER-CES

manufacturing industry database (see Bartelsman and Gray, 1996). In Appendix 2A,

we discussed several drawbacks of this measure in its application; namely missing data

values on the value of shipments for SIC industries 241, and 271 to 277 after 1997, the

mismatch between the two different data sources, and the impossibility to obtain data

on the value of shipments for other high-wage countries over the same time period

and in a similarly detailed industry classification to build an instrument.

We present the results from the OLS specification employing this measure in Table

2B13. The results are hardly different. The impact of import penetration on input-

output linkages in column (2) is now slightly less strong and not statistically significant

at conventional levels, whereas it is stronger and more strongly significant in the case

of technological relatedness. However, all the differences in the coefficients are not

statistically significantly different from the coefficients in the main analysis. The other

coefficients are virtually unchanged.33

Hence, these results support the use of the value share measure in the main analyses

and are in line with Bloom et al. (2016), who also obtain similar results when using

import penetration in apparent consumption next to the value share approach.

Trade, technology, and transportation costs as interaction variables

In Table 2B14, we present the results of introducing trade, technology, and trans-

portation costs as interaction variables. Column (1) presents the results of a naive

specification, with only the dissimilarity measures and year fixed effects added as con-

trols. Routine employment share and transportation costs are strongly and positively

associated with coagglomeration. This is in line with the finding of Faggio et al. (2017)

33We also used the import penetration in apparent consumption by all countries instead of just
the low-wage countries. This does not materially influence the results.
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Table 2B13 – Alternative trade measure results

Labour market pooling Input-output linkages Technological relatedness

Dependent variable: α̂ β̂ γ̂

OLS OLS OLS

(1) (2) (3)

Import penetration −0.033∗∗∗ −0.007 0.058∗∗∗

(in apparent consumption) (0.010) (0.007) (0.018)
Routine employment share 0.103∗∗∗ −0.006 −0.066∗∗∗

(0.014) (0.009) (0.019)
Transportation costs −0.002

(0.008)

Year fixed effects Yes Yes Yes

Observations 1,120 1,120 1,120
R2 0.131 0.038 0.034

Notes: independent variables are standardized to have a mean value of 0 and a standard deviation of 1.
Standard errors are bootstrapped. A dummy variable is included in the specification to indicate missing
values in the census of manufactures but not reported in this table; *** p < 0.01, ** p < 0.5, * p < 0.10.

that low-tech industries have larger coagglomeration values.34

In column (2), we present the results of a specification that includes industry i×year

and industry j× fixed effects. As a result, the coefficients on import penetration,

routine employment share, and transportation costs are somewhat lower. We compare

the effect size with respect to those found in the main analysis, by dividing the

coefficient on the interaction by the main effect of the agglomeration determinant.

The effect of the interaction between labour market pooling and import penetration is

a reduction of about 25% (−0.053/0.194), while that with the routine employment

share is an increase of about 71% (0.138/0.194). These percentages are similar to

the direction and size of the coefficients in the main OLS results in Table 2.6, when

these would be compared to the average coefficient on labour market pooling from

the first step. In the case of technological relatedness, the size effect is much larger

here in the case of import penetration with about 96% (0.045/0.047) and for routine

employment share, which is about −43% (−0.020/0.047). This is also due to the larger

average coefficient on technological relatedness in the first step. The effect of import

penetration on input-output linkages is also larger here about −43% (−0.037/0.086).

Interestingly, the coefficient on the interaction between input-output linkages and trade,

34Faggio et al. (2017) find this counterintuitive as they expected high-technology industries to
have larger coagglomeration values according to the nursery city hypothesis (Duranton and Puga,
2001). However in diverse (usually large) cities, high-tech industries are relatively more present but
no industry is dominant and coagglomeration values are therefore smaller. By contrast, low-tech
industries are more likely to cluster together in small specialised towns, where co-agglomeration
values will be high.
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Table 2B14 – One-step estimator with interactions
(Dependent variable: coagglomeration of industries i and j)

Naive Including industry

specification fixed effects

(1) (2)

Labour market pooling 0.123∗∗∗ 0.194∗∗∗

(0.009) (0.012)
Input-output linkages 0.084∗∗∗ 0.086∗∗∗

(0.008) (0.008)
Technological relatedness 0.096∗∗∗ 0.047∗∗∗

(0.015) (0.016)
Import penetration −0.003

(0.004)
Routine employment share 0.075∗∗∗

(0.011)
Transportation costs 0.010∗∗

(0.004)
Labour market pooling× −0.014∗∗∗ −0.053∗∗∗

import penetration (0.005) (0.006)
Labour market pooling× 0.113∗∗∗ 0.138∗∗∗

routine employment share (0.013) (0.015)
Input-output linkages× −0.039∗∗∗ −0.037∗∗∗

import penetration (0.006) (0.006)
Input-output linkages× 0.0005 −0.006

routine employment share (0.009) (0.009)
Input-output linkages× −0.007 −0.008∗

transportation costs (0.005) (0.005)
Technological relatedness× 0.028∗∗∗ 0.045∗∗∗

import penetration (0.007) (0.007)
Technological relatedness× −0.013 −0.020∗

routine employment share (0.010) (0.011)

Dissimilarity measures Yes Yes
Year fixed effects Yes Yes
Industry i fixed effects. No Yes
Industry j fixed effects. No Yes
Industry i × year fixed effects. No Yes
Industry j × year fixed effects. No Yes
Observations 153,456 153,456
R2 0.078 0.124

Notes: SIC 237 (Fur goods) is left out of the regression as it only
has 40 employees in 2014 in total. Standard errors are clustered
at the industry ij-ji level and in parentheses; *** p < 0.01, **
p < 0.5, * p < 0.10.

and the one on technological relatedness and trade is more precisely estimated, whereas

the interaction between routine employment share and technological relatedness is less
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statistically significant.35

Trade, transportation costs, and importance of input-output linkages

In this subsection, we further explore sensitivity with respect to the impacts of trade

competition and transportation on the importance of input-output linkages.

First of all, we can use the value of a ton measure as an alternative proxy for

transportation cost. When the value of a ton is higher transporting it becomes a

smaller fraction of the total selling price and therefore cheaper, as suggested by Glaeser

and Kohlhase (2004). This proxy has the advantage of not being directly impacted by

input-output linkages but it has the drawback that changes in this value over time

may not reflect changes in transportation costs.36 Moreover, some industries are not

covered in the CFS.

Secondly, one may argue that it is no so much import penetration within the sector

itself that matters for input-output linkages but import penetration within the sectors

from which inputs are obtained. This is measured as the sum of the share of import

penetration in each industry times the share of inputs received from these industries.

Thirdly, the distinction between trade competition in outputs and inputs suggests it

may be useful to discern between input linkages and output linkages. Therefore, we,

thirdly, reproduce the results for input and output linkages separately.

Column (1) in Table 2B15 replicates the baseline result. Recall that only trade

competition has an economically and statistically significant impact on input-output

linkages. In column (2), the iceberg transportation cost measure is replaced by the

natural logarithm of the average value of a ton. The coefficient on this proxy is highly

insignificant and close to zero. This seems to confirm that transportation costs of

goods are unlikely to be an important determinant of the intensity of input-output

linkages.

In column (3) import penetration is replaced by input import penetration. The

coefficient on this estimate is not significantly different from its counterparts in the

previous columns but the standard error on this measure is much higher. This suggests

that import penetration within supplying sectors and import penetration in the sector

35Note that we dropped SIC 237 (fur goods) from the sample as it only has 40 employees in 2014,
which results in extreme coagglomeration levels. The interaction variables are more susceptible to
outliers than the other variables in this specification compared to those in the two-step approach,
which are capped. Therefore, we left this industry out as including it would have a strong influence
on some of the coefficients on the interaction variables, even though it is such a small industry.

36Notably, the price-adjusted average value of a ton actually decreases over a time. According to
the transportation cost interpretation this would suggest that products become more expensive to
transport.
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itself have similar effects on the importance of input-output linkages. This provides

additional support for the claim that the impact of import penetration on input-output

linkages runs through trade competition, rather than through the level of technological

sophistication as suggested by Faggio et al. (2017). This is likely because localised

input linkages are replaced by input linkages in low-wage countries.

Columns (4), (5), and (6) show the results when distinguishing between input and

output linkages in the first step and using the coefficient on input linkages as the

dependent variable in the second step. The coefficients and standard errors are very

similar to when using input-output linkages combined. As could be expected the

coefficient on input import penetration, in column (6), is a bit larger. This provides

additional, albeit suggestive, evidence that localised input linkages (rather than output

linkages) are replaced by input linkages in low-wage countries.

Columns (7), (8), and (9) show the results when using the coefficient on output linkages

as the dependent variable in the second step. Interestingly, none of the coefficients

in these specifications are statistically significant. The standard errors are much

larger and the explained level of variance is smaller, as indicated by the low R2. This

is likely because output linkages contain more extreme values, which indicates that

industries are more likely to sell strongly to, rather than buy from, a few manufacturing

industries.

First-stage results

In columns (3), (6), and (9) of Table 2.6, we show the second stage results of a

2SLS approach in which we use instruments for import penetration of low-wage

countries, routine employment share, and transportation costs. These instruments are

the import penetration by low-wage countries in other high-wage countries; spatial

instruments for routine employment share based on the routine employment share in

areas where industry i does not coagglomerate with industry j because of, respectively,

labour market pooling, input-output linkages, or knowledge spillovers; and the natural

logarithm of the value of a ton. Table 2B16 reports the corresponding regression

results.

The coefficient on import penetration (in other high-wage countries) in column (1) shows

that a standard deviation increase in the instrument is associated with 0.780 standard

deviations increase in import penetration. The impact of the spatial instrument for

routine employment share based on areas where industry i and industry j do not

coagglomerate to make use of a common labour pool in column (2) the the effect

is slightly higher: the routine employment share leads to 0.823 standard deviations

increase in routine task intensity. This confirm that our instruments are very strong,
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as already suggested by the large Kleibergen-Paap F-statistic in column (3) of Table

2.6.

Columns (3), (4) and (5) in Table 2B16 repeat this analysis but consider as an additional

instrument for transportation costs the value of a ton. We control for the value of a

ton in 1970 to mitigate the issue that more advanced industries have a higher value of

a ton. Column (5) shows that the coefficient of value of a ton is negative, as expected,

because a larger value of a ton means that the cost of transporting a ton becomes

less important compared to all other costs of producing and selling the product plus

added value. Therefore, a higher value of a ton naturally leads to a lower percentage

of expenditure on transportation costs. The coefficient implies that transportation

costs increase by (log 2− log 1)×−0.455 = 0.315 standard deviations if the value of

a ton doubles. This instrument is less strong than those for import penetration and

routine employment share. Therefore the corresponding Kleibergen-Paap F-statistic is

somewhat lower but is still well above 10.

Going back to Table 2B16, in columns (6) and (7) we show the regression results of the

first-stage for column (9) in Table 2.6, which consider technological relatedness. Here

only two instruments are used for import penetration and routine employment. The

former is instrumented by the import penetration of low-wage countries in other high-

wage countries, as before, while the latter is based on the routine employment share of

MSAs where industry i does not coagglomerate to profit of knowledge spillovers. Like

in columns (1) and (2) both of these instruments are very strong resulting in a large

Kleibergen-Paap F-statistic in column (9) in Table 2.6.





Chapter 3

Complex activities concentrate in

large cities

Abstract – Knowledge-intensive activities are known to concentrate more strongly in

space than other activities. Most evidence on this topic is based on counts of innovative

inputs or outputs but these fail to appreciate the qualitative aspect of knowledge.

In this chapter, knowledge complexity is proposed to explain spatial concentration

based on ideas from innovation studies and complexity theory and on the division of

labour. We show that empirical proxies of complexity are universally strongly related

to spatial concentration across industries, occupations, technologies and scientific fields.

Furthermore, the results on technologies show that since 1850 the association between

complexity and spatial concentration has increased over time, in particular during

industrial revolutions.

This chapter is a personal extended version of Balland, P.-A., Jara-Figueroa, C., Petralia, S. G.,

Steijn, M. P. A., Rigby, D. L., and Hidalgo, C. A. (2020). Complex economic activities concentrate

in large cities. Nature Human Behaviour, 4(3):248–254, which is the only work that should be

considered for research and citing purposes.
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3.1 Introduction
Smith (1776) and Marshall (1890) already noted that the productivity of activities is

higher in larger cities. This positive association between productivity and city size

drastically increased since the 1980s, in particular, due to the rising concentration of

knowledge-intensive activities (Berry and Glaeser, 2005; Glaeser, 2011; Moretti, 2012;

Austin et al., 2018). As knowledge production is key in long-term economic growth

(Schumpeter, 1942; Solow, 1956; Nelson and Winter, 1982; Romer, 1986) understanding

why knowledge-intensive activities concentrate in space is key in understanding the

growth in spatial inequality.

Currently, most evidence on the relation between activities and city size is based on

the quantity of certain activities taking place, like the number of patents filed, both in

urban economics/economic geography, see Audretsch and Feldman (1996) and Carlino

and Kerr (2015) and in the urban scaling, see Bettencourt et al. (2007). This last line

of literature shows that complex knowledge-intensive activities scale more strongly

than other activities, i.e. on average a city of twice the population of another city

has more than twice the amount of a certain knowledge-intensive activity, such as the

number of patents. However, count measures as used in both lines of literature fall

short in providing a theoretical foundation for the need for geographical proximity and

appreciating the difference in innovativeness within the activity that is counted, both

cross-sectionally and over time (Schumpeter, 1942; Kleinknecht, 1981; Dosi, 1984).

For example, a patent on a type of semiconductor is likely more complex than one

on a type of saw and the first invention of a semiconductor is likely more complex

than the versions patented decades later. These qualitative aspects of activities are

fundamental to theoretically understand and empirically measure their connection to

economies of agglomeration (Pavitt, 1984; Balland and Rigby, 2017).

This chapter takes the mechanism of the division of labour as often attributed to Smith

(1776) as theoretical starting point and builds on insights on the qualitative aspects

of production activities from innovation studies and complexity theory to develop

measures to establish to what extent activities are complex and why this requires

geographical proximity. Then the extent to which complex activities concentrate in

large cities and how this has changed over time is evaluated by measuring the scaling

coefficient of these activities. Hereby the focus is on jobs, industries, invention, and

scientific research.

The division of labour has been portrayed by Smith (1776) as the engine of prosperity.

By allowing workers to specialise and exchange the fruits of their tasks higher levels

of productivity can be achieved compared to self-sufficiency. With the development
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of communication and transportation technologies, the ability to exchange the fruits

of tasks has increased and individuals can more narrowly specialise. As a result, the

division of labour has become finer in societies (Leamer and Storper, 2001; Hausmann

et al., 2014). Building on complexity theory, Hausmann et al. (2014) suggest that the

economic complexity of nations is given by how intricate the networks are within the

division of labour of countries. However, the measure they develop is not suitable

to evaluate the link between the complexity of activities and urban scaling as part

of their complexity measure is based on how geographically rare, i.e. how spatially

concentrated, these are. Therefore, this measure is unsuitable to explain why complex

activities concentrate in space and why this is increasingly the case.

Two components of the division of labour are important in understanding why activities

concentrate: when they require proximity and when they require to be split up over

more than a person. With regards to the first component, communication and

transportation technologies have allowed for some activities to take place at a distance

in recent decades, however, it increased the importance of geographical proximity

overall. In particular, knowledge-intensive jobs have become more interactive and

more concentrated in cities see Autor et al. (2003); Deming (2017) and Michaels et al.

(2019). This is because cities offer better possibilities to easily meet a large variety of

individuals face-to-face, which is known to be essential to build trust and communicate

unfamiliar complex information of a tacit nature (Storper and Venables, 2004; Glaeser,

2011). Breschi and Lissoni (2001) discuss that this is particularly the case when new

unfamiliar knowledge is involved. With regards to the second component, Jones (2009)

demonstrates that with the progress of knowledge, new inventors compensate for the

educational burden by specializing in a smaller set of technologies and then work

in larger teams to recombine knowledge to be able to innovate. Hence, complexity

influences the spatial concentration of activities through both components: on the one

hand, it increases the number of members required in a team and, on the other hand,

it increases the need to communicate unfamiliar tacit knowledge. As the relevance

of matching with the right potential team members and communicating complex

knowledge increases the importance of face-to-face contact, and therefore geographical

proximity, increases, as already suggested by Vernon (1960); Duranton and Puga

(2004a)

Both these elements come together in the model of Fleming and Sorenson (2001)

based on complexity theory. They demonstrate that matching and recombining bits of

knowledge in patent increases in complexity along two dimensions (1) the number of

knowledge components, N , and (2) how related these components are to each other,

K. van der Wouden (2020) shows that indeed more complex innovations are also
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associated with larger teams as these bits of knowledge are likely spread over multiple

persons, in line with Jones (2009).

All in all, the discussion of these sources brings up several non-geographical measures

for complexity that can be applied to different categories of jobs, industries, innovation

and scientific research:

� The number of members in a team is indicative of the division of labour

following Jones (2009) the complexity of the activity it is engaged in. This

measure is available per Metropolitan Statistical Area in the U.S.A. for patents

and research articles.

� The average year of introduction of the subclasses on a patent is

indicative of the novelty of knowledge, which following Breschi and Lissoni

(2001), is likely to require face-to-face contact for the communication of unfamiliar

knowledge and therefore following Jones (2009) requires larger teams.

� The NK measure by Fleming and Sorenson (2001) itself, which can be applied

to patent data.

� Years of education The years of education can be used to measure the

educational burden as proposed by Jones (2009), which likely indicates their

need to match and recombine knowledge in large networks. This is in line with

the growth of interactive tasks by highly-skilled workers, particularly in cities

found by Autor et al. (2003); Deming (2017) and Michaels et al. (2019).

Unlike the other data sources, the patent data goes back to 1850. This allows us

to evaluate the urban scaling of complex activities over time. Notably during two

industrial revolutions, i.e. the application of electricity around 1870 and that of the

semiconductor around 1970. This last revolution is particularly interesting as Leamer

and Storper (2001) suggest that the development of communication and transportation

technologies around that time have allowed for the spatial dispersion of some non-

complex activities but to an increase in the concentration of complex activities. The

possibility to measure the complexity of activities allows testing this claim.

In the results, first replications of previous findings of the literature on scaling, see

Bettencourt et al. (2007), and urban concentration and innovation, see Carlino and Kerr

(2015). It is shown that patents, scientific articles, jobs and GDP scale superlinearly

with city size. In a second step, we find that there is a strong correlation between the

complexity of activities and urban scaling across invention, scientific research, jobs,

and industries. For invention, this holds for all three measures. In a third step, we

extend the analysis to the urban scaling of complex and less complex patents over
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time. The results show that over time the urban scaling of complex activities has

increased. In particular during the two industrial revolutions in our sample. On the

other hand, less complex activities scale more strongly over time but disperse after

the 1970s. Plausibly following the possibility to routinise the coordination of tasks

with the development of communication technologies following the invention of the

semiconductor, in accordance with Leamer and Storper (2001).

This chapter proceeds as follows: in section 3.2, theory on the link between knowledge

intense activities and urban concentration is discussed. Then the division of labour and

how this can be used to measure the qualitative aspect of knowledge, i.e. complexity,

following insights from innovation studies and complexity theory. In section 3.3, data

and methodology on the activities and the measurement of scaling is introduced.

Section 3.4 presents the results and Section 3.5 concludes.

3.2 Theory
Two parallel lines of literature, urban economics/economic geography and urban

scaling, show similar findings that more knowledge-intensive activities concentrate in

larger cities. Urban scaling is based on scaling laws, which in combination with the

associated vocabulary are notably used by academics with a background in evolutionary

biology and physics, who apply these mathematical laws to social phenomena, see e.g.

Bettencourt et al. (2007).

Scaling laws, also known as power laws, are used to describe the functional relationship

between two quantities according to the y ≈ xβ. In urban scaling, y is often the

measure of the activity, e.g. the number of patents filed in a city, and x the population

of a city. β then gives scaling coefficient. When β = 1 an increase in city size is

associated with a proportional increase in the size of the activity. When β > 1 the

activity is said to scale superlinearly, which means that the size of the activity increases

more strongly with city size. For example, Bettencourt et al. (2007) find β ≈ 1.2 for

patent production in cities in the U.S.A.. When β < 1 the activity is said to scale

sublinearly. For example, Bettencourt et al. (2007) find in the same study that β ≈ 0.8

for the amount of infrastructure.

In different wording, similar relationships have been denoted in urban economics/economic

geography. Here the functional relationship between two quantities is known as elastic-

ities and a large line of literature starting with Ciccone and Hall (1996) and reviewed

by Rosenthal and Strange (2004) has empirically demonstrated that productivity

per person increases when city size and or density increases, as already suggested

by Smith (1776) and Marshall (1890). The use of univariate power law formulas in
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different vocabulary for these phenomena is also not uncommon in urban economics.

For example, Combes et al. (2010) use the same formula and produce similar graphs

like Bettencourt et al. (2007) to denote the relation between productivity per worker

and density in French urban areas.

More specifically, on the relation between innovation and agglomeration, a line of

research started with Audretsch and Feldman (1996) and recently reviewed Carlino

and Kerr (2015) exists that show that the number of patents, R&D expenditures, and

venture capital are more geographically concentrated than other production activities

or population. Generally, an image is drawn that more complex knowledge-intensive

activities concentrate more strongly.

However, Carlino and Kerr (2015, p.6) review that three types of indicators are used:

“1) by the inputs used in the innovation process, such as R&D expenditures or venture

capital (VC) investment;(2) by intermediate outputs of the innovation effort, such as

the number of patents; or (3) by some final measure of innovative work, such the count

of new product announcements.”. In these count measures, also used in the urban

scaling literature, each patent or euro spent in R&D expenditure is valued as equally

innovative even though a large literature asserts that there is much heterogeneity in

innovativeness between these, both cross-sectionally as over time (Schumpeter, 1942;

Kleinknecht, 1981; Dosi, 1984).1

Other authors attempted to measure the qualitative aspect of knowledge by devel-

oping dichotomies of non-innovative and innovative activities but do not come to

clear continuous measures. For example, Rosenthal and Strange (2003) compare the

geographical attenuation of spillovers in software industries compared to industries in

fabricated metals and machinery. Similar dichotomous self-made industrial classifica-

tions are used in Neffke et al. (2011b); Caragliu et al. (2016) and Faggio et al. (2017).

Others divide cities in similar dichotomies like the idea, respectively, high value-added

goods-producing cities versus good, respectively, low value-added goods-producing

cities in the models of McCann (2008) and Glaeser and Ponzetto (2007). As Pavitt

(1984) claims measuring the complexity of knowledge remains difficult even though

this is needed to both theoretically understand and empirically measure why certain

activities concentrate more strongly in large cities. Here complexity is proposed to

tackle both the theoretical and empirical dimensions.

1Also note that a measure like the number of patents is also subject to changes in patenting laws
instead of innovativeness. As an example, Carlino and Kerr (2015, p.9) state that “founded in 1975,
Microsoft had just five patents by 1990 and over a billion dollars in revenue; by 2009, the company
held 10,000 patents.”.
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3.2.1 Complexity, proximity and the division of labour
A first starting point is the first mechanism of agglomeration benefits ever described,

namely, the division of labour, for which Smith (1776) is often accredited.2 When

workers divide the labour tasks in production this creates efficiency gains for three

reasons: first, the workers improve their skills at performing that task, also known

as learning by doing; second, a worker saves time from not having to switch between

tasks; and third, it allows for labour-saving innovations such as the development of

specific tools or the mechanisation of part of the tasks.

Using a similar line of reasoning, Hausmann et al. (2014) posit that modern societies

do not distinguish themselves from traditional hunter-gatherer societies because of

more productive knowledge per society member but because of a larger diversity of

productive knowledge across its members, as a finer division of labour allows members

to specialise and access the bits of knowledge, expressed in products and services, they

don’t possess through networks.

The size of the network, or the fineness of the division of labour, is dependent on

transport efficiency, as already noted by Smith (1776). A worker that specialises

in a certain task needs to have sufficient demand for that task so the person can

specialise and purchase the other goods and services she wants to consume but doesn’t

produce. The extent of the market is then determined by transportation costs as one

requires to exchange the fruits of their tasks produced for those one consumes. The

further customers/suppliers are located the higher the price for selling/buying the

products/services. Cities are therefore the natural place where a larger division of

labour takes place. As an example, Smith (1776) contrasts the remote dwellers of his

time in the Scottish Highlands that are each their own farmer, brewer, butcher and

baker to city dwellers who through a larger division of labour make a profession out of

a single of these tasks leading to higher productivity in cities.

However, developments in communication and transportation technologies also allow

individuals living outside cities to specialise and receive goods and services from all

over the world, like the current inhabitants of the Scottish Highlands. Geographical

proximity is hence not required in all cases, but the death of distance as Cairncross

(1997) predicted has also not materialised. In fact, the contrary has happened as

cities have become more important than ever Gaspar and Glaeser (1998); Leamer and

Storper (2001); Glaeser (2011); Moretti (2012).

2Note that the division of labour and its relation to the city has already been described in Ancient
Greece by Xenophon and to a lesser extent Plato, see respectively Finley (1973) and Silvermintz
(2010). Furthermore, Smith (1776) is considered to have re-used a lot of material earlier available in
French, see Peaucelle (2006).
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Leamer and Storper (2001, p.643) explain the two effects that developments in communi-

cation and transportation technologies have, namely: “(1) the constant transformation

of complex and unfamiliar coordination tasks into routine activities that can be suc-

cessfully accomplished at remote but cheaper locations (e.g., commodification), and

thus an ongoing tendency toward deagglomeration or dispersion of production; and (2)

bursts of innovations that create new activities requiring high levels of complex and

unfamiliar coordination, which, in turn, generate bursts of agglomeration”.

Leamer and Storper (2001) argue that with a finer division of labour comes a greater

need for coordination. A part of this coordination of tasks can be done through

the exchange of routinised codified knowledge and can therefore be performed at a

distance but a large part may require the communication of much tacit knowledge and

therefore geographical proximity. That this latter part outweighs the previous part is

demonstrated by the rise of knowledge-intensive activities in cities, and the growth in

time spent on interactive tasks by highly-skilled workers, particularly in cities, found

by Autor et al. (2003); Deming (2017) and Michaels et al. (2019). As such, one sees

both a finer division of labour and an increasing advantage of cities to divide labour.

Insights on these two aspects are combined here to develop measures of the quality of

knowledge, expressed in complexity, to explain geographical concentration.

To understand why cities and therefore geographical proximity are increasingly in

demand one needs to understand the most fundamental aspect of proximity: face-

to-face contact” (Storper and Venables, 2004, p.351). Storper and Venables (2004)

make the distinction between codifiable information and uncodifiable information, also

known as tacit knowledge. Codifiable information can easily and cheaply transmitted

if sender and receiver understand that system, e.g. language and mathematical

notations, and have the means of communicating it, e.g. letters, books, e-mail. In

contrast, uncodifiable information can not fully be expressed in a symbol system, as

often different dimensions of the problem at hand are only understood in relation to

each other (Storper and Venables, 2004). Breschi and Lissoni (2001) and Boschma

(2005) add that even when tacit knowledge can be codified and shared openly not

everyone may understand the language of a much closer and restricted community, as

understanding the jargon and background information of certain professionals, requires

long study and common experiences. These persons lack cognitive proximity in the

words of Boschma (2005). Boschma (2005) details three other relevant dimensions of

proximity for the sharing of information: organisational proximity, which relates to the

coordination and hierarchy of agents exchanging information, social proximity, which

relates to friendship, kinship and trust; and institutional proximity, which relates to

sharing the same norms and values of conduct. The distances in these proximities are
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summarised in what (Glaeser, 2011, p.24) calls the “complex communication curse”,

which can be resolved via face-to-face interaction as “long hours spent one-on-one

enable listeners to make sure that they get it right.”.

Storper and Venables (2004) summarise the advantages of face-to-face contact stating

that it is an efficient communication technology, as it allows for instant interruption,

feedback, and repair and builds on visual and body language cues (Storper and

Venables, 2004); it allows for screening and socializing, which depend on identifying

and assimilating tacit knowledge among group members; it generates psychological

motivation; and it helps build trust as it aids in the detection of lying and meeting

face-to-face requires a larger sacrifice of time to come to the same location compared

to for example sending an email, which signals commitment.

Geographical proximity therefore may seem paramount when reading these works

but this essence needs to be relaxed as detailed by Breschi and Lissoni (2001) and

Boschma (2005). Members that have developed the knowledge to be part of an epis-

temic community may only require occasional geographical proximity, i.e. occasional

meetings, but can mainly communicate via codified information and video calls when

other dimensions of proximity are sufficiently developed.

Despite these nuances, evidence shows that a useful indication of knowledge that

likely requires face-to-face contact is its novelty. Breschi and Lissoni (2001) state that

co-location is generally helpful in the early stages of a project when the organisation

and common language is still under development. Thereby, echoing thoughts of

Vernon (1960) who stated that the development of new products, i.e. the young

phase of the product life cycle, require speed and contact but when the product and

its production methods are standardised, i.e. the mature phase of the product life

cycle, communication can do with phone calls and referencing catalogue numbers.

Similarly, Arzaghi and Henderson (2008) conclude after inquiries among managers of

advertisement agencies that networking in person is essential because of the short-term

projects consisting of different compositions of collaborators and goals in the business.

The novelty of information for a person can arguably be measured by cognitive

proximity or industrial distance, in the words of Rosenthal and Strange (2004). When

agents have different knowledge bases a larger share of unfamiliar knowledge needs

to be communicated. This is plausibly empirically visible in the higher densities and

shorter distances between agents in diverse places, where cognitive proximity between

agents is likely to be large, compared to specialised places, see (Vernon, 1960; Chinitz,

1961; Jacobs, 1969; Caragliu et al., 2016).

Jacobs (1969) already argued that these diverse cities have more options for matching
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and recombining ideas of different sectors, which leads to “adding new work”, i.e.

technological breakthroughs that lead to new products and services. These activities

can be considered as complex as innovation studies also suggest that finding and

recombining ideas is key in the development of new knowledge (Kauffman, 1993;

Fleming and Sorenson, 2001; van der Wouden and Rigby, 2019). To empirically

measure the complexity of a new piece of knowledge, in this case, a patent, Fleming

and Sorenson (2001) build on complexity theory, which is the analysis of large networks

with many interacting components (Frenken, 2006). They combine both the idea of

recombination as well as of cognitive proximity. According to them, the complexity

of a patent increases along two dimensions, N and K, in which N is the number of

subclasses combined and K is a measure of the ease of recombination in their words,

similar to cognitive distance. The more classes are combined, and the less these have

been combined in inventions on previous patents, the more complex the patent is.

They show that the higher a patent scores on this NK-measure the more impactful it

is, as measured using patent citations.

This likely leads to an increase in the demand for geographical proximity as other

evidence shows that these knowledge components are increasingly spread over a larger

number of humans, who need to match and interact to collaboratively produce new

knowledge (Wuchty et al., 2007; Jones, 2009). As an explanation, Jones (2009) argues

that the educational burden to reach the frontier of knowledge has grown so large with

the advances of knowledge over time that not a single person can hope to have all

the knowledge required to make great advancements in multiple fields, like a homo

universalis, such as Leonardo da Vinci, could. He describes how inventors decrease the

educational burden by specializing in a narrow field and collaborating with others to

recombine knowledge into new advancements.

Previous studies have also built on complexity theory to not evaluate the complexity of

an activity but of a geographical area. Hausmann et al. (2014, p.18) define complexity

as “a measure of how intricate this network of interactions is and hence of how

much productive knowledge a society mobilises.” The complexity scores they calculate

correlate strongly with the level of economic development of countries. In geography,

Balland and Rigby (2017) apply this method to cities and find a similar pattern.

However, this measure of complexity is not useful to evaluate the relation between

geographical concentration and complex knowledge, as it is partly defined by how

geographically rare an activity is. The method of Hidalgo and Hausmann (2009) and

Hausmann et al. (2014) consists of estimating the complexity of a country’s economy

based on: (1) the diversity of products produced in a country and (2) the ubiquity of

these products, i.e. how many other countries are specialised in this product. They
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apply a so-called method of reflection, which attributes higher complexity values

to countries with products that are not ubiquitous but mostly produced by more

diverse countries. As the ubiquity measure is based on geographical concentration, the

literature so far has not produced a geographically unbiased measure for complexity

but has produced valuable insights to develop one.

3.2.2 Complexity measures
Based on the previous discussion the following complexity measures are withheld

to evaluate the association between urban scaling and the complexity of invention,

scientific research, jobs, and industries.

� The number of members in a team is indicative of the division of labour

following Jones (2009) the complexity of the activity it is engaged in. This

measure is available per Metropolitan Statistical Area in the U.S.A. for patents

and research articles.

� The average year of introduction of the subclasses on a patent is

indicative of the novelty of knowledge, which following Breschi and Lissoni

(2001), is likely to require face-to-face contact for the communication of unfamiliar

knowledge and following Jones (2009) requires larger teams.

� The NK measure by Fleming and Sorenson (2001) demonstrates the innova-

tiveness, a proxy for complexity, of patents.

� Years of education The years of education can be used to measure the

educational burden as proposed by Jones (2009), which likely indicates their

need to match and recombine knowledge in large networks. This is in line with

the growth of interactive tasks by highly-skilled workers, particularly in cities

found by Autor et al. (2003); Deming (2017) and Michaels et al. (2019).

3.2.3 Complexity and urban scaling over time
The more interesting question in light of the increase in spatial inequality, see for

example Moretti (2012), is how the relation between urban scaling and knowledge

complexity has changed over time. Therefore, the complexity of patents since 1850

is calculated. As a result, a time period of over 150 years is considered including

two industrial revolutions, i.e. the application of electricity in 1870 and that of the

semiconductor in 1970.

This last revolution is particularly interesting as Leamer and Storper (2001) suggest

that the development of communication and transportation technologies around that

time have allowed for the dispersion of some non-complex activities but to an increase
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in the concentration of complex activities. In contrast, the model of McCann (2008)

based on the New Economic Geography (NEG) suggests that all activities concentrate

in space because of home market size, agglomeration economies and the decrease in

transportation costs. The possibility to measure the complexity of activities over time

allows us to test these claims.

3.3 Data and Methodology

3.3.1 Patent data
Patents are registered by the United States Patent and Trademark Office (USPTO).

Information on patents is available from NBER patent data (Hall et al., 2001). For the

cross-sectional analysis on the relation between complexity and spatial concentration

data is used from 2000 to 2010 per 2-digit NBER sub-categories, as defined by Hall

et al. (2001).

Figure 3.1 shows the 2-digit NBER sub-categories used in the Chapter and their

respective number of patents granted between 2000 and 2010 for the 353 cities for

which data is available for all activities. In the main results the sectors Agriculture,

Husbandry, Food; Agriculture, Food, Textiles; and Earth Working & Wells are left

out as these are often geographically concentrated in less-populated areas for natural

reasons. These results are nonetheless shown in the robustness analysis.

For the analysis of the relation between complexity and spatial concentration over

time the NBER patent data set 1974-2009 by Hall et al. (2001) is combined with data

from HISTPAT, which originates from the efforts of Petralia et al. (2016) to obtain

geographical locations for all patents over the period 1836− 1974 from Google scans

of historical U.S. patents. Figure 3.2 shows the 2-digit SOC occupations used in the

Chapter and their respective number of employees in 2015 for the 353 cities for which

data is available for all activities.

3.3.2 Industry data
Here we use 2015 GDP data from the Bureau of Economic Analysis to quantify

the economic output of MSAs in 18 industries as defined by the North American

Industry Classification System (two-digit NAICS). In the main analysis, we consider

only industries for which there are more than 200 cities with any recorded activity

and we remove categories that are based on natural advantages: ‘agriculture, forestry,

fishing, and hunting’ and ‘utilities’ but do show these results in the appendix. Figure

3.3 shows the 2-digit NAICS industries used in the Chapter and their respective GDP

in 2015 for the 353 cities for which data is available for all activities.
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Figure 3.1 – Number of patents for each technological sub-category
between 2000 and 2010.

0 50000 100000 150000 200000 250000

Computer Hardware & Software

Communications

Semiconductor Devices

Miscellaneous-Others

Miscellaneous-chemical

Miscellaneous-Mechanical

Electrical Devices

Biotechnology

Power Systems

Measuring & Testing

Materials Processing. & Handling

Information Storage

Miscellaneous-Elec.

Transportation

Motors, Engines & Parts

Drugs

Optics

Metal Working

Agriculture, Food, Textiles

Receptacles

Computer Peripherals

Furniture, House Fixtures

Coating

Electrical Lighting

Earth Working & Wells

Nuclear & X-rays

Agriculture, Husbandry, Food

Amusement Devices

Miscellaneous-Drug&Med

Apparel & Textile

Heating

Pipes & Joints

Surgery & Medical Instruments

Gas

Organic Compounds

Resins

Computers & Communications

Electrical & Electronic

Others

Chemical

Mechanical

Drugs & Medical

Te
ch

n
o

lo
g

y
 s

u
b

-c
a

te
g

o
ry

Number of patents

Figure 3.2 – Number of employees in each occupation category in 2015.
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Figure 3.3 – GDP of each industry in 2015.
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3.3.3 Scientific research data
For scientific papers, we use publication data from Elsevier’s Scopus database covering

the time period 1996–2008. Publications are disaggregated into 23 scientific disciplines

as defined by the Scopus classification (two-digit major thematic categories). These

data have kindly been provided by Nomaler et al. (2014). We analyse a total of

4,4000,000 scientific publications. The data include documents that have at least one

author who has (at least) one affiliation to a US scientific organisation. In the main

analysis, we consider only scientific fields for which there are more than 200 cities with

any recorded activity and like before we remove categories that are based on natural

advantages: ‘agricultural and biological sciences’, ‘environmental science’, ‘Earth and

planetary sciences’ and ‘veterinary’ but do show these results in the appendix.

Figure 3.4 shows the 23 main scientific fields used in the Chapter and their respective

number of papers for the 353 cities for which data is available for all activities.

3.3.4 Employment data
Here, we use 2015 employment statistics from the Bureau of Labor Statistics disag-

gregated into 22 occupations according to the Standard Occupational Classification

system (two-digit SOC). For occupations, we use 2015 employment statistics from the

Bureau of Labor Statistics. In the main analysis, we consider only occupations for

which there are more than 200 cities with any recorded activity and we remove one

category that is based on natural advantages: ‘farming, fishing, and forestry’ but do

show these results in the appendix.
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Figure 3.4 – Number of papers in each scientific field between 1998 and
2008.
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3.3.5 Empirics
In this approach, use is made of scaling coefficients. As said, scaling coefficients are

obtained by evaluating y ≈ xβ. Where, y is measured by the number of patents,

scientific papers, jobs, and GDP per subcategory and x is the population of a city.

β then gives scaling coefficient, which is expected to be larger for more complex

subcategories. The complexity of each category within activities is given by the

complexity measures mentioned in Section 3.2.2.

The analysis proceeds in three steps. First, the scaling laws of employment, GDP,

patents, and scientific articles are compared to the results of Bettencourt et al. (2007)

to set the baseline results for the overall scaling of these activities. In the second step,

the scaling coefficient of each subcategory within activities is measured and related to

the complexity of that category. In the third step, the relation between complexity

and urban scaling is evaluated over time since 1850 for patent activities.

3.4 Results

3.4.1 Baseline results
In a first step, the analyses of Bettencourt et al. (2007) are applied to our data.

We compare the spatial distribution of population, shown in Figure 3.5 to that of

employment, GDP, patents, and scientific articles, shown in Figures 3.6-3.13.
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Figure 3.6 – Spatial concentration of employment

Figure 3.7 – Scaling of employment
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Figure 3.8 – Spatial concentration of GDP

Figure 3.9 – Scaling of GDP
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Figure 3.10 – Spatial concentration of patents

Figure 3.11 – Scaling of patents
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Figure 3.12 – Spatial concentration of Publications

Figure 3.13 – Scaling of publications
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Figure 3.5 shows the spatial distribution of population. The two largest cities are

clearly visible on the opposite sides of the country. The largest spike corresponds to the

New York MSA, which also includes Newark and Jersey City, totalling a population of

20,118,063 in 2015. Los Angeles MSA, which also includes Long Beach and Anaheim,

had 13,268,828 inhabitants in 2015. The top 10 in population size is completed by the

MSAs of Chicago, Dallas, Houston, Washington, Philadelphia, Miami, Atlanta, and

Boston. Note that the less populated regional divisions Mountain and West North

Central, as defined by the U.S. census bureau, also have relatively few places that

meet the threshold of being considered a MSA.3

Figures 3.6-3.13 show the spatial distribution in employment, GDP, patents, and

scientific articles. Figure 3.6 shows the spatial distribution of employment, which

looks rather similar to that of population. The top 10 MSAs also consists of the same

10 cities but Washington and Boston score a few positions higher while Atlanta and

Miami rank lower. Superlinear scaling is not so visible in the map but Figure 3.7

shows that the scaling coefficient of employment is 1.04, which suggests that a 1%

increase in the total population of a city is associated with a 1.04% increase in total

employment. As an example, New York City has 0.4558 of a job per inhabitant while

the smallest MSA in terms of jobs, Hinesville in Georgia, only offers 0.2089 of a job per

inhabitant. Clearly demonstrating that the size of cities is associated with increasing

returns making it more profitable (or necessary?) to be employed in larger cities.

Figure 3.8 shows the spatial distribution of GDP. An interesting feature that stands

out is that New York is the only city in the highest category in GDP. The difference

in city size and resulting GDP is more clearly visible compared to earlier maps. In

the top 10, the San Francisco metro area makes an entry while Miami has dropped

out. Los Angeles and Chicago are much smaller in terms of GDP compared to the

population difference with New York and Chicago seems larger than Detroit in terms

of GDP than their population difference. This superlinear scaling is confirmed by the

scaling coefficient (β) of 1.11 in Figure 3.9. As an example, New York City has a GDP

per capita of $ 79,945.- while the smallest MSA Lewiston, Idaho has a GDP per capita

of $ 37,005. This is in line with observations by Smith (1776) and Marshall (1890)

and more systematically analysed by Ciccone and Hall (1996) that productivity of

individuals is higher in larger cities.

Figure 3.10 shows the spatial distribution of patent production. As patents are only

used for technological innovation it only represents a subset of innovative activities

3The U.S. census bureau classifies the U.S.A. into 9 divisions. Division 4 West North Central
consists of Iowa, Kansas, Minnesota, Missouri, Nebraska, North Dakota, and South Dakota. Division 8
Mountain consists of Arizona, Colorado, Idaho, Montana, Nevada, New Mexico, Utah, and Wyoming.
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in a few industrial sectors. Inventions in services or organisation structures are for

example not patented. As a result, the highest peak in this map is not New York

City but the San José metro area in California, commonly known as Silicon Valley

and famed worldwide for technological innovation. For similar reasons, San Francisco,

Boston, Seattle, and San Diego enter the top 10 while the Southeastern cities only

show modest peaks. Boise, Idaho, headquarters of HP, also come up high even though

only being in 80th place according to population.

Figure 3.10 shows the spatial distribution of patent production. As patents are only

used for technological innovation it only represents a subset of innovative activities

in a few economics sectors. Inventions in services or organisation structures are for

example not patented. As a result, the highest peak in this map not New York City

but the San José metro area in California, commonly known as Silicon Valley and

famed world-wide for technological innovation. For similar reasons, San Francisco,

Boston, Seattle, and San Diego enter the top 10 while the Southeastern cities only

show modest peaks. Boise, Idaho, headquarters of HP, also come up high even though

only being in 80th place according to population.

Nonetheless, the relation between city size and patent production is clear. Despite the

clear differences in the hierarchy of patent production compared to population size,

which are articulated in the smaller R2 and the larger spread of observations in Figure

3.11. The scaling coefficient is 1.37, which is indicative of the suggestion that more

complex activities like patent production concentrate more strongly in large cities than

more general activities as gathered under employment or GDP. The scaling coefficient

of 1.37 on our 2000 to 2009 data is also statistically significantly higher than the 1.2

found by Bettencourt et al. (2007) using data from 1980 to 2001.4 This increase in

scaling over time is in line with the suggestion that knowledge-intensive activities have

come to concentrate more strongly in large cities (Glaeser, 2011; Moretti, 2012).

Figure 3.10 shows the spatial distribution of scientific publications. Like patents,

scientific publications are a measure limited to a small subset of knowledge-intensive

activities. In this case, academic research. As a result, larger discrepancies can be

seen when compared to the sizes of the spikes of population in Figure 3.5 than in

the case of employment and GDP. Although the New York area rates are on the

top, there are notable differences in the relative spatial distribution. The second

place in scientific publications is the Boston-Cambridge area, home to many renowned

universities like Harvard, MIT, and Boston University. The Durham-Chapel Hill metro

area in North Carolina is number eight in the top ten even though only being number

4The standard deviation on the scaling coefficient is 0.0489 shown in Figure 3.11.
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97 in terms of population size. The area is part of the so-called research triangle of

North Carolina comprising Duke University, and the University of North Carolina

at Chapel Hill. Outside of the top ten, a remarkable observation is the size of the

Ann Arbor metro area, home to Michigan State University, compared to the much

more populated neighbouring Detroit area. Like with the production of patents these

differences between the hierarchy in population and the hierarchy in publications lead

to a larger variance and therefore a smaller R2 in Figure 3.13.

Nonetheless, the relation between city size and the production of scientific articles is

clear. The scaling coefficient (β) of 1.58 shows the strongest relation between city size

and activity of all the four activities here.

3.4.2 Robustness of the first step
In Appendix 3A, we show that similar superlinear scaling relationships hold when

scaling coefficients are calculated separately for cities with less, respectively, more than

one million inhabitants.

3.4.3 Concentration of complex economic activities in large cities
The fact that arguably more knowledge-intensive activities like patent production and

scientific article production have stronger scaling coefficients than total employment

and total GDP is a first indication that more complex activities concentrate more

strongly in space.

To establish this connection we exploit the difference within jobs, industries, patents and

research articles in terms of complexity to evaluate their connection to urban scaling.

For each 2-digit SOC job category, 2-digit NAICS industry, NBER technological

subcategory, and 2-digit Scopus major research a scaling coefficient is calculated.

Figures 3.14 and 3.15 give the example of urban scaling of employment in, respectively,

the production job occupations, and computer and mathematical job occupations.

The number of workers in production occupations like assemblers and fabricators scale

sublinearly with city size, as β < 1. This indicates that a larger city actually has a

smaller proportion of workers in production occupations than a smaller city. On the

other hand, workers in computer and mathematical occupations, like computer and

information research scientists, scale superlinearly with a scaling coefficient β of 1.35,

which is far larger than the β of employment in general of 1.04 found in Figure 3.7.
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Figure 3.14 – Scaling of jobs in production
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Figure 3.15 – Scaling of jobs in Computer and mathematical
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Figure 3.16 – Scaling and complexity of job categories
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This result is in line with the findings of Audretsch and Feldman (1996); Rosenthal

and Strange (2003), and Carlino and Kerr (2015) that general production activities are

less concentrated than more information technology-intensive sectors. To explain this

tendency we introduce the concept of complexity and novel ways to measure these.

The complexity indicators are average number of years of education for jobs and

industries, average year of subclass introduction for patents, and average number of

authors for publications. In the robustness analysis, the complexity of patents is also

measured by the NK measure of Fleming and Sorenson (2001) and the average number

of inventors.

Figures 3.16-3.19 show the scaling coefficient of each category within each activity

on the y-axis, the measure of complexity on the x-axis, and the Pearson correlation

coefficient r between these two. All figures show a strong correlation between the

extent to which an activity scales and the extent to which it can be considered complex.

Individual graphs of each category within each activity can be consulted in Appendix

3A.

Figure 3.16 shows a correlation between urban scaling and the average number of

years of education of job categories. With the earlier examples of the occupations in
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Figure 3.17 – Scaling and complexity of industries
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Figure 3.18 – Scaling and complexity of technological classes
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Figure 3.19 – Scaling and complexity of research fields
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production, and computer and mathematical, considered in Figures 3.14 and 3.15, at the

two extremes of the y-axis. The correlation between scaling and complexity is 0.62. As

suggested by Jones (2009) more education likely indicates a larger educational burden

and therefore the need to divide labour. This division of labour likely requires face-to-

face contact to profit from agglomeration benefits, as education is the embodiment of

tacit knowledge, see Hausmann et al. (2014), which cannot be communicated easily

through telecommunications (Gaspar and Glaeser, 1998; Storper and Venables, 2004;

Glaeser, 2011).

Figure 3.17 shows a similar pattern for industries. Industries that employ workers

that have had more years of education tend to concentrate more strongly in space.

Food-textile-apparel manufacturing, which employs more workers in production, scales

less strongly than information, which includes software publishing and employs more

computer and mathematical occupations. Mining is a bit off compared to the others

but this is likely due to the specific often less-populated areas where this activity takes

place.5

5Note that this also holds for the sectors Utilities, and Agriculture, forestry, fishing, and hunting,
which are not shown in this figure but can be consulted in the appendix.
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Figure 3.18 shows that urban scaling of technological classes is strongly associated

with the average year of subclass introduction. This indicates new and unfamiliar

knowledge is involved, which as suggested by a large literature, e.g. Breschi and

Lissoni (2001); Leamer and Storper (2001); Storper and Venables (2004); McCann

(2008) and Glaeser (2011), requires face-to-face contact to communicate and make use

of agglomeration benefits and therefore scales strongly. Following Jones (2009), it also

is likely that a stronger division of labour is needed when more recent knowledge is

recombined, as is shown in the appendix.

Figure 3.19 shows that urban scaling of academic fields is strongly associated with

the average team size involved in an article. Confirming again that a larger division

of labour in knowledge-intensive activities leads to a larger need for the benefits of

proximity to a large number of other individuals.

3.4.4 Robustness of the second step
In Appendix 3A, we show that previous results are robust to a variety of other

measures and approaches. Regression results show that the relation between spatial

concentration and knowledge complexity are statistically significant even when using

activity and city fixed effects. Results are also robust to using alternative measures

for knowledge complexity, like the NK measure by Fleming and Sorenson (2001). This

is also the case when alternative measures are used for spatial concentration, proxied

in the main analysis by urban scaling. Results using Brazilian data show that the

pattern of complex activities concentrating in large cities is not limited to the U.S.A.

3.4.5 Density results
Density is often seen as more important for productivity than the size of cities in

the line of literature started by Ciccone and Hall (1996) and reviewed by Rosenthal

and Strange (2004). In Appendix 3A, we show results based on the scaling of density

instead of population size. Results show that activities scale even more strongly based

on density than population size with some categories within activities attaining scaling

coefficients over 3.5, which is more than double for most of the maximum scaling

coefficients obtained in the main results. Nonetheless, note that this is not sufficient

proof that density matters more than population size, as both measures are strongly

correlated but on different scales.
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3.4.6 Concentration of complex economic activities in large cities over

time
In this section, patent data since 1850 is considered to evaluate if complex activities

have increasingly concentrated in cities over time. The trend in the rising importance

of cities over time and the strong association between complexity and urban scaling

may suggest that this relation has increased.

Figures 3.20 and 3.21 depicts the evolution in the scaling of patents based on, re-

spectively, their level of complexity and per NBER category. Figure 3.20 shows that

the 25% most complex patents, those that recombine new knowledge, have become

increasingly concentrated in large cities over time, in particular during industrial

revolutions. In 1870, at the time of the electrical revolution, the scaling coefficient

(β) was about 1.15 and grows to about 1.55 around 1930 then it plateaus until the

computer revolution of 1970. After which it increases again. This would be in line

with the increasing need for proximity in times of rapid economic change, as explained

by Vernon (1960); Chinitz (1961); Jacobs (1969) and Duranton and Puga (2004a),

which characterizes the initial phase of technological revolutions following Schumpeter

(1942). When new technology matures the urban scaling plateaus.

The least complex patents (light yellow line) have always been less geographically

concentrated than the most complex patents but follow a more or less similar trend up

to 1970. There the two diverge with the urban scaling of the most complex increasing

and the least complex patents decreasing. This is in line with the suggestion of Leamer

and Storper (2001) that the rise of communication and transportation technologies

has a two-fold effect: (1) an increase in the routinisation of low-complex knowledge

allowing it to mature faster and therefore be performed at a distance, exemplified

here by the trend of the least complex patents; (2) an increase in the complexity

of new innovations, which requires proximity to develop, exemplified here by the

trend of the most complex patents. This observation contradicts the results of the

NEG-based model of McCann (2008) that suggested that both low complex and high

complex goods concentrate in large cities due to larger home markets and reduced

transportation costs.

The relation between urban scaling and technological cycles is more strongly exhibited

in the evolution of individual NBER technology categories shown in Figure 3.21. In

1870, patents in mechanical, chemical, and others, which in this time period refers

mostly to textile-related inventions were among the most important. The technologies

in mechanical and others plateau and then decrease in scaling as these technologies

mature. With a strong decrease after 1960, which suggests that a large part of the drop
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in urban scaling of the 25% least complex patents is due to the decrease in scaling of

these technologies. Chemical shows a similar trend but scores much higher in scaling

and complexity due to different new subcategories coming to being, which requires

more concentration.

A sharp increase in scaling of patents in electrical & electronic can be denoted just

after the 1870 electrical revolution. When rapid developments in these technologies

take place the urban scaling also increases. This suggests that most of the increase in

scaling in the most complex patents in Figure 3.20 around 1870 is due to this category.

By 1930 the scaling level plateaus and starts decreasing after 1960.

Just after the 1970 computer revolution Computers & Communications become the

dominant technology where rapid development takes place. Thereby driving up the

upwards trend of the 25% most complex patents after 1970 in Panel A with Drugs &

Medical.

All in all, this section gives strong suggestive evidence that there is a strong increase in

the relation between urban scaling and the complexity of activity over time. As van der

Wouden (2020) shows that complexity has gone up since 1870, whether measured

in team size or according to the NK measure, this gives insight on why cities have

become more important over time and particularly since 1980. As cities increase their

relevance for a finer division of labour, they also increase their potential as engines of

growth.

The fact that mostly the 25% most complex patents have come to scale more strongly

suggests that a smaller and smaller number of cities manages to host a larger and

larger proportion of the most innovative ideas its benefits, which sheds light on the

growth in spatial inequality.

Note that the results of this section cannot be due to cities growing faster than rural

areas, since scaling is a relative proportional measure. This indicates that even though

cities have grown faster than rural areas the rate at which they came to harbour

economic complex activities has increased even faster.

3.4.7 Robustness of the third step
In Appendix 3A, we show that the results hold when respectively using the number of

claims of each patent instead of the number of patents; when reducing the sample of

cities to the 353 cities used in the second step; and when using different quantiles of

the most, respectively, least complex patents.
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3.5 Conclusion
More knowledge-intensive activities are known to concentrate in larger cities. This

tendency has been thought to have increased over time and likely plays a major

role in the growing inequality of activities over space. Despite this relevance, the

understanding of the spatial concentration of knowledge-intensive activities is limited

in both the literature of urban economics/economic geography and in urban scaling

to aggregate count measures, like the number of patents. These fail to appreciate

the diversity in knowledge intensity within these activities, i.e. not every patented

invention is equally innovative, and to explain why these activities tend to concentrate

more.

Here, use is made of ideas in innovation studies and complexity theory on when

activities require geographical proximity between humans to develop theoretically

sound empirical measures of knowledge intensity within activities and over time. The

theories behind the measures are related to the division of labour, as often attributed

to Smith (1776), and the transmission of tacit knowledge. We show that each of

these measures is strongly related to a stronger spatial concentration in large urban

areas. When considering patent data from 1850 onwards, we show that the spatial

concentration of complex activities has been increasing over time, in particular during

industrial revolutions. All in all, this demonstrates that there is an almost universal

tendency for complex activities to concentrate in large cities and that this tendency is

accelerating.
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3A Appendix: additional results and robustness

checks

Additional results - Urban Scaling of all economic activities
In this section we show the scaling laws followed by all economic activities used in

the main analysis: 2-digit NBER sub-categories (technologies), 2-digit Scopus AJSC

(research areas), 2-digit NAICS (industries), and 2-digit SOC (occupations).

Technological classes

The different scatter plots show the relation between the population of an MSA and

the number of patents produced in different 2-digit NBER sub-categories from 2000 to

2009.

Figure 3A1 – Scaling relationship for each patent sub-category.
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Figure 3A2 – Scaling relationship for each patent sub-category.
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Figure 3A3 – Scaling relationship for each patent sub-category.
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Scientific fields

The different scatter plots show the relation between the population of an MSA and

the number of research papers produced in different 2-digit Scopus AJSC research

areas from 1996 to 2008.

Figure 3A4 – Scaling relationship for each scientific field.
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Figure 3A5 – Scaling relationship for each scientific field.
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Industries

The different scatter plots show the relation between the population of an MSA and

GDP produced in different 2-digit NAICS sectors in 2015.

Figure 3A6 – Scaling relationship for each Industry.
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Figure 3A7 – Scaling relationship for each Industry.
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Occupations

The different scatter plots show the relation between the population of an MSA and

the number of employees in different 2-digit SOC in 2015.

Figure 3A8 – Scaling relationship for each occupational category.
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Figure 3A9 – Scaling relationship for each occupational category.
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Figure 3A10 – Spatial concentration of Population in terms of density

Additional results - Density scaling
In this section results are shown when scaling is not measured on the basis of the

population size but the population density of cities, as put forward in Ciccone and

Hall (1996) and many studies reviewed by Rosenthal and Strange (2004). Density is

measured by the natural logarithm of the inhabitants per square meter of built area.

The built area per MSA is obtained using the National Land Cover Database.

Figure 3A10 shows the population density across the United States. Compared to

population per city shown in Figure 3.5 it is clear that the differences in population

density are less large than in population size. Nonetheless, New York and Los Angeles

stand out like before. Chicago is in terms of inhabitants per square meter of built

area no longer in the top 10 while on the other hand the lesser known Salisbury Metro

Area in Maryland makes its appearance.

Figures 3A11-3A14 replicate the baseline results presented in Figures 3.6-3.13 when

using urban density instead of population size as independent variable when explaining

the size of activities taking place in a city. The left-hand panel shows maps of the

density of each activity. Like in the maps on population, the maps on density show

much less variation between cities than when taking the totals, like in the main results.

This is particularly the case for employment and GDP, which are more generally spread

than publications and patents, in which a few cities are strongly specialised.

The right-hand panel shows the scaling relationship between density and production in

an activity. Two major differences with respect to the baseline results in Figures 3.6-

3.13 stand out: first, the scaling coefficient β is much higher, meaning that an increase

in density leads to a larger increase in production than an increase in population. An

1% increase in density is even associated with a 3.22% increase in patent production;
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second, the R2 is much smaller, meaning that there is a larger variation in the extent

to which density is associated to more production compared to population size.

Figure 3A11 – Urban density scaling of employment

(a) Spatial concentration of employ-
ment
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(b) Density scaling of employment

Figure 3A12 – Urban density scaling of GDP

(a) Spatial concentration of GDP
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(b) Density scaling of GDP

Figure 3A13 – Urban density scaling of patents

(a) Spatial concentration of patents
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Figure 3A14 – Urban density scaling of publications

(a) Spatial concentration of Publica-
tions
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(b) Density scaling of publications

Figure 3A15 – Urban scaling of two job categories
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(b) Computer and mathematical

In Figure 3A15 a replication of Figures 3.14 and 3.15 when using population density

instead of population size is used for the example job categories of production workers

and computer and mathematical professions. Like before, the beta coefficients and

variance are larger when based on population density. Nonetheless, the more complex

job occupation scales much more strongly than the less complex one.

Figure 3A16 replicates Figures 3.16-3.19 when using population density instead of

population size. Two things stand out: first, all scaling coefficients are higher than

before as could be expected by the results in Figures 3A15 and Figures 3A11- 3A14;

second, the regression lines are much steeper, which suggests that more complex
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activities scale even more strongly with larger densities than with larger population

sizes. Nonetheless, this is only suggestive evidence that density matters more for

complex activities than population size and further research with a more rigorous

statistical or experimental design is needed to establish this with certainty.
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Figure 3A16 – Urban density scaling and complexity
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Overall scaling for different population thresholds
Figure 3A17 shows that the beta coefficients estimated from a pool of large (>1M) or

medium-sized cities (<1M) are of a similar magnitude for scientific fields, industries,

and occupations. In the case of patents, we find superlinear scaling for both samples,

but interestingly we find higher superlinear scaling for medium sized cities (1.57) than

for large cities (1.17).

Figure 3A17 – Scaling for scientific fields, technology classes, indus-
tries, and occupations for cities above and below 1 million people.
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Robustness checks - Knowledge Complexity and Urban Scaling

Multivariate regression model for the relation between knowledge complex-

ity and concentration

The main hypothesis of this Chapter is that knowledge complexity drives urban

concentration. Here we formalise this hypothesis using a regression model that we

can fit using our data. Let Yic be the output in city c of economic activity i, meaning

number of patents for technological classes, number of papers for scientific fields, GDP

for industries, and number of employees for occupation categories. The scaling is

captured by the scaling exponent βi from the following model:

log(Yic) = µi + βi log(Popc) + εic, (3A.1)

where Popc is the population of city c. In the main analysis we found a positive

correlation between β̂i and Ki, where Ki is the knowledge complexity of economic

activity i. This relation can be formalised be βi = α0 + α1Ki, where the correlation

presented in the main analysis is proportional to α1. To estimate the value of α1 we

will combine both equations into the following model:

log(Yic) = µi + α0 log(Popc) + α1Ki log(Popc) + εic. (3A.2)

The coefficient of the interaction term between the knowledge complexity of the

economic activity and the population of the city captures the hypothesis that more

complex activities are more concentrated. We also add city-level fixed effects and

estimate the following model:

log(Yic) = µi + ηc + α1Ki log(Popc) + εic. (3A.3)

Table 3A1 shows that in all four cases, the interaction term between knowledge

complexity and city population is positive and significant, even after adding city fixed

effects. This means that complex industries located in large cities tend to generate

more economic output than the same industry located in a smaller city, and also more

than a less complex industry located in the same city. Table 3A2 presents results of

the same model over all economic activities, including the natural resources that were

ignored in the main analysis. Finally, Table 3A3 shows estimations for the same model

at a finer level of aggregation, when available. All the results are consistent.
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Results including natural resources

Figure 3A18 shows the results when the natural resource sectors left out in the main

analysis are included. The correlation for industries becomes smaller, though remain

significant (see Table 3A2).

Figure 3A18 – Scaling results including the natural resource sectors.
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Results for all cities available in the data

Figure 3A19 – Scaling results with all the cities available for each
economic activity.
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Figure 3A19 shows the results when data on all the cities available for each economic

activity are used. This means 940 cities for technological classes, 923 for scientific fields,

353 for industries (which coincides with the main analysis), and 388 for occupations.
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Knowledge complexity and concentration at different levels of aggregation

Figure 3A20 – Relationship between knowledge complexity and con-
centration for technological classes and scientific fields at a lower
level of aggregation.
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Figure 3A20 shows the scaling results for technological classes and scientific fields at a

more detailed level: Technological classes are defined following the 3-digit United States

Patent Classification (USPC) and scientific fields are defined as following the 4-digit

All Science Journal Classification Codes (ASJC). The relation between complexity

and scaling remains similar.
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Alternative measures of knowledge complexity

In this section, we present the relation between scaling and other commonly used

measures of knowledge complexity for occupations, industries, technologies, and

scientific publications.

For technologies, a first alternative measure is the NK measure as proposed by Fleming

and Sorenson (2001) and we computed it using the function implemented by Balland

and Rigby (2017) in the EconGeo R package. NK measures are computed at the patent

level and are based on how many sub-classes are listed on a patent and how often

these sub-classes have been recombined in the past. We then average per technology

category. As a second measure of knowledge complexity we use the date at which a

given technology has been officially established by the USPTO. Finally, in line with

the idea of division of knowledge we use the average number of inventors as a measure

of complexity. The left-hand shows the relation between each alternative measure

and the average year of subclass introduction used in the main analysis, while the

right hand side reproduces the main results, i.e. the relation between scaling and

knowledge complexity, using these alternative measures. As can be seen, the main

results presented in the Chapter are robust to the use of these alternative measures of

knowledge complexity.

Table 3A4 shows the spatial concentration of economic output for patenting activity at

the 3-digit level using specification in Eq. 3A.2 for alternative measures of knowledge

complexity. To make both measures comparable, we use the 3-digit patent classes

because at the 2-digit level both measures of knowledge complexity (year of subclass

introduction and NK-complexity) are highly correlated so the specification suffers from

multicollinearity. Both measures confirm that complex activities concentrate in space.

For scientific publications an alternative measure of knowledge complexity is the

average age of references cited in a given scientific publication. The data has been

kindly provided by Patience et al. (2017).Figure 3A22 shows that these results are

highly similar to the ones in the main analysis.

For industries an alternative measure of knowledge complexity is the share of Science,

Technology, Engineering and Mathematicians (STEM) workers, as computed by Roth-

well (2013). Figure 3A23 shows that results are highly similar to those in the main

analysis.

For occupations we use two alternative measures of knowledge complexity: the origi-

nality index provided by the O*NET classification (https://www.onetonline.org/) and

the average wage of workers (data from the Bureau of Labor Statistics). Figure 3A24

shows that results are highly similar.
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Figure 3A21 – Three alternative measures for knowledge complexity of
technologies (NK, date established, and average number of inventors).
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Table 3A4 – Relation between concentration of patenting activity and
knowledge complexity.

Dependent variable:

Economic Output
Number of patents

(1) (2) (3) (4) (5)

Area (log) −0.186∗∗∗ −0.186∗∗∗ −0.186∗∗∗ −0.186∗∗∗

(0.006) (0.006) (0.006) (0.006)
Population (log) 1.097∗∗∗ 1.097∗∗∗ 1.097∗∗∗ 1.097∗∗∗

(0.005) (0.005) (0.005) (0.005)
Pop.; Year of subclass introduction 0.149∗∗∗ 0.128∗∗∗ 0.128∗∗∗

(0.004) (0.005) (0.004)
Pop.; NK-Complexity 0.112∗∗∗ 0.035∗∗∗ 0.035∗∗∗

(0.004) (0.005) (0.004)
Constant −8.310∗∗∗ −6.802∗∗∗ −7.899∗∗∗ −6.888∗∗∗ 1.467∗∗∗

(0.127) (0.132) (0.127) (0.132) (0.084)

Activity f.e. yes yes yes yes yes
MSA f.e. no no no no yes

Observations 47,302 47,302 47,302 47,302 47,302
R2 0.599 0.610 0.605 0.611 0.747
Adjusted R2 0.598 0.609 0.604 0.609 0.745
F Statistic 522.088∗∗∗ 542.913∗∗∗ 532.034∗∗∗ 539.816∗∗∗ 284.192∗∗∗

Notes: Knowledge complexity measures are standardised; also ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Figure 3A22 – Alternative measure for knowledge complexity of sci-
entific fields.
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Figure 3A23 – Alternative measure for knowledge complexity of in-
dustries.
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Figure 3A24 – Two alternative measures for knowledge complexity of
occupations.
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Alternative measures of concentration

This subsection tests the robustness of our results to changes in the way we define

concentration across geographical units. The following figures show, on their left panels,

the relationship between our baseline concentration measure (the scaling exponent)

and the alternative one (Hoover Gini coefficient, as computed using the EconGeo

package Balland and Rigby (2017)). The right panels show the relationship between the

alternative measure of concentration and our baseline knowledge complexity measures

across economic activities. In all cases results do not vary significantly.

Figure 3A25 – Correlation between Hoover Gini and the scaling expo-
nent, and between Hoover Gini and knowledge complexity for patents.
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Figure 3A26 – Correlation between Hoover Gini and the scaling expo-
nent, and between Hoover Gini and knowledge complexity for papers.
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Figure 3A27 – Correlation between Hoover Gini and the scaling expo-
nent, and between Hoover Gini and knowledge complexity for indus-
tries.
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Figure 3A28 – Correlation between Hoover Gini and the scaling expo-
nent, and between Hoover Gini and knowledge complexity for occupa-
tions.
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Knowledge complexity and concentration for Brazilian industries and occu-

pations

This subsection explores the relation between knowledge complexity and concentration

for industries and occupations in Brazil, using the RAIS dataset. We use the mesoregion

level of aggregation. For more information visit http://legacy.dataviva.info/

en/Dataviva.

Figure 3A29 – Relation between knowledge complexity (average years
of education) and concentration (scaling exponent) for Brazilian
mesoregions, at different levels of aggregation.
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Robustness checks - Historical scaling of patenting activity

Computing scaling exponent using number of claims instead of number of

patents

This subsection tests the robustness of our results related to historical trends in the

evolution of the urban concentration of technologies. In the main analysis, we estimated

scaling exponents based on the number of patents in a given city, here we estimate

scaling exponents based on the number of patent claim (a patent can make multiple

claims).
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Figure 3A30 – Historical scaling using number of claims to calculate
the scaling coefficient.
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Alternative pool of cities

This subsection tests the robustness of our results related to historical trends in the

evolution of the urban concentration of technologies by changing the cities considered

in the analysis. The following figure replicates the results of Figures 3.20 and 3.21

presented in the main analysis, but uses the 353 cities for which we have data on

occupations, industries, and scientific fields. Results do not vary significantly.

Figure 3A31 – Historical scaling using the same 353 cities as in the
main analysis.
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Different knowledge complexity thresholds

This subsection tests the robustness of our results related to historical trends in

the evolution of the urban concentration of technologies by changing the knowledge

complexity thresholds. In this Chapter, we define the most (least) complex patents as

the top (bottom) 25% most (least) complex ones. Here we present results using the 5,

15, and 50% threshold instead. Results do not vary significantly.

Figure 3A32 – Changes in scaling for the most complex and least
complex patents using different thresholds.

Decade

�������������������������

�������������������������  

0.4

0.8

1.0

1.2

1.4

1850 1900 1950 2000

S
ca

li
n

g
 E

xp
o

n
e

n
t 

(β
)

5% most complex5% least complexA

�������������������������

�������������������������  

1.0

1.2

1.4

1.6

1.8

1850 1900 1950 2000

S
ca

li
n

g
 E

xp
o

n
e

n
t 

(β
)

15% most complex15% least complexB

�������������������������

�������������������������  

1.0

1.2

1.4

1.6

1850 1900 1950 2000

S
ca

li
n

g
 E

xp
o

n
e

n
t 

(β
)

50% most complex50% least complexC



3A. APPENDIX: ADDITIONAL RESULTS AND ROBUSTNESS CHECKS 175





Chapter 4

Technological diversification of U.S.

cities during the great historical

crises

Abstract – Regional resilience is high on the scientific and policy agenda. An essential

feature of resilience is diversifying into new activities but little is known about whether

major economic crises accelerate or decelerate regional diversification. this Chapter

offers systematic evidence on the effects of three of the largest crises in U.S. history,

the Long Depression (1873-1879), the Great Depression (1929-1934), and the Oil

Crisis (1973-1975), on the development of new technological capabilities within U.S.

metropolitan areas. We find that crises reduce the pace of diversification in cities

but they also narrow the scope of diversification to more closely related activities, in

particular during the Great Depression. We also find that more diverse cities diversify

more strongly during times of crisis.

This chapter is co-authored with Pierre-Alexandre Balland, Ron Boschma, and David Rigby. It is

currently in the third round of revision at Journal of Economic Geography.
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4.1 Introduction
The shock of the current covid-19 crisis, like the financial crisis of 2007-2008, has

global economic consequences but is characterised by strong intra-country disparities in

vulnerability (Martin, 2012; Odendahl and Springford, 2020). As a result, questions on

how to prevent regions from entering crises and how to alleviate the impacts of crises

on regions have once more returned to prominence on the research agenda. However,

despite the wide interest, the literature on regional resilience is still largely considered

as work in progress (Boschma, 2015).

A crucial component of regional resilience is the ability of regions to diversify into new

activities (Pike et al., 2010; Boschma, 2015; Xiao et al., 2018; Rocchetta et al., 2022).

When regions are hit by a shock, it may be crucial to develop new growth industries

to speed up the recovery process in regions during times of crisis. Several case studies

(Grabher, 1993; Glaeser, 2005) indeed suggest that diversifying into new activities may

alleviate crises. However, little is actually known on how much diversification occurs in

crises relative to periods of regular economic activity. Theories inspired by Schumpeter

have expressed divergent views on this issue (Filippetti and Archibugi, 2011): some

scholars claim major crises trigger technological breakthroughs (Schumpeter, 1939;

Kleinknecht, 1987), while others suggest that dramatic drops in demand prevent the

introduction of new (major) technologies during unsettled times (Schmookler, 1966;

Scherer, 1982). Which of these theories prevails at the regional level remains unclear.

Previously, empirical evidence on these questions relied primarily on case studies.

Work of Hidalgo et al. (2007); Kogler et al. (2013); Boschma et al. (2015); Balland et al.

(2015); Rigby (2015), among others, made it possible to quantify such a qualitative

phenomenon as the relatedness between technologies, opening up the way for more

systematic analyses. Advances in data availability complement this development.

The HISTPAT U.S. patent data set (Petralia et al., 2016) reaching back to 1836,

allows us to examine some of the deepest crises the United States has experienced.

We focus on patterns of technological diversification within Metropolitan Statistical

Areas (MSAs) during three of the most devastating economic shocks in U.S. history:

the Long Depression, the Great Depression and the Oil Crisis.1. These historical

crises coincide with moments of great technological change, notably two industrial

revolutions (Boschma, 1999) as the neo-Schumpeterian long wave theory demonstrated

(Freeman et al., 1982; Kleinknecht, 1990). Adapting to new major technologies

through diversification is likely essential to prevent lock-in and assure long-term

1The current covid-19 crisis and the financial crisis (2007-2008) are too recent to be included in
the analysis as we insist that for successful diversification, new technologies should persist in a region
for a certain time period, as further explained in Section 4.3.
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regional prosperity (Marshall, 1987; Glaeser, 2005).

The analysis yields the following insights. First, we find that U.S. cities diversify less

during major crises. Second, in periods of crisis, cities diversify more in closely related

activities than during periods of prosperity, especially during the Great Depression.

Additionally, we find that diversification during the Oil Crisis is very distinct from this

pattern in the sense that diversification is less impacted, in particular in upcoming

technologies, such as in computers & communication. Furthermore, we find that more

diverse cities have a higher probability of diversifying during crises than do specialised

cities.

The structure of the Chapter is as follows. In Section 4.2, we discuss recent theorizing

on regional resilience and diversification, and how that is related to periods of crisis

and technological change. Based on these theoretical considerations, we derive two

hypotheses on diversification in times of crisis. In Section 4.3, we explain the data and

the methodology used. In Section 4.4, we present the main empirical findings. Section

4.5 of the Chapter will conclude and discuss the findings in light of a future research

agenda.
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4.2 Resilience of Regions and Diversification in

Times of Crisis
In recent years, studies have investigated the ability of regions to bounce back after a

crisis (Martin, 2012; Balland et al., 2015; Dijkstra et al., 2015; Diodato and Weterings,

2015; Cuadrado-Roura et al., 2016; Crescenzi et al., 2016; Sedita et al., 2016; Bristow

and Healy, 2018; Fratesi and Perucca, 2018; Rocchetta and Mina, 2019). The regional

resilience literature is fundamentally interested in the capacity of regions to recover

from a shock, and what processes drive that recovery. Many resilience studies follow an

equilibrium approach, i.e. looking at the ability of regions to return to a pre-existing

equilibrium state after a shock or to move into a new equilibrium state (Fingleton

et al., 2012). These studies tend to overlook the fact that a substantial part of the

recovery process may depend on the ability of regions to develop new growing activities

that offset processes of decline (Boschma, 2015; Balland et al., 2019; Rocchetta et al.,

2022). As such, tackling the question of regional resilience requires an understanding

of how regions diversify into new activities.

A large empirical literature on diversification suggests that regions do not start from

scratch when diversifying: they tend to build on existing local capabilities, a process

that has been labelled related diversification (Neffke et al., 2011a; Boschma et al., 2015;

Rigby, 2015; Hidalgo et al., 2018). This is not to say that unrelated diversification

(i.e. the successful development of new activities unrelated to local activities) does not

occur in regions, but the evidence shows it is a rare phenomenon(Hidalgo et al., 2007;

Neffke et al., 2018; Pinheiro et al., 2021). However, diversification during crises has

not been considered yet.

Inspired by scholars who advocate an evolutionary approach to regional resilience (e.g.

Christopherson et al., 2010; Pike et al., 2010; Simmie and Martin, 2010; Martin and

Sunley, 2015; Webber et al., 2018; Cainelli et al., 2018), Boschma (2015) proposed

connecting the literature on regional diversification to regional resilience. He links

resilience to the ability of regions to diversify and create new growth paths, to offset

stagnation and decline during shocks. This implies that, besides looking at the

vulnerability of regions to a shock (conventionally measured as a decline in output

levels) and the ability to recover from a shock (conventionally measured as a return

to previous output levels, or to new equilibrium output levels), there is a need to

examine to what extent shocks impact the ability of regions to diversify (Xiao et al.,

2018; Rocchetta et al., 2022).

Diversification is considered to be crucial for regions to overcome a crisis, Rigby et al.

(2022) has shown that technological diversification in regions is in general associated
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with economic growth. This is even more relevant in major crisis periods that are

often associated with moments of great technological change (Boschma, 1999) that

have pervasive economic consequences in the long run (Freeman et al., 1982; Marshall,

1987; Kleinknecht, 1990).

When regions are confronted with such major crisis periods and shifts in technological

paradigms, the need for diversification is even more urgent. This is echoed in certain

case studies. Glaeser (2005), for example, describes how Boston reinvents itself by

developing new leading industries when others fade. In contrast, Detroit does not

manage to develop new industries when their dominance in car-producing technology

fades (Hill et al., 2012).

The differences in economic prosperity between Boston, which reinvents itself after the

computer revolution in the 1970s, and Detroit, which did not, shows the relevance of

understanding (technological) diversification during crises. But although such case

studies give some suggestions on the diversification that takes place during crises

and the extent to which new specialisations are related to previous activities, more

systematic evidence is missing to show how generalizable and precise these patterns

are, which is the goal of this Chapter.

This topic has not received a lot of attention in the regional resilience literature.

However, a related debate has been taking place in the long wave literature for many

years. Innovation theories, inspired by Schumpeter, that developed in the 1980s (Dosi

et al., 1988) viewed radical innovations as clustering in waves rather than occurring

randomly over time. Schumpeter referred to this as the ‘swarming of innovations’

which he believed happened during the downswing period of the long wave. In his

work on basic innovation, Mensch (1975) developed the depression trigger hypothesis

to explain the tendency for radical innovations to bunch during periods of crisis. This

hypothesis was challenged by other scholars (Clark et al., 1981; Duijn, 1983) who

argued that most innovations take place just after the crisis, during the upswing of

a long wave. Kleinknecht (1981) reconciled both views, stating that “the argument

that depression is acting as a trigger for major innovations .... does not exclude the

existence of a swarm of related innovations which accompany the diffusion of newly

introduced products” (p.295).

Kleinknecht (1981, 1987) supported the depression trigger hypothesis, claiming that in

periods of crisis, demand drops dramatically and returns on further improvements of

mature products and technologies are low, and therefore the relative risk of introducing

radical innovations for firms decreases. This incentive becomes even stronger when

productive resources are set free during the downswing of the economy, leading to
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declining wages and lower capital costs, which makes it more attractive to invest

(Krugman, 1993; Glaeser, 2005). Moreover, many innovative breakthroughs are tech-

nologically related to each other, showing interdependencies and complementarities

(Rosenberg, 1982; Carlsson and Stankiewicz, 1991) which makes them cluster in time

(Rosenberg and Frischtak, 1983; Boschma, 1999). And once radical innovations are

introduced, they will attract new investments that will lead to a large stream of

additional innovations, known as the ‘bandwagon effect’ (Clark et al., 1981).

Diametrically opposing this depression trigger hypothesis is the ‘demand-pull’ hypoth-

esis suggesting that dramatic drops in demand during crises prevent the introduction

of new (major) technologies (Schmookler, 1966; Freeman et al., 1982; Scherer, 1982).

Freeman et al. (1982) argued that R&D activity is reduced considerably in long wave

depressions. Instead, the rise in demand during the upswing provides more favourable

conditions for firms to introduce breakthroughs and major innovations (Geroski and

Walters, 1995). Schmookler (1966) claimed that upswings in inventive activity followed

upswings in demand (Coombs et al., 1987). Moreover, depression phases are charac-

terised by a mismatch between major technologies and institutions (Perez, 1983; Dosi,

1984): the successful introduction and diffusion of major breakthroughs in the economic

system requires a set of new institutions that take a long time to develop (Freeman

and Perez, 1988). The demand-pull claims suggest that new major technologies are

more likely to enter the economy in the growth phase of the long wave.

The agents introducing new technologies operate strongly in regional settings. Studies

have shown that entrepreneurs and firms are very much influenced by local capabilities

when diversifying and innovating (Klepper (2007); Neffke et al. (2018); Lo Turco and

Maggioni (2016) and Hazir et al. (2019)). Agents faced by a drop in demand can opt to

innovate in other technologies and possibly more specifically into technologies that are

new to the region or postpone diversification until demand rises again. Reformulating

the neo-Schumpeterian ideas into the framework of the regional diversification literature,

we could expect regions to introduce and develop new activities during downswings as

much as during upswings.

Therefore, we develop a set of competing hypotheses on how regions adopt technologies

new to them. Hypothesis 1a builds on the depression trigger hypothesis, stressing

that diversification is more likely to occur during periods of crisis. As stated above,

economic agents might be more willing to take risks and to try out something new when

current products and technologies show decreasing returns. Institutional agents (like

regional governments) may see major enduring crises as windows of opportunity and

are therefore more prone to promote new ways of getting out of the crisis. By contrast,

Hypothesis 1b builds on the demand-pull hypothesis and states that diversification is
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even more unlikely to take place in regions during periods of crisis. Inventions have

to wait until upswings in demand arise. We, therefore, formulate the following two

competing hypotheses:

Hypothesis 1 (a). cities diversify more during crises than during non-crisis periods

Hypothesis 1 (b). cities diversify less during crises than during non-crisis periods

Furthermore,the contrasting Schumpeterian views on adopting new major technolo-

gies also yield different expectations on the level of unrelated diversification during

crises. On the one hand, the depression trigger hypothesis suggests that unrelated

diversification is more likely as returns on related diversification have decreased. On

the other hand, the demand-pull hypothesis suggests that related diversification is

more likely as unrelated diversification would just add to the high uncertainty that is

already inherent to a crisis period. . Furthermore, unrelated diversification is generally

more costly because underlying capabilities need to be transformed completely (Neffke

et al., 2018). Therefore, we formulate the following hypotheses:

Hypothesis 2 (a). cities diversify more in less related technologies during crises than

non-crisis periods

Hypothesis 2 (b). cities diversify more in related technologies during crises than

non-crisis periods

4.3 Data and Methodology
The hypotheses outlined above are tested with a unique dataset of U.S. patents covering

the period 1836− 2002. This long time span allows us to test the hypotheses across

three major crises in U.S. history: the Long Depression, the Great Depression and

the Oil Crisis. Although we are aware of the limitations of patent records (Griliches,

1981), patent records hold a wealth of information regarding the process of invention

and the nature of additions to the expanding stock of knowledge. The patent data

originates from the efforts of Petralia et al. (2016) to obtain geographical locations for

all patents over the period 1836− 1974 from Google scans of historical U.S. patents.

Information on patents since 1974 is available from NBER patent data (Hall et al.,

2001).

Diversification in a MSA is captured by the development of a comparative advantage

in a new technology within that MSA.1 MSAs are defined by the U.S. Census Bureau

1We note that if a region diversifies in activities where patenting is uncommon this will not be
captured by our methodology.
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as core areas with at least 50,000 inhabitants and adjacent countries that are socially

and economically integrated, as measured through commuting patterns. As these

commuting patterns do not necessarily hold for the same areas 100 years ago, we also

run robustness checks using county-level data. We use the Metropolitan Core-Based

Statistical Areas delimitations of 2013 as the definition of MSAs. As agents interact

within this area it is also indicative of the technological knowledge that is well known

to agents and the area in which resources set free during crises find new purposes,

see Boschma (2015) and Rigby (2015). We remain agnostic on which agents within

the area are involved in the development of new technological specialisations, this

topic is studied elsewhere, see Neffke et al. (2018). We do introduce measures below

that capture the linkages between MSAs through inventors, as innovation does not

necessarily take place in isolation and global pipelines matter (Bathelt et al., 2004;

van der Wouden, 2018).

Technologies are represented by the 438 different primary classes of the United States

Patent and Trademark Office (USPTO) patent classification system.2 When diversifi-

cation occurs, the data allows us to calculate the relatedness of the new technology to

the technologies present in the MSA in the previous time period.

We restrict our sample to MSAs within the contiguous U.S.A. We also impose a

minimum of 10 patents per year for a time period of a MSA to be taken into account

and a minimum of 0.5 patents3 per year in a certain primary technology class. As a

result, data is drawn from a sample of 274 MSAs and 2, 171 MSA-time periods. Below,

we introduce our definitions and measurements of crises, diversification, relatedness

and diversity.

4.3.1 Crises
Like Balland et al. (2015), we build on trends in patenting per region to indicate when

regions are in crisis, as patent counts are highly correlated with economic performance

(Glaeser and Gyourko, 2007; Rothwell et al., 2013). To ascertain this link with economic

performance, we focus on the great historical crises of the United States, identified

independently of the patent data, while using patent counts to indicate the breadth

and depth of these crises per MSA.

Each nationwide crisis is regarded as a shock at the regional level. A metropolitan area

can then either enter into a crisis or not. At the regional level, the emergence and the

2Primary technology classes are comparable over time as the USPTO reclassifies all patents when
new class definitions are introduced.

3Patents that are assigned to inventors in multiple MSAs, only count as 1 divided by the number
of MSAs on that patent for each of the MSAs.
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duration of crises are identified from patent records using an adapted version of the

business cycle algorithm of Harding and Pagan (2002), after Balland et al. (2015). We

follow the definition of technological crises by Balland et al. (2015, p.6) as sustained

periods of negative growth in patent activity: “more formally, a time series recording

yearly patenting activity can be defined as a continuum of local maxima (peaks) and

minima (troughs) that divide the series into periods of technological growth from trough

to peak and technological crisis from peak to trough.”.

The algorithm to detect business cycles “identifies potential turning points as the local

minima (trough) and maxima (peak) in the series. Let Pt be a patent count yearly series.

A trough is identified as (p(t−j), . . . , p(t−1)) > ptrought < (p(t+j), . . . , p(t+1)) while a peak

follows the condition that (p(t−j), . . . , p(t−1)) < ppeakt > (p(t+j), . . . , p(t+1)).” (Balland

et al., 2015, p.172). To prevent “noise” due to years of random growth or decline,

two extra conditions are imposed: “The phases (technological growth or technological

crisis) should be at least 2 years long, while complete cycles (period between 2 peaks or

between 2 troughs) should be at least 5 years long.”

As a result of this procedure, time periods are defined separately for each MSA and

therefore do not necessarily match or have the same duration. For each MSA, all

periods of crisis and growth are identified between 1836 and 2002. Crises that do not

overlap with one of the three great U.S. crises or have a decrease in patenting activity

of less than 35 percent during the crisis are ignored.4

The decision to ignore regional downturns in patenting that do not occur during a

nationwide shock decreases the risk of including local crises that are unrelated to major

economic downturns or are spurious decreases in patent counts. Regional periods of

growth are kept regardless of when they occur. We give further detail on the dynamics

of regional patenting during the great historical crises in Appendix 4A.

4.3.2 Diversification
We use the notion of Revealed Comparative Advantage (RCA) (see Hidalgo et al.,

2007) to identify in which technologies each MSA is specialised across the time periods

examined. In equation 4.1, x represents the number of patents, c denotes the city-

region (MSA), i is the primary technology class, and t indicates the time period. RCA

values are bounded on the left by zero. A RCA value of 1 indicates that a MSA has

the same share of patenting activity in a particular technology class as the national

average. RCA values of 1 or greater indicate regional specialisation in a technology.

A technology enters the technological portfolio of a MSA when a MSA develops a

specialisation in a technology class that it did not have in the previous time period.

4In the robustness check, we show that using different thresholds lead to similar results.
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An entry is considered a diversification of the region. To account for spurious entries

of technologies we add the condition that an entering technology has to remain present

in the portfolio of a MSA (with RCA => 1) for at least two time periods.

RCAcit =

xcit∑I
i=1 xcit∑C
c=1 xcit∑C

c=1

∑I
i=1 xcit

, (4.1)

4.3.3 Relatedness
Technologies that are not in the technological portfolio of a MSA in time period t− 1

(those for which the RCA value is below one) enter or do not enter in time period

t. An important predictor of the entry of a technology within a MSA is how closely

related it is to technologies that are already present in the region (Boschma et al.,

2015; Balland et al., 2019). This notion of relatedness is essential for hypothesis 2,

where we focus on less related diversification. The co-occurrence of technology classes

on patents is used to measure the relatedness between technologies. Technology classes

are more related to one another as they co-occur with a frequency that is greater than

that which would be predicted based on the overall counts of classes in the population

of patents of a given time period. The formula for relatedness, outlined Additional

Chapter A, is reported in equation 4.2. Where Cijt is the number of co-occurrences

between technology i and technology j in time period t. Sit and Sjt is the number of

co-occurrences involving respectively technology i and technology j in time period t,

N is the total number of technologies, and m is the total number of co-occurrences.

TRijt =
Cijt

( Sit∑N
n=1 Sn

Sjt

(
∑N
n=1 Sn)−Sit

+
Sjt∑N
n=1 Sn

Sit
(
∑N
n=1 Sn)−Sjt

)m
, (4.2)

Building on relatedness, relatedness density (see Hidalgo et al., 2007) gives the relat-

edness of a region to a technology that is not yet present in its technological portfolio.

Relatedness density is equal to the sum of relatedness values of the technologies in the

region to the possibly entering technology divided over the sum of relatedness values

of all technologies to this technology, as can be seen in equation 4.3.

Rel.densitycit =

∑
j∈c,j 6=i TRijt∑
j 6=i TRijt

, (4.3)
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4.3.4 Control variables

Presence of technology in neighbouring MSA

Other factors that are correlated with our variables of interest may influence the

development of specialisation in a new technology by a MSA. Having MSAs nearby

that have an RCA in a technology can be expected to positively influence the entry of

that technology to the technological portfolio of a city because knowledge flows tend

to be geographically conditioned (Rigby, 2015; Boschma, 2017). Therefore, we develop

a spatial weight matrix using the inverse distance for the presence of technology in

neighbouring MSAs.

Population

We also include the average population of MSAs in the time periods based on census

data.

Diversity

Some scholars argue that it is the diversity of capabilities in a city that is more important

than the size of a city. The regional resilience literature argues that variety is crucial for

resilience because it can accommodate sector-specific shocks (Essletzbichler, 2007, 2015;

Diodato and Weterings, 2015; Rocchetta et al., 2022). This is in line with numerous

case studies on specialised regions that showed structural problems of adjustment

(Boschma and Lambooy, 1999; Pike et al., 2010). Specialised regions may have a

low capacity to diversify in new activities, because they are cognitively, socially and

politically locked-in (Grabher, 1993; Hassink, 2005).

To control for this, we follow Duranton and Puga (2000) who propose a simple diversity

index, known as the Relative Diversity Index (RDI). The intuition is that if the relative

distribution of patenting activity over technology classes in a MSA resembles the

national distribution, then the city is relatively diverse. On the other hand, when the

patents of a MSA cluster strongly above the national average in a few classes then it

is seen as specialised.

Following Duranton and Puga (2000) the formula is given in equation 4.4, like before x

stands for the number of patents, c indicates the MSA, i the respective technology, and

t the respective time period. A value close to zero denotes a specialised city, whereas

the larger the value the more diverse a city is.

RDIct =
1∑I

i=1|
xcit
xct
− xit

xt
|
, (4.4)
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Degree centrality

Agents in regions may also have strong connections external to their area that are not

fully captured by adding a variable on the presence of a technology in neighbouring

cities. For example, multinational corporations are known to be more capable of

wielding knowledge from distant areas (Iammarino and McCann, 2013). To somewhat

control for the extent to which diversification within and outside of crises may be

influenced by these so-called “pipelines” (Bathelt et al., 2004; van der Wouden, 2018),

we use the degree centrality of MSAs in the collaboration network of inventors of

patents.

Fixed effects

Due to the historical nature of the HISTPAT data, there is much less information

available on other confounding variables as in related approaches, such as inventor

characteristics. However, this shortfall can largely be mitigated by the inclusion of

fixed effects at the level of the time period, technology, and MSA. Table 4.1, gives the

descriptive statistics of our variables.

4.3.5 Empirics
Entry models are a common tool in the literature that yield insight on the role of

relatedness in diversification (e.g. Boschma et al., 2015; Balland et al., 2019). Despite

the popularity, some underestimation of risks exists concerning two particular traits of

the econometric specification that prove to be important here and are likely to hold

in related applications. Namely, the extreme right skewness of its main variables of

interest: entry and relatedness density. This means that often-used linear probability

models do not lead to correct estimations and that the coefficient is strongly influenced

by outliers. Therefore, we choose to use a logit model and substitute the continuous

relatedness density variable for an ordered categorical variable by creating dummy

variables for each quantile of relatedness density values. We give further explanation

on these reasons in Appendix 4.5.

Equation 4.5 gives our preferred regression formula for Hypotheses 1 and 2 and is

in line with previous work like Boschma et al. (2015). If a technology i enters the

technological portfolio of city c in time period t, the value of the dependent variable

is 1. If it was not in the portfolio of city c and it did not enter its value is 0. The

dependent variable is regressed on the relatedness density (RlD) of the technology class

to the portfolio of each city in the previous time period, on a dummy variable which

indicates if a city is experiencing a crisis (Cris) or not, on the interaction between

these first two terms (RlD × Cris), city characteristics (City) at time t, which consist

of the relative diversity index, population and degree centrality, and on the presence
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(Pr) of technology i in the technological portfolio of neighbouring MSAs multiplied by

a spatial weight matrix W, and fixed effects (F.E.) that consist of a city-fixed effect, a

technology-fixed effect, and a time-fixed effect.

Entrycit =
∑5

k=1 αkRlDcit−1,k + βCrisct +
∑5

k=1 γkRlDcit−1,k × Crisct + δCityct + ηPrit ×W + F.E.+ εcit,

(4.5)

To facilitate interpretation we standardise the relative diversity index, population,

degree centrality, and Present×W to have 0 mean and a standard deviation of 1 and

use sum-to-zero contrasts for the fixed effects. As such, converting the intercept to

probabilities gives the probability of entry at the average of all cities, technologies,

and time periods instead of the reference category for each dummy variable.

Based on equation 4.5, we can calculate the marginal effect of crisis per relatedness

density group to see if Hypothesis 1 and 2 can be accepted or rejected.5

We note that this empirical strategy aims at describing how regions diversify during

crises and does not allow us to ascertain that crises cause these changes.

4.4 Results

4.4.1 Diversification in times of crisis
Table 4.2 gives the marginal effects based on the results for specification 4.5. The full

regression results can be consulted in Table 4A2 in the Appendix. The first and second

columns give the marginal effects for a specification without fixed effects, and in the

case of column (1) also without interaction terms. These results are highly similar to

the preferred specification given in column (3). Note that the parentheses give the

95% confidence interval.6

The marginal effect of relatedness density values falling between the 20% and 40%

lowest values in column (3) indicates that technologies within this category are 0.27%

more likely to enter the technological portfolio of a city than those of the reference

category with the lowest 20% values ceteris paribus. Although small, such an increase

5We experienced that most packages in R currently available to calculate marginal effects are
rather slow and computational intensive when having many observations and fixed effects as is the
case here. Therefore we developed and published a R-package called fastlogitME, which uses less
CPU and is compatible with speedglm.

6We prefer to give the 5th and 95th percentile instead than a to probabilities converted standard
error as the response scale (probabilities) is linear whereas the scale of the underlying link function
is non-linear. When using a standard error derived from bootstrapping or the delta-method it may
result in a confidence interval that exceeds the range of 0% to 100% entry probability, which is
technically impossible and the reason in the first place to use logit models instead of linear models.
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is not negligible. After all, the development of a new specialisation by a region is a

rare event. The probability of entry is namely only 0.63% for technologies that fall in

the reference category of the lowest 0%-20% relatedness density values. Therefore, an

increase of 0.27% is substantial.7

The probability of entry increases with relatedness density as can be seen by the

increase in coefficient size up to 0.0293 with each step in relatedness density. This

indicates that a region is more likely to develop a specialisation in a technology that is

more strongly related to its technological portfolio, as could be expected based on the

previous literature (see among others Boschma et al., 2015 and Hidalgo et al., 2018).

The marginal effect of technological diversity, as measured by the Relative Diversity

Index, is positive and significant. The effect of entry is substantial and of a similar size

of increasing relatedness density from the 0%-20% quantile to the 20%-40% quantile.8

This is the first systematic evidence corroborating earlier suggestions based on case

studies (Grabher, 1993; Boschma and Lambooy, 1999; Hassink, 2005; Pike et al., 2010;

Boschma, 2015; Neffke et al., 2018), which claim that there is more to diverse cities

that makes them open and interested in developing new activities. In such diverse

settings, there is a lower probability that established industries and vested interests that

dominate the institutional and policy network can block new key developments. This

comes on top of the advantage that diverse cities have by having a larger technological

portfolio and therefore increased proximity to possibly entering technologies, which is

captured by the relatedness density variable and further discussed by Balland et al.

(2015) and Boschma (2015). In Appendix 4.5, we further explore the differences in

diversification patterns during crises of more diverse regions versus more specialised

regions.

Contrary to expectation, the marginal effect of population size is insignificant and

virtually zero and the marginal effect of degree centrality is even significantly negative.

However, when the diversity variable is omitted from the regression the population

variable is positive and statistically significant and when also the population variable

and fixed effects are dropped this also holds for the degree centrality variable. This

suggests that the industrial composition, proxied by diversity, is more important for the

development of new specialisations than just agglomeration size, proxied by population,

or having a central position in inventor networks proxied for degree centrality.

7More specifically, an entry probability of 0.63% holds for the lowest relatedness density category
outside of crisis for the mean values of population size, degree centrality, and the presence × spatial
weight matrix when.

8The reference category for which the marginal effects are calculated are non-crisis periods but
results are similar when this is switched to crisis periods.
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Table 4.2 – Marginal effects (Hypothesis 1 and 2)

(Dependent variable: entry of technology class i in the technological portfolio of city c at time t)

Naive + crisis× + fixed

specification relatedness density effects

(1) (2) (3)

Relatedness density 0.0033∗∗∗ 0.0034∗∗∗ 0.0027∗∗∗

(20%-40%) (0.0024, 0.0043) (0.0024, 0.0044) (0.0019, 0.0035)
Relatedness density 0.0102∗∗∗ 0.0105∗∗∗ 0.0074∗∗∗

(40%-60%) (0.0088, 0.0116) (0.0091, 0.0120) (0.0063, 0.0085)
Relatedness density 0.0222∗∗∗ 0.0223∗∗∗ 0.0150∗∗∗

(60%-80%) (0.0201, 0.0244) (0.0201, 0.0245) (0.0134, 0.0167)
Relatedness density 0.0428∗∗∗ 0.0414∗∗∗ 0.0293∗∗∗

(80%-100%) (0.0394, 0.0463) (0.0381, 0.0450) (0.0266, 0.0322)
Crisis −0.0023∗∗∗ −0.0053∗∗∗ −0.0032∗∗∗

(−0.0026, −0.0021) (−0.0063, −0.0040) (−0.0042, −0.0019)
Diversity 0.0034∗∗∗ 0.0035∗∗∗ 0.0023∗∗∗

(0.0033, 0.0035) (0.0034, 0.0036) (0.0021, 0.0025)
Population 0.0001 0.0001 0.00004

(−0.0001, 0.0003) (−0.0001, 0.0002) (−0.0001, 0.0002)
Present×W 0.0032∗∗∗ 0.0033∗∗∗ 0.0020∗∗∗

(0.0032, 0.0033) (0.0033, 0.0034) (0.0018, 0.0021)
Degree centrality −0.0012∗∗∗ −0.0012∗∗∗ −0.0005∗∗∗

(−0.0014, −0.0010) (−0.0014, −0.0010) (−0.0007, −0.0004)

Time F.E. No No Yes
Technology F.E. No No Yes
MSA F.E. No No Yes

Observations 724752 724752 724752

Notes: The relatedness density groups and crisis are dummy variables with as reference category, respectively,
the 20% lowest relatedness density values and non-crisis time periods; *** p < 0.01, ** p < 0.5, * p < 0.10.

The positive marginal effect of Present ×W indicates that the presence of the

technology in nearby cities increases the likelihood that said technology enters the

technological portfolio of a region, which is to be expected and in line with (Boschma

et al., 2017).

The variable of interest here is crisis, for which the marginal effect is negative and

significant, which indicates that on average the probability of entry decreases by 0.32%

in crisis for the reference category, according to the full specification in column (3).

Once again this effect is sizeable as for this reference category the probability of entry

is only 0.63%, which suggests a reduction of on average more than 50%. This suggests

that even though diversification is rare it becomes even much rarer during crises.

Cities also diversify less when entering a crisis in the other relatedness density values
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than those of the reference category of the 20% lowest relatedness density values, as

shown in Appendix 4.5. This rejects the depression trigger Hypothesis 1a and confirms

the demand-pull Hypothesis 1b suggesting that when a crisis hits agents in cities see

their resources to develop new activities diminish and cities end up diversifying less

during crises.

For Hypothesis 2 on the changes in relatedness density of entering technologies during

crises, we turn to Figure 4.1 below, which gives the relative size of the marginal effect

of entering a crisis compared to the average probability of entry outside of a crisis per

relatedness density group.

As said the probability of entry of a technology decreases by 0.32/0.63 ≈ 51% when

entering a crisis for the lowest relatedness density values, whereas, for technologies

with relatedness density values in the highest quintile, the entry probability is only

about 11% smaller during crises, see Appendix 4.5 for more details. Hence Figure

4.1 confirms Hypothesis 2b: cities diversify more in related technologies during crises.

Apparently, in times of high uncertainty, diversification is more likely in technology

classes that are more closely related to the knowledge core of the region. This likely

reflects the uncertainty of economic agents in terms of future technological development

during the highly turbulent phases of major crises.
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Figure 4.1 – Percentage difference in probability of entry between
crisis and no crisis across quintile groups
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Interestingly it seems that when national economies undergo radical technological

change, such as the electrical revolution in Figure 4A12, local economies that enter a

crisis switch to more conservative, i.e. related, diversification. This may give insight

into why industrial revolutions shift prosperity from certain cities to other cities, as

technological proximity to new technologies is apparently particularly important when

a crisis hits. This is in line with the role of local capabilities during the computer

revolution and its shift of prosperity between cities documented by Glaeser and

Ponzetto (2007) and Berger and Frey (2016). The extent to which this observation

holds is an interesting avenue for future research.
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4.4.2 Robustness and extensions
The results presented should be interpreted as being descriptive, in the sense that

they show to what extent diversification patterns change during crises, but the results

do not give certainty that crises cause these changes. Nevertheless, to check and

expand on the results, we briefly discuss results derived from other specifications in

this section, while the full results can be consulted in Appendix 4.5.

We show that similar results are found when the threshold of crisis depth is increased

or lowered, in Appendix 4.5; when entries are not defined by the RCA passing the

threshold of one but when larger steps are necessary, in Appendix 4.5; when also

crisis periods outside of the great historical crises are taken into account, in Appendix

4.5; when looking at the county level instead of the MSA level, in Appendix 4.5;

when entering technologies are compared to the previous technological portfolio of a

region, instead of the idiosyncratically varying boom-bust-cycle based time periods, in

Appendix 4.5; and when crisis and non-crisis periods of cities within the great historical

crises are considered within equal time periods while controlling for observables and

certain unobservables through fixed effects, in Appendix 4.5. This latter approach

approximates a difference-in-difference approach.

We also consider some extensions to the main results. The main results show that

diverse cities have a strong advantage in diversifying into new technologies. In Appendix

4.5, we show that diverse cities, nevertheless, do not have a stronger tendency to focus

on unrelated diversification when entering a crisis compared to more specialised cities.

We also reproduce the main results in Figure 4.1 for each of the three great historical

crises, in Appendix 4.5. These results show that the Long Depression and the Great

Depression show a very similar pattern as Figure 4.1, although the Great Depression

is significantly deeper, but that the Oil Crisis is very distinct, in the sense that the

probability of entry is not much lower during a crisis and unrelated technologies even

have a larger probability of entry.

A first possible reason is that the Oil Crisis is not a financial crisis like the other two

but rather based on fossil energy-intensive inputs, which may mean there is sufficient

incentive and funding to promote diversification.

A second reason is related to the computer revolution and import competition based

on that technology, notably from Japan (Storper and Scott, 1992; Helpman and

Trajtenberg, 1998; Brynjolfsson and Hitt, 2000), which encourages adopting these

technologies regardless of how related they are to the technological portfolio.

We find further evidence for this second suggestion in Appendix 4.5. In that section,
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we relate the diversification in technologies during crises to those that are upcoming

or become outdated according to technological change that coincides with these crises,

as shown in Figure 4A12.

We distinguish between upcoming technologies and outdated technologies. For example,

technologies under electrical & electronics are considered upcoming during the electric

revolution that coincides with the Long Depression but become outdated when the

computer revolution comes about that coincides with the Oil Crisis. We also distinguish

between cities that are specialised in upcoming technologies or outdated technologies.

We then find that upcoming technologies have a larger probability of entry, during

or outside of crises, in most time periods. Whereas outdated technologies have less

or equal probability of entry compared to other technologies. There is not much

difference in the probability of entry for cities specialised in either upcoming or

outdated technologies. Also in this case the level of diversity is the most important

city-level variable that predicts diversification.

When reproducing the main results on the difference in diversification patterns when

entering a crisis, see Figure 4.1. The results show once again that there is not much

difference between cities specialised in outdated or upcoming technologies. Outdated

technologies do see a larger drop in the probability of entry, particularly when less

related. On the other hand, upcoming technologies show a much smaller decrease

in the probability of entry, which is even not statistically significantly different from

non-crisis periods when these are the most related or the most unrelated. Further

analysis shows that this is mostly due to strong diversification in upcoming technologies

during the Oil Crisis. This is in line with the earlier suggestion on the importance of

diversifying into computer & communication technologies, even when less related, in

this time period due to the computer revolution and rising import competition.

4.5 Conclusion
In this Chapter, we provide systematic evidence on the diversification patterns of

regions in times of major crisis. Diversification is considered to be a crucial part

of regional resilience, as developing new capabilities may allow regions to come out

of crises. For a long time, questions like the ones asked here relied on case studies,

which although insightful were difficult to generalise. Combining developments in

data availability and in methods to quantify relatedness, we were able to examine

the technological diversification of MSAs in the U.S. during the Long Depression, the

Great Depression, and the Oil Crisis.

We found that crises have a strong dampening effect on diversification, and that
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especially diversification in less related technologies is reduced compared to more

prosperous times, which is in line with the demand-pull hypothesis (Schmookler, 1966;

Freeman et al., 1982; Scherer, 1982).

Additionally, we also show that the Great Depression was particularly deep and that

the Oil Crisis has a very distinct pattern. Considerably less diversification was lost

during the Oil Crisis, in particular in upcoming technologies, like those in computers

& communication. This may be due to the computer revolution and strong import

competition based on that technology during that time period (Storper and Scott,

1992; Helpman and Trajtenberg, 1998; Brynjolfsson and Hitt, 2000).

Furthermore, we also show that more diverse cities manage to diversify more than

their more specialised counterparts during crises, which is in line with suggestions

that there are less vested interests in the policy and institutional context that block

new developments (Boschma, 2015; Neffke et al., 2018). This comes on top of the

advantage that diverse cities have because of increased technological proximity to more

technologies due to the larger technological portfolio.

These results give a detailed description of the diversification of regions during major

crises. However, the study remains largely descriptive, causal mechanisms can be

suggested from theory but are not tested directly. Future research could develop on the

features of diverse regions and upcoming technologies that allow them to be involved

more strongly in diversification than their relatedness density would suggest.

Another interesting avenue for future research is the observation that during great

crises there are radical technological changes, like industrial revolutions, at the national

level but at the local level cities diversify less and more into closely related technologies.

This suggests that as nations move into new technological paradigms it does so through

cities that have related activities whereas cities with unrelated activities are stuck,

thereby leading to great changes in the distribution of welfare, as, for example, after

the computer revolution, see (Moretti, 2012). Although the Oil Crisis shows that

unrelated diversification can also occur in crises, the extent to which this observation

holds and the conditions in which it does not are fruitful avenues for future research.

Furthermore, this Chapter describes how regions diversify during times of crisis but

not how this impacts the depth and duration of crises. Do regions that diversify more

strongly or more into less related activities experience less damage from crises, and

under which circumstances? Related diversification is suggested to be more sustainable

in the long run in a city because it can build on local capabilities (Balland et al., 2019).

Rigby et al. (2022) indeed showed that growth in GRP and employment have been

higher in European cities that diversified into related and complex technologies but
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this has not been extended to the context of regional resilience.

The framework also allows to retrace previous case studies in the data and compare

them with a large sample of other cities. This would for example allow us to examine if

the story of “Reinventing Boston” (Glaeser, 2005) is a story of unrelated diversification

against the odds or a more common case of related diversification, and whether major

crises like the ones we examined had a major impact on the diversification pattern

in the Boston region. The described diversity of economic activities in Boston and

the associated diversification through economic downturns is in line with the results

here that more diverse regions outperform more specialised regions in diversification

during crises. In this sense, the results also shed light on how large cities like New

York remain among the top largest cities of the country through economic cycles.

This Chapter is limited by its focus on technological diversification based on patent

data. Consequently, it picks up only that part of new knowledge that is embodied in

patents. To get a more comprehensive picture of the resilience of cities, it is important

to account for other forms of knowledge that may provide opportunities for cities to

diversify. This would include other forms of new activities like new products, industries

or new jobs in which cities can diversify, which are not captured by patent data, like

in most tertiary activities (Xiao et al., 2018).

Finally, a possible improvement for future research would be to include the role of

institutions in regional resilience research (Boschma, 2015). Recent research has shown

that regional institutions like bridging social capital matter for the ability of regions to

diversify (Cortinovis et al., 2017). This might be especially relevant in times of crisis

when high demands are put on institutional agents to renew their economies, adapt

their institutions, and enable the development of new growth paths (Freeman and

Perez, 1988; Amable, 2000; Hall and Soskice, 2001). This requires more understanding

of the effect of regional institutions on regional resilience, and whether institutional

agents like policymakers can make the difference during major crises (Bristow and

Healy, 2014; Dawley, 2014; Evenhuis, 2017; Sotarauta et al., 2017).

For policymakers, there are several implications. If crises hamper (unrelated) diversifi-

cation then these activities may need stimulation, in particular, to reabsorb resources

set free because of the crisis. To alleviate crises and overcome lock-in a diverse industry

base seems strongly relevant. However, improving diversity and therefore regional

resilience through diversification is currently not part of diversification policies, such

as the Horizon 2020 and Smart Specialisation strategy of the European Union. The

impact of crises on diversification and therefore possible avenues for recovery should

not be neglected.
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4A Appendix: additional results and robustness

checks

Background information on crises
This section presents more information on (changes in) patent dynamics during the

great historical crises. Figure 4A1 depicts the number of MSAs entering a period

of growth in green, respectively a period of crisis in red per year, during the time

periods associated with each of the great historical crises. The impact of the crises on

patenting activity is clearly visible in the number of MSAs that start a period of crisis

in red compared to those that start a period of growth in green. This suggests that

patenting is a suitable proxy for regional economic activity.

One can also note a small time lag between the actual start of the great historical

crises and MSAs entering a period of downturn in patenting for the first two major

crises whereas the effect of the Oil crisis is immediately noticeable.9 Because of the

time lag in the reaction of patenting activity, we retain the regional crises that start in

years when more MSAs enter a crisis period tha MSAs enter a period of growth. For

the Long depression, this is 1876 to 1878, for the Great depression 1932 to 1938, and

for the Oil crisis 1972 to 1976. All other crisis periods are dropped from the sample.

Regional periods of growth are kept regardless of when they occur.

Table 4A1 shows the strong impact of the great historical crises on the patent production

at the regional level. Affected MSAs, in the second column, indicates the number of

MSAs that enter a crisis that meets the aforementioned requirements and respective

time period. Unaffected MSAs are MSAs that were in a growth phase before the start

of the crisis and remain so over the course of the crisis. #MSAs gives the total number

of MSAs that meets the requirement of producing on average ten patents per year

in that time period. This is not equal to the sum of unaffected MSAs and affected

MSAs as MSAs could already be in crisis upon entering the respective time periods or

could enter a crisis in which the requirement of losing more than 35% of patenting

activity is not met. The last two columns respectively give the average duration of the

crises, and the average percentage of patent activity lost at the trough compared to

the peak for the affected MSAs. In these respects, the Great Depression stands out as

the heaviest crisis.

9Note that the years indicate the end year of the previous cycle period and the start year of the
next cycle period. E.g. a period of crisis starting in 1972 indicates that the peak was in 1972 and the
first year of downturn is 1973.
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Background information empirics
In this section, we further provide information on two underestimated risks in the

empirics of the widely used entry models. First, the dependent variable entry is

strongly right-skewed, i.e. there are very few incidences of successful entries (values of

1) compared to technologies that do not enter (values of 0). Second, the independent

variable relatedness density is strongly right skewed, i.e. values range from 0 to 1 but

are more strongly concentrated to the left of the mean, as can be seen in Figure 4A2.

The first has already been noticed by Boschma et al. (2015), referring to work by

King and Zeng (2001). They argue that the coefficient estimates of nonlinear models

might not be consistent when there are too many zeros in the dependent variable.

They, therefore, use an OLS to estimate the entry model. The use of such a Linear

Probability Model (LPM) has certain risks that can be considered to be outweighed by

the benefits of easier interpretation (see Hellevik, 2009). However, when the probability

of “success” of the dependent variable is on the extreme ends of the distribution, as

is the case here, the slope of a logit or probit is not well approximated by the slope

of a linear regression and the flaw of the LPM in predicting probabilities outside the

possible range of 0 to 1 generally becomes apparent. Von Hippel (2015) suggests that

probabilities of success should be in the range of 20% to 80% for logit and linear

models to be used interchangeably.

Therefore, a logistic regression seems more appropriate.10 As said, this is not without

risk as King and Zeng (2001) warn for inconsistent estimates when probabilities are

extremely low. King and Zeng (2001) also provide guidelines when this risk is more

likely to exist. They show in a simulation that the inconsistency tends to zero as the

sample size tends to infinity and/or the percentage of ones tend to 50%. In our data,

there are 724, 752 observations and an average probability of entry of 3.1%. Following

guidelines and simulation results of King and Zeng (2001), the risk can be assumed to

be negligible. We, therefore, argue that a logit model is the appropriate method to

estimate the entry model.

Then there is the second issue related to the main variable of interest: relatedness

density. As it is strongly right-skewed there is a sizeable risk that outliers exert a

strong influence on the estimated coefficient on relatedness density.

10Note that Boschma et al. (2015) do run a logit model as a robustness check, which confirms
their results.
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Figure 4A2 – Histogram of relatedness density

Relatedness density

F
re

qu
en

cy
 (

x1
00

,0
00

)

0.0 0.2 0.4 0.6 0.8 1.0

0

1

2

3

4

Therefore, we substitute the continuous relatedness density variable for an ordered

categorical variable by creating dummy variables for each quantile of relatedness

density values. I.e. we rank the relatedness density values and create five dummy

variables so that each designates a fifth of these values from the 20% lowest values to

the 20% highest values. The categorisation of relatedness density also has the added

benefit that it controls for the possibility of this variable having a non-linear relation

in log odds with the dependent entry variable.11

11Note that we did explore several monotonic transformations to reduce the risk of outliers but
found these to be unfruitful. The most common option, a log transformation, cannot be applied
because there are zeros among the values. Other common transformation methods, which are able
to deal with zeros, e.g. box-cox, taking the square, or an inverse hyperbolic sine, also fail to give a
distribution in which a strong influence of outliers can be ruled out. This is likely due to that an
impressive 12.9% of observations involve zero relatedness density.
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Table 4A2 – Regression results (Hypothesis 1 and 2)

(Dependent variable: entry of technology class i in the technological portfolio of city c at time t)

Naive + crisis× + fixed

specification relatedness density effects

(1) (2) (3)

Relatedness density (20%-40%) 0.340∗∗∗ 0.335∗∗∗ 0.357∗∗∗

(0.042) (0.044) (0.045)
Relatedness density (40%-60%) 0.814∗∗∗ 0.811∗∗∗ 0.779∗∗∗

(0.039) (0.040) (0.042)
Relatedness density (60%-80%) 1.328∗∗∗ 1.307∗∗∗ 1.229∗∗∗

(0.037) (0.038) (0.041)
Relatedness density (80%-100%) 1.866∗∗∗ 1.811∗∗∗ 1.758∗∗∗

(0.036) (0.037) (0.041)
Crisis −0.334∗∗∗ −0.988∗∗∗ −0.724∗∗∗

(0.022) (0.178) (0.182)
Diversity 0.412∗∗∗ 0.414∗∗∗ 0.366∗∗∗

(0.006) (0.006) (0.013)
Population 0.012 0.009 0.007

(0.010) (0.010) (0.014)
Present×W 0.396∗∗∗ 0.396∗∗∗ 0.312∗∗∗

(0.005) (0.005) (0.009)
Degree centrality −0.145∗∗∗ −0.142∗∗∗ −0.081∗∗∗

(0.011) (0.011) (0.012)
Relatedness density (20%-40%) × 0.321 0.236

crisis (0.205) (0.206)
Relatedness density (40%-60%) × 0.332∗ 0.249

crisis (0.191) (0.194)
Relatedness density (60%-80%) × 0.548∗∗∗ 0.426∗∗

crisis (0.183) (0.187)
Relatedness density (80%-100%) × 0.821∗∗∗ 0.600∗∗∗

crisis (0.180) (0.184)
Constant −4.790∗∗∗ −4.757∗∗∗ −5.057∗∗∗

(0.033) (0.034) (0.444)

Time Fixed Effects No No Yes
Technology Fixed Effects No No Yes
MSA Fixed Effects No No Yes

Observations 724752 724752 724752
Log Likelihood -87613 -87568.1 -81544.2
Akaike Inf. Crit. 175246 175164.2 164552

Notes: The relatedness density groups and crisis are dummy variables with as reference
category, respectively, the 20% lowest relatedness density values and non-crisis time periods;
*** p < 0.01, ** p < 0.5, * p < 0.10.

Additional results

Supplementary material to the main results

The marginal effects estimated in the main results of Table 4.2 are based on the

regression results presented below in Table 4A2.
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As the marginal effects in the main results of Table 4.2 only holds for the reference

category of the 20% lowest relatedness density values and some of the interaction terms

between crisis and relatedness density values in Table 4A2 are positive and significant,

we show the marginal effects for other relatedness density values in comparison to the

average probability of entry outside of crises in Figure 4A3.

Here the sample average probability of entry per relatedness density group outside of

crises is given in blue. For the first group of relatedness density values, the probability

of entry is, as said in the main text, 0.63%.12 The red line gives the marginal effect

of crisis and its 95% confidence intervals vis-à-vis the blue baseline. As the marginal

effect of crisis is minus 0.32% for the first relatedness density group the probability of

entry is about 0.31% during crises.

Clearly, the red line is significantly lower than the blue line across all relatedness density

groups, which indicates that the marginal effect of crisis is statistically significant for

all relatedness density values. This confirms that the probability of a MSA entering

a new technological specialisation is lower during a crisis regardless of relatedness

density.

12This average probability is equal to the intercept in column (3) of Table 4A2 converted to
probabilities as population and Present×W have been scaled to have a mean of zero and we use
sum-to-zero contrasts for the fixed effects. Note that there is obviously also a margin of error to this
estimate but this is not shown in the figure as we are interested in the marginal effect of crisis with
respect to the average probability of entry outside of crises.
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Figure 4A3 – Probability of entry according to crisis status
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Figure 4A3 also gives insight on the foundation of Figure 4.1 in the main text, which

is based on the difference expressed in percentages between the blue line and the red

line and its confidence intervals.

Crisis depth variations

A first interesting check is to see how the depth requirement of the crisis impacts the

results. In the main analysis, regions had to lose at least 35% of patenting activity

during one of the major crises to be taken into account. In Figure 4A4a and Figure

4A4b, we reproduce Figure 4.1 putting the depth requirement at, respectively, at least

25% and at least 45%.

In the former case, the loss during crises in entry probability is reduced across all

relatedness density groups, which suggests that diversification patterns during smaller

crises are similar to that outside of crises, which is to be expected. Although we have
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to note that these results are not statistically significantly different from those with a

35% depth requirement. The crises with a 45% depth requirement lead to a similar

reduction in entry probability compared to the main results.

Figure 4A4 – Difference in probability of entry during crises (≥25%
and ≥45% crises)
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(a) ≥25% crises
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(b) ≥45% crises

Entry with variations in RCA threshold

Another interesting check is to see if the entry variable is influenced notoriously

differently during crisis compared to non-crises due to the choice in the threshold of

RCA, which we use to define entry. In the main results, an entry is seen as an increase

in the RCA from below 1 to above 1. This means that a change from 0.99 to 1.01 is

seen as an entry even though it is a negligible change in the technological portfolio of

a region. Although this issue plays a role both in crisis and in non-crisis periods and

therefore may not directly impact the difference in diversification patterns between

these types of time periods, we explore how the results would be when defining entry

only when larger changes in RCA are observed, respectively from 0.9 to 1.1 and from

0.75 to 1.25. The results are shown in Figure 4A5.

These results are highly similar to the main results depicted in Figure 4.1, reproduced

by the red line. We do notice that there are more small movements in RCA during

crisis periods for the most related technologies because when these are left out the

drop in entry probability becomes larger when entering a crisis, as indicated by the

difference between the red and the green line for the 80-100% most related technologies.
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Figure 4A5 – Difference in probability of entry during crises (Entry
RCA thresholds)
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Diversification during local crises

Another data choice in this Chapter was to only retain downturns in patenting

activity as periods of crisis when they occurred during one of the three great historical

crises to ascertain that these local downturns were not due to changes in patent

activity unrelated to actual economic downturns. The downside of this method is that

differences between these periods and those where most of the non-crisis periods are

not fully captured by our time fixed effects and may therefore influence our results.

Therefore, we reproduce the main results in Figure 4A6, in which we take all downturns

in patenting activity of at least 35% into account.

The results confirm those in the main analysis. However, more interesting is that the

confidence intervals are much smaller. This indicates that these crises behave in a very

similar way as those in larger economic crises and that therefore statistical efficiency



208 CHAPTER 4. DIVERSIFICATION DURING CRISES

increases by adding these other crisis periods.

Figure 4A6 – Difference in probability of entry during crises (all
crises)
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Diversification during crises at the county level

Another data choice in this Chapter was to look at the MSA level. However, MSAs

are based on counties that are socially and economically integrated according to recent

Census Bureau definitions. These levels of integration likely much less existed in

history when infrastructure was less well developed and agglomerations not as large.

Agents in an area were, therefore, more likely to interact and redistribute resources

during crises within a smaller area. The finest spatial level at which data on patents

and control variables is available is the county level. We reproduce the main results

using county-level data in Figure 4A7.

Although the results are not statistically significantly different from the main results

and show a similar pattern the underlying data is much more problematic than that
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for the main results, as the much larger confidence intervals already suggest. It is

much more difficult at the county level to meet thresholds for the number of patents

in total and per class. As a result, the number of observations is much lower here than

in the main results 202, 112 versus 724, 752. Furthermore, not every county and time

period, and not every entering technology, knows both crises and non-crises periods,

which means that the marginal effect of crisis is based on comparing different instead

of the same counties, time periods, and classes, which is not the case in the main

results.13 Although it is reassuring about the main results to see that there is a similar

pattern we advise not to highly value these results.

Relatedness density values based on uniform time periods

In the main results, we define time periods based on the boom-bust cycle algorithm of

Harding and Pagan (2002). As a result, some time periods last for the minimum of

two years, while the longest time period is 30 years with the median being 5 years.

As we calculate relatedness density values based on the previous time period this also

means that the technologies in the portfolios of cities and the relatedness between

technologies is calculated at different distances. To make sure that these definitions

do not influence results we calculate relatedness density values using the 0-5 years

before the start of a time period for all time periods and reproduce the main results in

Figure 4A8.

This confirms the main results but also shows that using this definition even leads to

a stronger reduction of diversification in the least related technologies during crises

and smaller confidence intervals compared to the main results. We also experimented

with calculating relatedness density values in even earlier time periods but found that

these results were not reliable.14

Quasi differences-in-differences approach

In the previous section, we used the same time period to calculate relatedness density

values for all MSA-time periods instead of the time periods based on the boom-bust

13As a result, one cannot use fixed effects in this regression. We tried to alleviate this effect by
discerning four relatedness density groups instead of five as in the main results. This increases the
chance that counties, time periods and entering technologies are present both in crisis and non-crisis
for each relatedness density group.

14Over time technological portfolios of regions change. This means that entering technologies
are related to technologies present in the region 5 years ago but not so much to those 20 or 30
years ago. The longer ago relatedness density values are calculated the lower relatedness density
values to entering technologies are and the less predictive this variable is on entry, i.e. the lines in
Figure 4A3 become flatter and flatter. We found that this effect is purely driven by the technological
portfolio of regions in earlier time periods because large regions, which have fewer large changes in
their technological portfolio over time, experience this effect to a much lesser extent. Also, when
calculating relatedness based on patents from longer ago but keeping technological portfolios as in
the main analysis leads to the same results.
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Figure 4A7 – Difference in probability of entry during crises (county
level)
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cycle algorithm of Harding and Pagan (2002) in the main results. In this section, we

take the approach one step further by setting all time periods equal and only using

observations from the great historical crises. This means that not only the entering

technologies are compared to the technological portfolio of a region at the same number

of years earlier, like in the previous section, but also the time length in which these

technologies can enter. Furthermore, by dropping observations outside of the great

historical crises. Diversification in times of growth and crisis are compared at the exact

same time period. Through this approach, we compare the diversification patterns of

regions that enter a crisis to those that do not while controlling for observables, i.e.

diversity, population, degree centrality, and relatedness density, plus for unobservable

at the MSA, technology, or time level. Through this approach, we come closer to a

difference-in-difference approach, as first experimented by Card and Krueger (1994).
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Figure 4A8 – Difference in probability of entry during crises (Adj.
relatedness density)
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Although we have much less data to observe the extent to which non-crisis and

crisis counties are similar except for the mentioned observable characteristics and

unobservable characteristics that are fixed at the regional, technological, or time level.

For the Long Depression, we look at the crisis status and calculate entering tech-

nologies between 1876 and 1879 comparison to technological portfolios of these areas

and relatedness density between 1873 to 1876. To be considered a successful entry,

technologies still have to be present in the area between 1879 and 1882. For the Great

Depression, these years are, respectively, 1932 to 1938, 1926 to 1938 and 1938 to 1944.

For the Oil Crisis, these years are, respectively, 1972 to 1976, 1968 to 1972, and 1976
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to 1980. The time span is chosen to mirror the length of each of the crises.15

Figure 4A9 shows that when one of the great historical crises hit regions that enter

a crisis diversify less, in particular in unrelated technologies, than regions that are

unaffected in the same time periods. This pattern is not statistically significantly

different and similar to the main results. Nevertheless, the confidence intervals are

much larger, in particular for the unrelated technologies. This is likely because there

are notably fewer observations, in particular of non-crisis periods, as only few regions

are not affected by the great historical crises, and of unrelated technologies, as these

know relatively less entry than more related technologies.

That this approach confirms the main results suggests more strongly that there may

be a causal link between entering a crisis and diversification patterns. Although it

remains impossible to fully isolate the effect of crises on diversification patterns in this

historical setting, like a natural experiment would.

15Note that in differences-in-differences approaches it is also custom to take the period before the
event, in this case, crises into account. In this way, crisis counties are not only compared to non-crisis
counties in the same time period but also to themselves before the crisis. As these latter observations
are very strongly present in the main results, where most non-crisis periods occur outside the great
historical crises, we decided not to add these here to ascertain that the main results also hold for the
comparison within the same time period.
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Figure 4A9 – Difference in probability of entry during crises (quasi
diff-in-diff)
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Diversity and diversification

In the main results of Table 4.2, we conclude that diverse regions have an advantage

compared to their specialised counterparts to develop new activities outside and during

crises. This brings up the question on how diverse regions change the focus of their

diversification when entering a crisis compared to more specialised regions, as done

in Figure 4.1. In other words: do diverse cities switch more strongly to less related

technologies during crises than specialised cities? To this aim, we reproduce figure

4.1 but by estimating the effect for different groups according to RDI. The resulting

Figure 4A10 is shown below.
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Figure 4A10 – Percentage difference in probability of entry between
crisis and no crisis across RDI groups
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When entering a crisis, the 67%-100% percentile of most diverse regions, lose over

67.9% of the diversification in the least related technologies. While the most specialised

regions, in the 0%-33% least diverse percentile, only lose 41.7%, and the intermediate

group only lose about 6% during crises than outside of crises.

A possible explanation is that diverse regions are more likely to have unrelated variety

between industrial sectors, see Frenken et al. (2007), meaning that some sectors

are not affected by regional crises and that developing technologies related to these

unaffected sectors is a secure and reasonable use of resources. On the other hand, more

specialised regions when hit by a crisis are less likely to have unaffected industries

to continue to develop and as such there’s more incentive to focus on locally less

common, and therefore, less related technologies. The fact that averagely diverse cities
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(33%-67% diversity values) focus more strongly on unrelated technologies than their

most specialised counterparts (0-33% diversity values) may be due to the latter being

in a state of technological lock-in, see Grabher (1993) and Boschma (2015), in which

the knowledge of actors and views in an area are focused on such a way on current

core activities that it inhibits the development of new sectors and technologies.

However, the confidence intervals are so large that these differences are not statistically

significant.16 All in all, one cannot claim that there are significant differences in

diversification patterns in relation to the diversity of a region.

Diversification per crisis

In the main results, all three great historical crises are lumped together in a single

analysis. In Figure 4A11 we reproduce the main results per crisis for individual

scrutiny.

The Long Depression show similar results as the main results, given by the baseline

curve. In comparison, the Great Depression knows a significantly larger drop in the

probability of entry of unrelated technologies. Most interesting is that the Oil Crisis

shows a very distinct pattern where diversification during crises is not statistically

significantly different from periods of growth. Diversification in unrelated technologies

even seems to increase during this crisis although this is not statistically significant.

There may be several possible explanations for this difference although future research

is necessary to find the exact reasons. First of all, the nature of the oil crisis, rising

costs of energy inputs, was very distinct from the other two, which were financial crises.

This may suggest that during the oil crisis there were more means to back investments

and incentives to divert to new technologies that were less reliant on oil. Also, the

oil crisis co-occurs with the rise of automation, following the computer revolution,

and import competition, most notably from Japan, based on customisation using this

technology, which motivated firms in regions to switch to these technologies (Storper

and Scott, 1992; Helpman and Trajtenberg, 1998; Brynjolfsson and Hitt, 2000).

16Note that there are no formal testing methods available as each marginal effect has a different
baseline (depicted in blue in Figure 4A3). Therefore, we have to rely solely on the confidence intervals.
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Figure 4A11 – Difference in probability of entry during crises per
crisis
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Crises, diversification and technological change

The great historical crises all occur during periods of great technological change.

Notably, the Long Depression and the electrical revolution, and the Oil Crisis and

the computer revolution. The radical nature of technological change likely implies

that some technologies and cities show different diversification patterns than others as

technologies are coming up while others become outdated. This section explores these

differences.

Our patent data captures the coincidence of technological change and the great

historical crises, as is illustrated in Figure 4A12, where the share of patents per NBER

technological category is given over time with the red vertical lines indicating the

start of each of the respective crises. Here one can clearly see that at the time of
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the Long Depression, which coincides with the electrical revolution, the upcoming

technologies belong to the categories mechanical and electrical & electronic while those

in others, textiles among others, become outdated. During the Great Depression,

the chemical and electrical & electronic technologies are upcoming while those in

others and mechanical are outdated. During the Oil Crisis, which coincides with the

computer revolution, the previously upcoming technologies in chemical and electrical

& electronic become outdated while computers & communication and drugs & medical

come up.

Figure 4A12 – Share of patents per NBER category over time
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Upcoming technologies may give rise to different diversification patterns. After all,

when in crisis it may be worth the risk, i.e. having less related capabilities, to invest

in promising technologies. On the other hand, outdated technologies may be a less

interesting option no matter how related.
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Furthermore, cities that are specialised in outdated technologies may have a different

diversification pattern than other cities. There is a strong risk of technological lock-

in (Boschma and Lambooy, 1999; Hassink, 2005; Pike et al., 2010; Boschma, 2015).

However, it is unknown if this shows in diversification patterns. In the main text, we

showed that diverse regions have an advantage in diversifying compared to specialised

regions, within and outside crises, here the question is to what extent this holds for

cities specialised in outdated technologies.

To this end, we classify technologies per time period into upcoming, outdated or neither

based on the observations from Figure 4A12, discussed above. We classify MSAs as

upcoming, outdated or neither if they have a LQ in one of these categories.17 Because

of this classification technology fixed effects and MSA fixed effects are dropped from

the analysis.

Table 4A3 shows the marginal effects of the baseline regression, as shown in equation

4.5, with the addition of dummy variables indicating if technologies, respectively,

MSAs, belong to, respectively are specialised in, upcoming or outdated technologies.

As well, as an interaction of these variables with the crisis dummy. Per column, we use

data around each crisis and period of technological change: 1870 to 1919 for the Long

Depression; 1920 to 1969 for the Great Depression; 1970 to 2000 for the Oil Crisis.

The final column groups together all three of these datasets.

The relatedness density variables behave in a similar fashion as before, as expected.

Although note that relatedness density seems to matter more during the time period

since the Great Depression. The crisis variable is (close to) insignificant in the case

of the Great Depression and the Oil Crisis for the reference category, which in this

case is not only the non-crisis periods of the 20% lowest relatedness density values

but also technologies and cities that are neither upcoming nor outdated. Earlier, we

saw in Section 4.5 that the entry of unrelated technologies in the Oil Crisis are not

significantly impacted by the crisis. Whereas for the Great Depression this only seems

to hold for technologies and cities that are neither classified as upcoming nor outdated,

i.e. the reference category.

17When a MSA has a LQ in two of these categories we choose the category with the largest LQ. It
is technically impossible to have a LQ in all three.
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Table 4A3 – Regression results - technological change - marginal
effects

(Dependent variable: entry of technology class i in the technological portfolio of city c at time t)

Long Great Oil All

Depression Depression crisis crises

(1) (2) (3) (4)

Relatedness density 0.0078∗∗∗ 0.0062∗∗∗ 0.0038∗∗∗ 0.0042∗∗∗

(20%-40%) (0.0054, 0.0106) (0.0042, 0.0085) (0.0020, 0.0062) (0.0033, 0.0052)
Relatedness density 0.0155∗∗∗ 0.0180∗∗∗ 0.0104∗∗∗ 0.0110∗∗∗

(40%-60%) (0.0122, 0.0193) (0.0149, 0.0214) (0.0072, 0.0143) (0.0096, 0.0125)
Relatedness density 0.0272∗∗∗ 0.0403∗∗∗ 0.0226∗∗∗ 0.0237∗∗∗

(60%-80%) (0.0224, 0.0326) (0.0353, 0.0459) (0.0170, 0.0296) (0.0214, 0.0261)
Relatedness density 0.0454∗∗∗ 0.0827∗∗∗ 0.0464∗∗∗ 0.0473∗∗∗

(80%-100%) (0.0383, 0.0535) (0.0739, 0.0922) (0.0361, 0.0592) (0.0433, 0.0515)
Crisis −0.0034∗∗∗ −0.0016 −0.0008∗ −0.0015∗∗∗

(−0.0049, −0.0009) (−0.0039, 0.0015) (−0.0018, 0.0005) (−0.0023, −0.0006)
Upcoming tech. 0.0004∗∗ 0.00001 0.0016∗∗∗ 0.0003∗∗∗

(−0.0001, 0.0010) (−0.0006, 0.0007) (0.0010, 0.0024) (0.0001, 0.0006)
Outdated tech. 0.0005∗∗ −0.0013∗∗∗ −0.0004∗∗∗ −0.0004∗∗∗

(−0.0001, 0.0011) (−0.0018, −0.0008) (−0.0007, −0.0001) (−0.0007, −0.0002)
Upcoming MSAs −0.0011∗∗∗ 0.0011∗∗∗ 0.0003∗ −0.000002

(−0.0015, −0.0006) (0.0005, 0.0017) (−0.0001, 0.0007) (−0.0002, 0.0002)
Outdated MSAs −0.0002 0.0020∗∗∗ −0.0001 0.0006∗∗∗

(−0.0007, 0.0003) (0.0010, 0.0031) (−0.0006, 0.0005) (0.0003, 0.0009)
Diversity 0.0035∗∗∗ 0.0045∗∗∗ 0.0023∗∗∗ 0.0024∗∗∗

(0.0033, 0.0037) (0.0042, 0.0048) (0.0021, 0.0025) (0.0023, 0.0025)
Population −0.0028∗∗∗ 0.0006∗∗∗ 0.00004 0.0001

(−0.0035, −0.0022) (0.0002, 0.0009) (−0.0001, 0.0002) (−0.0001, 0.0002)
Present×W 0.0036∗∗∗ 0.0054∗∗∗ 0.0019∗∗∗ 0.0028∗∗∗

(0.0035, 0.0038) (0.0052, 0.0056) (0.0018, 0.0019) (0.0028, 0.0029)
Degree centrality 0.0010∗∗∗ −0.0022∗∗∗ −0.0008∗∗∗ −0.0009∗∗∗

(0.0003, 0.0017) (−0.0025, −0.0018) (−0.0010, −0.0006) (−0.0010, −0.0007)

Time F.E. Yes Yes Yes Yes
Technology F.E. No No No No
MSA F.E. No No No No

Observations 200348 338464 172912 711724

Notes: The relatedness density groups, crisis, and technology related groups are dummy variables with as reference
category, respectively, the 20% lowest relatedness density values, non-crisis time periods, and technologies/MSAs
that are neither upcoming or outdated; *** p < 0.01, ** p < 0.5, * p < 0.10.

Interestingly, in the time period around the Oil Crisis upcoming technologies have

a larger chance of entry, 0.16% to be exact, see column (3) in Table 4A3. This may

seem small but the probability of entry for the reference category in this time period

is only 0.14%, which suggest a doubling of the probability of entry.18 This may be

because of the trade competition in that time period, notably from Japan, that already

adopted computerised machinery (Storper and Scott, 1992), which increased pressure

to diversify to upcoming technologies in computers & communications.

18Note that this relationship is not mechanical because of the definition of upcoming technologies
as entry is based on the fact that a region obtains a relative specialisation in this technology and not
an absolute specialisation.
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Outdated technologies, on the other hand, have a smaller probability of entry, which

is to be expected. The only exception being the Long Depression, which may be due

to less competition and less circulation of new ideas in relation with the more limited

connectivity between cities in that time period. In this line, Perlman et al. (2015)

shows that patenting activity in the 19th century is strongly related to railroad access,

which was not fully developed at the time of the Long Depression.

Cities specialised in upcoming technologies show mixed results in terms of diversification.

Whereas those in outdated technologies show either virtually non-existent or positive

marginal effects. All in all, the coefficient on diversity remains strongly positive and

much larger across all specifications, which suggests that advantages at the city level

are derived from this aspect rather than a specialisation in a certain category of

technologies.

Table 4A3 gives differences in the probability of entry but not how diversification

changes in a relative sense when entering a crisis. To show this latter aspect, we

reproduce Figure 4.1 per type of technology and MSA in Figure 4A13.

The change in diversification patterns when entering a crisis is similar to the baseline

results in red for most of these types. MSAs that are specialised in outdated tech-

nologies show virtually the same pattern as MSA that are specialised in upcoming

technologies and the baseline results. Outdated technologies show a stronger relative

decrease in entry probability when entering a crisis, in particular, when unrelated

to the technological portfolio of a region. This suggests that diversifying into these

technologies is even less attractive when entering a crisis, plausibly to avoid technolog-

ical lock-in. However, confidence intervals are too large to state that this pattern is

significantly different from the baseline results.

Most interesting is the line of upcoming technologies. The effect of a crisis is not

statistically different from a period of non-crisis for both the most related as well as

the most unrelated technologies. This suggest that these technologies remain (close to)

equally as attractive to diversify into even when in crisis. This is likely because these

technologies contain the General Purpose Technologies of that industrial paradigm

(Helpman and Trajtenberg, 1998).

When we reproduced Figure 4A13 per crisis, we found that it was during the oil crisis

that unrelated upcoming technologies, in particular, showed less decrease in entering

probability. This further lends credibility to the statement in the previous section that

computer based import competition motivated regions to diversify in the upcoming

computer & communication technologies of that time period, even when these were

not so related to the technologies that were previously patented in the area.
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Figure 4A13 – Difference in probability of entry during crises (tech-
nological change)
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Chapter 5

Conclusion

5.1 Overview
Economies of agglomeration are at the core of our understanding of the spatial

distribution of human activities. In recent times, the topic is in the limelight of

attention because of the so-called great divergence between a number of growing regions,

which are confronted by rising housing prices and social exclusion, and a relatively

large number of lagging regions, which are confronted by reductions in employment

and liveability. Despite these societal challenges, economies of agglomeration are still

considered a black box (Duranton and Puga, 2004a; Combes and Gobillon, 2015; Davis

and Dingel, 2019). In particular: the mechanisms of agglomeration, how their roles

changed over time, and the channels of economic change impacting these roles (Ellison

et al., 2010; Moretti, 2012; Combes and Gobillon, 2015; Storper, 2018), which is the

focus of this thesis.

Economies of agglomeration have been extensively described in one way or another since

ancient history, see for an overview Finley (1973) and Silvermintz (2010). Notable are

the categorisation of Marshall (1890) into labour market pooling, input-output linkages,

and knowledge spillovers, which is the focus in the first chapter, and the division of

labour, often attributed to Smith (1776), which is the focus in the second chapter.

Also, there have been notions on the dynamic aspect of economies of agglomeration,

from early on. Notably, how regions can develop new specialisations based on their

industrial past, see Vernon (1960); Chinitz (1961), and Jacobs (1969), which is the

focus of the third chapter.

Less work exists on measuring these agglomeration forces. A notable step forward in

measuring the relative importance of each of Marshall’s agglomeration determinants

is the work by Ellison et al. (2010). The division of labour can be analysed straight-

223
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forwardly in certain well-documented cases, like patents and research articles, see for

example Jones (2009). Analysing the development of new regional specialisations has

received an impressive boost with the development of the concept of relatedness, see

Hidalgo et al. (2007). By building on these foundations it is relatively straightforward

to extend the measurement over larger time periods when limitations in data avail-

ability have been overcome. Thereby addressing the gaps in our understanding of the

changes in these roles.

The greatest challenge of this thesis lies in understanding the reasons for these changes

as theory and methods on the subject are less well developed. To address this

challenge, this thesis combines insights on the heterogeneity of the roles of economies

of agglomeration between activities with those between time periods: notably during

technological revolutions. Specific attention is paid to technological change, trade

competition, transportation costs, economic complexity, regional resilience, and the

diversity of sectors in the local environment. The four research questions chosen within

this broad domain are as follows:

RQ1: To what extent has the importance of Marshall’s determinants of

agglomeration changed over time?

RQ2: Why has the importance of Marshall’s determinants of agglomeration

changed over time?

RQ3: To what extent do complex activities concentrate in large cities?

RQ4: To what extent do diverse cities differ from more specialised cities in

terms of diversification behaviour during crises?

5.1.1 Contributions
In this thesis, contributions are made along five dimensions: theory, data, methodology,

code, and empirics. In terms of theory, connections are made between various related

concepts in urban economics/economic geography and evolutionary economic geography

as well as by connecting these to related ideas in labour economics, innovation studies,

and complexity theory.

Data building is a quintessential part of this thesis as evaluating changes in the

economies of agglomeration and its impacting factors requires data over long time

periods, which was previously unavailable. To overcome barriers in data limitation use

is made of novel techniques, such as OCR, and the rising online availability of scanned

documents and datasets from the pre-internet era. Most notable is the development

of a unique balanced panel dataset with consistent geographical units and industries
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on employment numbers, occupations, input-output linkages, patented knowledge,

trade competition, transportation costs in Chapter 2 and an update to the HISTPAT

database (Petralia et al., 2016) to make it geographically consistent for the analysis of

historical patent data in Chapters 2 and 3.

In terms of methodology, improvements are made in comparison to previous approaches

to mitigate omitted variable bias, by adding more fixed effects and the approach of

Oster (2019) in Chapter 2; and reverse causality by developing new instruments in

Chapter 2. Also, new questions like the interaction of economic factors and the

determinants of agglomeration require new approaches, such as the two-step approach

introduced in Chapter 2. In Chapter 4, improvements are made in taking into account

the functional form of the regression. Furthermore, an improved formula to calculate

relatedness is introduced in this thesis.

In terms of code, the new relatedness measure has been released as a function in the

EconGeo package for R and also a R package called fastlogitME was developed, which

allows for a less computationally intensive method to calculate the marginal effects of

logit models in R.

Empirically, the results show that there is considerable dynamism in the economies of

agglomeration; whether in the changing relevance of mechanisms of agglomeration over

the past 44 years in Chapter 2; the growing importance of agglomeration since 1850

in Chapter 3; or the temporal effect of agglomeration across the cycle of boom and

bust in Chapter 4. These dynamics are strongly associated with channels of economic

change, more specifically: routine biased technological change and trade competition

in Chapter 2; the rising complexity of knowledge-intesive activities in Chapter 3; and

the technological change of the great historical crises in Chapter 4. In the following,

the empirical results of each chapter are shortly summarised.

Agglomeration determinants change over time: knowledge spillovers become

more important

The first part of Chapter 2 addresses the research gap mentioned by Ellison et al. (2010,

p.1210), Moretti (2012, p.124) and Storper (2018, p.255) on the changes over time in

the relevance of agglomeration forces as categorised by Marshall (1890): labour market

pooling, input-output linkages, and knowledge spillovers. By gathering new data from

historical sources and using technological relatedness instead of patent citations to

proxy for knowledge spillovers improvements are made with respect to earlier studies

using similar approaches, such as Ellison et al. (2010); Faggio et al. (2017); Diodato

et al. (2018) and Faggio et al. (2020).

The results show that over time the importance of labour market pooling and input-



226 CHAPTER 5. CONCLUSION

output linkages as a determinant of agglomeration has decreased whereas the relevance

of knowledge spillovers has increased.

This last point is one of the strongest proofs to date that the importance of sharing ideas

has increased as is claimed by a wide literature, see for example Gaspar and Glaeser

(1998); Leamer and Storper (2001); Storper and Venables (2004); Rodŕıguez-Pose and

Crescenzi (2008); McCann (2008); Glaeser (2011); Moretti (2012). Previous research on

this point was based on changes in the spatial concentration of idea-intensive activities.

However, such concentration could also come about for other reasons, such as consumer

preferences following the increases in the value of time, due to increasing returns to

skill, see Glaeser et al. (2001). The results here estimate changes in the reasons for

agglomeration, instead of changes in agglomeration, and show that knowledge spillovers

have considerably gained in importance.

Trade and technological progress are strongly associated with changes in

agglomeration determinants

The second part of Chapter 2 focusses on explaining the documented changes in the

relevance of Marshall’s agglomeration determinants. Thereby addressing the gap noted

by (Combes and Gobillon, 2015, p.336) that there has been no attempt yet to interact

the relevance of the determinants of agglomeration with economic factors explaining

these.

Where economic geography and urban economics generally consider transportation

and communication technologies to understand changes in agglomeration (McCann,

2008; Duranton and Storper, 2008; Glaeser, 2011; Moretti, 2012) and would focus

on decreasing pecuniary transportation costs, see Glaeser and Kohlhase (2004), here

changes in agglomeration are explained by factors derived from labour economics

and innovation studies that have more likely impacted the opportunity cost aspect

of transportation costs of goods, people, and ideas since the computer revolution:

trade competition and routine-biased technological change, i.e. technology taking over

routine tasks of humans.

To empirically test for the association of trade, technology, and transportation costs

with the relevance of the determinants of agglomeration a novel two-step estimation

procedure is used, thereby improving on previous analyses of heterogeneity by Faggio

et al. (2017) and Diodato et al. (2018).

Empirically, the findings show that trade competition and technological progress

are negatively associated with labour market pooling and positively with knowledge

spillovers. Trade competition is somewhat negatively associated with input-output

linkages, whereas the transportation costs of goods do not seem to matter. Further
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exploration shows that it is more likely that input-output linkages decrease in impor-

tance due to import substitution following trade competition rather than an increase

in skill/knowledge intensity as suggested by Faggio et al. (2017). This is because

robustness checks using more specific indicators of skill/knowledge intensity like wages

and R&D expenditures, just like technological progress, do not impact input-output

linkages, whereas more detailed measures of trade competition, like input import

competition, do show strong relations.

Complex activities concentrate in large cities

In Chapter 3, the focus is on the division of labour as mechanism of agglomeration and

the expanding frontier of knowledge as channel of economic change. To understand

the link between the division of labour and spatial concentration a qualitative under-

standing of knowledge is needed rather than quantitative count measures previously

used in the literature, see Carlino and Kerr (2015) for an overview. Qualitative mea-

sures that are nonetheless measurable instead of more arbitrary static self-developed

classifications as in Pavitt (1984) and Faggio et al. (2017).

Here several continuous non-geographical measures of the complexity of knowledge are

developed by building on ideas from innovation studies and complexity theory. These

measures are based on the insight that more complex new knowledge requires more

face-to-face-contact as it involves tacit unfamiliar knowledge (Breschi and Lissoni, 2003;

Storper and Venables, 2004), and a finer division of labour as it requires individuals to

strongly specialise in a limited number of tasks because it is impossible for a single

person to possess all this knowledge (Leamer and Storper, 2001; Jones, 2009). The

measures are the size of teams involved in scientific papers, the average number of

years of education per occupation or per industry, the average year of introduction of

technology classes for patent categories.

The results show that scientific papers with a larger team, industries and job oc-

cupations with more years of education, and patents with a more recent year of

introduction concentrate more strongly in large cities. This suggests that complex

activities concentrate in large cities.

The time dimension of the patent data show that over time patents increasingly

concentrate in large cities as technology advances, in particular during the industrial

revolutions of 1870 based on electricity and 1970 based on the semiconductor (com-

puter). Furthermore, around the time of the computer revolution a divergence occurs

in which less complex patents concentrate less strongly and more complex patents

concentrate more strongly. This is in line with Leamer and Storper (2001) and is

likely due to the dual effect of the improvement of communication and transportation
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technologies that on the one hand allows for the routinisation and dispersion of the

less complex technologies but increases the need for physical connection for the more

complex technologies. This suggests that over time the importance of proximity

increases to facilitate the division of labour as the knowledge frontier is being pushed

further making larger cities increasingly important as the engines of growth.

Diverse cities have diversification advantages in times of crisis

In Chapter 4, the focus is on the industrial distance and temporal distance of agglom-

eration, more specifically the development of new specialisations by regions, in relation

to the boom and bust cycle, as channel of economic change. The development of

new growth paths is seen as an important part of regional resilience (Boschma, 2015).

However, not much is known on how regions diversify during crises. Furthermore, it

is known that diverse cities are more resilient in preventing crises but not if more

diverse cities have an advantage compared to more specialised cities in developing

new growth paths (Chinitz, 1961; Balland et al., 2015; Boschma, 2015). Certain case

studies have suggested that specialised cities may have a low capacity to diversify in

new activities, because they are cognitively, socially and politically locked-in (Grabher,

1993; Boschma and Lambooy, 1999; Hassink, 2005; Pike et al., 2010). However, there is

no systematic evidence on the difference between these types of regions. This question

is particularly relevant as it helps to understand why certain cities top the national

hierarchy in city size over centuries despite changes in technological paradigms over

time.

Using geolocalised historical patent data, the analysis focusses on regional technological

diversification during the great historical crises: Long Depression (1873-1879), the

Great Depression (1929-1934), and the Oil Crisis (1973-1975), which coincide with

moments of rapid technological change (Boschma, 1999).

Results show that cities diversify less in new technologies during crises but when they

do these are more likely to be related to previous technologies in which the city already

had a comparative advantage. This confirms a regional version of the demand-pull

hypothesis of Schmookler (1966); Freeman et al. (1982) and Scherer (1982).

Furthermore, diverse cities are shown to outperform more specialised cities in two

ways. First, they have larger technological portfolios and therefore on average more

relatedness density to possible new technologies, which increases the probability of

entry. Second, when one controls for relatedness density diverse cities still outperform

their more specialised counterparts. This suggests that agents in diverse cities are

generally more open to new activities, which is in line with suggestions that vested

interests against new developments are stronger in specialised cities (Grabher, 1993;
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Boschma, 2015; Neffke et al., 2018). A final analysis shows that there is no significant

difference between more diverse cities, intermediately diverse cities, and specialised

cities in the extent to which they switch to more unrelated diversification when entering

a crisis.

5.2 Policy implications
This thesis has not directly considered policies. Nevertheless, current ideas and debates

on policy can benefit from the insights in this thesis. It is, therefore, best to talk about

policy implications and their context. To come to actual full-fledged policy advice new

lines of research are necessary, which is discussed in Section 5.3.

5.2.1 Industrial policies
First of all, Chapter 2 confirms the suggestions of a large literature that the local

sharing of knowledge has become more important as an agglomeration advantage. On

the other hand, a strong common labour market pool has become less important and

input-output linkages have even become almost irrelevant as an agglomeration motive.

This helps policymakers understand why firms cluster in proximity in cities. Cities

hosting clusters based on input-output linkages may need to consider the stimulation

of industries with related technologies to enhance knowledge spillovers as its rising

appreciation suggests it is important for productivity. Also when attempting to attract

new firms through industrial policies it is important to know which local assets to

promote, in this case, those related to knowledge spillovers seem to become more

attractive for firms. Next to Chapter 2, it may help for policies targeted at certain

industries to also consider Faggio et al. (2017); Diodato et al. (2018) and Faggio et al.

(2020), who consider different dimensions of industry heterogeneity.

However, policymakers should be aware of the larger debates on industrial policies as

these are contested tools as also discussed further on in Section 5.3. There are 220

cluster initiatives in the Netherlands attempting to mimic the success of a high-skilled

cluster like Silicon Valley (Zeemeijer, 2016). It does not require expert insight to know

that not all of these initiatives can be successful.

The literature shows that industrial policies are contested tools because first of all,

“successful” expenditure is highly dependent on the quality of institutions (Acemoglu and

Robinson, 2012; Rodŕıguez-Pose et al., 2018). Second, it is very hard for policymakers

to guess which industries will be the next success, in the words of Moretti (2012, p.201)

“they need to be a little like venture capitalists”. This makes local industrial policies

some sort of betting with public money in the hope of attracting and developing the

next successful industries, although the smart specialisation framework gives some
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guidance, see Balland et al. (2019). On top of this risk, regions tend to overbid to

outcompete other regions in attracting firms. Where it is at least questionable if social

benefits outweigh the local costs let alone if it is societally justifiable to redistribute

welfare towards the owners of these companies (Moretti, 2012; Kuijpers and Thomas,

2016). Furthermore, the firms receiving these subsidies are often large multinational

companies (Greenstone et al., 2010; Moretti, 2012; Kuijpers and Thomas, 2016). This

increases their market power, which following basic microeconomic theory leads to

market failures as it prevents supply from reaching the societal optimum resulting in

welfare loss.

In general, from a societal welfare perspective, the attraction of a firm is a zero-sum

game in aggregate national (or global) welfare as the production lost in some place

appears in another place assuming there are no market failures or system failures.1 This

is a strong assumption but most politicians will likely mostly consider if an investment

makes their own citizens better off rather than these types of market/system failures.

More research is needed to fully understand the different welfare effects for different

agents and regions from industrial policies to come to balanced policy advice. Ideas

for this type of research are discussed in Section 5.3.2. The implications of the results

of this thesis on certain forms of market failures are discussed next.

5.2.2 Market failures
Market failures are generally regarded as an acceptable reason for government interven-

tion. One important case of market failure is externalities and therefore related to the

topic of this thesis: agglomeration externalities.2 As externalities are not priced by the

market, the agent at the origin of the benefits of these externalities is not compensated

for the productivity gains these entails for other agents. Therefore a Pigouvian subsidy

would seem in place to correct for the market failure (Baumol, 1972).

Promoting knowledge spillovers

Some forms of policy are warranted to motivate the sharing of ideas as not only the

rising importance of knowledge spillovers demonstrated in this thesis suggests but also

the rising college wage premium, Acemoglu and Autor (2011), the long-term effects

1An example of an externality, in this case, may be that knowledge spillovers generated by the
firm may benefit a larger number of other firms in the area to which it is attracted thereby generating
more economic growth. An example of market failure may be that due to imperfect information or
non-rational behaviour, in the economist sense, a firm has chosen a suboptimal location, which is
common as discussed in behavioural economics (Pred, 1967). An example of system failure is when
the attracted firm can fulfil a key missing link in the regional innovation system and thereby help the
entire region prosper (Boschma, 2008). In these cases, it may not exactly be a zero-sum game.

2Although the extent to which agglomeration externalities are actually externalities is somewhat
contested by Breschi and Lissoni (2003) and Fitjar and Rodŕıguez-Pose (2017).
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on individual productivity, Glaeser (1999) and De la Roca and Puga (2017), and the

social returns of experienced workers (Moretti, 2004b,a).

In general, the policies should aim at compensating individuals that have valuable

knowledge for sharing information that renders other individuals more productive.3

Because if these former are not compensated in some way they will share suboptimal

amounts of knowledge, even though it is in society’s benefit to increase the amount of

knowledge shared.

One way knowledge spillovers are often promoted is through industrial policies in

attracting and subsidising businesses, see Greenstone et al. (2010); Moretti (2012);

Kuijpers and Thomas (2016). As discussed previously these tools are highly contested

and may increase one type of market failure, i.e. market power of large firms, while

mitigating another market failure, i.e. knowledge externalities. The extent to which

the market failure of knowledge externalities is corrected remains also to be seen as

firms have incentives to not disclose knowledge. In particular large firms are known

to internalise externalities and block access by outsiders (Chinitz, 1961) but are also

suggested to be more effective in generating benefits in Feldman (2003). Future

research will need to improve on measuring the welfare effects of different channels as

discussed in Section 5.3.2.

Nevertheless, if one wants to correct for the externality without amplifying another

market failure or transferring public money to wealthy firm owners a possible sensible

solution to study would be to spend money on hiring some of the bright minds that

else end up in the private sector and put them to work in the public sector in a position

dedicated to more public knowledge dissemination: teaching and academic research.

This in combination with lowering barriers to access these sources.

Promoting agglomeration advantages

Another market failure that needs to be addressed is related to the geographical reach of

knowledge spillovers. These advantages are known to attenuate sharply with distance,

likely because of the high value of time of the agents that need to meet face-to-face

to transact knowledge (Arzaghi and Henderson, 2008; Rosenthal and Strange, 2008;

Ellison et al., 2010). From the monocentric city model (Alonso, 1960, 1964; Muth,

1969; Mills, 1967), we know that when the benefits and transportation costs of local

knowledge spillovers increase, as demonstrated in this thesis, then densities should

increase.

Therefore, these results bring new prominence to the debate on local zoning policies

3For example older experienced workers that share knowledge with younger inexperienced workers
in the framework of Glaeser (1999)’s model.
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because in the real world cities do not adapt instantly to new realities as in models.

This is not only because buildings are durable goods and can not easily be modified

but because local agents, in particular those well-endowed, contest new development:

known as NIMBYs in Glaeser (2011); Moretti (2012) or as the new urban Luddites in

Florida (2017).4

The strongest commonality in Glaeser (2011); Moretti (2012) and Florida (2017) is

their call upon policymakers to act against zoning regulations. They argue that these

zoning regulations mostly cater to the growing influence of NIMBYism and that the

benefits to society nor those that would be able to live there are properly taken into

account. Hence, giving rise to externalities and therefore a market failure.

Opposing new housing also majorly benefits these incumbents not only by mitigating

a possible disamenity but also by keeping the housing stock low and driving the prices

up. Florida (2017, p.26) argues that “urban rentiers have more to gain from increasing

the scarcity of usable land than from maximizing its productive and economically

beneficial uses.” Piketty (2013) and Florida (2017) even warn for the possible societally

destabilizing effects now that a larger and larger share of the wealth is absorbed by

the rentier behaviour of landlords.

The societal losses due to inefficient land use itself are calculated with much detail in

various works. For example, Hsieh and Moretti (2015) and Gyourko and Molloy (2015)

produce some telling estimations on the U.S. suggesting, respectively, that it costs the

total economy about 9% of total GDP annually and that real house prices are about

55% above their real construction costs. Relatedly, Cheshire and Hilber (2008) and

Koster et al. (2012) show large societal costs due to regulatory policies in the United

Kingdom, respectively, the Netherlands.

The evidence in this thesis on the rising importance of geographical proximity for

knowledge spillovers adds to this support for less restrictive regulatory policies and

to take more into account the benefits of those under-represented in the decision

processes, i.e. those that are willing to live in the housing stock that is not built yet.

Nonetheless, this should be particularly targeted at reducing NIMBYism and is not as

straightforward as it may seem.

There are a few considerations: A first consideration is the positive externalities

associated with keeping historical amenities and public spaces, which have societal

value and therefore should be protected. Another consideration is that the back-

4NIMBY refers to “Not In My BackYard”. The Luddites were a movement of textile workers in
the 19th century that destroyed weaving machinery that threatened their work. It later became a
term for those who generally oppose new technologies.
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of-the-envelop calculations in Hsieh and Moretti (2015) are unlikely to hold in real

life. It is not that easy to double the size of the city and at the same time double

its liveliness. Jacobs (1969) already suggested that skyscrapers lead to different

interactions compared to lower density areas to which Florida (2017, p.28) agrees by

stating that “The world’s most innovative and creative places are not the high-rise

canyons of Asian cities but the walkable, mixed-use neighbourhoods in San Francisco,

New York, and London.” More consideration of the functioning of agglomeration

economies at the microscale is likely relevant before enacting urban development

programs. In a similar line, Rodŕıguez-Pose (2018) argues that just increasing city size

is not sufficient to increase productivity, as numerous examples show that some smaller

innovative cities, like San Francisco, outcompete larger cities with older industries, like

Los Angeles. Economic vitality thus also depends on the dynamics of a city and the

sectors it hosts. Another consideration is brought up by Storper (2018), namely, that

just lifting housing restrictions will likely lead to more high-skilled workers leaving

lagging regions and migrating to more prosperous regions, thereby disadvantaging

these lagging regions even more nor helping the less skilled in prosperous regions. It

may also lead to larger real income advantages in prosperous regions as a decrease in

housing costs will lead to larger real income increases in large cities thereby increasing

spatial inequality in real income.

A final consideration, when deciding on urban development programmes, is that just

facilitating access to places is not sufficient for knowledge spillovers to occur as other

dimensions of proximity, i.e. cognitive, social, institutional, and organisational, also

need to be developed (Boschma, 2005). Just increasing density or providing better

infrastructure may not lead to everyone making equal use of these assets. Although,

geographical proximity may allow for the development of other dimensions of proximity

(Boschma, 2005) when different actors meet and interact. From this perspective, it

would be interesting to combine insights from urban studies on how different groups

have access and interact in spaces to be able to address their ability to develop these

proximities. In particular, to consider the welfare distributional effects of such policies.

How to improve research to come this kind of policy advice is discussed in Section

5.3.2.

5.2.3 Reducing income inequality
The geographical reach of knowledge spillovers discussed in this thesis also has impli-

cations for policies now that these are increasingly focussed on reducing inequalities

(European Commission, 2017). A particular point of focus for policy should be the

accessibility of the sources of knowledge for lower-income groups as Piketty (2013)

describes that the spread of productive knowledge to these income groups is an equal-
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izing force on income inequality. The fact that this thesis suggests that knowledge

spillovers increasingly requires geographical proximity and are ever more concentrated

in a smaller number of expensive cities, see Chapters 1 and 2, implies that lower-income

groups have seen a reduction in the access to productive knowledge thereby hindering

this equalizing mechanism. To reduce inequalities policies should therefore increase

the geographical proximity of these income groups to the sources of knowledge, as

well as the other dimensions of proximity of Boschma (2005). This could be done, for

example, through social housing programs and by reducing barriers to education and

other forms of productive knowledge embedded in firms and workers.

5.2.4 Reducing spatial inequality
Spatial inequality was one of the motivating factors to write this thesis and of growing

concern among researchers and policymakers (Rodŕıguez-Pose, 2018; Storper, 2018).

Chapter 3 has a particularly gloomy forecast with respect to spatial inequality: If one

extrapolates to the future the tendency that making innovational progress requires the

combination of an ever-larger number of narrowly-skilled individuals for which large

cities offer advantages then at some point all complex activities will end up in a few

large cities leaving all other places to whither. For these other places, it will become

ever more difficult to attract complex activities as the number of assets required to

develop these activities is ever increasing.

Naturally, the extrapolation of this tendency may not prove true. Technological

progress is not incremental but may have drastically different repercussions based on

the nature of the technologies that are developed (Helpman and Trajtenberg, 1998).

For example, how the invention of electricity in the 1870s mostly complemented routine-

skilled workers and that of the semiconductor in the 1970s abstract-skilled workers

(Goldin and Katz, 1998). This means that technological change may reduce the need

for agglomeration. One way this can happen is that technologies may decrease the

number of persons required in the development of complex activities, for example by

reducing the educational burden on new scholars, which means that it becomes easier

for other regions to develop such an activity. The other way is by reducing the need

for geographical proximity in these activities. For example, if the so-called metaverse

currently being developed can substitute for real-life meetings then it would no longer

make sense for agents to pay the high rents for space that large cities require.5

However, most signs point towards an increasing need for agglomeration in the future.

Over time, Chapter 3 and Leamer and Storper (2001) note that the effect of new

5This also suggests that policies aiming at reducing the educational burden and/or need for
geographical proximity may reduce spatial inequality.
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innovations on increasing complexity and therefore promoting agglomeration is larger

than the effect of new innovations on the possibility of relocating the most routine

and most mobile jobs and therefore promoting deagglomeration. This means that the

results of this thesis bring even more prominence to the debate on spatial inequality

and what policymakers could do about it.

Policies around the topic underwent great changes over time. In the 1980s, the

Netherlands, like many Western countries, made a switch from policies focussed on

equity, i.e. reducing inequalities, to policies focussed on efficiency, i.e. increasing

growth and the competitive advantages of the country (Raspe and van Oort, 2007).

These policies went from supporting lagging regions, by investing in declining industries

and placing public sector facilities there, to supporting winning regions, by investing

in the industries of tomorrow that locate predominantly in prosperous growing regions

and by turning over public services to the private sector (Raspe and van Oort, 2007;

Milikowski, 2020).

Relatedly, policies focussed on efficiency in terms of human capital target the stim-

ulation of workers with high human capital, for example, the 30% tax discount for

high-skilled expat workers in the Netherlands. As Chapter 3 shows these become more

and more concentrated in larger cities. This suggests that the most routine and most

mobile jobs that the larger cities shed through technological change, following Leamer

and Storper (2001), may not offer the lagging cities that attract them a sufficiently

decent livelihood if subsidies/tax breaks benefit the jobs that concentrate in large

cities.

Recently, the thought that equity should be taken more strongly into account next

to efficiency is gaining momentum among policymakers and advisors, where concerns

about inequalities are growing (Guilluy, 2014; Autor et al., 2016; The Economist, 2016;

Florida, 2017; European Commission, 2017; Le Figaro, 2018; Rodrik, 2018; Rodŕıguez-

Pose, 2018; Storper, 2018; De Groot, 2019; Oevering and Raspe, 2020; Meijers and van

Rietbergen, 2021). As even though investing in the knowledge-intensive industries and

workers in a region like Amsterdam may bring about more growth and competitive

advantages to the country than investing in smaller lagging regions it may not justify

the increasing gap it helps bring about between the prosperous regions and lagging

regions nor between high-skilled workers and middle/low-skilled workers.

However, although policies with a stronger focus on equity are becoming more popular

it is not so clear yet which regional policies to enact. Within the literature, there is a

divide between so-called people-based strategies and place-based strategies. People-

based strategies focus on government intervention in improving the mobility of people
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and firms, which should lead to productive assets moving to the location where these

are the most productive and lead to the largest welfare for all. On the other hand,

place-based strategies focus on government intervention in improving the productivity

of people and firms based on the context of the regions they are in, which should lead

to each region developing their own competitive advantage and lead to the largest

welfare for all (Barca et al., 2012).

Each approach sees flaws in the other approach. On the one hand, advocates of

people-based approaches see place-based approaches as “bribing” (Moretti, 2012,

p.208) production factors, like labour, to remain stuck in unproductive places. On the

other hand, advocates of place-based approaches see people-based approaches, or as

they sometimes call them spatially-blind approaches, as unrealistic because enacting

policies that reduce market frictions will inevitably have different repercussions among

people and regions due to the differences in the local contexts these operate in, thereby

implying that people-based approaches are needed (Barca et al., 2012). The academic

debate between the two approaches and their foundational origins is further discussed

in Section 5.3.2.

For policymakers, the answer lies likely in between the two approaches. On the one

hand, only people-based strategies are not sufficient because people and firms, in

particular those with lower income/productivity, find increasing difficulty in moving to

productive areas, as even previously ardent advocates of people-based policies agree, see

Austin et al. (2018). Furthermore, regions have specific local institutional and sectoral

context that means that specific programmes rather than reducing market frictions

may in certain cases stimulate growth. On the other hand, only place-based strategies

are not sufficient because there are too many examples of firms receiving unreasonable

amounts of public money to remain/locate in unproductive places, see Moretti (2012,

p.208-209), and one cannot hope that regions can sustain the same number of citizens

through periods of economic downturn when there is more productive use for them

elsewhere. Therefore, future policy should consist of a balance between the two

approaches.

Both advocates of people-based and place-based policies agree that past place-based

policies have not been successful (Martin et al., 2016; Rodŕıguez-Pose, 2018). But

where people-based advocates see that fact as evidence that these policies do not

work place-based advocates argue that the policies have only been poorly executed.

policymakers should thus proceed cautiously when enacting these.

A first piece of advice from the literature is that this requires tailor-made approaches

unique to each region, thereby focussing on local underused potential. As each approach
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is unique it is hard to give concrete advice but a must is to develop activities related

to capabilities present in the region as suggested in the smart specialisation literature,

see Balland et al. (2019). Particular effort should also be devoted to improving local

institutions by reducing the political or economical influence of strong local actors that

mostly pursue personal benefits, as described in Rodŕıguez-Pose et al. (2018). Another

way forward for lagging regions may be to build on ‘borrowed size’, i.e. network

connections with more performing regions for the urban functions it lacks, see Burger

et al. (2015). Finally, the effects of policy on inequality within regions should also

be taken into account. In the view and examples of Rodŕıguez-Pose et al. (2018) the

expenditures and benefits of the projects aimed at helping lagging regions are perceived

by most to end up in the pockets of the elites, which actually increases within region

inequality and fuels discontent.

Enacting people-based strategies and their pitfalls have been discussed earlier in the

context of promoting knowledge spillovers and agglomeration in Section 5.2.2.

The exact balance between place-based policies and people-based policies, and the

balance between policies based on equity versus efficiency should depend on what

societies see as a “just” distribution of welfare. It is up to us academics to provide the

insights and tools to allow for these goals to be achieved. How to improve academic

research on the gap between people-based and place-based approaches is discussed

in Section 5.3.2; on the role of institutions and regulations in Section 5.3.2; and on

welfare effects for different agents and different locations in Section 5.3.2.

5.2.5 Diversification
Chapter 4 has some more straightforward policy implications. The long-term benefits

of colocation of activities is hard to take into account for agents deciding on their

location. Nonetheless, this positive externality may lead to the development of new

activities in the future, which can possibly set off losses in other sectors (Vernon, 1960;

Rosenthal and Strange, 2004; Glaeser, 2005; Boschma, 2015).

Chapter 4 shows that having a larger diversity in sectors leads to greater diversification

opportunities also in times of crisis. This comes on top of the advantage that diverse

cities have in being less vulnerable to crises, as already noted by Chinitz (1961) and

Frenken et al. (2007). Because the entire fortune of the city is not tied to that of a

few industries. The impact of diversity on diversification may be due to the actual

diversity of sectors or due to the fact that it is correlated to having less vested interests

in a single industry that block new developments as suggested by Grabher (1993);

Boschma (2015) and Neffke et al. (2018). This makes it hard to define the exact goal

of a policy.
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Nonetheless, it would make sense for single industry-oriented regions to encourage the

development of other industries to better withstand economic shocks in that particular

industry. In particular, it would help for the new industries to use similar workers but

not have input-output linkages to the main industry. Therefore, it can more easily

absorb unemployed workers when the main industry is hit without itself facing a fall

in demand. Furthermore, an extra advantage is that the relatedness in type of workers

is also known to increase the probability of successful diversification (Farinha et al.,

2019).

Focussing on diversification to improve regional resilience is currently not part of

the Horizon 2020 and smart specialisation strategy of the European Union. The

programmes focus on the development of new activities by regions that can give these

regions and the EU as a whole a competitive advantage but do not evaluate to what

extent this leads to regional resilience through a diverse portfolio. By adding this

component a contribution to future resilience can be achieved.

5.3 Limitations and future research
“All theory depends on assumptions which are not quite true.” (Solow, 1956, p.65). This

also holds for the chapters in this thesis and the respective fields they belong to. In

this section, attention is paid to possibilities for future research with regards to these

assumptions divided over two subsections.

The first subsection considers assumptions revolving around the measurements of the

interaction between phenomena of interest in this thesis and how these impact each

other. These consist of the methods, in particular in establishing causality; choice of

proxies; and variables of interest. Most of these topics already received some attention

in the chapters and are familiar to authors in the field.

In contrast, the second subsection considers assumptions that result from paradigms

and are generally less clearly mentioned in the chapters or on the mind of authors.

Through studying, researching, meeting, and writing within an epistemic community

the implicit assumptions that are shared within the community are too little questioned

and may even fall out of sight for some members. Therefore, in the second subsection,

a step back is taken and these paradigms are considered. A first and relatively

straightforward point of interest is the difference between the two most influential

fields in this thesis: urban economics and evolutionary economic geography. Second

and third are insights from outside the field on the impact of institutions on spatial

inequality, respectively, methods to measure the distribution of welfare between and

within regions that are relevant for the field if the understanding of spatial inequality
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is to be improved in future research. This will also help to improve the policy advice

mentioned in Section 5.2.

5.3.1 Measurements

Causality

One strong limitation of this thesis is that it cannot fully claim causality in the answers

to the research questions. This is inherent to the focus on the bigger picture of trends

over long time periods with data aggregated at the local level instead of the individual

level.

Nevertheless, this thesis made progress on this point compared to earlier approaches

on similar questions. Notably by controlling more strongly for omitted variable bias

by using more fixed effects and the approach by Oster (2019) and by explicitly testing

for explanations, including instrumental variable approaches, in explaining the link

between changes in agglomeration economies and channels of economic change in

Chapter 2. In Chapter 3, most progress is made by the use of a plethora of data

sources covering many different activities, time periods and areas of the world. In

Chapter 4, more attention to the regression model, functional form, causality, and

robustness checks on endogeneity issues in the diversification literature were introduced.

In future research, small-scale approaches complementary to analyses of the bigger

picture, as used here, can help establish a stronger sense of causality. For example,

the analysis of developments in comparable regions that receive a different exogenous

shock of the investigated effect in a certain time period. The challenge is finding

suitable ones.

In the case of technology shocks, see Chapter 2 and Chapter 3, a possibility may be to

exploit the “randomness” of break-through General Purpose Technologies (GPTs) as

the semiconductor. As knowledge is “geographically sticky”, such technology shocks

are likely to affect local industries in the area of invention earlier than those further

away, even if these industries are not involved in the invention of the GPT itself.

Causality in relation to diversification, as in Chapter 4, is particularly tricky as

relatedness is not conceptually a cause to diversify. This is discussed in more detail in

Section 5.3.2. However, unpacking the different dimensions of relatedness, such as in

Farinha et al. (2019) and a more detailed study of the agents involved and processes of

diversification, as in Neffke et al. (2018), may yield descriptive insights on the causes

of (successful) diversification.
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Proxies for mechanisms of agglomeration

This thesis is an attempt to better understand the mechanisms of agglomeration, a

relatively underexplored part of the field (Duranton and Puga, 2004a; Combes and

Gobillon, 2015; Davis and Dingel, 2019). Like most research in this line, this thesis

builds on detecting the positive association between a measure for colocation and a

proxy for interaction. This suggests that through some agglomeration mechanism

interaction takes place and can therefore be the reason for colocation.6 This section

presents a number of considerations about this interpretation.

A first consideration is (the quality of) the proxies as a representation of their respec-

tive agglomeration mechanisms. Chapter 2 demonstrated that when technological

relatedness is used instead of patent citations to proxy for knowledge spillovers the

importance of knowledge spillovers greatly increases. Where it was the least important

mechanism in Ellison et al. (2010), it is the second most important one in Chapter

2. This tells that the relevance of agglomeration mechanisms is not only dependent

on their actual strength but to a large extent also on how one tries to measure these.

Furthermore, the proxy for knowledge spillovers is based on patented inventions. These

differ in quality and may not necessarily lead to innovation, see Carlino and Kerr

(2015), but more importantly do not capture other relevant forms of knowledge like

organisational/work practices or unpatented innovations like new products or software.

Therefore, patents may not capture the relevant ideas for each sector, in particular

for services. It is hard to make good suggestions on how to improve our proxies but

borrowing ideas from other fields, as was done here by building on relatedness, may

help to improve the search. Nonetheless, one will have to keep in mind that proxies

are imperfect.

A second consideration is how agglomeration mechanisms are conceptualised. The fact

that the importance of labour market pooling is smaller when measuring knowledge

spillovers using technological relatedness instead of patent citations tells that a portion

of the proxy captures the effect of the other. This is also because labour market

pooling, input-output linkages, and knowledge spillovers may require the movement of

people, goods, and ideas and therefore are hard to distinguish both conceptually and

empirically. For these reasons, many authors currently prefer the categorisation by

Duranton and Puga (2004a) in matching, sharing, and learning but the literature has

not been able yet to empirically distinguish these (Combes and Gobillon, 2015).

6The measures of colocation and interaction are: coagglomeration and the extent to which
industries employ similar workers and ideas, and buy and sell to each other in Chapter 2; geographical
concentration and activity in patents, scientific articles, industry, and jobs in Chapter 3; and
geographical colocation and the development of new industries in Chapter 4.
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A third consideration is that when a positive association between proxy and colocation

exists it does not necessarily mean that interaction actually takes place. For example,

two industries that are strongly coagglomerated and employ similar technologies do

not necessarily actually need to exchange ideas. In this sense, the proxies are better

thought of measuring the extent to which interaction is possible.

A fourth consideration is the extent to which the positive association between proxy

and colocation is reflective of the actual relevance of that determinant in location choice.

By only regressing proxies of production advantages on geographical measures, the

false impression is easily made that these drive location choice. However, in this thesis

and certain of the works the chapters build on other factors are left out, even though

these can help explain location choice. First of all, Chapter 2 does consider natural

advantages through the dissimilarity indices but its role is not taken into account in

Chapters 2 and 3. Also, agglomeration resulting from the home market effect and

rent-seeking, see Rosenthal and Strange (2004), instead of agglomeration benefits is

also not considered. Sorting is also not considered. Industries may colocate more

often with those that use similar technologies over time, as posited in Chapter 2, or

occupations with more education may be more often in cities, as posited in Chapter 3,

because of preferences, like neighbourhood type, and not necessarily because of changes

in agglomeration benefits. Related to sorting is a large literature following Glaeser

et al. (2001) and Florida (2002) that consumption advantages are increasingly relevant.

Taking a more nuanced stance, Storper and Scott (2009) argue that there is a strong

interplay between production advantages and consumption advantages. Therefore, an

interesting research avenue would be to incorporate both types of advantages to look

at this interplay. Behavioural economists would also argue that location choice is not

the result of a rational analysis of all locations and their advantages and disadvantages

as entrepreneurs do not have perfect information and do not make rational decisions

(Pred, 1967). Some other factors less often considered by economists are mentioned in

Section 5.3.2.

A fifth consideration, not considered in this thesis, is the discussion to what extent

agglomeration channels are actually externalities in the sense if these are (fully) priced

by the market or not. In this thesis, like in Vernon (1960), agglomeration determinants

are seen as (dis)advantages external to the agent. However, a large literature frames

these advantages as externalities, i.e. advantages unpriced by the market. However,

Breschi and Lissoni (2003) argue that many knowledge spillovers are paid for by

for example hiring workers of neighbouring firms. Fitjar and Rodŕıguez-Pose (2017)

interview Norwegian firms on innovation and find that most interactions are the result

of purpose-built searches instead of randomly being at the same location, as would
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be the case if knowledge spillovers are externalities. The debate on externalities is

relevant as it has strong policy implications, see the previous Section 5.2. Providers of

positive, respectively, negative externalities are not fully compensated, respectively,

priced for these impacts with as a result an undersupply, respectively, oversupply of

these externalities, making policy intervention fruitful (Baumol, 1972).

A sixth consideration, related to the debate on externalities, is to what extent geograph-

ical colocation is sufficient to profit from the mechanisms. The positive association

between geographical colocation and proxies for agglomeration economies may give

the false idea that geographical colocation is sufficient to profit from these advantages.

However, two agents may not be able to understand each other because of different

knowledge bases. In that case, the industrial distance or cognitive proximity is too

large in the words of, respectively, Rosenthal and Strange (2004) and Boschma (2005).

Boschma (2005) details three other relevant dimensions of proximity for the sharing of

information: organisational proximity, which relates to the coordination and hierarchy

of agents exchanging information, social proximity, which relates to friendship, kinship

and trust; and institutional proximity, which relates to sharing the same norms and

values of conduct.

A seventh consideration is related to the spatial scale used. The chapters build on

counties and aggregates of counties like MSAs. While many agglomeration mechanisms

occur at a finer spatial scale, see for example Arzaghi and Henderson (2008). As already

suggested by Duranton and Puga (2004a) and Carlino and Kerr (2015), it would be

fruitful to exploit the growing availability of micro-data to look at the micro-scale

instead of the meso-scale of agglomeration mechanisms.

5.3.2 Paradigms

Urban economics and evolutionary economic geography

A limitation for future research to some extent overcome in this thesis is the barrier

between urban economics and evolutionary economic geography (EEG). During my

Ph.D. thesis, I had the pleasure to work with researchers from both sides and I was

surprised to sense great distance and even some aversion between the two communities.7

From my point of view, the images stem from unfamiliarity with each others work and

7As these experiences are unrecorded, I would roughly generalise the arguments overheard in
saying that, one side, urban economics/economic geography, is accused of upholding unrealistic
assumptions in too abstract mathematical models while the other side, EEG, is generally accused of
vague theories supported by poor econometrics. This contrast is similar to the notions of Duranton
and Rodŕıguez-Pose (2005); Duranton and Storper (2006) and the statement on the contrast between
Proper Economic Geographers (PEG) and New Economic Geography (NEG) by Garretsen and Martin
(2010) that “PEG followers [are] typically dismissing NEG as irrelevant, and NEG theorists [are]
viewing PEG as non-scientific”.
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jargon and are in need of a revision. This unfamiliarity is nicely summarised by Martin

(1999, p.83) as a “dialogue between deaf and has also been noted in previous analyses on

a larger debate between so-called geographical economists and economic geographers,

from the perspective of geographical economists, see Mulder et al. (2001); Brakman

and Garretsen (2003); Overman (2004); that of economic geographers: Martin (1999);

Boschma and Frenken (2006); Boschma (2015) and Boschma and Frenken (2018); but

also and likely more productively in collaborative works, see: Duranton and Rodŕıguez-

Pose (2005); Duranton and Storper (2006) and Garretsen and Martin (2010). In this

thesis, two subfields of geographical economics and economic geography are strongly

present, respectively: urban economics and evolutionary economic geography (EEG).

It is crucial to attempt to bring down the barrier between the two fields. Because

insights from different sides lead to different understandings of agglomeration economies

and therefore lead to different policy advice, in particular on the most pressing issue

within the field: the rise in spatial inequality. If researchers on the topic are unable to

properly weigh the arguments of each side we cannot expect policymakers to do so.

Here, I will separately consider each side on the nuances needed in their view of the

other and the useful insights that each can apply from the other to improve future

research.

Evolutionary economic geography

It is relatively easy to consider the view of EEG on other fields, as numerous works in

this field actively discuss the differences between their accomplishments and of other

subfields, see for example Boschma and Frenken (2006); Boschma (2015) and Boschma

and Frenken (2018).

According to Boschma and Frenken (2018), the main reason for its success in this field

is that EEG is able to incorporate relational issues between firms into its analysis, as

it assumes the heterogeneity of its agents. However, it is an outdated idea that urban

economics does not consider heterogeneity. This may have held at the time where

Nelson and Winter (1982) wrote the founding work on evolutionary economics mostly

aimed at models as used by Solow (1956) but developments have been made ever since

and as early as Romer (1986), as discussed by Mulder et al. (2001).8.

Duranton and Puga (2004b, p.48) even acknowledge in their chapter on the foundations

of agglomeration mechanisms that the “heterogeneity (of workers and firms) is at the

root of most if not all the mechanisms explored in this chapter”. Empirical examples

also exist like Duranton and Puga (2001); Glaeser and Ponzetto (2007); McCann

8Also as Elisabeth Perlman once said at a conference economics is an “imperialist” field able to
take over ideas from other fields and absorb them in its own theory.
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(2008); Koster et al. (2016) and Faggio et al. (2017) where heterogeneity is taken into

account in, respectively, firms, regions, households, and industries, albeit it sometimes

rather crudely.9

Furthermore, ideas like incomplete information, see Duranton and Puga (2004b), path

dependency beyond the conceptualisation as in New Economic Geography (NEG), see

Vernon (1960); Duranton and Puga (2004b); Glaeser (2005) and Glaeser and Ponzetto

(2007), and imperfect competition, following Dixit and Stiglitz (1977), are also present

in the literature, which contrasts with the ideas of Boschma and Frenken (2006, 2018)

on mainstream urban economics/economic geography. So a more nuanced and updated

view of urban economics is in place.

Insights from urban economics can even be beneficial for EEG both in terms of

methodology and theory. In terms of methodology, the criticism on the quality of

estimation strategies overheard is to some extent justified. There is much reason for

endogeneity concerns. For example, in Chapter 4, patent data are used to define crisis

periods, entry to an industrial portfolio, relatedness, and the diversity of cities. Even

after the many robustness analyses undertaken in the chapter, it cannot be ruled out

that some mechanical relation may be influencing part of the results. This chapter

is not an isolated case. In Hidalgo et al. (2007) the entry of industries to an export

portfolio of a regio is regressed on a relatedness measure based on the co-occurrence

of industries in export portfolios of regions. In Boschma et al. (2015) the entry of

technologies to a portfolio of regions is regressed on a relatedness measure based on

the co-occurrence of technologies on patents, which are also located in regions. As

a result, there is a risk that mechanical relations in the data explain (part of) the

association between relatedness and diversification. Although some less risk-prone

approaches also exist as in Neffke et al. (2011a).

Furthermore, often strong conclusions hinting at causality are suggested in these

studies. Where Chapter 4 is rather careful and refrains to posit that the results

indicate causality this is not always the case. For example, Boschma (2017) and

Farinha et al. (2019) already suggest in their title that relatedness drives diversification.

While the estimation strategies do not allow for such a strong conclusion. Other

related approaches as in Klepper (2007) also draw strong conclusions from not so

9As discussed further on, a deficit is that these studies model heterogeneity in very simplistic cate-
gorisations and take this heterogeneity as given and generally don’t allow for agents to move between
categories, which is not a problem in the used cross-sectional setting but limits the understanding on
developments in agents characteristics.
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strong identification strategies.10

The use of more rigid identification strategies as is more common in economics could

benefit EEG to establish causal relationships. For example, looking for forms of

(quasi-)natural experiments or diff-in-diff strategies has so far been an unventured

avenue. In Chapter 4, spatial econometrics, attention to functional form, and a quasi

difference-in-difference approach commonly used in urban economics was applied to

reduce endogeneity concerns of entry models compared to earlier approaches in EEG.

Furthermore, the theory behind diversification could be augmented using ideas on

demand and supply from economics. The greatest issue is that relatedness is also

not conceptually a cause for diversification. Firms do not move into another activity

because it is related to their current activity but because they sees an opportunity

to make a profit, i.e. answer a demand in a cost-efficient manner. For example, the

Amsterdam chain ijscuypje sells ice cream in the summer and stamppot (Dutch stew)

in the winter not because these products are related but because there is a demand.

When stating that relatedness is the driver behind diversification, as in Boschma

(2017) and Farinha et al. (2019), the implicit assumption is made that demand and

cost-efficient production for a product/service is given.11

In the current approach, only a part of the supply side, i.e. relevant capabilities, is

taken into account. Other supply factors are not included such as the prices of inputs

of land, products, capital, and labour; market structure, e.g. oligopoly; and product

differentiation. By not including these supply factors and demand factors it is not

surprising that the results in Chapter 4 show that when an average region has 100%

of the related capabilities to a new technology the chance that the region develops

a competitive advantage in this technology is still only 3.5% and only about 2.5%

larger than the chance of entry when the region has none of the related capabilities.

The development of a new specialisation is a rare event, therefore it requires more

parameters than just relatedness density. Ideally one would want that when a range

10In Klepper (2007) the claim is made that clusters thrive through spin-off processes and that
Marshallian externalities are irrelevant. He shows this by regressing the survival rate of firms in the
automobile industry on among others the fact that they are located in Detroit, which proxies for
Marshallian externalities. This dummy variable is then insignificant while the dummy variable for
spin-off is strongly and negatively associated with the hazard of not surviving. A first problem is that
not being in Detroit not naturally means that there are no Marshallian externalities in the area of the
firms. Second, the survival rate is a poor measure of productivity gains due to local circumstances,
which is what agglomeration economies entail. It is well known that agglomeration on the one hand
leads to productivity gains but also to stronger local competition leading to more closures, known
as firm selection, see Puga (2010); Combes et al. (2012). Therefore a lower survival rate does not
necessarily indicate that no local productivity gains from Marshallian externalities exist.

11This assumption is never explicitly written down. The only time I experienced that the
assumption was made explicit is when I asked Ricardo Hausmann about it and he replied that it is
safe to assume that there is demand as the products/services considered in the studies are tradables.
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of parameters is fully met, i.e. 100%, the likelihood of diversification is close to 100%.

Therefore it would be more fruitful to see relatedness as one of the many cost parame-

ters within the diversification process. If an entrepreneur and workers have related

capabilities to a new activity then the costs of switching to that activity are likely

lower, i.e. (re)education costs and adaptations to capital are lower. Relatedness

can serve as a proxy for these transition costs. However, then the firm also needs

to be cost-efficient with respect to competitors and have enough demand. The firm

must be able to produce the product at a sufficiently low cost and/or in a niche that

other firms do not serve. Measures of the production cost parameters are therefore

also useful as this factor cannot be assumed to be uniform over space nor is demand.

Future research on diversification could attempt to include these factors, which are

relatively well studied in economics. To complete the picture ideas on-demand ideas

from managerial economics can be borrowed or from other evolutionary approaches

that do consider demand-side dynamics, such as sales growth in Colombelli et al.

(2014), or the approaches in Saviotti (1996).

It has to be noted that there are already attempts to bring supply and demand into

EEG but these are still deficient. One approach is by relating supply to relatedness and

demand to the complexity of a new activity, see Balland et al. (2019). Relatedness gives

how easily a region can transition to supplying the product and complexity indicates

that, by definition, few regions can produce it hence there is little competition and

thus likely much demand to fulfil. However, complexity, which following the method of

Hidalgo and Hausmann (2009) is defined as the fact that few diverse regions produce

a product/technology, does not necessarily mean that there is actually a high demand

for that product/technology just like that relatedness does not fully capture supply.

Furthermore, complexity also captures part of the supply side as with rising complexity

the transition costs to produce this product are likely higher. Therefore, it would

be useful for future research to try and disentangle the demand and supply aspects

within complexity and to consider inputs from more traditional economic measures to

demand and supply.

A final development following urban economics that would be beneficial for EEG

is to do more policy evaluation. Research to measure the effectiveness of different

policies is omnipresent in urban economics, see the numerous examples in Section

5.3.2, but virtually absent in EEG.12 Even though this type of study would improve

policy advice.

Urban economics

12A notable exception is Uhlbach et al. (2017).
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The fact that urban economics does not actively consider the evolutionary economic

geography view does not mean that it does not have much to learn from its approaches.13

Where the importance of heterogeneity in agents is acknowledged by scholars in the field

and taken into account in models. This is often limited to simplified dichotomies, as also

noticed in a different context by Mulder et al. (2001). For example, goods-producing

cities versus idea-producing cities in Glaeser and Ponzetto (2007), or high-value-added

activities versus low-value-added activities in McCann (2008), or high-technology

versus low-technology industries in Faggio et al. (2017). Also, the industrial distance

in Rosenthal and Strange (2004) is often operationalised by the dichotomy localisation

economies à la Marshall versus urbanisation economies à la Jacobs.14

Heterogeneity is obviously much more complex than this. The use of different forms

of relatedness in measuring industrial distance as operationalised in EEG is a major

stride forward in understanding the particularities of the mechanisms associated with

heterogeneity and in particular in measuring the industrial distance of Rosenthal and

Strange (2004). In Chapter 2 technological relatedness proved to be more effective

conceptually and empirically in measuring the relationship between the technological

knowledge of industries than patent citations previously used in the literature.15

More importantly than refining views on heterogeneity is the need to incorporate the

possibility of agents moving from one category to another. The mentioned studies

that consider heterogeneity, see it as a fixed state. In which the agents be it firms,

industries, or regions do not move from one state to another. When it is considered,

such as in Duranton and Puga (2001) where firms move from the young exploration

phase of the product life cycle to the mature phase, this happens for reasons exogenous

to the model, where exactly these reasons are essential to understand how agents

evolve in their capabilities and needs.

Therefore, it is difficult from this framework to understand the modalities agents under-

take to diversify into new activities. This is relevant as economic change ”continuously

revolutionizes the economic structure from within, incessantly destroying the old one,

incessantly creating a new one” as put by Schumpeter (1942, pp.82-83). Studying the

divergence in prosperity between idea producing cities and goods producing cities, as

conceptualised in Glaeser and Ponzetto (2007), is incomplete without studying the

13For example, during my Bachelor program and Master program, I never even heard about it.
Although the difference between geographical economics and economic geography as discussed by
Brakman and Garretsen (2003) was in one of the textbooks used in class.

14Note that the heterogeneity in households in Koster et al. (2016) is an exception as households
are considered at the individual level.

15Another notable example is the difference in related variety and unrelated variety compared to a
more general measure of diversity à la Jacobs in general as discussed in Frenken et al. (2007).
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possibilities of cities to move from the production of goods to the production of ideas.

Studies on this topic within urban economics are limited to case studies, see Vernon

(1960) and Glaeser (2005).

It is also the understanding of the radical innovations that alter modes of production

and therefore its spatial distribution that led to the breakthrough in Chapter 2

that computer-based routine-biased technological change was a channel of economic

change worth testing where pecuniary transportation, traditionally suggested in the

literature, failed to provide an explanation. Clearly demonstrating the usefulness of

ideas often-employed in EEG to research in urban economics.

Another relevant aspect on which the field can learn from EEG is how knowledge

diffuses over space. Work on the relevance of geographical proximity for transmitting

knowledge in works like Gaspar and Glaeser (1998); Glaeser (2011) and Carlino and

Kerr (2015) is relatively limited to the usefulness of face-to-face contact but not as

developed on the exact circumstances of when this is needed as in for example Leamer

and Storper (2001); Breschi and Lissoni (2001); Storper and Venables (2004); Boschma

(2005) and Duranton and Storper (2008).16 Boschma (2005) also identifies other forms

of distance, namely institutional, social, and organisational that relate to productivity

gains of agglomeration in addition to the temporal and industrial distance mentioned

by Rosenthal and Strange (2004), which are not picked up by the urban economics

literature following in the steps of Rosenthal and Strange (2004).

In general, it seems that EEG has incorporated to a larger extent useful insights from

innovation studies and applying them to understand the transmission of knowledge

over space. Understanding the changes in the spatial distribution of activities can

hardly be complete without a broader understanding of the transmission of knowledge

over space; economic change; and diversification of agents.

Part of this may be due to the narrow focus with more room for identification strategies

and less for theory in economics that I experienced when writing Chapter 2, the most

urban economics-like piece. Where the original 30-page theory section I wrote got

smaller and smaller but more focussed over time and in the end even ended up in the

appendix. In contrast, the part on robustness checks and empirical strategies only

16An exception within mainstream urban economics/economic geography is Arzaghi and Henderson
(2008), who detail the circumstances when workers in advertisement agencies require face-to-face
contact. Furthermore, in most of the literature on the difference between geographical economists
and economic geographers, the second author in Storper and Venables (2004) and the first authors in
Leamer and Storper (2001) and Duranton and Storper (2008) are considered geographical economists.
It is telling that when these authors collaborate with an economic geographer like Michael Storper
more detailed theory comes to the forefront and less on how to capture these in mathematical models
allowing to more fundamentally understand face-to-face contact.
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grew over time. I also noticed this difference in the advice given by scholars and my

supervisors from both backgrounds throughout the different pieces I worked on during

my Ph.D. Where those more strongly rooted in economics would encourage to narrow

the theory down to a small part and focus on the testing, those more strongly rooted

in geography would advise to make broader connections to related ideas and subjects

and focus less on empirics.

As a result, and also noted by Duranton and Rodŕıguez-Pose (2005) economic geog-

raphers have more broad ideas being more eclectic in the theories to incorporate by

writing papers that combine theory and empirics, and as Boschma and Frenken (2006)

note, more pluriform in methods being both quantitative and qualitative and inductive

or deductive even though the empirics are less well developed compared to those of

geographical economists who on the other hand remain in narrow less contested topics

and with certain exceptions favour quantitative deductive approaches.

In my opinion, this practice may end up hurting economics by challenging authors

less to think out of the box and incorporate valuable ideas from outside the field as

was done in this thesis. In terms of approaches, the few case studies such as Glaeser

(2005) and Arzaghi and Henderson (2008) are often cited and therefore show that

there is value to these approaches. On the other hand, the pitfalls of more qualitative

approaches like the overuse of jargon, as also noted by Duranton and Rodŕıguez-Pose

(2005), should be avoided.

Conclusion

All in all, both sides could do with a more nuanced view of each other’s work. It is

in the academic spirit to be open to other ideas regardless of where these come from.

Furthermore, there are useful aspects on either side that can help improve future

research on the spatial distribution of activities and help spatial sciences as a whole

confront the current societal challenges. Because the greatest victim of this “dialogue

between deaf ” is there where the societal relevance of spatial science is currently the

strongest: the issue of spatial inequality.

With respect to this issue, there are two schools of thought offering policy solutions,

respectively, summarised under people-based policy interventions, which are generally

associated with removing barriers so that labour and capital can flow to the place

where these are the most efficient, and place-based policy interventions, which are

generally associated with fostering economic development in a certain region with

explicit consideration for the local context, for example through local industrial policies

(Barca et al., 2012). The former is generally associated with urban economics with some

authors such as Koster (2013); Austin et al. (2018) and Duranton and Venables (2018)
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defining a few conditions for exceptions to the rule.17 The latter contains virtually all

policy interventions brought forward by evolutionary economic geographers.

Although a bit generalizing it can be suggested that each approach shows its foun-

dational origins, the first is focussed on equilibria, arguing that barriers to market

clearance, such as building limits or local social benefits keep productive factors, like

labour, from moving to other places to achieve their greatest productivity and therefore

reducing regional income disparities. The other refuting the existence of equilibria and

building on the concept of local routines and the possibility of diversification argues

that there is a way for each place to develop new competitive advantages and flourish.

The shortcomings in each approach discussed above come up in this debate. Put in

a generalizing way, if one assumes in models that regions move from one activity to

another or lack the understanding of these capabilities then it makes sense to spend

government expenditures on allowing people and capital from less performing regions

to move to more performing regions. If one assumes that demand and cost-efficiency

of activities is given and that regions can diversify into new activities based on former

activities then it makes sense to invest in lagging regions. The most fitting solution

likely lies in between the two views but requires academics on both sides to step

over the boundaries of their comfort zone and think more critically on the implicit

assumptions in their world views that put a limit to understanding reality.18

Researching to what extent conflicting assumptions hold can provide a way out of

this stalemate. For example, if economists insist that people from lagging regions

do not move to more innovative regions due to housing shortages, see Austin et al.

(2018), and geographers that they do not move due to other reasons than housing, see

Rodŕıguez-Pose (2018), then it makes sense to turn this issue into a research topic

rather than the subject of assumptions. Other examples of conflicting assumptions

that require empirical scrutiny are suggested by Storper (2018). To achieve this level

of integration the line of collaborations between geographical economists and economic

geographers, see Duranton and Rodŕıguez-Pose (2005); Duranton and Storper (2006)

and Garretsen and Martin (2010), on the differences and commonalities of these fields,

merits an updated follow-up.19

17Telling is the quote by Austin et al. (2018, p.2) that “Traditionally, economists have been sceptical
towards these [place-based] policies because of a conviction that relief is best targeted towards poor
people not poor places”.

18Storper (2018) provides an overview of certain other points of discussion between the two fields
in understanding spatial inequality.

19These analyses are a bit outdated as Duranton and Rodŕıguez-Pose (2005) note that in economic
geography quantitative approaches are virtually absent and Garretsen and Martin (2010, p.130) state
that Evolutionary Economic Geography “is still very much in its infancy.
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To end on a positive note, there seems to be an integration of concepts between the

two sides, as Hidalgo et al. (2018) and Hidalgo (2021) show that authors and concepts

are compatible, as also shown in this thesis. With the rising availability of data and

push for interdisciplinary thinking, future research, may bring more insights on the

extent to which theories and assumptions of different fields hold and allow for the

integration of the strengths of both sides. As such, paving the way for a world with

scholars without clear schools of thought.

Institutions

Next to learning from different subfields within spatial sciences to understand the

spatial distribution of activities, useful ideas can also be found in other fields. For

example, in this thesis ideas are borrowed on the disruptive and non-incremental

nature of innovation during industrial revolutions from innovation studies; on trade

competition and routine-biased technological progress from labour economics; and on

economic complexity from complexity science.

However, other factors are nonetheless outside the scope of this thesis, which are

worth considering in future research on the spatial distribution of human activities

and economies of agglomeration. These are related to institutions, most notably,

regulations; and social and fiscal norms.20 This is important because when only

looking at channels of economic change like technological progress the false suggestion

can be made that societies are at the mercy of factors that are hard to control or that

agglomeration patterns are the natural result of a value-free and neutral economical

system. This is certainly not the case.

Where this thesis focusses on the simultaneity of the great divergence in welfare over

space and the computer revolution around 1980, Harvey (2006); Rodrik (2011) and

Piketty (2013, 2019) would point out that around that same time drastic changes in

social and fiscal norms were set in motion allowing for greater economic inequality and

less state intervention. This also translated to policies supporting the most promising

workers, industries and regions instead of the weaker ones both at the national level

(Raspe and van Oort, 2007; Raspe et al., 2012; Milikowski, 2020) as the local level

(Florida, 2017; Milikowski, 2018).

These societal choices surely also impacted locational patterns. As discussed in the

introduction, the location choice of different agents is dependent on their benefits

of being close to a location and how hard these benefits are to transport. In the

transportation costs the value of time of an agent, often proxied by their wage, is

20Note that these are another type of institutions than those based on the quality of government,
which are often considered in geography, see Acemoglu and Robinson (2012) and Rodŕıguez-Pose
et al. (2018).
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taking up an important part. Through regulations and public spending, the locational

benefits and wages of different agents are influenced and therefore the locational

patterns.

A notable recent example is how in times of little financial regulation the banking

sector occupied the most expensive piece of land in the Netherlands: the Zuidas in

Amsterdam with its rapid connection to the airport and inner city. After the 2008

financial crisis, the ING and ABN-AMRO banks in exchange for governmental aid

faced strong regulations. Instead of setting up risky ventures in foreign countries

activities were limited to the national level. As a result, the locational advantages and

reductions in travel time of the Zuidas no longer outweighed the land prices and the

banks decided to move their headquarters (Rooijers and van Rein, 2020; Stil, 2020).

The effects of regulations, fiscal benefits, and public expenditure on location choices

remains an underdeveloped branch within the studies in urban economics/economic

geography considered in this thesis. Even though it is considered in other branches

of geography and from a non-geographical perspective in public economics. Future

research should incorporate these effects and compare them to those of technological

change and trade competition in a horse race-like setting.

Welfare distribution effects

The topic of this thesis was the dynamics of agglomeration economies in relation

to channels of economic change. The motivation was the societal challenge around

the growing divergence in prosperity between regions and the associated growing

discontent, which is likely the greatest issue the field is interested in. To move from

the changes in the microfoundations of agglomeration to these welfare questions future

research should consider welfare distribution effects of agglomeration. This requires a

more fundamental shift in focus within the field.

The prime topic of urban economics and economic geography is the spatial distribution

of human activities across space. The quintessential question within this topic is

why certain places grow/decline more strongly than others. Therefore, the many

studies in the field try to identify the local building blocks of growth, like in this

thesis on the economies of agglomeration, or directly test this question on aggregate

growth measured by GDP, number of jobs, or wages following the line of Glaeser et al.

(1992)’s “Growth in cities.”, see Beaudry and Schiffauerova (2009) for an overview, or

by testing alternative explanations like human capital, see Glaeser et al. (2001) and

Florida (2002), or the development of regional competitive advantages, see Balland

et al. (2019); Rigby et al. (2022).

However, this focus on aggregate growth is rarely questioned even though one can
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wonder if it is societally justifiable that there is such a strong focus on mere growth?

It seems that here the field still largely upholds the optimist axiom of the 1950s that

“growth is a rising tide that lifts all boats.” (Piketty, 2014, p.11). Where the field made

remarkable progress since Solow (1956) by targeting his assumption on the exogeneity

of the factors that entail the Solow residual leading to productivity growth, be it

via building on the evolutionary approaches of Nelson and Winter (1982) or the new

neo-classical approach of Romer (1986), it did not target the assumption on “balanced

growth”, which suggests that every societal group profits to the same degree of this

productivity growth.

Many reasons are emerging that this assumption does not hold. Most notably, the

structural break in the 1970s-1980s that reversed trends in income inequality and wage

inequality from converging to diverging in many countries (Piketty, 2013; Alvaredo

et al., 2018). In the U.S. low-skilled workers even earn less than in 1970 when corrected

for inflation, fewer citizens can expect to be better off than their parents, and life

expectancies are decreasing (Acemoglu and Autor, 2011; Naidu et al., 2019a). Related

to this is the rise in non-employment and the associated deaths of despair, see Case and

Deaton (2015); Eberstadt (2016); Austin et al. (2018); Autor et al. (2019); Pierce and

Schott (2020), and the growing tensions between the establishment and the societal

groups that feel left behind, see Guilluy (2014); Autor et al. (2016); Florida (2017);

Austin et al. (2018); Rodrik (2018); Storper (2018); Le Figaro (2018); Rodŕıguez-Pose

(2018); De Groot (2019).21,22 The field is well aware that these issues are in relation

with the rise in spatial inequality (Glaeser, 2011; Moretti, 2012; Austin et al., 2018;

Storper, 2018; Rodŕıguez-Pose, 2018).

It is not that the growth in inequality between societal groups within regions has been

ignored in the literature used in this thesis.23 Or that there are not a few attempts

21Statistics and words fall short in describing these situations, for those who speak Dutch I can
recommend the documentary on Amiens in France by Wilfred de Bruijn entitled “Op zoek naar
Frankrijk: De Franse proteststem.”

22If one takes into account the current concerns about climate change then one can also add the
question if future societal groups benefit equally from growth as current societal groups.

23For example, Glaeser and Ponzetto (2007, p.3) state that the “heterogeneity of ability determines
decreasing returns to the size of the innovative sector, and it also predicts that the economy will
become more unequal if it becomes more innovative.” and reach the conclusion further on that “As
communication costs decline and the size of the innovative sector increases, within-city inequality
increases.” or McCann (2008, p.366) who states that “In terms of economic geography, the only
aspect in which individuals are becoming more empowered by the current processes of globalisation is
in terms of the increased ability of highly skilled individuals to move between locations in order to
reap the rewards of their human capital. A rapidly widening income gap between high- and low-skilled
individuals has already emerged within advanced economies (Scheve and Slaughter, 2007)”
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that look into inequality.24

However, by continuing to mainly focus on economic growth in research the inequality

and social discontent associated with these issues will unlikely be resolved. Now that

many authors on growth and welfare acknowledge that the fruits of progress are not

equally divided over societal groups it is also time for spatial scientists to focus on

other objectives.

From this perspective, it is very clear that following the advice of some of the rather bold

statements in the past may have numerous side effects in terms of welfare distribution

and may have actually increased inequality. For example, Moretti (2012, p.13) states

that “the best way for a city or state to generate jobs for less skilled workers is to

attract high-tech companies that hire highly skilled ones.” and Glaeser et al. (2001,

p.29) state that “Traditional cities will only succeed when they provide amenities that

are attractive to high human capital residents. In principle, it may be beneficial for

the poorer residents of a community for that community to attract wealthier residents.

After all, it cannot help the poor to live in isolated communities filled with poverty.”,

which is similar to the influential statements on attracting the so-called creative class

put forward by Florida (2002).

However, there are numerous side effects to these policy suggestions that in the end

may mean that the people one aims to help could be worse off. For example, the

statement by Moretti (2012, p.13) is based on a regional multiplier model that shows

that one high-skilled job is associated with five low-skilled jobs but one manufacturing

job only with two low-skilled jobs. Moretti (2012) claims that high-skill jobs through

consumption lead to more job creation for the low-skilled. This may make one jump

to the conclusion that investing in high-skilled jobs will automatically improve the

fate of the less fortunate. However, the world is more complex than this and there

are multiple channels that impact welfare. For example, if high-skilled workers are

stimulated then their innovations may displace middle-skilled manufacturing workers

through automation, lead to an increase in the market power of the firms that employ

these workers or lead to increases in local rents, which do not benefit those that are

not high-skilled workers or owners of innovative firms and housing stock. On the

other hand, the less skilled may profit if the influx of high-skilled leads to a safer

environment, more local prosperity due to a stronger local competitive advantage,

cheaper products, or through increased social mobility for them or their children due

24Research on this actual topic has been rather limited. Some notable exceptions are: the local
effects on social mobility, see Chetty and Hendren (2018); the rising inequality in cities, see Baum-
Snow and Pavan (2013); and the local trickle-down effects of technology investments, see Lee and
Rodŕıguez-Pose (2016).
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to local learning effects.25

These side effects are important as the resulting policy suggestions from Glaeser et al.

(2001); Florida (2002); Moretti (2012) and many others from the literature focussed on

growth, innovation, and human capital have likely helped foster the rise in inequality,

as they provide support for among others: the gentrification policies described in

Florida (2017) and Milikowski (2018) that disproportionally benefit the rich/high-

skilled and lead to the social exclusion of other groups; the changing social and fiscal

norms that allow a small share of individuals to claim a larger and larger share of the

world’s income (Piketty, 2013); and the rat race of competitiveness between countries,

respectively, regions to attract anchor firms, and capital, to the profit of the few

that control these assets, see Rodrik (2011), respectively, Moretti (2012). Taking it a

step further, to some extent one could even argue that the literature fits a so-called

neo-liberal agenda in which reducing market frictions is put forward as bringing welfare

to all, see Harvey (2006). Even though inequality tends to increase when markets

become competitive (Harvey, 2006; Piketty, 2013).26

All together these policies have likely increased the market power of high-skilled

workers, which was already increasing due to technological change and globalisation

(Brynjolfsson and Hitt, 2000; Autor et al., 2003, 2015). As Chapter 3 shows that

high-skilled workers are disproportionally located in larger cities it may be that policy

suggestions from the literature have exacerbated the very problem it aims at solving,

namely, leading spatial inequality to increase. However, we cannot be sure if we do

not fully map all side effects of policy suggestions.

Therefore, our mission as spatial scientists should not end when having identified the

factors that contribute to local growth but when we have identified to what extent

changes in these factors can be governed and to which welfare changes for different

25Note that Glaeser et al. (2001, p.29) do mention an important premise to their statement in
a footnote namely “However, it is not obvious that if cities increasingly work to attract the highly
educated the poor on net will be better off. The outcome would depend on whether positive spillovers
arising from the presence of highly educated neighbors outweigh rent increases for the poor.”. These
kinds of statements are too few in number and visibility in the literature and have not gotten the
attention they deserve.

26This narrative is most clear in the so-called people-based approach to spatial inequality, where
calls are made to reduce market frictions to migration like housing shortages and local social benefits,
see Austin et al. (2018). But it is also present in the place-based approach where the development of
regional competitive advantages is key, see Balland et al. (2019). Like in the narrative described by
Harvey (2006), this emphasises that regions are unsuccessful because of a lack of competitiveness,
i.e. unattractive for investment in innovation, rather than choices made in how the economic system
is organised. Although it is not hard to claim that the language that an author like Harvey (2006)
uses is not politically neutral, the point that the narrative of many pieces in our field is not neutral
as well remains valid and authors should consider the implications of the larger frameworks on how
research results are used in the real world.
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societal groups these lead.27 To establish this three steps need to be taken: defining

and identifying different social groups in the data; identifying and estimating the

channels through which the welfare of these societal groups are impacted following

changes in local factors of growth; estimating the extent to which public spending can

alter this distribution.

To make these extra steps there are luckily numerous ideas and concepts within and

outside the field that may help to rise to this complicated challenge of understanding

inequalities. An ideal end product would be cost-benefit analyses, that evaluate pros

and cons, even those unpriced by the market, per societal group in comparison to public

spending in policies. This is already to some extent common in Dutch infrastructural

cost-benefit analyses, which include the travel time benefits for different societal groups

at different locations.28

Identifying societal groups

For the first step, inspiration can be drawn from the many different attributes that

have been studied in labour economics, public economics, and urban studies; such as

education, labour tasks, age, gender, ethnicity, location, spoken language etc.

To move from aggregate welfare measures to group-specific welfare measures one can for

example look to labour economics, which has a long history of calculating the impact

of economic changes, like changes in trade policy or technological change, on the wages

of different types of workers. A different kind of approach from complexity economics

based on simulations is to use agent-based modelling, as suggested by Arthur (2021).

Identifying and measuring welfare channels

The greatest challenge is identifying and measuring the possible side effects of policy

suggestions or the working of local growth mechanisms. Where most academics take

up research questions by attempting to isolate the effect of X on Y, the reality is that

the world is a more complex system of interconnected phenomena. As such, influencing

X to influence Y may also lead to all sorts of side effects.

A large part of these channels may be unpriced and therefore involves estimating the

importance of positive and negative externalities. These are hard to estimate as by

27Following the line of reasoning in Piketty (2014, p.264) the key issue is not to eradicate inequalities
but to justify them. For example, encouraging a public policy on promoting a certain factor of growth
that leads to an increase in overall welfare and only a minor increase in inequality may be totally
acceptable for those elected by society to enact such a policy. However, without studying these
dynamics of inequalities there is no information on the magnitudes of public expenditure required
and changes in the distribution of welfare to act upon.

28The example of Dutch cost-benefit analyses should not be too closely followed as the costs are
often very poorly calculated. As notoriously shown by the example of the Noord-Zuid metro line in
Amsterdam, which was projected at 681 million euros but in the end cost 3.1 billion euro.
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definition these are not priced by the market. Dynamic externalities are particularly

hard to grasp and quantify as they only lead to benefits in the far future such

as diversification opportunities when main industries fall, as discussed in Chapter 4,

Vernon (1960); Glaeser (2005) and Boschma (2015). Although for dynamic externalities

on worker productivity progress has been made in De la Roca and Puga (2017). For

static externalities, hedonic pricing approaches offer possibilities to estimate the gains

captured in housing or office rents, as in the example of the shopping mall given by

Feldman (2003) or more recent elaborate approaches like Koster et al. (2012) and

Dericks and Koster (2016). Other approaches consist of measuring externalities are

based on gains by neighbouring incumbent firms after policy enactment, see Greenstone

et al. (2010); extrapolating from wage differences, see Hsieh and Moretti (2015), or

estimating the difference between marginal costs and marginal benefits, see Gyourko

and Molloy (2015). These examples show that the identification strategies commonly

used in urban economics are particularly useful in estimating these welfare gains/losses.

Although the equation of value and price/wage/revenue in these studies is questionable,

as higher wages or higher revenues do not necessarily mean that more value is created

in the economy (Mazzucato, 2019). Furthermore, the future studies should consider

multiple externalities simultaneously and their effects on different societal groups

instead of aggregate or average productivity growth.29

This also means understanding to what extent each group has access to these external-

ities, an important issue that is underresearched in the field. As discussed in Section

5.3.2, innovation studies and evolutionary approaches have already made considerable

advances in how ideas move within networks and are more productively used by some

than others, see for example Kemeny et al. (2016), but these differences are not yet

strongly linked to an inequalities perspective, i.e. to which societal groups the persons

in the networks belong.

For inspiration, urban studies contain numerous attempts and descriptions on how and

by whom space is used and can therefore interact, see for example Florida (2017) and

Milikowski (2018) for an overview. From this literature the irrefutable image arises

that knowledge is not such a public good as often assumed in the literature on growth

and agglomeration externalities, see Romer (1986); Rosenthal and Strange (2004);

Raspe and van Oort (2007). Despite the epistemic barriers, there is great advantage in

combining insights from the two sides as urban studies does not consider the welfare

gains that economic geography does consider. Or as Florida (2017, p.259) puts it we

need to see the entire picture, which “neither urban economics, with its traditional

29In transportation economics some examples exist of assessing multiple externalities simultaneously,
see Arnott (2007) and Hörcher et al. (2020).
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preoccupation with concentrated advantage, nor urban sociology, with its preoccupation

with concentrated disadvantage” can see.

Another step forward is to consider other channels of welfare than just externalities,

often limited to agglomeration externalities in the field and this thesis. Insights from

public economics suggest that welfare changes can occur through other market failures.

Notably, market power likely impacts welfare outcomes of propositions on externalities

by spatial scientists. For example, public expenditure to stimulate local knowledge

spillovers, a sort of Pigouvian subsidy on a positive externality, is often reaped by

large multinationals that hold market power such as the Amazon HQ2 bid, Danone in

the Netherlands, see Kuijpers and Thomas (2016) or the many examples by Moretti

(2012, pp.208-209). This means that attempts at correcting one market failure, i.e. a

positive externality, leads to the amplification of another type of market failure, i.e.

market power. Let alone that it also redistributes welfare towards the owners of these

companies, which may not sit well with those that enact such a policy.

Another approach on mapping multiple welfare channels may also be found in complex-

ity economics that actively tries to move away from a simple system approach in which

the focus is on the effect of X on Y to a complex systems approach in which many

factors are interconnected. These types of models have the advantage that they can

incorporate a great variety of agents and types of interactions but the disadvantage is

that they are less empirically tractable compared to models used in economics. Arthur

(2021) gives some introduction and examples of complexity economics, although the

image given here of mainstream economics can be a bit more nuanced, as also suggested

in a similar context by Naidu et al. (2019b).

Public intervention

The overview of welfare channels can be converted into cost-benefit analyses that

should also give insight into the extent to which public intervention is warranted.

Peculiarly, even the reviews on agglomeration externalities, Rosenthal and Strange

(2004); Puga (2010) and Combes and Gobillon (2015), hardly mention how to correct

for these market failures let alone the conditions in which public action is justified. To

increase the societal impact of the knowledge on agglomeration and geography the

extent to which policies can influence should be centrepiece, see also the inaugural

lecture of Hans Koster.

Most inspiration on calculating overall welfare gains of the different channels may
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likely come from public economics.30 Concepts like social welfare functions, Pareto

efficiency and Rawlsian utility are omnipresent in the microeconomics courses taught

to bachelor students but when these students become researchers specialised in urban

economics/economic geography these concepts end up on the bookshelf. These could

improve the measurement of welfare changes and help spatial scientists to take the

necessary extra step.

Conclusion

Much of the advice for future research asks spatial scientists to be more aware of ideas

in related fields. The islands that groups of academics form allow for the specialisation

and collaboration necessary to make progress in a well-defined area. However, the

interactions between authors and conference participants within a field also resemble

echo chambers where shared assumptions are questioned too little and one own’s view

of the world is confirmed.31 Breaking out of this comfort zone requires questioning

ourselves and bringing down the epistemic barriers to other fields by learning their

jargon and worldview. This does not require becoming an expert in the other fields

but knowing enough to understand each other and collaborate. This is by no means

easy but is essential for more societal impactful research.

All in all, a more humble and self-reflecting approach to research will benefit our

understanding of the world. After all, as notably discussed in Chapter 3, the world is

a complex system in which phenomena are interconnected beyond our comprehension

as it is impossible to hope that a single person can have all the knowledge to fully

understand the entire problem at hand nor all the real-world consequences of the

conclusions of our research.

30Although one can argue that the comments on the awareness of the distribution of welfare
gains also applies to the models used in microeconomics, where often a focus is on total aggregate
welfare rather than that of individual societal groups. For example, the distributional concerns for
not taxing a monopolist in Buchanan (1969) or the premise that the distribution of property rights
does not matter as total social welfare outcomes will be the same in Coase’s theorem although these
distributional concerns matter a lot for the welfare of the individual agents.

31This line of thought is somewhat related to the two opposing views by Smith (1776), discussed
by West (1964), on the division of labour, which on the one hand allows individuals to become very
adept at certain tasks but on the other hand reduces their capacity to experiment solutions for new
problems. Although in the context of Smith (1776) this relates to persons whose job has been reduced
to continuously executing a small number of tasks.
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Additional Chapter A

Improvement on the association

strength:
implementing a probabilistic measure based on combinations

without repetition.

Abstract – The use of co-occurrence data is common in various domains. Co-

occurrence data often needs to be normalised to correct for the size-effect. To this

end, van Eck and Waltman (2009) recommend a probabilistic measure known as the

association strength. However, this formula, based on combinations with repetition,

implicitly assumes that observations from the same entity can co-occur even though in

the intended usage of the measure these self-co-occurrences are non-existent. A more

accurate measure based on combinations without repetition is introduced here and

compared to the original formula in mathematical derivations, simulations, and patent

data, which shows that the original formula overestimates the relation between a pair

and that some pairs are more overestimated than others. The new measure is available

in the EconGeo package for R maintained by Balland (2016).

This additional chapter has been published as Steijn, M. P. A. (2021). Improvement on the

association strength: Implementing a probabilistic measure based on combinations without

repetition. Quantitative Science Studies, 2(2):778–794.
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A.1 Introduction
The use of co-occurrence data is popular in numerous scientific domains like sciento-

metrics (see for example Leydesdorff and Vaughan, 2006; van Eck and Waltman, 2009),

computational linguistics (see for example Schutze, 1998), community ecology (see for

example Peres-Neto, 2004), development economics (see for example Hidalgo et al.,

2007), molecular biology (see for example Maslov and Sneppen, 2002) and evolutionary

economic geography (see for example Boschma et al., 2015). Its use is widespread and

in close relation with the popularity of network analysis across disciplines.

Co-occurrence data is used to infer the relation, referred to as relatedness here following

Hidalgo et al. (2007), between entities, which can be species of fish, authors or

technological classes, by observing how each of these co-occur with others in places,

like streams, articles or patents. However, the total number of co-occurrences between a

pair of entities cannot be used straightforwardly to reflect the relatedness between them

because entities with more observations are more likely to co-occur than entities with

fewer observations. To correct for this size-effect a normalisation measure is applied

to the data.1 van Eck and Waltman (2009) review the most popular normalisation

measures and make a convincing case for the use of a probability-based measure

known as the association strength. This measure is based on dividing the observed

number of co-occurrences over the expected numbers of co-occurrences when assuming

observations are randomly distributed over co-occurrences.2

In this Chapter, it is shown that the probability formula of the association strength, as

proposed by van Eck and Waltman (2009), is not optimised to calculate the expected

number of co-occurrences. The formula of van Eck and Waltman (2009) is proportional

to probability calculations based on combinations with repetition, which means that

when estimating the probability that two entities co-occur an observation drawn

in the first draw is assumed to be available for drawing again when drawing the

second observation. However, in the use of co-occurrence data the co-occurrence

of observations from the same entity is disregarded.3 Authors, for example, do not

co-author papers with themselves (see Leydesdorff and Vaughan, 2006). Therefore, van

1Note that it depends on the goal of the research if it is necessary to correct for the size-effect
or that absolute counts are more relevant. In the research cited here and in van Eck and Waltman
(2009) normalisation is assumed to be necessary. The exact definitions of occurrences, co-occurrences
and the size-effect are given in Section A.3

2As such, a value of one indicates that exactly the same amount of co-occurrences are observed
as expected. While a value above one or below one indicates respectively a stronger relation or a
weaker relation between the two entities.

3This holds for the work referred to in this Chapter and those by van Eck and Waltman (2009).
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Eck and Waltman (2009) suggest to set these self co-occurrences to missing values.4

This makes the possibility of drawing the same observation or any other observation

from the same entity impossible in the second draw once an observation from this

entity has been drawn in the first draw.

Therefore, an improved formula for the association strength is introduced using a

probability measure based on combinations without repetition but with a noticeable

change. In combinations with repetition one can not draw an observation in the second

draw if it has been drawn in the first draw. In this setting none of the observations

belonging to the same entity as the first observation can be drawn in the second draw.

Furthermore, two refinements are proposed in this Chapter regarding the inputs to

the formula, which in the current definition do not properly take into account how the

number of observed co-occurrences are calculated.

The improved formula is compared to the original formula in a theoretical setting, a

number of simulations, and a real world application using patent data. It is shown that:

firstly, the original formula overestimates the relatedness between a pair of entities,

when this pair has one co-occurrence. This indicates that the original formula can

wrongfully identify two entities as related whereas in fact they are not; and, secondly,

the original formula overestimates the relatedness between some pairs more than other.

This indicates that the overestimation is not proportional and that the differences

between the relatedness values for each pair are also distorted.

In the theoretical analysis, the improved formula is subtracted from the original

formula, to obtain a formula for the difference. By considering the domain of each

variable, it is shown that the original formula underestimates the number of expected

occurrences in all cases and therefore overestimates the relationship between two

entities when there is at least one observed co-occurrence. Continuing the theoretical

exploration, the first order partial derivatives of the difference with respect to each

variable is taken, which shows that the overestimation is not equal across all possible

types of co-occurrence matrices.

Just taking the partial derivatives is not sufficient to show the size of the difference

for each case, as the values of the variables are interconnected in ways that do not

allow for analytical solving. Therefore, simulations are ran in which four different

exemplary cases are taken to the extreme to demonstrate the effect on the difference.

The simulations show that the overestimation by the original formula can be close

to 0% but also close to 100% of the relatedness value given by the improved formula

4In this Chapter, the suggestion is made to set them to zero, see Section A.2, which is also often
used (Ahlgren et al., 2003).
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depending on the specificities of the co-occurrence matrix.

To measure to what extent these theoretical simulations are representative of real

world applications of research on co-occurrence data, a number of patent samples,

containing data on the technology classes per document, is treated to compare the

results of both formulas. In these samples the overestimation of relatedness values for

individual pairs varies between close to 0% to up to 3.234% of the value given by the

improved formula and therefore does not attain the most extreme values obtained in

the simulation. Nonetheless, it clearly confirms that some pairs are more overestimated

than others. The results also show that some pairs are misidentified as being related

by the original formula but that this is only the case for a rather small share of the

pairs up to about 0.29% of the number of pairs identified by the original formula.

All in all, it is advisable to use the improved formula when working with co-occurrence

data, where self co-occurrences are non-existent or irrelevant. The reformulation of the

probability measure does not in any way alter the conclusion by van Eck and Waltman

(2009) that probability based measures outperform so-called set-theoretic measures in

normalising co-occurrence data. The improved measure, including the recommended

method of implementation, is available in the EconGeo package for R maintained by

Balland (2016).

this Chapter is organised as follows: Section A.2 gives a short overview of the use of

co-occurrence data and the association strength; Section A.3 discusses the refinements;

Sections A.4 to A.6 explore the overestimation by the original formula respectively in

a theoretical setting, simulations, and in a real world example using patent data; and

Section A.7 concludes.

A.2 Normalising co-occurrence data
Co-occurrence data is generally derived from a binary occurrence matrix O of some

order m× n. The rows of O correspond to the places in which the observations occur

and the columns to the entities to which they belong.5 There is a large variety of what

these places and entities can be.6 The example in Matrix 1 shows three patents that

contain a reference to, respectively, only class c; class c & class d; and all classes a to

d.

5This type of matrix in which two sets of vertices, here places and entities, are connected by the
co-occurrences in such a way that each link is between one entity and one place is also known as a
bipartite matrix in graph theory (see Latapy et al., 2008)

6There are for example occurrence matrices of: scientific publications by authors (e.g. Leydesdorff
and Vaughan, 2006) or by research institutions (e.g. Hoekman et al., 2010); countries by industries
(e.g. Hidalgo et al., 2007); streams by fish species (e.g. Peres-Neto, 2004); and patent documents by
technology classes (e.g. Boschma et al., 2015).
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Matrix 1 
Class a Class b Class c Class d

Patent 1 0 0 1 0

Patent 2 0 0 1 1

Patent 3 1 1 1 1


By multiplying the transpose of O by O itself the co-occurrence matrix C is obtained7.

In which both the rows and the columns represent the entities and the matrix gives

how often they co-occur with the other.

In the case of our example, this would yield the co-occurrence matrix C given in

Matrix 2. Where class a co-occurs once with b, c, and d; class b co-occurs once with a,

c and d; class c co-occurs once with a and b, and twice with d; and class d co-occurs

once with a and b, and twice with c.

The diagonal is set to zero as the reference to a certain class does not entail a co-

occurrence between that class and itself in the line of research for which the formula is

intended. Ahlgren et al. (2003); Leydesdorff and Vaughan (2006) and van Eck and

Waltman (2009) suggest setting the diagonal to missing values. This leads to the same

results. However, it is advisable to use zeros because missing values often results in

errors when using statistical software.8 Setting the diagonal to zero has important

implications down the line.

Matrix 2 
Class a Class b Class c Class d

Class a 0 1 1 1

Class b 1 0 1 1

Class c 1 1 0 2

Class d 1 1 2 0


In many applications of co-occurrence data, such as the concept of relatedness, the raw

numbers of co-occurrences between entities cannot straightforwardly be interpreted as

giving the strength of the relation between each pair of entities. There is a so-called

size-effect, as some classes co-occur more often with others for the simple reason that

7If the rows of O indicate the entities and the columns indicate the places where they co-occur
then it is the other way around and O should be multiplied by its transpose.

8Ahlgren et al. (2003) also mentions the option of setting the diagonal equal to the number of
times an entity occurs at least twice in a place. This option is unsuitable for probabilistic similarity
measures, like the association strength, because the number of times an entity occurs at least twice
does not entail a co-occurrence between i and j therefore when estimating the probability of a
co-occurrence between i and j one cannot draw the observations on the diagonal even though these
are added to the total, and therefore the pool of observations from which one can draw. This becomes
more clear when discussing the formula in Section A.3.
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these classes have more occurrences in the first place. Like in our example, where d

has more co-occurrences with c than with a or b but c also has more occurrences in

total and therefore is more likely to co-occur with any class.

To correct the absolute number of co-occurrences for the size-effect a normalisation pro-

cedure is applied to the data (van Eck and Waltman, 2009).9 Correcting co-occurrence

data for the size-effect to derive relationships between entities is done through direct

similarity measures.10 van Eck and Waltman (2009) wrote an extensive review on

the most popular direct similarity measures, being: the cosine, the Jaccard index,

the inclusion index and the association strength. Of these the last is a probabilistic

measure, while the others are set-theoretic measures. The authors show that set-

theoretic measures do not properly correct for the size effect and argue in favour of

the association strength.

The usability of their formula exceeds the domain of scientometrics. Hidalgo et al.

(2007) developed an influential network analysis tool to derive the relatedness between

entities on the basis of co-occurrences. Although they use a different probabilistic

direct similarity measure than the ones covered by van Eck and Waltman (2009), other

authors (e.g. Balland et al., 2015) building on the framework of Hidalgo et al. (2007)

do opt for the association strength, as defined by van Eck and Waltman (2009).11

Albeit influential, refinements to the work of van Eck and Waltman (2009) are in place.

The probabilistic formula should be based on a specific case of combinations without

repetition instead of with repetition. Furthermore, the definitions of the inputs for

the formula are imprecise. These points will be treated in the following section. It

should be noted that the refinements to the measure do not undermine in anyway the

statement of van Eck and Waltman (2009) that probabilistic measures outperform

set-theoretic measures in normalising co-occurrence data to control for the size-effect.

9In some cases, more normalisation measures are deemed necessary. For example, Neffke et al.
(2011a) who look at the co-occurrence of products in the production process of the same plant also
correct for the profitability of the respective products.

10Another option to derive similarities or relationships between entities is by comparing co-
occurrence profiles of the entities, which are known as indirect similarity measures (see van Eck and
Waltman, 2009).

11Hidalgo et al. (2007) look into the co-occurrence of specialisations in exporting industries in a
country. Their formula consists of taking the smallest value of the conditional probability of effectively
exporting product j knowing that a country effectively exports i and the conditional probability of
effectively exporting product i knowing that a country effectively exports j. This does not correctly
correct for the size effect because each conditional probability corrects for the size of only one of
the two, the former of i the latter of j, by picking the smallest of the two conditional probabilities
the other size effect still remains. Furthermore, the probability if a country meets the condition of
effectively exporting product j or i is neglected by taking the conditional probabilities. These reasons
make it understandable that other authors following the line of Hidalgo et al. (2007) have opted for
the association strength of van Eck and Waltman (2009)
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A.3 Refinement to the association strength
The objective of the association strength is to estimate the number of expected co-

occurrences for each pair assuming that these are randomly distributed and compare

this to the number of observed co-occurrences to give an indication of the relation

between a pair of entities when corrected for the size-effect. The challenge therefore is

to correctly estimate the number of expected co-occurrences per combination.

As an intuitive example Matrix 3 gives a co-occurrence matrix C in which three classes

(a, b, and c) exist and co-occur exactly once with each other:12

Matrix 3 
Class a Class b Class c

Class a 0 1 1

Class b 1 0 1

Class c 1 1 0


As each class has two observations and two possible other classes to co-occur with the

expected number of co-occurrences is logically 2
2

= 1 for each combination (a & b, a &

c, and b & c).

In this case, the matrix of expected co-occurrences is exactly the same as the matrix

of observed co-occurrences given in Matrix 3. Therefore, we observe as many co-

occurrences as expected and Observed
Expected

should be equal to one for each combination.

For the association strength, van Eck and Waltman (2009) use a simplified formula in

the main text but describe formula A.1 on p.1636:13,14

SOriginal(Cij, Si, Sj, T,m) =
Cij

(Si
T

Sj
T

+
Sj
T
Si
T

)m
, i 6= j, (A.1)

In which Si and Sj are the number of occurrences of entity i respectively j involved

in co-occurrences where i 6= j. To calculate Si one can use the row sum of row i

12This matrix C would result from our example O in Matrix 1 if one would remove class d and its
observations.

13I argue that it is more advantageous to use the full formula, which entails exactly dividing
the number of observed co-occurrences over the number of expected co-occurrences as it gives a
clear threshold of one when Observed = Expected. As such, values below one indicate that less
co-occurrences are observed than could be expected given a random distribution, whereas values
above indicate the opposite. This threshold holds in all cases, even when matrices with different
numbers of occurrences are compared. In contrast, the simplified formula would have a different value
indicating that the number of observed co-occurrences equals expected depending on the matrices,
even though it is proportional to the more detailed formula by a factor of 2m.

14This formula is also presented in rewritten form in equation 1 in Waltman et al. (2010).
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of the matrix C when the diagonal is set to zero.15 This slightly diverges from the

explanation of van Eck and Waltman (2009).16 T is the total number of occurrences

and equal to
∑n

i=1 Si with n being the total number of entities, and m is the total

number of co-occurrences and therefore equal to
∑n
i=1 Si
2

, which is half of T as each

co-occurrence involves 2 occurrences. This definition also diverges from van Eck and

Waltman (2009).17 Cij is the number of observed co-occurrences between i and j.

In essence, the denominator gives that the chance of encountering a co-occurrence

between an observation of class i and an observation of class j is equal to the probability

of first drawing one of the observations of class i out of the total number of occurrences

times the chance of drawing an observation belonging to class j out of the total number

of occurrences plus the probability of first drawing j and then i times the total number

of co-occurrences.

Calculating this formula for our example C in Matrix 3 would yield Relatedness Matrix

R given in Matrix 4 below:

Matrix 4 
Class a Class b Class c

Class a 0 1.5 1.5

Class b 1.5 0 1.5

Class c 1.5 1.5 0


It is clear that the formula does not provide the intuitive answer of 1 but actually

overestimates the relationship by returning that each pair co-occurs more often than

15Taking the column sum of column i gives the same value as the row sum of row i.
16van Eck and Waltman (2009, p. 1636) state that for Si both the number of occurrences of entity

i can be used or the number of co-occurrences in which i is involved. However, it is important to
emphasize that single occurrences, as in Patent 1 of the example O in Matrix 1, should be ignored
as these do not lead to co-occurrences. This also holds for self co-occurrences of i with i as both of
these cannot be part of Cij where i 6= j. Setting the diagonal to zero resolves both these issues. This
is also the reason that setting the diagonal equal to the number of times an entity occurs at least
twice in a place, as suggested by Ahlgren et al. (2003), is unsuitable for this probabilistic measure.

17van Eck and Waltman (2009, p. 1648) state that m should be equal to “the number of documents”.
However, this only holds when the number of documents is equal to the number of co-occurrences.
In the example O in Matrix 1 patent 1 is one document but only refers to one class so it does
not involve any co-occurrences and is therefore not equal to one co-occurrence. Patent 3, on the
other hand, is also a single document but refers to all classes a to d and therefore leads to 6 unique
co-occurrences (a&b, a&c, a&d, b&c, b&d, c&d). All together the example consists of three documents
and seven unique co-occurrences. As a result, in this case using the number of documents for m
would underestimate the expected number of co-occurrences as the probability of encountering a
co-occurrence is multiplied by a too small number of co-occurrences than are actually possible. This
explanation is the same as in Waltman et al. (2010). From this follows that the size-effect is the result
of the fact that some entities are involved in more co-occurrences than others, which means more
observations and therefore an increased likelihood to co-occur with any other entity. This means that
raw probabilities of co-occurrence cannot be compared straight away and a normalisation measure is
needed, such as the one introduced in this Chapter.
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could be expected given a random distribution.

The flaw cannot lie in the numerator, which is equal to the number of observed co-

occurrences. Therefore the problem lies in the denominator. The formula to calculate

the expected number of co-occurrences includes the possibility that when an occurrence

of a certain entity is drawn the same occurrence or another occurrence of the same

entity (if present) can be drawn in the next draw to complete the co-occurrence.

This is known as combinations with repetition. However, as self co-occurrences are

non-existent one knows that one cannot redraw the same occurrence, but also none of

the other occurrences of that class.

In the case of our example, the denominator of formula A.1 yields an expected number

of 2
3

co-occurrences. This is because the formula observes 2 occurrences for each class

and 3 possible partners to co-occur with even though there are only 2 possible partners.

Class a can co-occur with class b and class c but not with itself.18

In the case of co-occurrence data in which none of the observations belonging to the

previously drawn entity can be drawn in the second draw the correct probabilistic

measure would be formula A.2:

SImproved(Cij, Si, Sj, T,m) =
Cij

(Si
T

Sj
T−Si +

Sj
T

Si
T−Sj )m

, i 6= j, (A.2)

Here, the denominator gives that the chance of encountering a co-occurrence between

an observation of class i and an observation of class j is equal to the probability of first

drawing one of the observations of class i times the chance of drawing an observation

belonging to class j knowing that none of the observations of class i can be drawn

plus the chance of first drawing one of the observations of class j times the chance of

drawing an observation belonging to class i knowing that any other observations of

class j cannot be drawn.

The implications of using formula A.1 instead of formula A.2 are that the relatedness

between a pair is overestimated when at least one co-occurrence is observed and that

the overestimation is larger for certain pairs than others. These implications are

demonstrated and further explored in the following parts. First in a theoretic setting,

then by running simulations and concluding with the analysis of a real world example

using patent data.

18To be exact the denominator of formula A.1 would be equal to ( 26
2
6 + 2

6
2
6 )3 for each pair outside

of the diagonal in the matrix of this example.
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A.4 Theoretical exploration of the overestimation.
An obvious first notion from observing formula A.1 and formula A.2 is that there is

no difference in outcome when the number of observed co-occurrences is zero, as the

numerator Cij will then be zero.

Furthermore, it can be assumed that formula A.1 overestimates the relation between two

entities when there is at least one co-occurrence. The assumption in the probabilistic

measure of formula A.1 is that the same observation and other observations from the

same entity can be drawn again while this is not possible. This enlarges the total pool

from which observations can be drawn and therefore decreases the likelihood that a

certain co-occurrence can be drawn. This leads to the denominator, which contains

the expected number of co-occurrences, in formula A.1 being smaller than the one

in formula A.2 in all cases. As was the case for the example Matrix 3, where the

denominator indicated a co-occurrence probability of 2
3

for each pair where actually

only two options instead of three existed and therefore 2
2

should have been the answer.

Due to the smaller expected probability, formula A.1 divides the number of observed

co-occurrences over a too small number of expected co-occurrences and therefore the

relatedness between these two entities is overestimated, when at least one co-occurrence

is observed.

That the denominator of formula A.1 underestimates the expected number of co-

occurrences can also be proven analytically. The original probabilistic measure of van

Eck and Waltman (2009) in the denominator of formula A.1 is rewritten and given

in formula A.3, while the improved probabilistic measure used in the denominator of

formula A.2 is rewritten and given in formula A.4:

E(Cij)Original(Si, Sj, T ) =
SiSj
T

, i 6= j, (A.3)

E(Cij)Improved(Si, Sj, T ) =
SiSj(2T − Si − Sj)
2(T − Si)(T − Sj)

, i 6= j, (A.4)

Let Dprobability be equal to E(Cij)Improved − E(Cij)Original. It can be shown that this

difference Dprobability is equal to formula A.5.

Dprobability(Si, Sj, T ) =
SiSj(SiT + SjT − 2SiSj)

2T (T − Si)(T − Sj)
, i 6= j, (A.5)

For E(Cij)Improved to be larger than E(Cij)Original formula A.5 gives that SiT + SjT
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must be larger than 2SiSj. As Si ≥ 1, Sj ≥ 1, and T = Si + Sj + Sk + ... + Sn it is

clear that T > Si and T > Sj and therefore SiT + SjT > 2SiSj must hold.19

This means that Dprobability is positive in all circumstances, which indicates that the

improved formula predicts in all cases that more co-occurrences can be expected

between i and j. This makes sense as the improved formula excludes the possibility of

drawing a combination of i and i making it more likely to draw a combination between

i and j.

Because the number of observed co-occurrences, Cij, is divided over the number of ex-

pected co-occurrences, the original formula A.1 leads to larger results than the improved

formula A.2 in all possible cases, when Cij > 0. This can also be shown mathematically:

Let DFormula be equal to SOriginal(Cij, Si, Sj, T )− SImproved(Cij, Si, Sj, T ).20 It can be

shown that the difference DFormula is equal to formula A.8 after rewriting formula A.1

to formula A.6 and formula A.2 to formula A.7.

SOriginal(Cij, Si, Sj, T ) =
TCij
SiSj

, i 6= j, (A.6)

SImproved(Cij, Si, Sj, T ) =
2(T − Si)(T − Sj)Cij
SiSj(2T − Si − Sj)

, i 6= j, (A.7)

DFormula(Cij, Si, Sj, T ) =
(SiT + SjT − 2SiSj)Cij
SiSj(2T − Si − Sj)

, i 6= j, (A.8)

Three important notions can be derived from formula A.8. First, it is confirmed

that when there are no observed co-occurrences, i.e. Cij = 0, the difference is zero.

Second, if and only if Cij > 0 then Si ≥ Sj ≥ 1 and T ≥ Si + Sj and therefore

(SiT + SjT > 2SiSj). This indicates that formula A.1 yields larger outcomes than

formula A.2 in all possible cases, with at least one observed co-occurrence. Effectively

overestimating the relation between entity i and j. Third, for different values of Si,

Sj , Cij and T the difference between formula A.1 and formula A.2 will also vary. This

means that the difference between the formulas is not proportional for each pair but

the relatedness between certain pairs is more strongly overestimated than for other

pairs.

To explore the difference due to different values of Si, Sj, Cij and T the partial

19If entities can partially occur in a place then the values for Si and Sj can be below one but in
any case not below or equal to zero and therefore same statements hold.

20Note that the order of the original formula and the improved formula has been altered compared
to the previous calculation of the difference of the respective probabilistic measures.
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derivatives are taken of DFormula with respect to each. Because T is a function of Si,

Sj, and all other co-occurrences,
∑n

k 6=i,j Sk. T is replaced by Si + Sj + L in formula

A.8 in which L =
∑n

k 6=i,j Sk and its range is equal to or larger than zero.

The partial derivatives δDFormula
δCij

, δDFormula
δSi

, and δDFormula
δL

are respectively given in

formulas A.9, A.10, and A.11.21

δDFormula

δCij
=

(S2
i + S2

j + SiL+ SjL)

SiSj(Si + Sj + 2L)
, i 6= j, (A.9)

δDFormula

δSi
=
Cij(S

2
i Sj + S2

i L+ 2SiL
2 − 2SiSjL− S3

j − 3L− 2SiL− 2SjL
2)

S2
i Sj(Si + Sj + 2L)2

, i 6= j,

(A.10)

δDFormula

δL
=

−Cij(Si − Sj)2

SiSj(Si + Sj + 2L)2
, i 6= j, (A.11)

Given the domain of each formula, formula A.9 is always positive, and, when at least

one co-occurrence exists, formula A.10 can be positive or negative depending on the

respective inputs and formula A.11 is always negative.

This last statement suggests that a relationship between two entities will be more

overestimated by formula A.1 when there is a smaller amount of other possibilities to

co-occur with.

Despite being informative, partial derivatives give an incomplete picture of the discrep-

ancy between the two formulas as these give the direction of a function with respect

to an infinitesimal increase in one of the variables while keeping the others equal, even

though in reality it is impossible to keep the other variables equal as the inputs are all

related to each other. Necessarily Cij consists of Si and Sj, and if not all Si co-occur

with Sj then L must at least have enough occurrences to co-occur with the remaining

i and js. In other words, the following logical conditions hold: Cij ≤ min{Si, Sj};
and L ≥ |Si − Sj|. In the next section theoretical simulations are run in which these

conditions can be met.

21The partial derivatives δDFormula

δSi
and δDFormula

δSj
are very similar in the sense that one can

interchange the Si and Sj to obtain the same formula, therefore δDFormula

δSj
is not shown.
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A.5 Simulational exploration of the overestimation
For the theoretical simulations a simple co-occurrence matrix C depicted in Matrix

5 is used. Albeit it simple, this matrix allows for some exploration of the numerical

difference between formula A.1 or formula A.2 for different values of Si, Sj , Cij , and L.

In four different simulations, hypothetical and rather extreme situations are simulated

to get insight on the effects of increasing the values of each of the variables Si, Sj , Cij ,

and L, while meeting the conditions Cij ≤ min{Si, Sj}; and L ≥ |Si − Sj|.

Matrix 5 
Classes a b c d

a 0 1 1 1

b 1 0 1 1

c 1 1 0 1

d 1 1 1 0


In the first simulation, Matrix 5 is taken and the number of co-occurrences between c

& d is increased by 1 in each step k, ceteris paribus. Matrix 6 gives this simulation:

Matrix 6 
Classes a b c d

a 0 1 1 1

b 1 0 1 1

c 1 1 0 1+k

d 1 1 1 + k 0


In each step k the resulting relatedness matrix using formula A.1 is subtracted from the

resulting relatedness matrix using formula A.2 and divided over the value of formula

A.2 to express the difference in percentages. The relatedness values for the pairs a &

b, and c & d are then plotted for each step. Each of these two changing relationships

represent a different scenario:

� a & b. The changing difference in relatedness for the pair a & b simulates a

steady increase in L, keeping Cij = 1 and Si = Sj = 3. This result is depicted in

Figure A.1.

� c & d. The changing difference in relatedness between classes c & d simulates

a steady increase in Cij but also in Si and Sj, keeping L = 6. To increase Cij

beyond the maximum value of Si and Sj, Si and Sj also have to increase. From

the partial derivatives can be derived that an increasing Cij would increase the

difference whereas an increase in Si and Sj can both increase or decrease the

difference. The result of the simulation is depicted in Figure A.2.
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Figure A.1 – The difference in relatedness between the original for-
mula and the improved formula for class a & b when L increases.
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The absolute difference between the calculated relatedness of formula A.1 and formula

A.2 for the pair a & b is equal to 1/3 across the entire simulation. However, as the

number of other co-occurrences L increases, potential co-occurrence candidates increase

as well and therefore the expected number of co-occurrences for a & b decreases. As a

result, relatedness values are higher as L increases and the relative difference decreases,

as can be seen in Figure A.1.



A.5. SIMULATIONAL EXPLORATION OF THE OVERESTIMATION 301

Figure A.2 – The difference in relatedness between the original for-
mula and the improved formula for class c & d when Ccd, Sc and Sd
increase.
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For pair c & d, L remains equal to 6 but Ccd, Sc and Sd increase. Figure A.2 depicts

how the difference in the estimated relatedness increases asymptotically converging

from 33.3% to the value of 100%. As the Observed
Expected

should be close to one when two

entities are close to having 100% of the occurrences in the sample but the values of

the original formula A.1 converges to two the difference is close to 100% of the correct

value.

To simulate an increase in Cij while keeping Si, Sj , and L equal, ceteris paribus, another

simulation is needed: matrix 1 is altered by replacing the number of co-occurrences

between entities a & b and c & d by a large amount of co-occurrences x.

Then in each step k of the simulation a co-occurrence is subtracted from this amount
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x and added to the co-occurrences between entities a & d and b & c. See matrix 6.

This keeps Si, Sj and L equal but increases Cij for the relatedness between a & d.

Note that the result is insensitive to the exact value of x as the resulting change in

the denominator and numerator cancel each other out.

Matrix 7 
Classes a b c d

a 0 x− k 1 1 + k

b x− k 0 1 + k 1

c 1 1 + k 0 x− k
d 1+k 1 x− k 0


The result is a stable overestimation of 33.3% for all values of k. When a & d co-occur

more often but the total number of co-occurrences in the sample stays the same the

relatedness between a & d naturally increases. Nonetheless, the increase in relatedness

is proportional for the two formulas and therefore the difference remains 33.3%.

Lastly, an increase in Si and Sj while keeping Cij equal is simulated. The simulation

is very similar to the first simulation except that next to increasing the co-occurrences

between c & d also those between b & c is increased in each step k, see matrix 4. As a

result, Sb and Sc increases while Cbd is kept at one. L increases necessarily as well in

the form of Sc to match the added co-occurrences of Sb and Sd.

Matrix 8 
Classes a b c d

a 0 1 1 1

b 1 0 1 + k 1

c 1 1 + k 0 1 + k

d 1 1 1 + k 0


Once again the percentual difference between calculating the level of relatedness for

the pair b & d using formula A.1 and formula A.2 is stable at 33.3% for all values k.

This time the relatedness between b & d decreases as k increases because their total

number of occurrences Sb and Sd increase but their number of co-occurrences remains

1.

The simulations in this section show that the difference can range between close

to 100% and close to 0. In real world applications of co-occurrence data the bias

introduced by using formula A.1 instead of formula A.2 will be somewhere in between

the extreme scenarios simulated here. In which each respective value in the relatedness

matrix will be closer to a specific scenario than others.
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A.6 Real world data-based exploration
The theoretical and simulational explorations demonstrate that formula A.1 over-

estimates the relatedness between entities compared to formula A.2 in a way that

disproportionally affects certain pairs more than other pairs. However, the question

remains how close these examples are to real world applications.

Therefore, the outcomes of formula A.1 and formula A.2 are compared using USPTO

technology class data, see Hall et al. (2001) and USPTO, from utility patents in periods

of 5 years from 1855 to 2014.22

In the occurrence matrix O of each time period the rows indicate patent numbers

and the columns technology classes, like the example in Matrix 1. By multiplying the

transpose of O by O itself a technology classes by technology classes co-occurrence

matrix C is obtained. As before, the diagonal of C is set to zero and Si can then be

calculated as the column sum of column i or the row sum of row i.23 Next formula

A.1 and formula A.2 are calculated using the C of each time period and the results

are compared in Tables A.1 and A.2.

Tables A.1 and A.2 give a number of statistics for each time period mentioned in the

respective header. The first row gives the number of different technology classes (n)

referred to on the patents. This number is equal to the number of columns/rows in C.

The second line gives the number of pairs that have a value higher than 1 according

to formula A.1 by van Eck and Waltman (2009), these relatedness pairs have more or

just as much observed co-occurrences as expected and are therefore seen as related in

research within this domain (see for example Balland et al., 2015). The third line gives

the same statistic but employs the improved formula A.2. On line four the difference

between the number of related pairs according to each formula is given.24. Difference

(%) expresses this difference as a percentage of the number of related pairs according

to the improved formula A.2.

Focussing on these first five statistics it can be seen that in 1855 to 1859 patents made

references to 327 different technology classes and that according to formula A.1 5154

pairs of technology classes can be seen as related, while formula A.2 identifies 5150

related pairs. As a result, formula A.1 identifies 4 pairs or 4
5150
× 100 = 0.07% more as

related than formula A.2.

In later time periods the differences increase both in absolute terms as in relative

22A period of 5 years is also used by Boschma et al. (2015).
23Note that the relatedness function in the EconGeo package for R (see Balland, 2016) sets the

diagonal of the input co-occurrence matrix to zero automatically.
24Note that there are no pairs identified as related by formula A.2 that are identified as unrelated

by formula A.1, as formula A.1 > formula A.2, when Cij > 0. See also Section A.4.
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terms with a maximum in relative terms of 0.29% in 1885-1889 and a maximum in

absolute terms with 62 pairs wrongly seen as related in 1955-1959.

Next to the overestimation another problem of using formula A.1 instead of formula

A.2 is that the relatedness between some pairs is more overestimated than between

other pairs. The last four statistics explore this disproportionality. The largest

difference in value gives the largest difference in the relatedness value of a single pair

between formula A.1 and formula A.2, while its percentage counterpart gives the

largest overestimation relative to the value given by formula A.2. In relative terms

the highest over estimation is 3.23% and occurs in 2000-2004, this percentage is way

below some of the extreme scenarios simulated in Section A.5. The largest absolute

difference is 0.837 in 1860-1864.

The last two statistics are similar but give the smallest difference, when Cij > 0.25

When at least one co-occurrence exists between a pair its relation is overestimated

as already shown mathematically in Section A.4. The values are close to zero both

in absolute terms as in relative terms and therefore in strong contrast to the highest

values, showing that some pairs get more overestimated than others.

The results also show that there is not necessarily a direct connection between the

number of technology classes and the number of related pairs or the overestimation.

In 2000-2004, there is the second highest number of different technology classes, while

the number of related pairs is lower than in 1950-1954 when fewer technology classes

were in use.

When comparing these specific time periods, 2000-2004 turns out to have a much

more concentrated co-occurrence matrix C than the one in 1950-1954. In 2000-2004

each row or column i contains a few pairs with a lot of observations while others have

relatively few observations. This contrasts with the more even spread of observations

across C in 1950-1954. The average Gini coefficient per row of C in 2000-2004 is 0.936

versus 0.909 in 1950-1954.

Very much like the simulation based on matrix 7, where Si and Sj was increased while

keeping Cij equal, the pairs with little co-occurrences are less overestimated when

there are more occurrences of the same technology class with other classes, as is more

the case in 2000-2004. The pairs with relatively high numbers of co-occurrences have a

larger share of the sample in 2000-2004 compared to 1950-1954, like in matrix 6, where

Cij is increased while Si and Sj are kept equal, these pairs are more overestimated

in 2000-2004. The pairs with relatively many co-occurrences are likely to pass the

25When Cij = 0 both formulas return 0 and the difference is therefore also zero and obviously the
smallest.
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threshold of 1 using either formula, the stronger overestimation for these pairs in 2000-

2004 does not lead to much change with respect to passing this threshold. This is not

the case for the pairs with relatively fewer co-occurrences, which are less overestimated

in 2000-2004 than in 1950-1954. Therefore in 2000-2004, these are less likely to pass

the threshold irrespective of whether formula A.1 or formula A.2 is used. While in

1950-1954 these pairs are more likely to pass the threshold using formula A.1 but

not when using formula A.2. As a result, 2000-2004 has larger overestimations of

individual relatedness values but less pairs that are wrongly identified as related.

The comparison shows that using formula A.1 instead of formula A.2 in research

can lead to non-negligible differences and that some pairs and matrices are affected

disproportionally. Note that with an incorrect specification of Si, Sj and m formula

A.1 becomes even more inaccurate, see Section A.4. It is unlikely that papers employ-

ing formula A.1 instead of formula A.2 would have reached fundamentally different

conclusions but a risk is more present in some cases than others. It is recommended

to use formula A.2 in future research.
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A.7 Conclusion
Co-occurrence data is commonly used in various domains. Researchers generally

apply normalisation measures to correct for the size-effect. To this end, van Eck and

Waltman (2009) make a convincing case to use a probability-based measure known as

the association strength. In which the number of observed co-occurences is divided

over the number of expected co-occurrences, assuming that observations are randomly

distributed over co-occurences.

However, the probability formula to calculate the expected number of co-occurrences

is not suited for the co-occurrence analysis it is recommended for, which is when self

co-occurrences are non-existent or irrelevant.26 The formula assumes combinations

with repetition meaning that an observation from an entity can be drawn again after

been picked in the first draw even this occurrence nor any other occurrence belonging

to the same entity can be drawn in this line of work.

this Chapter introduces a formula that is based on, but not equal to, combinations

without repetition in which the probability of drawing entity i and j together is

calculated as the probability of drawing i first and then j, knowing that none of the

observations pertaining to i can be drawn plus the probability of drawing j and then

i, knowing that none of the observations pertaining to j can be drawn. This formula

gives the correct results, as was demonstrated in an intuitive example.

Furthermore, it is shown that the original formula overestimates the relatedness between

a pair of entities compared to the improved formula introduced here, when there is at

least one observed co-occurrence, and that the overestimation is not proportional across

pairs. Simulations show that the over estimation of the relatedness can range between

virtually 0% and almost 100% of the correct value given by the improved formula. In

a real world example, a number of patent samples showed that the overestimation of

individual values was between virtually 0% and 3.234%, while the difference in the

number of pairs that can be seen as related can be 0.29% more than the number of

pairs identified as related by the improved formula.

All in all, this Chapter shows that the formula presented here is better equipped for

the analysis of co-occurrence data. The formula, following all recommendations for

inputs and treatment, is available in the EconGeo package for R maintained by Balland

(2016).

26An interesting avenue for future research may be to more clearly determine in which situations
self co-occurrences can be disregarded or not.
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Nederlandse samenvatting
Agglomeratievoordelen staan centraal in het begrijpen van de ruimtelijke verdeling

van menselijke activiteiten. Deze voordelen voor individuen en organisaties komen

voort uit de nabijheid van anderen. De afgelopen jaren is de interesse in dit onderwerp

toegenomen omdat het verschil in inkomen tussen regio’s groeit sinds de jaren ’80.

Aan de ene kant zijn er enkele innovatieve stedelijke regio’s die sterk groeien maar ook

geconfronteerd worden met sterk stijgende huizenprijzen en buitensluiting. Terwijl er

aan de andere kant vele ruralere en meer afgelegen regio’s zijn die werkgelegenheid

en leefbaarheid zien afnemen. Ondanks deze maatschappelijke kwesties is de kennis

over agglomeratievoordelen nog sterk onderontwikkeld, met name: punt 1, via welke

mechanismes deze lokale voordelen worden overgebracht; punt 2, hoe ze veranderd zijn

over de tijd; en, punt 3, welke factoren van economische verandering ze bëınvloeden

(Glaeser, 2011; Moretti, 2012; Combes and Gobillon, 2015).

Met betrekking tot het eerste punt zijn er vele theorieën die als uitgangspunt kunnen

dienen zoals: de onderverdeling van agglomeratievoordelen van Marshall (1890) in het

uitwisselen van werknemers, producten/diensten en ideeën, die in onderzoeksvragen

#1 en #2 behandeld wordt; en arbeidsdeling, het opsplitsen van arbeidstaken over

meerdere personen, vaak toegekend aan Smith (1776), dat in onderzoeksvraag #3

behandeld wordt. Daarnaast wordt er in het laatste hoofdstuk ook onderscheid gemaakt

of agglomeratievoordelen direct tot meer productiviteit leiden of pas over langere

tijd. De colocatie van activiteiten kan namelijk ook tot nieuwe activiteiten leiden

die economische groei kunnen creëren lang nadat de relevantie van oorspronkelijke

activiteiten is afgenomen, zoals de haven van Amsterdam de kiem heeft gelegd voor de

huidige financiële sector. Dit is het onderwerp van onderzoeksvraag #4.

Empirisch is er ook een uitgebreide basis om deze conceptualisaties van agglomeratievo-

ordelen te meten. Voor onderzoeksvragen #1 en #2 kan er gebouwd worden op Ellison

et al. (2010), die hebben gemeten in hoeverre paren van industrieën samen voorkomen

in dezelfde stad en dat vergeleken met de mate waarin deze industrieën dezelfde

werknemers en ideeën gebruiken en producten/diensten van elkaar afnemen. Voor

onderzoeksvraag #3 kan arbeidsdeling inzichtelijk worden gemaakt door te kijken naar

het aantal academici, uitvinders en werknemers per, respectievelijk, wetenschappelijk

artikel, patent en baancategorie/industrie en in relatie tot de mate van ruimtelijke

concentratie van deze activiteiten. Voor onderzoeksvraag #4 kan er omtrent de evolutie

van nieuwe activiteiten uit voorgaande activiteiten gebouwd worden op een uitgebreide

literatuur met betrekking tot relatedness (gerelateerdheid) dat de mogelijkheid biedt

om te meten in hoeverre twee activiteiten vergelijkbare vaardigheden en kennis vereisen.
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Door nieuwe datatechnieken toe te passen zoals Optical Character Recognition (OCR)

wordt er in dit proefschrift gedetailleerdere data over een grotere tijdspanne verzameld

waardoor het niet alleen mogelijk is om de agglomeratiemechanismes accurater te

meten dan voorgaande literatuur, zie punt 1, maar vooral om inzicht te geven in de

verandering van de relevantie van deze agglomeratiemechanismes over de tijd, zie punt

2.

De grootste uitdaging van dit proefschrift is echter met betrekking tot punt 3, het verk-

laren van de verandering in agglomeratiemechanismes, omdat de theoretische literatuur

en empirie hierover niet eenduidig zijn. Om dit op te lossen pas ik in dit proefschrift

ideeën toe uit aanpalende vakgebieden: arbeidseconomie, complexiteitstheorie en

innovatiewetenschappen.

Een belangrijk inzicht hieruit is dat innovatie niet incrementeel is maar af en toe

onderbroken wordt door radicale uitvindingen die de economie ingrijpend veran-

deren (Helpman and Trajtenberg, 1998). De derde industriële revolutie, bijgenaamd

de computerrevolutie, verhoogde namelijk vooral de efficiëntie van innovatieve en

kennisintensieve werknemers en bedrijven die zich vaker richten op timing-kwaliteit-

differentiatie van niche producten (Brynjolfsson and Hitt, 2000; Autor et al., 2003). Dit

ging juist ten koste van routinematige werknemers en bedrijven die zich vaker richten

op prijs-differentiatie door middel van gestandaardiseerde massaproductie. Technol-

ogische vooruitgang in combinatie met het wegnemen van handelsbarrières hebben

ook geleid tot toenemende importconcurrentie uit lagelonenlanden die met name ook

concureren op prijs met massaproductie (Bloom et al., 2016). Deze transformatie

in hogelonenlanden heeft waarschijnlijk ook geleid tot veranderingen in de relevantie

van bepaalde agglomeratiemechanismes. Een andere veelvoorkomende uitleg in de

stedelijke economie is de daling van transportkosten die nabijheid minder belangrijk

kan maken, zeker met betrekking tot het verplaatsen van goederen (Glaeser and

Kohlhase, 2004). Daarom wordt in vraag #2 gekeken in hoeverre veranderingen in

importconcurrentie, technologische veranderingen en transportkosten van goederen

samenhangen met de (veranderingen in de) agglomeratiekrachten van Marshall.

Industriële revoluties hebben zeer waarschijnlijk ook een grote invloed op arbeidsdeling.

De relatie tussen ruimtelijke concentratie en arbeidsdeling is afhankelijk van twee

samenhangende componenten; de mate in welke twee personen elkaar moeten ontmoeten

om de vruchten van hun arbeidstaken uit te wisselen en de mate in welke arbeidstaken

over meerdere mensen verdeeld kan worden (Smith, 1776; Hausmann et al., 2014). De

literatuur toont dat mensen meer behoefte hebben elkaar fysiek te ontmoeten als de

kennis die uitgewisseld wordt nieuwer en complexer is en vertrouwen moet worden

opgebouwd tussen personen (Storper and Venables, 2004). Ook is er de tendens dat
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met de voortschrijding van kennis personen zich moeten specialiseren een nauwer

afgebakend vakgebied en daardoor moeten samenwerken om nieuwe doorbraken te

bewerkstelligen omdat het voor één persoon niet meer mogelijk is om al die kennis

te hebben (Jones, 2009). Wat suggereert dat complexe economische activiteiten zich

steeds meer in grote steden concentreren. Dit wordt uitgezocht in onderzoeksvraag

#3.

Industriële revoluties zijn ook perioden waarin het ontwikkelen van activiteiten vitaal

is voor regio’s omdat als zij gespecialiseerd zijn in activiteiten die niet meer kunnen

concurreren er een diepe crisis kan ontstaan en werkgelegenheid en leefbaarheid kan

afnemen (Boschma, 2015). Crises kunnen dus ook een factor van economische veran-

dering zijn. De literatuur suggereert daarbij dat steden met een diverse economie

bestaande uit veel verschillende industrieën meer combinaties van kennis en vaardighe-

den kan maken om nieuwe activiteiten te ontwikkelen. Ook is er in casestudies

gesuggereerd dat er in dit soort steden minder dominante spelers uit één industrie zijn

die nieuwe ontwikkelingen kunnen blokkeren (Grabher, 1993; Neffke et al., 2018). Door

te bouwen op grootschalige data-analyses wordt gekeken in hoeverre diverse steden

anders diversificeren dan gespecialiseerde steden in onderzoeksvraag #4.

Onderzoeksvraag #1 In hoeverre is de relevantie van elk van Marshalls

agglomeratiekrachten veranderd in de loop van de tijd?

In het eerste hoofdstuk, in samenwerking met Hans Koster en Frank van Oort, wordt

ingegaan op de drie bronnen van agglomeratievoordelen die Marshall (1890) beschreef:

arbeidsmarktdeling, verticale relaties en kennisuitwisseling. Voortbouwend op Ellison

et al. (2010) wordt er gekeken per paar van industrieën in hoeverre vestigingen van

elk in dezelfde steden voorkomen en dat vergeleken met proxies voor arbeidsmarkt

deling en verticale relaties. Deze proxies zijn, respectievelijk, de correlatie in het

aandeel werknemers per baancategorie tussen industrieën en het aandeel producten

dat de ene industrie aan de ander afneemt/toelevert als proxies voor, respectievelijk,

arbeidsmarktdeling en verticale relaties. Voor kennisuitwisseling gebruiken wij geen

patencitaties als proxy, zoals de voorgaande literatuur, maar technological relatedness

omdat deze alleen gebruik maakt van de technologieën die vermeld zijn op de patenten

en normaliseert voor de grootte van beide industrieën. Voor deze maatstaf zijn een

nieuwe formule en code voor R ontwikkeld, zoals uitgelegd in de bijlage van dit

proefschrift.

Voor dit hoofdstuk is een uitgebreide longitudinale dataset met consistente indus-

trieclassificatie en administratieve grenzen samengesteld voor de 363 grootste steden

in de V.S. gedefinieerd als Metropolitan Statistical Area (MSA) zoals vastgesteld door

het Censusbureau van de V.S. Door met OCR data te verzamelen van gescande docu-
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menten uit het verleden is het mogelijk om terug te gaan tot 1970 voor coagglomeratie,

Marshalls agglomeratiekrachten, controlevariabelen en instrumentele variabelen. De

controlevariabelen meten de gezamenlijke afhankelijkheid van verscheidene geografis-

che inputs buiten de vervaardigingsindustrie die ook coagglomeratie kunnen bepalen.

Bijvoorbeeld omdat twee industrieën beiden afhankelijk zijn van dezelfde grondstoffen

of infrastructuur als havens. De controlevariabelen worden ook gebruikt om andere

controlevariabelen waarvoor geen data is te simuleren zoals voorgesteld door Oster

(2019). Instrumentele variabelen zijn nodig omdat coagglomeratie mogelijk niet het

gevolg maar de oorzaak kan zijn van Marshalls agglomeratiekrachten. Een vestiging kan

bijvoorbeeld dezelfde soort werknemers inhuren nadat ze in de buurt van een andere

industrie zijn gaan vestigen in plaats van andersom. Door data te verzamelen over de

soort technologieën en werknemers die industrieën gebruiken in regio’s waar een andere

industrie niet aanwezig is kan geschat worden welk deel van de arbeidsmarktdeling en

kenniswisseling onafhankelijk is van de coagglomerende industrie. Deze zogenaamde

ruimtelijke instrumenten zijn niet beschikbaar voor verticale relaties omdat data over

het aanbod en gebruik van industrieën op lokaal niveau niet beschikbaar is.

De resultaten laten zien dat gemiddeld tussen 1970 en 2014 arbeidsmarktdeling de

belangrijkste reden voor coagglomeratie is gevolgd door kennisuitwisseling en verticale

relaties. Deze volgorde is omgekeerd ten opzichte van de resultaten van Ellison et al.

(2010) die data uit 1987 en een andere proxy voor kenniswisseling gebruikten. De

analyses laten ook zien dat technological relatedness ook empirisch een sterkere proxy

is voor kennisuitwisseling dan patent citaties.

Het interessantst zijn de ontwikkelingen over tijd. Tussen 1970 en 2014 is kennisuit-

wisseling een steeds belangrijkere factor geworden voor coagglomeratie. Dit is de eerste

keer dat deze trend gedocumenteerd wordt terwijl die door een uitgebreide literatuur

gesuggereerd wordt als de belangrijkste reden dat geografische nabijheid relevanter

is geworden in een tijd dat het digitaal mogelijk is om de hele wereld te bereiken.

Tegelijkertijd neemt het belang van arbeidsmarktdeling en verticale relaties af over

dezelfde periode.

Onderzoeksvraag #2 Waarom is de relevantie van elk van Marshalls ag-

glomeratiekrachten veranderd over de tijd?

In het eerste hoofdstuk wordt ook ingegaan op de redenen achter de gedocumenteerde

trends in Marshalls agglomeratiekrachten. Waar de literatuur eensgezind is over de

trend in kennisuitwisseling zijn er verschillende verwachtingen uitgesproken over trends

in arbeidsmarktdeling en verticale relaties. Zo verwacht Moretti (2012) dat met het

toenemende opleidingsniveau van werknemers arbeidsmarktdeling belangrijker wordt

als vestigingsreden terwijl Faggio et al. (2017) in een doorsnedeanalyse laten zien dat
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kennisintensieve bedrijven juist arbeidsmarktdeling minder belangrijk vinden. Dit

komt volgens hun, op basis van de nursery city hypothese van Duranton and Puga

(2001), omdat arbeidstaken minder gestandaardiseerd zijn en werknemers daarom

lastiger in te wisselen zijn met nabijgelegen bedrijven terwijl kennisuitwisseling in

die fase erg belangrijk is. De verschuiving naar een kennisintensievere economie zou

dan betekenen dat arbeidsmarktdeling minder belangrijk wordt. Verticale relaties

zijn in de verwachting van McCann and Fingleton (1996) en Duranton and Storper

(2008) belangrijker geworden omdat just-in-time leveringen en face-to-face contact in

handelsrelaties belangrijker zijn geworden. Aan de andere kant suggereert Glaeser and

Kohlhase (2004) dat de dalende trend van de transportkosten van goederen ertoe zal

leiden dat bedrijven met verticale relaties niet meer dichtbij elkaar hoeven te zitten.

Een andere reden waarom verticale relaties in belang afnemen zijn de bevindingen van

Faggio et al. (2017) dat verticale relaties minder belangrijk zijn voor kennisintensieve

bedrijven geeft.

Deze discussie laat zien dat er nog veel onenigheid heerst in het veld met betrekking

tot het belang van nabijheid en agglomeratievoordelen in het bijzonder. Uitgangspunt

hierbij zijn transportkosten. Als die afwezig zijn is het namelijk niet de moeite

waard de hoge kosten van land in steden te betalen. Transportkosten bestaan uit

monetaire kosten, zoals de prijs van een vrachtwagen of treinkaartje, en tijdskosten,

het productiviteitsverlies van een persoon die reist bijvoorbeeld om face-to-face af te

spreken. De factoren die het eerste bëınvloeden zijn relatief makkelijk vast te stellen.

De factoren die het tweede bëınvloeden zijn een stuk lastiger vast te stellen maar

omdat het salaris een goede indicator is van tijdskosten is het hier toepasselijk om

ideeën uit de arbeidseconomie toe te passen.

In dat vakgebied is veel aandacht voor de trend in stijgende inkomensongelijkheid

tussen hoogopgeleiden en lager opgeleiden sinds het einde van de jaren ’70 van de vorige

eeuw als gevolg van technologische ontwikkeling en importconcurrentie (Autor et al.,

2015). Waar de industriële revolutie omtrent elektriciteit leidde tot massaproductiepro-

cessen die gestandaardiseerd waren en veel laag- en middenopgeleide werknemers voor

routinematige taken zocht leidde de computerrevolutie juist tot een groeiende vraag

naar hoogopgeleide werknemers die nieuwe producten en productieprocessen konden

ontwikkelen en programmeren die weer veel routinematige banen wegautomatiseerden

(Goldin and Katz, 1998; Brynjolfsson and Hitt, 2000). Importconcurrentie uit lagelo-

nenlanden erodeerde de concurrentiepositie van arbeidsintensieve laagtechnologische

vestigingen in hogelonenlanden verder. Hiermee stegen de lonen juist voor creatieve

hoogopgeleide werknemers en aangezien deze face-to-face contact nodig hebben om

ideeën uit te wisselen is het belangrijk voor deze werknemers om dicht bij anderen
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te zijn. Technologische vooruitgang en importconcurrentie vormen daarom logische

oorzaken voor de gedocumenteerde trends in Marshalls agglomeratiekrachten naast de

eerdergenoemde daling in de transportkosten van goederen.

Qua data en maatstaven wordt technologische vooruitgang gemeten door het aandeel

werknemers met grotendeels routinematige taken te meten per industrie en over de

tijd, zie Autor et al. (2015). Importconcurrentie uit lagelonenlanden wordt gemeten

door het aandeel producten gëımporteerd uit lagelonenlanden, gedefinieerd als landen

die 15% van het bnp per hoofd van de bevolking hebben van de VS, in het totaal

van de import van producten per industrie en over de tijd, zie Bernard et al. (2006).

Voor de transportkosten van goederen gebruiken we het aandeel van de uitgaven aan

transportbedrijven in het totaal van uitgaven per industrie en over de tijd.

Ook in deze analyse is er risico op wederzijdse causaliteit. Industrieën die namelijk

sterk coagglomeren vanwege een bepaalde Marshalliaanse agglomeratiekracht kunnen

juist inzetten op technologische investeringen en importsubstitutie. Verder kan een

laag aandeel aan transportkosten ook komen doordat industrieën bij elkaar zitten

om verticale relaties te onderhouden. Om dit tegen te gaan worden er instrumenten

ontwikkeld die, respectievelijk, meten: wat het aandeel routinematige werknemers

is in gebieden waar industrieën niet zijn om van een bepaalde agglomeratiekracht

gebruik te maken, zoals de ruimtelijke instrumenten eerder; het aandeel import uit

lagelonenlanden in andere hogelonenlanden; en de gemiddelde waarde van een ton aan

producten van een industrie. De redenering achter dit laatste instrument is dat bij een

hoge waarde van een ton transportkosten minder relevant zijn in de totale prijs.

Ook in deze analyse wordt gecontroleerd voor onmeetbare ontbrekende variabelen

in navolging van de methode van Oster (2019) worden er namelijk twee variabelen

toegevoegd die de kapitaalintensiteit en uitgaven aan R&D meten. Deze variabelen kan

men als proxy controls zien, zie Angrist and Pischke (2008), omdat ze deels het effect

oppakken van technologische ontwikkeling en importconcurrentie. Ook hier wordt de

data verzameld van 1970 tot 2014 en waar nodig omgezet naar dezelfde industriële

classificatie voor consistentie.

Qua methodologie wordt een vernieuwende twee-staps-methode toegepast. In de

eerste stap wordt per industrie en tijdsperiode een coëfficiënt geschat voor elk van

de agglomeratiekrachten. Met acht periodes en 140 industrieën levert dit 1.120

observaties op per agglomeratiekracht die in de tweede stap worden gebruikt als

afhankelijke variabele waarbij de maatstaven voor technologie, handel en transport

de onafhankelijke variabelen zijn. Om standaardfouten te berekenen wordt gebruik

gemaakt van boot-strapping.



NEDERLANDSE SAMENVATTING 315

De resultaten tonen dat technologische vooruitgang en importconcurrentie van sterke

invloed zijn op arbeidsmarktdeling in negatieve zin en kennisuitwisseling in positieve zin.

Dit suggereert dat de opkomst van (computer)technologie en handelcompetitie sinds

de jaren ’70 sterk verbonden is met de neergang van arbeidsmarktdeling en de opkomst

van kennisuitwisseling als coagglomeratiemotief. Dit is in lijn met de verwachtingen op

basis van de resultaten over kennisintensieve industrieën van Faggio et al. (2017). Voor

verticale relaties blijken, in tegenstelling tot de verwachtingen van Glaeser and Kohlhase

(2004), transportkosten van goederen geen belangrijke factor te zijn. De enige variabele

die een statistisch en economisch significante invloed heeft op verticale relaties is

importconcurrentie. Dit lijkt echter niet te komen omdat dit tot meer kennisintensieve

industrieën leidt, zoals op basis van Faggio et al. (2017) verwacht kan worden, omdat

in aanvullende analyses andere variabelen voor kennisintensieve eigenschappen, zoals

R&D uitgaven en vaardigheid van werknemers, net als technologische vooruitgang ook

geen rol spelen. Wel blijkt dat vooral importcompetitie invloed heeft op toeleverende

verticale relaties. Dit suggereert dat het belang van coagglomeratie voor verticale

relaties afneemt omdat lokale toeleveranciers worden vervangen door toeleveranciers

uit lagelonenlanden.

Onderzoeksvraag #3: Concentreren complexe economische activiteiten zich

in grote steden?

In dit hoofdstuk, in samenwerking met Pierre-Alexandre Balland, Cristian Jara-

Figueroa, Sergio Petralia, David Rigby en César Hidalgo, staat arbeidsdeling als

agglomeratievoordeel en voortschrijdend menselijk inzicht als factor van economische

verandering centraal. Arbeidsdeling wordt meestal geassocieerd met Smith (1776)

maar de eerste noties ervan waren al bekend bij Plato en Aristoteles in de Griekse

oudheid. Door arbeidstaken over een groter aantal personen te verdelen kan ieder

zich specialiseren in een kleinere subset van taken en stijgt de efficiëntie van de

productie. Door de vruchten van ieders taken uit te wisselen lukt het één ieder om

meer producten/diensten te hebben dan als één ieder zelfstandig zou produceren.

Als voor deze uitwisseling fysieke nabijheid nodig is kan de verhoogde productiviteit

degenen compenseren voor hogere locatiekosten. Zo vergeleek Smith (1776) bewoners

van de Schotse hooglanden waar ieder huishouden zowel brouwer, slager als bakker

was met stadsbewoners waar dit zelfstandige beroepen zijn.

De enorme groei van steden van de afgelopen decennia suggereert dat fysieke nabijheid

in arbeidsdeling alleen maar belangrijker is geworden. Dit terwijl de transport-

en communicatiekosten dusdanig zijn afgenomen dat ook de huidige bewoners van

de Schotse hooglanden zich kunnen specialiseren en niet meer alles zelf hoeven te

produceren.
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De belangrijkste reden hiervoor is volgens een uitgebreide literatuur dat face-to-face

contact niet vervangen kan worden door telecommunicatie om complexe informatie

over te brengen en vertrouwen tussen personen op te bouwen en dat deze twee aspecten

steeds belangrijker zijn geworden (Storper and Venables, 2004; McCann, 2008; Glaeser,

2011). Om de groei in steden te begrijpen is het dus nodig om te begrijpen waarom

beide redenen voor face-to-face contact belangrijker zijn geworden. Een groot deel van

de literatuur in de stedelijke economie doet dit door kwantitatieve maatstaven als het

aantal patenten en R&D uitgaven te meten en te tonen dat deze activiteiten geografisch

meer geconcentreerd zijn dan andere menselijke activiteiten, zowel in de economische

geografie/stedelijke economie, zie Carlino and Kerr (2015) als in de literatuur gebaseerd

op machtswetten (power laws) zie Bettencourt et al. (2007). Echter is er een grote

verscheidenheid in de complexiteit van kennis per patent of R&D activiteit en biedt dit

geen theoretische fundering om te begrijpen waarom beide redenen voor face-to-face

contact belangrijker worden.

Hierom worden in dit hoofdstuk meetbare maatstaven voorgesteld om de kwalitatieve

aspecten van kennis te meten gebaseerd op ideeën uit innovatie studies en complexiteit-

stheorie. Zo tonen Breschi and Lissoni (2001) aan dat face-to-face contact met name

belangrijk is als de organisatie van taken, terminologie van informatie en vertrouwen-

srelaties nog relatief onbekend zijn. Verder laat Jones (2009) zien dat over tijd met de

voortschrijding van menselijk inzicht binnen het onderzoek het onmogelijk is voor één

persoon om van alle (sub)disciplines alles te leren om op de grens van de menselijke ken-

nis te zitten. Om toch tot nieuwe uitvindingen te komen specialiseren uitvinders zich

in een steeds beperktere set van (sub)disciplines en werken ze samen met steeds grotere

teams om alle puzzelstukjes van kennis bij elkaar te leggen. In de complexiteitstheorie

brengen Fleming and Sorenson (2001) deze beide componenten samen door te laten zien

dat patenten innovatiever zijn als ze meer verschillende stukken kennis samenbrengen,

N , en stukken kennis die minder vaak samen gebruikt zijn, K. Hausmann et al. (2014)

gebruiken een vergelijkbare denkwijze en bouwen voort op arbeidsdeling door te stellen

dat welvarendere landen niet per se slimmere mensen hebben maar een complexer

netwerk tussen personen waardoor deze zich specifieker kunnen specialiseren en er een

grotere hoeveelheid puzzelstukjes kennis op vernieuwendere wijze bij elkaar kunnen

worden gebracht.

Om de universaliteit van deze principes en diens relatie tot de ruimtelijke concentratie

van activiteiten in kaart te brengen, ontwikkelen wij maatstaven voor vier verschil-

lende activiteiten: werk; de productie van goederen/diensten; het publiceren van

wetenschappelijke artikelen; en het doen van gepatenteerde uitvindingen. De maat-

staven die we hierbij gebruiken zijn: het aantal jaren onderwijs dat een werknemer
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heeft genoten voor de activiteiten werk en productie en het aantal teamleden voor

wetenschap en uitvindingen. Daarnaast worden in aanvullende analyses voor patenten

ook de NK-maatstaf van Fleming and Sorenson (2001) gebruikt en het jaar dat een

subklasse is gëıntroduceerd. Voor al deze maatstaven geldt dat de hoger deze is de

meer de benodigde kennis complexer is en over meer personen verdeeld dient te worden

die face-to-face contact nodig hebben om vertrouwen op te bouwen en kennis uit te

wisselen.

Qua methodologie wordt de machtswet aanpak van Bettencourt et al. (2007) gevolgd.

Dit houdt in dat er regressies worden gedraaid om het verband tussen de natuurlijke

logaritme van de omvang van een bepaalde activiteit en de natuurlijke logaritme van de

omvang van de lokale bevolking te meten voor 363 steden in de V.S., weer gedefinieerd

als MSA. Als de coëfficiënt op bevolking groter dan 1 is dan houdt dit in dat de

activiteit superlineair schaalt. I.e. een stad met twee keer zoveel inwoners heeft meer

dan twee keer zo’n grote activiteit en is daarom ruimtelijk geconcentreerd in grote

steden.

In een eerste stap tonen we, net als voorgaande literatuur, dat het aantal werknemers,

het bnp, het aantal patenten en wetenschappelijke artikelen superlineair schaalt. Voor

werk is dit slechts een factor 1, 04 maar voor wetenschappelijke artikelen is dit zelfs

1.54. In een tweede stap wordt gekeken hoe de schaalfactor varieert ten opzichte van

de complexiteit binnen elk van deze activiteiten. De resultaten laten zien dat banen en

industrieën waarvoor meer jaren onderwijs nodig is en patenten en wetenschappelijke

artikelen waarvoor grotere teams zijn de schalingsfactor hoger is. Ditzelfde geldt voor

patenten met een hogere NK-maatstaf of met technologische subklassen met een

recenter jaar van introductie. Dit toont duidelijk aan dat complexere economische

activiteiten zich meer concentreren in grote steden.

In een derde stap kijken we naar ontwikkelingen in de schalingsfactor over de tijd

door de patentdata te gebruiken die teruggaat tot 1850. Deze analyse laat zien dat

complexe activiteiten zich steeds meer in grote steden zijn gaan concentreren en dat dit

proces met name versnelt gedurende industriële revoluties. Waarschijnlijk omdat dan

de hoeveelheid nieuwe combineerbare kennis toeneemt door de radicale veranderingen

in de economie. Ook valt op dat na de derde industriële revolutie, bijgenaamd de

computerrevolutie, de minst complexe patenten juist steeds meer verspreid over de

ruimte worden aangevraagd in plaats van ook te concentreren in grote steden. Dit

kan komen doordat communicatietechnologieën wel een goede vervanger zijn voor het

uitwisselen van minder complexe informatie die voor dit soort patenten nodig zijn,

zoals ook voorspeld door Leamer and Storper (2001).
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Voor beleidsmakers toont de toenemende complexiteit van innoveren en de vraag voor

grote steden die daaruit voorkomt hoe ingewikkeld het is geworden voor kleinere regio’s

om ook complexe activiteiten aan te kunnen trekken en daarmee de groeiende kloof

van ruimtelijke ongelijkheid te dichten.

Onderzoeksvraag #4: In hoeverre vertonen diverse steden ander diversifi-

catiepatronen ten opzichte van gespecialiseerde steden tijdens crises?

In dit hoofdstuk, in samenwerking met Pierre-Alexandre Balland, David Rigby en

Ron Boschma, staat het dynamische aspect van agglomeratievoordelen en het effect

van lokale crises gedurende periodes van technologische verandering centraal. Het

ontwikkelen van nieuwe activiteiten, het zogenaamde diversificeren, als oude special-

isaties in een regio werkgelegenheid verliezen is een centraal thema in het evolutionaire

perspectief op regionale weerbaarheid (Boschma, 2015).

De belangen rondom dit onderwerp zijn groot zoals bijvoorbeeld de tegengestelde

groeipaden van Boston en Detroit laten zien. Waar Detroit sinds 1970 duizenden

banen en inwoners verloor toen de dominante auto-industrie neerging wist Boston zich

te ontwikkelen tot een innovatieve stad toen daar de lokale vervaardigingsindustrie

aan werkgelegenheid verloor, zie Glaeser (2005); Hill et al. (2012). Tegelijkertijd lukt

het steden als Parijs, Amsterdam en New York om gedurende eeuwen de grootste stad

van het land te zijn ondanks grote crises en veranderingen in de economie. Wat is hun

geheim?

In de literatuur is bekend dat regio’s vaak voortbouwen op kennis en vaardigheden die

in vorige activiteiten nuttig waren, zoals het eerdergenoemde ontstaan van de financiële

sector in Amsterdam uit de zakelijke dienstverlening rondom havenactiviteiten uit het

verleden. Verder is er anekdotisch bewijs, zie Vernon (1960) en Grabher (1993), dat

in gespecialiseerde regio’s nieuwe ontwikkelingen worden geblokkeerd doordat spelers

uit de dominante industrie grote invloed hebben op beleid en ondernemerschap. Wat

betreft crises is bekend dat diverse regio’s vaak minder hard geraakt worden omdat er

meer sectoren zijn die werknemers uit geraakte sectoren over kunnen nemen. Het is

echter nog de vraag in hoeverre regio’s minder diversificeren gedurende crises of de

focus dan meer op gerelateerde activiteiten ligt en in hoeverre diverse steden hierbij

verschillen.

Het feit dat dit onderwerp nog niet systematisch onderzocht is komt doordat het tot

voor kort moeilijk was om een kwalitatief gegeven als gerelateerd en ongerelateerd te

definiëren en dat er nog niet zoveel data hiervoor beschikbaar was. Door te bouwen op

het concept relatedness, waarvoor in de bijlage van dit proefschrift een nieuwe formule en

R code is ontwikkeld, kan meetbaar gemaakt worden hoe gerelateerd twee technologieën
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aan elkaar zijn. De formule vergelijkt of twee technologieklassen vaker in dezelfde

gepatenteerde uitvinding gebruikt worden in vergelijking met een willekeurige verdeling

van technologieklassen over patenten. De doorbraak in databeschikbaarheid komt voort

uit de HISTPAT-database (Petralia et al., 2016) waar uit gescande patentdocumenten

de locatie is gewonnen. Hierdoor is er data sinds 1836 beschikbaar en kan de focus

gelegd worden op de drie grootste crises die de V.S. gekend heeft: de lange depressie

(1873-1879), de grote depressie (1929-1934) en de eerste oliecrisis (1973-1975).

De data worden voorbereid door tijdsperioden te onderscheiden in groei- en crisispe-

rioden voor steden in de V.S., weer gedefinieerd als MSA, die een voldoende aantal

patenten hebben om als technologisch actief te worden gezien. Dit wordt gedaan

door het aantal patenten per stad per jaar te tellen en dan met de boom-bust cyclus

algoritme van Harding and Pagan (2002) onder te verdelen in afwisselende perioden

van groei en crisis. Als een lokale crisis voorkomt buiten de genoemde drie grote crises

dan wordt deze verwijderd om alleen lokale crises over te houden die zeer waarschi-

jnlijk met algemene verzwakte economische omstandigheden te maken hebben. Per

stad-tijdsperiode wordt gekeken welke technologieën in een technologisch portfolio

aanwezig zijn en welke niet. In de volgende tijdsperiode van dezelfde stad wordt dan

gekeken of de niet aanwezige technologieën nu wel in het technologisch portfolio zijn

opgenomen. Als dit het geval is krijgt de variabele binnenkomst de waarde één en

anders de waarde nul. De diversiteit van een stad wordt gemeten door de Relative

Diversity Index (RDI) van Duranton and Puga (2000).

Qua methodologie wordt dan een entry model gebruikt om de dichotome variabele

voor binnenkomst te regresseren op de gerelateerdheid ervan ten opzichte van de

technologische portfolio van de stad in de vorige periode gëınteracteerd met een dummy

variabele voor crisis en de RDI plus controlevariabelen. Deze controlevariabelen zijn de

aanwezigheid van gerelateerde technologieën in nabije steden, de centraliteit van een

stad in het uitvindersnetwerk en de totale bevolking van de stad. Om deze logistische

regressies uit te voeren is een nieuwe package voor R geschreven, fastlogitME, die

sneller en efficiënter dan vorige packages de marginale effecten kan berekenen bij grote

datasets zoals in dit hoofdstuk.

De resultaten laten zien dat steden gedurende crises minder diversificeren en wanneer ze

dat wel doen zijn het vooral gerelateerde technologieën die binnenkomen. Dit suggereert

dat er tijdens een crisis minder fondsen beschikbaar zijn om nieuwe en ongerelateerde

activiteiten te ontplooien. Dit komt overheen met de demand-pull hypothese in de

lange golf literatuur, zie Schmookler (1966) en Freeman et al. (1982). Met betrekking

tot diversiteit laten de resultaten zien dat diverse steden meer diversificeren, ook

gedurende crises. Dit komt boven op het voordeel dat diverse steden al hebben
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namelijk dat er meer potentiële technologieën gerelateerd zijn omdat de technologische

portfolio’s diverser zijn. Dit bevestigt de vermoedens van eerdere studies dat er

waarschijnlijk meer openheid en draagvlak voor nieuwe ideeën is in diverse regio’s

(Grabher, 1993; Neffke et al., 2018). Deze voordelen van diversiteit doen een licht

schijnen op huidige diversificatiestrategieën zoals de Horizon 2020 programma’s van

de EU omdat het bevorderen van diversiteit geen deel hiervan uitmaakt terwijl het

regio’s wel wendbaarder kan maken in tijden van crises.

Conclusie

In dit proefschrift zijn er op basis van bijdragen aan de theorie, data, methodologie, R

code en empirie vier grote onderzoeksvragen omtrent de dynamiek in agglomeratievo-

ordelen en de factoren van economische veranderingen beantwoord. De belangrijkste

inzichten zijn hierbij dat uit hoofdstuk 1 blijkt dat arbeidsmarktdeling en verticale

relaties minder belangrijke coagglomeratiemotieven zijn geworden en kennisuitwisseling

juist belangrijker. De eerste en laatste lijken vooral het resultaat van het kennisinten-

siever worden van de economie door technologische verandering en importconcurrentie.

Verticale relaties lijken vooral bëınvloed te worden doordat lokale leveranciers vervan-

gen worden door leveranciers uit lagelonenlanden. Uit hoofdstuk 2 blijkt dat complexe

activiteiten steeds meer in grote steden plaatsvinden een belangrijke reden hiervoor

lijkt de steeds grotere arbeidsdeling in een steeds complexere economie en de daaruit

voortvloeiende behoefte voor face-to-face contact. Uit hoofdstuk 3 blijkt dat crises

ervoor zorgen dat regio’s minder nieuwe activiteiten ontplooien en wanneer dat wel

gebeurt dit vooral gerelateerde activiteiten zijn. Diverse steden tonen daarbij meer

capaciteit te hebben om te diversificeren.

Dit proefschrift laat hierbij zien dat er veel mogelijkheden zijn om kennis uit stedelijke

economie en evolutionaire economische geografie te combineren om vooruitgang te

boeken. Dit terwijl de twee vakgebieden minder vaak samenwerken dan men zou

verwachten gezien de overlap in interesses. In de aanbevelingen voor vervolgonderzoek

wordt ingegaan op de respectievelijke voordelen en vooroordelen bij elk vakgebied,

waarbij stedelijke economie vooral voordelen biedt om empirische identificatiestrategiën

te verbeteren en beleid te evalueren en evolutionaire economische geografie meer oog

heeft voor hoe regionale economieën veranderen en een bredere theoretische invalshoek

heeft.

In de aanbevelingen voor vervolgonderzoek wordt er ook ingegaan op het heroriënteren

van het onderzoek in economische geografie en stedelijke economie om beter de groeiende

ongelijkheid, de aanleiding van dit proefschrift, te begrijpen. Het vakgebied boekt

namelijk veel vooruitgang bij het begrijpen van factoren van groei, zoals agglomer-

atievoordelen, maar het heeft een blinde vlek wat betreft de verdeling van de vruchten
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van die groei over verschillende groepen in de maatschappij. Door meer te differ-

entiëren naar wie er toegang heeft en profiteert van agglomeratievoordelen kan er in de

toekomst meer vooruitgang worden geboekt in het begrijpen van de stijgende ongeli-

jkheid tussen en binnen regio’s en kunnen de consequenties van beleidsaanbevelingen

per bevolkingsgroep beter worden begrepen.

Al met al blijken agglomeratievoordelen alleen maar relevanter te worden in een tijd

waarin steeds meer activiteit op het internet plaatsvindt en leidt dit tot een groeiende

ongelijkheid tussen regio’s. Dit proefschrift laat zien dat dit waarschijnlijk met name

komt door het toenemende belang van fysiek contact voor het uitwisselen van ideeën

dat belangrijker wordt in een alsmaar competitievere en complexere economie waar

kennis en vaardigheden van een steeds groter aantal mensen samen moet worden

gebracht om te innoveren en produceren. De kennis en vaardigheden die regio’s daarbij

hebben uit hun verleden spelen een belangrijke rol in hun mogelijkheden om nieuwe

activiteiten en werkgelegenheid te creëren, waarbij diverse regio’s een voordeel hebben

ten opzichte van gespecialiseerde regio’s.
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