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Summary 

Photovoltaic solar energy is one of the fastest growing renewable energy resources 

which is being adopted by households and large organizations alike. Encouraging 

citizens to switch to this renewable energy source requires an understanding of the 

factors that influence this phenomenon. Technology hereby plays an important role 

to comprehend the complex process and present it in a way that is straightforward 

for both policymakers and citizens to recognize and realize. Moreover, integration of 

this energy source into the existing power grid, implies the need for strategies aimed 

at identifying new routes that minimize visual and environmental impact, cost and 

social concerns related to new infrastructures. Addressing all these aspects requires 

an interdisciplinary approach. In this context, the impact of using Geographic 

Information Systems (GIS) for evaluating the present status, solar potential, policy 

implications and future tools is investigated in this thesis. 

Chapter 2 presents a method to evaluate the present status of small and medium 

scale rooftop solar photovoltaic (PV) installations in the Netherlands. Artificial 

Intelligence (AI) specifically, Deep Learning (DL) algorithms and geo-spatial 

techniques are applied on very high-resolution aerial imagery to detect PV 

installations. The information that is currently missing from the national PV register 

could be supported with data gathered from this method to complete the database. 

It is shown that the use of Deep Learning algorithms alone is not sufficient to 

produce reliable results but in combination with geo-spatial analysis, the results are 

more consistent. The method therefore is termed GeoAI. The effect of variations in 

aerial images used in the process along with the quality of ancillary data is discussed. 

The precision and recall rates of the DL model were evaluated at an average of 0.93 

and 0.92 respectively. Use of post-processing techniques was found to be integral to 

detect and allocate panels to the corresponding roofs and was instrumental in 

improving the results by at least 50%. Overall, GeoAI methods produce fast and 

consistent results which can give an overview of the present status of rooftop PV 

installations which can then be quickly scaled-up to create nation-wide datasets.  



vi 

In addition to the currently installed capacity, another important factor is the solar 

potential. It useful to access the maximum possible deployable rooftop solar capacity 

which means that it can help immensely in urban planning for building energy 

neutral buildings, or even energy generating buildings in the future. A GIS based 

method to estimate solar potential is presented in Chapter 3. This method is quite 

useful for estimating solar potential on existing buildings or future building plans 

and it can be used to also calculate the potential on building façades. In this method 

rooftops are classified based on amount of irradiation received and potential 

capacities have been calculated accordingly using different production capacities. 

Rooftop solar potential for the city of Apeldoorn was estimated at 319 MWp, with a 

potential energy yield of 283.9 GWh for the year 2015. In combination with the 

results from Chapter 2, the left-over or unused potential on buildings can be 

estimated.  

The potential estimation is based on the ArcGIS based solar radiation model, which 

uses various assumptions which thus needs to be validated. Atmospheric parameters 

that can be controlled within this model are diffusivity and transmissivity. These 

values need to be calibrated and validated to produce results closer to reality. 

Chapter 4 shows how this has been conducted for the Netherlands using the ArcGIS 

solar radiation tool. GIS based solar radiation models offer flexibility in terms of level 

of detail in the analysis which is dependent on the resolution of the input data. The 

results show that the default values of diffusivity and transmissivity used by the 

model lead to substantial underestimation or overestimation of solar insolation. 

Monthly calibration leads to higher accuracies and is useful for high-resolution 

(spatial and temporal) energy profile generation. The effect of spatial resolution on 

the results of radiation modelling within the tool was explored and related to 

processing time and quality of the output. The estimated irradiation values could be 

improved up to 20% depending on the time scales used in the model 

In Chapter 5 the most fundamental component of GIS, i.e., “visualization” has been 

explored. PV system data gathered through crowd sourcing over multiple years has 

been processed, mapped, and analysed using various visualization techniques to 

evaluate their performance and monitor them. Effects of data stretching during 

visualization has been addressed and discussed. Data stretching during visualisation  
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could lead to different interpretation of the results. Specific yields and performance 

ratios of the systems from five countries have been mapped creating a seamless 

transition of data visualization. Variations in yield and performance ratios over the 

years were observed with higher values in 2015 compared to 2014 and 2016 due to 

higher irradiation values. 

The theoretical estimation on solar potential is obviously good to have. However, the 

usefulness and reliability of such data in aiding and regulating policies takes 

precedence. On the other hand, understanding the effectiveness of current policies 

in driving the diffusion of this technology further, is another question that is helpful 

in visualizing the driving factors behind adoption and for adjusting the future 

policies accordingly. GIS when incorporated to evaluate the effectiveness of policies 

can determine the realistic potential of the technology. One such policy, i.e., the 

Postal Code Rose policy, which was in effect till April 2021 was evaluated using 

economic and geographic parameters in Chapter 6. Multicriteria decision analysis 

was implemented in a GIS environment for the city of Apeldoorn with information 

regarding the technical potential and social factors such as income, value of the 

house, electricity demand and neighbours with solar installation. It was observed 

that by fully applying the Postal Code Rose policy ~77% of the total electricity 

demand of Apeldoorn could be covered by solar PV under the assumptions specified 

in the chapter. The chapter demonstrates the potential of GIS for use in such complex 

analysis. With the availability of more data on other factors contributing to the 

diffusion, the model can be adapted to incorporate new data and knowledge in order 

to re-assess the effect of policy potential.  

Chapter 7 shows the capability of GIS in modelling and mapping of scenario studies 

in the context of self-consumption and greenhouse gas (GHG) reduction potential. 

Scenarios relating to PV rooftop utilization, battery storage systems, energy demand 

and electric vehicle demand were evaluated for 88 neighbourhoods in the city of 

Utrecht, The Netherlands. The results have been mapped to visualize the PV 

integration capabilities within the neighbourhoods. Large variations were observed 

with self-consumption ranging between 34% and 100%, which in turn is highly 

dependent on available rooftop for PV siting. This could be further increased with 

electric vehicles (12%) and batteries (25%)  Furthermore, avoided life cycle GHG 
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emissions were on an average about 17 tCO2-eq per household. The visualization of 

potential areas for PV integration clearly shows the power of spatial models. The 

results therefore can be used for targeting area specific investments and policies. 

To summarize, the different spatial-data science techniques that are inherent to GIS 

have been applied in photovoltaic solar energy. In particular, GIS-based studies for 

practical implementation in support of the energy transition have been explored. In 

addition, the bottlenecks with regards to this multi-disciplinary approach, the gap 

between technology and policy is addressed in this thesis. To conclude, the 

prospective of using spatial science is imperative to be able to answer questions 

related to the energy transition leading to a sustainable future. 
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Samenvatting 

Fotovoltaïsche energie (PV) is één van de snelst groeiende bronnen van duurzame 

energie die steeds meer wordt toegepast, zowel binnen huishoudens als grote 

organisaties. Om burgers aan te kunnen moedigen om over te gaan op deze bron van 

duurzame energie, is begrip van de factoren die dit fenomeen beïnvloeden 

noodzakelijk. Technologie speelt hierbij een grote rol om het complexe proces te 

kunnen begrijpen en dit te kunnen presenteren aan beleidsmakers en burgers op een 

manier die voor hun herkenbaar en behapbaar is. Bovendien vereist de inpassing van 

deze energiebron binnen het bestaande elektriciteitsnet het gebruik van strategieën 

die gericht zijn op het identificeren van nieuwe routes die de impact beperken op het 

milieu, visuele beleving, kosten en maatschappelijke zorgen wat betreft deze nieuwe 

infrastructuur. Om rekening te kunnen houden met al deze aspecten is een 

interdisciplinaire benadering nodig. Daarom is in dit proefschrift onderzocht wat de 

impact is van het gebruik van Geografische Informatie Systemen (GIS) voor de 

evaluatie van de huidige installaties, zonnepotentie, beleidsimplicaties en 

toekomstige hulpmiddelen. 

In Hoofdstuk 2 wordt een methode gepresenteerd om de huidige status van kleine 

tot middelgrote fotovoltaïsche (zon-PV) installaties op daken in Nederland te 

evalueren. Kunstmatige Intelligentie (AI) – in het bijzonder Deep Learning (DL) 

algoritmes – en GIS analyse zijn toegepast op zeer hoge resolutie luchtfoto’s om zon-

PV installaties te detecteren. Informatie die momenteel nog mist binnen het 

nationale zon-PV register zou op deze manier kunnen worden aangevuld. Het 

gebruik van alleen Deep Learning algoritmes is nog niet voldoende om tot 

betrouwbare resultaten te komen, maar in combinatie met GIS analyse zijn de 

resultaten consistenter. De methode wordt daarom GeoAI genoemd. Zowel het effect 

van variaties binnen de gebruikte luchtfoto’s, als de kwaliteit van aanvullend 

materiaal worden besproken. De precision en recall-rates van het DL model werden 

beoordeeld op een gemiddelde van respectievelijk 0,93 en 0,92. Het gebruik van GIS 

analyse bleek een integraal onderdeel te zijn van het detecteren en toewijzen van 
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panelen aan de juiste daken en droeg bij aan het verbeteren van de resultaten met 

ten minste 50%.In het algemeen levert GeoAI snelle en consistente resultaten die een 

overzicht kunnen geven van de huidige status van zon-PV installaties op daken. De 

methode kan ook snel worden opgeschaald voor het maken van een nationale 

dataset. 

Naast de huidige capaciteit van gerealiseerde installaties is zonnepotentie een andere 

belangrijke factor. Het is belangrijk om te weten wat de maximum mogelijke 

capaciteit van zon-PV op daken is. Dit is essentieel bij planologische vraagstukken 

over de bouw van energieneutrale woningen of toekomstige gebouwen die energie 

kunnen opwekken. Een GIS methode om zonnepotentie in te kunnen schatten wordt 

beschreven in Hoofdstuk 3. Met deze methode kan de zonnepotentie goed ingeschat 

worden van bestaande woningen of toekomstige bouwplannen. Het kan ook gebruikt 

worden om de zonnepotentie te berekenen van façades van gebouwen. Bij deze 

methode worden rooftops geclassificeerd op basis van de ontvangen zoninstraling en 

zijn potentiële capaciteiten dienovereenkomstig berekend met behulp van 

verschillende productiecapaciteiten. Voor de jaar 2015, was het zonnepotentie op het 

dak voor de stad Apeldoorn op 319 MWp geschat, met een potentiële 

energieopbrengst van 283,9 GWh. Samen met de resultaten van Hoofdstuk 2 kan zo 

een schatting worden gemaakt van de ongebruikte zonnepotentie van gebouwen. 

De zonnepotentie berekening is gebaseerd op het zoninstralingsmodel dat 

ingebouwd is in ArcGIS. Deze maakt gebruik van enkele aannames. De atmosferische 

parameters diffusie en transmissie in de atmosfeer moeten hiervoor gekalibreerd en 

gevalideerd worden om realistische resultaten te krijgen. Hoofdstuk 4 laat zien hoe 

deze controle is uitgevoerd voor Nederland met behulp van ArcGIS. 

Zoninstralingsmodellen in GIS applicaties zijn flexibel afhankelijk van de ruimtelijke 

resolutie van de input. De resultaten laten zien dat de standaardwaarden van diffusie 

en transmissie die door het model worden gebruikt, leiden tot een aanzienlijke 

onder- of overschatting van de zoninstraling. Maandelijkse kalibratie leidt tot hogere 

nauwkeurigheid en is nuttig voor het genereren van energieprofielen met een hoge 

resolutie (ruimtelijk en tijdelijk). Er is onderzocht wat het effect van de gebruikte 

ruimtelijke resolutie op het stralingsmodel van de tool is, gerelateerd aan de 

rekentijd en de kwaliteit van de output. De geschatte bestralingswaarden kunnen 
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worden verbeterd tot 20%, afhankelijk van de tijdschalen die in het model worden 

gebruikt.  

In Hoofdstuk 5 wordt het belangrijkste aspect van GIS verkend: “visualisatie”. Data 

van zon-PV systemen, verzameld door crowdsourcing over enkele jaren, was 

verwerkt, gekarteerd en geanalyseerd met verschillende visualisatie technieken. Het 

effect van het oprekken van waarden voor visualisatie wordt besproken, evenals hoe 

dit kan leiden tot verschillende interpretaties van dezelfde resultaten. Specifieke 

opbrengst en performance ratio’s van de systemen van vijf landen zijn in kaart 

gebracht als demonstratie van data visualisatie. Variaties in opbrengst en 

performance ratio’s door de jaren heen werden waargenomen met hogere waarden 

in 2015 in vergelijking met 2014 en 2016 als gevolg van hogere instralingswaarden. 

Het beschikbaar hebben van een theoretische inschatting van zonnepotentie is 

handig. De data moet bovenal bruikbaar en betrouwbaar zijn om beleid te kunnen 

reguleren en ondersteunen. Aan de andere kant is het nuttig om het effect van huidig 

beleid te begrijpen bij de verdere ondersteuning van zon-PV technologie. Op deze 

manier kunnen de achterliggende mechanismes van diffusie van zon-PV worden 

geïdentificeerd, waarop toekomstig beleid ook op kan worden aangepast. Wanneer 

GIS wordt ingezet om het effect van reguleringen te evalueren, kan de realistische 

potentie van de bijbehorende technologie ook bepaald worden. Eén van deze 

reguleringen was de Postcoderoosregeling, die van kracht was tot april 2021. In 

Hoofdstuk 6 wordt deze regeling geëvalueerd met behulp van economische en 

geografische parameters. Hiervoor is met behulp van GIS een multicriteria-analyse 

geïmplementeerd voor de stad Apeldoorn. Hierbij is informatie over de technische 

potentie en sociale factoren gebruikt zoals inkomen, WOZ-waarde, energiebehoefte 

en buren met zon-PV installaties. Uit de analyse bleek dat als de 

Postcoderoosregeling overal zou zijn toegepast, ongeveer 77% van de totale 

elektriciteitsvraag opgewekt zou kunnen worden met zon-PV installaties. Het 

hoofdstuk laat de potentie van GIS zien in een complexe beleidsanalyse. Wanneer er 

meer data beschikbaar komt, of andere factoren rond zon-PV diffusie bekend zijn, 

kan het model worden aangepast om deze nieuwe data en kennis te gebruiken voor 

revaluatie.     
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Hoofdstuk 7 presenteert de potentie van GIS bij het modelleren en in kaart brengen 

van scenariostudies in de context van eigen verbruik van PV systemen en het 

reductiepotentieel van broeikasgasemissies (GHG). Scenario's met betrekking tot 

het gebruik van PV-daken, batterijopslagsystemen, de energievraag en de vraag naar 

elektrische voertuigen werden geëvalueerd voor 88 buurten in de stad Utrecht in 

Nederland. De resultaten zijn in kaart gebracht om de mogelijkheden van PV-

integratie in de wijken te visualiseren. Er werden grote variaties waargenomen van 

eigen verbruik tussen 34% en 100%, welke voornamelijk afhankelijk zijn van het 

beschikbare dakoppervlak voor zon-PV installaties. Elektrische auto’s kunnen het 

aandeel eigenverbruik verhogen met 12% en batterijen met 25%. De vermeden 

broeikasgasemissies over de levenscyclus zijn gemiddeld 17 tCO2-eq per woning. Het 

op deze manier visualiseren van potentiële gebieden voor PV-integratie laat de 

kracht zien van ruimtelijke modellen. De resultaten kunnen gebruikt worden voor 

gerichte gebiedsspecifiek investeringen en ondersteunend beleid. 

Samenvattend zijn er verschillende GIS technieken toegepast op het gebied van 

fotovoltaïsche zonne-energie. In het bijzonder is GIS onderzoek gedaan om de 

praktische implementatie van de energie transitie te ondersteunen. In het 

proefschrift worden de knelpunten van een multidisciplinaire aanpak en de kloof 

tussen technologie en beleidsvorming blootgelegd. Tenslotte, het inzetten van GIS 

analyse is essentieel voor het beantwoorden van vraagstukken rond de energie 

transitie dat nodig is voor een duurzame toekomst.  
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Nomenclature 

Abbreviation Description 

AHN Actueel Hoogtebestand Nederland 

AHP Analytical Hierarchy Process 

AI Artificial Intelligence 

BAG Basisregistratie Adressen en Gebouwen 

BIPV Building Integrated Photovoltaics 

BRT Basisregistratie Topografie 

BSRN Baseline Surface Radiation Network 

CNN Convolution Neural Network 

CO2-eq Carbon dioxide equivalent 

COP Conference of Parties 

DEM Digital Elevation Model 

DL Deep Learning 

DT Digital Twins 

DTM Digital Terrain Models 

EFE Emission factor of electricity 

EV Electric Vehicles  

FCN Fully Convolution Network 

FN False negative 

FP False positive 

GBPV Ground-based Photovoltaics 

GHG Greenhouse gas 
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Abbreviation Description 

GIS Geographic Information Systems  

GIS4PV Geographic Information Systems for Photovoltaics 

IEA International Energy Agency 

IoT Internet of Things 

KNMI Royal Netherlands Meteorological Institute 

LiDAR Light Detection and Ranging 

LOD Level of detail 

MCDA Multi-criteria decision analysis 

nDSM Normalized Digital Surface Model 

OGC Open Geospatial Consortium  

PC4  Postal code 4 

PC6 Postal code 6 

PIR Productie-installatieregister 

POA Plane of array 

PR Performance ratio 

PV Photovoltaics 

RES Regional Energy Strategy 

SCR Self-consumption ratio 

SDE Stimulering Duurzame Energieproductie 

SOC State of charge 

SSR Self-sufficiency ratio 

TN True negative 

TP True positive 

UNFCCC  United Nations Framework Convention on Climate Change 

VGI Volunteered Geographic Information 
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Abbreviation Description 

VIVET 
Verbetering van de Informatievoorziening voor de 
Energietransitie 

 

Symbol Notation Unit 

DBESS  battery storage capacity degradation % 

Edemand electricity demand Wh 

GHGmfg emissions from manufacturing the total system CO2-eq 

GHGneighb. life cycle GHG emiss. from a neighbourhood perspective CO2-eq 

GHGsystem life cycle GHG emissions from an elec. sys. perspective CO2-eq 

GHImeas Measured Global Horizontal Irradiation  Wh/m2 

GHImod Modelled Global Horizontal Irradiation  Wh/m2 

MBE Mean bias error 

 

Pdirect-consumed direct self-consumed PV power W 

PB charge power charged to battery W 

PB discharge power discharged from battery W 

PD Percentage difference % 

Pdemand power demand W 

PPV PV produced power W 

PPV neighb.  used PV power from a neighbourhood perspective  W 

PPV system  used PV power from an elec. sys. perspective  W 

t time step  

 

Yf final system yield kWh/kWp 

Yr Reference yield kWh/kWp 

Δt  time step of 5 min min 
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1.1. Motivation 

The world of energy is changing. A marked shift in the way we produce and consume 

energy is becoming evident [1]. Until the 18th century renewable energy was the only 

form of energy resource but with the industrial revolution, the exploitation of fossil 

fuels began. While already noticed at the beginning of the 20th century that CO2 

emission would potentially lead to a temperature increase of the planet, it took 50 

years before people began to realize that fossil fuels are not going to last forever, and 

are damaging the environment causing adverse effects as climate change [2]. 

After the Paris agreement of 2015 at the United Nations Framework Convention on 

Climate Change (UNFCCC) Conference of Parties (COP), many countries have 

started investing heavily in renewable energy technologies. European Union’s (EU) 

initial strategy to keep global warming below 2°C was to cut greenhouse gas 

emissions by 20%, increase the total energy consumption from renewable energy by 

20% along with 20% increase in energy efficiency, all by 2020 [3]. In spite of many 

efforts in this direction, data suggests that global energy related carbon-dioxide 

emissions rose by 1.6% in 2017 which is not on par with the climate goals [4]. With 

increasing urgency to meet climate challenges, recently EU committed to climate 

neutrality by 2050 and a more ambitious target of emissions reduction of at least 

55% compared to 1990 [5]. A recent report by the International Energy Agency (IEA) 

explored the requirements to nudge the world on a path to net-zero emissions stating 

that numerous amendments must be realized simultaneously across all parts of the 

energy sector [6]. This calls for more efficient and rapid deployment of technologies 

and appropriate policies especially, to tackle issues with energy transitions [7].  

1.2. Solar PV – Driving future electricity supply 

Photovoltaic (PV) solar energy is one of the fastest growing renewable technologies 

to supply sustainable energy and decarbonize the power sector. PV systems generate 

electricity using solar cells which convert energy from the sun (photons) into a flow 

of electrons by the photovoltaic effect. The electricity thus produced can be used 
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directly, fed into the electricity grid, or for charging a battery for later use. PV 

technology is modular and thus can be deployed from the lowest scale, i.e., 

household level, to a very large scale, i.e., utility power plants. Improvements in the 

production process and efficiency have lowered the costs of solar panels enormously. 

Residential PV systems are the most common and these small-scale (up to 15kW) 

installations are all mostly connected to the grid. Building Integrated Photovoltaic 

(BIPV) systems are now starting to replace conventional building materials [8,9] in 

parts like roofs [10], facades [11] and windows with PV in spite of challenges [12].  

 

  

Figure 1-1– Cumulative installed solar capacity in GW for five countries from 2010-2019. Data 

source BP [13].  
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Globally, installed PV capacity reached about 758 gigawatts (GW) by the end of 2020 

[14]. In the Netherlands, the capacity stands at 10 GW by the end of 2020, 2.9 GW 

alone accounting for 2020 in spite of the outbreak of the global pandemic [15]. The 

World Energy Outlook 2020 report by the IEA declares PV as the forerunner in 

renewable energy [6]. In countries like China, India, the Netherlands, and the United 

States this growth has been remarkable in the past decade (Figure 1-1) and PV 

installations are still on the rise. Moreover, forecasts predict that with the right policy 

measures, there could be a further large growth for PV. However, for PV to expand 

to its full potential it might be required to combine policy and technology in an 

efficient manner. 

1.3. Geographic Information Systems – Driving future 

analytics 

Geography is the interaction between people and the environment, and their 

relationship with places. In addition, physical processes that occur on Earth and 

which influence climate are heavily dependent on geography. But how can we 

understand and visualize these complex interactions? In addition, in today’s world, 

which is so closely connected and yet has many uncharted boundaries relating to 

demography, environment, climate businesses, governments etc., there is huge 

amount of data at play. Here, spatial analysis plays an important role, revolutionizing 

the way we think about location, aiding decision-making and in delivering location-

based services. 

Over the past decades, mapping has evolved from finding one’s way to one’s 

destination to a completely new way on how we look at location. The first simple 

spatial analysis started from paper maps in 1854, when John Snow mapped out the 

locations of deaths caused due to cholera and found that they were clustered around 

public wells; this was the beginning of a new study known as epidemiology [16]. Now, 

with digital maps we are able to do incredibly much more. Instead of dealing with 

papers, we can store maps, visualize them and switch between layers of data in these 
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maps with ease. This layer handling to mapping approach is an integral part of 

Geographic Information Systems (GIS).  

 

 

Figure 1-2: Example of site suitability analysis for installation of wind turbines, conducted by 

grading various criteria such as wind energy potential, distance from natural environments, 

distance from urban areas, distance from places of interest, distance from electricity grid, 

distance from road network, landscape architecture, land cover type, and slope of terrain. The 

map shows suitability on a scale of 1 to 10, with 1 being least suitable and 10 denoting most 

suitable areas for wind turbine installation. Source: E.O.N [17] 

 

GIS is a framework or system for capturing, storing, managing, analyzing and 

visualizing geographic or spatial data from simple locations to complex information 

[18]. Data can be stored in map layers, for example roads, political boundaries, 

building footprints, satellite imagery, terrain, utility lines, weather station data etc., 
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With spatial data, one knows “what” information is present along with “where” it is, 

which is essential for rational decision making.  

GIS has evolved from merely a map making or a decision support tool to a 

sophisticated combination of spatial science and technology. For example, GIS can 

be used for locating suitable sites for installation of wind turbines [17] as shown in 

Figure 1-2 or for estimating the environmental or economic effects of policy on 

technology adoption. 

1.4. Integrating GIS and PV 

Analyses like finding the right market for solar PV, suitable locations for deployment 

of PV, effects of PV integration with the grid in real time, PV forecasting, economic, 

environmental or policy effects on PV diffusion, etc., are highly data driven. Data 

needed for these types of analyses is very diverse, decentralized, huge and sometimes 

comes with privacy issues. Proper data storage, management, analysis, and 

visualization techniques are needed to deal with such data and analysis. In addition, 

if the data can incorporate spatial components besides the temporal context, new 

insights can be explored. For example, Van der Kam et al. show the significance of 

including geographical context in studying the diffusion of PV and Electric Vehicles 

(EV) and its implications for the energy transition [19]. In another study, the 

performance of PV modules based on irradiance time series data was analyzed in 

combination with life cycle assessment studies to map the environmental footprint 

of the modules over large geographic areas and observed spatial variations in module 

performance and environmental impact [20]. Location-based data in combination 

with powerful analytics is the key to smart decision making: one can perform 

scenario analysis to investigate spatial consequences or restrictions of policy 

decisions. For example PV performance indicators in combination with spatial 

analysis in GIS revealed that performance losses corelate to urban compactness 

indicators and seasonality [21]. Trend analysis is being used in combination with 

spatial patterns to build predictive models to help address various issues related to 

data collection, climate change [22,23], PV adoption, etc. This type of information 
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can easily be adapted to study various scenarios for the growth of PV technology, 

make changes in governance and policy for faster diffusion of PV. 

Generally, integrating GIS and energy system modelling can provide a picture of the 

total energy system also incorporating future energy landscapes [23]. But, to 

understand spatio-temporal dynamics of aspects like energy demand, capacity and 

demand patterns of energy or return on investments or even environmental impacts, 

it is important to fully integrate space and time into an energy system modelling 

process instead of simply using them as additional parameters [24]. Therefore, this 

thesis focuses on four aspects of employing GIS techniques for PV: 1) present PV 

status, 2) potential estimation, 3) Monitoring and Analysis and 4) Policy integration 

and scenario management. These are discussed below. 

1.4.1. Present PV status 

Transition to sustainable energy does not stop at a country border and hence needs 

to be implemented at various geographic levels; global, European, regional, national 

and local [25]. This calls for data and information related to energy to be available 

and accessible to everyone involved in energy transition to resolve the bottlenecks 

[26]. 

Information pertaining to installed capacity with locations helps in making 

necessary changes to the grid infrastructure for the future. So far in the Netherlands, 

only Statistics Netherlands (Centraal Bureau voor de Statistiek) publishes this 

information at a regional level with the help of various registers. However, 

information regarding installations at small-scale consumers is not complete due to 

registration of PV systems not being a norm [27].  

GIS is particularly useful in these cases for detecting PV installations from rooftops 

with the help of satellite and/or aerial images or with the help of volunteered 

geographic information (VGI) to aid in supplementing information of the registers 

or to monitor the status of these installations automatically. With technical 

advancements in machine learning image recognition tasks are very fast and 

accurate. Until now, this has been static information. Furthermore, data from smart 
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meters also help in monitoring the energy system. Most network companies in the 

Netherlands have already or are busy with digitizing their infrastructure and are 

incorporating the spatial component to detect faults and provide quick and precise 

support to increase network operational efficiency and reduce costs. 

A realistic picture of the present PV status at various spatial levels (neighborhood, 

municipality, province, etc.) aids in rolling out customized policies to achieve the 

energy transition goals. Moreover, this information is also useful to create 

awareness, promote sustainable energy and allows for transparency and a robust 

energy monitoring system. 

1.4.2. Potential estimation 

Potential estimation studies are important to evaluate the scope of PV penetration. 

Besides the realized installed capacity, estimation of as of yet unused potential helps 

in utility planning, formulating future adaptive energy policies, arranging financial 

schemes, etc. A recent report evaluated the PV potential studies conducted till date 

in the Netherlands and presented the spatial potential for PV installations based on 

key registers. This study provides an extensive survey of the potential on different 

land use types along with a technical evaluation on potential energy generation based 

on system typologies [28]. However, only an estimate of roof obstructions was 

considered in this study. If detailed terrain modelling was incorporated, the results 

could have been less uncertain. 

GIS based solar radiation mapping using spatial interpolation techniques can be 

useful where ground measurements are unavailable [29] or for accurately estimating 

rooftop solar potential [30]. In recent times with the availability of high-resolution 

data (10 cm) GIS is being extensively employed for solar radiation modelling on 

rooftops [31] apart from site suitability analysis [32]. 3D models incorporating 

complex roof structures and surroundings to account for shade are being modelled 

to generate realistic scenarios for PV energy production [33–36]. Although these 

techniques can produce good results, problems relating to scaling, data enormity and 

homogeneity still exist. Data, methods, assumptions, and level of analysis determine 
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the quality and type of potential estimation. In addition, these methods have been 

tested on smaller areas and have not been upscaled to national levels.  

1.4.3. Monitoring and Analysis 

GIS provides very dynamic and powerful visualization techniques to view and 

analyze data. The set of cartographic and spatial analysis tools within GIS offers 

numerous possibilities for data visualization, management, assessment, and 

predictions. Data imported in a GIS environment has the capability to provide 

insights based on spatial relationships between the data objects, see Figure 1-3.  

 

Figure 1-3– Tabular data combined with location information illustrating spatial patterns. 

Data displayed is PV installations per municipality for 2019 as a density map. Data source 

[37] 

 

For example, if locations of PV installations along with demographic information is 

fed into a GIS environment, one can determine if spatial patterns exist and 

investigate why certain regions have more PV installations than others based on 

underlying demographic data. Moreover, adding temporal dimension to this data 

enriches this dataset further and one can perform trend analysis and predictions. 

What (values) Where (X ,Y) 
Heatmap 

PV installations 
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This information is of particular use businesses for market expansion or assessment 

of grid capacities. 

1.4.4. Policy integration and scenario management 

With the recent report on climate change [38], the need for stronger policies cannot 

be reiterated. Scalable new technologies and solutions that allow and aid in 

mitigation of the accelerating climate crisis especially in urban areas is the need of 

the hour. A step further from visualizing present status and tracking the progress of 

energy transition is modelling complex scenarios related to energy transition and 

policy implementation that provide concrete answers and help in taking the right 

steps. GIS has long been used to provide information tailored to stakeholder 

preferences especially in questions related to land-suitability analysis. However, a 

combination of spatially explicit data in combination with qualitative stakeholder 

considerations has not been performed. Spatial Transition Analysis proposed by 

Oudes and Stremke addresses this issue with an integrated approach and presents 

the variables that influence the transition targets and the time needed to energy 

neutrality in addition to exploring alternate transition paths [39].  

GIS based tools can facilitate simulation of efficiency of planned actions and 

therefore display the cost/benefit analysis. This can lead to environmental friendly, 

low-carbon policy making be it for intermodal transport [40], supporting local 

energy and environmental policies [41], or aid in creating a targeted energy policy 

[42]. With advances in technology and availability of spatially explicit data, there is 

now room for innovative solutions to energy transition problems. Artificial 

Intelligence (AI), Internet of Things (IoT), and Digital Twins (DT) have the leverage 

to provide integrated solutions both locally and globally, taking geo-spatial analysis 

to a whole different level. At the same time, it is also necessary to be aware of the 

limitations of these technologies to use them in a safe, ethical manner for sustainable 

development.  
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Research Question 

This thesis addresses the topics described above by answering the following main 

research question: 

 

To what extent is GIS instrumental in the field of Solar PV? 

 

In addition, the following research questions are used to further streamline the topic: 

Q1. How can data regarding current PV installations and solar potential be 

enriched using geospatial techniques? 

Q2. How can GIS mapping and visualization techniques be harnessed for 

monitoring and identifying trends in PV diffusion and performance? 

Q3. How can spatial or spatio-temporal analysis be used in evaluating policy 

effectiveness or for modelling future scenarios for energy transition? 

In order to fully evaluate the efficacy of a technology, one has to have an 

understanding of the present status, its potential, a method to access its resilience to 

policy and a means to track its progress with improving technological advancements. 

In this thesis, the potential of using GIS for various applications related to solar PV 

technology will be presented. All the case studies have been conducted in the 

Netherlands. 
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1.5. Thesis Outline 

An overview of the chapters and the details which research question it addresses is 

shown in Table 1.1.  

Table 1.1 – Overview of chapters 

Chapter Title Q1 Q2 Q3 

2 GeoAI for detection of Solar Photovoltaic 

installations in the Netherlands 
• •  

3 Bottom-up analysis of the solar photovoltaic 

potential for a city in the Netherlands: A 

working model for calculating the potential 

using high resolution LiDAR data 

•   

4 Calibration and Validation of ArcGIS Solar 

Radiation Tool for Photovoltaic Potential 

Determination in the Netherlands 

• •  

5 Visualization of Operational Performance of 

Grid-Connected PV Systems in Selected 

European Countries  

• • • 

6 Assessment of policy based residential solar PV 

potential using GIS-based multicriteria 

decision analysis: A case study of Apeldoorn, 

The Netherlands 

 • • 

7 A spatio-temporal city-scale assessment of 

residential photovoltaic power integration 

scenarios 

 • • 

8 Synthesis and perspectives • • • 
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Chapter 2 of this thesis presents the application of one of the latest technologies: 

GeoAI for the detection of solar PV installations from high resolution aerial images. 

This method is currently being used at the Kadaster1 to provide information to the 

Regional Energy Strategy (RES) regions to aid in energy transition planning. GeoAI 

utilizes machine learning with spatial information to perform object detection tasks. 

The developed model has successfully been scaled up to process aerial images for the 

entire country to detect solar PV installations. Post-processing techniques have been 

employed to refine the results. In addition, the results have been compared with the 

existing PV system registry from CBS and finally caveats regarding this method and 

recommendations have been discussed.  

In Chapter 3, a GIS based solar PV potential model is presented. This is a bottom-up 

raster model where a very high-resolution height information model derived from 

Light Detection and Ranging (LiDAR) data has been used as a key input and 

modelling has been performed using ArcGIS software. The model is used to classify 

residential rooftops as suitable or not for PV installations based on factors like 

irradiation, slope, and orientation, along with potential roof area and capacity. In 

Chapter 4, the sensitivity of the model to variable inputs of the model like 

atmospheric parameters, input image resolution and temporal resolution are 

discussed. Moreover, calibration and validation of the model based on the 

atmospheric parameters is conducted with the help of ground measurements.  

Chapter 5 focuses on data capture and management for remote monitoring and 

visualization. The importance of cartographic principles and the usage of right types 

of visualization for presenting information is discussed along with the advantages of 

quick data visualizations for understanding data to perform the appropriate analysis.  

Chapter 6 addresses a case of the Dutch Postal Code Rose policy, which was in force 

until 1 April 2021, by developing a GIS based multi-criteria decision analysis 

(MCDA), which allows determining the solar PV potential when fully applying this 

policy. The research evaluates the technical potential of the city and then applies it 

to the Postal Code Rose framework by using social criteria. The social criteria 

 

1 Kadaster is the National mapping agency of the Netherlands. 
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comprise of the most important factors that play a role in the adoption of solar PV. 

It also shows how multi-criteria analysis and GIS can make it easier to understand 

and analyze policy incentives for decision makers that target local PV adoption. 

Different sensitivity tests have been conducted to show how to effectively design 

policies to have maximum impact.  

In Chapter 7, a spatio-temporal framework to assess the self-consumption and 

avoided GHG emissions potential has been developed. Scenarios relating to available 

rooftop for PV production, storage battery capacities, energy demand and future 

electric vehicle demand for 88 neighbourhoods within the city of Utrecht have been 

analysed. The mapped results show spatial insights that are useful to understand 

where the greatest potential for PV integration lies and which solutions are suitable 

for specific neighbourhoods.  

The results of the thesis are synthesized in Chapter 8. This chapter strives to answer 

the research questions and presents the authors’ perspectives on GIS technology for 

future exploitation. 
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  Abstract 

National mapping agencies are responsible for creating and maintaining country 

wide geospatial datasets that are highly accurate and homogenous. The Netherlands’ 

Cadastre, Land Registry and Mapping Agency, in short, the Kadaster, has created a 

database of information related to solar installations, using GeoAI. Deep Learning 

techniques were employed to detect small and medium-scale solar installations on 

buildings from very high-resolution aerial images for the whole of the Netherlands. 

The impact of data pre-processing and post-processing are addressed and evaluated. 

The process was automatized to deal with enormous data and the method was scaled-

up nation-wide with the help of cloud solutions. In order to make this information 

visible, consistent and usable, we built-upon the existing TernausNet; a convolution 

neural network (CNN) architecture. Model metrics were evaluated after post-

processing. The algorithm when used in combination with automated or custom 

post-processing improves the results. The precision and recall rates of the model for 

3 different regions were evaluated and are on average about 0.93 and 0.92 

respectively after implementation of post-processing. Use of custom post-processing 

improves the results by removing the false positives by at least 50%. The final results 

were compared with the existing national PV register. Overall, the results are not 

only useful for policy makers to assist them to take the necessary steps in achieving 

the energy transition goals but also serves as a register for infrastructure planning. 
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2.1. Introduction 

In recent years, GeoAI has moved from being a buzzword to reality. GeoAI 

incorporates artificial intelligence (AI) techniques with methods in geospatial 

science to extract meaningful information. GeoAI has the capability to address, 

understand, discover and solve geospatial problems in a fast, consistent and accurate 

manner [43]. Advances in this domain include object detection and/or classification 

[44,45], automatic large-scale mapping [46], change detection, risk and damage 

assessment [47,48] to name a few. The ease of handling and mining through volumes 

of data in a relatively short time and aiding in automatic mapping of features makes 

GeoAI very useful to national mapping agencies [49]. With this technique updating 

and maintaining the key registers which otherwise is a manual job that is time and 

cost intensive, becomes relatively easy.  

Solar Photovoltaic (PV) is becoming very popular due to its reducing costs and its 

positive impact on the environment. Over the last few years, the Netherlands has 

seen a rapid increase in the number of PV installations, leading to cumulative 

capacity of 10 GWp by the end of 2020 [50]. Although the small-scale (upto 15kWp) 

consumers in the Netherlands are required to register their PV panels in a national 

PV register (PIR: Productie-installatieregister), this is however not reinforced. 

Therefore, information regarding the specifics of the installations such as installed 

capacity, locations and energy generated is not complete and sometimes even 

unavailable. This might give a false impression of the present capacity leading to 

misguided assumptions and ineffective policies. On a functional level this could lead 

to difficulty in planning, operating and monitoring the grid network for the network 

operators. 

With the intention to reduce greenhouse gas emissions by 49% in 2030 [51], the 

government of the Netherlands formed 30 Regional Energy Strategy (RES) regions 

each of which are responsible for realizing the goals stated in the Climate Agreement 

relating to energy transition [52]. These RES regions are currently investigating 

where and how best to generate renewable electricity. Currently, Statistics 

Netherlands (CBS) is the only organization that estimates the national figures on an 
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annual basis which have an uncertainty of 20% [53]. However, in order to explore 

and allow a smoother energy transition, data on a regional scale are needed. 

Verbetering van de Informatievoorziening voor de Energietransitie (VIVET, 

improvement of information supply for the energy transition) is one such program 

aimed at creating visible and structured information related to energy transition 

[26]. Measuring and mapping the energy transition at different levels and at different 

time scales can give insight into the present and future energy scenarios which can 

prove to be helpful in planning climate resilient (urban) energy systems and even 

short-term solar PV forecasting [54]. Information on present PV installations is one 

such dataset that could improve the existing database. 

Although, with traditional image processing techniques like image segmentation, 

object-based image analysis and template matching techniques detection of solar 

installations achievable, implementation of such algorithms is computationally 

intensive. Malof et al., were the first to propose a technique of automatically 

collecting solar PV information from high resolution aerial images using a 

combination of traditional image processing algorithms [55] and later others [56–

59] proposed semi-automated methods. These studies perform well in terms of pixel 

classifications or capturing the location of the installation in general. However, they 

are not effective in estimating or delineating the shape of the detected object. These 

algorithms also fall short when dealing with huge amounts of data especially at 

national scale especially in terms of processing time and automation. 

Deep learning on the other hand utilizes convolutional neural networks; a class of 

machine learning algorithms which use a multi-layer approach to extract high level 

features from raw unstructured data [46,60,61]. Convolutional Neural Networks 

(CNN) can also detect the shapes of the objects efficiently as these algorithms are 

trained to distinguish features at the most basic level [57]. Deep convolution 

networks (ConvNets) [62], SegNets [63], U-Net based networks [64–66], have been 

tested for the application of detecting solar panels from either satellite or aerial 

images. These studies employed CNN or Fully Convolution Network (FCN) 

approaches which improved the results to a great extent showing the potential of the 

technique. However, these studies were either based on limited testing (smaller test 
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areas) or have used 30 cm resolution data for detection of large PV parks or plants, 

which do not capture the small-scale installations effectively. An evaluation of 

different deep learning algorithms, with data from the Netherlands revealed the 

challenges accompanied with capturing, modelling and using deep learning 

algorithms on cross-border data [67], which gives insights on varying image 

specifications. A recent study also showed the resourcefulness of CNN’s by mapping 

solar and green roofs and combining them with building from OpenStreetMap to 

create a geospatial registry at building level [68]. 

In this chapter, a semantic segmentation method that can detect the location of 

rooftop solar PV installations and estimate their shapes and sizes is presented. For 

this purpose, very high-resolution aerial images (10 cm) have been used. 

Additionally, post-processing steps and the process used for scaling up the method 

for the whole country along results from a comparative study with the national PV 

register is presented. The information thus retrieved when combined with solar 

potential and building information, could provide valuable insights into the energy 

dynamics within neighbourhoods. A nation-wide dataset can subsequently present 

realistic and accurate information about PV installations which is currently missing 

on a regional level [27]. Moreover, it could be the potential solution to generate the 

required regional level information related to energy statistics that is consistent and 

homogeneous for the whole country thus, useful to policy makers to understand and 

implement policies related to energy transition. Therefore, we develop a fast, 

accurate feature capturing system which allows automatic mapping and 

subsequently help in monitoring of PV installations. 

2.2. Data 

Data is integral in GeoAI given that deep learning models need a large amount of 

training data. The case of “garbage in, garbage out” cannot be truer for deep learning, 

where the quality of the model is highly dependent on the quality of the training data. 

Fundamental data required for deep learning is transitioning from being resources 

used for mining, to being an integral part of the tools [69]. To create deep learning 
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models that are consistent, reproducible and repeatable, data used should be 

consistent and well managed. This section provides an overview of the data that has 

been used in this study. 

2.2.1. Aerial Imagery 

The Kadaster has a repository of aerial photographs2, captured twice every year 

starting from 2011, with resolutions ranging from 10 cm in winter months to 25 cm 

during the summer. There are two variations of these aerial photographs captured 

during winter: orthophotos (Orthos) and true orthophotos (TO). Orthos are aerial 

images which are true to scale but might contain distortions or displacement, while 

TO’s are corrected for these image distortions with the help of digital elevation 

models (DEM) or terrain models (DTM), (Figure 2-1).  

 

Figure 2-1: (a) Ortho and b) TO [70]. Displacement or image distortion is evident from 

Ortho while this has been corrected in TO. No data points (black) are clearly visible in TO, 

where trees, shadows or tall buildings are present. 

 

 

2 Aerial photographs are captured twice every year by different companies with 
varying resolutions: in winter and in summer. Winter aerial imagery has RGB channels while 
summer imagery has RGB and near infrared chanels. For the purpose of detecting solar 
panels, winter aerial photographs have been used. These photographs are usually captured 
over a period of two-three months, thus having different reference moments. 
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Dense image matching techniques [71,72] specifically semi-global image matching 

[73] from stereo image point clouds was used to create these TO’s. Although, TO’s 

are refined and adjusted to reflect reality, they may have no data points or image 

quality is affected due to insufficient data points during the DEM reconstruction. 

This is especially observed where trees, shadows and tall buildings are concerned as 

shown in Figure 2-1b. Both Orthos and TO’s with image resolutions of 10 cm have 

been used in this project. It is to be noted that the TO's from the image matching 

technique have an image resolution of 20 cm, which have been resampled to 10 cm 

for further use in this process. 

2.2.2. Ancillary Data 

In addition to the aerial images, building footprint data (BAG: Basisregistratie 

Adressen en Gebouwen) of the Netherlands which contains information relating to 

approximately 9.7 million buildings and the topographic register (BRT: 

Basisregistratie Topografie) which contains the topographic features at various 

scales were used in the post-processing to refine the results. The BAG dataset 

comprises of building attributes such as year of construction, a unique ID which can 

be coupled to an address, area and purpose of use, in addition to the building shape 

and location [74]. BAG extract from 1st of April, 2019 was used in this study, to 

match with the acquisition time of the aerial images.  

Top10NL are digital object-oriented topographic files that belong to the Key Register 

of Topography (BRT) [75]. The products are uniform and consistent for the whole of 

the Netherlands. The TopNL products are distinguished by the scale levels and 

Top10NL can be used on a 1:5000 to 1:25,000 scale. Figure 2-2 shows an overview 

of these datasets. 
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Figure 2-2: (a) An example of BAG data [74]. Building polygons in grey with building 

functional information in points and (b) BRT Top10NL data extract with rich attribute 

information on detailed land-use cover classes [75]. 

2.3. Deep Learning Model 

The CNN which was used in this use case is known as TernausNet; a modified version 

incorporating U-Net architecture with VGG16 encoding [76]. U-Net architecture is 

widely used in image segmentation problems, because it can be trained with few 

images. TernausNet is open and is publicly available [77]. The network architecture 

in shown in Figure 2-3. The architecture consists of a contracting path where image 

patches are downsampled, aimed to capture context. In the expanding path, output 

is upsampled. With the help of skip connections, high resolution features from the 

contracting path are combined with the upsampled output to enable precise 

localization. We use this pretrained model with an image size of 1024×1024 pixels 

for training as this captures the features of interest (PV panels) and also the 

surrounding (buildings) effectively. With pixel sizes of 10 cm, the image tiles 

correspond to 102.4 m on the ground. The output from the model is a probability 

image which is then converted to a binary result using a threshold. 
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2.4. Implementation 

2.4.1. Ground truth and training 

 

Figure 2-3: TernausNet architecture [76]. 

 

The workflow of the project is shown in Figure 2-4. Ground truth was prepared by 

manually drawing the panels on the images and then converting the vector polygons 

to raster image tiles. Initially, about 5000 panel locations were hand drawn for the 

city of Zwolle, which were then converted into raster masks for use in training 

(Figure 2-5b). Figure 2-5a shows the locations where training data has been captured 

and the partitioning of this data into training and validation sets.  

In total about 800 image tiles with annotations have been used for training the 

models. The data was split into training and validation sets with a ratio of 80%, 20% 

respectively. TernausNet has an in-built data augmentation function which increases 

the training samples after the dataset has been split into training, validation and test 

sets. Once the model has been trained, it was implemented on the province of 

Zeeland and the municipality of Almere (province of Flevoland). False positives 
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(FPs) were identified on greenhouses and tanks which were not of interest. In 

addition, the model also missed identifying many panels. It was also observed that 

the model was performing better on residential buildings or rather smaller buildings 

than on larger industrial buildings. This was attributed to imbalance in and lack of 

sufficient training dataset. 

Consequently, to ensure that the model and the training data are unbiased and valid 

for the whole country, training data was expanded, and the model was retrained. 

Manual controls were performed, and more training samples were collected from the 

test areas of Flevoland and Zeeland. This introduced uniformity in the training data 

classes and the model was exposed to diverse panel types, spatial background and 

image types from different data providers. The new training samples and the original 

training data were pooled and split into two categories to retrain the model. 

Ultimately, two model variants were created; one for detecting PV on small buildings 

 

Figure 2-4: Workflow of the project implemented using cloud infrastructure to optimize 

and scale the process efficiently. 
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(SB) (<200 m2) and the other for large buildings (LB) (area > 200 m2), with 

different hyperparameters. In total, 16 models were trained and tested using various 

combinations of training data, layers (RGB and CIELAB), batch sizes and 

normalization techniques. 

 

(a) 

 

(b) 

 

Figure 2-5: (a) Training data locations in the Netherlands; Initial training data location in 

orange, additional data locations in red and pink (large buildings) added after testing and 

(b) example of training data and associated label information fed into the model. 

 

For the final models, the learning rate was set at 0.0001, batch size at 8 and 3 layers 

(RGB) with standard normalization was used. The data used in the final models and 

the associated performance scores are presented in Table 2-1. 
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Table 2-1: Model hyperparameters for the two model variants. 

Model Training data Epoch Jaccard 

score 

Valid 

loss 

Small buildings (SB) Zwolle (TO) + 

Flevoland (Ortho) 

49/50 0.75 0.10 

Large buildings (LB) Zwolle (TO) + 

Zeeland (TO) 

41/50 0.67 0.11 

 

2.4.2. Post-processing 

Processing huge amounts of spatially varying data using deep learning algorithms 

has limitations, especially when very high-resolution data is used. Numerous FPs 

were identified on greenhouses and outside building footprints. In order to improve 

the results by minimizing the FPs, post-processing techniques have been employed. 

The direct output from the deep learning algorithms is a binary raster with detected 

PV installations. These raster files have been converted to vector features using FME 

software, and geo-location is reassigned to the vector files facilitate geo-spatial 

analysis. To account for noise in the dataset all features with area less than 0.6 m2 

have been removed. Features detected outside BAG polygons have been removed. 

However, due to displacement in Orthos, the detected features sometimes fall 

outside the building footprint. This also creates problems when allocating the panels 

to the buildings. This has been illustrated in Figure 2-6(a). Therefore, step 1 of post-

processing handles this by negatively buffering the building footprints by half a 

meter ensuring that the detected features are indeed solar installations and not 

shadows or FP's. In addition, features detected within greenhouses and tanks were 

deleted using the Top10NL dataset. Then, the remaining features were assigned to 

the buildings using the BAG dataset. 
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Figure 2-6: (a) Displacement problems causing confusion in panel assignment to a 

building, solved using post-processing. In this case the panel has been assigned to the 

building represented in green, (b) identified false positives on green houses, (c) panels 

detected from TOs and (d) panels detected from Orthos. 

 

BAG polygons were used to clip the panels when using TOs, while a slightly different 

approach was adopted to deal with predictions from Orthos. Sometimes the detected 

panels extend over more than one building or fall slightly outside the building due to 

displacement. Step 2 of the post-processing was developed in order to deal with this 

issue and to assign the panels to the corresponding building. Panels that are partly 

outside building have been added to that building as a whole. Panels that are located 

over several buildings are initially split by the building footprint. If the area of the 

detected panel in such a case is smaller than 
100

(1+𝑥)
 % of the whole, where x is number 

of buildings the panel is located on, then the panel is not assigned to that building 
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(Figure 2-6a). Furthermore, if the total area of the detected panels within a building 

is less than 1.5 m2, it was also removed considering minimum panel sizes pertaining 

to the market standards. 

Finally, the results from both Orthos and TO’s were analyzed to create a single 

dataset to compensate for the true negatives and false positives. This was 

accomplished by running queries after visually analyzing the results after post-

processing step 2 from Orthos and TO’s. This final step is a customized approach to 

improve the results was performed on three different regions using different 

geospatial queries some of which are as follows 

• Selection of features present in both datasets also accounting for 

displacement in Orthos. 

• Adding features from Orthos to TO dataset if significant number of features 

are missing from TO dataset by using spatial queries and performing visual 

inspections to find missing features. 

• Removing features if the area is less than 1% of the building area. 

2.4.3. Evaluation metrics 

In order to evaluate the model performance, standard model metrics [78,79]; 

precision, recall and F1 score have been used. These can be defined with the help of 

four terms namely TP's, true negative (TN), FP's and false negative (FN). Precision 

is the number of true positive predictions divided by the total number of positive 

predictions which gives a sense of the classifiers exactness as given in  equation 2.1.  

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
  (2.1) 

Recall is the number of true positive predictions divided by the number of all 

(relevant) predictions that should have been identified as positive. Recall measures 
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the accuracy of the model to identify relevant data also known as sensitivity or TP 

rate and is calculated using equation 2.2. 

Recall =
𝑇𝑃

𝑇𝑃 + FN
 (2.2) 

Finally, F1 score is an overall measure of a model’s accuracy defined by the harmonic 

mean of precision and recall as shown in equation 2.3. This score gives an impression 

of the precision of the classifier as well as its robustness. Greater the F1 score, better 

is the performance of the model. 

𝐹1 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 (2.3) 

 

2.4.4. Scaling-up the process 

The most substantial part in this whole process is scaling the method to handle the 

enormous volume of images for the whole of the Netherlands. The data that has been 

processed for 2019, was approximately 4 TB, which needed to be reorganized, 

resampled to 10 cm and tiled to image sizes of 1024×1024 pixels. Cloud storage and 

computing was utilized to create tooling to manage and run the whole setup in a fast 

and efficient manner. The tooling was optimized so that it can be reused when new 

data is available. Every run with new data for a particular location, produces image 

tiles that are consistent with the previous runs. In other words, there is no location 

mismatch among image tiles produced in one year to another, which is quite useful 

when performing monitoring tasks. 

This scaling-up tooling comprises of different tasks, the first of which is to read the 

bounding boxes of the raw images and segregation of the data accordingly into 

subsets or working blocks to continue with the rest of the tasks. The creation of these 

working blocks is based on a seed point (X, Y location), located at the center of the 

Netherlands. Nation-wide about 8,236 working blocks were created, and each 
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working block produces 625 image tiles and in total about 5.1 million image tiles. The 

working blocks are created on the basis of the image resolution of 10 cm; hence, the 

boundaries of the tiles remain consistent (Figure 2-7b). The rest of the tasks 

comprise of processing the images within these working blocks by combining, 

resampling and tiling them into required image sizes and saving them in “.png” 

format. Furthermore, processing times were improved by parallelly processing the 

tasks. 

 

Figure 2-7: (a) Aerial image acquisition in 2019 with varying resolutions in cm, (b) 

working blocks to process and create the image tiles from the base images. 

 

Efficient storage solutions were explored to reduce costs and data handling time. 

Docker [80] and Azure storage [81] were utilized for seamless data transfer and 

processing. The whole process has been automated with manual controls in between 

to stop the processes or adjust the parameters if needed. In-between results are also 

stored for analysis and reference purpose. Docker images were primarily used to 

deploy software and models efficiently to multiple Linux machines with 4 GPUs, for 

training and prediction. The machines were connected to the blob storage from 

Azure for seamless transfer of input and output data. 
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Figure 2-8: Results of the DL algorithms on different building types. Solar panels have 

been detected with location and shape accuracy. These results are the combination of two 

modes variants described in Section 2.4.1. 

2.5. Results and Discussions 

In this section the outcomes of the deep learning algorithms are presented, and the 

observations and shortcomings of the method are discussed. 

2.5.1. Results  

A few examples of the final results of method are shown in Figure 2-8. The vector 

layer displaying the detected panels in red is a combination of the Small Building 

(SB) and Large Building (LB) variants after post-processing. Figure 2-8 also shows 

how the algorithm performs in different areas and conditions. Under most 

circumstances the algorithm functions adequately as it detects most of the panels. 

Orthos have better accuracy in detecting the shape of the panel correctly while TOs 

had better location accuracy.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 2-9: Results from both the model versions displayed on ortho photos (a) results 

before post-processing, (b) results after post-processing step 1, where most of the FP’s 

outside the buildings are removed, (c) detected features are allocated to the building in 

post-processing step 2 and (d) final result after customized post-processing. 

Subsequently, results from Orthos had many FP's while TO results missed quite a 

few features. Therefore, by combining both these datasets we were able to produce a 

final dataset encompassing both improved location accuracy and shapes. From 

Figure 2-9, one can observe the extent to which results are refined when using both 

automatic and customized post-processing described in Section 2.4.2. A closer look 

at the panel allocation from ortho results is shown in Figure 2-10, where the panel 
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allocation has been well executed, despite of uncertainty caused due to ortho image 

displacement. We observed that FPs occur mostly on green houses or large 

commercial buildings with glass domes or roofs. Removing the greenhouses in the 

post-processing steps seemed logical and improved the results to a great extent. 

However, due to the image artifacts within TO's the shapes of the detected panels 

were not always good and due to no data pixels, many features were undetected. 

Therefore, Orthos were used for correcting and improving the results. 

 

 

Figure 2-10: Results of the post-processing steps to compensate for FP’s, missing panels 

and to assign panels to the right building with Orthos. 

 

Despite many improvements with post-processing, FP's pertaining to certain 

building styles were reoccurring in the results. A few of these examples are presented 

in Figure 2-11. One such case of reoccurring FP's was on buildings with rooftop 

dormers. (Figure 2-11b). The model detects dormers as panels in most of the cases. 

When the area of these dormers is less than 1.5 m2 they can successfully be removed 

from the results during post-processing. Another issue is wet patches on rooftops as 

shown in Figure 2-11a. The reason as to why the model detects these as solar panels 

in some cases is unidentified. LB model variant has shown promising results where 

it is very accurate with complex shapes and multiple array detection (Figure 2-8) but 

in a few cases, it detects only parts of the solar array (Figure 2-11d). 
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Figure 2-11: Observed issues with results (a) wet or shadows detected as panels, (b) dormers 

detected as panels, (c) unexplainable FP’s, (d) parts of panels detected from panel arrays, 

e) example of false negative and f) panels not detected properly due to distortion. 

 

Having a common post-processing for the whole country has its advantages and 

disadvantages. On the one hand it is easy to implement one set of standard tools for 

the whole country while on the other hand, true positives may be removed. 

Therefore, a customized approach might be required based on spatial contiguity and 

associated feature types to improve the results. The computation time for post-

processing country wide took 24 hours and can go faster with parallel processing on 

more nodes. On the other hand, custom post-processing is highly dependent on the 

intuition visual controller and can vary from the size of the area under processing 

and the quality of the ortho and true ortho images. The smaller the region of custom 

post-processing the better the quality of the final results 
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2.5.2. Quality controls 

Model performance evaluation was conducted by human controller visually i.e., by 

manually scanning through the results and marking FPs, FNs, and TPs. Results from 

three regions, varying in location and area were assessed at every step of the method, 

before and after the implementation of post-processing. Tile blocks of 1×1 km were 

randomly selected from these regions for the quality controls. The areas where these 

controls were conducted, and the corresponding inspection performed is shown in 

Figure 2-12.  

 

 

Figure 2-12: Regions where controls were performed to assess model performance. Tile 

blocks in pink, blue and red were manually controlled for FP, FN and TP. 
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The effect of post-processing has been assessed stepwise based and is presented in 

Table 2-2 and Figure 2-13. Almost all the panels were detected after step 2, but the 

data still had as many FP which reduces the overall accuracy. Therefore, customized 

post-processing was used even though a few TP are removed during this process 

(Figure 2-13). For example, the ortho results for the region of The Hague-Rotterdam 

included 2957 TP and 116 FN after post-processing step 2, but the dataset also 

contained 2168 FP. The FP were reduced to 173, but the FN increased by 165 features 

after customized post-processing. This is a small setback compared to positive gains 

to due reduction in FP. 

 

Table 2-2: Table showing the effect of post-processing per step for three regions for Small 

Building (SB) and Large Building (LB) model variants. The reduction in the number of false 

positives after each step of post-processing is evident. 

Region The Hague-

Rotterdam 

Almere Brabant 

Image Ortho TO Ortho TO Ortho TO 

Features within 

control area 

(output after 

vectorization) 

SB 12,145 19,624 4968 4921 17,188 16,038 

LB 7145 6779 3970 3218 1066 9154 

Post-processing 

step 1 

(features 

detected within 

buildings) 

SB 6022 7487 3032 2771 7846 6824 

LB 3470 1817 918 851 117 3337 

Post-processing 

step 2 

(buildings with 

solar 

installations) 

SB 4608 5544 1948 1593 5860 4327 

LB 280 214 121 85 40 420 

Customized 

postprocessing 

Final 

dataset 

2965 1945 4123 
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Figure 2-13: The number of identified TP, FP and FN on Ortho and TO photos after post-

processing step 2 and the final dataset after custom post-processing for the three regions. Use 

of custom post-processing reduces the FP by at least 50% from the previous step. TO were 

observed to have more FN than Orthos which can be attributed to the TO image quality. 

 

The use of classification accuracy as an evaluation metric in this case of detecting 

solar installations gives a false sense of achieving high accuracy due to the imbalance 

in the dataset. Classification accuracy is the ratio of correct predictions to the total 

number of input samples. In this case, the number of buildings without PV are 

considerably more than those with PV. 15.4%, 5.8% and 6% of the buildings have PV 

installations within the controlled regions of Almere, The Hague-Rotterdam and 

Brabant respectively. This means that even if all the buildings were predicted as not 

having an installation, the classification accuracy would be 84.6%, 94.2%, and 94% 

correspondingly. Thus, classification accuracy is not the right metric to evaluate the 

robustness of this model. 

Metrics described in section 2.4.3, on building level using TPs, FPs FNs and TNs 

were calculated after post-processing and are presented in Table 2-3. In addition, 

shapes of the detected features were also evaluated. The algorithm performs better 

in the regions of Almere and The Hague-Rotterdam than in Brabant. From Table 2-3, 

it is also evident that the precision of the model improves greatly if post-processing 

is included in the workflow. The Recall rate for the Hague-Rotterdam and Brabant 
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is low compared to Almere, which means that the even after post-processing there 

are still several false negatives in Brabant and The Hague-Rotterdam. This is also 

reflected in the overall accuracy of the model (F1) score which is high for Almere and 

low for Brabant. The reason for this being the quality of the TO images from Brabant 

and The Hague-Rotterdam. In addition, Brabant is also twice as large as compared 

to The Hague-Rotterdam and thus also difficult to implement custom post-

processing to refine the results on visual basis. On visual inspection of the feature 

shapes during the control process for The Hague-Rotterdam, it was observed that 

shapes of the detected features (TP) were 94.7% accurate. 

 

Table 2-3: Manually controlled statistics from three test areas after post-processing the 

results. 

Metrics The Hague-

Rotterdam 

Almere Brabant 

Total no. buildings 954,566 109,954 1,727,384 

Detected no. of buildings with PV 45,870 11,119 99,648 

No. of buildings checked 52,566 12,055 71,080 

Percentage of buildings checked 5.50% 11.00% 4.10% 

TP 2792 1824 3790 

FP 173 121 333 

FN 281 36 548 

Precision 0.94 0.94 0.92 

Recall 0.91 0.98 0.87 

F1 score 0.93 0.96 0.90 
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2.5.3. Comparative study 

A study was conducted, comparing the methods and results from this research with 

the PV register database at CBS [82]. The results from both the methods provide a 

low regional scale indication on the number of installed solar panels at different time 

periods (reference data registrations and acquisition time of aerial imagery). On 

closer observation, it was evident that the difference in methodology for identifying 

solar panels leads to completely different results. The study summarizes the results 

of the comparison of the two data files along with an explanation regarding the cause 

of discrepancies between the two datasets [82]. Data from the municipalities of 

Arnhem, Heerlen, Het Hogeland and Utrecht were compared and the differences in 

the results were attributed to the following: 

• Time of data acquisition: while the method presented in this chapter is 

subjective to the aerial images acquired in spring 2019 (ranging from March 

to June), CBS complies their registry at the end of every year in December. 

This led to a difference in the datasets used for comparison. Two time 

periods (end of 2018 and end of 2019) from CBS PV register were used to 

account for this extra data or lack thereof. 

• Level of detail: The output from the current model is mapped at building 

level, while CBS collects data at address level. There can be more than one 

address in a building, and this causes some ambiguity in accessing and 

mapping the addresses to the corresponding building.  

• Quality of the source data: As demonstrated, the dataset is not free from FPs 

and FNs. The same is true with the PV installation register as well. Not 

everyone registers their panels and at times pre-registrations are the source 

of the problem. 

For detailed analysis and numbers one can refer to the published report available on 

the CBS website3. Additional research is also needed to find out how both sources 

 

3 The report was a result of the study conducted with the results from this method and the PV 
register from CBS. This report is in Dutch. https://www.cbs.nl/nl-
nl/achtergrond/2021/04/verkenning-samenhang-regionale-zonnestroomcijfers 
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can complement each other for a more complete mapping of solar power at a low 

regional level. The fact that the two can complement each other was noted (Figure 

2-14), however the best methodological implementation needs to be investigated. 

Only in Utrecht Kadaster has found more panels than CBS while considering data 

over 2019 while in Heerlen CBS registers more panels even though data over 2019 is 

not considered. The first can be attributed either false positives or the effect of 

custom post-processing while the reason for the later needs to be investigated.    

 

Figure 2-14: The result from the comparison study considering (a) data over 

2019 from CBS and (b) data until end of 2018 from CBS. Data from Kadaster 

is until April 2019, the time of acquisition of the aerial photos. More than half 

of the identified panels are included in both the databases of CBS and Kadaster. 

Data source [82] 

 

2.5.4. Image quality and homogeneity 

Image quality is an important factor that also determines the quality of the output. 

The aerial images in the Netherlands are captured by different companies with 

varying spatial resolutions (Figure 2-7a). The model is highly sensitive to the 

differences in image quality and the fact that these images are processed using 

different sensors and techniques by different companies makes this task challenging. 

(a)                                                             (b) 
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This leads to discrepancies in the results and therefore requires customized post-

processing techniques for different regions. It is also hard to determine beforehand 

which regions have better quality without implementing the algorithm as it is 

difficult to mine through volumes of this imagery database. It therefore becomes 

necessary to create a balanced training dataset which accounts for this factor.  

Digital elevation models (DEM) were also used as an extra layer for training during 

the development phase. However, it was an intensive process to create the 

normalized DSM (nDSM); the quality was insufficient and using this data as an extra 

layer in training did not show significant effect on the results. Nevertheless, nDSMs 

could still be used during post-processing along with slope layer to improve the 

results.   

2.5.5. Quality of ancillary data 

 

Figure 2-15: Issues with BAG data. 

 

The BAG database is manually updated by different source holders along which leads 

to variations in styles and recorded attribute values. Data filtering based on BAG 

attributes was performed to select only those buildings which are currently in use. 

During the testing phase, we came across instances where ancillary data was 

incomplete or incorrect. This contributed to the quality of the end result. Quantifying 



GIS4PV                                                                                    Chapter: 2  

42 

the contributing factor for these errors is often difficult to estimate. Sometimes, 

buildings extensions might take longer to update ( Figure 2-15 ) causing a mismatch 

between the image used for predictions and the BAG used in post-processing. Even 

though, features are detected during implementation of the algorithm, these might 

be removed during the post-processing where only features intersecting with the 

BAG are selected. Similarly, Top10NL is updated once every year and therefore 

certain updates visible on images might not be included in the database. 

2.6. Conclusions 

This chapter presented the current method adopted at the Kadaster for automatic 

detection of solar PV panels using deep learning techniques. Data, methods and their 

corresponding issues were discussed. A comparative study with the results from the 

presented method was introduced which reiterates the need for a homogenous 

dataset with PV installation information for smooth energy transition. Post-

processing techniques both automatic and custom, are integral to this method and 

improve the results drastically. Although, custom post-processing refines the results, 

the task itself if intensive and depends largely on the instincts of visual interpreter. 

3D models could be used to improve post-processing especially if the models can 

capture dormers and height jumps effectively (LOD 2.2). In addition, with good 3D 

models, slope and orientation can be used as extra factors either in training or during 

post-processing. To obtain consistent and accurate results, constant improvement 

and development of the techniques is essential. Since the aerial images are acquired 

by different companies it is hard to maintain similar levels of consistency. In 

addition, the inherent image artifacts make it challenging to deal with all the images 

in a similar manner. K means clustering techniques which aims to categorize 

observations (images) into specified number of categories based on similarities in 

the images can be utilized to realize the goal of creating a balanced training dataset 

by differentiating between different classes of image tiles before implementing the 

model. We are investigating if the use of this technique can improve the process. In 
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addition, the use of random forest classifier to improve post-processing is also being 

explored in order to bypass the custom post-processing. 

Finally, this method is quite useful for detecting existing PV installations and 

allocating the appropriate share of PV potential or detected PV. Moreover, it can also 

be used for short-term forecasting which is useful for grid-operators. The installation 

data when combined with information relating to purpose of the building or type of 

owner can be useful analyzing the present PV status along with potential sectors for 

PV diffusion. Furthermore, with monitoring, trend analysis can reveal spatial 

insights useful to policy makers to target the right audience. 
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3.  

 

PV Potential estimation 
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  Abstract 

This chapter presents a working model to estimate the solar photovoltaic potential 

using high-resolution LiDAR data and Geographic Information Systems. This 

bottom-up approach method has been selected to arrive at the potential as this gives 

a better estimate than a top-down approach. The novelty of the study lies in 

estimating the potential at high resolution and classifying the rooftop as suitable or 

not for solar photovoltaic installations based on factors like irradiation, slope and 

orientation. The city of Apeldoorn in the Netherlands has been selected as the study 

area. The model was able to successfully locate suitable sites for photovoltaic 

installations at rooftop level. In addition, the area feasible for the installations and 

the potential power output has also been calculated. We conclude that the city has a 

potential of 319 MWp capacity, which would yield 283.9 GWh/yr in relation to the 

304 GWh/yr consumption from residential buildings in the area. 
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3.1. Introduction 

Photovoltaic (PV) solar energy in Europe has been increasing rapidly in the past few 

years. Technological developments and research efforts have brought PV in the 

renewable energy sector to a new level. Estimation of the actual potential of PV in 

the residential sector creates various business opportunities and would assist in 

policy making. In addition, consumers are also increasingly aware of how PV could 

benefit them, as in many countries retail grid parity is present [83]. Several top-down 

studies have been performed on solar PV potential in the Netherlands, sometimes in 

conjunction with potential studies for Europe [84–87]. Some of these studies also 

mention different capacities based on different top-down approaches. [84,85,87]. De 

Noord et al. re-assessed these potential estimates and presented the realistic 

potential of solar PV in the Netherlands to be 400 km2 (80-120 GWp) for building 

integrated PV (BIPV) and 200 km2 (40-60 GWp) for ground-based PV (GBPV) [86]. 

The latest figure for PV potential is presented by Lemmens et al., at 150 GWp and is 

based on the present electricity consumption in the Netherlands of 120 TWh [88]. 

To summarize present top-down estimates for BIPV potential, in the Netherlands it 

ranges from 200-400 km2, or 40-80 GWp. Land based PV installations would 

perhaps add another 200 km2. Total country potential thus ranges from 

80-120 GWp. At the end of 2013, the total amount of installed PV was estimated at 

722 MWp [89]. It is predicted that in the year 2020 an amount of 4 GWp will be 

installed in the Netherlands [90]. With present annual growth rates, this may be a 

conservative estimate.  

Since the top-down assessment values are difficult to rely upon these should be 

validated using bottom-up assessments that now are possible, using tools such as 

“Solar Atlas”, in Dutch Zonatlas [91], which are based on aerial photographs and 

solar irradiation. But determining the actual solar potential of BIPV using high-

resolution data can be very challenging due to the complexity of the urban areas.  

High-resolution rooftop potential studies are relatively new and not much has been 

done in this area at rooftop level for estimating the technical and geographical 
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potential for PV deployment. Izquierdo et al., estimated the technical potential of 

roof integrated PV systems using easily available data and stratified-samples of 

Geographical Information Systems (GIS) maps at a regional level [92]. Based on this 

work, PV solar energy potential estimations at municipal to regional level was 

conducted in Italy with the help of global solar radiation maps taken from the Joint 

Research Centre of the European Commission [93]. Hofierka and Kanuk proposed a 

methodology for PV potential estimation in urban areas based on the open-source 

solar radiation tool r.sun (developed by [94]) and 3-D city model in GIS [95]. 

Furthermore, models to estimate solar potential on building rooftops using GIS and 

statistical approaches to create roof-top solar radiation maps were explored by 

[96,97]. Redweik et al., developed a model to calculate the solar energy potential of 

the buildings taking into account both the roofs and the facades using high resolution 

LiDAR (Laser Imaging Detection And Ranging) data and applied the model to the 

campus of university of Lisbon [98]. However, all the mentioned studies fall short in 

estimating the potential at individual rooftop level. 

In the present study, we estimate the rooftop PV potential in Apeldoorn, a city in the 

Netherlands using high resolution LiDAR data and GIS techniques. Only roof 

integrated PV is addressed here. With the use of Solar Analyst [99] of ArcGIS solar 

irradiation over large geographic areas is computed accounting for atmospheric 

effects, sun angle, elevation and effects of shadows by buildings, elevation and 

orientation. Classification of the solar irradiation map was done to differentiate 

between optimum and less optimum suitable sites. These were the basis of potential 

estimation, where further energy potential calculations are made taking into account 

the slope and orientation information. These estimations would help in looking at 

the trend of PV diffusion, create business opportunities and additionally provide an 

insight for policy implementations. 

3.2. Methodology 

The area chosen for the study was the city of Apeldoorn (52° 13′ N, 5° 57′ E), in the 

Gelderland province of the Netherlands. For locating the potential PV sites and for 
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calculating the PV potential the digital elevation model (DEM) was derived from 

LiDAR data, obtained from Actueel Hoogtebestand Nederlands (AHN)[100]. The 

DEM as the key input has a resolution of 50 cm (point spacing of 9 points per m2, 

which is well suited for estimation of solar radiation at roof-tops. The DEM for the 

city of Apeldoorn is shown in Figure 3-1. The city itself is at low elevation, while in 

the West one recognizes a hilly region called De Veluwe. Another important dataset 

was a vector file of footprints of residential buildings in the study area. In this chapter 

we focus on the residential sector. The recent building footprint layer was obtained 

from Basisregistratie Adressen en Gebouwen (BAG), which is a part of the 

government cadastre system. 

 

Figure 3-1:City of Apeldoorn which is taken as the study area in this research. 

 

The estimation of solar potential in this study was calculated in two steps. First, 

suitable locations for roof-top PV were singled out, and then potential estimation 

calculations were performed based on GIS data analysis. We specified some 

requirements in order to characterize suitable locations; and performed all the 

calculations using ArcGIS. 

https://data.overheid.nl/data/dataset/basisregistratie-adressen-en-gebouwen-bag-
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The criteria chosen for locating suitable PV sites were solar irradiation, slope and 

orientation. This has been adopted from the work of Chaves and Bahill  [101]. The 

Area Solar Radiation Tool of the ArcGIS Spatial Analyst automatically performs the 

solar irradiation calculation based on the model by Fu and Rich[102]. This model 

takes DEM as the main input and other parameters relating to slope, shade and 

transmissivity of the atmosphere and calculates the solar irradiance during the time 

specified and produces an output image having pixel values in units of Wh/m2. 

The other inputs for the model were slope and orientation, which were also created 

by the Spatial Analyst tool in ArcGIS. All the three images were masked to show only 

residential buildings and were converted into binary raster images taking the 

following criteria: 

• Feasible Slope: less than or equal to 38 degrees 

• Feasible Solar Irradiation: greater than 70% of the annual maximum 

received in the area which has been taken at 600 kWh/m2 according to the 

modelled irradiance 

• Feasible Orientation: (a) South facing and (b) other orientations. 

South facing slopes have been considered as optimum while the other slopes have 

been taken as less optimum in this study. The binary rasters were then combined 

together to create a final binary image, which was then filtered to create a smooth 

and continuous image.  

A raster to polygon tool was used to convert the suitable areas into a vector polygon 

layer. Attributes like area, potential capacity and power were then attached to these 

polygons. A value of 150 Wp/m2 has been taken as the PV power density that can be 

installed. Therefore, the final output has been classified as follows 

• 0: for unsuitable areas shown in red 

• 1: partially suitable areas (with high solar irradiance and orientations other 

than south) shown in yellow and 

• 2: optimally suited areas (high irradiation and south facing slopes) in green. 
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In addition, the production from the estimated capacity was determined using values 

determined by [103]. This study states that the annual production of a PV system in 

the Netherlands can be estimated at 875 kWh/kWp. Therefore, for optimum (south 

facing) oriented areas 950 kWh/kWp has been chosen and for other, less optimal 

orientations 750 kWh/kWp has been taken.  

3.3. Results 

The results are explained in the following subsections. The first subsection shows the 

model inputs and in the second subsection binary outputs after the application of 

criteria are shown. The third subsection shows the final output, which is the result 

of a binary (AND) operation followed by a raster to polygon transformation and 

addition of attributes and finally the potential estimations. 

3.3.1. Model Inputs 

 

Figure 3-2: AHN height information derived for residential buildings. Height 

information is in meters (left) and solar irradiation image derived for building by 

running the Solar radiation tool. South facing slopes are seen to receive greater 

irradiation (right). 
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In this subsection the inputs taken in the model are displayed. Figure 3-2 shows the 

height map of the buildings and the annual solar radiation image in kWh/m2 on the 

left and right respectively. The area receives an annual maximum of 960 kWh/m2 in 

a year according to the model-based calculations. Figure 3-3 shows the orientation 

image or the direction of the slope, followed by a slope image where a distinction 

between flat and sloping roofs is vivid. 

 

 

Figure 3-3: Orientation image showing the direction of slope of the rooftops (left). Slope image 

classified in classes to distinguish between flat and sloping roofs (right). 

3.3.2. Binary outputs 

Binary outputs after applying the mentioned criteria for slope, solar irradiation and 

orientation have been applied determined and are presented here. Figure 3-4 shows 

the optimum radiation map showing areas receiving greater than 600 kWh/m2 per 

year in green. We see that most of the building rooftops are selected along with a few 

roads or empty areas. The image on the right in Figure 3-4 shows the feasible slope 

areas in green, which are 38° and below. The white areas show unfeasible areas, 

which we can identify mostly as facades or vegetation. Images in Figure 3-5 are the 

optimum orientation map, which shows south facing slopes in green (left image) and 

other orientations map (right image). 
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Figure 3-4: Optimum irradiation image (left) and feasible slope image (right). 

 

Figure 3-5: Optimum orientation image (left) showing south facing slopes and other 

orientations image (right) 

3.3.3. Final Output 

The final output is a polygon layer that shows 3 classes (Figure 3-6). Areas in green 

are optimally best-suited locations for PV. These areas receive maximum amount of 

solar irradiation and have an optimum slope and south orientation. South facing 

slopes in the Northern hemisphere receive maximum amount of solar irradiation.  
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The areas in yellow are partially optimum or the other orientation, which still receive 

on an average about more than 70% of solar irradiation in the region. These areas 

are suitable for PV but may not show high energy yields, as they do not receive 

maximum solar irradiation throughout the year. The red areas are categorised as 

totally unsuitable areas. These regions receive either minimum amount of solar 

radiation or have unfeasible slopes (facades or steep slopes) or are either shaded 

from trees or nearby buildings. 

 

Figure 3-6:Final output showing the geographic potential. Grid code 0 shows unfeasible 

areas, 1 represents partially suitable area and 2 shows best suits areas for the 

deployment of PV 

 

The final output presented is the result of a smoothing filter on a raster, which was 

then converted into a polygon shapefile. These polygons were then intersected with 

the building information from BAG so that the final output has address information 

along with the building properties as shown in.Figure 3-87 shows the attribute table 

associated with the final map. Each record corresponds to an address and each 

address is further categorised based on the grid code, which is 0, 1 or 2. 
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Figure 3-7:Final map with information on address, potential capacity, and power. 

3.3.4. Potential Estimation 

Potential estimations for the city of Apeldoorn have been calculated using the field 

calculator of ArcGIS for each of the final polygons as can been seen from the table in 

Figure 3-8. Figure 3-9 shows the rooftop area in relation to grid code. Total area is 

about 3.9 km2. A constant power density of 150 Wp has been used to estimate the 

potential capacity per square meter. This value has been multiplied with the total 

area available. Potential estimation has not been performed for grid code values of 0. 

The potential PV capacity for the city of Apeldoorn thus was estimated at 319.9 MWp 

for the residential buildings (Figure 3-9). This would mean a power production of 

283.94 GWh. Note that the present PV capacity installed in the region is 3.4 MWp 

and the annual demand is around 230 GWh at the rate of 3500 kWh/yr per 

household. Using an annual average household consumption, PV would be able to 

provide the annual energy demand of 65,730 households, which is more than 100% 

of the total households in Apeldoorn. 
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Figure 3-8: Attribute table for the final output. 

 

 

Figure 3-9: Graph showing rooftop area covered under each class after analysis. The total of 

these classes corresponds to the total roof area of the residential buildings in Apeldoorn. 

3.4. Conclusions 

In this chapter a working model for the estimation of solar PV potential using high-

resolution LiDAR data and GIS techniques has been presented. Detailed PV potential 
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estimation studies require high-resolution height information models. The model 

presented in this chapter shows great potential and is easy to implement. The 

calculations showed that the city of Apeldoorn has great PV potential in its 

residential sector. Based on an average electricity consumption of residential houses 

in Apeldoorn of 3500 kWh/yr, the potential electricity that could be generated would 

be able to cover the electricity demand of the city completely and even produce more.  

 

Figure 3-10:Potential capacity in MWp and expected yield in GWh of the optimally suitable 

area (Grid code 2) and partially suited areas (Grid code 1). 

The application of this methodology to a city has shown that this method could be 

deployed in the whole country for accurate bottom-up determination of PV potential. 

This method could also be applied to the whole of the Netherlands, but proper 

extrapolation techniques have to be developed. 
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PV Potential tool calibration 
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Abstract 

Geographic information system (GIS) based tools have become popular for solar 

photovoltaic (PV) potential estimations, especially in urban areas. There are readily 

available tools for the mapping and estimation of solar irradiation that give results 

with the click of a button. Although these tools capture the complexities of the urban 

environment, they often miss the more important atmospheric parameters that 

determine the irradiation and potential estimations. Therefore, validation of these 

models is necessary for accurate potential energy yield and capacity estimations. 

This chapter demonstrates the calibration and validation of the solar radiation model 

developed by Fu and Rich, employed within ArcGIS, with a focus on the input 

atmospheric parameters, diffusivity and transmissivity for the Netherlands. In 

addition, factors affecting the model’s performance with respect to the resolution of 

the input data were studied. Data were calibrated using ground measurements from 

Royal Netherlands Meteorological Institute (KNMI) stations in the Netherlands and 

validated with the station data from Cabauw. The results show that the default model 

values of diffusivity and transmissivity lead to substantial underestimation or 

overestimation of solar insolation. In addition, this chapter also shows that 

calibration can be performed at different time scales depending on the purpose and 

spatial resolution of the input data. 
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4.1. Introduction 

Geographic Information System (GIS) based solar photovoltaic (PV) tools have been 

developed and used increasingly in the past decade, as they provide a remote 

assessment of PV siting, planning, integration and management [104]. These tools 

have been gaining popularity within the public sector (general public, governments, 

etc.) and also the private sector (PV installers, network operators, etc.). With 

increasing interest in sustainable solar energy generation, the mapping of solar PV 

potential has been explored by many at local [105,106], municipal [107,108] and 

regional scales [109]. At a local scale, it is easy and insightful to assess individual 

buildings. This information, once generated, can be used for answering several 

questions regarding the planning and siting of solar PV or solar thermal systems and 

even in urban planning and policy evaluations [110,111]. 

Early methods for PV potential calculations used computational solar radiation 

models which were either top-down or could not capture complex roof tops or 

probable shading due to the surroundings [112,113]. Then, a combination of 

computational models and GIS methods emerged for improving the solar irradiance 

calculations and for the estimation of technical [109,114–116] and socio-economic 

potential [117]. GIS based algorithms, on the other hand, help in capturing the 

spatio-temporal variation of solar irradiation and, consequently, PV yields [118]. A 

number of solar irradiation and PV mapping tools that are currently available and 

use different methodologies for rooftop PV potential analyses have been reviewed 

[31,119,120]. These algorithms are driven by geographic data and atmospheric 

parameters specific to the particular area. Most of the GIS based methods are based 

on some form of geographic data, such as satellite images, digital elevation models 

(DEM) [31,113,117] or LiDAR data [121–124]. These methods use different 

assumptions and, hence, differ in their accuracy and performance. Usually, the most 

common assumption is that every point on the rooftop receives an equal amount of 

solar radiation, irrespective of the slope, orientation and shading factors. Such 

assumptions often lead to inaccuracies [125]. When it comes to preparing maps or 

creating PV potential tools, it is necessary that the tool is customized to suit the 
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geographic area, as solar irradiation and its associated weather parameters change 

drastically depending on the location and time. Commonly used solar irradiance 

models have been reviewed and analysed [112,113,120]. Out of the few existing 

raster-based models, the GRASS r.sun model developed by Šúri and Hofierka [126] 

and ESRI’s Solar Radiation used in ArcGIS [127], developed by Fu and Rich [128], 

allow for integration of attributes that vary spatially over large regions. In addition, 

these models also account for shadows from surrounding buildings and trees, while 

allowing modelling over inclined surfaces, which is of specific interest in the urban 

landscape. 

For solar irradiance calculations, GRASS r.sun uses a Linke turbidity factor and 

beam and diffuse radiation coefficients, which are obtained from a data bank and 

calculated from decomposing global radiation measurements from a nearby weather 

station [129]. On the other hand, ArcGIS’s Solar Radiation uses simplified models, 

in addition to an easily operable interface with high resolution geospatial graphics. 

In addition, in the Solar Radiation tool, sky transmissivity and diffusivity parameters 

for calculation of direct and diffuse insolation are values which can be changed via a 

time series; throughout the year, every month, or within a day. Diffusivity ranges 

from zero to one, with typical values of 0.2–0.3 for clear sky conditions. 

Transmissivity also ranges from zero to one, with 0.5–0.7 for clear skies. Note that 

transmissivity and diffusivity are inversely related [130]. The GRASS r.sun is an 

opensource software, while ESRI’s Solar Radiation is a proprietary software. 

The atmospheric parameters (Linke turbidity factor, clear-sky index, transmissivity, 

etc.) can have a significant impact on the calculated annual irradiation [124,131]. 

These atmospheric parameters are hard to model and customize for a particular 

location [126]. Using the tools without validating these variables can have a 

significant influence on the final results; therefore, using parameters closer to local 

insolation values reduces the variation in solar radiation estimation [122,132]. 

Especially, with the Solar Radiation, model validation is necessary since the actual 

values cannot be defined from atmospheric data prior to model implementation 

[113]. The Australian PV Institute’s (APVI) Solar Potential Tool, developed by the 

University of New South Wales, uses the Solar Radiation model as the background 
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[133]. They used validation methods to estimate the accuracy of the APVI tool in 

comparison to measurements of the output AC power of PV systems and NREL’s 

System Advisory Model (SAM [134]). The study also analysed the accuracy of 

ArcGIS’s Solar Radiation tool with respect to insolation on shaded and unshaded 

surfaces [135]. Copper and Bruce [133] stated that a linear correction can be applied 

to ArcGIS’s estimates of insolation in order to achieve better fits with the results from 

SAM. However, it was observed that studies do not validate these models before 

using them, despite the influence of this on the results. 

This chapter, therefore, addresses the relevance and implementation of using 

calibrated values for diffusivity and transmissivity for estimation of global horizontal 

irradiation for varying spatial resolutions and geographic areas, using the Solar 

Radiation tool of ArcGIS, with particular focus on the Netherlands as a case study. 

We used the typical meteorological year data as well as the most recent 10 years 

irradiance data for calibration purposes. 

This chapter is further organized as follows. In Section 4.2 the methods and data 

used are presented. Section 4.3 shows and discusses the results for the annual and 

monthly analysis of parameters with a validation case. Additionally, the model 

implemented for varying spatial resolutions is also presented. Section 4.4 concludes 

the chapter. 

4.2. Materials and Methods 

4.2.1. ArcGIS Solar Radiation Tool 

It is evident that solar irradiation varies with time, during a day, in a month and 

throughout the year. It also varies with the climatic conditions and the position of 

the sun. Therefore, the challenge for the model is to predict the values as close as 

possible to reality. The tool is quite simple, requiring only a couple of atmospheric 

parameters. In the case of the Solar Radiation tool, it is hard to calibrate these 

atmospheric parameters of diffusivity and transmissivity before running the model. 
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The Solar Radiation tool of ArcGIS’s Spatial Analyst Toolbox calculates the solar 

radiation over a geographic area or for specified point (latitude–longitude) locations, 

based on the hemispherical viewshed algorithm explained in [136–138]. This tool 

takes location, elevation, slope, orientation and atmospheric transmission as most 

the relevant inputs. The total amount of radiation calculated for a given location is 

given as global radiation in the (energy) units of Wh/m2. 

The variable parameters we discuss in this chapter are atmospheric diffusivity and 

transmissivity [130], which denote the proportion of global normal radiation flux 

that is diffuse and the fraction of radiation that passes through the atmosphere 

(averaged over all wavelengths), respectively. These values, thus, range from 0 to 1. 

All the calculations were performed under clear sky conditions. 

The Solar Radiation tool uses a diffusivity value of 0.3 and transmissivity value of 

0.5 as the default settings and this is referred to as the default model throughout this 

chapter. For calibration of the Solar Radiation tool, solar irradiation for all 

combinations of diffusivity (0.2–0.7) and transmissivity (0.3–0.7) parameters 

(modelled values) have been simulated. In the results, for the purpose of analysis, 

these values will be referred to as whole numbers preceded by D or T to denote 

diffusivity and transmissivity, respectively. For example, D3T5 refers to a diffusivity 

of 0.3 and transmissivity of 0.5. 

4.2.2. Calibration Data 

A major source of meteorological data in the Netherlands comes from the Royal 

Netherlands Meteorological Institute (KNMI) [139]. This institute provides a wide 

range of meteorological products and manages 50 automatic ground-based weather 

stations across the country, of which, 33 stations record the solar irradiance. 

Calibration of the atmospheric parameters was conducted using the measured values 

from the KNMI network. The KNMI station at De Bilt, in the Netherlands (52.10N, 

5.18E) was chosen as a reference point for data calibration. Irradiation values 

obtained from the ground stations were mapped and interpolated to identify 

variations throughout the country for 10 years (2011–2020). The De Bilt station was 
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selected out of the 33 stations that provide irradiation data, as this station is located 

in the center of the Netherlands and is commonly used as a reference point by KNMI 

for describing and forecasting the weather in the whole of the Netherlands. In fact, 

the change in irradiation from coast to mainland is not very prominent (about 10%) 

[140] and, therefore, a single station (at the center) can well be used as a reference 

when performing nationwide calculations. The model will be implemented for the 

area of De Bilt and meteorological data from that station will be used for atmospheric 

data calibration. For calibration purposes, De Bilt values were chosen in order to see 

if it was performing adequately to be used for the whole country. 

Out of the 33 stations which measure irradiance, 30 stations were selected due to 

interruptions in the data collection of 3 stations within the 10 years. The locations of 

these KNMI ground measurement stations and their classification as either coast or 

mainland used in this study are shown in Figure 4-1 

 

Figure 4-1:Royal Netherlands Meteorological Institute (KNMI) stations in the Netherlands. 

Stations are categorized as coast (blue dots) and mainland (red). The station in the center 

(black square) is the De Bilt KNMI Station, and the station in the red square is the Baseline 

Surface Radiation Network (BSRN) station Cabauw. 
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Daily sums of measured irradiance from the ground stations were gathered and 

aggregated per month and per year. In addition, irradiation maps for the country 

were created using a simple inverse distance weighted interpolation technique with 

irradiation data obtained from these 30 KNMI stations. This provides an insight into 

the variation in irradiance within the country over the years at low resolution, which 

is sufficient for checking for anomalies related to localized weather conditions or 

instrumentation errors [141]. 

In addition to the KNMI stations, there is a Baseline Surface Radiation Network 

(BSRN) station at Cabauw in the Netherlands. This is one of the stations that 

provides radiation measurements as part of a worldwide network [142,143]. There 

are about 40 stations in this global network in different climatic zones. These data 

are of primary importance for the validation and evaluation of various satellite and 

model estimates of radiation parameters. The Netherlands falls under the temperate 

maritime climate zone and Cabauw (51.97N, 4.93E) is a BSRN station in the 

Netherlands, which adheres to the highest achievable data measurement standards. 

Therefore, data from this station were used to validate the calibrated model [144]. 

This station is about 30 km southwest of De Bilt (see Figure 4-1). 

4.2.3. Input Data for the Model 

Since the Solar Radiation tool is GIS based, it requires inputs in terms of raster or 

vector data. In particular, the Area Solar Radiation tool requires a DEM as an input 

to model solar radiation over geographic areas. The DEM used as input in this study 

is of 50 cm resolution and was obtained from Actueel Hoogtebestand Nederlands 

(AHN) [145]. Additionally, a DEM of 5 m (AHN) and 30 m (Aster DEM) [146,147] 

were used for irradiance calculations to evaluate the effect of spatial resolution on 

the outputs generated. A vector dataset of the locations and attributes of the KNMI 

and BSRN stations was used to map the measured irradiance values. Spatial 

resolution is one of the key factors deciding the quality of the output, as can be 

observed from Figure 4-2. The higher the resolution, the greater the detail in the 

images. Therefore, this should be chosen depending on the purpose of use. Modelling 

irradiation on the rooftops can be performed with 50 cm data, as can be clearly seen 
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from Figure 4-2c. The slopes and orientations of the rooftops can also be calculated 

effectively at this resolution, which helps in potential estimations at the building 

level. With 5 m data, it is likely only possible to do this at the neighbourhood or block 

level. With 30 m data, regional or national level estimations are possible. 

Figure 4-2:Example of varying spatial resolution of the digital elevation models; (a)30 m 

(b) 5 m and (c) 0.5 m. The white areas correspond to missing data. 

4.2.4. Method 

The Solar Radiation model was implemented for calibrating the model parameters T 

and D. The model has the capability to predict the irradiance values for varying 

temporal resolutions; daily, monthly, annual average and also within a specified time 

period. In this chapter, the values were calibrated for two cases of varying temporal 

resolutions; yearly (annual average) and monthly average since this gives better 

information for potential estimations. In addition to these two temporal scales, we 

evaluated the data at varying spatial resolutions. All the modelled values were 

validated against a reference set for the default case, modelled values calibrated per 

year and modelled values calibrated every month. 

The Solar Radiation modelling tool is computationally intensive; the process can run 

from a few hours up to multiple days depending on the inputs provided. In this 

particular tool, the simulation time is exponentially proportional to the resolution of 

the sky size and the raster input [106]. This also means that the higher the resolution 

of the input image, the greater the detail in the results and longer processing time. 
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ArcGIS uses Python as a scripting module to perform geographic data analysis, data 

conversion, data management, and for map automation [148]. Therefore, a 

customized Python script to run all permutations of atmospheric parameters of the 

model was incorporated to automatically run and iterate all the combinations of D 

and T values without manual intervention. The computed values of different 

permutations and combinations were then calibrated using measured values from 

the KNMI ground station in De Bilt. The best fit parameters of diffusivity and 

transmissivity were estimated for each month and year separately. The percentage 

difference (PD) between measured and modelled values was used to find the best fit 

values per month and per year (Equation (4.1)) [149]. 

Data fitting is highly dependent on the purpose of use, and the spatial and temporal 

scales at which the result is needed. In this chapter, we chose to find the best fit 

values of global horizontal irradiation (GHI) for one location (De Bilt) over 10 years, 

assuming that the calibrated values from this location can be used for the whole 

country. The default model values, and the calibrated model values (GHImod) were 

then compared with the measurements from De Bilt (GHImeas) using percent 

differences (PD) and mean bias error (MBE). MBE is the statistical model 

performance indicator, representing the systematic error of the prediction model to 

under or overestimate. The percentage difference PD and MBE are defined as: 

PD = |[(𝐺𝐻𝐼𝑚𝑒𝑎𝑠 − 𝐺𝐻𝐼𝑚𝑜𝑑)/𝐺𝐻𝐼𝑚𝑒𝑎𝑠] × 100 (4.1) 

MBE =
1

𝑁
∑(𝐺𝐻𝐼𝑚𝑜𝑑 − 𝐺𝐻𝐼𝑚𝑒𝑎𝑠) (4.2) 

with N referring to the number of measurements and the subscripts “meas” and 

“mod” corresponding to the irradiation values measured at KNMI De Bilt and 

obtained from the Solar Radiation model for all settings of D and T, respectively. 

Modelled data are calibrated per month and once a year. Analysis at a local scale to 

depict buildings was also performed on an area close to the Cabauw station and this 

was chosen for validating the method. 
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4.3. Results and Discussion 

This section presents and discusses the results of the calibration and validation 

methods along with insights into the spatio-temporal variation of solar radiation 

within the Netherlands. In addition, the purpose of using a GIS based radiation 

model is presented. 

4.3.1. Spatio-Temporal Variation of Solar Radiation in the 

Netherlands 

Solar irradiation depends on the geographic position and local climatic variations. 

The spatial and temporal variations in the global solar irradiation in the Netherlands 

for the years ranging from 2011 till 2020 are shown in Figure 4-3. The coastal region 

generally has a higher level of irradiation compared to the mainland. De Bilt, which 

is in the center of the country, falls in the median zone. Irradiation values from this 

station can, therefore, be taken as the average for the whole country. 

An overview of the ranges of values recorded at the 30 meteorological stations in the 

Netherlands is shown in Figure 4-4. The boxplots show the annual irradiation as 

recorded at the KNMI stations grouped as coast and mainland; 12 stations along the 

coast and 18 from the mainland (see Figure 4-1). It is clear that the coastal area has 

higher irradiation values compared to the mainland. It is worthy to mention that 

these values are larger than the 30-year average (983.41 kWh/m2 measured between 

1981–2010) used to characterize the Dutch climate [149]. Extremely high values have 

been recorded over the past three years.  

From Figure 4-4, it is also evident that irradiation for location/locations is not the 

same every year. Even though the spatial variation of irradiation is prominent, even 

up to some 15% (Figure 4-3), we choose the De Bilt values for validation of the solar 

irradiance for the whole country, as this is the central location of the country. 
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Figure 4-4: The range of irradiation values for all 30 stations categorized as coast (east) and 

inland (located west from the coast) for 10 years. Extremely high values were observed in 

the last 3 years, with record highs above 1200 kWh/m2 for a few stations on the coast. The 

East to West variation of irradiation in the Netherlands can also be inferred from the graph. 

 

4.3.2. Calibrated Values vs. Default Values 

All combinations of D and T for the 10 years have been modelled for the location of 

De Bilt. Table 1 shows the GHI values measured at the De Bilt station per month for 

the year 2020 and modelled values from the same location with the default settings 

and calibrated values (best combinations of D and T) and their corresponding 

percentage difference (PD). Note, that the modelled values for different years are the 

same for every combination each month, except for leap years This is because solar 

irradiation modelling has been performed on a single location (De Bilt station) with 

a constant DEM for all the years, assuming that there are no height variations 

throughout the 10 years. The locations of the ground measurement systems are also 

usually unchanged and are placed in fields with no obstructions. This clearly 

indicates that the model is very sensitive to the provided height information, which 

in turn, can be used in a manner that is dependent on the purpose of the analysis. 
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From Table 4-1, it is clear that the default model substantially underestimates the 

GHI. On an annual basis, for the year 2020, the default model yields an annual sum 

of 891.12 kWh/m2, which is about 21% less than the measured values at De Bilt. Only 

for two months (June and July) are the percentage differences below 6%, while in 

the winter months, the differences are much larger. If these values are not adjusted, 

they might lead to error propagation when these values used in further PV potential 

estimations. Therefore, it is necessary to find the right combination of D and T 

parameters in order to achieve better fits and, in turn, better accuracy. Choosing the 

correct temporal resolution for irradiance estimations is, therefore, important for the 

final results. For example, when trying to look at the production profile for a single 

household, hourly irradiance calculations can be very useful, in particular, for 

optimization of self-consumption. On the other hand, if the purpose is creating an 

irradiance map for the whole country, then it is more useful to select a seasonal or 

yearly variation. 

 

Table 4-1: Global horizontal irradiation (GHI) from de Bilt from measured (GHImeas), results 

from solar radiation default model D3T5 (GHImod) for the year 2020 and the corresponding 

percentage differences (PD). 

Month 
GHImeas 

(kWh/m2) 
GHImod 

(default) 
PD 

(%) 
GHI 

(calibrated) 
PD 

(%) 

Jan 16.58 6.94 58.17 17.73 6.93 

Feb 31.76 20.33 35.99 30.18 4.98 

Mar 93.94 58.73 37.48 100.25 6.73 

Apr 155.53 103.23 33.62 151.32 2.70 

May 194.33 148.42 23.62 194.94 0.32 

Jun 163.95 160.52 2.09 160.52 2.09 

Jul 149.01 156.99 5.36 148.31 0.46 

Aug 142.56 121.23 14.97 145.79 2.26 

Sep 98.51 71.92 26.99 98.96 0.45 
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Month 
GHImeas 

(kWh/m2) 
GHImod 

(default) 
PD 

(%) 
GHI 

(calibrated) 
PD 

(%) 

Oct 39.66 29.71 25.09 40.66 2.52 

Nov 25.90 9.05 65.08 25.96 0.23 

Dec 13.53 4.05 70.07 12.53 7.39 

Annual 1125.27 891.12 20.81 1090.25 3.11 

 

The best combination of diffusivity D and transmissivity T values was studied for the 

Netherlands for every month and for a year as a whole at the De Bilt location. Best 

fit values for each month were determined by finding the lowest PD between GHImeas 

and GHImod (Equation (1)). The results for the best combination of D and T and the 

corresponding error ranges for monthly fits are shown in Figure 4-5a,b and Figure 

4-6a, respectively. 

The difference in PD between the default and the calibrated model is huge (Figure 4-6a). 

The PD for the calibrated model is well below 7% for most of the fits. Here, the 

highest PD was also observed for the winter months, similar to the PD of the default 

model. Most repeating (four times in 10 years) D and T values are also from the 

winter months. The variation of best fit D and T values is shown separately for the 

10 years in Figure 4-5a. Figure 4-6b shows the fits achieved by calibrating the model 

using the monthly and yearly fits, in comparison with the default model. It is evident 

as to how much error can be reduced by using calibrated values from Figure 4-6b. The 

MBE for the default model for 2020, as shown in Figure 4-6b, is negative, which means 

that the model is underestimating the value. Furthermore, analysing the MBE values 

for all the 10 years revealed that the default model is biased, which means that for all 

the 10 years under review, the default model has underestimated the GHI. 

Calibrating the values using only one annual DT combination resulted in higher PD 

values than fitting the data using DT combinations optimized per month, as shown in 

Table 4-1. Modelled values, obtained by using one DT combination per year, 

underestimate the irradiance for winter months and overestimate the irradiance for 

summer months.  
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(b)

 

Figure 4-5: (a) Best fit D and T values for monthly calibrations over 10 years. The inverse 

relationship between D and T values is observed here, (b) Calibrated diffusivity (D) and 

transmissivity (T) combinations for 2011–2020. Although certain combinations are 

repeated, it is hard to find a pattern with these reoccurring combinations. 

 

 

(a) 
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Therefore, over a year, the cumulative irradiation values are closer to the reference 

values. However, the monthly fits are much better when looking at higher temporal 

scales.On the other hand, if we are looking at lower spatial resolutions (district or 

country level), yearly fitting could suffice. This is because detailed information would 

be masked as the DEM input would be coarse (resolution of about 15 m–30 m or 

larger), which is not enough to distinguish between individual buildings. 

To a large extent, yearly fits also reduce the error as compared to the default model, 

as shown in Table 4-2: Best fit DT values on an annual basis and the corresponding 

PD. The graph shown in Figure 4-7 plots the calibrated values of D and T when using 

one value for the whole year. It can be seen that certain years (2015, 2018–2020) 

with high levels of radiation have low diffusion and high transmission (D2T6), and 

low radiation years (2012 and 2013) have high diffusion and low transmission 

(D6T4), similar to what has been published recently [150]. The rest of the years have 

a median combination of diffusion and transmission (D4T5). Therefore, on the basis 

of the trend from these data, and the look up table (Table A2), it is feasible to predict 

the DT values for running the model, without the need to run simulations to 

recalibrate the model for annual estimations. 

 

 

Figure 4-7: Graph with best fit D and T values plotted for the years 2011–2020. 
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Table 4-2: Best fit DT values on an annual basis and the corresponding PD 

Year DT Year PD (%) GHI meas 

2011 D4T5 0.78 1026.04 

2012 D6T4 0.92 988.75 

2013 D6T4 0.56 1003.51 

2014 D4T5 2.18 1040.74 

2015 D2T6 1.59 1073.18 

2016 D4T5 2.07 1039.47 

2017 D4T5 0.2 1020.04 

2018 D2T6 4.13 1137.19 

2019 D2T6 0.78 1098.79 

2020 D2T6 3.11 1125.27 

    

4.3.3. Validation of the Calibrated Values 

The calibrated values for the year 2020 were used to model the irradiation for a built-

up area close to Cabauw. The results of the default model and results with calibrated 

models are shown in Figure 4-8. Although, the underestimation in the default model 

is evident, it still captures the surroundings efficiently. The relationship of the default 

values to the calibrated year values is linear. For the case of the default model, 

building classification in terms of suitability and delineation of suitable areas on the 

rooftop can still be done on the basis of the regional min–max values of modelled 

solar irradiation. On the other hand, calibrated values provide more possibilities in 

terms of potential estimations. Therefore, potential area estimations can still be 

made when using the default model without calibration, as long as the irradiation 

values are not directly used to estimate the power production or capacity. This is 

especially valid for high resolution analyses. During the validation of images, high 

values were observed (see Figure 4-8), especially on south facing roofs, for the 
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calibrated models. This could be due to the fact that the model was calibrated using 

data from one point (the KNMI meteorological station at De Bilt). 

The complexity involved in calibrating the ArcGIS model refers to the fact that one 

measured value is used for a whole geographic area, be it measurements from the 

closest ground station or a central location. In addition, the only atmospheric 

parameters which can be changed are the D and T. This means that for high 

resolution rooftop analyses, even the calibrated values may sometimes fall short. An 

example is shown in Figure 4-9, where the irradiation profiles from different roof 

types are presented. Figure 4-9a shows the DEM of a small selection from the area 

used for validation purposes along with the locations selected for creating the 

radiation profiles. Small areas on the rooftops with different orientations were 

selected, blue for north, red for south, pink for east, orange for west and green for 

flat. All these locations are highlighted in the figure.  

 

 

Figure 4-8: Modelled irradiation for a geographic area with default model (D3T5) and 

calibrated models. 

 

Figure 4-9b shows the corresponding ranges of irradiation values for each image 

created by the default and calibrated models in boxplots and the mean values of the 

selected roof areas, plotted as lines. The measured value at Cabauw is depicted as a 

black line at 1155 kWh/m2 (for 2020).This value is closer to the first quartile for the 

monthly calibrated model, median for the yearly calibrated model and third quartile  
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for the default model. In this scenario, using the calibrated model to model 

irradiation on the images or rather larger geographic areas instead of point locations, 

one DT fit per year can be seen to perform better.  

(a) 

 

(b) 

 

Figure 4-9: (a) Colorized digital elevation models (DEM) with selected areas on different 

roof orientations and slopes. (b) box plot of irradiation values in the images for the default 

and calibrated models for 2020 with mean lines from the selected areas of different roof 

types. 
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In all three cases east–west facing roofs have irradiation values closer to the first 

quartile. Flat roofs have a value that is larger than the median but only for the 

calibrated models, this is also larger than the measured irradiation. South and north 

facing roofs are closer to the maximum and the minimum values in the region and 

are significantly higher or lower than the measured  values. The south facing and flat 

roof values from the default model are closer to the measured values, while the 

calibrated models overestimate the irradiation values. This suggests that the default 

model performs adequately when used for annual calculations and that it has a linear 

relation with the fitted models. 

4.3.4. Irradiation Modelling with Varying Spatial Resolution 

The purpose of using ArcGIS is to be able to analyse solar irradiation based on 

location. Locations can vary from a point (latitude–longitude), a particular building, 

a street, a neighbourhood or even a country. As mentioned earlier, the scale and 

purpose are important in selecting the required spatial resolution. Figure 4-10 shows 

the effect of spatial resolution in modelling solar radiation. It is evident as to which 

types of analysis are possible with the resulting images. 

The very high resolution of 50 cm is quite good for bottom-up analyses in urban 

applications of suitability modelling or power production and capacity estimations. 

On the other hand, 5 m, for example, can be used for modelling parking areas or 

fields or even for providing a general suitability classification of neighbourhoods. 

Low resolution images can be useful at a regional or national level for very broad or 

generalized figures. It should also be noted that the processing time is also related to 

the input resolution. For this study area of about 1 km2, the processing time recorded 

while running the default model was 01 m:12 s, 06 m:22 s, and 10 m:7 s, for 30 m, 5 

m and 50 cm, respectively. It was executed on a Windows machine with an Intel i5 

processor with four cores and eight GB RAM. This can become slightly complex, and 

the processing time increases when smaller time intervals, higher resolution and 

larger geographic areas are used. 
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Figure 4-10: Solar Radiation with varying spatial resolution run with the default model 

in ArcGIS. 

 

4.4. Conclusions 

This chapter shows the importance of using validated values of transmissivity and 

diffusivity for performing irradiation analysis using the ArcGIS Solar Analyst Tool. 

The analysis shows that there is not one unique combination of D and T values that 

can be used as a constant for monthly fits; this also means that, for the prediction of 

solar irradiation for the future, other modelling methods, such as r.sun, are also 

preferable in terms of control of various atmospheric parameters. However, the Solar 

Radiation Tool is very simplistic (easy to execute with a minimum number of 

atmospheric parameters required) and at the same time, it can provide a detailed 

overview of shading or the effect of orientations and slopes when using high 

resolution data. 

DT combinations are highly dependent on climatic conditions and calibrated values 

should be used depending on the purpose and scale. Calibrating this model is 

relatively easy when one has access to measured radiation values and can improve 

the potential calculations by at least 10–20%, depending on time scales used in the 

analysis. It was also observed that the monthly variation of the combinations leads 

to higher accuracy results, which is very useful when modelling energy profiles for 

households or even for generating accurate potential information which is closer to 
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reality. When looking at lower temporal scales (yearly) one DT combination will 

suffice. 

When the model is used to predict the annual irradiation, a direct relation could be 

made with the measured values and, therefore, standardized values can be used, as 

demonstrated. However, it must be noted that we assume that one single location 

(De Bilt) is sufficient for calibrating the model. Hence, these values are reliable when 

using similar data and settings as those used in this study and, therefore, are 

reproducible and reusable. Better fits can be achieved when the model is calibrated 

using data from the closest ground measurement station, no matter which resolution 

or temporal scale is used. 

Finally, the spatial and temporal resolution play an important role in this model, 

which are directly related to the accuracy of the model, level of detail and processing 

time. We demonstrated the use of ArcGIS in mapping the PV potential, with 

optimized and validated D and T values. While the method was applied to the 

Netherlands, it can successfully be applied to other regions. We finally recommend 

validating the ArcGIS model with local irradiation data before it is used for 

modelling/mapping purposes, if the values are to be used directly for potential 

estimations. This information can prove to be useful, especially in driving data 

dependent policies for PV penetration in order to encourage sustainable energy 

deployment. 
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5.   

 

Visualization 

 

 

 

 

 

 

 

 

 

This chapter is based on the publication:  
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Connected PV Systems in Selected European Countries,” Energies, vol. 11, no. 6, p. 1330, 

May 2018, DOI:10.3390/en11061330 
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Abstract 

This chapter presents the results of the analyses of operational performance of small-

sized residential PV systems, connected to the grid, in the Netherlands and some 

other European countries over three consecutive years. Web scraping techniques 

were employed to collect detailed yield data at high time resolution (5–15 min) from 

a large number (31,844) of systems with 741 MWp of total capacity, delivering data 

continuously for at least one year. Annual system yield data from small and medium-

sized installations was compared. Cartography and spatial analysis techniques in a 

geographic information system (GIS) were used to visualize yield and performance 

ratio, which greatly facilitates the assessment of performance for geographically 

scattered systems. Variations in yield and performance ratios over the years were 

observed with higher values in 2015 due to higher irradiation values. The potential 

of specific yield and performance maps lies in the updating of monitoring databases, 

quality control of data, and availability of irradiation data. The automatic generation 

of performance maps could be a trend in future mapping. 
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5.1. Introduction 

Recent years have seen a constant growth in solar photovoltaic technology (PV). 

Several countries have utilized this potential to create a competitive market in view 

of a green energy future, which led to an increase in small and medium-sized 

residential solar PV installations [151,152]. These small-sized installations (with 

capacities less than 10 kWp) are scattered and operate under diverse conditions 

without adequate monitoring equipment. Studies show that most of these systems 

perform adequately, but due to a lack of systematic data collection, performance 

validation was mainly focused on specific geographic areas with a limited amount of 

systems [153,154]. 

A “Photovoltaic Geographical Information System” (PVGIS) system was designed to 

provide performance assessments to an accuracy that is suitable for small 

installations and for estimating the potential solar energy over large regions at any 

location in Europe [155]. Although this large-scale GIS (Geographic Information 

System) database of solar radiation and ambient temperature has been created to 

estimate energy output from crystalline silicon PV systems and solar water heating 

systems, it does not provide continuous monitoring or performance evaluation for 

small-sized, grid-connected PV systems. 

Currently available monitoring technology in the market is capable of providing 

owners with sophisticated web tools to monitor their production and system 

performance at any point during the day, besides measuring energy production. 

With the advent of such hardware and smart-metering technology, high-resolution 

monitoring data is publicly available, which is uploaded daily on web platforms, 

however, in some cases only owners can view this data. 

With the huge amount of data that is available due to the monitoring equipment, 

abnormalities can be compared with additional data (remote sensing imagery) for 

identification of reasons for underperformance or fault detections [156]. Monitoring 

small grid-connected PV systems to minimize financial losses has also been explored 

[157] along with the need for long-term monitoring for reliability and increased PV 
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performance [154]. In [151,158], the authors show the importance of using a 

graphical supported analysis of monitoring and operation of PV installations for fault 

detections. In our earlier work [159,160], we show how technical aspects and 

geographical location of PV systems affect PV performance. In this chapter, 

geographic information systems (GIS) are employed to analyse, visualize, and map 

PV monitoring data from five countries, namely, the Netherlands, France, Germany, 

Belgium, and Italy. We also present and discuss methods for visualization and 

detection of underperforming or overperforming systems for further analysis, 

performance ratio analysis of systems, and spatio-temporal mapping of performance 

differences. 

5.2. Method 

Data used for the analyses was collected using online services provided by Solar Log 

[161] and SMA [162], which also ensured data legitimacy. Solar Log has users over a 

hundred countries and is one of the major key players in monitoring applications, 

though it has lost a lot of its clients after 2015. SMA is one of the specialists in 

photovoltaic inverter system technology. The code used in this research was 

developed to extract online data and was designed using Python programming [163]. 

The objective of the web scraping code was to mimic human navigation through web 

pages of SMA and Solar Log, and to locate and save information that was available 

to the user [159]. This means that the monitoring information pages of different PV 

systems was retrieved and saved accordingly. This information was later organized 

into datasheets. In this way, high temporal resolution yield data (5 min) and other 

system metadata like orientation, tilt, type of module, etc. were obtained. Recently, 

privacy constraints have been put on the data, and these data are not available 

publicly anymore. In total, data from about 31,844 systems were collected for the 

years 2012–2016 from 5 different countries in Europe, namely, the Netherlands, 

France, Germany, Belgium, and Italy. 

In order to calculate the performance ratio (PR) of all the systems, system yield and 

reference yield are required. System yield is obtained from the data collected by web 
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scraping and reference yield is calculated using the Olmo model [164]. This model 

requires irradiation data [165]. Hourly global horizontal irradiation data obtained 

from the 31 ground-based stations of the Royal Netherlands Meteorological Institute 

(KNMI) were used to compute the reference yield for the Netherlands. These stations 

cover the entire country. For each installation in the database, irradiation data was 

collected by linking it to the closest ground station, in order to minimize the 

uncertainties in the irradiation data. Note that no system was further away than ~30 

km from the nearest KNMI station. The tilt and orientation for every system has also 

been obtained from web-scraped data of PV systems. The Olmo model was then used 

to calculate the total irradiation in the plane of array on an hourly basis. This study 

does not take into account effects such as shading as the aim of the chapter is to 

visualize performance rather than detect reasons behind over- or underperformance 

[166].  

The PR was calculated using equation.5.1, where Yf is the final system yield and Yr is 

the reference yield [165]. Since high-resolution, up-to-date annual irradiation data 

was not available for the rest of the countries, PR was calculated only for the 

Netherlands. 

𝑃𝑅 =
𝑌𝑓

𝑌𝑟

 (5.1) 

 

Geographic Information System (GIS) is a “powerful set of tools for collecting, 

storing, retrieving at will, transforming, and displaying spatial data from the real 

world” [167]. Based on the principles of geography, cartography, etc., GIS is used for 

integration of different data types. It is a very powerful tool when it comes to analyses 

of spatial information, layering or organizing layers of information into 

visualizations using maps and 3D scenes[168]. There are several GIS software 

packages available in the market today, but ArcGIS [169] is a leading licensed tool 

for performing powerful geo-analyses, which will be used in this chapter as an 

example tool. 
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Visualizations of the performance ratio, the locations of the installations, and yield 

and performance maps were created using the ArcGIS platform. An inverse distance 

weighted (IDW) interpolation technique was used to create the performance ratio 

maps and specific yield maps for different years of data collection. Although data 

from around 31,800 systems was available (2012–2016), only those systems that 

recorded data continuously for three consecutive years (between 2014 and 2016) 

were used to compare the differences in yield generation. This provides an 

understanding of how system performance varies spatially (over geographic areas) 

and helps in identifying outliers in the data. In addition to being able to visualize the 

results, looking into the diffusion of distributed systems within a country or area 

allows for the computation of geo-statistics pertaining to the region which are useful 

for policy implementation. 

 

Figure 5-1:System size distribution of systems with capacity of less than 100 kWp for five 

countries. The red line illustrates the mean value of 12 kWp. 
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5.3. Results and Discussions 

From 2011 to 2016, data from more than 31,800 systems was collected and analysed. 

However, only 7894 of them were consistently delivering valid data for more than 

350 days per year for at least three consecutive years (2014–2016). The total capacity 

of these systems was about 102 MWp with 56% of them having a lower capacity than 

10 kWp and only 1.1% being larger than 50 kWp (see Figure 5-1). The mean value 

was 12 kWp. The spatial distribution of all the installations with system size 

information is illustrated in Figure 5-2. The variation in average size and 

composition of the systems in each country is a direct reflection of the country’s 

policies on PV subsidy schemes. 

 

Figure 5-2: Spatial distribution of the data sample for the Netherlands, Belgium, France, 

Germany, and Italy. 

 

A high concentration of small-scale domestic installations is observed in Germany, 

Belgium, and the Netherlands with 64% of the systems in Germany. The Netherlands 

and Belgium have most of the systems’ total capacity under 5 kWp. While in 

Germany only 7.2% of the installations fall in this category, 45% of the PV of the 

systems installed are still below 10 kWp. Though the monitoring procedure might 
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have started at a later time, most of the systems from the sample were installed 

between 2008 and 2014. 

Figure 5-2 shows the location of each PV system, categorized by system capacity. 

Data collected from the monitoring systems and organized in a database was 

imported into GIS to create this map. Clearly, large numbers of systems are 

concentrated in Germany, Belgium, and the Netherlands. Some of the systems had 

faulty location information and hence were not included in the map. From the 

collected data, density of the systems was higher in the North where irradiation is 

lower, rather than in the South where there is higher irradiation. The low 

concentration of systems could also be due to lack of data from the southern 

European countries. 

5.3.1. Yield Analysis and Performance Ratio 

The available data was found to be varying through different time periods as new 

installations were added every year. Also, not all the systems recorded data for all 

the years. Therefore, only those systems that had been consistently delivering data 

for the three consecutive years (2014–2016) have been considered for analysis. 

Furthermore, since the interest is in monitoring small-scale installations, annual 

yield analysis of systems below 20 kWp for the years 2014–2016 has been conducted 

for the Netherlands, France, Germany, Belgium, and Italy. These countries were 

found to have the highest amount of data records from the data collection. 

The mean value and the standard deviation of the performance of systems of each 

sample is shown in Figure 5-3: here we show the annual specific yield, i.e., generated 

amount of energy divided by system capacity (kWh/kWp). These are known to be 

affected by a number of environmental and operational factors [170]. Moreover, a 

wider spread of yearly yield values can be expected from countries covering larger 

areas as a result of the variation of irradiation levels at different latitudes. The 

distribution of annual system yield for the Netherlands, Belgium, Germany, and Italy 

is shown in Figure 5-4. France has only 95 installations between 2014 and 2016 out 

of which 76 systems are below 20 kWp capacity, while Germany has nearly 3900 
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systems, and Belgium 1700. Therefore, France has higher mean yields and only four 

outliers due to sample size. Between 2014 and 2016, the annual yield increased in 

2015. However, the decrease or increase in yields falls within standard deviations, 

but at the same time relates directly to the decrease or increase in solar irradiation 

on a country level. 

 

Figure 5-3: Distribution of specific yield by country from 2014 to 2016 for systems less than 

20 kWp. Highest yields were recorded in 2015, with Italy (IT) having the highest mean, 

followed by France (FR), Germany (GER), Belgium (BE), and the Netherlands (NL), 

respectively. 

 

Performance ratio (PR) analysis was conducted for the Netherlands which revealed 

a mean PR value of 79% for the year 2016 and 80% for 2014 and 2015. The PR values 

were calculated with an average daily PR value over a year. These values are close to 

the results of an earlier study performed in Germany [171]. The sample size for this 

estimation was about 600 installations. The number of PV installations in the 

Netherlands significantly increased from 2009, but their performance dropped in 

2016 in comparison to 2014 (Figure 5-5). Systems installed in 2013 performed well in 
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2014 and 2015, while in 2016, a lot of outliers were observed. In some cases, the large 

variation in PR values could also be due to technical errors in data collection. 

 

Figure 5-4: Distribution of specific yield for the year 2016 for Italy, Germany, Belgium, and 

the Netherlands. 

 

Figure 5-5:Distribution of performance ratio of the Netherlands between 2014 and 2016 

for systems that have been installed from 2009 to 2013. 
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5.3.2. Geographical Variation of Specific Yield 

Point data (vector information) collected from the web monitoring services has been 

converted to images (raster information) by using interpolation techniques. 

Interpolated data is visualized using colour scales stretched using specific bins of 

annual yield values. From these images/maps, outliers can be quickly discerned to 

locate PV systems with minimum or maximum yields, thus providing a starting point 

for further analyses into the reason behind the system’s under- or overperformance. 

The maps can be compared to the country irradiance maps to check for irradiation 

trends in the particular year, as yield values are related to irradiation values. This 

provides a quick approximation of the variation of performance over the country. 

Figure 5-6 shows an interpolated map of annual yield of the Netherlands and Italy 

for three years with dots representing the location of the systems. Inverse Distance 

Weighted (IDW) interpolation technique was used to generate the maps. Higher 

yield values have warmer and darker shades (reds), and lower yield values have a 

blue shade. A variation in yield values is observed within the countries, while it 

should be noted that these variations can further be optimized using different colour 

scales and data stretching methods. A few examples of this are shown below. 

Although variations over the years are not very prominent because of the type of 

stretch used for data visualization and the data sample (system size up to 20 kWp), 

it could still be distinguished that 2015 has higher annual yields. A min–max stretch 

was used to visualize data with the same scale of minimum and maximum values for 

the three years to maintain consistency. 

When using a different data stretching method (see, for example, Figure 5-7a), 

extreme deviations in data (bright spots) can be identified around systems with 

extreme yield values. These extreme values carry a higher weight factor during 

interpolation causing the spot or bleeding effect. As mentioned earlier, these spots 

can be separated out as outliers or as inadequately performing systems. Moreover, if 

high resolution irradiation data is available, the database of collected information 

could be explored by irradiation zones in addition to spatial diffusion or technical 

criteria. 
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An example of different stretching techniques is shown in Figure 5-7, in which two 

types of data stretching were used over a colour scale. In Figure 5-7a, a percentage 

clip method was used, where the values displayed are cut-off percentages of highest 

and lowest values, while Figure 5-7b displays values between the actual or set 

minimum and maximum. A smoothing effect can also be seen in Figure 5-7b, while 

it is easier to pick out underperforming or overperforming systems to analyse them 

further from Figure 5-7a. 

(a)                                        (b) 

 

Figure 5-7:Annual specific yield variation from the installations (up to 20 kWp) for 

Belgium visualized using two different types of data stretching for 2016. Data 

stretching techniques (a) percent clip and (b) min-max used for data visualization. 

 

Another example of the power of GIS in visualization is shown in Figure 5-8, where 

the mean specific yield for Germany using different thresholds of system sizes is 

presented. The variation in specific yield of systems up to 20 kWp is much smoother 

compared to when only systems up to 10 kWp are considered. For example, the 

systems in the highlighted area (red box in both images) shows underproduction 

when compared with larger systems (<20 kWp) while, on comparison with smaller 

systems (<10 kWp), they seem to be performing adequately. Also, it can be seen that 

a few systems seem to be less efficient in both categories, which means they could 

actually suffer from a malfunction. 
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Figure 5-8: Specific yield variation from the installations in the Germany, for different 

system sizes. 

 

Figure 5-9: Specific yield difference maps for 2014–2016 for the Netherlands. 

 

5.3.3. Mapping Performance Differences 

Differences in specific yield for three years for the Netherlands are shown in Figure 

5-9. This has been calculated based on the yield maps generated by interpolation. 

Areas in red show decrease in yield, while areas in green show increase in yield for 

different years. Yellow regions are regions of no change. The limits for no change 

were set at −20 to +20 kWh/kWp (~2% of annual specific yield) and anything higher 

or lower than these values was recorded as increase or decrease in yields. Increase in 
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yields were observed for most of the regions from 2014 to 2015, while from 2015 to 

2016, the yields were either constant or decreased. When looking at differences from 

2014 to 2016 compared to 2014–2015, lower yield values were observed in the south 

of the Netherlands. In general, these differences can also be visualized with scatter 

plots. The advantage of using mapping techniques to visualize difference data lies 

not only in knowing how large the change is, but also in being able to see where the 

change is taking place. Maps of yield differences should be used in conjunction with 

maps of irradiation differences to explain the yield differences, or one can map the 

performance ratio differences. 

5.4. Conclusions 

In this study, GIS has proven to be an excellent tool for visualization of yields and 

performance of scattered, small-sized, residential PV systems over wide-spread 

areas. We were able to successfully demonstrate this for the Netherlands and a few 

other countries like Italy, Germany, and Belgium. Additionally, geo-processing tools 

(hot-spot analyses, network analyses) could provide useful information to 

individuals or policymakers to make informed decisions. This could be done if 

information (system metadata) pertaining to all the installed PV systems is available. 

This chapter further provides an update on performance of residential PV systems 

scattered in a few European countries. It was found that the year 2015 showed a 

higher specific yield in kWh/kWp compared to the years 2014–2016. Performance 

ratio for the Netherlands did not change with respect to earlier years, although there 

is an increase in extreme values with the increase in number of installations. Access 

to high-resolution irradiation data for all the countries is necessary to analyse 

temporal variations in performance ratios of PV systems. Recent reports suggest an 

increase in performance ratio values [171–173], however, long-term changes over 

expected lifetime of the systems should be analysed to show if performance ratio 

values still are increasing. 
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Building up and expanding the present PV performance databases to other countries 

will provide up-to-date performance maps of more countries. In addition, irradiation 

maps can be combined with yield maps in order to construct maps of performance 

to understand the relationship between climatic zones across the world and 

performance of PV systems. 
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6.  

 

Policy Evaluation 
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Abstract 

The Postal Code Rose policy is part of the 2013 Dutch Energy Agreement of the Social 

and Economic Council of the Netherlands, introduced to support sustainable energy 

growth. This chapter presents a case of the Dutch Postal code Rose policy by 

developing a method combining geographical information systems (GIS) and 

multicriteria decision analysis (MCDA), which allows determining the solar 

photovoltaic potential when fully applying this policy. As case study, the city of 

Apeldoorn in the Gelderland province of the Netherlands was selected. The research 

evaluates the technical potential of the city and then applies it to the Postal code Rose 

framework by using social criteria. The social criteria comprise of the most important 

factors that play a role in the adoption of solar PV. The results showed that by fully 

applying the Post Code Rose policy ~77% of the total electricity demand of Apeldoorn 

could be covered by solar PV. 
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6.1. Introduction 

In recent years, the rapid depletion of fossil fuels and its association with climate 

change pushed the renewable energy technologies to the forefront. Diffusion of 

renewable technologies is of interest to policy makers and national agencies who 

wish to tackle global climate change. For example, the EU has defined its 20-20-20 

goal: 20% reduction of greenhouse gas (GHG) emissions, 20% renewable energy and 

20% reduction in energy use by 2020 [174]. In the Netherlands, a policy program 

called “Clean and Economical” (in Dutch: “Schoon en Zuinig”) from the Ministry of 

Housing, Spatial Planning and the Environment [175] has been introduced. This 

policy originally set a target of a 30% GHG emission reduction in 2020 compared to 

the levels of 1990 and 20% of the total energy demand covered by renewable energy 

sources. After a few years, these targets were reset to 20% reduction of the GHG 

emissions and 14% renewable energy production by 2020 [175]. 

Policies indirectly affect the reduction of GHG’s, by aiding the decision of adoption 

of renewable energy technologies. Policies can also induce change at the smallest 

scale: at household or an individual level. An example is the postal code rose (PCR) 

policy: a sustainable energy initiative, introduced by the Dutch government. It 

targets to increase energy generation using solar panels by local cooperatives. 

Investment in solar panels becomes attractive under such policies. In addition, the 

driving factors of solar photovoltaic (PV) adoption vary from financial, information 

regarding the technology and social learning. It is advantageous to look at the policy 

implications from a spatial perspective as it could provide insight as to which places 

have a high potential for the policy to succeed. This also provides information on the 

spatial patterns of PV diffusion which is of interest not only from a scholarly 

perspective, but also from a policy and marketing perspective [176]. 

As an attempt to quantify the potential for PV systems, that would be possible as part 

of the PCR policy, this chapter presents a method to estimate the PCR potential for 

a city (Apeldoorn) in the Netherlands. The method uses a combination of multi-

criteria decision analysis (MCDA) and geographical information system (GIS) 

modelling. The MCDA method is suitable for comparing different factors that play 
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an important role in the adoption process of solar PV, and GIS helps with the spatial 

analysis of the criteria.  

6.1.1. Postal Code Rose Policy 

In 2008, the Dutch Ministry of Economic Affairs introduced a subsidy for power 

generation from solar panels, as part of the subsidy scheme renewable energy (SDE, 

“Stimulering Duurzame Energieproductie”). The subsidy was at € 0.33 /kWh with a 

payback period of 15 years (Renewable World Energy Press, 2008). After this, the 

development of solar energy was so fast that in 2012 the installed capacity from 146 

MW rose to 371 MW. After the second half of 2012, PV became more attractive under 

the national investment subsidy of “energy and innovation” which provided a grant 

up to 15% of the investment cost for each system above 0.6 kWp and a maximum of 

€ 650 per system. The budget was up to € 22 million and in 2013 it increased to an 

amount of 30 million. In terms of statistics, in February 2013 there were 52,221 solar 

system owners and in September 2013 this number increased to 106,998 and 665.47 

MW of solar PV capacity installed [177,178]. By the end of 2015, about 400,000 

system owners together have 1.5 GWp installed [179], see Figure 6-1. 

 

Figure 6-1:(a) Development of cumulative installed PV capacity in the Netherlands (data from 

CBS (2016)). (b) Postal Code Rose around a central postal code. 
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Recently, the Social and Economic Council of the Netherlands introduced the Energy 

Agreement in order to accelerate the pace of renewable energy technologies 

deployment mainly focusing on offshore wind. This agreement includes ten 

components that are linked to renewable energy, innovation and export, 

transmission network etc.  

Without detailing the others, the third component of the Energy Agreement states 

that the main target is to decentralize the generation of renewable sources by people 

themselves and by cooperative initiatives [180]. Apart from the tax relief of € 0.075 

per kWh (in 2013, changed to € 0.09 per kWh in January 2016), the policy focuses 

on the electricity generation by a cooperative or by an association of owners. This 

energy should be utilized by small-scale consumers and members that should be 

located within the postal code area surrounding the postal code in which an investor 

is registered [180]; this was termed as postal code rose (in Dutch “postcoderoos”), 

mimicking the rose flower with a central core and surrounding petals. To understand 

PCR (Figure 6-1b) suppose there is a sustainable energy initiative in the post code 

7331, each participant in the zip codes 7333,  7334, 7335, 7311, 7321, 7328, 7332 and 

also 7331 itself can avail the so-called energy tax reduction on every kWh generated 

which is in proportion to the total yield of the overall project. The idea is that 

participation in the joint project will mean 50% return on the energy, along with 

returns from the project.  

6.1.2. Factors Affecting Policy Diffusion 

Studies have been performed in order to explore the characteristics of technology 

diffusion, such as the role of policies [181,182] and the social interactions towards a 

new product and economic factors [183,184]. When it comes to factors influencing 

the adoption of solar PV, there is little said and not all the factors have been 

addressed together. Studies show how consumer behaviour changes if a neighbour 

has PV or how income and knowledge affect financial incentives [176,185–193]. This 

chapter addresses socio-economic factors mainly due to data constraints. Since the 

focus is on policy at household level, we considered the following factors which were 

identified as quantifiable and relevant to the PCR policy.  
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• Economic factors like house value and average income 

• Social factors/ peer effects  

• Technical/knowledge factors 

6.2. Data and Method 

Data relating to socio-economic factors like household value, average income and 

electricity consumption were available at neighbourhood level. Since the PCR policy 

works at 4-digit postal code (PC4) level, all the data was aggregated to PC4 level. The 

procedure of building the database in GIS was made by ArcGIS 10.2. In order to 

implement the MCDA, the criteria that will be used for the evaluation must be 

expressed in quantitative values. Multicriteria evaluation of a problem is not easy, 

either economically or mathematically. Usually there is no optimal solution and 

hence the influence and the weighting of criteria should be adapted according to the 

problem. The methodology shown in Figure 6-2 consists of the following steps:  

• Development of a digital GIS database that includes all spatial 

information.  

• Determination of the evaluation criteria/sub criteria for the multiple 

criteria analysis.  

• Implementation of the analytic hierarchy process method to calculate the 

criteria/sub criteria relative importance weights. 

• Implementation of a MCDA to reveal the potential of PV capacity of the 

PCR policy.  

When it comes to site selection problems or suitability models, the spatial MCDA 

(Weighted Overlay) is the most commonly used method [194]. Assigning weights to 

each criterion in a scientific way is necessary to ensure replicability and robustness 

of the model. Therefore, the Analytical Hierarchy Process (AHP) [195–197] was used 

to pairwise compare the criteria instead of assigning weights to each criterion 

directly. The steps of AHP which were implemented are as follows:  

• Determine significant criteria. 
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• Set up criteria comparison matrix and grading. 

• Normalize the comparison matrix. 

• Check for consistency 

After the grading, the influence or weights of each criterion is known. The influence 

is then used in the weighted overlay analysis in GIS. The flow diagram of the 

weighted analysis and the final determination of PCR potential per PC4 are shown 

in Figure 6-2 (A). All the criteria layers were divided into 3 subcategories and graded 

accordingly (1-3 in this case).  

 

Figure 6-2: Methodology flowchart. (A) shows in detail the weighted analysis highlighted 

in the left image. 
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This means that if the income is high then the chance of PV adoption is higher, 

therefore, it is graded at 3. Similarly, for peer effects, the closer the neighbour with 

PV the greater the influence. In this case, buildings with existing PV panels have been 

mapped. For these buildings, a buffer up to 500 meters was calculated in 3 steps in 

order to see which buildings could be affected from the peer effect that increases the 

probability of solar PV adoption. The technical PV potential for the residential sector 

of the whole city was calculated using high resolution Lidar data. The PV capacity 

estimated per building was analysed by determining the rooftop suitability for PV 

siting and applicable calculations to estimate the capacity that can be installed [198]. 

This information was used after the weighted overlay, as a mask to single out 

buildings or suitable adopters. 

6.3. Results 

According to the data provided by the municipality of Apeldoorn, the income, house 

value and electricity consumption available at neighbourhood level was aggregated 

to post code level and mapped, see Figure 6-3. For neighbourhoods that have no 

data, average values were used, so that it would result in a better estimation. The 

low-income category is neighbourhoods with income up to € 30,000. The second 

category is between € 30,000 and € 40,000 in which most of the neighbourhoods 

are included. The last category is the optimal category for investing in Solar PV with 

more than € 40,000, as a significant amount of capital investment is needed. 

Similarly, house value and electricity consumption were divided in 3 categories as 

shown in Figure 6-3. It is evident from Figure 6-3 that the socio-economic 

demographics vary spatially. low-income groups are concentrated around the city 

centre, with low house values and high electricity consumption. As we move from the 

centre to the sub-urban parts of the city, the income is higher, and the house value 

also increases. 

The technical PV potential was estimated at 275 MWp for the residential sector of 

Apeldoorn. According to the registry, about 2,279 panels with a capacity of 5.8 MWp 

has already been installed in Apeldoorn by 2015. 
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Figure 6-3: Map Layers after the categorization of criteria. (a) Income; (b) House Value; (c) 

Electricity consumption (d) Neighbor with PV within 500 m 

 

In Table 6-1(A), the pairwise comparison of the four criteria is shown. AHP, i.e. the 

final grading after the normalisation of the pairwise comparison matrix and the 

ranking of the criteria (Table 6-2), was performed on data from Table 6-1. For 

example, the income of a household is considered more important than the house 

value (to be able to adopt PV), then a value3 is given which means that the income 

factor is moderately more important than the house value factor, see Table 6-1(B). 

Regarding the values that are less than 1, it means that the second factor compared 

is more important e.g., House value/Income =1/3 = 0.33.  
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Table 6-1: (A) Pairwise comparison matrix for selected criteria. (B) Grading of criteria based 

on relative comparison [23]. 
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Table 6-2: Final ranking of criteria and scoring. 

Criteria Influence Rank 

Income 50.7% 1 

House Value 20.4% 2 

Electricity consumption 20.4% 2 

Neighbor with PV 8% 4 

 

 

Figure 6-4: (a) PCR areas showing probability of solar PV adoption. Areas in green are 

likely to have the highest number of adopters, areas in red are least likely and areas in 

yellow could go either way. (b) Technical Potential map showing suitable and unsuitable 

rooftops (detail of postal code 7325). 

 

The result of the combination of the four adoption criteria is the suitable areas that 

have higher probability of adoption. A weighted overlay analysis of all ranked criteria 

(based on Table 6-2) performed in GIS shows the most feasible adopters of solar PV. 

Furthermore, combining the suitable buildings with the suitable adopters with 

 

e

a 
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design of PCR policy gives the PV potential of PCR policy per postal code. Figure 

6-4(a) shows the favorable regions of for PV adoption. The green color shows the 

suitable areas and the red color the ones that are not likely to invest in solar PV. 

 

Figure 6-5: Residential buildings that could adopt solar PV due to PCR policy. 

 

Combining the PCR areas with the buildings suitable for PV siting (Figure 6-4(b)) 

from the current status scenario, shows buildings that have a higher probability to 

adopt solar PV based on PCR policy. This final result is shown in Figure 6-5. 

Buildings that are within unfavorable areas (denoted in red) are excluded. Postal 

code 7316 and parts of 7313 were found to be the most suitable to adopt solar PV. 

Postal code 7311 has neighborhoods where solar PV adoption is not favored due to 

low income and low house values even though it is characterized by high electricity 

consumption. The peripheral postal codes, i.e., 7315, 7316, 7317 etc., would have 

influences from adjacent postal codes which are not considered in this case. This 

means that the PCR capacity from these postal codes could be underestimated or 

over estimated.  
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Figure 6-6: PCR capacity per postal code in MWp with the central postal codes in black. 

 

Figure 6-7: Sensitivity due to change in weighting. 

For the central postal codes, i.e., 7311, 7314, 7321, 7322, 7328, 7329 and 7331, the 

PCR capacity can be estimated applying the full potential of the policy. They are 

perfect examples of the potential effect of PCR policy. These postal codes are also the 

ones with the highest potential as can be seen from Figure 6-6. The PV potential after 

applying the policy was found to be 260 MWp. The difference between the full 

technical potential and the potential after policy implementation is very little (3.5%).  
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6.4. Discussions 

This chapter has shown that the combination of a multi-criteria analysis and GIS can 

make it easier to understand and analyse policy incentives for decision makers that 

target local PV adoption. By using illustrative maps, decision makers can solve 

accurately a lot of problems. This study has shown how a complex policy can be 

further decomposed to simple parts that can be communicated to and by anyone.  

By applying certain necessity and sensitivity tests and analyses, policy makers can be 

aware of the factors that play a significant role in the decision-making problem. This 

will provide them with the knowledge of which factor they should be more aware of, 

and which factors need to be improved in quantitative terms. Hence, it can improve 

and optimize the criteria combination, change the analytical structure and reduce 

the sensitivity in criteria grading and make results qualitatively better, stronger and 

more convincing.  

Regarding the limitations of the research the main issues come from the fact that 

social criteria were used in the research. This means that usually high uncertainties 

express this kind of data and grading of the criteria is highly dependent on the 

geographic conditions. In addition, the weighting analysis requires the 

grading/scaling of sub criteria. This means the weights should be assigned to the sub 

criteria as well and this has an impact on the final results. For example, in the 

analysis since all the factors were graded on a scale of 1-3, they have been weighed 

accordingly. If these weights were changed, for example all the factors (sub criteria) 

are now graded as 1, 2 and 2 i.e., the medium and high groups are given equal 

weights, the final result shows sharper boundaries as shown in Figure 6-7. Varying 

the weights of the sub criteria gives different outputs. 

Data availability was one of the main limitations of this research, which was due to 

the fact of privacy restrictions regarding the residential sector. The methodology that 

was implemented might underestimate the PV potential and therefore the final 

probability of adoption, as the criteria for PV potential analysis were conservative, 
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i.e., the area should receive more than 50% of the average irradiation of the area and 

rooftop availability for PV siting was set at 40%.  

In future research, the inclusion of essential sensitivity tests is expected to overcome 

the shortcomings of this research and many repeated operations of the MCDA and 

GIS models that were used in this study. More criteria such as environmental 

awareness of the adopter, and NIMBY effect etc., are expected to be used that could 

improve the model and more accurately forecast the adoption of solar PV systems. 

In addition, the inclusion of factors like age and knowledge could provide valuable 

insights. Furthermore, more detailed and better-quality data for the selected criteria 

could be used that would give more accurate results and finally a wider potential 

analysis that would not only be used for a specific area or city but for the whole 

country of the Netherlands could be developed.  

6.5. Conclusion and policy implications 

This chapter discussed the main drivers that could play an important role in the 

decision-making process of the residents regarding solar PV. GIS is very useful in 

exploring spatial relationships of complex problems like policy effects as shown and 

using these tools helped in the estimation of the maximum solar PV potential by 

applying four technical criteria: solar radiation, slope, elevation and orientation.  

In order to apply the PCR policy to the maximum solar capacity four social criteria 

were applied which according to literature were the most important ones for the 

adoption of solar PV: income, house value, neighbors with PV and electricity 

consumption. The analysis of the policy was made on 4-digit postal code level that 

revealed that the potential after the application of the policy is 266 MWp for the case 

of Apeldoorn. 

Using the established annual yield number that is used by the Dutch Statistics 

Bureau (CBS) of 875kWh/kWp [199], the amount of annual PV energy that could be 

generated is 222.75 GWh, which is ~77% of the average electricity demand of the city 

of Apeldoorn. 
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This methodology can be applied for any city or neighborhood that wants to apply 

the PCR policy. It showed that apart from the fact that there is a significant solar PV 

potential there are also factors that influence the solar PV diffusion such as social 

factors and are catalytic for the adoption of this technology. Furthermore, local and 

national authorities should take into account this kind of factors so that policies 

could capture the social effect of the adopters. If changes will be realized from the 

core level which is a small community this would facilitate the road to reach the 

ambitious national goals. 
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7.  

 

Scenario Modelling  

 

 

 

 

 

 

 

 

 

This chapter is based on the publication:  

G.B.M.A. Litjens, B.B. Kausika, E. Worrell and W.G.J.H.M. van Sark. “A spatio-temporal city-

scale assessment of residential photovoltaic power integration scenarios”. in: Solar Energy 

174 (2018), pp. 1185-1197. DOI: 10.1016/j.solener.2018.09.055 

 



 

116 

Abstract 

Cities have a significant potential to host residential photovoltaic systems (PV). The 

direct consumption of PV generated electricity reduces the need for electricity 

import, while excess PV electricity production can be stored for later usage or can be 

used directly to charge electric vehicles (EVs). In this way, more energy is locally 

consumed, greenhouse gas emissions are reduced, and self-sufficiency of cities can 

be increased. In this chapter, we present a spatio-temporal framework to evaluate 

the electricity demand that can be fulfilled by PV energy. We assess the impact of 

penetration of EVs and the influence of battery energy storage. We demonstrate the 

usefulness of this framework for 88 neighborhoods in the city of Utrecht, the 

Netherlands. Spatial mapping was used to identify areas with high potential for EVs 

and storage. Results shows that direct PV self-consumption ratios vary between 34% 

and 100%. When EVs charging is included in the neighborhoods, then self-

consumption is increased on average by 12%. Battery energy storage increases self-

consumption on average by 25%. The self-sufficiencies due to direct PV energy 

consumption are between 6% and 40% in the neighborhoods. These are decreased 

by EVs with an average of -0.6% and increased by battery energy storage with an 

average of 14%. Avoided life cycle greenhouse gas emissions over a 30-year period 

are on average 12 tCO2-eq per address. The large variation in results between 

neighborhoods indicates that area dependent investments and supporting policies 

could improve the PV power integration in cities. Our developed framework can be 

easily adapted and used for other cities. Moreover, our results are useful for local 

governments to guide and design effective policies to accelerate the transition to 

more sustainable cities. 
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7.1. Introduction 

Currently, cities host more than 50% of the global population and account for 70% 

of the global greenhouse gas (GHG) emissions [200]. One of the solutions to reduce 

CO2 emissions from cities is the deployment of residential solar photovoltaic (PV) 

systems. Yet, PV system installation may be limited due to lack of suitable space. An 

added difficulty is the daily power fluctuation of the solar resources. This results in 

export of surplus PV electricity during daytime from cities and requires import of 

electricity during night time. Shifting energy demand to daytime results in higher PV 

self-consumption within cities and reduces CO2 emissions from fossil-based backup 

power generation [201].  

The use of battery energy storage systems (BESSs) allows storage of surplus PV 

electricity to be used at later moments. The cost of BESSs is rapidly decreasing due 

to their increasing deployment [202]. Currently, the number of electric vehicles 

(EVs) is rapidly increasing in the Netherlands, which increases the electricity 

demand within cities [19,203]. BESS and EVs are becoming more economically 

attractive, especially due to cost reduction of Li-ion storage technology [204]. 

Furthermore, EV costs are decreasing as a result of economic scaling effects. A shift 

from a gasoline-based car fleet to electric vehicles (EV) reduces emissions and air 

pollutants considerably, thereby contributing to improve air quality and quality of 

life in cities [205,206].  

Due to increased deployment of PV, EVs and domestic electric heating, it is expected 

that more overloading will occur on the medium voltage grid than on the low voltage 

grid, [207]. Consuming more PV generated electricity in the city can lower medium 

voltage distribution grid losses and reduces investments in cables and transformers. 

Smart EV charging and battery energy storage help to increase urban PV self-

consumption [208]. For all these benefits, enhancement of PV self-consumption is 

seen as an important accelerator to reach a higher share of domestic PV installations 

and at the same time contribute to a reduction in greenhouse emissions [209]. 
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7.1.1. Literature Review 

Commonly, spatio-temporal PV potential in urban areas is assessed using geographic 

information systems (GIS) combined with numerical solar irradiation algorithms 

[120,198]. PV integration studies focus mainly on using the generated PV electricity 

directly within the buildings or on community scale [210,211]. Some studies 

combined the PV integration assessment with local or regional energy demand. Most 

of these studies assessed the provision of the net electricity consumption on an 

annual basis. A study assessed the potential of PV systems on rooftops and facades 

of 27 European countries. They found that the produced PV energy could provide in 

22% of the projected 2030 annual electricity demand for these countries [212]. 

A spatial model concluded that 2/3 of the current electricity demand could be 

covered by PV production for a small city in eastern Slovakia [213]. Of all the 

municipalities in Germany, 30% could be net self-sufficient when the full residential 

roof potential was used [214]. In another study involving 34 German municipalities, 

it was found that 77% of the net electricity consumption could be provided by PV 

[215]. Furthermore, rooftop PV systems could provide 25% of the total annual 

electricity demand in Switzerland [216]. A study including a municipality in Sweden 

found that 88% of the annual demand can be provided with PV. Yet over 3000 h a 

year have more PV production than demand [217]. A study of a city in Chile found 

that 24% of actual demand could be provided by PV, with the main limitation being 

the infrastructure of the grid [218]. 

Few studies included temporal (hourly, daily) factors to assess the spatial potential 

of PV systems. A real-time platform containing a PV simulator and a distribution 

network simulator was presented and tested for the city of Turin, Italy. It was found 

that the actual distribution grid was not adequate to accommodate all PV generated 

electricity, if the available rooftop surface would be fully used [219]. A PV penetration 

level of 40% was found for a German rural municipality to achieve a high PV self-

consumption level [220]. Another spatio-temporal model analysed the impact of 

electric vehicles on the urban distribution network. This model provided insights in 

the critical local grid components that require upgrades for larger shares of electric 
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vehicles [221]. Only 27% of the electrical vehicles that are not in transit, are required 

to store excess PV produced power produced for the city of Yokohama, Japan [222]. 

7.1.2. Research aim 

A limited number of studies are available that include both spatial and temporal 

effects of PV system integration. Furthermore, no research was found that assessed 

the spatial and temporal influence of electrical vehicles and storage on the PV self-

consumption and PV self-sufficiency, except for a Dutch study with very coarse 

spatial resolution [19]. 

Therefore, this research aims to assess the role of EVs and BESSs for the PV self-

consumption potential of a city. We developed a spatiotemporal framework that uses 

models to estimate the potential of PV yield, battery storage systems and electric 

vehicles. We demonstrate the framework using the city of Utrecht (the Netherlands) 

as a case study. The PV yield potential was assessed using the rooftop area of all 

residential buildings of this city. A time resolution of 5 min was used to assess the 

self-consumption and self-sufficiency potential at a neighbourhood level, over a 30-

year lifetime. Neighbourhoods were identified that have surplus PV production to 

store in BESSs or charge EVs or have limited PV yield production due to roof space 

limitations. Furthermore, we estimate the avoided life cycle GHG emissions due to 

PV electricity from two perspectives. 

This study also includes socio-economic factors, e.g., household statistics and 

current number of cars in a neighbourhood. Two EV charging algorithms were 

incorporated, i.e., normal (uncontrolled) charging and smart solar charging. The 

latter charging method aims to charge EVs at moments with surplus PV power 

enhancing PV self-consumption. The results on each neighbourhood give 

information on the potential usage of the transformers within these neighbourhoods. 

The area of buildings connected to the transformers usually does not cross the 

borders of the neighbourhood. As a consequence, obtained results are valuable for 

distribution system operators (DSOs) to plan grid extensions and EV charging 

infrastructure. Furthermore, the results help local governments to design realistic 
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and effective policies to develop carbon–neutral cities. The developed methodology 

can be modified and used for other cities and regions. 

This study is arranged as follows. Section 7.2 explains the spatiotemporal framework 

and the used technical and environmental performance indicators. Section 7.3 

presents the spatial results for the 88 neighbourhoods using maps of the city of 

Utrecht, the Netherlands. Section 7.4 assesses the sensitivity of the rooftop 

utilization rate, EV smart solar charging shares and battery storage capacities. 

Limitations concerning assumption, data availability and implementation 

challengers are discussed in Section 7.5 and the chapter finalises with key conclusion 

in Section 7.6. 

7.2. Methods 

7.2.1. Spatio-temporal framework 

A spatio-temporal framework was developed to combine spatial and temporal 

parameters. An algorithm was developed that combines time and location of PV 

production with time and location of electricity demand in the city. The main inputs 

of this algorithm are two time series for each neighbourhood: PV yield and total 

electricity consumption. The latter time series consists of the electricity consumption 

profile of buildings, with and without the consumption profile of electric vehicles. 

Both PV production and consumption time series are used in algorithms that 

determined self-consumption ratios and self-sufficiency ratios over a lifetime of 30 

years. An EV charging algorithm and BESS charging algorithm are used to assess the 

impact of EV and storage. An overview of the spatial level of the input data and model 

steps is shown in Figure 7-1. We used reference parameters to compare the spatial 

self-consumption and self-sufficiency influence of the neighbourhoods, see Table 

7-1. Also, the avoided life cycle GHG emissions from the PV systems are determined.  

The impact of the PV system potential on these parameters was assessed using four 

scenarios in the following sections: 
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• Neighbourhoods with PV systems only  

• Neighbourhoods with PV systems and EVs  

• Neighbourhoods with PV systems and BESS  

• Neighbourhoods with PV systems, EVs and BESS 

 

 

Figure 7-1: Overview of the input data and model steps with corresponding spatial level to 

model the self-consumption ratios, self-sufficiency ratios and avoided life cycle greenhouse 

gas emissions for four scenarios. 

 

The framework was implemented using the city of Utrecht in the Netherlands. This 

city (latitude 52°05′38″ North, longitude 5°05′12″ East) is the fourth largest city in 

the Netherlands with 340,000 inhabitants. The city of Utrecht consists of 10 districts 

which make up 99 neighbourhoods. Neighbourhoods with 250 addresses or less 

were excluded from the analyses since these are mainly industrial or rural areas. As 
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a result, 9 districts and 88 neighbourhoods were selected for the study. Each 

neighbourhood is made up of smaller areas that are specified by a postal code 6 (PC6) 

level. A total of 63,494 buildings containing 132,671 residential addresses were used 

in the study. The distribution of buildings per PC6 area and within each 

neighbourhood is shown in Figure 7-2. The majority of PC6 areas consist of a single 

building. The number of buildings within each neighbourhood shows a large 

variation. 

Table 7-1: Main reference model input parameters. 

Reference parameter Value Unit 

PV capacity 200 Wp/m2 

Rooftop utilization factor 50 % 

EV constant charging share 75 % 

EV smart solar charging share 25 % 

Relative battery storage size 1 kWhBESS MWh𝑑𝑒𝑚𝑎𝑛𝑑
−1  

Relative battery inverter rating 0.5 kW/ kWhBESS MWh𝑑𝑒𝑚𝑎𝑛𝑑
−1  

 

7.2.2. PV yield potential  

Roof statistics 

The first step to assess the PV potential is the calculation of the roof statistics for 

each of the 63,494 buildings. The rooftop statistics consist of the roof area, 

orientation (azimuth and tilt) and the incoming plane of array (POA) irradiance. The 

incoming POA irradiance was determined using the Area Solar Radiation Tool of the 

ArcGIS Spatial Analyst [223]. The Area Solar Radiation tools calculated the POA 

irradiation across areas based on the hemispherical viewshed algorithm. These tools 

were developed by Rich et al. [135] and further refined by Fu and Rich [137]. 
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The Area Solar Radiation tools calculations require a building footprint layer and a 

digital elevation model (DEM). The building footprint layer for the city of Utrecht 

was obtained from the Basisregistratie Adressen en Gebouwen (BAG) which was 

provided by the Dutch Cadastre, Land Registry and Mapping Agency [74]. The DEM 

was derived from high resolution elevation data, which was obtained from the 

Actueel Hoogte Bestand (AHN) Nederland [100]. The DEM has a spatial resolution 

of 50 cm and was used as main input in the solar radiation tools. The roof area, slopes 

and azimuths for each roof top were calculated in GIS based on the DEM. 

 

 

Figure 7-2: Distribution of buildings containing residential addresses within each postal 

code 6 areas (a) and distribution of these buildings within each neighbourhood (b), both 

shown using a histogram. Mean values of the distribution are indicated by the dashed lines. 

Histogram bins of 1 building per postal code 6 and 100 buildings per neighbourhood were 

used. Note that 50 postal code 6 areas have more than 40 buildings and are not shown in 

histogram (a). 

 

The default settings of the Area Solar Radiation Tool model were used containing the 

following default settings [130]. The latitudes for the buildings were calculated 

automatically based on the DEM metadata. Sky size was set to 200 and proved to be 

sufficient for time interval of 14 days. Horizon angles (number of calculation angles) 

are set to 32 which is adequate for complex topography. Diffusivity was set at 0.3 and 
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transmissivity at 0.5 which is an indication of generally clear sky conditions. Using a 

fixed atmospheric value does impact the irradiation output on a smaller time scale 

(days or weeks). We observed that standard factors were sufficient to achieve a good 

fit with the measured values from the closest meteorological station (Royal 

Netherlands Meteorological Institute KNMI in De Bilt, The Netherlands).  

The calculation took into account the effect of shadow due to nearby buildings, trees, 

and other roof obstacles like chimneys or gable style roofs. The digital surface model 

has been used as input for these calculations. The POA irradiation for each roof 

surface was calculated for the year 2015, with a 14 day interval. This time interval is 

used to calculate the sky sectors for the sun map (the sun’s position in the sky across 

a period of time). These maps are used to calculate the total POA irradiance for a 

particular roof. 

PV yield time series 

The second step to determine the PV yield potential was to create a PV yield time 

series for each of the assessed rooftops. Buildings with addresses that have a 

residential function were selected from the building footprint layer. If a building 

contained only residential users than the full roof area was selected. However, some 

buildings have addresses with different functions, for example an office, shop or 

residence. For these buildings, the share of used surface for each function was 

obtained from the BAG dataset. The residential rooftop share was multiplied with 

the total roof area to define the roof area allocated for residential PV systems. We 

assumed that a maximum of 200 Wp/m2 could be installed, based on a commercially 

available 320 Wp module with a dimension of 1.6 m by 1 m. 

The PV yield timeseries was created using the open source Python package PVLIB 

[224]. The roof surface azimuth and tilt angles from the GIS model were binned to 

obtain 35 different combinations of roof slope and orientations. The roof surface 

azimuth angles were binned in steps of 45°, and roof slope angles in bins steps of 

20°. A maximum tilt angle of 82.5° was selected. Facades were not included in our 

study. Furthermore, we assume that flat roofs will have a dual-tilt (or east–west) 

designed PV systems with a slope of 10°. 
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Radiation, wind speed, pressure and temperature data were obtained for 2015 from 

the Royal Netherlands Meteorological Institute KNMI in De Bilt, The Netherlands 

[139]. The measurement intervals of radiation were 10 min and one hour for 

remaining weather parameters. The weather data is linearly interpolated to 5 min 

interval and used as input for the PVLIB model. Furthermore, the module 

parameters of the Sanyo HIP-225HDE1 PV module are used to model the direct 

current (DC) PV yield time series [225]. This module has a relative low temperature 

coefficient temperature thus reducing the influence of temperature in the model. The 

DC time series were converted to alternating current (AC) time series using the 

efficiency parameters of the Enphase Energy M210 inverter [226]. The AC time 

series were linearly scaled to obtain a performance ratio of 85%, which is consistent 

with well performing PV systems in the Netherlands [141].  

Also, the PVLIB model calculate the total POA irradiance from the solar radiation 

data (no shading conditions). This number is used to determine the shade loss factor 

for each rooftop. This is the POA irradiance with shading (determined by the Area 

Solar Radiation tools) divided by the POA irradiance on a surface with no shading 

(determined using PVLIB). An average shade loss factor of 83% was found for all 

residential buildings. The shade loss factor was multiplied with the AC PV yield time 

series to determine the PV yield under shaded conditions.  

Finally, the PV yield time series were scaled using a rooftop utilization rate. Only a 

certain part of the roof area can be used for PV modules due to constraints from other 

roof structures (chimneys, ventilation systems or dormers). We used a 50% roof 

utilization factor for PV systems, based on a previous study [214]. The PV yield time 

series for each neighbourhood was created by aggregation of PV yield profiles for all 

buildings in that neighbourhood. The annual PV yield is reduced with 0.5% per year 

to account for PV system degradation [227]. 

7.2.3. Electricity consumption from buildings 

Electricity consumption time series were created for each neighbourhood using three 

main data sources: household statistics, historical residential demand time series 
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and annual electricity consumption from residential grid connections. The 

household statistics from each neighbourhood in Utrecht are obtained from 

Statistics Netherlands (CBS) for 2015 [228]. This data contains statistics on family 

compositions: people living alone, people living as a couple and couples with 

children. 

 Electricity demand profiles for 30 different households were measured between 

2012 and 2014, by a Dutch distribution system operator [229]. The time series were 

measured using a 15 min time step for one year. Three new time series were created 

for each family composition using the 30 measured demand profiles. These three 

time series were scaled with share of family composition of each neighbourhood and 

summed together to create one demand time series per neighbourhood. The annual 

electricity consumption for each residential grid connection per postal code 6 area is 

available as open data for 2015 [230]. We assumed that each residential address has 

one grid connection. The electricity consumption of all residential addresses within 

a neighbourhood was summed to determine the annual electricity consumption of a 

neighbourhood. This number was used to linearly scale the neighbourhood demand 

time series. Finally, the neighbourhood demand time series were linearly 

interpolated to a 5-min time interval. The demand time series of one year were 

repeated to obtain a 30-year period. The average electricity consumption of 

households was quite stable for the last 10 years [231]. Therefore, the annual demand 

is kept constant over the 30-year period. 

7.2.4. Electric vehicle consumption 

The number of registered cars per household in 2015 were obtained from CBS [228]. 

The average number of cars within a neighbourhood was 932, with a minimum of 

105 and a maximum of 2690. This corresponds to an average of 0.61 cars per 

household, with a minimum of 0.10 and a maximum of 1.05 cars per household. This 

is lower than the average for the Netherlands, which is 0.93 cars per household 

[232]. Furthermore, it is expected that electric vehicles will have a market share of 

100% around 2040 [19]. Therefore, we assumed that all current light duty gasoline 

vehicles will be replaced with electric vehicles. The daily power consumption of an 
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EV depends on the average driving consumption multiplied by a seasonal factor. This 

factor accounts for the seasonal variability of the EV consumption mainly due to the 

cabin climate control and the battery efficiency. A seasonal factor of 0.8 was used for 

summer period and 1.2 for the winter period [233]. The summer period consists of 

the months June until August and the winter period December until February. 

Furthermore, we assumed an average driving power consumption of 7.24 kWh per 

day of which 50% will be charged within the neighbourhood [232]. In addition, a EV 

charging and discharging efficiency of 90% was assumed [203]. This results in a daily 

EV demand of 4.01 kWh and an annual demand of 1463 kWh.  

The moments at which cars are connected to the charging stations are highly 

uncertain and are not well studied. Therefore, we developed an algorithm to assess 

the impact of two different charging strategies on the EV integration potential. In the 

first strategy, the daily EV charging demand within a neighbourhood is gradually 

spread over the day. In this case, we assume that the summation of charging 

demands of each individual EV results in a flattened EV charging profile of a 

neighbourhood. Hence a constant EV consumption over the day was assumed. In the 

second option, the EV is directly charged with the produced PV energy. We call this 

option smart solar charging [234]. In this case, the EV is charged with the excess PV 

production in the neighbourhood. A maximum charging capacity of 11 kW per EV 

was assumed, to reduce the impact on the electricity grid. If adequate PV production 

is not available during the day, then the remaining charging demand is fulfilled when 

the solar elevation angle is < 0. Thus, the EV demand is charged using the electricity 

grid. The charging profiles of both strategies were added to the neighbourhood 

electricity consumption profile. In the reference case, we assume that 75% of cars are 

charged using the first strategy and 25% of cars using the second strategy.  

The distribution of residential neighbourhood annual electricity consumption 

including EV charging and the EV share are shown in Figure 7-3. The total annual 

electricity consumption per neighbourhood ranges between 1 GWh and 16.3 GWh, 

with an average of 6.7 GWh. The share of EV consumption varies between 1.8% and 

30.1%, with an average of 20.6%. These numbers show that there is a larger diversity 

of electricity consumption within each neighbourhood, mainly related to the number 
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of inhabitants. Also, the EV charging demand within the neighbourhood is assumed 

to be constant over the 30-year assessment period. The total electricity demand of 

the 88 neighbourhoods is 466 GWh excluding EV charging and 587 GWh including 

EV charging. 

 

7.2.5. BESS charging algorithm 

Battery charging and discharging was simulated with a simple control strategy, 

obtained from previous research and written in Python (v3.5) [235]. If more PV 

electricity is generated than consumed by the neighbourhood, then the battery was 

charged. If more electricity was consumed than generated, then the battery was 

discharged. The battery was discharged to fulfil electricity demand of the building. If 

the battery inverter and battery storage capacity was available, then the battery was 

also used to charge the electric vehicle.  

An AC-coupled PV-battery system was assumed. This means that the PV array is 

connected via an inverter to the electricity grid and the battery storage pack with a 

battery inverter to the electricity grid. This is a commonly installed system type and 

 

Figure 7-3: Distribution of residential neighbourhood annual electricity consumption with 

EVs (a) and share of electricity consumption by EV charging (b) shown using a histogram. 

Mean values of the distribution are indicated by the dashed lines. Histogram bins of 

2.5 GWh for neighbourhood energy demand and 1% for EV share were used. 
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is very suitable for retrofitting or installing community energy storage systems [236]. 

A battery storage capacity of 1 kWh battery storage capacity per MWh of annual 

electricity consumption per neighbourhood is used in the reference case [236]. Note 

that if EVs were included in the modelling, then the annual consumption in 

neighbourhoods is higher and thus larger battery sizes are used.  

The battery inverter capacity is set to a C-rate of 0.5, meaning that it would require 

2 h to fully charge the battery. Battery state of charge (SOC) is set to a minimum of 

0% and a maximum of 100%. In this way, we assess the maximum storage potential 

to enhance self-consumption. Battery inverter efficiencies were obtained from the 

inverter efficiency curve of a SMA Sunny Boy Storage inverter, using a step size of 

0.01% [237]. A constant battery roundtrip efficiency of 92% was used, close to the 

round trip efficiency of a Tesla Powerwall [238]. Furthermore, a calendric lifetime of 

15 years and a battery cycle lifetime of 5000 full equivalent cycles is used to model 

the battery capacity degradation [239]. The amount of diminished storage capacity 

is determined annually and subtracted from the previous year. The battery 

degradation model is explained in detail in a previous study [240]. We assume that 

the battery storage is replaced after 15 years, thus the storage capacity is set similar 

to the original storage capacity for year 16. 

7.2.6. Calculation of PV integration indicators 

Two temporal PV integration indicators were assessed: self-consumption ratio (SCR) 

and self-sufficiency ratio (SSR). Self-consumption ratio is used to quantify the share 

of electricity that is self-consumed from the total annual produced PV energy. Self-

sufficiency ratio is the share of electricity consumption that is fulfilled by PV 

electricity. The self-consumed power consists of the total direct consumed power by 

the neighbourhood (𝑃directSC) and the total power that is used for charging the battery 

(𝑃Bcharge). The direct consumed power is the PV power (𝑃PV) that is directly 

consumed as a result of the electricity demand of a building. (𝑃demand). The self-

consumed energy is aggregated over the year from timestep (t=1) till the last time 

step (𝑡end), see Eq. (7.1). 
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Self-sufficiency ratio is an indicator for the share of electricity consumption that is 

fulfilled by using PV electricity. This is the share of electricity demand that is fulfilled 

by the direct consumed PV power and the discharged power that is discharged from 

the battery (𝑃𝐵discharge), see Eq. (7.2). 

𝑃direct SC = {
𝑃𝑃𝑉            if  𝑃𝑃𝑉 <  𝑃demand

𝑃demand   if  𝑃𝑃𝑉  ≥  𝑃demand
  

 

(7.1a) 

SCR =  
∑ (𝑃direct−consumed,t + 𝑃B charge,t) . ∆𝑡 

𝑡𝑒𝑛𝑑
𝑡=1

∑ (𝑃PV,t) . ∆𝑡 
𝑡𝑒𝑛𝑑
𝑡=1

 (7.1b) 

SCR =  
∑ (𝑃direct−consumed,t + 𝑃B discharge,t) . ∆𝑡 

𝑡𝑒𝑛𝑑
𝑡=1

∑ (𝑃demand,t) . ∆𝑡 
𝑡𝑒𝑛𝑑
𝑡=1

 (7.2) 

7.2.7. Calculation of avoided life cycle GHG emissions 

A rough indication of the avoided life cycle GHG emissions by the PV systems and 

battery energy storage systems was provided. Emissions due to manufacturing of the 

PV systems and BESS (𝐺𝐻𝐺𝑚𝑓𝑔), and the avoided emissions by the PV electricity 

production are determined. The emissions of manufacturing the PV system depends 

on the production location [201]. We assume that PV systems are made in China as 

this country produces the majority of the PV cells and PV modules globally [241]. 

Emissions from producing PV systems in this country are assumed to be 1590 gCO2-

eq for each Wp [242]. The production of Li-Ion battery energy storage systems uses 

110 gCO2-eq for each Wh [243]. We assumed that emissions from manufacturing a 

battery inverter are comparable to the emissions from manufacturing a PV inverter 

and assumed 124 gCO2-eq per W. de Wild-Scholten [242]. The PV and battery 

inverter, and the battery storage are replaced after 15 years. Emissions from 

manufacturing are expected to be 25% lower when these components are replaced. 
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The avoided emissions by PV electricity production depend on the emission factor of 

electricity (EFE) from the grid. We assume that these emissions will reduce linearly 

from current emissions (2016) to zero emissions in 2050, based on the Dutch energy 

agreement for sustainable growth [244]. Thus, the carbon intensity will decrease 

linearly from 490 gCO2-eq per kWh in year 1 to 60 gCO2-eq per kWh in year 30 

[245]. 

The avoided emissions are determined for two system perspectives, i.e., from an 

electricity system perspective (𝐺𝐻𝐺system) and from a neighbourhood perspective 

(𝐺𝐻𝐺neighb.). In the electricity system perspective, all PV electricity that was used is 

allocated as replacing electricity from the grid. The PV power that was used from a 

system perspective (𝑃PV system), is the PV produced power minus the battery energy 

storage losses. In the neighbourhood perspective, all PV power used within the 

neighbourhood is allocated as replacing electricity from the grid. Hence, avoided 

emissions from electricity exported to the grid are not included in this perspective. 

The PV power used (𝑃PV neighb.), is the sum of the direct consumed PV and the 

electricity discharged from storage. The used PV electricity of both perspectives was 

multiplied with the carbon intensity of the electricity grid for each year. Then, the 

emissions from manufacturing were subtracted from the total emissions over 30 

years to determine the avoided life cycle GHG emissions. The avoided emissions are 

normalized with the number of addresses within a neighbourhood (𝑁address), see Eq. 

(7.3). 

𝑃PV system=𝑃PV ,t − 𝑃B charge − 𝑃B discharge (7.3a) 

𝑃PV neighb.=𝑃direct−consumed + 𝑃B discharge,t (7.3b) 

𝐺𝐻𝐺system =  
∑ (EFE, 𝑡 .  𝑃PV system,   t )  − 𝐺𝐻𝐺𝑚𝑓𝑔  

𝑡𝑒𝑛𝑑
𝑡=1

𝑁address

 (7.3c) 

𝐺𝐻𝐺neighb. =  
∑ (EFE, 𝑡 .  𝑃PV neighb.,   t)  −  𝐺𝐻𝐺𝑚𝑓𝑔  

𝑡𝑒𝑛𝑑
𝑡=1

𝑁address

 (7.3d) 
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7.3. Results 

7.3.1. PV yield potential 

 

Figure 7-4: Distribution of average annual PV yield for each address (a), average annual PV 

yield for each neighbourhood (b), average annual specific yield for each address (c) and 

average annual specific yield for each neighbourhood (d). Mean values of the distributions 

are indicated by the dashed lines. Annual yield is shown using bins of 1 MWh for each 

address and 1 GWh of each neighbourhood. Specific yield is shown using bins of 10 

kWh/kWp. Note that 198 addresses have an annual yield higher than 15 MWh and are not 

shown on the histogram (a). Also 138 addresses with a specific yield of lower than 

300 kWh/ kWp are not shown on the histogram (c) 

 

The PV yield potential for each of the 88 neighbourhoods was analysed over a period 

of 30 years using the reference parameters given in Table 7-1. The distributions of 

average annual PV yield for each address and the average annual PV yield for each 

neighbourhood are shown in Figure 7-4. Also, the average annual specific yield for 

each address and each neighbourhood is presented. Average annual PV yield is 3.3 
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MWh per address and for the neighbourhoods 3.5 GWh. The specific yields show a 

larger distribution range for the addresses, with an average of 629 kWh per kWp. 

Specific yield for neighbourhoods is between 513 and 773 kWh/kWp, with an annual 

average of 628 kWh per kWp. The average specific yield decrease from 677 

kWh/kWp in the first year to 579 kWh/kWp in year 30 due to PV system 

degradation. This specific yield is significantly lower than the current average 

specific yield for the Netherlands [141]. This is mainly due to the inclusion of all 

orientations and the reduced incoming irradiance due to shading. The total PV 

capacity from all neighbourhoods is 488 MWp and the average annual production 

306 GWh. 

The ratio between the total PV production and the total electricity consumption for 

a period of 30 years provided an indication on the contribution of PV to fulfil the 

electricity demand. This ratio is shown for each of the 88 neighbourhoods of the city 

of Utrecht in Figure 7-5. The ratio is shown for two scenarios, only PV systems and 

PV systems with EVs. A ratio higher than 100% shows that there is more PV 

production than electricity consumption. This is the case for 5 neighbourhoods in 

the PV only scenarios. Neighbourhoods with PV systems only show an average of 

68% and neighbourhoods with PV systems and EVs 53%. 

 

Figure 7-5: Distribution of ratio between the total PV production and the total consumption 

of neighbourhoods with PV systems only (a) and neighbourhoods with PV and EVs (b) 

Mean values of the distribution are indicated by the dashed lines, and bins of 5% were used. 
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7.3.2. Impact of PV systems only 

The spatial impact of PV systems on the self-consumption ratio and self-sufficiency 

ratio for each neighbourhood is visualized using on a color-coded map in Figure 7-6. 

Results are shown for 88 neighbourhoods which are separated by grey borders. The 

9 districts are separated with solid black lines and the district names are indicated. 

The areas in white are neighbourhoods that were excluded from the study. For 

example, the left most neighbourhood in district West is a commercial area with a 

limited number of residential dwellings. The average SCR of the neighbourhoods is 

53%, which demonstrates that the PV produced in a neighbourhood can be used most 

within the same neighbourhood. Low SCR is seen for the suburb of Leidsche Rijn, 

and in the Noordwest (North-West) district, indicating a large surplus of produced 

PV energy. These areas contain mainly terraced houses with sufficient roof space 

available for PV systems. 

High SCR was observed in the historical Binnenstad (Inner-city), Oost (East) and 

Overvecht districts. The inner-city area has a limited PV potential due to  

high concentration of historical buildings with relatively small roof areas and a high 

variation in roof shape and height. These roofs induce shading which reduces the 

plane-of-array irradiance and as a consequence the PV electricity generation. In 

addition, population density in the inner city is higher compared to other districts 

due to the smaller dwellings and apartments. This results in relatively high electricity 

consumption per unit area and thus a higher SCR. The district of Overvecht contains 

tall (mostly 10-storey) residential apartment buildings that limit the PV production 

potential per resident. Also, the district to the extreme East, in which the university 

campus is located, shows a high SCR. In this area, tall apartment buildings, which 

serve as student housing are located. Therefore, the roof area available per address 

is small. 

An average SSR of 33% was determined for the neighbourhoods, ranging from 6% to 

40%. Low SSRs are observed for the inner-city area, indicating that PV potential is 

not sufficient to fulfil the electricity demand. Higher self-sufficiency is observed for 

the suburb Leidsche Rijn, and in the Zuid (South) district. Areas with high SCR and 
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low SSR have limited area to install PV systems and therefore limited PV yield. Areas 

with relatively lower SCR and higher SSR have more moments in which surplus of 

PV energy production occurs. The limited SSR indicates that the PV yield potential 

is not sufficient and electricity import to the city is a requirement. 

7.3.3. Impact of EV’s or BESS 

The influence of two scenarios, PV systems with EVs and PV systems with BESSs, on 

the self-consumption enhancement is presented in Figure 7-7. Deployment of BESSs 

shows a larger impact on the SCR than the deployment of EVs. The replacement of 

gasoline-based cars by EVs results in an average increase in SCR of 12% points in the 

neighbourhoods. The SCR increase varies between 0% and 17% , showing a distinct 

impact of electric vehicles. The effect of EVs on SCR in neighbourhoods with already 

high self-consumption due to the electricity consumption of the residential buildings 

is limited. The average self-sufficiency of neighbourhoods with introduction of EVs 

has barely changed. Observed differences in SSR are between −2.0% and 0.1% with 

an average of −0.7%. Only for two neighbourhoods EVs have a positive impact on 

SSR, namely Rijnsweerd and Hoge Weide. These neighbourhoods are in the Oost 

(East) and the Leidsche Rijn districts, respectively. The Rijnsweerd neighbourhood 

also has the lowest SCR without EVs. This shows that for almost all neighbourhoods 

the additional EV demand increases the need for imported electricity. 

An average SCR increase of 25% can be achieved with a battery capacity of 1 kWh for 

each MWh of electricity consumption. The SCR enhancement varies between 0% and 

30%. Neighbourhoods with a low self-consumption of PV systems only (Leidsche 

Rijn) have a SCR impact of 20% from battery storage. In this case, the influence is 

limited by the battery storage capacity. The neighbourhoods with a high initial SCR 

(Binnenstad) have a limited BESS impact since most of the electricity is directly 

consumed and the storage capacity is not utilized. Neighbourhoods with an initial 

self-consumption of around 60%(Overvecht) show the largest self-consumption 

impact. These neighbourhoods can store most surplus PV production and utilize the 

storage capacity. In addition, the SSR impact by storage varies between 0% and 18%  
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with an average of 14%. As a result, 42 neighbourhoods obtain a self-sufficiency ratio 

> 50%. 

For a dwelling owner with a PV system, it could be advantageous to use storage under 

certain economic conditions [246]. However, if this dwelling is located within a 

neighbourhood with low impact of storage on self-consumption, then this electricity 

could better be used by dwellings with insufficient roof space for a PV system. As a 

result, more electricity is directly used, and less electricity is lost by energy storage 

conversions. Moreover, some neighbourhoods are surrounded by neighbourhoods 

with a high initial SCR. For, example the North-West district has a relatively low 

SCR, but is surrounded by districts with higher SCR. Hence, it could be more 

beneficial to export surplus PV to these areas, instead of increasing storage 

capacities. On the other hand, the historical inner-city is enclosed by 

neighbourhoods with lower SCR. These neighbourhoods could provide the inner-city 

with electricity instead of storing surplus PV electricity in batteries. 

7.3.4. Combined impact of EV’s and BESS 

The impact of the PV systems with electric vehicles and battery storage on SCR and SSR are 

presented in  

Figure 7-8. A total of 10 neighbourhoods have a self-consumption ratio of almost 100%, 

indicated by the blue dots. For the majority of these neighbourhoods a SCR impact of around 

< 15% is seen. Overall, an average SCR enhancement of 35% can be achieved when EV and 

storage are added to the neighbourhoods. This results in a high average SCR of 88% within 

the neighbourhoods, with a range from 67% till 100%. The self-sufficiency ratios show an 

average increase of 10% due to EVs and storage, ranging between −0.6% and 16%. The SSR 

impacts show negative values in two neighbourhoods. These neighbourhoods have a larger 

additional electricity demand by EVs, than the demand that can be shifted by battery energy 

storage. Overall, the average SSR increases to 43%, ranging between 6 % and 54%. Also, 17 

neighbourhoods have a SSR > 50% with EV and storage. 
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7.3.5. Avoided life cycle emissions 

The avoided life cycle GHG emissions from an electricity system and neighbourhood 

perspective were assessed with the reference parameters including electric vehicles 

and battery energy storage system, see Figure 7-9. The avoided GHG emissions are 

given for the 30-year period per residential address. The emissions show large 

differences between the neighbourhoods. Avoided GHG emissions from an 

electricity system perspective are on average 11.5 tCO2-eq, ranging between 0.3 to 

28.1 tCO2-eq per address. Average avoided GHG emissions from a neighbourhood 

perspective are 8.6 tCO2-eq per address, which is around 0.3 tCO2-eq for each year. 

 Neighbourhoods with 100% self-consumption ratios have almost similar emissions 

from an electricity system perspective as from a neighbourhood perspective, since 

all PV electricity is directly used. These neighbourhoods are located in the centre of 

the city. The suburb Leidsche Rijn shows high avoided emissions from a 

neighbourhood perspective, due to high PV potential and the large SCR impact by 

storage and electric vehicles. The North-West district has similar SCR as the 

Leidsche Rijn suburb, yet lower avoided emissions are seen here. This is due to the 

lower electricity demand and the lower PV yield potential for each address in North-

West district. The neighbourhood with the lowest self-consumption ratio 

(Rijnsweerd in the East district) shows the largest emission reductions from system 

perspective.  

PV modules made in Europe are produced with lower greenhouse gas emissions 

compared to PV made in China, due to the lower carbon intensity of the electricity 

generation mix in Europe. We compared the impact of PV made in China with PV 

made in the EU on the avoided emissions. 824 gCO2-eq for each Wp were assumed 

as emissions from PV produced in Europe [242].The avoided GHG emissions of 

China and Europe, and the relative change between these areas are shown from an 

electricity system perspective and neighbourhood perspective in Figure 7-10. No 

change in emissions from manufacturing battery storage was assumed. When using 

PV modules manufactured in the EU, the avoided emissions are increasing to 

averages of 14.4 tCO2-eq from an electricity system perspective and to 11.5 tCO2-eq 
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from a neighbourhood perspective. The relative change in avoided emissions 

between China and Europe are significantly higher from a neighbourhood 

perspective than from an electricity system perspective. An average of 28% is shown 

for the system perspective and 36% from a neighbourhood perspective. 

Neighbourhoods with high PV system potential have larger emissions from 

manufacturing and therefore relatively lower avoided emissions from a 

neighbourhood perspective. Consequently, the distribution in relative change of 

avoided emissions from a neighbourhood perspective is larger compared to the 

avoided emissions from a system perspective. 

 

Figure 7-10:  Distribution of avoided life cycle GHG emissions per address with PV made in 

China (a & b), PV made in Europe (c & d) and the relative change in avoided emissions 

between these areas (e & f), The left column shows the avoided emissions from an electricity 

system perspective and the right columns shows the avoided emissions from a 

neighbourhood perspective. Mean values of the distribution are indicated by the dashed 

lines. Histogram bins of 1 tCO2-eq were used for the avoided emissions and bins of 1% for 

the relative change. Note that a relative change larger than 45% is observed for one 

neighbourhood from an electricity system perspective, and two neighbourhoods from a 

neighbourhood perspective. These are not shown in histogram (e) and (f). 
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7.4. Sensitivity Analysis 

A sensitivity analysis was conducted for four different rooftop utilization rates. These 

utilization rates were combined with a larger share of EV solar charging or with 

smaller or larger battery storage capacities. Other input parameters, see Table 7-1, 

were kept constant. Three parameters were assessed; SCR, SSR and avoided life cycle 

GHG emissions per address from a neighborhood perspective. The avoided 

emissions from a system perspective were not shown, since these are less dependent 

on the PV self-consumption. Some of the scenarios assessed here are not realistic but 

purely theoretical. A 100% rooftop utilization rate is currently not practical to 

implement. Moreover, a high smart solar charging share, of 75% or even 100%, 

requires major investments in charging infrastructures. Furthermore, EVs should be 

available for charging within the neighborhood. 

7.4.1. EV smart solar charging share 

The influence of five smart solar charging shares of four rooftop utilization rates is 

presented in Figure 7-11. The 25% rooftop utilization scenario shows an average SCR 

of 85% when no EV is smart charged. This is increased by 11%, if all EVs would apply 

smart solar charging. In this rooftop utilization scenario, a > 99% SCR is reached for 

20 neighbourhoods. This limits the average increase of the SCR. Battery energy 

storage shows an average SCR close to 100%, for all EV smart charging shares. Thus, 

energy storage reduces the impact of smart solar charging to almost nothing. 

Therefore, it is not recommended to invest in smart charging infrastructure with 

storage under the 25% rooftop utilization rates. 

Under the 50% rooftop utilization, a shift from 0% solar charging share to a 100% 

solar charging share increases the average SCR by 12% points. This is a slightly larger 

increase than shown for the 25% rooftop utilization rate. Fewer neighbourhoods 

reach the maximum SCR, thus the average increase in SCR is larger. However, under 

the 75% rooftop utilization, the increase in SCR due to higher smart charging shares 

is reduced to 9.6%, which is 2% lower than under the 50% rooftop utilization rate. 
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Higher rooftop utilization rates have significantly more surplus PV available. 

Therefore, the impact of smart charging share on the SCR is reduced. 
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Neighbourhoods with storage have a larger PV self-consumption. Consequently, the 

SCR increase due to a larger solar charging share is reduced to 2.8% points under 

the 50% rooftop utilization scenario. This number is increased to 3.6% under the 

100% rooftop utilization rate, since more surplus PV energy is available for storage. 

Also, the widest distribution between neighbourhoods is seen with a 100% rooftop 

utilization rate. A larger smart solar charging share reduces the surplus PV that can 

be stored in batteries. Subsequently, the SCR impact of storage is reduced with 

higher EV smart solar charging shares. Still, these high smart solar charging shares 

are not realistic, thus investing in battery energy storage could be worthwhile.  

Self-sufficiencies increase slightly for the 25% rooftop utilization rate, with averages 

from 22% with no smart solar charging to 25% for a 100% solar charging share. SSR 

are limited when storage is added, with an average of around 26%. Yet, the impact of 

storage is significantly higher with a 50% utilization rate, and largest for a 100% 

rooftop utilization rate. Furthermore, the increase in EV smart solar charges share 

shows a significantly larger impact on the SSR. For a 50% utilization rate and no 

storage, a shift from 0% to 100% solar charging share results in a SSR increase of 

6.5% points. This difference increased by 8.7% points under a  

100% rooftop utilization rate. When storage is added to the neighbourhoods, then 

this increase is 4.8% points. An increase in rooftop utilization rates causes an 

expansion of the first 25% percentile for both neighbourhoods with and without 

storage. Neighbourhoods with a low SSR have a far higher electricity demand. 

Hence, the absolute increase in SSR due to higher PV capacity is smaller for 

neighbourhoods that already show high SSR. 

Avoided life cycle GHG emissions, from a neighbourhood perspective and per 

addresses, were found to be increasing from a 25% to a 75% rooftop utilization rate. 

However, the avoided emissions have decreased for a 100% rooftop utilization 

compared to a 75% rooftop utilization. Some neighbourhoods even showed negative 

values. This means that the emissions due to manufacturing of PV and storage 

systems are larger than the avoided emissions due to the direct consumption at the 

neighbourhood level. Furthermore, under the 25% rooftop utilization rate, avoided 

emissions are lower for neighbourhoods with storage than without storage.  



Chapter: 7                                                                                                                      GIS4PV 

146 

 

F
ig

u
re

 7
-1

2
: 

. I
n

fl
u

en
ce

 o
f 

th
e 

ro
o

ft
o

p
 u

ti
li

za
ti

o
n

 f
a

ct
o

r 
o

n
 t

h
e 

se
lf

-c
o

n
su

m
p

ti
o

n
 r

a
ti

o
 (

a
 t

o
 d

),
 s

el
f-

su
ff

ic
ie

n
cy

 r
a

ti
o

 (
e 

to
 h

) 
a

n
d

 a
v

o
id

ed
 

li
fe

 c
y

cl
e 

em
is

si
o

n
s 

p
er

 a
d

d
re

ss
 f

ro
m

 a
 n

ei
g

h
b

o
u

rh
o

o
d

 p
er

sp
ec

ti
v

e 
(i

 t
o

 l
).

 T
h

e 
d

is
tr

ib
u

ti
o

n
s 

a
re

 s
h

o
w

n
 f

o
r 

th
e 

8
8

 n
ei

g
h

b
o

u
rh

o
o

d
s 

a
n

d
 

fo
u

r 
b

a
tt

er
y

 s
to

ra
g

e 
ca

p
a

ci
ti

es
 u

si
n

g
 v

io
li

n
 p

lo
ts

. 
T

h
e 

le
ft

 s
id

e 
o

f 
th

e 
v

io
li

n
 p

lo
t 

sh
o

w
s 

th
e 

d
is

tr
ib

u
ti

o
n

s 
w

it
h

 e
le

ct
ri

ci
ty

 c
o

n
su

m
p

ti
o

n
 o

f 

th
e 

n
ei

g
h

b
o

u
rh

o
o

d
 o

n
ly

 a
n

d
 t

h
e 

ri
g

h
t 

si
d

e
 o

f 
th

e 
v

io
li

n
 p

lo
t 

sh
o

w
s 

th
e 

d
is

tr
ib

u
ti

o
n

s 
o

f 
th

e
 n

ei
g

h
b

o
u

rh
o

o
d

 w
it

h
 e

le
ct

ri
c 

v
eh

ic
le

s.
 T

h
e 

el
ec

tr
ic

 v
eh

ic
le

s 
h

a
v

e 
a

 2
5

%
 s

o
la

r 
ch

a
rg

in
g

 s
h

a
re

. 
M

ea
n

 v
a

lu
es

 a
re

 i
n

d
ic

a
te

d
 b

y
 t

h
e 

so
li

d
 l

in
e

s 
a

n
d

 2
5

%
 a

n
d

 7
5

%
 p

er
ce

n
ti

le
s 

a
re

 

in
d

ic
a

te
d

 b
y

 d
o

tt
ed

 l
in

e
s.

 



 7.4   Sensitivity Analysis 

147 

Yet, from an electricity system perspective, the average avoided emissions increased 

by rooftop utilization rates. Neighbourhoods without storage and a 25% solar smart 

share showed averages of 7, 14, 21 and 27 tCO2-eq of avoided emissions for 25, 50, 

75 and 100% rooftop utilization rates respectively. Neighbourhoods with storage and 

a 25% solar smart share showed lower avoided emissions of 5, 12, 18 and 25 tCO2-eq 

of for 25, 50, 75 and 100% rooftop utilization rates respectively. 

7.4.2. Battery storage capacity 

The influence of increasing battery storage capacities under four rooftop utilization 

rates is presented in Figure 7-12. SCR increased under all scenarios with larger 

storage capacities and when EVs are included. With 25% of rooftop utilization, the 

SCR is maximized with the use of energy storage and electric vehicles. With 50% 

rooftop utilization, we found that a 2 kWh storage system per MWh demand does 

not impact the upper 25% percentile of the neighbourhoods. Hence, a quarter of the 

neighbourhoods can consume all locally produced PV electricity under these 

conditions. A 75% and 100% rooftop utilization rate results in a higher impact of 

larger battery storage capacities. The addition of electric vehicles to the 

neighbourhoods results in higher SCR values. For these high rooftop utilization 

rates, the average SCR impact from energy storage is quite similar for 

neighbourhoods with and without EVs. Also in this case, surplus PV electricity is not 

fully utilized by EVs charging and therefore storage can have a similar impact. 

Furthermore, additional demand is added with EVs, which results in relatively larger 

storage capacities and thus higher SCR. 

Self-sufficiency ratios gradually increase with higher rooftop utilization rates. With 

25% rooftop utilization, the highest SSR were observed for a battery size of 1 kWh 

per MWh demand. Larger storage capacities resulted in more electricity losses 

caused by charging and discharging of the batteries. Consequently, self-sufficiency is 

reduced within the neighbourhood. Neighbourhoods with EVs have a higher direct 

PV self-consumption, thus less surplus PV electricity can be shifted by storage. As a 

result, the influence of storage is smaller for neighbourhoods with EVs than for 

neighbourhoods without EVs. Under the no storage scenarios, similar SSR 
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distributions were observed for neighbourhoods with EVs and without EVs. This 

indicates that power consumption time series of the EVs is comparable to the 

electricity consumption time series of the neighbourhoods.  

Avoided emissions per address are largely dependent on rooftop utilization rate and 

installed storage capacities. Under the 25% rooftop utilization scenario, the increase 

in storage capacity shows a significant reduction in avoided emissions. For higher 

rooftop utilization rates, an increase in avoided emissions can be seen when shifting 

from no storage to 1 kWh per MWh capacity. However, larger storage capacities show 

a reduction of avoided emissions. For these larger capacities, the emissions due to 

manufacturing are higher than the avoided emissions due to the self-consumption. 

Moreover, EVs add demand to the neighbourhood and therefore avoided life-cycle 

emissions increase. 

7.5. Discussion 

This research showed that PV self-consumption and self-sufficiency potential varies 

significantly between neighbourhoods. These variations are primarily related to 

limited residential roof area for PV siting, higher electricity demand, or higher 

expected electric vehicle penetration rates. A number of limitations concerning 

assumptions and data availability were made in this research that could impact the 

outcome substantially. 

7.5.1. Data limitations 

The PV potential of facades from residential buildings was not included in the study. 

Especially, facades from tall residential buildings can significantly increase the PV 

potential in neighbourhoods [210]. For example, the district of Overvecht contains 

numerous tall residential buildings, consequently limiting the self-sufficiency ratio. 

Also, including facades would substantially increase the self-sufficiency ratio of these 

types of buildings. Furthermore, by using east and west oriented facades, the PV 

yield over the day is extended beyond the noon peak to early morning and late 
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afternoon. This will provide a higher direct PV self-consumption and decrease the 

need for storage [247]. However, assessment of PV potential of facades is 

computation-intensive, since another dimension is added to the radiation model 

[248]. Furthermore, information about the share of windows and other building 

facade components makes the model complex. In addition, this information is not 

easily available.  

The annual incoming POA irradiance on each rooftop was assessed using the ArcGIS 

tools. This number was used to linearly scale down PV yield time series obtained 

from the PVLIB model. Consequently, we assumed that the shade was homogenous 

homogeneously spread over the PV yield time series. However, the impact of shade 

on the PV yield depends on the position of the sun in the sky and the location of the 

obstructions which block the direct sunlight. We aggregated the individual PV time 

series of each roof to a time series for a neighbourhood. Also, we assumed the shades 

on each PV system in the neighbourhood do not occur simultaneously. Subsequently, 

the influence of shade on individual PV system decreases. Determining incoming 

POA irradiance for each roof for a smaller time step is recommended for further 

research. However, this requires significant more computation time or different 

calculation tools. Furthermore, we assumed that all incoming irradiance on the PV 

module would be converted to electricity. This conversion could be decreased due to 

partial shading of the module. The impact of partial shading on the PV yield depends 

on the installed system architecture and the module design [249].  

We used one year of data (2015) to assess the rooftop PV potential and corresponding 

PV integration parameters, due to data availability and computation time. The year 

2015 had a relative high annual irradiance compared to pre 2015 years [247]. 

Consequently, the PV yield production is overestimated with a few percent. 

Subsequently a higher self-consumption is expected but also a lower self-sufficiency. 

Furthermore, we assumed that excess PV power is distributed to other residential 

buildings within the neighbourhood using the low voltage grid. Power and voltage 

constraints within the low voltage grid were not considered. A detailed map of the 

low voltage grid should be included for future research for assessment of these 

potential limitations.  
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We assumed a constant emission factor for electricity over the year. Consequently, 

results showed that storage does not contribute to emission reductions from an 

electricity system perspective. However, with a larger share of renewables, a higher 

variability of emission factors from power generation can be expected. Consequently, 

the avoided emissions from storage could increase. If batteries would discharge at 

moments with a large share of fossil fuel fired power plants in the power generation 

mix, then this would avoid more emissions. Battery control strategies that include 

the marginal emissions factor should be developed. 

7.5.2. Implementation considerations 

Currently, over 90% of residential buildings are heated using natural gas-based 

systems [231]. The Dutch government has set goals to replace these with other 

technologies, e.g., heat pumps. This could increase the electricity demand of cities in 

the Netherlands. But the expected electricity demand of heat pumps in cities is hard 

to predict. Firstly, the residential buildings should be selected in which heat pumps 

are the most economically viable option to replace natural gas boilers. For example, 

district heating systems can also be used to replace natural gas heating systems, 

especially in densely populated cities [250]. Secondly, the electricity demand of heat 

pumps mainly depends on the heat source (air or ground) and the characteristics of 

the buildings. Especially old buildings should be insulated before installation of any 

heat pump system. The assessment of future electricity demand from residential 

buildings due to electric heating is highly recommended in future research.  

The electricity demand for electric vehicles could be underestimated if more people 

will charge their EV within the city than was assumed. This could potentially occur 

when fast charging stations are introduced within the city, yet this would also require 

additional grid expansion measures. On the other hand, this demand could be 

overestimated due to reduced policy support for charging stations within cities. 

Furthermore, car sharing could result in less need for privately owned cars, and 

therefore reduce the demand. Moreover, a lack of parking spots or improved public 

transport can reduce the number of electric vehicles.  
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The technical PV potential in our study was assessed using 50% of the roof area. 

However, the estimated economic potential is lower due to the following reasons. 

First, the net-metering policy is established in the Netherlands. Consequently, 

dwelling owners with a relatively large roof area will probably only install a PV 

capacity sufficient to provide in their annual electricity consumption. Second, PV 

systems with a relatively low specific PV yield will not be installed due to a 

significantly larger payback period.  

PV power density of 200 Wp/m2 are assumed but are expected to increase in the 

future due to higher module efficiencies. This would increase the PV yield potential 

and decrease the self-consumption but increase the self-sufficiency. Also, we expect 

that future cost of PV systems will decrease based on the historical learning rates of 

around 20% [201]. Consequently, the economic profitability of PV systems for 

orientations with lower incoming irradiance will increase. 

7.6. Conclusion 

This study developed a spatio-temporal model that aimed to assess residential PV 

electricity integration options. The impact of electricity consumptions from 

buildings, electric vehicles and battery energy storage system was investigated for 

each neighbourhood in the city of Utrecht, the Netherlands. A large variety in PV 

yield potential, self-consumption ratio and self-sufficiency ratio was found between 

the neighbourhoods. Self-consumption ratios are between 34% and 100% for the 

neighbourhoods. This could be increased on average by 12% by electric vehicles and 

25% with battery storage. Avoided life cycle emissions are between 0 and 28 tCO2-

eq, with an average of 12 tCO2-eq per address.  

The spatial analysis identified neighbourhoods with potential surplus PV electricity 

that could be used to provide electricity to surrounding neighbourhoods with lower 

PV potential. We recommend using battery storage capacities only in areas in which 

storage has a high impact on self-consumption enhancement. Also, supporting 

policies for smart solar charging of electric vehicles should focus on neighbourhoods 
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with large PV potential and relatively low electricity consumption. Especially for 

neighbourhoods where the low voltage grids require considerable expansion to host 

the potential PV capacity. Moreover, PV supporting policies should focus on 

neighbourhoods with a higher potential of avoided life cycle GHG emissions. The 

dissimilarity of results between the neighbourhoods indicates that area dependent 

investments and supporting policies could improve the PV power integration in 

cities. Therefore, we recommend the use of our spatio-temporal model for other 

cities to assist local governments and district system operators in the transition 

towards sustainable cities.
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8.1. Research context 

International efforts for tackling climate change acknowledge the need for a total 

transformation of energy systems [6]. Advancements in technology and access to 

large amounts of data, may be the solution to catch up on our understanding of the 

current situation and reveal new insights and perspectives on how to proceed further 

with the energy transition [7]. On the path to create a sustainable energy future and 

climate resilient urban sprawls, technology used to understand, evaluate, and 

visualize various scenarios related to this complex phenomenon plays an important 

role. Adding a spatial perspective to this dynamic interconnected energy eco-system 

could help understand and provide necessary information on renewable energy 

strategies that are required to mitigate climate change.  

Mapping and visualizing how energy is being used, locating potential sites for 

deployment of renewable energy, analyzing scenarios for development of 

visualization of policy implications are a few of the many possibilities of using 

geospatial analysis in support of applying solar PV. These are also the aspects that 

were addressed in this thesis. This chapter will synthesize the results and answer the 

research questions relating to the impact of GIS for solar PV. 
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8.2. Answers to research questions 

The goal of this research is to assess the impact of geospatial technologies for 

application in renewable solar energy evaluation. In this context, four key areas have 

been identified which can have an impact on the evaluation in the usefulness of GIS, 

namely, the present status, potential, visualization, and policy evaluation. The sub-

questions defined in Chapter 1 are addressed first followed by the main question.  

Q1. How can data regarding current PV installations and solar 

potential be enriched using geospatial techniques? 

Chapter 2 and 3 addressed the use of geospatial data and techniques for detection of 

PV installations and estimation of solar potential on rooftop level. The advantages of 

these bottom-up approaches over top-down studies zero down to the level of detail, 

and accuracies that can be achieved. In Chapter 2 the power of AI was harnessed in 

combination with spatial analysis to detect locations of existing PV installations on 

buildings using high-resolution aerial imagery. This information can be enriched 

with estimates of generating capacity in relation to panel area and buildings related 

information. Statistics departments which heavily rely on registers and people to 

update data can make use of these techniques to improve their existing database. A 

recent study deployed similar techniques to create a worldwide data set of large PV 

installations and related it to land-use studies providing valuable information on 

how different countries have different strategies when deploying large PV plants 

[251]. We showed how GeoAI techniques could be the way to detect connected or off-

grid small-scale PV installations. This technique could be employed in countries 

where PV installation registration is not mandatory or where unregistered systems 

tapping into the grid could cause problems. 

When it comes to PV potential studies, it has been established that remotely sensed 

data can provide detailed information on suitability of rooftops for siting PV 

depending on the resolution of the input data. One such method has been described 

in Chapter 3, where a very high-resolution height model has been used to model 

irradiation on rooftops and categorize them as suitable or not suitable based on 
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estimated production output. We show that geo-based irradiation models can 

replicate reality and incorporate layers of relevant data especially in suitability 

analysis. It was shown how slope, orientation, and irradiation layers along with 

building footprint data was combined to create a PV suitability map. The output 

reflects where shadows are most prominent and which parts of the roof are most 

suitable. In addition, calculation of important parameters like slope and orientation 

of the roofs which is usually modelled or assumed in most studies related to potential 

estimations is possible and relatively easy when using geospatial data. 

The effect of scale, resolution, time, and validation of geo-based irradiation models 

was addressed in Chapter 4. With higher temporal frequencies incorporated within 

the model one could easily model the effect of shadows throughout the day or over 

months. It should be noted that higher level of detail entails higher processing times 

and eventually higher costs. Chapter 4 also presented the effect of resolution, 

particularly the advantages of high-resolution irradiation analysis in estimating 

energy production on varying rooftop conditions (see Figure 4-9). We have 

demonstrated how geospatial techniques can be used for scaling and aggregating 

data to create relevant information for different stakeholders in Chapters 2, 3 and 6.  

Furthermore, combining different data layers (PV installations and PV potential), 

one could also estimate the left-over potential as shown in Figure 8-1. To conclude, 

Chapter 2, 3 and 6 provide methods that could improve information on solar 

installations and PV potential when geospatial techniques are used. As more and 

more earth observation data with high spatial and temporal resolution becomes 

available, use of AI and geospatial techniques could be integral in providing fast, 

accurate and detailed results which can be used for monitoring, planning of PV 

installations pertaining to rooftops and building façades [252]. 
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(a) 

 

(b) 

 

Figure 8-1:(a) Left-over potential (hatched lines) after combining PV potential and PV 

installation layers, (b) solar potential calculations on building facades for the area of 

Jaarbeurs in Utrecht. Red wall surfaces are unsuitable surfaces, and the green surfaces are 

most suitable. Source [252]. 
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In relation to mapping and visualization which is fundamental to GIS, the ability to 

understand and present information incorporating space, time and scale was 

investigated. The research question addressed in this perspective is: 

Q2. How can GIS mapping and visualization techniques be 

harnessed for monitoring and identifying trends in PV diffusion and 

performance? 

With the ability to overlay data and display layers of information be it images, vector 

data or a combination of both, GIS can present the user with an interactive interface 

and mapping capabilities that are easy to comprehend as demonstrated in Chapter 

5. We have mapped locations and performance data pertaining to PV installations 

from five different countries derived from web scraping techniques. It has been 

shown how by simply interpolating this data, one could create maps that illustrate 

the performance of PV systems and quickly identify the underperforming and 

overperforming systems and the underlying cause for a large geographic area. 

However, data stretching techniques used for visualization purposes must be 

addressed carefully depending on the subject matter that is being mapped. Mapping 

and visualization are highly dependent on cartographic principles like scale, 

resolution, data stretching, content and contrast. The effect of these factors has been 

addressed in Chapters 4 and 5. These make all the difference in understanding the 

content that is being presented. If the same data is drawn using different color 

schemes or data stretching techniques, one could even arrive at different conclusions 

(Figure 5.7).  

Mapping helps put data into context. It does not only identify sites but also can 

effectively accredit the underlying factors that influence the data being mapped. In 

the case of locating or mapping PV installations as shown in Chapter 2, the first 

impression is the spread and density of these installations across the region under 

evaluation. However, one could also investigate the driving factors behind the 

density of the installations, why certain neighbourhoods have more PV installations 

than the others and if it relates directly to the socio-economic status of these 
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neighborhoods and so on. With multicriteria mapping one can visualize the effect of 

many data layers at once instead of looking at them individually, this is especially 

useful when looking at large datasets as shown in Chapter 6. Finally, visualization 

capturing dynamic changes within neighborhoods as described in Chapter 7 aids in 

creating policies targeted at specific neighborhoods or regions which could be 

effective in the future.  

Advancements in computer vision and data science have had a positive effect on 

visualization and capability to model and visualize time-series data in GIS 

environment. Availability of detailed 3D models, high resolution aerial or drone 

imagery over the years or even real-time data, has made mapping, manipulating, and 

visualizing this data relatively easy with proper infrastructure. Nevertheless, one 

should still evaluate whether the use of such data and techniques is well suited for 

the designated purpose as that could potentially save time and costs.  

 

Q3. How can spatial or spatio-temporal analysis be used in 

evaluating policy effectiveness or for modelling future scenarios for 

energy transition? 

Policy making and planning go hand in hand, and this cannot be truer in the case of 

the energy transition. Up until now energy policies have been largely generalized. 

With new insights from spatial planning, it is evident that the geographical location 

plays a far more greater role in shaping policy [253]. For the Dutch scenario of 

localized strategies to effectively tackle energy transition issues, regional and local 

analytics play an important role. In this context, using GIS as a decision support tool 

in energy modelling [254–256] and policy development [253,257,258] has already 

shown tremendous added value.  

In addition to the demonstrated use case of locating potential sites for solar energy 

deployment with the help of GIS techniques, we have demonstrated how GIS can be 

used to check the implications of a policy in Chapter 6. Potential solar diffusion was 

evaluated by assigning weights to socio-economic factors affecting solar PV adoption 

and processing them using an analytical hierarchical process within a GIS system. 
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We used the Postal Code Rose policy (in force until April 2021) which focused on 

encouraging citizens to invest in solar PV in a neighboring postal code if their rooftop 

was not suitable.  

We identified income, house value, electricity consumption and peer effect as 

significant factors for PV adoption and modelled this data to create a corresponding 

weights and scale layer which was then used in the geographic overlay analysis (see 

Figure 6-3 and Table 6-1). Finally, it was shown that after applying the policy, the 

city of Apeldoorn could produce ~77% of its electricity demand through PV. The 

study considered social factors which are dynamic and complex to model especially 

on postal code level and the data is privacy sensitive and hard to access. Therefore, 

sensitivity tests were performed to see how much the results deviate if the weights 

for the factors changed. This gives a level of flexibility to the policy makers if they 

were to adopt a similar process to evaluate policies. Overall, the presented method 

shows potential of applying geo-spatial analysis for policy evaluation in terms of PV 

diffusion.  

Spatio-temporal analysis is also very helpful in scenario studies as demonstrated in 

Chapter 7. The capability to model data from different locations over various time 

periods makes GIS a versatile tool. The extent to which PV can be integrated within 

cities was evaluated considering various parameters and scenarios. The spatio-

temporal dynamics within the neighborhoods changed when different integration 

factors were considered, and effect of choices made was be analyzed and visualized. 

Once established such model frameworks are easy to scale in a GIS environment. The 

greatest flexibility is the ability to change the physical or political boundaries of 

analysis. Instead of neighborhoods, we could investigate the dynamics within cities 

or even conduct the analysis at municipality level. 

 

 

 

 



Chapter: 8                                                                                                                      GIS4PV 

162 

Main research question  

To what extent is GIS instrumental in the field of Solar PV? 

In this thesis the technological impact of using GIS techniques and the influence of 

spatial thinking in the field of solar PV was evaluated. The synthesized results are 

based on four aspects; evaluation of the present status, potential estimation, 

monitoring through visualization and finally effect of policies.  

Present PV status 

GeoAI has brought about a paradigm shift in geo-data analysis. Locating PV 

installations from remotely sensed data be it satellite images, aerial photographs or 

even data gathered from drones can be accomplished in a relatively short time with 

good accuracies. GeoAI techniques are particularly useful for counting off-grid 

systems or scaling up processes that usually take lifetimes when done manually. With 

recent escalation in publicly available AI algorithms, workflows, training data, and 

knowledge, GeoAI methods are easy to scale and reuse. However, since GeoAI is 

largely dependent on remote sensing imagery, lack of very high-resolution imagery 

could be a bottleneck to adopt this method for detecting rooftop installations in many 

countries. At the same time there is discussion around the safety, ethics, and 

inexplicability of the algorithm’s behavior (black-box nature) when using AI, which 

makes it a contentious choice. 

Potential estimation 

From rooftop solar potential calculations to comprehensive nation-wide mapping of 

solar potential is a viable option when GIS techniques are incorporated with remote 

sensing data. Digital elevation models (DEM) along with atmospheric parameters 

form the basis of this analysis. The raster image resolution can be selected depending 

on the goal of the project and scaling up is relatively easy once a baseline is 

established. Site suitability studies have been an integral part of GIS systems from a 

long time. With insights from spatial planning, urban planners, network operators 

can combine PV potential data to design cities or plan infrastructure in a GIS 

environment. The resolution of the DEM’s currently available as open data is 
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sufficient to provide necessary information for most European countries. Potential 

estimations at rooftop level when combined with building characteristics and 

functional attributes lead to actual potential that is realizable.  

Visualization and monitoring 

GIS system can present spatial and non-spatial data to analyze or interpret. Spatial 

relationships between objects within a layer or different layers can be explored. Geo-

spatial analytics have the capability to combine or summarize data with diverse 

scales or varying borders with a user-friendly system that is easy to navigate. The 

visual flexibility provided by a GIS system allows for quick monitoring of objects 

under scrutiny with layers of information that can interact with each other. However, 

adhering to cartographic principles such as the use of color, symbol, scale and 

choosing the right theme based on data type is of utmost importance to make a 

compelling visualization that is practical, readable, and useful. Time series data is 

easily incorporated, and growth of PV installations or lack thereof can be either 

controlled visually or via spatial analysis. 

Policy evaluation 

The ability to create and explore spatially explicit models involving dynamic 

processes which are non-stationary in space makes GIS very useful in policy 

development and evaluation. When the above-mentioned analysis and data 

regarding PV installations, solar potential, demographic, social and economic 

attributes is combined, it could eventually lead to information useful for formulation 

of new policy. On the other hand, GIS as a tool is also useful in evaluating the effect 

of policy on adoption of renewable technologies. Moreover, scenario modelling with 

space and time as parameters provide the necessary information that is required to 

take decisions or make policies, which is useful in assessing spatial implications of 

future energy transition road maps. 



Chapter: 8                                                                                                                      GIS4PV 

164 

8.3. Perspectives on GIS4PV and recommendations 

We have demonstrated and established that GIS can provide a holistic approach that 

has the capability to incorporate and model space, time, and scale as driving factors 

to understand and solve complex problems related to the energy transition. 

However, the integration or acceptance of GIS is neither simple nor without hurdles. 

Moreover, this thesis presented case studies that can be improved, especially given 

that there have been technological developments that make many recommendations 

suggested in the chapters possible. To utilize the benefits of such distinct technology 

for societal applications, identifying current problems and sectors where GIS could 

help speed up the sustainable transition process is vital. Thus, this section focuses 

on current bottlenecks and perspective solutions for GIS integration.  

8.3.1. Bridging the gap between policy and research 

The brightest minds of our century are working harder than ever to solve the climate 

crisis, and there are two sides to it. On the one hand it is innovation, technology, or 

research and on the other economy, society, and politics, which lead to policy.  

Policies are heavily reliant on data, statistics and citizen interaction and are 

“evidence based”. The evidence which is a result of research or innovation is not as 

plain or simple as it seems. It is a product of models that have assumptions, data that 

is diverse and liable to quality issues and finally the way the results are interpreted. 

It is therefore imperative that policy makers are aware of these assumptions or at 

least their implications. On the other hand, the researchers’ approach to create 

evidence or data required for policy is often tunneled, with little awareness on 

governance and what goes into policy making. This leads to disparity in ideas and 

understanding especially when looking at data or results but interpreting it in 

different ways or unable to comprehend the effect of assumptions. The results in 

chapter 7 are a consequence of many assumptions. For example, we considered only 

buildings with residential function in the analysis, however the technical constraints 

of the roof itself for PV siting was not considered. Basing the analysis purely on 
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available roof top area means either over estimation or underestimation of available 

area in certain neighborhoods, which has a huge impact on the final results. In 

addition, the solar irradiation model used in the study also has certain assumptions. 

In scenario studies like these it might be possible to mention all the assumptions 

although it is hard to quantify them and their effect. Therefore, it is of utmost 

importance to ask questions and build up dialog to bridge this gap so that relevant 

policies that are in line with climate goals can be made and implemented.  

In this context, it is useful to exploit the advantages of GIS to present compelling 

information with an impact on the specified audience. Dashboards and story 

maps could be the bridge between researchers and policy makers. Dashboards allow 

for interactive visualization and analysis of data which could allow policy makers to 

associate with the information being presented including the consequences of the 

choices made. This was witnessed during the pandemic with the corona dashboard 

where one could keep track of the spread of infections in real-time and world health 

organization was able to make decisions and suggestions accordingly [259]. 

Dashboards could also be the way to engage with the citizens, consider their opinions 

to include them in the dialog. This provides a setting where individuals can visualize 

changes based on choices and the impact it has on their environment. 

8.3.2. Emerging technologies 

Technology is evolving at an unprecedented pace and to keep up with it without 

losing insight of its basic purpose of simplifying things is an irony. GIS has evolved 

from being desktop-based systems to web and server-based enterprise systems and 

now it is even being deployed on the cloud as Software as a Service (SaaS) which 

offers users to make choices based on their needs. The average user is presented with 

choices that not only vary in price to performance-ratio (in the case of GIS open-

source vs proprietary) but also the ease of use, personal preference for using a 

graphical user interface (GUI) vs command line interface (CLI) and the technical 

support and the level of flexibility it provides. Nowadays, upgrading and maintaining 

desktop systems to keep at par with technological developments is turning out to be 

more expensive compared to exchanging the systems for cloud technology. Cloud 
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storage and computation technologies are providing the necessary possibilities to 

experiment and innovate with data without limitations on data size and storage. A 

glimpse of the interaction between the emerging technologies discussed below and 

GIS to provide a holistic approach to deal with energy management is presented in 

Figure 8-2. 

Internet of Things (IoT) is an emerging technology that collects and shares data 

from sensors from all around the world, be it real-time or static [260]. The 

connection with GIS is then the location of the sensor itself that provides the 

necessary geographic context for processing the data and taking necessary action, 

something that is typical in case of smart cities. Data from the sensors are separate 

entities interacting on the server. The added value is real-time spatial analytics with 

observed or measured data. If a weather condition (overcast sky) affects the PV 

energy production in a neighborhood, data from smart meters, pyranometers, and 

weather forecasting can be used to predict the future of this weather pattern to alert 

the network operators to take necessary action to account for the sudden dip in 

electricity production (ramp down) in the concerned neighborhoods. Conversely, 

this can also be used for ramping up of energy production. Data thus collected over 

long periods of time when connected with a GIS system could be used for analyzing 

spatio-temporal patterns and for generating visualizations or animations on the fly. 

In addition, integrating GIS with building information models can provide detailed 

information on the indoor built environment useful in energy studies. 

Digital twin (DT) is another concept that is gaining popularity rapidly. A digital 

twin encompasses a virtual representation of real-world object/process that can be 

used to simulate strategies to evaluate the success or performance before 

implementing it in the real world. City information models are being built to serve 

as a Geodata hubs [261]. However, to build these digital twins, the above-mentioned 

tools and technologies are essential.  
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8.3.3. Data  

The purpose of a GIS system is to model real world data to understand and analyse 

the effect of physical and human process that occur on earth. Thus, data has a 

significant role and is central for effective functioning of a GIS system. The effect of 

technology is also evident from the availability of different data modalities and 

formats. Future GIS systems should be able to evolve accordingly to accommodate 

various data types and modalities as shown in Figure 8-2.  

The problem however is associated with data availability and formats. Not every 

country has resources to spend on high resolution data and in some countries optical 

imagery is not sufficiently detailed. Developing countries which do not have access 

to high resolution data have to work with medium resolution data that might not be 

sufficient for solar potential studies mentioned in this thesis. In addition, the density 

of cities and building characteristics in developing countries vary to a degree that it 

is challenging to capture data with one single sensor. Although drones are a good 

alternative in providing high precision data, they have limited range mapping 

capabilities. 

If data availability and access is one side of the problem, dealing with numerous data 

formats and interoperability between systems and software is another. Different data 

modalities and processes lead to different data formats and software required to 

process the data. Although, national and global bodies that support spatial data 

infrastructures are doing their best to create an ecosystem to facilitate geospatial 

data collection, storage, access and sharing, issues with interoperability still exist 

[262]. Strict adherence to Open Geospatial Consortium (OGC) standards [263] 

can help overcome this issue. 
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Figure 8-2: An example of how future technological systems may interact and how 

geospatial technologies could be deployed for providing a comprehensive overview leading 

to sustainable energy management. A part of this workflow is already in place where cloud-

based computing is replacing desktop and traditional storage systems. 

 

 

Figure 8-3: explanation of 3D models available at different level of detail. Source: [264] 

 

Yet another data aspect that creates discrepancies is scale. It is imperative that 

appropriate data with respect to resolution is chosen based on the purpose or goal of 

the analysis. Although, data aggregation techniques and low-medium resolution 

datasets suffice while creating nation-wide datasets, it is worthwhile investigating 
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automatic data scaling techniques. This could provide homogenous and reliable 

information without having to worry about scaling issues. 

Solar potential analysis must be extended to include building façades as solar siting 

on rooftops alone may not be sufficient to fulfil the energy needs. Analysis based on 

3D models instead of 2.5D elevation rasters can be used to calculate the solar 

irradiation on building façades. With 3D models available at level of detail 

(LOD) 3 (see Figure 8-3), or higher, solar potential analysis can provide accurate 

details on available surface area and potential production factors. Moreover, with 

Building Integration Models (BIM) building energy efficiency studies can be 

conducted. 

When it comes to monitoring and mapping PV performance presented in Chapter 6, 

efficient data storage and analysis can help in identifying trends and changes. In 

addition, inclusion of the environmental impact to quantify emissions that 

can be avoided from transportation in addition to tracking the life cycle of a PV panel 

from production to installation can be studied. The environmental impact of utilizing 

locally produced vs imported PV is thus brought into focus, where consumers can 

make a conscious choice. 

8.4.  Epilogue 

Energy transition is a huge part of climate crisis, which needs appropriate attention. 

The global energy system is dynamic and in order to understand this complex 

process that is affected by earth’s physical processes to human interaction; data 

processing and visualization techniques are of utmost importance. Remote sensing 

and earth observation are providing the necessary data and with geo-spatial analysis 

one could provide the context essential for management of the energy systems. This 

thesis is an endeavor to present the implications of geo-spatial science for energy 

studies, with a focus on solar PV. We hope to have inspired and contributed in part 

to the collective effort towards realizing a sustainable energy future. 
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