
1. Introduction
Both experiments and theory have shown that a phase transition between bridgmanite (perovskite-type structure) 
and post-perovskite occurs in the MgSiO3 end-member under the lowermost mantle conditions (∼120 GPa and 
∼2400 K) (Murakami et al., 2004; Oganov & Ono, 2004; Tateno et al., 2009), where the D” seismic velocity 
discontinuity is observed (e.g., Chaloner et al., 2009; D. Sun et al., 2006; He & Wen, 2011; Lay & Helmberg-
er, 1983; Russell et al., 2001; Thomas, Garnero, & Lay, 2004; Thomas & Laske, 2015; Weber et al., 1996; Wyses-
sion et al., 1998). The pressure and sharpness of the post-perovskite phase transition have been examined also in 
a pyrolitic mantle material. In such a natural mantle composition, Al and Fe impurities (e.g., Catalli et al., 2009; 
Hirose, Takafuji, et al., 2008; Mao et al., 2005; Sinmyo et al., 2011; Tateno et al., 2005) affect the pressure and 
width of the transition (see a review by Hirose et al., 2015). It has been repeatedly reported that the post-per-
ovskite phase transition occurs in a pyrolitic lowermost mantle around 120 GPa, comparable to the case in pure 
MgSiO3, with a ∼5 GPa pressure interval (Murakami et al., 2005; Ono & Oganov, 2005; Ohta et al., 2008). On 
the other hand, the similar X-ray diffraction (XRD) study by Grocholski et al. (2012) found a higher transition 
pressure beyond the pressure range of the Earth's mantle and a much broader pressure interval of 140–168 GPa at 
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2500 K. In these previous experimental studies on pyrolite, however, the stabilities of bridgmanite and post-per-
ovskite have been explored only up to 2700 K under the lowermost mantle conditions.

There are more observations of the D” seismic discontinuity in seismically fast regions associated with paleo-sub-
duction than in slow regions, although this may be influenced by favorable earthquake source and receiver com-
binations. In some locations the D” discontinuity is not observed at all (see reviews by Jackson & Thomas, 2021; 
L. Cobden et al., 2015, and Wysession et al., 1998). A large positive dP/dT slope of the bridgmanite to post-per-
ovskite phase transition boundary, combined with a relatively high and globally even temperature of the outer-
most core, might imply that bridgmanite is stable (post-perovskite is absent) to the core-mantle boundary (CMB) 
in relatively hot areas. In cold regions, “paired” discontinuities (positive S-wave velocity jump at the D” discon-
tinuity and negative one at a deeper level near the CMB) might indicate the presence of bridgmanite above the 
CMB, instead of post-perovskite, as a consequence of back transformation from post-perovskite to bridgmanite 
at high temperatures in a thermal boundary layer (a double-crossing scenario; Hernlund et al., 2005; Thomas, 
Garnero, & Lay, 2004; Thomas, Kendall, & Lowman, 2004; Wookey et al., 2005). It is of great importance to 
verify these scenarios by phase equilibria experiments on multiphase assemblages that are representative of 
average mantle material under high temperatures of the CMB region. In addition, the Clapeyron slope of the 
bridgmanite/post-perovskite boundary was determined in MgSiO3 end-member to be +8–10 MPa/K by theories 
(Oganov & Ono, 2004; Tsuchiya et al., 2004) and +5–13 MPa/K by experiments (Hirose et al., 2006; Ono & 
Oganov, 2005; Tateno et al., 2009). It is several times larger in magnitude than those of major upper mantle phase 
transitions, suggesting that the post-perovskite transition has important dynamical consequences (Nakagawa & 
Tackley, 2004; Tackley et al., 2007). A large positive dP/dT slope was also reported for pyrolite, but it was con-
strained by experiments performed in narrow temperature ranges less than ∼1000 K (Grocholski et al., 2012; Ono 
& Oganov, 2005; Ohta et al., 2008).

In this study, we performed synchrotron XRD measurements of a pyrolitic mantle material to investigate the 
post-perovskite phase transition at high temperatures (3570 K and higher) including those above its solidus tem-
perature. The results show that bridgmanite/post-perovskite phase transition occurs within the lowermost pres-
sure range even at >4000 K. Combining with the earlier experimental results by Ohta et al. (2008), the post-per-
ovskite-in and bridgmanite-out curves are constrained by data obtained in a wide temperature range from 1780 
to 4480 K, and the dP/dT slope is found to be +6.5 ± 2.2 MPa/K when the gold pressure scale proposed by Fei 
et al. (2007) is applied. These results suggest that post-perovskite is present globally above the CMB, which may 
be consistent with recent high-quality seismological data that non-observations of D” reflection are exceptional 
(Jackson & Thomas, 2021).

2. Experimental Methods
High P-T experiments were performed with in situ XRD measurements in a laser-heated diamond anvil cell 
(DAC). We employed a symmetric-type DAC with beveled 90-μm culet diamond anvils. A starting material was 
the same as that used in Ohta et al. (2008); it was prepared from gel with the chemical composition of a natural 
peridotite KLB-1 (44.8% SiO2, 0.2% TiO2, 3.6% Al2O3, 8.2% FeO, 39.5% MgO, 3.4% CaO, and 0.3% Na2O by 
weight; Takahashi, 1986), similar to pyrolite. The sample was mixed with fine gold powder and loaded into a hole 
at the center of a pre-indented rhenium gasket. Argon was cryogenically loaded and used as a thermal insulator.

After compression, heating was performed from both sides of the sample using a couple of 100 W single-mode 
Yb fiber lasers (SPI Lasers Co. Ltd.) with beam shaping optics that converts a beam with a Gaussian intensity 
distribution to one with a flattop distribution. The laser spot size was approximately 30 μm across. Heating dura-
tion was 3 s. A one-dimensional radial temperature profile across a hot spot was obtained by a spectro-radiometric 
method (e.g., Tateno, Hirose, Sinmyo, et al., 2018; Figure 1). In runs #1–3 in which the sample was partially 
molten, temperature shown in Table 1 corresponds to that at the boundary between a melt pool and a solid layer, 
which was determined by a combination of the temperature profile and a melting texture found in a cross section 
of a recovered sample (e.g., Hasegawa et al., 2021). For subsolidus experiments (runs #4 and #5), sample tem-
peratures are the average in a 6 μm region at the hot spot, from which XRD data were collected. The overall tem-
perature uncertainty may be ±5% according to Mori et al. (2017). The sample was heated only once in each run. 
Pressure at high temperature was determined based on the unit cell volume of gold (Fei et al., 2007). Those in the 
earlier experiments performed by Ohta et al. (2008) were based on the equation of state (EoS) of gold proposed 
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by Hirose, Sata, et al. (2008), which is not applicable at high temperatures 
like ∼4000 K. Therefore, we recalculated the pressures in Ohta et al. (2008) 
using the Mie-Grüneisen-Debye EoS of gold proposed by Fei et al. (2007), 
in order to compare their results with those obtained in this study (Table 1).

Angle-dispersive XRD patterns were collected in situ at high P-T at the beam-
line BL10XU, SPring-8 synchrotron radiation facility (Hirao et  al.,  2020; 
Figure 2). A monochromatic incident X-ray beam was focused by stacked 
compound refractive lenses and collimated to approximately 6 μm area (full 
width at half maximum) on a sample. The wavelength was 0.4133–0.4158 Å 
(∼30 keV). XRD data were obtained continuously during heating on a digital 
flat panel X-ray detector (Perkin Elmer) with exposure time of 1 s. To obtain 
conventional 1D diffraction patterns, 2D XRD images were integrated as a 
function of the 2θ angle (Seto et al., 2010).

After high P-T experiments, samples in runs #1–3 were recovered from the 
DAC, and their cross sections across the center of a laser-heated spot were 
prepared parallel to the compression axis by using an FIB instrument with a 
focused Ga ion beam (FEI, Versa3D DualBeam). X-ray elemental maps were 
obtained with an energy-dispersive X-ray spectrometer (EDS) attached with 
a field-emission-type scanning electron microscope in the dual beam FIB 
system (Figure 1).

3. Results
We have conducted five separate high P-T experiments on pyrolitic mantle 
material up to 156 GPa and 3570 K (Table 1). In order to avoid kinetic hin-
dering of phase transformation especially in such a multi-component system, 
heating was made on an amorphous starting material at a single P-T condi-
tion in each run. In run #1, the sample was compressed and then heated to 
3910 K at 122 GPa, higher than the solidus temperature of pyrolite (Kim 
et al., 2020; Nomura et al., 2014) (Figure 3a). The XRD spectrum collected 
in situ during heating shows that bridgmanite and minor post-perovskite, in 
addition to ferropericlase and davemaoite (CaSiO3 perovskite), grew from 
the amorphous sample (Figure  2a). Microprobe analyses of the cross sec-
tion of this sample, recovered from high pressure, demonstrate that there is 
a round pocket of quenched melt at the center, being enriched in Fe and Ca, 
and depleted in Si (Figure 1). This melt pocket is surrounded by a Si-rich and 
(Fe, Ca)-poor layer, which should represent bridgmanite (±post-perovskite) 
observed in the high P-T XRD pattern. It indicates that bridgmanite is the 
liquidus phase, consistent with the earlier melting experiments on pyrolite 
performed by Tateno et al. (2014).

Similar experiments were made in runs #2 and #3 at conditions slightly high-
er in both P and T (Figure 3a). Diffuse scattering signals from melt are rec-

ognized in their in situ XRD patterns (Fiquet et al., 2010), in particular for run #2 (Figure 2b). The XRD data 
indicate that melt coexisted with bridgmanite and minor ferropericlase (post-perovskite is absent) in run #2 at 
128 GPa and 4480 K. In contrast, the high P-T XRD pattern is dominated by post-perovskite in run #3 performed 
at 130 GPa and 4300 K (Figure 2c). In addition, runs #4 and #5 were conducted at 156–166 GPa and 3570–
3860 K under subsolidus conditions (Figure 3a), which is supported by observations that the number of peaks and 
their relative intensities in XRD patterns did not change upon quenching temperature. The present above-solidus 
and subsolidus experiments support the relatively low solidus temperature of pyrolite at the CMB pressure (Kim 
et al., 2020; Nomura et al., 2014).

These results of runs #1–3 constrain the post-perovskite-in and bridgmanite-out conditions around 4000 K (Fig-
ure 3a). While partial melts coexisted with both bridgmanite and post-perovskite in runs #1 and 3, only one of 

Figure 1. (a) X-ray elemental maps of the sample cross section recovered 
from run #1 at 122 GPa and 3910 K. (b) A corresponding temperature profile 
across the hot spot.
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them was dominant in each of these experiments (Figures 2a and 2c), indicating that their P-T conditions should 
be close to the post-perovskite-in and bridgmanite-out curves, respectively. The width of the post-perovskite phase 
transition should thus be about 5 GPa, corresponding to a lowermost mantle depth range of 90 km, similar to that 
observed by Ohta et al. (2008) at lower temperatures below 2550 K. When combined with Ohta et al. (2008)'s 
data (Table 1), our results obtained in a wide temperature range from 1780 to 4480 K at 108–130 GPa show the 
dP/dT slope of these post-perovskite-in and bridgmanite-out curves to be +6.5 ± 2.2 MPa/K when assuming that 
the slope does not change above the solidus curve (Figure 3a). Indeed, upon partial melting both bridgmanite 
and post-perovskite become depleted in iron and in aluminum to a small extent (D. Andrault et al., 2012; Tateno 
et al., 2014), which would affect the phase transition boundary (e.g., D. Andrault et al., 2010; N. Sun et al., 2018; 
Sinmyo et al., 2011; Wang et al., 2019). Nevertheless, the effect of such compositional change above solidus 
temperature is not clear in the present experiments (Figure 3a).

4. Discussion
4.1. Post-Perovskite Phase Transition in Pyrolitic Lowermost Mantle

The pressure (∼120 GPa at 2400 K) of the post-perovskite phase transition we obtained for pyrolite along the 
normal lower-mantle geotherm (Brown & Shankland, 1981) is in agreement with the depth of the D” seismic dis-
continuity (see Wysession et al., 1998 and L. Cobden et al., 2015 for reviews). While earlier XRD measurements 
have also repeatedly demonstrated that it takes place in pyrolite around 120 GPa (Murakami et al., 2005; Ono & 
Oganov, 2005; Ohta et al., 2008), the experiments carried out by Grocholski et al. (2012) found the phase transi-
tion at 140–168 GPa and 2500 K. Such a large discrepancy is not reconciled with the difference in pressure scale 
employed to determine experimental pressures (Figure 3b), although pressure estimates can change as much as 
15 GPa in the relevant pressure range (see a review by Hirose et al., 2015). The difference in a pressure medium is 
also unlikely to be an important source of the discrepancy; noble gas (argon or neon) pressure medium was used 
in Ono and Oganov (2005) and this study as well as in Grocholski et al. (2012).

Run# Volume of Au (Å3) Pressure (GPa) Temperature (K) Phase assemblage

This study

 #1 52.19(5) 121.9(2) 3910 Bdg + PPv (trace) + Fp + CaPv + melt

 #2 52.06(12) 128.1(3) 4480 Bdg + Fp + melt

 #3 51.82(4) 129.6(2) 4300 PPv + Bdg (trace) + melt

 #4 49.08(8) 165.9(3) 3860 PPv + Fp + CaPv

 #5 49.53(8) 156.1(3) 3570 PPv + Fp + CaPv

Ohta et al. (2008)

 #1–1 51.91(11) 108.2(3) 1780 Bdg + Fp + CaPv

 #1–2 51.93(7) 109.4(2) 1960 Bdg + Fp + CaPv

 #1–3 52.26(12) 110.0(3) 2540 Bdg + Fp + CaPv

 #2–1 51.70(8) 110.9(2) 1800 Bdg + PPv (trace) + Fp + CaPv

#2–2 51.75(9) 111.6(3) 1950 Bdg + PPv (trace) + Fp + CaPv

 #3 51.43(6) 115.6(2) 1940 PPv + Bdg + Fp + CaPv

 #4 53.43(3) 95.0(2) 2300 Bdg + Fp + CaPv

 #5 52.33(17) 105.4(3) 2070 Bdg + Fp + CaPv

 #6 51.56(1) 118.8(2) 2550 PPv + Fp + CaPv

 #7 50.79(14) 126.6(4) 2250 PPv + Fp + CaPv

 #8 50.72(20) 129.1(4) 2450 PPv + Fp + CaPv

Note. The numbers in parentheses represent one standard deviation in the last digits. Bdg, bridgmanite; PPv, post-perovskite; Fp, ferropericlase; CaPv, CaSiO3 perovskite.

Table 1 
Experimental Results
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The dP/dT slope of the transition boundary (+6.5 ± 2.2 MPa/K) found in 
the present experiments for pyrolite is slightly smaller than that reported 
by earlier ab initio calculations for MgSiO3 (+7.5–9.6 MPa/K) (Oganov & 
Ono, 2004; Tsuchiya et al., 2004). Experimental determination of the dP/dT 
slope depends on the choice of the pressure scale used to calculate pressures. 
When different EoSs of gold (Anderson et al., 1989; Jamieson et al., 1982; 
Shim et al., 2002; Tsuchiya, 2003) other than the Fei et al. (2007)'s EoS are 
employed, the slope becomes smaller ranging from +3 to +7 MPa/K (Fig-
ure 3b). The pressure range of the transition also becomes lower. While Hirose 
et al. (2006) reported the slope of +4.7 MPa/K for pure MgSiO3 based on the 
Tsuchiya (2003)'s Au scale, it is recalculated to be +7.1 MPa/K with the Fei's 
scale, which is similar to the slope obtained for pyrolite in this study. The dP/
dT slope depends also on the internal pressure standard (Hirose et al., 2015). 
Based on a comparison between pressures estimated by the EoSs of Au and 
MgO at high temperatures in Hirose et al. (2006), the post-perovskite-in and 
bridgmanite-out boundaries in pyrolite are estimated on the basis of the MgO 
pressure scale (Speziale et  al.,  2001) in Figure 3b. They exhibit the slope 
of +11.1 MPa/K, comparable to +13 MPa/K in MgSiO3 found by Tateno 
et al. (2009) using the Speziale's MgO scale.

The present experiments and the earlier ones by Ohta et al. (2008) demon-
strate that bridgmanite and post-perovskite coexist in a pyrolitic mantle ma-
terial in a ∼5 GPa pressure interval at ∼4000 K and ∼2000–2500 K, respec-
tively (Figure 3a). It is comparable to recent theoretical calculations of the 
thickness of the bridgmanite + post-perovskite two-phase region at 2500 K; 
0.6, 1.9, and 12.5 GPa in MgSiO3 containing 10 mol% Fe2+SiO3, 5 mol% 
Al2O3, and 5 mol% Fe3+AlO3, respectively (Wang et al., 2019), while previ-
ous experimental studies reported much wider thickness, more than 20 GPa 
in (Al, Fe)-bearing MgSiO3 (Catalli et al., 2009; D. Andrault et al., 2010; N. 
Sun et al., 2018).

4.2. Ubiquitous Occurrence of Post-Perovskite Above CMB

These results show that post-perovskite transforms into bridgmanite above 
4800  K at the CMB (Figure  3a). It is much higher than the present-day 
CMB temperature, with estimates ranging from 3600 to 4300 K (e.g., Kim 

et al., 2020; Lay et al., 2008; Nomura et al., 2014). If the deep lower mantle is dominated by a pyrolitic material, 
it suggests that a) the bridgmanite/post-perovskite phase transition takes place globally in the lowermost mantle 
although the transition is not sharp, and b) post-perovskite is present ubiquitously above the CMB. These con-
clusions do not depend on the choice of the EoS of gold to determine experimental pressures (Figure 3b). If the 
MgO pressure scale is employed, we obtain a larger dP/dT slope of the transition boundary and a wider stability 
field of bridgmanite at relatively high temperatures. Even in this case, post-perovskite is stable (bridgmanite does 
not appear) at the bottom of the mantle as far as the CMB temperature is less than 3550 K (Figure 3b). Since the 
lowermost mantle is not globally molten, such relatively low CMB temperature is supported by recent determina-
tions of the solidus temperature of pyrolite at 135 GPa; 3570 ± 200 K by Nomura et al. (2014) and 3430 ± 130 K 
by Kim et al. (2020).

The ∼5 GPa pressure width of the bridgmanite + post-perovskite coexistence corresponds to ∼90 km depth 
interval in the lowermost mantle. The sharpness of the D” seismic discontinuity should be less than this (Weber 
et al., 1996) and potentially as narrow as 8–30 km (i.e., <2 GPa) (Lay, 2008; Lay & Young, 1989; Wysession 
et al., 1998), suggesting that the bridgmanite/post-perovskite transition boundary in pyrolite may not be observed 
as a seismic velocity discontinuity, as argued by Lay (2008).

The D” discontinuity is found mainly in high-velocity regions underneath the circum-Pacific (Jackson & Thom-
as,  2021; L. Cobden et  al.,  2015; Wysession et  al.,  1998), and this has been attributed to the enrichment in 
subducted depleted mantle materials (harzburgitic rocks), in which the bridgmanite to post-perovskite phase 

Figure 2. X-ray diffraction patterns at (a) 122 GPa and 3910 K, (b) 128 GPa 
and 4480 K, and (c) 130 GPa and 4300 K. Bdg, MgSiO3-rich perovskite; PPv, 
post-perovskite; Fp, ferropericlase; CP, CaSiO3 perovskite; Au, gold; Ar, argon 
pressure medium; Re, rhenium gasket.
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transition occurs in a narrow pressure range because they are poor in Al 
and Fe impurities (Grocholski et  al.,  2012). D” seismic reflections could 
also be produced in these regions by scattering off chemical heterogenei-
ties (e.g., Cobden & Thomas, 2013). On the other hand, there are observa-
tions of the D” discontinuity beneath the central Pacific as well (Cobden & 
Thomas, 2013; Jackson & Thomas, 2021; Lay et al., 2006). Post-perovskite 
should be predominant above the CMB including such areas away from the 
circum-Pacific high-velocity regions. Our results do not preclude the bridg-
manite/post-perovskite transition in pyrolite from generating D” reflections; 
stress-induced re-equilibration within the two-phase region can produce 
high amplitude seismic reflections, even when the transition region is thick 
(Langrand et  al.,  2019). Additionally, development of the lattice-preferred 
orientation of post-perovskite may generate sharp reflectors within a broad 
two-phase region (Ammann et al., 2010; Pisconti et al., 2019).

Indeed, the ubiquitous occurrence of post-perovskite above the CMB has 
been supported by statistical analyses of seismic observations (L. Cobden 
et  al.,  2012,  2015) and by comparisons between seismic tomography and 
geodynamic models (Koelemeijer et al., 2018). Mineral physics models with 
post-perovskite are compatible with both global and local seismic data of S- 
and P-wave velocity perturbations in the lowermost mantle rather than post-
perovskite-free models. Recent high-quality seismological data indicate that 
non-observations of a discontinuity in the lowermost mantle are not common 
but exceptional (Jackson & Thomas, 2021).

The ubiquitous presence of post-perovskite above the CMB has profound ge-
odynamical consequences. Because of its proximity to the CMB, the global 
occurrence of the bridgmanite/post-perovskite phase transition with the large 
positive dP/dT slope (+6.5 ± 2.2 MPa/K) destabilizes the thermal boundary 
layer developed at the bottom of the mantle and enhances plume upwelling 
(Hirose et al., 2015; Li et al., 2014; Nakagawa & Tackley, 2004). Theoreti-
cal calculations and experiments demonstrated that post-perovskite is at least 
five times weaker than bridgmanite (Ammann et al., 2010; Hunt et al., 2009). 
The low-viscosity D” layer allows cold slab materials to spread extensively 
above the CMB, leading to an increase in heat transfer from the core (Buf-
fett, 2007; Cizkova et al., 2010). It also enhances the segregation of MORB 
crust materials from the rest of the subducted slab, contributing to the forma-
tion of dense piles above the CMB (Nakagawa & Tackley, 2011).

Ultralow-velocity zones are observed locally above the CMB, likely repre-
senting partially molten materials with relatively low melting temperatures 
such as FeO-rich ones (Boukaré et  al.,  2015; Helffrich et  al.,  2020). On 
the other hand, when the CMB temperature was higher in the past (Labro-
sse, 2015), the lowermost mantle could have been globally molten. The pres-
ent experiments demonstrate that post-perovskite is the liquidus phase (the 
first phase to appear upon crystallization) in a pyrolitic lowermost mantle 
when we employ the Au pressure scale (Figure  3). The behavior of trace 
elements during partial melting involving post-perovskite may be different 
from that with bridgmanite; water and Na2O have been shown to be parti-
tioned more into Al-bearing post-perovskite than into bridgmanite (Hirose 

et al., 2005; Tateno, Hirose, Sakata, et al., 2018, Townsend et al., 2016). Partitioning of trace elements between 
melt and post-perovskite is yet to be explored.

Figure 3. (a) Phase boundary between bridgmanite (Bdg) and post-perovskite 
(PPv). Open and solid symbols represent the stabilities of bridgmanite and 
post-perovskite, respectively. Half-filled symbols show the coexistence of 
both phases. Red symbols, this study; black symbols, from Ohta et al. (2008). 
Thin solid, broken, and dashed-dotted curves indicate solidus temperatures 
of pyrolite reported by Nomura et al. (2014), Kim et al. (2020), and Fiquet 
et al. (2010), respectively. (b) Changes in the phase boundary by using 
different equation of state of gold (Anderson et al., 1989; Fei et al., 2007; 
Jamieson et al., 1982; Shim et al., 2002; Tsuchiya, 2003) and MgO (Speziale 
et al., 2001) to calculate experimental pressures. Gray bold curve shows the 
normal geotherm (Brown & Shankland, 1981) considering the core-mantle 
boundary temperature is less than the solidus curve of pyrolite.
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5. Conclusions
We have examined the phase transition between bridgmanite and post-perovskite in a pyrolitic mantle material 
at high temperatures (3570–4480 K) around the CMB pressure. The results demonstrate that it occurs in pyrolite 
within the lowermost mantle pressure range even at >4000 K. They also indicate the two-phase coexisting region 
of ∼5 GPa and a dP/dT slope of +6.5 ± 2.2 MPa/K, when combined with earlier experimental results obtained at 
lower temperatures (Ohta et al., 2008).

The global presence of post-perovskite above the CMB is consistent with recent high-quality seismological ob-
servations of the D” seismic reflections; they are found not only in the circum-Pacific high-velocity regions but 
also in many places away from such (presumably) cold areas (Jackson & Thomas, 2021). The 5 GPa two-phase 
coexisting interval may be too thick for the bridgmanite/post-perovskite phase transition in pyrolite to be the 
cause of seismic reflections. Alternatively the seismic discontinuity observed underneath subduction zones could 
be attributed to the post-perovskite phase transition in depleted peridotite materials that should be abundant in 
such areas (Grocholski et al., 2012) or caused by scattering off chemical heterogeneities that derive from sub-
ductions of former oceanic plates (Cobden & Thomas, 2013). The D” reflections observed in areas distant from 
subduction zones can be formed by other mechanisms such as deformation of weak post-perovskite within a two-
phase region (Ammann et al., 2010; Pisconti et al., 2019). Indeed, the ubiquitous occurrence of post-perovskite 
above the CMB is supported by a statistical interpretation of seismic observations (L. Cobden et al., 2012, 2015) 
and by comparisons of seismic tomographies between observed and synthesized from geodynamic simulations 
(Koelemeijer et al., 2018). The global presence of rheologically weak post-perovskite at the bottom of the mantle 
has profound implications for the dynamics and thermal histories of both the mantle and the core.

Data Availability Statement
Datasets for this research are found in Table 1 available online (from https://doi.org/10.5281/zenodo.5513281).
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