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along people's GPS-tracked mobility
paths.

• Anxiety was negatively related with green
space and positively related with crowd-
edness.

• Null linear associations were observed
between environmental exposures and
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• Random forest showed that associations
varied nonlinearly with exposure levels.

• Random forest ranked environmental
exposures as more important to explain
anxiety.
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 Background: Few mobility-based studies have investigated the associations between multiple environmental expo-
sures, including social exposures, and mental health.
Objective: To assess how exposure to green space, blue space, noise, air pollution, and crowdedness along people's daily
mobility paths are associated with anxiety symptoms.
Methods: 358 participants were cross-sectionally tracked with Global Positioning System (GPS)-enabled mobile
phones. Anxiety symptoms were measured at baseline using the Generalized Anxiety Disorder-7 (GAD-7) question-
naire. Green space, blue space, noise, and air pollution were assessed based on concentric buffers of 50 m and 100 m
around each GPS point. Crowdedness was measured by the number of nearby Bluetooth-enabled devices detected
along the mobility paths. Multiple linear regressions with full covariate adjustment were fitted to examine anxiety-
environmental exposures associations. Random forest models were applied to explore possible nonlinear associations
and exposure interactions.
Results: Regression results showed null linear associations between GAD-7 scores and environmental exposures. Random
forest models indicated that GAD-7-environment associations varied nonlinearly with exposure levels. We found a nega-
tive association between green space and GAD-7 scores only for participants withmoderate green space exposure. We ob-
served a positive association between GAD-7 scores and noise levels above 60 dB and air pollution concentrations above
17.2 μg m−3. Crowdedness was positively associated with GAD-7 scores, but exposure-response functions flattened out
with pronounced crowdedness of >7.5. Blue space tended to be positively associated with GAD-7 scores. Random forest
models ranked environmental exposures as more important to explain GAD-7 scores than linear models.
Conclusions: Our findings indicate possible nonlinear associations between mobility-based environmental exposures and
anxiety symptoms. More studies are needed to obtain an in-depth understanding of underlying anxiety-environment
mechanisms during daily life.
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1. Introduction

Anxiety is among the most prevalent public health issues (Vos et al.,
2020). Globally, 301 million people were diagnosed with anxiety in
2019, representing a 55% increase compared with 1990 (Yang et al.,
2021). Reviews andmeta-analyses have provided evidence that certain fea-
tures of the environment are associated with anxiety symptoms. Harmful
exposures include air pollution (Braithwaite et al., 2019) and noise (Lan
et al., 2020), while green space (Wendelboe-Nelson et al., 2019) and blue
space (Smith et al., 2021) seem to be health-supportive. Social environmen-
tal factors were also associated with anxiety (Alegria et al., 2018) but are
less often included together with environmental exposures. For example,
having a low income, limited education, poor neighborhood conditions
(Lund et al., 2018), and crowdedness (Cheng, 2010) may contribute to
anxiety.

Most studies have assessed exposures exclusively around people's resi-
dences (Helbich et al., 2020; Klompmaker et al., 2019; Schmitt et al.,
2021). However, because people only spend, on average, less than two-
thirds of their daily life at home (Khajehzadeh and Vale, 2017),
residence-based approaches may oversimplify people's true exposure
by ignoring environments beyond the home (Helbich, 2018; Kwan,
2012, 2018a). Usually, people also experience exposures along their
travel path and at their activity places (Poom et al., 2021; Vallée,
2017). According to the neighborhood effect averaging problem
(Kwan, 2018b), residence-only assessments tend to overestimate or
underestimate people's exposures because they are more likely to then
visit areas with exposure levels different from their homes. Thus,
residence-only exposure assessments likely misclassify exposures that
possibly bias environment-health associations. To mitigate this prob-
lem, personal exposure assessments along people's daily moving trajec-
tories are advocated (Chaix, 2018; Kwan, 2012).

Global Positioning System (GPS)-enabled sensing technologies, either
through mobile phones or portable devices, provide unique opportunities
to objectivelymonitor people'smobility patterns and their activity locations
accurately in space-time (Birenboim et al., 2021), which enables more pre-
cise exposure assessments (Chaix, 2018). As yet,with a few exceptions (Kou
et al., 2020; Roberts and Helbich, 2021; Tost et al., 2019), mental health re-
search has ignored mobility-based exposure assessments and at least the
following two limitations remain.

First, most mobility-based studies investigated a single environmental
exposure on mental health (Jiang et al., 2020; Tost et al., 2019), only a
few considered the co-occurrence of multiple environmental factors (Kou
et al., 2020; Roberts and Helbich, 2021). Though assessed in a residential
setting, single exposure models likely overestimate exposure effects
(Klompmaker et al., 2019) because different environmental factors are spa-
tially correlated and potentially confound each other (Rugel and Brauer,
2020).

Second, the simultaneous consideration of social contextswithin the en-
vironment throughout the day is lacking (Alexandre et al., 2020). Crowded-
ness, for example, varies spatiotemporally throughout the course of a day
depending on people's activity places. Elsewhere it was shown that crowd-
edness can risk psychological distress (Evans and Ferguson, 2011) and anx-
iety (Cheng, 2010), especially in places (e.g., overcrowded dwellings,
public transport) where it is infeasible to regulate interpersonal distance
freely (Geraets et al., 2018).

To address these research gaps, our primary aim is to assess how expo-
sure to green space, blue space, noise, air pollution, and crowdedness along
people's daily mobility paths are associated with anxiety symptoms. Based
on a sample of GPS-tracked Dutch adults, we tested for the first time the hy-
potheses that: 1) higher levels of air and noise pollution experienced
throughout the day correlate positively with more anxiety symptoms;
2) higher levels of green and blue space are inversely correlated with anxi-
ety symptoms; 3) crowdedness is associated with more anxiety symptoms.
As a secondary objective, we examined the importance of these environ-
mental exposures to better understand their relative roles in terms of peo-
ple's anxiety symptoms.
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2. Materials and methods

2.1. Study design and survey

The Netherlands is a densely populated, highly-urbanized country, and
most cites are historically grown with only a few high-rise buildings
(Kuitenbrouwer and De Saeger, 2015). We conducted a cross-sectional
analysis as part of the NEEDS (‘Dynamic Urban Environmental Exposures
on Depression and Suicide’) project. Details on the study protocol are pub-
lished elsewhere (Helbich, 2019). Briefly, eligible for survey participation
were those registered in the Dutch National Personal Records Database,
aged between 18 and 65 years, living in a private household, and not sam-
pled by Statistics Netherlands in the past year. We sampled 45,000 people
from the eligible target population using a multi-stage sampling procedure
during September–November 2018 (Helbich, 2019). To maximize study
participation, two postal reminders were sent; and incentives were raffled.
Out of those invited, 11,505 respondents completed the survey on personal
characteristics and mental health, yielding a response rate of 25.6%.

2.2. Mobile phone-based data collection

Thosewho completed the survey and agreed to be re-contactedwere in-
vited up to two days after the survey completion via email to download our
“Jouw Leefomgeving” mobile phone app. Aligned with previous studies
(Kestens et al., 2018; Kondo et al., 2020), the app stopped recording after
7 days of data had been collected cumulatively. We raffled 400 vouchers
each worth €22 to increase study participation in the mobile phone-based
data collection (Helbich, 2019). A total of 821 participants (7.1% of survey
respondents) downloaded the app.

2.2.1. GPS data
We obtained respondents' GPS-based locational information every 20 s.

The recording frequency decreased to 1minwhen the phonewas stationary
(i.e., displacement of the phone<20m) for longer than 30min. If there was
no relevant movement over 1 h, the recording frequency decreased further
to 2min to save battery. 629 of the respondents gave permission for the app
to record their locations and provided at least one measurement.

2.2.2. Bluetooth data
Mobile phones can detect nearby Bluetooth signals within 5–10 m

(Eagle and Pentland, 2006). As Bluetooth technology is commonly used
in portable devices (e.g., mobile phones, earphones), it is reasonable that
more signals will be detected in more crowded places. To approximate
the crowdedness people experienced during their routine mobility (Eskes
et al., 2016; Nicolai and Kenn, 2006), the number of nearby Bluetooth-
enabled devices was recorded along the mobility paths. Bluetooth scanning
was done every 15 min due to its pronounced battery demand. 610 partic-
ipants allowed Bluetooth scanning.

2.3. Preprocessing of the GPS locational information

GPS data preprocessing included four steps (Roberts and Helbich,
2021). First, we excluded participants that had fewer GPS locations than
2.5 times themedian absolute deviation, becausewedeemed their numbers
of GPS observations as outliers in our sample (Leys et al., 2013). Second,
participants with any GPS points outside the Netherlands were removed
as their data did not represent a typical week. Third, GPS points with a
speed of >200 km/h were removed. This speed was deemed implausible
in the Dutch context (Bohte andMaat, 2009). Fourth, becauseGPS accuracy
can decrease from about 5–10 m to over 50 m due to high-rise buildings or
during travel, GPS points located farther than 50m from the travel network
were discarded (Beekhuizen et al., 2013). The travel network consisted of
roads, railways, pedestrian paths, and bike paths and was obtained from
the digital Dutch topographic map 1:10,000 (Kadaster, 2020).

After GPS data cleaning (Table S1 in the Supplementary materials), 358
participants remained in our sample. As we have no exposure data for
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Germany and Belgium, the GPS points located within 100 m of the border
were excluded (0.08% of all GPS measurements) to avoid edge effects. On
average, each participant contributed 6.89 days of data. In total, we in-
cluded 589,079 GPS points. 50.5% of GPS points were collected outside
participant's residential environment (i.e., 500 m buffer area of home ad-
dress) (Table S2). The sample was largely similar in terms of the demo-
graphics and socio-economic characteristics before and after the data
cleaning (Table S3).

2.4. Anxiety symptoms as an outcome measure

Symptoms of anxiety in the past two weeks were measured using the
Generalized Anxiety Disorder-7 (GAD-7) questionnaire (Spitzer et al.,
2006). The GAD-7 includes 7 items, each of which can be scored on a
four-point scale between 0 (“Not at all”) to 3 (“Nearly every day”). Partici-
pantswere asked, for example, how often they have been bothered by prob-
lems such as “Feeling nervous, anxious or on edge” and “Not being able to
stop or control worrying” over the past two weeks. To obtain an overall
GAD-7 score, the individual item scores were summed. A higher total
score indicates more severe anxiety symptoms with the overall score rang-
ing from 0 to 21. The Cronbach's alpha was 0.91, signifying excellent inter-
nal consistency.

2.5. Environmental exposures

2.5.1. Exposure assessment
Environmental exposures were assessed based on concentric buffers of

50 m and 100 m around each GPS point. Earlier studies (Mueller et al.,
2020; Roberts and Helbich, 2021) used similar buffer sizes to represent
the immediate environment that participants had direct contact with.

2.5.2. Green space
We used the Normalized Difference Vegetation Index (NDVI) as the

green space metric (Tucker, 1979). The NDVI was derived for the year
2018 from all available Landsat 8 scenes at a 30 m spatial resolution via
Google Earth Engine (Gorelick et al., 2017). We only included images col-
lected fromMay to September when vegetation is greenest. Scenes were at-
mospherically corrected; those with >40% cloud cover and pixels with a
cloud score of >25 were excluded. NDVI values range from−1 to 1; higher
positive values indicate more vegetation. To reduce distortion caused by
negative values, pixels with negative NDVI scores were masked before cal-
culating the mean NDVI value per buffer.

2.5.3. Blue space
Data for blue space, defined by fresh- and saltwater, were extracted

from the Dutch land-use database for 2018 (Hazeu et al., 2020). This
dataset represents 48 land use categories with a 5 m spatial resolution.
Blue space exposurewas calculated as the proportion of pixels that were de-
fined as blue space per buffer.

2.5.4. Air pollution
Estimated annual average particulate matter with an aerodynamic di-

ameter of 2.5 μm (PM2.5) in μg m−3 was derived from a nationwide land-
use regression (LUR) model. The initial land-use regression was calibrated
for 2009 based on land use, traffic infrastructure, traffic intensity, and pop-
ulation density at a spatial resolution of 5 m (Schmitz et al., 2019) which
was aggregated to 25 m. Elsewhere it was shown that annual mean air pol-
lution concentrations were rather stable over a decade (de Hoogh et al.,
2018).

2.5.5. Noise pollution
Noise data from the Standard Model Instrumentation for Noise Assess-

ments (STAMINA) capture average day-night-evening (Lden [dB]) noise
levels based on noise sources emitted from roads, rails, air traffic, industry,
andwind turbines for 2016 (National Institute for Health and Environment,
2019). The spatial resolution of the map depends on the distance between
3

the source and the observation point, ranging from 10 m (close to the
source) to 80 m (Schreurs et al., 2010). Estimates were categorized into 9
classes ranging from <45 dB to >80 dB with an interval of 5 dB. Noise ex-
posure per circular buffer was assessed by weighting each assigned value
based on the proportion of the class within the buffer and summing.

2.5.6. Crowdedness
The number of Bluetooth-enabled devices in the 5–10 m proximity of

each participant every 15 min served as a proxy variable for experienced
crowdedness. We averaged the number of detected devices over the data
collection period.

2.6. Covariates

We included survey-based covariates which were used previously in
mental health studies (Alegria et al., 2018; Lund et al., 2018). Person-
level covariates included age (in years), sex (male, female), origin (Dutch,
other Western countries, non-Western countries), educational background
(low [up to lower secondary education], medium [up to upper secondary
education], high [university education and further]), employment status
(employed, unemployed), marital status (married, unmarried), household
type (couple with children, couple without children, single parent, other
household types), and income quintiles which were treated as continuous
(higher score indicating higher income).

On the residential level, we adjusted for population density, socio-
economic deprivation, and perceived neighborhood quality. Population
density and socio-economic deprivation were derived by aggregating
microdata for the entire Dutch population per address on 1st January
2016 (Helbich, 2019). We geocoded participants' home addresses and
superimposed buffers of 50 m and 100 m before assessing population
density and deprivation. Population density was measured by the number
of residents within the buffers. As the distribution of population density
was skewed, we log-transformed this covariate. Deprivation was measured
through summing the z-scores of the unemployment rate, the reverse coded
standardized median household income, and the share of households with
a standardized income below the poverty line. A higher total score
indicated greater deprivation. Perceived neighborhood quality (e.g., litter
on the street) was assessed using the four-item “pleasantness” module and
the last item of the “maintenance” module from the Instruments for
Assessing Levels of Physical Activity and Fitness (ALPHA) questionnaire
(Spittaels et al., 2009). Participants rated their agreement with each
statement on a Likert scale from 1 (“Strongly disagree”) to 4 (“Strongly
agree”). Negative items were inversely recoded so that higher score repre-
sent better neighborhood quality. The individual item scores were summed
to obtain the overall scores (ranging from 4 to 20), with higher score
representing better neighborhood quality.

2.7. Statistical analyses

GPS and Bluetooth data were nested within a respondent, but the out-
come was measured only once, resulting in a micro-macro data structure
(Croon and van Veldhoven, 2007). To align the exposure data with the sur-
vey data, exposures were aggregated per person (Roberts and Helbich,
2021). Rather than averaging the data directly, which would reduce data
variability and bias subsequent modeling results (Croon and van
Veldhoven, 2007), we calculated the unbiased group mean by producing
a latent variable per exposure, where the nested exposure assessments
were treated as indicators of the exposure for each participant.

Following descriptive and bivariate analyses (i.e.,Wilcoxon tests, Spear-
man correlation coefficients), we developed multiple regression models to
investigate the associations between GAD-7 scores and environmental ex-
posures. Models were fitted with full covariate adjustment. Because the dif-
ference in the number of GPS points per participant could cause
heteroscedasticity, White's correction was applied to the regression results.
Generalized variance inflation factors (GVIF) assessed covariate



Table 2
Mobility-based environmental exposures of the sample.

50 m buffer size 100 m buffer size p-Value

Green space [mean (SD)] 0.356 (0.063) 0.369 (0.064) 0.010
Blue space (%) [mean (SD)] 2.626 (2.482) 3.174 (2.854) 0.006
Noise (dB) [mean (SD)] 61.071 (4.176) 60.352 (3.910) 0.018
PM2.5 (μg m−3) [mean (SD)] 17.011 (0.714) 16.912 (0.669) 0.056
Crowdedness [mean (SD)] 3.098 (2.608) 3.098 (2.608) N.A.
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multicollinearity. GVIFs > 10 were problematic. We also did stratified analy-
ses based on demographic and socioe-conomic characteristics of the sample.

Our initial regression analyses did not take variable interactions into ac-
count while assuming linear health-exposure associations. To overcome
these restrictions, we additionally calibrated covariate-adjusted random
forest (RF) models with GAD-7 scores as the outcome variable. A RF
model has the advantages of capturing nonlinear associations, modeling a
priori unknown variable interactions, avoiding overfitting, while not rely-
ing on strict modeling assumptions (Breiman, 2001). The parameters of
the RFs were based on 10 times repeated 10-fold cross-validation. We sys-
tematically tested the number of random variables included at each split
and evaluated the cross-validation-based root mean square error (RMSE)
andmean absolute error (MAE). RFmodels have been shown to perform fa-
vorably in their predictive performance across several datasets against
other machine learning algorithms (Fernández-Delgado et al., 2014;
Helbich et al., 2020). Our performance comparison (Fig. S1) among RF
and Gradient Boosting Machine (GBM) also indicated that RF performed
well in our case. We used partial dependence plots (Friedman, 2001) to as-
sess possible nonlinearities in the health-exposure associations. To deter-
mine variable importance, we used a permutation-based approach by
measuring the change in model performance. All analyses were conducted
in R3.6.2 (R Core Team, 2019).

3. Results

3.1. Descriptive statistics

Table 1 describes the study sample. Most participants showed minimal
tomild anxiety symptoms (GAD-7≤ 5). Themean GAD-7 score for the 358
respondents was 4.04 ± 4.36; the Wilcoxon test indicated that the GAD-7
scores were not significantly (p = 0.706) different from the whole survey
sample (N = 11,505) (Mean: 4.15 ± 4.41). The mean age of the respon-
dents was 44.33 ± 14.26 years, 46.3% were female, 52.6% were married,
69.9% were employed, 48.2% were highly educated, and 90.1% were of
Dutch origin with 62% were in the high or very high income (Table S3).
Themean neighborhood quality was 11.765. Population density was signif-
icantly higher with 100 m buffers, but deprivation was comparable across
buffer sizes (p = 0.444).
Table 1
Characteristics of the sample.

Variables Category Final sample
(N = 358)

GAD-7 score Mean (SD) 4.045 (4.361)
Age Mean (SD) 44.201 (14.156)
Sex Male [N (%)] 195 (54.5%)

Female [N (%)] 163 (45.5%)
Employment Employed [N (%)] 250 (69.8%)

Unemployed [N (%)] 108 (30.2%)
Education Low [N (%)] 43 (12.0%)

Mid [N (%)] 139 (38.8%)
High [N (%)] 176 (49.2%)

Marital statues Married [N (%)] 192 (53.6%)
Unmarried [N (%)] 166 (46.4%)

Household type Couple with child [N (%)] 169 (47.2%)
Couple without child [N (%)] 112 (31.3%)
Other household type [N (%)] 60 (16.8%)
Single parent [N (%)] 17 (4.7%)

Origin Dutch [N (%)] 323 (90.2%)
Western [N (%)] 25 (7.0%)
Non-western [N (%)] 10 (2.8%)

Income Mean (SD) 3.628 (1.254)
Neighborhood quality Mean (SD) 11.765 (1.541)
Logged population density (50 m) Mean (SD) 4.040 (0.685)
Logged population density (100 m) Mean (SD) 5.277 (0.691)
Deprivation (50 m) Mean (SD) −0.019 (1.786)
Deprivation (100 m) Mean (SD) 0.087 (1.889)

4

Summary statistics of mobility-based exposures are in Table 2. Mean
green space and blue space were slightly higher for 100 m buffers than for
the 50 m buffer, but mean noise and PM2.5 were slightly lower. Differences
for green space, blue space, and noise were statistically significant (p< 0.05).

3.2. Bivariate analysis

Fig. 1 shows the Spearman correlations between GAD-7 and the
mobility-based exposures. Exposures across the buffer sizes were highly
correlated (r = 0.96 to 0.99). GAD-7 was significantly and negatively cor-
related with green space (r = −0.11 to −0.13, p < 0.05) and positively
correlated with crowdedness (r = 0.13, p < 0.05); correlations with blue
space, noise, and PM2.5 were insignificant. Most exposure correlations
were weak (|r| < 0.4); only correlations between noise and PM2.5 were
moderately high (r = 0.45 to 0.49). Green space was inversely correlated
with noise, PM2.5, and crowdedness. Blue space was positively correlated
with noise; correlations with green space, air pollution, and crowdedness
were largely insignificant. Noise was positively correlated with PM2.5 and
crowdedness. The air pollution-crowdedness correlation was positive.

3.3. Associations between mobility-based environmental exposures and anxiety
symptoms

The largest GVIF was 2.22, signifying no covariate multicollinearity.
Wald tests indicated no significant differences in the magnitude of the re-
gression coefficients across the 50 m and 100 m buffers (all p > 0.05).
Fig. 2 shows the regression coefficients of environmental exposures. All
mobility-based exposures were insignificantly associated with anxiety
symptoms. The signs of the coefficients (Table S4) indicated that green
space tended to be negatively associated with anxiety symptoms, while
blue space, noise, air pollution and crowdedness tended to be positively as-
sociated. Stratified analyses did not alter these results (Table S5).

Fig. 3 shows the partial dependence plots of the RF for the 100 m buffer
models. Associations were largely comparable across the 50 m and 100 m
buffers (Fig. S2) and across the other machine learning algorithms (Fig. S3).
The RF-based partial dependent plots show some nonlinearities in the associ-
ations, insufficiently captured in the linearmodel. The negative anxiety-green
space association was only observed for participants with green space expo-
sure ranging from 0.25 to 0.37. In the 100 m model, a sharp drop in GAD-7
scores was observed when the level of green space increased from 0.32 to
0.37. The association between noise and anxiety varied with the exposure
level; the association was positive only for those with noise levels beyond
60 dB. Air pollution showed a similar pattern; a pronounced positive associa-
tion was observed for participants with higher exposure levels (>17.2 μg
m−3). Aligned with the linear regression, participants with higher blue
space exposure had higherGAD-7 scores. Exposure tomore crowded environ-
ments was associated with a higher GAD-7 score; but the positive association
flattened when the level of crowdedness was higher than 7.5.

3.4. Importance of environmental exposures

Fig. 4 shows the variable importance rankingbased onRMSE changeusing
permutation-based approach (Table S6). The RF and linearmodels ranked the
variables differently, thoughboth yielded rather similar ranks across the buffer
sizes. Environmental exposures tended to be of less relevance than individual-
level variables (e.g., age, origin, sex, income) in the linear model. In contrast,
most environmental exposures (e.g., green space, PM2.5, crowdedness, noise)



Fig. 1. Correlation matrix of the mobility-based exposures based on Spearman correlation coefficients. Note that “50” and “100” refers to the buffer size used. Cells marked
with “X” refer to insignificant correlations (p > 0.05).
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appearedmore relevant in the RFmodels, whereas sex, neighborhood quality,
employment, and origin were less important in the RF.

4. Discussion

4.1. Potential mechanisms and comparisons with previous studies

4.1.1. Green space
Our linear models did not support the expected benefits of green space

exposure on anxiety symptoms. We objectively measured the availability of
green space during people's daily mobility using the NDVI, while other
Fig. 2. Regression coefficients for linear associations between GAD-7 scores and the mob
educational background, employment status, marital status, household type, income, perce
residential area.

5

aspects, such as subjectively perceived greenness (Kruize et al., 2020),
types (Akpinar et al., 2016; Jarvis et al., 2020), quality (L.Q. Zhang et al.
2021), and use (Coldwell and Evans, 2018) of green space have been
shown to promote health. Previous studies that have focused on multiple
mental health disorders have more often found a relationship between
green space and depression, rather than anxiety (White et al., 2021). A com-
parative mobility-based Dutch study also reported a significant association
between green space and depression symptoms (Roberts and Helbich,
2021). According to our RF models, the negative association between
green space and anxiety was only found for moderate NDVI levels (0.32
to 0.37), which could also contribute to the insignificant associations
ility-based environmental exposures. The models were adjusted for age, sex, origin,
ived neighborhood quality, population density and socio-economic deprivation of the



Fig. 3. Partial dependence plots of the GAD-7-environmental exposure associations based on 100 m buffers using linear regression model (LM) and random forest (RF).
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observed in the linear models. It is possible that these low levels of green
space exposure are insufficient to support mental health.

Green space benefits mental health by relieving chronic stress and pre-
venting systemic physiological dysregulation (Beemer et al., 2021). Most
previous evidence on the anxiety-green space association is from
residential-based studies and results remain inconsistent. Our results differ
from some studies showing that increasing levels of exposure to green space
was associated with reduced anxiety risk (Dzhambov et al., 2019). How-
ever, as in our study, several also reported null association (Gascon et al.,
2018; Pelgrims et al., 2021), including some studies in the Netherlands
(Generaal et al., 2019; Helbich et al., 2021).

4.1.2. Blue space
Contrary to our hypothesis, linear models showed null associations be-

tween blue space and anxiety. This could be a consequence of not distin-
guishing the effects of different types of blue space (McDougall et al.,
2020). A study based on 18 countries reported a positive association be-
tween visiting inland blue space and anxiety but a null association for visit-
ing coastal blue space (White et al., 2021). Another US-based ecological
study found protective effects for distance to a Great Lake, but the distance
to nearest small inland lakeswas positively associatedwith anxiety disorder
hospitalizations (Pearson et al., 2019). RF models indicated a nuanced and
overall positive relationship. One possible explanation is that people with
severe anxiety symptoms may visit blue space more often for self-
regulation purposes.

Theoretically, blue space is believed to reducemental illness through sim-
ilar pathways as green space (Georgiou et al., 2021). However, evidence of
mental health benefits of exposure to blue space is limited; anxiety-specific
findings were particularly inconclusive, with negative (de Vries et al.,
2016), positive (Generaal et al., 2019; White et al., 2021), and null associa-
tions reported previously (Gascon et al., 2018; Triguero-Mas et al., 2015).
6

4.1.3. Air pollution
We found linear associations in the expected direction between anxiety

symptoms and PM2.5, but the association did not reach significance. One
possible explanation is that PM2.5 effects may be more likely to be signifi-
cant for more severe anxiety. Another Dutch study measured more severe
anxiety using anxiolytics prescriptions and reported a significant positive
association with PM2.5 in both single and multiple exposure models, even
after full covariate adjustments (Klompmaker et al., 2019). Supported
through our RF results, another reason for the insignificant associations is
that anxiety may be only positively associated with a higher level of PM2.5.

As recent reviews suggested (Braithwaite et al., 2019; Lu, 2020), expo-
sure to air pollution affects the risk of mental disorders by inducing oxida-
tive stress and systemic inflammation (Arias-Perez et al., 2020), changing
brain structure (Bernardi et al., 2021), and increasing stress hormone pro-
duction (Li et al., 2017). However, anxiety-specific studies reported ambig-
uous PM2.5 effects, with some showing null associations (Pelgrims et al.,
2021; Shi et al., 2020; Vert et al., 2017).

4.1.4. Noise
Against our hypothesis, we found no significant linear anxiety-noise re-

lationship. We speculate, supported by the RF models, that the association
between noise and anxiety may be positive only for those exposed to pro-
nounced noise levels of >60 dB. A similar nonlinear relationship between
environmental noise and momentary annoyance was reported in China,
with the threshold ranging from 58 dB to 78 dB (Zhang et al., 2020). Fur-
ther, the association may reach significance with more severe anxiety,
which would be congruent with meta-analytical evidence (Lan et al.,
2020). Our noise variable combined various sources emitting noise, and
each could have different effects. For example, road traffic noise was signif-
icantly associated with anxiety but was insignificantly related to railway
noise in a previous Dutch study (Klompmaker et al., 2019).



Fig. 4.Heat map showing the variable importance for linear regressionmodel (LM)
and random forest (RF) across buffer sizes (50 m and 100 m). The smaller the value
the more important is a variable.
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The underlying mechanisms for health-threatening noise exposure in-
clude an increase in physiological arousal and stress hormone secretion
(Hahad et al., 2019) through stimulating the endocrine system and auto-
nomic nervous system (Stansfeld and Clark, 2015). Reviews concluded that
the available evidence of how noise affects mental health outcomes is incon-
clusive (Lan et al., 2020). As for anxiety, many studies also reported insignif-
icant results (Okokon et al., 2018; Pelgrims et al., 2021; Zock et al., 2018).

4.1.5. Crowdedness
The positive association between crowdedness and anxiety also did not

reach significance in our linear models. Participants with severe anxiety
may withdraw from social situations and avoid crowded places during
daily life. To the best of our knowledge, our study is the first to explore
mobility-based crowdedness, making contextualization of our results diffi-
cult. The RF models revealed that the positive association between crowd-
edness and anxiety symptoms flattened out with pronounced crowdedness
of >7.5. It is possible that those who could not tolerate high-density
7

situations seek to leave while others stay and gradually adapt to the
crowded occasion.

Crowded environments usually evoke negative emotions due to the in-
vasion of personal space (Vine, 1982),which typically causes disliked social
contact or interference and behavioral restrictions (Evans and Wener,
2007). Elsewhere crowded situations trigger aversive emotional responses
of pedestrians (Engelniederhammer et al., 2019).

4.1.6. Potential interactions
Our RF models ranked environmental exposures as more crucial to ex-

plain GAD-7 scores. We speculate that RF captured interactions among en-
vironmental exposures, as stressed previously (Rugel and Brauer, 2020).
For example, air pollution and noise may interact with each other because
both are related to traffic and often co-occur spatiotemporally; green space
can potentially reduce noise (Van Renterghem et al., 2015) and air pollut-
ants (Nowak et al., 2014).

4.2. Strengths and limitations

We are not aware of any other study that assessed exposures along peo-
ple's daily mobility paths on anxiety symptoms, taking the spatial co-
occurrence of multiple exposures into account. Expanding prior studies
(Roberts and Helbich, 2021), we went beyond the state-of-the-art by mea-
suring the social environment dynamically in space-time using mobile
phone-based Bluetooth sensing. While most studies examined linear dose-
response exposure functions, we added to the literature by relaxing this
overly simplistic assumption by means of machine learning, which is capa-
ble of modeling complex nonlinearities and variable interactions. Com-
pared to ecological momentary assessments (Kirchner and Shiffman,
2016), which possibly affect participants' behavior by requiring them to
fill in surveys several times per day, our study design likely reduced the
Hawthorne effect (McCambridge et al., 2014) by letting the app run in
the mobile phone's background. Prior tracking studies, many of which
were only pilots within a single city, were constrained through small sam-
ples (Li et al., 2018). Ours was comparatively large and subjects were dis-
tributed across the Netherlands, which enabled different environmental
settings.

Notwithstanding these strengths, some limitations must be acknowl-
edged. Tracking data were only collected from Android devices, and al-
though this represents roughly three-quarters of the market share (Kantar
Worldpanel Comtech, 2019), specific population segments may have been
excluded. Our anxiety assessment relied on a multiple-choice rating scale
rather than clinical interviews, which is susceptible to self-reporting re-
sponse bias. Bluetooth sensing is challenging; we cannot exclude that the
mobile phones also captured signals from other devices (e.g., printers),
which likely distorted the proxy measure of crowdedness. The PM2.5 data
captured the air pollution levels for 2009, which may not be entirely repre-
sent the situation in 2018 when the GPS data were collected. Travel pat-
terns were not considered. Whether people's perception of the
surrounding environment differs across travel modes warrants further re-
search. Perceived exposures were disregarded, which were sometimes
found to be more relevant for mental health outcomes than objective mea-
sures (Marquart et al., 2021). Environmental exposures may be associated
with mental health through different indirect pathways (R. Zhang et al.
2021), which remained unaddressed. Future studies are encouraged to ex-
amine possible mediation effects. The Netherlands is a rather urbanized
country, which may limit the transferability of our results to suburban or
rural areas. As with virtually all mobile phone-based exposure studies
(Chaix et al., 2013), our cross-sectional data prevented us from drawing
conclusions about cause–effect relations; thus, reverse causation cannot
be excluded.

5. Conclusion

In our mobile phone-based tracking study, we found null linear associa-
tions between anxiety symptoms and multiple environmental exposures
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(i.e., green space, blue space, noise, air pollution, and crowdedness) experi-
enced along people's daily mobility paths.More importantly, the RFmodels
not only indicated that the associations varied nonlinearly with the expo-
sure levels, but also ranked the environmental exposures as more important
for anxiety symptoms than linear models. We advise future studies also to
assess non-linear associations which may only be inadequately captured
through linear exposure models. Further GPS-based studies with longitudi-
nal study designs are needed to support cause-effect statements between
anxiety and environmental exposures over people's daily life rather than
assessing exposures exclusively at the home address.
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