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We investigate sentences which are simultaneously partially conservative over several 
theories. First, we generalize Bennet’s results on this topic to the case of more than 
two theories. In particular, for any finite family {Ti}i≤k of consistent r.e. extensions 
of Peano Arithmetic, we give a necessary and sufficient condition for the existence 
of a Πn sentence which is unprovable in Ti and Σn-conservative over Ti for all 
i ≤ k. Secondly, we prove that for any finite family of such theories, there exists a 
Σn sentence which is simultaneously unprovable and Πn-conservative over each of 
these theories. This constitutes a positive solution to a particular case of Guaspari’s 
problem. Finally, we demonstrate several non-implications among related properties 
of families of theories.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Let T be a recursively enumerable (r.e.) consistent extension of Peano Arithmetic PA. Let Γ denote either 
Σn or Πn for some n ≥ 1. Also Th(T ) denotes the set of all sentences provable in T and ThΓ(T ) denotes the 
set of all Γ sentences provable in T . We say a sentence ϕ is Γ-conservative over T if for any Γ sentence ψ, 
T � ψ whenever T +ϕ � ψ. Define Cons(Γ, T ) to be the set of all Γd sentences which are Γ-conservative over 
T where Σd

n = Πn and Πd
n = Σn. Guaspari [4] proved that Cons(Γ, T ) \ Th(T ) is non-empty, that is, there 

exist Γd sentences which are Γ-conservative over T and unprovable in T . Guaspari also asked the following 
question ([4, Question 5(1)]).
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. . . if 〈Ti | i ∈ ω〉 is an r.e. sequence of r.e. theories is there a Γ sentence which is independent and Γ̆-conservative2 over 
each Ti? The question is open even for sequences of length 2.

Guaspari actually proved that for any theory T , there are Γd sentences which are T -unprovable and 
simultaneously Γ-conservative over all subtheories of T . Thus for the family of all subtheories of T , Guaspari’s 
question has an affirmative answer.

On the other hand, Misercque [11,12] supplied a negative answer to the general version of Guaspari’s 
problem. That is, Misercque found an infinite r.e. family {Ti}i∈ω of theories such that there is no Γd sentence 
which is simultaneously unprovable and Γ-conservative over Ti for all i ∈ ω. The infinity of the family was 
essential to Misercque’s argument for general Γ. Misercque [11,12] also presented an example of consistent 
theories T0 and T1 such that T1 proves every Πn sentence which is Σn-conservative over T0. Thus the version 
of Guaspari’s problem with two theories and Γ = Σn is also settled negatively.

Bennet [1,2] also investigated Guaspari’s problem for two theories. Bennet firstly proved that the 
statement 

⋂
i≤1 Cons(Γ, Ti) \ Th(Ti) �= ∅ saying that “there exists a Γd sentence which is simultane-

ously unprovable and Γ-conservative over T0 and T1” is equivalent to “Cons(Γ, T0) \ Th(T1) �= ∅ and 
Cons(Γ, T1) \ Th(T0) �= ∅”. Thus the investigation of Guaspari’s problem for two theories is reduced to 
that of simultaneous conditions of the form Cons(Γ, T ) \ Th(U) �= ∅. On top of that, Bennet showed that 
the condition “ThΓd(T ) � Th(U) or U + ThΓ(T ) is consistent” is sufficient for Cons(Γ, T ) \ Th(U) �= ∅. 
Furthermore, he proved that in the case of Γ = Σn, “ThΠn

(T ) � Th(U) or U + ThΣn
(T ) is consistent” is, 

in fact, equivalent to Cons(Σn, T ) \ Th(U) �= ∅.
In the case of Γ = Πn, Bennet established that Cons(Πn, T ) \ Th(U) �= ∅ generally fails to imply 

“ThΣn
(T ) � Th(U) or U + ThΠn

(T ) is consistent”, parting with Π/Σ symmetry. Guaspari’s problem for 
finitely many theories and Γ = Πn has up till now remained open.

Against this background, we proceed with an investigation of Guaspari’s problem in the case of three 
or more theories, based on Bennet’s approach. In particular, in the present paper, we completely solve 
Guaspari’s problem for finitely many theories: for any finite family {Ti}i≤k of consistent theories,

1. we give a necessary and sufficient condition for the non-emptiness of the set 
⋂

i≤k Cons(Σn, Ti) \Th(Ti); 
and

2. we prove that 
⋂

i≤k Cons(Πn, Ti) \ Th(Ti) is never empty.

The latter contribution contrasts with the earlier negative solutions to Guaspari’s problem in the Γ = Σn

and the infinitary cases. We also briefly investigate Guaspari’s problem for infinite r.e. families of theories.
In Section 2, we survey already known results concerning Guaspari’s problem. In Section 3, we introduce 

some notation and facts. In Section 4, we generalize Bennet’s results referred to above to the case of more 
than two theories. Among other things, we prove that for any r.e. family {Ti}i∈ω of theories, if there exists 
an r.e. set X of natural numbers such that

⋂
i/∈X

ThΓd(Ti) � Th
(
U +

⋃
i∈X

ThΓn
(Ti)

)
,

then 
⋂

i∈ω Cons(Γ, Ti) \ Th(U) is non-empty. Moreover, we prove that the converse implication also holds 
for finite families of theories in the case of Γ = Σn. In Section 5, we give an affirmative answer to Guaspari’s 
problem for finite families of theories and Γ = Πn. In Section 6, we show the failure of several implications 
between properties of families of theories related to Guaspari’s problem.

2 Guaspari’s Γ̆ is our Γd.
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2. Background

Throughout this paper, all theories considered are r.e. consistent extensions of Peano Arithmetic PA in 
the same language, hence we call such a theory simply a theory. Let ω be the set of all natural numbers. 
Throughout this paper, we assume that n always denotes a non-zero natural number. The classes Σn and 
Πn of formulas are defined as usual. We also assume that Γ denotes either Σn or Πn. Let Σd

n = Πn and 
Πd

n = Σn. We define the following sets.

Definition 2.1. Let T be a theory and M be a model.

• Th(T ) := { sentences ϕ : T � ϕ }.
• ThΓ(T ) := { sentences ϕ ∈ Γ : T � ϕ }.
• ThΓ(M) := { sentences ϕ ∈ Γ : M |= ϕ }.

The notion of partially conservative sentences has appeared in the context of the incompleteness theorems. 
For example, Kreisel [8, Remark 14(ii)] showed that the negation of the conventional consistency statement 
ConT of T is Π1-conservative over T , that is, for any Π1 sentence π, one has T � π whenever T +¬ConT �
π. This is an extension of Gödel’s second incompleteness theorem. For another example, Smoryński [14, 
Application 5] proved that T is Σ1-sound if and only if every T -undecidable Π1 sentence is Σ1-conservative 
over T . Also, Smoryński proved that T is Σ1-sound if and only if ConT is Σ1-conservative over T .

Guaspari investigated the general concept of Γ-conservativity in [4] (see also Hájek [6] and Lindström 
[9]).

Definition 2.2. Let T be any theory.

• A sentence ϕ is said to be Γ-conservative over T if for all Γ sentences ψ, if T + ϕ � ψ, then T � ψ. 
Equivalently, ThΓ(T + ϕ) ⊆ ThΓ(T ).

• Let Cons(Γ, T ) := {ϕ ∈ Γd : ϕ is Γ-conservative over T}.

Deviating from the expositions in Bennet [1,2] and Lindström [9,10], we restrict the elements of Cons(Γ, T )
to Γd sentences because the latter are the focus of interest for the present paper.

Every T -provable Γd sentence ϕ trivially belongs to Cons(Γ, T ). Guaspari proved that every theory has 
non-trivially Γ-conservative Γd sentences, that is,

Fact 2.3 (Guaspari [4, Theorem 2.4]). For any theory T , Cons(Γ, T ) \ Th(T ) �= ∅. �
If T � ¬ϕ, then T + ϕ is inconsistent, and hence ϕ is not Γ-conservative over T because T is consistent. 

This shows that if ϕ ∈ Cons(Γ, T ) \ Th(T ), then ϕ is undecidable in T . Therefore Fact 2.3 can be thought 
as a strengthening of Gödel–Rosser’s first incompleteness theorem.

In this paper, many properties of uniformly r.e. collections of theories are meaningful both for finite and 
for infinite collections. We use the term r.e. family of theories {Ti}i∈J to stand for a sequence of theories with 
Ti being uniformly r.e. in i. The index set J is a non-empty initial segment of ω, that is, J ∈ {Ik}k∈ω ∪ {ω}, 
where Ik = {0, . . . , k}.

Mostowski proved the following generalization of Gödel–Rosser’s first incompleteness theorem.

Fact 2.4 (Mostowski [13, Theorem 1]). Let {Ti}i∈J be an r.e. family of theories. Then there is a Π1 sentence 
ϕ such that ϕ, ¬ϕ /∈

⋃
Th(Ti). �
i∈J
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It is then natural to expect the existence of a sentence which is simultaneously Γ-conservative over several 
theories. Guaspari proposed the following problem:

Problem 2.5 (Guaspari [4, Question 5(1)]). Given an r.e. family {Ti}i∈J of theories, do we have that ⋂
i∈J Cons(Γ, Ti) \ Th(Ti) �= ∅?

Guaspari pointed out that this problem is open even for pairs of theories. In the remainder of this 
subsection, we survey known results concerning Guaspari’s problem.

Guaspari actually proved a stronger result than Fact 2.3, to wit that there exists a Γd sentence which 
is simultaneously Γ-conservative over all sufficiently strong subtheories of T . Such sentences are called 
hereditarily Γ-conservative.

Definition 2.6. Let T be any theory.

• A sentence ϕ is said to be hereditarily Γ-conservative over T if for all theories S such that T � S � PA, 
ϕ is Γ-conservative over S.

• Let HCons(Γ, T ) := {ϕ ∈ Γd : ϕ is hereditarily Γ-conservative over T}.

We also restrict the elements of HCons(Γ, T ) to Γd sentences as in the case of Cons(Γ, T ).

Fact 2.7 (Guaspari [4, Theorem 2.6]). For any theory T , HCons(Γ, T ) \ Th(T ) �= ∅. �
Fact 2.7 is strengthened by Lindström as follows. We say a set X of sentences is pointwise consistent with 

a theory T if T + ϕ is consistent for each ϕ ∈ X.

Fact 2.8 (Lindström [9, Corollary 1]). Let T be a theory and X an r.e. set of sentences which is pointwise 
consistent with T . Then HCons(Γ, T ) \X �= ∅. �

Following Guaspari’s study, Misercque and Bennet also investigated Guaspari’s Problem 2.5. Misercque 
proved that Guaspari’s problem does not generally admit a positive solution.

Fact 2.9 (Misercque [11, Theorem 2.1] or [12, Proposition 5.1.3]). There is an infinite r.e. family {Ti}i∈ω

of theories such that for all Γ, 
⋂

i∈ω Cons(Γ, Ti) \ Th(Ti) = ∅. �
Since Misercque’s family of theories is not finite, it is natural to see Guaspari’s problem restricted to finite 

families of theories as a separate challenge. Misercque and Bennet analyzed the existence of Γd sentences 
which are simultaneously Γ-conservative over two theories. Bennet showed that Guaspari’s problem for two 
theories can be reduced to a more easily studied problem.

Fact 2.10 (Bennet [1, Corollary 8] or [2, Corollary 3.1.9]). For any theories T0 and T1, the following are 
equivalent:

1.
⋂

i≤1 Cons(Γ, Ti) \ Th(Ti) �= ∅;
2. Cons(Γ, T0) \ Th(T1) �= ∅ and Cons(Γ, T1) \ Th(T0) �= ∅. �

Therefore, the investigation of Guaspari’s problem for two theories is equivalent to that of conditions of 
the form Cons(Γ, T ) \ Th(U) �= ∅. Bennet found a sufficient condition for Cons(Γ, T ) \ Th(U) �= ∅:

Fact 2.11 (Bennet [1, p. 67] or [2, p. 38]; see also Misercque [12, Proposition 5.2.3]). Let T and U be 
theories. Suppose ThΓd(T ) � Th(U) or U + ThΓ(T ) is consistent. Then Cons(Γ, T ) \ Th(U) �= ∅. �
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In the case of Γ = Σn, this sufficient condition is also necessary.

Fact 2.12 (Bennet [1, Theorem 6] or [2, Theorem 3.1.7]). For any theories T and U , the following are 
equivalent:

1. Cons(Σn, T ) \ Th(U) �= ∅;
2. ThΠn

(T ) � Th(U) or U + ThΣn
(T ) is consistent. �

Let ϕ be a sentence such that ϕ ∈ Cons(Πn, PA) \ Th(PA) (see Fact 2.3). Let T0 := PA + ϕ and 
T1 := PA + ¬ϕ. Then, it is easy to see ThΠn

(T0) ⊆ Th(T1) and T1 + ThΣn
(T0) is inconsistent. Hence, 

Cons(Σn, T0) \ Th(T1) = ∅ by Fact 2.12. Therefore, by Fact 2.10, 
⋂

i≤1 Cons(Σn, Ti) \ Th(Ti) = ∅. Thus 
Guaspari’s problem is answered negatively for the pair T0, T1 and Γ = Σn (see Misercque [11, Theorem 2.2]
or [12, Proposition 5.1.2] or Lindström [10, Exercise 5.9(a)]).

Bennet proved that the condition Cons(Πn, T ) \ Th(U) �= ∅ cannot be characterized as in Fact 2.12.

Fact 2.13 (Bennet [1, pp. 67–68] or [2, Corollary 3.2.6]). There are T and U satisfying the following con-
ditions:

1. Cons(Πn, T ) \ Th(U) �= ∅;
2. ThΣn

(T ) ⊆ Th(U);
3. U + ThΠn

(T ) is inconsistent. �
For two theories, the major remaining case of Guaspari’s problem is the case of Γ = Πn:

Problem 2.14 (Misercque [12, Problème 7]). Are there n ≥ 1 and theories T0 and T1 such that
⋂
i≤1

Cons(Πn, Ti) \ Th(Ti) = ∅ ?

Bennet’s analysis relates this problem to

Problem 2.15 (Bennet [1, Q3] or [2, p. 38]). Are there theories T and U such that

Cons(Πn, T ) \ Th(U) = ∅ ?

In Section 5, we shall obtain a negative answer to Bennet’s Problem 2.15 which will enable us to settle 
Problem 2.14 for all finite families of theories.

Bennet also investigated a variant of Guaspari’s problem for hereditarily Γ-conservative sentences. He 
proved the following equivalence concerning the condition 

⋂
i≤1 HCons(Γ, Ti) \Th(Ti) �= ∅, which corresponds 

to Fact 2.10.

Fact 2.16 (Bennet [1, Theorem 4 and Corollary 5] or [2, Theorem 3.1.5 and Corollary 3.1.6]). For any 
theories T0 and T1, the following are equivalent:

1.
⋂

i≤1 HCons(Γ, Ti) \ Th(Ti) �= ∅;
2. HCons(Γ, T0) \ Th(T1) �= ∅ and HCons(Γ, T1) \ Th(T0) �= ∅. �

Bennet characterized the condition HCons(Γ, T ) \ Th(U) �= ∅ by employing the method Misercque used 
in his proof of Fact 2.9 and the following lemma by Guaspari. Let m denote the numeral for a natural 
number m.
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Fact 2.17 (Guaspari [4, Lemma 2.10]). For any r.e. set X ⊆ ω, there exists a Γ formula δ(x) satisfying the 
following conditions for any m ∈ ω:

1. If m ∈ X, then T � δ(m);
2. If m /∈ X, then ¬δ(m) ∈ HCons(Γ, T ). �

In this paper, we generalize Bennet’s results without formally relying on said results except for the 
following fact. Fact 2.18 will be used to establish a generalization of itself. We therefore include Bennet’s 
proof. Fix a natural gödelnumbering, and for any formula ϕ, let �ϕ� denote the numeral for the gödelnumber 
of ϕ.

Fact 2.18 (Bennet [1, Theorem 4] or [2, Theorem 3.1.5]). For any theories T and U , the following are 
equivalent:

1. HCons(Γ, T ) \ Th(U) �= ∅;
2. U + ThΓ(T ) is consistent.

Proof. 1 ⇒ 2: Suppose U + ThΓ(T ) is inconsistent. Then, there exists a Γ sentence ψ such that T � ψ and 
U � ¬ψ. Let ϕ ∈ HCons(Γ, T ). Since PA + (ψ ∨ ¬ϕ) is a subtheory of T and PA + (ψ ∨ ¬ϕ) + ϕ � ψ, we 
obtain PA + (ψ ∨ ¬ϕ) � ψ. Then, PA + ¬ψ � ϕ and hence, U � ϕ.

2 ⇒ 1: Suppose U + ThΓ(T ) is consistent. Fact 2.17, when applied to X = {�ϕ� : ϕ ∈ Th(U)}, yields a 
Γ formula δ(x) such that for any sentence ϕ,

(a) If U � ϕ, then T � δ(�ϕ�);
(b) If U � ϕ, then ¬δ(�ϕ�) ∈ HCons(Γ, T ).

Let ψ be a Γd sentence such that PA � ψ ↔ ¬δ(�ψ�). We show U � ψ and ψ ∈ HCons(Γ, T ). Towards 
contradiction, assume U � ψ. By (a), we have T � δ(�ψ�), whereas U � ¬δ(�ψ�) by the definition of ψ. 
Since δ(�ψ�) is a Γ sentence, U +ThΓ(T ) is inconsistent. This contradicts our supposition. Therefore U � ψ

and hence, ψ ∈ HCons(Γ, T ) by (b). �
Let ϕ be a Γ sentence such that PA � ϕ and PA � ¬ϕ. Let T0 := PA + ϕ and T1 := PA + ¬ϕ. Then, 

T1+ThΓ(T0) is inconsistent. Hence, HCons(Γ, T0) \Th(T1) = ∅ by Fact 2.18. Therefore, 
⋂

i≤1 HCons(Γ, Ti) \
Th(Ti) = ∅ by Fact 2.16. Thus we have a negative answer to the hereditary variant of Guaspari’s problem 
for a pair of theories.

As a corollary to Facts 2.16 and 2.18, we have:

Corollary 2.19 (Bennet [1, Corollary 5] or [2, Corollary 3.1.6]). For any theories T0 and T1, the following 
are equivalent:

1.
⋂

i≤1 HCons(Γ, Ti) \ Th(Ti) �= ∅;
2. T1 + ThΓ(T0) and T0 + ThΓ(T1) are consistent. �

3. Preliminaries

In this section, we review some basic definitions and facts.
Apart from the formula classes Σn and Πn with n > 0, we also recall the class Δ0 = Σ0 = Π0 with its 

usual definition (Hájek and Pudlák [7, 0.30]). We say that a formula ϕ is Δ1 if it is Σ1 and is provably 
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equivalent to some Π1 formula in PA. Seeing as PA proves collection for each formula in its language, we are 
going to freely use the fact that, up to PA-provable equivalence, all the formula classes mentioned above are 
closed under bounded quantification.

We can naturally describe a formula Prf(X, x, y) saying that “a formula with the gödelnumber x has 
a proof with the gödelnumber y from the set X of assumptions”, where X is an auxiliary second-order 
variable. For each formula σ(v), let Prfσ(x, y) be the formula obtained by replacing the subformula v ∈ X

from Prf(X, x, y) with σ(v). Then, a standard proof predicate for a theory T is a formula of the form 
Prfσ(x, y), where σ(v) is a Δ1 formula defining a set of axioms for T in the standard model of arithmetic. 
Let PrfT (x, y) denote some standard proof predicate for T . The formula PrT (x) :≡ ∃yPrfT (x, y) is called a 
standard provability predicate for T . The formulas PrfT (x, y) and PrT (x) are Δ1 and Σ1, respectively. Then, 
it follows from the Σ1-soundness and Σ1-completeness of PA that for any formula ϕ, T � ϕ if and only if 
PA � PrT (�ϕ�). Our setup is essentially identical to the one in Lindström [10, pp. 15–16].

We introduce the witness comparison notation (cf. Guaspari and Solovay [5]).

Definition 3.1. For any formulas ϕ ≡ ∃x α(x) and ψ ≡ ∃y β(y),

• ϕ � ψ ≡ ∃x (α(x) ∧ ∀y < x ¬β(y));
• ϕ ≺ ψ ≡ ∃x (α(x) ∧ ∀y ≤ x ¬β(y)).

Fact 3.2 (cf. Lindström [10, Lemma 1.3]). For any formulas ϕ ≡ ∃x α(x) and ψ ≡ ∃y β(y),

1. PA � ϕ � ψ → ϕ;
2. PA � ¬ (ϕ � ψ ∧ ψ ≺ ϕ);
3. PA � (ϕ ∨ ψ) → (ϕ � ψ ∨ ψ ≺ ϕ);
4. PA � ϕ ∧ ¬ψ → ϕ ≺ ψ. �

Definition 3.3. Let Γ(x) be a Δ1 formula naturally expressing that “x is the gödelnumber of a Γ formula”, 
and let TrueΓ(x) be a Γ formula saying that “x is the gödelnumber of a true Γ sentence” (see Hájek and 
Pudlák [7, I.1(d)]). We define the relativized proof predicate

PrfΓT (x, y) ≡ ∃u ≤ y
(
Γ(u) ∧ TrueΓ(u) ∧ PrfT (u →̇ x, y)

)
(cf. Lindström [10, p. 63]), where the virtual term v →̇w represents the function sending the gödelnumbers 
of two formulas to that of the implication between them by its natural Δ1 definition. Under any reasonable 
gödelnumbering, PrfT (u →̇ x, y) already implies u ≤ y. Note that PrfΓT (x, y) is (PA-provably equivalent to) 
a Γ formula.

The relativized provability predicate is

PrΓT (x) ≡ ∃yPrfΓT (x, y)

(see Smoryński [15, Definition 7.3.1], Hájek and Pudlák [7, III.4.23], or Lindström [10, p. 63]). Observe that 
both PrΣn

T (x) and, when n > 1, PrΠn−1
T (x) are Σn. It can be shown in PA that PrΓT (x) is equivalent to 

PrT+TrueΓ(x) with the right-to-left direction requiring an appropriate instance of collection.
In the interest of uniformity of exposition, we also allow the use of the Δ1 formula PrfΔ0

T (x, y) and the 
Σ1 formula PrΔ0

T (x) defined in full analogy.

Fact 3.4. Let ϕ be an arbitrary sentence and γ any Γ sentence.

1. T � PrfΓT (�ϕ�, p) → ϕ for each p ∈ ω;
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2. If T + γ � ϕ, then PA + γ � PrfΓT (�ϕ�, p) for some p ∈ ω;
3. PA + γ � PrΓT (�γ�);
4. The formulas PrΣn

T (x) and PrΠn−1
T (x) are equivalent in PA;

5. As are PrΣ1
T (x) and PrT (x).

Comments. 1: This is a relativized form of Small Reflection Principle — see e.g. Lindström [10, 
Lemma 5.1(ii)].

2: See Lindström [10, Lemma 5.1(iii)].
3 follows at once from 2.
4: Any true Σn sentence ∃x π(x) is a consequence of some true Πn−1 sentence of the form π(m) for some 

natural number m. This observation is formalizable in PA.
5 is a consequence of provable Σ1 completeness (Lindström [10, Fact 1.9(d)]). �
Even though Fact 3.4.4 tells us that the relativized provability predicates PrΣn

T (·) and PrΠn−1
T (·) are 

equivalent, we still have uses for both these formulas because, when used as terms in witness comparison, 
they behave differently in view of unequal quantifier complexity of the underlying relativized proof predicates 
PrfΣn

T (·, ·) and PrfΠn−1
T (·, ·). This is briefly discussed in Smoryński [15, p. 318].

It is well-known that the Πn sentence ¬PrΣn

T (�0 = 1�) is PA-provably equivalent to the uniform Πn re-
flection principle RFNT (Πn) for T . The next proposition is a generalization of Kreisel’s Π1-conservativity 
result.

Convention 3.5. For each Γ sentence ϕ, let ∼ϕ denote a Γd sentence logically equivalent to ¬ϕ.

Proposition 3.6 (Hájek [6, Proposition 3] for n = 2, or Blanck [3, Corollary 4.32]). For any theory T , 
PrΣn

T (�0 = 1�) ∈ Cons(Πn, T ).

Proof. Let π be any Πn sentence such that T + PrΣn

T (�0 = 1�) � π. Then

T � ¬π → ∀u
(
Σn(u) ∧ TrueΣn

(u) → ¬PrT (u →̇ �0 = 1�)
)
.

Since ∼π is a Σn sentence, T � ¬π → Σn(�∼π�) ∧ TrueΣn
(�∼π�). Therefore,

T � ¬π → ¬PrT (�∼π → 0 = 1�).

That is, T � ¬π → ¬PrT (�π�). Hence, T � PrT (�π�) → π. By Löb’s theorem, we have T � π. �
The following fact is used in Section 5.

Fact 3.7 (See Exercise 4.2 in Lindström [10]). For any theory T , there exists a standard provability predicate 
PrT (x) for T such that for all n > 0, T � PrΣn

T (�0 = 1�). �
Finally, we prove the following useful lemma.

Lemma 3.8 (See Misercque [12, Proposition 2.5.3] for Γ = Π1). For any theory T and for any Γd formulas 
ϕ and ψ,

1. If ϕ, ψ ∈ Cons(Γ, T ), then ϕ ∧ ψ ∈ Cons(Γ, T );
2. If ϕ ∈ Cons(Γ, T ) and T + ϕ � ψ, then ψ ∈ Cons(Γ, T ).
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Proof. 1: Suppose ϕ, ψ ∈ Cons(Γ, T ). Let γ be a Γ sentence such that T +ϕ ∧ψ � γ. Then, T +ϕ � ψ → γ

and ψ → γ is a Γ sentence. Since ϕ ∈ Cons(Γ, T ), we have T � ψ → γ. Since ψ ∈ Cons(Γ, T ), we obtain 
T � γ.

2: Suppose ϕ ∈ Cons(Γ, T ) and T + ϕ � ψ. Let γ be a Γ sentence such that T + ψ � γ. Then, we have 
T + ϕ � γ. Therefore, we obtain T � γ. �
4. Generalizations of Bennet’s results

In this section, we extend Bennet’s results discussed in Section 2 to larger families of theories. This 
section consists of two subsections. In Subsection 4.1, we generalize Facts 2.10, 2.11 and 2.12 to the case of 
more than two theories. In Subsection 4.2, we handle Facts 2.16 and 2.18.

4.1. Γ-conservative sentences

First, we generalize Fact 2.10 to finite families of theories.

Theorem 4.1. For any k ≥ 1 and theories T0, . . . , Tk, the following are equivalent:

1.
⋂

i≤k Cons(Γ, Ti) \ Th(Ti) �= ∅;
2. For all i ≤ k, 

(⋂
j �=i
j≤k

Cons(Γ, Tj)
)
\ Th(Ti) �= ∅.

Proof. 1 ⇒ 2: This is trivial.
2 ⇒ 1: Suppose for all i ≤ k, 

(⋂
j �=i
j≤k

Cons(Γ, Tj)
)
\ Th(Ti) �= ∅.

Case 1: Γ = Σn.

For each i ≤ k, let ϕi ∈
(⋂

j �=i
j≤k

Cons(Σn, Tj)
)
\Th(Ti) and let θi be Πn sentences satisfying the following 

equivalences:

PA � θi ↔
∧
j �=i
j≤k

ϕj ∧ ¬
(

PrTi

(
�
∨
j≤k

θj�
)

≺ PrΠn

Ti

(
�¬θi�

))
.

We show 
∨

j≤k θj ∈
⋂

i≤k Cons(Σn, Ti) \ Th(Ti).
First, we prove Ti �

∨
j≤k θj for all i ≤ k. Assume there is an i∗ ≤ k such that Ti∗ �

∨
j≤k θj , then there 

is a p ∈ ω such that PA � PrfTi∗

(
�
∨

j≤k θj�, p
)
. Also, by Fact 3.4.1, Ti∗ + θi∗ � ∀y ≤ p¬PrfΠn

Ti∗
(�¬θi∗�, y). 

Then,

Ti∗ + θi∗ � PrTi∗

(
�
∨
j≤k

θj�
)

≺ PrΠn

Ti∗

(
�¬θi∗�

)
.

Hence, by the choice of θi∗ , Ti∗ +θi∗ � ¬θi∗ . That is, Ti∗ � ¬θi∗ . By our assumption, Ti∗ �
∨

j �=i∗

j≤k

θj . For any 

j ≤ k with j �= i∗, PA � θj → ϕi∗ by the choice of θj . Therefore Ti∗ �
∨

j �=i∗

j≤k

θj → ϕi∗ , and hence Ti∗ � ϕi∗ . 

This contradicts the choice of ϕi∗ , which shows Ti �
∨

j≤k θj .
Next, we show 

∨
j≤k θj ∈ Cons(Σn, Ti) for all i ≤ k. Fix an arbitrary i ≤ k. Let σ be a Σn sentence 

such that Ti +
∨

j≤k θj � σ. Then Ti + θi � σ. Therefore, by Fact 3.4.2, there is a q ∈ ω such that 
PA + ¬σ � PrfΠn

T (�¬θi�, q). Since Ti �
∨

θj , one has PA � ∀y < q ¬PrfTi

(
�
∨

θj�, y
)
. Hence
i j≤k j≤k
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PA + ¬σ � ¬
(

PrTi

(
�
∨
j≤k

θj�
)

≺ PrΠn

Ti

(
�¬θi�

))
.

Therefore, PA + ¬σ +
∧

j �=i
j≤k

ϕj � θi by the choice of θi. Since Ti + θi � σ, Ti + ¬σ +
∧

j �=i
j≤k

ϕj � σ, so 

Ti +
∧

j �=i
j≤k

ϕj � σ. Since 
∧

j �=i
j≤k

ϕj ∈ Cons(Σn, Ti) by Lemma 3.8.1, we obtain Ti � σ.

Case 2: Γ = Πn.

For each i ≤ k, let ϕi ∈
(⋂

j �=i
j≤k

Cons(Πn, Tj)
)
\ Th(Ti) and let θi be Σn sentences satisfying

PA � θi ↔
∧
j �=i
j≤k

ϕj ∧
(

PrΣn

Ti

(
�¬θi�

)
≺ PrTi

(
�
∨
j≤k

θj�
))

.

By almost the same argument as in Case 1, we find

∨
j≤k

θj ∈
⋂
i≤k

Cons(Πn, Ti) \ Th(Ti). �

Next, we generalize Fact 2.11. In the case of two theories, Fact 2.11 gives two sufficient conditions 
ThΓd(T ) � Th(U) and “U + ThΓ(T ) is consistent” for Cons(Γ, T ) \Th(U) �= ∅. These two conditions adapt 
straightforwardly to the case of r.e. families of theories {Ti}i∈J as the conditions 

⋂
i∈J ThΓd(Ti) � Th(U)

and “U +
⋃

i∈J ThΓ(Ti) is consistent”, respectively. We can show that each of these generalized conditions 
implies 

⋂
i∈J Cons(Γ, Ti) \Th(U) �= ∅. Moreover, we found the following new condition which is also sufficient 

for 
⋂

i∈J Cons(Γ, Ti) \ Th(U) �= ∅:

B1: There is an r.e. set X ⊆ J such that

⋂
i∈J\X

ThΓd(Ti) � Th
(
U +

⋃
i∈X

ThΓ(Ti)
)
.

Here, 
⋂

i∈∅ ThΓd(Ti) is the set of all sentences. Hence, the consistency of U +
⋃

i∈J ThΓ(Ti) implies B1
because J is r.e. Also, 

⋂
i∈J ThΓd(Ti) � Th(U) implies B1 because ∅ is r.e. Therefore, the following theorem 

is indeed a generalization of Fact 2.11.

Theorem 4.2. Let {Ti}i∈J be any r.e. family of theories. If condition B1 holds for {Ti}i∈J, then ⋂
i∈J Cons(Γ, Ti) \ Th(U) �= ∅.

Proof. Let X ⊆ J be an r.e. set such that

⋂
i∈J\X

ThΓd(Ti) � Th
(
U +

⋃
i∈X

ThΓ(Ti)
)
.

Then there is a Γd sentence ϕ satisfying the following two conditions:

1. ϕ ∈
⋂

i∈J\X ThΓd(Ti);
2. U +

⋃
ThΓ(Ti) + ¬ϕ is consistent.
i∈X
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Let T := PA +
⋃

i∈X ThΓ(Ti). Since X is an r.e. set, T is a consistent r.e. extension of PA. Also, since 
U +

⋃
i∈X ThΓ(Ti) +¬ϕ � U + ThΓ(T ) +¬ϕ, we have that U + ThΓ(T ) +¬ϕ is consistent. Therefore, there 

is a

ψ ∈ HCons(Γ, T ) \ Th(U + ¬ϕ)

by Fact 2.18.
We prove ϕ ∨ ψ ∈

⋂
i∈J Cons(Γ, Ti) \ Th(U).

Since U+¬ϕ � ψ, we obviously obtain U � ϕ ∨ψ. We prove ϕ ∨ψ ∈ Cons(Γ, Ti) for any i ∈ J. For i ∈ J \X, 
trivially ϕ ∨ψ ∈ Cons(Γ, Ti) because Ti � ϕ. For i ∈ X, let γ be any Γ sentence such that Ti +ψ � γ. Then 
Ti � ψ → γ. Since ψ → γ is a Γ sentence, PA + ThΓ(Ti) + ψ � γ. Also, since T � PA + ThΓ(Ti) � PA, we 
obtain PA + ThΓ(Ti) � γ by the hereditary Γ-conservativity of ψ. Thus Ti � γ. Hence, ψ ∈ Cons(Γ, Ti) and 
so ϕ ∨ ψ ∈ Cons(Γ, Ti) by Lemma 3.8.2. Therefore, ϕ ∨ ψ ∈

⋂
i∈J Cons(Γ, Ti). �

In Theorem 4.6, we will reverse the implication of Theorem 4.2 for Γ = Σn and finite families of theories.
We spell out a corollary of Theorem 4.2 for finite subfamilies of an infinite r.e. family {Ti}i∈ω.

Corollary 4.3. Let {Ti}i∈ω be an infinite r.e. family of theories and U be a theory. If there exists a set X ⊆ ω

such that

⋂
i∈ω\X

ThΓd(Ti) � Th
(
U +

⋃
i∈X

ThΓ(Ti)
)
,

then for all k ∈ ω, 
⋂

i≤k Cons(Γ, Ti) \ Th(U) �= ∅.

Proof. Suppose that

⋂
i∈ω\X

ThΓd(Ti) � Th
(
U +

⋃
i∈X

ThΓ(Ti)
)

for some X ⊆ ω. We fix a k ∈ ω and let X ′ := X ∩ Ik. Then

⋂
i∈Ik\X′

ThΓd(Ti) � Th
(
U +

⋃
i∈X′

ThΓ(Ti)
)
.

Therefore, 
⋂

i≤k Cons(Γ, Ti) \ Th(U) �= ∅ by Theorem 4.2. �
On the other hand, for infinite families, condition B1 does not follow from the existence of an X ⊆ ω

such that

⋂
i∈ω\X

ThΓd(Ti) � Th
(
U +

⋃
i∈X

ThΓ(Ti)
)

in general. This will be shown in Corollary 6.10. Thus we do not know whether the assumption ‘X is r.e.’ in 
the statement of Theorem 4.2 can be removed or not. Let us however show that the part of X can always 
be played by a Π1 set.

Proposition 4.4. Let {Ti}i∈ω be an infinite r.e. family of theories. If

⋂
ThΓd(Ti) � Th

(
U +

⋃
ThΓ(Ti)

)

i∈ω\X i∈X
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for some X ⊆ ω, then

⋂
i∈ω\X′

ThΓd(Ti) � Th
(
U +

⋃
i∈X′

ThΓ(Ti)
)

for some Π1 set X ′ ⊆ ω.

Proof. Suppose ϕ ∈
⋂

i∈ω\X ThΓd(Ti) and U +
⋃

i∈X ThΓ(Ti) � ϕ. Let X ′ := {i ∈ ω : Ti � ϕ}. Then X ′ is a 
Π1 set because (Ti)i∈ω is a uniformly r.e. sequence. Obviously ϕ ∈

⋂
i∈ω\X′ ThΓd(Ti). If i /∈ X, then Ti � ϕ, 

and hence i /∈ X ′. This means X ′ ⊆ X, and thus U +
⋃

i∈X′ ThΓ(Ti) is a subtheory of U +
⋃

i∈X ThΓ(Ti). 
Therefore U +

⋃
i∈X′ ThΓ(Ti) � ϕ. We conclude

⋂
i∈ω\X′

ThΓd(Ti) � Th
(
U +

⋃
i∈X′

ThΓ(Ti)
)
. �

At last, after an auxiliary lemma, we generalize the equivalence of Fact 2.12 to all finite families of 
theories.

Lemma 4.5. Suppose ψ ∈ Cons(Σn, T ) and σ ∈ ThΣn
(T ). Then T proves ¬ (∼ψ � σ). (See Convention 3.5

for ∼ψ.)

Proof. Suppose ψ ∈ Cons(Σn, T ) and σ ∈ ThΣn
(T ). Since T � σ, we have T + ψ � σ ≺ ∼ψ by Fact 3.2.4, 

and hence, by the Σn-conservativity of ψ, T � σ ≺ ∼ψ. Therefore, T � ¬ (∼ψ � σ) by Fact 3.2.2. �
Theorem 4.6. Let k ∈ ω and let T0, . . . , Tk and U be theories. Then the following are equivalent:

1.
⋂

i≤k Cons(Σn, Ti) \ Th(U) �= ∅;
2. There is an X ⊆ Ik such that

⋂
i∈Ik\X

ThΠn
(Ti) � Th

(
U +

⋃
i∈X

ThΣn
(Ti)

)
.

Proof. 2 ⇒ 1: Since every finite set is r.e., this follows from Theorem 4.2.
1 ⇒ 2: Suppose 

⋂
i∈Ik\X ThΠn

(Ti) ⊆ Th
(
U +

⋃
i∈X ThΣn

(Ti)
)

for all X ⊆ Ik. Consider any ψ in ⋂
i≤k Cons(Σn, Ti). We aim to show U � ψ.
We first prove a claim involving collections of sentences indexed by certain sequences. These sequences 

take elements from Ik = {0, . . . , k} and they are injective in the sense that no repetitions are allowed. We 
fix the following notation:

• ε is the null sequence.
• ⊆ is the prefix relation.
• [s] is the set of all elements of s. (If we model sequences as functions on finite ordinals, we could also 

say: [s] is the range of s.)
• si is the result of appending i to s. We demand of course that i ∈ Ik \ [s].
• Lk is the set of all injective sequences with elements in Ik, and L+

k := Lk \ {ε}.

Claim. There is a family (ϕr)r∈L+
k

of Σn sentences such that for all sequences t in Lk, one has:

(i) Ti � ϕti, for i ∈ Ik \ [t];∧ ∨

(ii) U � j∈Ik\[t] ϕtj → ε�=r⊆t ¬ (∼ψ � ϕr).
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Proof. We proceed by upward induction on t in (Lk, ⊆). Thus we consider an arbitrary element t ∈ Lk

assuming the sentences ϕr satisfying condition (i) of the claim have already been procured for each non-null 
r ⊆ t.

Suppose si ⊆ t, where s may be null. Since, by condition (i) of the induction hypothesis, Ti � ϕsi, 
and since ψ is Σn-conservative over Ti, we have, by Lemma 4.5, Ti � ¬ (∼ψ � ϕsi). We conclude that 
Ti �

∨
ε�=r⊆t ¬ (∼ψ � ϕr) for any i ∈ [t].

With X = Ik \ [t], our supposition reads

⋂
i∈[t]

ThΠn
(Ti) ⊆ Th

(
U +

⋃
j∈Ik\[t]

ThΣn
(Tj)

)
.

Hence, U +
⋃

j∈Ik\[t] ThΣn
(Tj) �

∨
ε�=r⊆t ¬ (∼ψ � ϕr). Thus, for each j ∈ Ik \ [t], there is a Σn sentence ϕtj

such that Tj � ϕtj and

U �
∧

j∈Ik\[t]
ϕtj →

∨
ε�=r⊆t

¬ (∼ψ � ϕr).

This shows (i) and (ii) for t. �
We resume the proof of 1 ⇒ 2. We show by downward induction on s in (Lk, ⊆) that U+¬ψ �

∨
ε�=r⊆s ϕr. 

The desired outcome that U � ψ is then immediate from the case where s = ε.
Recall that

U + ¬ψ � ¬ (∼ψ � σ) → σ (1)

for any Σn sentence σ by Fact 3.2.4.
Assume s is ⊆-maximal, that is, [s] = Ik. Then, U �

∨
ε�=r⊆s ¬ (∼ψ � ϕr) by condition (ii) of the claim, 

and U + ¬ψ �
∨

ε�=r⊆s ϕr follows by (1).
If s is not ⊆-maximal, then the induction hypothesis yields

U + ¬ψ � ϕsj ∨
∨

ε�=r⊆s

ϕr

for each j ∈ Ik \ [s]. Hence,

U + ¬ψ �
∧

j∈Ik\[s]
ϕsj ∨

∨
ε�=r⊆s

ϕr. (2)

Also, U �
∧

j∈Ik\[s] ϕsj →
∨

ε�=r⊆s ¬ (∼ψ � ϕr) by condition (ii) of the claim. By (1), we find:

U + ¬ψ �
∧

j∈Ik\[s]
ϕsj →

∨
ε�=r⊆s

ϕr. (3)

Combining (2) and (3), we obtain U + ¬ψ �
∨

ε�=r⊆s ϕr. �
Fact 2.13 already tells us that the Πn/Σn-symmetric image of Theorem 4.6 fails. Furthermore, Corol-

lary 5.2 will show that 
⋂

i≤k Cons(Πn, Ti) \ Th(U) can never be empty.
We close this subsection with open problems concerning implications between conditions for infinite 

r.e. families of theories. We do not know whether we can extend Theorem 4.1 to infinite families or not. We 
consider the following three conditions on infinite r.e. families related to Guaspari’s problem:
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G1
⋂

i∈ω Cons(Γ, Ti) \ Th(Ti) �= ∅.
G2 For all i ∈ ω, 

(⋂
j �=i
j∈ω

Cons(Γ, Tj)
)
\ Th(Ti) �= ∅.

G3 For all k ∈ ω, 
⋂

i≤k Cons(Γ, Ti) \ Th(Ti) �= ∅.

Recall that the versions of these three conditions for finite families are all equivalent by Theorem 4.1.
With the help of Theorem 4.1, we obtain the following implications.

Corollary 4.7. For any infinite r.e. family {Ti}i∈ω of theories, G1 implies G2, and G2 implies G3.

Proof. G1 ⇒ G2: This is trivial.
G2 ⇒ G3: Suppose for all i ∈ ω, 

(⋂
j �=i
j∈ω

Cons(Γ, Tj)
)
\ Th(Ti) �= ∅.

Let k = 0. Then 
⋂

i≤k Cons(Γ, Ti) \ Th(Ti) �= ∅ by Fact 2.3.
Let k ≥ 1. Then 

(⋂
j �=i
j≤k

Cons(Γ, Tj)
)
\Th(Ti) �= ∅ for all i ≤ k. Therefore, 

⋂
i≤k Cons(Γ, Ti) \Th(Ti) �= ∅

by Theorem 4.1. �
In Section 6, we will prove in Theorem 6.6 that the implication G3 ⇒ G2 does not hold in general.

Problem 4.8. Does condition G2 imply condition G1?

In connection with Bennet’s analysis, we have dealt with the following four conditions:

B1 There exists an r.e. set X ⊆ J such that

⋂
i∈J\X

ThΓd(Ti) � Th
(
U +

⋃
i∈X

ThΓ(Ti)
)
.

B2 There exists a set X ⊆ J such that

⋂
i∈J\X

ThΓd(Ti) � Th
(
U +

⋃
i∈X

ThΓ(Ti)
)
.

B3
⋂

i∈J Cons(Γ, Ti) \ Th(U) �= ∅.
B4

⋂
i≤k Cons(Γ, Ti) \ Th(U) �= ∅ for all k ∈ J.

For finite families of theories, of course, we have B1 ⇔ B2 ⇒ B3 ⇔ B4 by Theorem 4.2. Moreover, in 
the case of Γ = Σn, B3 ⇒ B2 by Theorem 4.6.

For arbitrary r.e. families we have the following implications:

B1

B2

B3

B4

Theorem 4.2

trivial

trivial

Corollary 4.3

In Section 6, we will show that neither B2 ⇒ B1 nor B4 ⇒ B3 holds — see Corollaries 6.10 and 6.8, 
respectively. For Γ = Πn, Fact 2.13 gives a counterexample to the implication B3 ⇒ B2. Therefore, for 
Γ = Πn, neither B3 ⇒ B1 nor B4 ⇒ B2 holds. We do not know whether the other implications hold or not.
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Problem 4.9. Does the implication B2 ⇒ B3 hold? Also, for Γ = Σn, do the implications B3 ⇒ B1, B3 ⇒ B2
and B4 ⇒ B2 hold?

Notice that the potential implication B2 ⇒ B3 would strengthen Theorem 4.2 and Corollary 4.3. For 
Γ = Σn, the implications B3 ⇒ B1 and B3 ⇒ B2 would extend Theorem 4.6 to infinite r.e. families of 
theories.

4.2. Hereditarily Γ-conservative sentences

In this subsection, we generalize Facts 2.16 and 2.18. In our proofs, we use the following lemma.

Lemma 4.10. Let T and U be any theories. If ThΓ(U) ⊆ ThΓ(T ), then HCons(Γ, T ) ⊆ HCons(Γ, U).

Proof. Let ψ ∈ HCons(Γ, T ). To prove ψ ∈ HCons(Γ, U), let S be any theory and let ϕ be any Γ sentence 
such that U � S � PA and S + ψ � ϕ. Since ψ → ϕ is Γ sentence, we have PA + ThΓ(S) + ψ � ϕ. Since 
T � PA + ThΓ(T ) � PA + ThΓ(S) � PA, we obtain PA + ThΓ(S) � ϕ. Therefore, S � ϕ. �

First, we generalize Fact 2.18 to the case of r.e. families of theories by using Fact 2.18 itself.

Theorem 4.11. For any r.e. family {Ti}i∈J of theories and for any theory U , the following are equivalent:

1.
⋂

i∈J HCons(Γ, Ti) \ Th(U) �= ∅;
2. For all k ∈ J, 

⋂
i≤k HCons(Γ, Ti) \ Th(U) �= ∅;

3. U +
⋃

i∈J ThΓ(Ti) is consistent.

Proof. 1 ⇒ 2: This is trivial.
2 ⇒ 3: Suppose U +

⋃
i∈J ThΓ(Ti) is inconsistent. Then there is a k ∈ J such that U +

⋃
i≤k ThΓ(Ti) is 

inconsistent. Thus, there are Γ sentences ϕ0, . . . , ϕk such that Ti � ϕi for each i ≤ k and U �
∨

i≤k ¬ϕi. For 
any Γd sentence ψ and i ≤ k, let Tψ

i := PA + ϕi ∨ ¬ψ. By the choice of ϕi, Ti � Tψ
i � PA for each i ≤ k. 

Suppose ψ ∈
⋂

i≤k HCons(Γ, Ti). Let us show U � ψ:
Consider any i ≤ k. As Tψ

i + ψ � ϕi, we must have Tψ
i � ϕi, for ψ ∈ HCons(Γ, Ti) ⊆ Cons(Γ, Tψ

i ). 
Therefore PA + ¬ψ � ϕi. Thus PA + ¬ψ �

∧
i≤k ϕi, that is, PA �

∨
i≤k ¬ϕi → ψ. Since U �

∨
i≤k ¬ϕi, one 

has U � ψ.
We have shown 

⋂
i≤k HCons(Γ, Ti) ⊆ Th(U). In other words, 

⋂
i≤k HCons(Γ, Ti) \ Th(U) = ∅.

3 ⇒ 1: Suppose U +
⋃

i∈J ThΓ(Ti) is consistent. Let T+ be the theory PA +
⋃

i∈J ThΓ(Ti). Then T+ is a 
consistent r.e. extension of PA. Since U + T+ � U + ThΓ(T+), U + ThΓ(T+) is also consistent. Therefore, 
HCons(Γ, T+) \Th(U) �= ∅ by Fact 2.18. Since ThΓ(Ti) ⊆ ThΓ(T+) for each i ∈ J, we have HCons(Γ, T+) ⊆⋂

i∈J HCons(Γ, Ti) by Lemma 4.10. We conclude

⋂
i∈J

HCons(Γ, Ti) \ Th(U) �= ∅. �

Remark 4.12. In the case of Cons(Γ, T ), the equivalence of the conditions corresponding to 1 and 2 in 
Theorem 4.11 does not generally hold (Corollary 6.8).

Secondly, we generalize Fact 2.16. For this purpose, we write down several equivalents of ⋂
i∈J HCons(Γ, Ti) \ Th(Ti) �= ∅.

Proposition 4.13. For any r.e. family {Ti}i∈J of theories, the following are equivalent:
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1.
⋂

i∈J HCons(Γ, Ti) \ Th(Ti) �= ∅;
2. For all k ∈ J, 

⋂
i≤k HCons(Γ, Ti) \ Th(Ti) �= ∅;

3. For all k ∈ J and i ≤ k, 
(⋂

j �=i
j≤k

HCons(Γ, Tj)
)
\ Th(Ti) �= ∅;

4. For all i ∈ J, Ti +
⋃

j �=i
j∈J

ThΓ(Tj) is consistent.

Proof. 1 ⇒ 2 and 2 ⇒ 3 are trivial.
3 ⇒ 4: Let i ≤ k ∈ J. By Theorem 4.11, Ti +

⋃
j �=i
j≤k

ThΓ(Tj) is consistent. Since k ≥ i is arbitrary, 

Ti +
⋃

j �=i
j∈J

ThΓ(Tj) is consistent.

4 ⇒ 1: Let T+ := PA +
⋃

i∈J ThΓ(Ti). Then, for each i ∈ J, T+ + Ti is consistent by clause 4. Hence, the 
r.e. set 

⋃
i∈J Th(Ti) is pointwise consistent with T+. By Fact 2.8, we have

HCons(Γ, T+) \
⋃
i∈J

Th(Ti) �= ∅.

Since ThΓ(Ti) ⊆ ThΓ(T+) for all i ∈ J, we have HCons(Γ, T+) ⊆
⋂

i∈J HCons(Γ, Ti) by Lemma 4.10. 
Therefore,

⋂
i∈J

HCons(Γ, Ti) \
⋃
i∈J

Th(Ti) �= ∅. �

The following corollary which is a generalization of Fact 2.16 immediately follows from 3 ⇒ 1 of Propo-
sition 4.13.

Corollary 4.14. For any r.e. family {Ti}i∈J of theories, the following are equivalent:

1.
⋂

i∈J HCons(Γ, Ti) \ Th(Ti) �= ∅;
2. For all i ∈ J, 

(⋂
j �=i
j∈J

HCons(Γ, Tj)
)
\ Th(Ti) �= ∅. �

Remark 4.15. In the case of Cons(Γ, T ), the equivalence of the conditions corresponding to 1 and 2 in Propo-
sition 4.13 does not generally hold (Corollary 6.7). We do not know whether the equivalence corresponding 
to 1 ⇔ 2 in Corollary 4.14 holds (Problem 4.8).

5. Πn-conservative Σn sentences for finitely many theories

In this section, we prove that for any two theories T and U , there exists a U -unprovable Σn sentence which 
is Πn-conservative over T . This solves Bennet’s Problem 2.15. As a consequence, in the case of Γ = Πn, 
we give an affirmative answer to Guaspari’s Problem 2.5 restricted to finite families of theories — this also 
settles Problem 2.14.

Theorem 5.1. For any theories T and U , one has Cons(Πn, T ) \ Th(U) �= ∅.

Proof. Let PrU (x) be a standard Σ1 provability predicate for U satisfying U � PrΣn

U (�0 = 1�) as in Fact 3.7. 
If the Σn sentence PrΣn

U (�0 = 1�) is Πn-conservative over T , then PrΣn

U (�0 = 1�) ∈ Cons(Πn, T ) \ Th(U), 
so we are done.

If PrΣn

U (�0 = 1�) is not Πn-conservative over T , then there exists a Σn sentence α such that T + α is 
consistent and T + α � ¬PrΣn

U (�0 = 1�). There exists a Σn sentence σ such that

σ ∈ HCons(Πn, T + α) \ Th(T + α)
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by Fact 2.7. Since T +α � σ, there exists a model M of T +α such that M |= ¬σ. Let U+ := U +ThΣn
(M). 

Even though U+ likely fails to be a theory in the sense of the present paper in view of possible lack of 
recursive enumerability, it is still going to be useful.

First, we show that U+ is consistent. Suppose, towards contradiction, that U+ is inconsistent. Then, 
there exists a Σn sentence ψ such that U � ¬ψ and M |= ψ. Then PA � PrU (�¬ψ�). Since ψ is a Σn

sentence, PA � ψ → PrΣn

U (�ψ�), and hence PA � ψ → PrΣn

U (�0 = 1�). Therefore T + α � ¬ψ. Since M is a 
model of T + α, we find that ¬ψ is true in M , a contradiction. Therefore U+ is consistent.

As usual, we assume that both α and σ are written in the form of a Πn−1 formula following a single 
existential quantifier. Let ϕ and ϕ∗ be Σn sentences satisfying

PA � ϕ ↔ (σ � α) ∨
(
σ � PrΠn−1

U (�ϕ�)
)
, and

ϕ∗ ≡ (α ≺ σ) ∧
(
PrΠn−1

U (�ϕ�) ≺ σ
)
.

Then we have PA � ¬(ϕ ∧ ϕ∗) and PA � σ → (ϕ ∨ ϕ∗) by Fact 3.2.
We prove ϕ ∈ Cons(Πn, T ) \ Th(U).
Suppose one had U � ϕ. Then PA � PrΠn−1

U (�ϕ�). Since M |= α ∧ ¬σ, we obtain M |= ϕ∗ by Fact 3.2.4. 
Then ϕ∗ ∈ ThΣn

(M). Thus U+ � ϕ ∧ ϕ∗. This contradicts the consistency of U+. Hence U � ϕ.
By the definition of ϕ∗, PA � ϕ∗ → α ∧ PrΠn−1

U (�ϕ�) in view of Fact 3.2.1. Since ϕ∗ is Σn, we 
have that PA � ϕ∗ → PrΠn−1

U (�ϕ∗�) by Fact 3.4. Hence PA � ϕ∗ → α ∧ PrΠn−1
U (�0 = 1�). Since

T +α � ¬PrΠn−1
U (�0 = 1�), we have T � ¬ϕ∗. Therefore T + σ � ϕ. Finally, from σ ∈ HCons(Πn, T +α) we 

conclude σ ∈ Cons(Πn, T ), and hence ϕ ∈ Cons(Πn, T ) by Lemma 3.8.2. �
Corollary 5.2. Let k be any natural number. Then for any theories T0, . . . , Tk and U , we have ⋂

i≤k Cons(Πn, Ti) \ Th(U) �= ∅.

Proof. We argue by induction on k. For k = 0, this is Theorem 5.1. Suppose that the statement holds 
for k, and let T0, . . . , Tk, Tk+1, U be any theories. Then by induction hypothesis, there exists a sentence ϕ
contained in 

⋂
i≤k Cons(Πn, Ti) \Th(U). Since U + ¬ϕ is consistent, there exists a sentence ψ contained in 

Cons(Πn, Tk+1) \ Th(U + ¬ϕ) by Theorem 5.1. Then ϕ ∨ ψ is in the set 
⋂

i≤k+1 Cons(Πn, Ti) \ Th(U) by 
Lemma 3.8.2. �

By combining this corollary with Theorem 4.1, we solve Guaspari’s Problem 2.5 for finite families of 
theories and Γ = Πn.

Corollary 5.3. Let {Ti}i≤k be any finite family of theories. Then we have 
⋂

i≤k Cons(Πn, Ti) \Th(Ti) �= ∅. �
Thus, in contrast to the case of Γ = Σn (see Theorem 4.6), every finite family of theories admits a Σn

sentence which is simultaneously nontrivially Πn-conservative over all theories in the family.
Notice that our proof of Theorem 5.1 does not provide an effective procedure for finding an element of 

Cons(Πn, T ) \ Th(U) from (indices for) T and U .

Problem 5.4. Given T and U , can we effectively find a Σn sentence ϕ such that

ϕ ∈ Cons(Πn, T ) \ Th(U) ?

If Problem 5.4 has an affirmative answer, then for any finite family of theories, we can effectively find 
a Σn sentence which is simultaneously nontrivially Πn-conservative over all theories in the family by the 
proofs of Corollary 5.2 and Theorem 4.1.

Finally, we propose the problem asking whether Theorem 5.1 can be strengthened in the spirit of Fact 2.8.
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Problem 5.5. For a theory T and an r.e. set X of sentences that is pointwise consistent with PA, must one 
have Cons(Πn, T ) \X �= ∅ ?

Needless to say, one cannot hope for a positive answer with Cons(Σn, T ) instead of Cons(Πn, T ) (see 
comments just below Fact 2.12).

6. Counterexamples

In connection with Guaspari’s and Bennet’s problems, we have studied a number of conditions on finite 
and infinite r.e. families of theories. In this section, we show the failure of implication between several of 
those conditions.

As we have already mentioned, Corollary 4.14 reduces the investigation of the condition ⋂
i≤k+1 HCons(Γ, Ti) \ Th(Ti) �= ∅ to that of conditions of the form 

⋂
i≤k HCons(Γ, Ti) \ Th(U) �= ∅. One 

may ask whether it can be further reduced to some simple conditions such as HCons(Γ, T ) \ Th(U) �= ∅. 
This does not appear to be the case:

Theorem 6.1. For any k ≥ 1, there are theories T0, . . . , Tk+1 satisfying the following conditions:

1.
⋂

i≤k+1 HCons(Γ, Ti) \ Th(Ti) = ∅;
2. For all distinct i0, i1 ≤ k + 1, 

(⋂
j �=i0,i1
j≤k+1

HCons(Γ, Tj)
)
\ Th(Ti1) �= ∅.

Proof. It suffices to find theories T0, . . . , Tk+1 satisfying the following two conditions:

(i) Tk+1 +
⋃

i≤k ThΓ(Ti) is inconsistent;
(ii) For any i ≤ k + 1, 

⋃
j �=i

j≤k+1
Tj is consistent.

This is because (i) implies that 
⋂

i≤k HCons(Γ, Ti) \ Th(Tk+1) = ∅ by Theorem 4.11. Therefore, ⋂
i≤k+1 HCons(Γ, Ti) \ Th(Ti) = ∅. Moreover, (ii) implies that for all distinct i0, i1 ≤ k + 1, the theories 

Ti1 +
⋃

j �=i0,i1
j≤k+1

ThΓ(Tj) are consistent. Therefore, for all distinct i0, i1 ≤ k + 1,

( ⋂
j �=i0,i1
j≤k+1

HCons(Γ, Tj)
)
\ Th(Ti1) �= ∅

by Theorem 4.11.
Let ξ0, . . . , ξk be Γ sentences such that PA +

∧
i∈X ξi +

∧
i∈Ik\X ¬ξi is consistent for each X ⊆ Ik (see 

Lindström [10, Theorem 2.9]). Let Tk+1 := PA +
∨

i≤k ¬ξi and for each i ≤ k, let Ti := PA + ξi. Then 
Tk+1 +

⋃
i≤k ThΓ(Ti) is obviously inconsistent. Moreover, for i ≤ k, 

⋃
j �=i

j≤k+1
Tj is deductively equivalent 

to PA +
∧

j �=i
j≤k

ξj + ¬ξi. Hence, 
⋃

j �=i
j≤k+1

Tj is consistent by the choice of ξi. For i = k + 1, 
⋃

j �=i
j≤k+1

Tj is 

deductively equivalent to PA +
∧

j≤k ξj . Hence, 
⋃

j �=i
j≤k+1

Tj is also consistent by the choice of ξi. Therefore, 

for any i ≤ k + 1, 
⋃

j �=i
j≤k+1

Tj is consistent. �
Moreover, from the proof of Theorem 6.1, we obtain the following corollary.

Corollary 6.2. For any k ≥ 1, there are theories T0, . . . , Tk and U satisfying the following conditions:

1.
⋂

HCons(Γ, Ti) \ Th(U) = ∅;
i≤k
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2. For all i ≤ k, 
⋂

j �=i
j≤k

HCons(Γ, Tj) \ Th(U) �= ∅. �
For Σn-conservative sentences, we have a result similar to Theorem 6.1. Observe that the Γ = Σn half of 

Theorem 6.1 is strengthened by the following one.

Theorem 6.3. For any k ≥ 1, there are theories T0, . . . , Tk+1 such that

1.
⋂

i≤k+1 Cons(Σn, Ti) \ Th(Ti) = ∅;
2. For all distinct i0, i1 ≤ k + 1, 

(⋂
j �=i0,i1
j≤k+1

HCons(Σn, Tj)
)
\ Th(Ti1) �= ∅.

Proof. As a first step, we produce a suite τ, σ0, . . . , σk of sentences with certain desirable properties. These 
sentences will then serve as building blocks for the construction of theories Ti instantiating the theorem.

By Fact 2.3, fix a Σn sentence τ such that τ ∈ Cons(Πn, PA) \ Th(PA). Let σ0, . . . , σk be Σn sentences 
satisfying

PA � σi ↔
∧
j<i

PrΠn−1
PA+¬τ (�¬σi�) ≺ PrΠn−1

PA+¬τ (�¬σj�)

∧
∧

i<j≤k

PrΠn−1
PA+¬τ (�¬σi�) � PrΠn−1

PA+¬τ (�¬σj�).

We show that the Σn sentences σ0, . . . , σk and τ satisfy (a)–(c) below:

(a) For each i ≤ k, PA + ¬τ + σi is consistent;
(b) For each distinct i, j ≤ k, PA � ¬(σi ∧ σj);
(c) Cons(Πn, PA) �

∨
i≤k σi.

(a): Suppose there existed an l ≤ k such that PA + ¬τ � ¬σl. For some q ∈ ω, the Δ1 sentence 
PrfPA+¬τ (�0 = 0 → ¬σl�, q) must then be true.

Reason in PA + ¬τ : Since 0 = 0 is a true Πn−1 sentence, PrfΠn−1
PA+¬τ (�¬σl�, q) holds. Thus we can fix the 

smallest p ≤ q for which there is an i ≤ k such that

PrfΠn−1
PA+¬τ (�¬σi�, p). (4)

Consider the smallest i satisfying (4). Then, for all m ≤ p and j < i, as well as for all m < p and j > i

(j ≤ k), one has ¬PrfΠn−1
PA+¬τ (�¬σj�, m). Therefore, σi holds. On the other hand, since p is standard, Fact 3.4.1

applied to (4) shows ¬σi. This is a contradiction in PA + ¬τ .
But τ was chosen to be consistent with PA. Hence the theories PA + ¬τ + σl are consistent for all l ≤ k.
(b): Let i < j ≤ k. Then

PA � σi ∧ σj → PrΠn−1
PA+¬τ (�¬σi�) � PrΠn−1

PA+¬τ (�¬σj�)

∧ PrΠn−1
PA+¬τ (�¬σj�) ≺ PrΠn−1

PA+¬τ (�¬σi�).

Therefore, PA � ¬(σi ∧ σj) by Fact 3.2.2.
(c): We shall show PA + PrΠn−1

PA (�0 = 1�) �
∨

i≤k σi. Then, we have PA + PrΣn

PA (�0 = 1�) �
∨

i≤k σi and 
therefore 

∨
i≤k σi ∈ Cons(Πn, PA) by Proposition 3.6 and Lemma 3.8.2.

Reason in PA + PrΠn−1
PA (�0 = 1�): From PrΠn−1

PA (�0 = 1�), we have 
∧

j≤k PrΠn−1
PA+¬τ (�¬σj�). Choose the 

smallest i ≤ k such that
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PrΠn−1
PA+¬τ (�¬σi�) � PrΠn−1

PA+¬τ (�¬σj�)

for all j ≤ k. Then σi must hold.
Armed with the freshly selected sentences, we are now prepared to say what our theories Ti are. Let

Tk+1 := PA + ¬τ and Ti := PA + (τ ∧ σi) ∨
∨
j �=i
j≤k

σj for i ≤ k.

We prove that the theories T0, . . . , Tk+1 satisfy the following three conditions:

(i) For each i ≤ k, ThΠn
(Ti) ⊆ ThΠn

(PA);
(ii) Tk+1 +

⋃
i≤k ThΣn

(Ti) is inconsistent;
(iii) For each i ≤ k + 1, the theory 

⋃
j �=i

j≤k+1
Tj is consistent.

(i): By (c) and Lemma 3.8.1, we have τ ∧
∨

j≤k σj ∈ Cons(Πn, PA). Since PA+ τ ∧
∨

j≤k σj � Ti, we have, 
for each i ≤ k, that ThΠn

(Ti) ⊆ ThΠn
(PA).

(ii): By the choice of Ti, we know

PA +
⋃
i≤k

ThΣn
(Ti) �

∧
i≤k

(
(τ ∧ σi) ∨

∨
j �=i
j≤k

σj

)
.

Since Tk+1 � ¬τ ,

Tk+1 +
⋃
i≤k

ThΣn
(Ti) �

∧
i≤k

∨
j �=i
j≤k

σj .

Therefore, Tk+1 +
⋃

i≤k ThΣn
(Ti) is inconsistent by (b).

(iii): Suppose i = k+ 1. For each j ≤ k, PA + τ ∧
∨

l≤k σl � Tj as argued in the proof of (i). Furthermore, 
since τ ∧

∨
l≤k σl ∈ Cons(Πn, PA), PA + τ ∧

∨
l≤k σl is consistent. Therefore, 

⋃
j≤k Tj is consistent.

Suppose i ≤ k. Then, PA + ¬τ + σi �
⋃

j �=i
j≤k+1

Tj . Therefore, 
⋃

j �=i
j≤k+1

Tj is consistent by (a).

At last, we show that the theories T0, . . . , Tk+1 satisfy the conditions of the theorem:
1: We are going to show 

⋂
i≤k Cons(Σn, Ti) \Th(Tk+1) = ∅. According to Theorem 4.6, it suffices to verify 

that for each X ⊆ Ik, one has

⋂
i∈Ik\X

ThΠn
(Ti) ⊆ Th

(
Tk+1 +

⋃
i∈X

ThΣn
(Ti)

)
.

If X �= Ik, then 
⋂

i∈Ik\X ThΠn
(Ti) = ThΠn

(PA) by (i), so the inclusion holds. Suppose X = Ik. Then, 
Tk+1 +

⋃
i∈X ThΣn

(Ti) is an inconsistent theory by (ii), so the inclusion must hold as well.
2: Let i0, i1 ≤ k + 1 be distinct natural numbers. Then 

⋃
j �=i0

j≤k+1
Tj is consistent by (iii) and therefore, 

Ti1 +
⋃

j �=i0,i1
j≤k+1

ThΣn
(Tj) is consistent. By Theorem 4.11, we have

( ⋂
j �=i0,i1
j≤k+1

HCons(Σn, Tj)
)

\ Th(Ti1) �= ∅. �

We obtain the following corollary by Theorems 6.3 and 4.1.
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Corollary 6.4. For any k ≥ 1, there are theories T0, . . . , Tk and U satisfying the following conditions:

1.
⋂

i≤k Cons(Σn, Ti) \ Th(U) = ∅;
2. For all i ≤ k, 

⋂
j �=i
j≤k

Cons(Σn, Tj) \ Th(U) �= ∅. �

Recall that Corollary 5.2 ruled out the existence of theories satisfying the Cons(Πn, ·)-analogue of con-
dition 1 in Theorem 6.3.

We take another look at the following conditions on infinite families introduced in Subsection 4.1.

G1
⋂

i∈ω Cons(Γ, Ti) \ Th(Ti) �= ∅.
G2 For all i ∈ ω, 

(⋂
j �=i
j∈ω

Cons(Γ, Tj)
)
\ Th(Ti) �= ∅.

G3 For all k ∈ ω, 
⋂

i≤k Cons(Γ, Ti) \ Th(Ti) �= ∅.

We are going to present a counterexample to the implication G3 ⇒ G2. The following lemma will prepare 
us for the construction.

Lemma 6.5. Let T be any theory which is not Σ1-sound. Then there exists a Γ sentence ψ satisfying the 
following conditions:

1. ψ is not provably equivalent to any Γd sentence in T ;
2. ψ is not Γd-conservative over T .

Proof. Let θ be a conventional Π1 Rosser sentence for T . Then θ is independent from T .
For Γ = Σn, let ξ :≡ ¬θ. Then ξ is not Π1-conservative over T (See Lindström [10, Exercise 5.1]).
For Γ = Πn, let ξ :≡ θ. Since T is not Σ1-sound, ξ is not Σ1-conservative over T (See Lindström [10, 

Exercise 5.2.(b)]).
Let γ be a Γ sentence which is not provably equivalent to any Γd sentence in T + ξ (See Lindström [10, 

Corollary 2.6]). Then ψ :≡ ξ ∧ γ is a Γ sentence satisfying the required conditions. �
Theorem 6.6. There exists an infinite r.e. family {Ti}i∈ω of theories such that

1. For all k ∈ ω, 
⋂

i≤k Cons(Γ, Ti) \ Th(Ti) �= ∅;
2.

(⋂
i�=0
i∈ω

Cons(Γ, Ti)
)
\ Th(T0) = ∅.

Proof. Let T be a theory which is not Σ1-sound. Let (ϕi)i≥1 be any effective listing of all Γd sentences with 
T � ϕ1. By Lemma 6.5, there exists a Γ sentence ψ such that ψ is not T -provably equivalent to any Γd

sentence and ψ is not Γd-conservative over T . Then there exists a Γd sentence ξ such that T + ψ � ξ and 
T � ξ. Also ψ is independent from T because ψ is not T -equivalent to 0 = 0 nor to 0 �= 0.

Let T0 := T +¬ψ and for i ≥ 1, Ti := T +¬ϕi∨ψ. Since T � ψ and T � ¬ψ, these theories are consistent. 
We prove that the family {Ti}i∈ω satisfies the two conditions stated in the theorem. For this purpose, we 
prepare an increasing sequence (Xk)k≥1 of finite sets of natural numbers in which each Xk is a witness for 
condition B1 for theories T1, . . . , Tk and T0. Let Dk := {1, 2, . . . , k}. The increasing sequence (Xk)k≥1 is 
inductively defined so that it satisfies the following three conditions for any k ≥ 1:

(i) Xk ⊆ Dk;
(ii) T � ξ ∨

∨
j∈Xk

ϕj ;
(iii) T �

∨
¬ϕj → ξ ∨

∨
ϕj .
j∈Dk\Xk j∈Xk
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Let X1 := ∅. Then 
∨

j∈X1
ϕj ≡ ⊥. Since T � ξ, we have T � ξ ∨

∨
j∈X1

ϕj . Since T � ϕ1, we also have 
T �

∨
j∈D1\X1

¬ϕj → ξ ∨
∨

j∈X1
ϕj .

Suppose Xk is already defined. We distinguish two cases.

• Case 1: T � ϕk+1 ∨ ξ ∨
∨

j∈Xk
ϕj .

Let Xk+1 := Xk.
Since T � ξ∨

∨
j∈Xk

ϕj , we obtain T � ξ∨
∨

j∈Xk+1
ϕj . From condition (iii) for Xk, T �

∨
j∈Dk\Xk

¬ϕj →
ξ ∨

∨
j∈Xk

ϕj . By the assumption of Case 1, T � ¬ϕk+1 → ξ ∨
∨

j∈Xk
ϕj . Since j ∈ Dk+1 \ Xk+1 if 

and only if j ∈ Dk \ Xk or j = k + 1, we obtain T �
∨

j∈Dk+1\Xk+1
¬ϕj → ξ ∨

∨
j∈Xk

ϕj . Therefore, 
T �

∨
j∈Dk+1\Xk+1

¬ϕj → ξ ∨
∨

j∈Xk+1
ϕj .

• Case 2: T � ϕk+1 ∨ ξ ∨
∨

j∈Xk
ϕj .

Let Xk+1 := Xk ∪ {k + 1}.
Then T � ξ ∨

∨
j∈Xk+1

ϕj . From (iii) for Xk, T �
∨

j∈Dk\Xk
¬ϕj → ξ ∨

∨
j∈Xk

ϕj . Since Dk+1 \Xk+1 =
Dk \Xk and Xk+1 ⊇ Xk, we obtain T �

∨
j∈Dk+1\Xk+1

¬ϕj → ξ ∨
∨

j∈Xk+1
ϕj .

The definition is completed. We shall prove clauses 1 and 2 of the Theorem.
1. Fix any k. For each i ≤ k, we show 

(⋂
j �=i
j≤k

Cons(Γ, Tj)
)
\ Th(Ti) �= ∅.

For i = 0, let θk be the Γd sentence ξ∨
∨

j∈Xk
ϕj . Then we have T �

∨
j∈Dk\Xk

¬ϕj → θk. Since T +ψ � ξ, 
we obtain T + ψ � θk. Therefore Tj � θk for all j ∈ Dk \Xk. This means θk ∈

⋂
j∈Dk\Xk

ThΓd(Tj).
Suppose T0 +

⋃
j∈Xk

ThΓ(Tj) � θk. That is,

T +
∧

j∈Xk

(¬ϕj ∨ ψ) + ¬ψ � ξ ∨
∨

j∈Xk

ϕj .

Then

T +
∧

j∈Xk

¬ϕj + ¬ψ � ξ ∨
∨

j∈Xk

ϕj .

Since T + ¬ 
∧

j∈Xk
¬ϕj �

∨
j∈Xk

ϕj and T + ψ � ξ, we obtain T � ξ ∨
∨

j∈Xk
ϕj . But this contradicts 

condition (ii) for Xk, so θk /∈ Th
(
T0 +

⋃
j∈Xk

ThΓ(Tj)
)
.

Thus θk witnesses the non-inclusion

⋂
j∈Dk\Xk

ThΓd(Tj) � Th
(
T0 +

⋃
j∈Xk

ThΓ(Tj)
)
.

By Theorem 4.2, we conclude
(⋂

j �=0
j≤k

Cons(Γ, Tj)
)

\ Th(T0) �= ∅. (5)

For i �= 0, suppose that the theory Ti +
⋃

j �=i
j≤k

ThΓ(Tj) is inconsistent. Then 
⋃

j �=0
j≤k

Tj + ThΓ(T0) is 

inconsistent. Notice that for each j ≥ 1, the theory Tj = T + ¬ϕj ∨ ψ is a subtheory of T + ψ. Hence 
T +ThΓ(T +¬ψ) +ψ is inconsistent. Then there exists a Γ sentence γ such that T +¬ψ � γ and T +γ+ψ is 
inconsistent. Then we obtain T � ψ ↔ ¬γ, but with ¬γ being Γd, this contradicts our choice of ψ. Therefore 
Ti +

⋃
j �=i
j≤k

ThΓ(Tj) is consistent. We obtain 
(⋂

j �=i
j≤k

Cons(Γ, Tj)
)
\Th(Ti) �= ∅ by Theorem 4.2. By combining 

this with (5), we conclude
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for any i ≤ k,

(⋂
j �=i
j≤k

Cons(Γ, Tj)
)

\ Th(Ti) �= ∅.

By Theorem 4.1, this is equivalent to 
⋂

i≤k Cons(Γ, Ti) \ Th(Ti) �= ∅.
2. It suffices to prove that for any i ≥ 1, ϕi /∈ Cons(Γ, Ti) or T0 � ϕi. Clearly, Ti +ϕi � ψ. If Ti � ψ, then 

ϕi /∈ Cons(Γ, Ti) because ψ is a Γ sentence. If Ti � ψ, then T + ¬ϕi ∨ ψ � ψ. Thus T � ¬ϕi → ψ. Hence 
T0 � ϕi. �

Since 
⋂

i∈ω Cons(Γ, Ti) \ Th(Ti) = ∅ obviously follows from the second clause of Theorem 6.6, we obtain 
the following corollary. This is a counterexample to the implication G3 ⇒ G1.

Corollary 6.7. There exists an infinite r.e. family {Ti}i∈ω of theories satisfying the following two conditions:

1. For all k ∈ ω, 
⋂

i≤k Cons(Γ, Ti) \ Th(Ti) �= ∅;
2.

⋂
i∈ω Cons(Γ, Ti) \ Th(Ti) = ∅. �

We return to conditions introduced in Subsection 4.1. Let us focus on infinite families {Ti}i∈ω.

B1 There exists an r.e. set X ⊆ ω such that

⋂
i∈ω\X

ThΓd(Ti) � Th
(
U +

⋃
i∈X

ThΓ(Ti)
)
.

B2 There exists a set X ⊆ ω such that

⋂
i∈ω\X

ThΓd(Ti) � Th
(
U +

⋃
i∈X

ThΓ(Ti)
)
.

B3
⋂

i∈ω Cons(Γ, Ti) \ Th(U) �= ∅.
B4

⋂
i≤k Cons(Γ, Ti) \ Th(U) �= ∅ for all k ∈ ω.

From Theorem 6.6, we obtain a counterexample to the implication B4 ⇒ B3.

Corollary 6.8. There exist an infinite r.e. family {Ti}i∈ω of theories and a theory U satisfying the following 
two conditions:

1. For all k ∈ ω, 
⋂

i≤k Cons(Γ, Ti) \ Th(U) �= ∅;
2.

⋂
i∈ω Cons(Γ, Ti) \ Th(U) = ∅. �

Finally, we construct a counterexample to the implication B2 ⇒ B1.

Theorem 6.9. For any Π1 set X ⊆ ω, there exist an infinite r.e. family {Ti}i∈ω and a theory U such that 
for any Y ⊆ ω,

⋂
ThΓd(Ti) � Th

(
U +

⋃
ThΓ(Ti)

)
if and only if Y = X.
i∈ω\Y i∈Y
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Proof. Let X be any Π1 set. Let T be some theory which is not Σ1-sound. By Lemma 6.5, there exist a Γ
sentence ψ and a Γd sentence ξ such that T � ψ, T � ¬ψ, T + ψ � ξ and T � ξ. Since ω \X is an r.e. set, 
by Fact 2.17, there exists a Γd formula δ(x) satisfying the following conditions for any i ∈ ω:

• If i /∈ X, then T + ¬ψ � δ(i);
• If i ∈ X, then ¬δ(i) is Γd-conservative over T + ¬ψ.

Let Ti := T + ¬δ(i) ∨ ψ for i ∈ ω and U := T + ¬ψ.

Claim. The family {Ti}i∈ω satisfies the following conditions for any i ∈ ω:

(i) If i /∈ X, then Ti is deductively equivalent to T + ψ;
(ii) If i ∈ X, then ThΓd(Ti) ⊆ Th(T ).

Proof. (i). Suppose i /∈ X. Then T+¬ψ � δ(i). Thus T � (¬δ(i) ∨ψ) ↔ ψ. This means that Ti = T+¬δ(i) ∨ψ
is deductively equivalent to T + ψ.

(ii). Suppose i ∈ X. Then ¬δ(i) is Γd-conservative over T +¬ψ. For an arbitrary Γd sentence ϕ, suppose 
Ti � ϕ. Then T + ¬δ(i) ∨ ψ � ϕ, and hence T + ¬δ(i) � ϕ and T + ψ � ϕ. We have T + ¬ψ + ¬δ(i) � ϕ. By 
the Γd-conservativity of ¬δ(i), T + ¬ψ � ϕ. Hence T � ϕ. �

We return to the proof of the theorem. First, we show 
⋂

i∈ω\X ThΓd(Ti) � Th
(
U +

⋃
i∈X ThΓ(Ti)

)
.

By clause (i) of the Claim, for any i /∈ X, Ti � ξ because T + ψ � ξ. Then ξ ∈
⋂

i∈ω\X ThΓd(Ti).
Suppose, towards contradiction, that the theory U+

⋃
i∈X ThΓ(Ti) proves ξ. Then there are i0, . . . , ik−1 ∈

X such that T +
∧

l<k(¬δ(il) ∨ ψ) + ¬ψ � ξ. Thus T +
∧

l<k ¬δ(il) + ¬ψ � ξ. By Lemma 3.8.1, we 
obtain T + ¬ψ � ξ. Since T + ψ � ξ, it follows that T � ξ, contradicting the choice of ξ. Therefore 
U +

⋃
i∈X ThΓ(Ti) � ξ. We conclude 

⋂
i∈ω\X ThΓd(Ti) � Th

(
U +

⋃
i∈X ThΓ(Ti)

)
.

Next, we prove that if Y �= X, then

⋂
i∈ω\Y

ThΓd(Ti) ⊆ Th
(
U +

⋃
i∈Y

ThΓ(Ti)
)
.

Let Y ⊆ ω be such that Y �= X. We distinguish the following two cases.

• Case 1: Y � X.
Let j ∈ Y \ X. Then by clause (i) of the Claim, Tj is deductively equivalent to T + ψ. Thus ψ ∈
ThΓ(Tj). Since U = T +¬ψ, we conclude that U +

⋃
i∈Y ThΓ(Ti) is inconsistent. Therefore the inclusion ⋂

i∈ω\Y ThΓd(Ti) ⊆ Th
(
U +

⋃
i∈Y ThΓ(Ti)

)
holds trivially.

• Case 2: X � Y .
Fix j ∈ X \ Y . Let ϕ be any Γd sentence with ϕ ∈

⋂
i∈ω\Y ThΓd(Ti). Then Tj � ϕ. By clause (ii) of 

the Claim, ThΓd(Tj) ⊆ Th(T ). Thus T � ϕ. Since U is an extension of T , U also proves ϕ. This shows ⋂
i∈ω\Y ThΓd(Ti) ⊆ Th

(
U +

⋃
i∈Y ThΓ(Ti)

)
.

Therefore, {Ti}i∈ω and U satisfy the required conditions. �
Theorem 6.9 leads to a counterexample to the implication B2 ⇒ B1.

Corollary 6.10. There exist an infinite r.e. family {Ti}i∈ω of theories and a theory U satisfying the following 
two conditions:
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1. There exists a set X ⊆ ω such that

⋂
i∈ω\X

ThΓd(Ti) � Th
(
U +

⋃
i∈X

ThΓ(Ti)
)

;

2. There is no r.e. set X ⊆ ω such that

⋂
i∈ω\X

ThΓd(Ti) � Th
(
U +

⋃
i∈X

ThΓ(Ti)
)
.

Proof. Let X ⊆ ω be a Π1 set which is not r.e. Let {Ti}i∈ω be an r.e. family of theories and U a theory 
corresponding to that X as in Theorem 6.9. Then,

⋂
i∈ω\X

ThΓd(Ti) � Th
(
U +

⋃
i∈X

ThΓ(Ti)
)
.

Furthermore, for any r.e. set Y ,

⋂
i∈ω\Y

ThΓd(Ti) ⊆ Th
(
U +

⋃
i∈Y

ThΓ(Ti)
)

because Y �= X. �
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