
From the W -hierarchy to XNLP

Classes of Fixed Parameter Intractability

Hans L. Bodlaender(B)

Department of Information and Computing Sciences,
Utrecht University, Utrecht, The Netherlands

h.l.bodlaender@uu.nl

Abstract. In this short survey, a number of old and new notions from
parameterized complexity are discussed. We start with looking at the
W -hierarchy, including the classes W [1], W [2], W [P]. Then, a recent
development where problems are shown to be complete for simultane-
ously non-deterministic time of the form f(k)nc and space of the form
f(k) log n, is discussed. Some consequences and other notions are briefly
explored.

Keywords: Parameterized complexity · W -hierarchy · XP · XNLP

1 Introduction

The study of parameterized algorithms and complexity starts at the insight that
many computationally hard problems become easier when a parameter of the
input can be assumed small. Suppose we are to solve a facility location problem,
e.g., we have to place as few as possible fire stations in a city, such that each
house in the city is at most a 15 min drive away from a fire station. It is not
hard to observe that this is an NP-hard problem. However, if we know that we
have only funds available for three fire stations, then an exhaustive search for all
possible combinations of at most three locations gives a tractable (polynomial
time) algorithm to solve the problem.

In the theory of parameterized algorithms and complexity, we look at param-
eterized problems; i.e., we identify some aspect of the input as the parameter.
Then we ask: when this parameter is a constant, is there a polynomial time
algorithm. And if so, does the degree of the polynomial depend on the param-
eter. The theory started with work by Fellows and Langston at the late 1980s
(e.g., [21,22], with some central notions first identified by Abrahamson et al.
in 1989 [2], and much foundational work done in the 1990s by Downey and
Fellows (e.g., [14–16] and [17].)

Throughout this paper, we view a parameterized problem as a subset of
Σ∗ ×N, with Σ some finite alphabet. We are interested in the algorithmic com-
plexity of parameterized problems for which its ‘classic’ variant (i.e., where the
parameter is just part of the input) is intractable, e.g., NP-hard. Many parame-
terized problems fall in one of the following three categories (in order of increas-
ing desirability):
c© Springer Nature Switzerland AG 2022
P. Mutzel et al. (Eds.): WALCOM 2022, LNCS 13174, pp. 15–25, 2022.
https://doi.org/10.1007/978-3-030-96731-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-96731-4_2&domain=pdf
http://orcid.org/0000-0002-9297-3330
https://doi.org/10.1007/978-3-030-96731-4_2

16 H. L. Bodlaender

– There is a value of the parameter for which the problem is NP-hard. E.g., if we
consider Graph Colouring where the number of colours is the parameter,
then this problem is NP-hard with the parameter (number of colours) equal
to 3 [27]. Parameterized problems which are NP-hard for some fixed value of
the parameter are called para-NP-hard.

– There is an algorithm that solves the problem for inputs of the form (x, k) in
O(nf(k)) time, where n = |x| is the size of the input, k the parameter, and
f a (computable) function. The class of problems with such an algorithm is
called XP.

– There is an algorithm that solves the problem for inputs of the form (x, k)
in O(f(k)nc) time, with again n = |x| the size of the input, k the parameter,
f a computable function, and c a constant. Problems of this type are called
fixed parameter tractable, and the class of such problems is called FPT.

One can distinguish different flavours of FPT (and XP), namely non-uniform
(for each value of k, there is an algorithm of the stated running time), uniform
(there is one algorithm working for all values of k, but we do not require that
f is computable), and strongly uniform (as above: we have one algorithm for
all values of k, and f is computable). Examples of non-uniform fixed parameter
tractability can be obtained with help of well quasi orderings: if we have a graph
parameter h which cannot increase by taking a minor of a graph, then from
Robertson-Seymour graph theory, we obtain a non-constructive proof tells us
that for each k, there is an O(n2) algorithm that decides for a given graph
if h(G) ≤ k. (See e.g., [13, Section 6.3] with [29].) But, we may not be able
to construct the algorithms and thus only know that for each k there exists a
(separate) algorithm. See the discussion in [17, Chapter 19]. In the remainder,
we only look at strongly uniform cases.

NP-completeness theory tells us when a problem is para-NP-hard. Assuming
P�=NP, para-NP-hard problems do not belong to XP (or FPT). Thus an NP-
hardness result for a specific value of a parameter gives evidence that the problem
at hand is not likely to belong to XP. To give similar evidence to tell for studied
problems that they are not fixed parameter tractable, a number of complexity
classes have been introduced, all which are assumed to be not a subset of or equal
to FPT. Thus, hardness of a problem for such a class tells that it is unlikely that
the problem belongs to FPT.

For a few problems, an unconditional proof that they do not belong to XP
is known. Diagonalisation gives that FPT is a proper subset of XP [17, Proposi-
tion 27.1.1]. A few problems (formulated in terms of games) are known to be XP-
complete [3,4], and thus, these cannot belong to FPT. (See also [18, Chapter 27].)

This short (and incomplete) survey reviews a number of classes of problems
assumed not to be fixed parameter tractable, with some classic results from the
field, and some recent developments. The theory in this field is rich (much richer
than this survey can show); the focus in this short survey is on classes that con-
tain complete problems that are studied in combinatorial optimisation algorithms.
Much information can also be found in a number of excellent text books that on

From the W-hierarchy to XNLP 17

parameterized algorithms and complexity [13,17,18,24,31] and on the topic of ker-
nelization (a subtopic in the field, not discussed in this survey) [26].

2 Reductions

Hardness and completeness for classes is as usual defined with help of reductions
between problems.

A parameterized reduction from parameterized problem Q to parameterized
problem R is an algorithm A that maps inputs for Q to inputs for R, such that
(x, k) ∈ Q ⇔ A((x, k)) ∈ R, A uses time f(k)nc for a computable function f and
constant c, and if A(x, k) = (x′, k′), then k′ ≤ g(k) for a computable function g.

We also look at parameterized logspace reductions (or pl-reductions), where we
additionally require that the space used by the reduction algorithm is O(h(k) +
log n). Different types of reductions also are used in the field of parameterized
complexity, but these will not be discussed here.

3 The W -hierarchy

Downey and Fellows (see e.g. [17]) have introduced the W -hierarchy: a hierarchy
of complexity classes of parameterized problems. The hierarchy contains a class
W [i] for each positive integer i, the class W [SAT], and the class W [P]. Together
with FPT and XP, we have the following inclusions.

FPT ⊆ W [1] ⊆ W [2] ⊆ W [3] · · · ⊆ W [SAT] ⊆ W [P] ⊆ XP

It is conjectured [17, Chapter 12] that each inclusion is proper. In particular,
when FPT = W [1], then the Exponential Time Hypothesis would not hold [10].

W [i] is defined with help of combinatorial circuits. Consider a circuit, with
n Boolean input gates, and one output node. Take some fixed constant c. (The
choice of c does not matter for the results, e.g., we can set c = 2.) The weft of
the circuit is the maximum number of internal nodes with indegree more than
c on a path from an input gate to the output node. Now, W [i] is defined as
the parameterized problems with a parameterized reduction to the problem to
decide for a given circuit, if we can set k input gates to true and all other input
gates to false, such that the circuit outputs true. (k is the parameter of the
problem.)

An alternative definition, that can be of help to prove W [i]-hardness, is in
terms of Boolean formulas. Consider a formula on n Boolean variables. We say
the formula is i-normalised, if its is the conjunction of the disjunction of the con-
junction of . . . of literals, with i alternations between conjunction and disjunc-
tion. W [i] can also be defined as the problems with a parameterized reduction to
the problem to decide if a given i-normalised formula can be satisfied by setting
exactly k variables to true, and all others to false. Again, k is the parameter.
(Equivalently, we can ask to set at most k variables to true.)

18 H. L. Bodlaender

For i = 1, we obtain the W [1]-complete problem, for each fixed integer q,
Weighted q-CNF Satisfiability. Given is a Boolean formula in Conjunctive
Normal Form, with each clause having at most q literals, and we ask if we can
satisfy it by setting exactly k (the parameter) variables to true.

Important examples of complete problems are Clique and Independent

Set, who are W [1]-complete, and Dominating Set, which is W [2]-complete.
As we assume that the hierarchy is proper, this implies that it is unlikely

that Clique, Independent Set, and Dominating Set are in FPT.
Intuition why Clique and Independent Set are in W [1], while Domi-

nating Set is not, is the following. We can take an input gate (or a Boolean
variable) for each vertex of the graph, which is true iff the vertex is in the solu-
tion set. To verify that this set forms a independent set, we need to perform a
polynomial number of tests (one for each pair of nonadjacent vertices), where
each such test looks at two variables (checking that at least one of these is
false)—this corresponds to a circuit of weft one. (The same type of argument
works for Clique.) To verify that we have a dominating set, we need to perform
a polynomial number of tests (one for each vertex), but each of these tests can
involve a large number of variables (we check that the vertex is dominated, thus
need to look at the variables of the vertex and its neighbours)—this corresponds
to a circuit of weft two.

W [SAT] is defined in the same manner as the classes W [i], but now we can
use any Boolean formula of polynomial size, and W [P] is defined with combina-
torial circuits of polynomial size (without weft restrictions).

In the parameterized algorithms and complexity literature, a large number
of problems from various applications have been shown to be hard or complete
for classes in the W -hierarchy. In particular, the classes W [1] and W [2] play an
important role.

4 Logarithmic Space

4.1 The Story of Bandwidth

There are several problems that are shown to be hard for W [1], for W [2], or for
all classes W [i] for all integers i ∈ N, but which are not known to be member of
W [P], i.e., we do not know whether they belong to a class in the W -hierarchy.

As a central example, we look at the Bandwidth problem. Given here is
an undirected graph G = (V,E), and the integer parameter k, and we want to
decide if there is a bijective function f : V → {1, . . . , |V |}, such that for all edges
{v, w} ∈ E, |f(v)−f(w)| ≤ k. Bandwidth is a long studied problem—amongst
others, because it is equivalent to asking for a symmetric matrix whether we can
permute rows and columns simultaneously, such that all non-zero elements are
at a band of width k around the main diagonal.

Already in 1980, Saxe [34] showed that Bandwidth can be solved in O(nk+1)
time, thus belongs to XP; this was later improved to O(nk) by Gurari and
Sudborough [28]. In 1994, Bodlaender et al. [7] claimed that Bandwidth was

From the W-hierarchy to XNLP 19

hard for all classes W [i], i ∈ N, but it took till 2020 till a proof of this fact was
written down [5]. In 2014, Dregi and Lokshtanov [19] showed that Bandwidth

is W[1]-hard for trees of pathwidth at most two.
Each of these results showed hardness for classes in the W -hierarchy, but

membership. This gives the question: is Bandwidth member of a class in the
W -hierarchy, and can we find a class for which this problem is complete? The
same question can be asked for many other problems, that are known to be hard
for W [1], but not known to reside in the W -hierarchy.

In the midst of the 1990s, Hallett gave an argument why it is unlikely that
Bandwidth belongs to W [P]; the argument is discussed in [23]. The argument is
as follows: certificates for problems in W [P] have size O(k log n): we use log n bits
for each of the k input gates that is true to give its index. However, one expects
that Bandwidth cannot have such small certificates; for instance, we can have
a graph with many connected components; one would expect to need certifi-
cates of size at least (but probably much larger than) the number of connected
components. The argument resembles the later development of compositionality
arguments for showing lower bounds for kernels [6].

So, if Bandwidth is not (likely) in W [P], where is it?
We can go back to the first dynamic programming algorithm by Saxe [34]

for Bandwidth. In this algorithm, we build n tables: each table entry of the
i table gives ‘essential information’ of an ordering f of a set S with i vertices.
The essential information gives all that is needed to remember of f and S to
later determine if there is an ordering of V that starts with f , and then gives the
vertices in V \S in some order. A simpler (slower) algorithm is obtained by taking
as essential information the last 2k vertices of S with their order. One can turn
this dynamic programming algorithm into a non-deterministic algorithm, where
we do not store all elements of a table, but just guess one entry. We then have
the following, non-deterministic algorithm for Bandwidth: repeatedly guess the
next vertex in the order, and keep in memory the last 2k vertices. (We need to
check that we never guess a vertex that is already ordered, but this verification
can be done with a dfs search with help of the 2k stored vertices; we leave the
details as a simple puzzle for the reader.)

What we now have is a non-deterministic algorithm for Bandwidth;
the algorithm uses polynomial time, n non-deterministic guesses of a vertex,
O(k log n) memory (as we remember O(k) vertices with order).

In 2015, Elberfeld et al. [20] introduced a number of different classes of
parameterized problems, including several subclasses of FPT and of XP, char-
acterising the use of time, space, size of kernels, and more. One of these sub-
classes is the class, which we call here XNLP (and was called N [fpoly, flog]
in [20]). XNLP is the class of parameterized problems that can be recognized
by a non-deterministic algorithm that simultaneously use O(f(k)nc) time and
O(f(k) log n) memory, with f a computable function, and c a constant.

The non-deterministic algorithm for Bandwidth sketched above shows
that it belongs to this class XNLP. Interestingly, it is possible to show that

20 H. L. Bodlaender

Bandwidth is XNLP-complete [8]. For XNLP-completeness, we need to use
parameterized logspace reductions.

4.2 XNLP-complete Problems

To show that problems are XNLP-hard, we use parameterized logspace reduc-
tions from known XNLP-hard problems. Recently, several problems have been
shown to be XNLP-complete [8,20]. Several need a chain of reductions. Useful
intermediate XNLP-complete problems are, amongst others:

– Timed Accepting Non-deterministic Linear Cellular Automaton

[20]. We have a linear cellular automaton: a row of k cells, each having at
each time step a value (state) from an alphabet (which can be of linear size,
so we use O(log n) bits to denote an element from the alphabet). At each
time step, each cell receives a value, non-deterministically depending on its
value at that of the neighbouring cell(s). One state is said to be accepting,
and the question is whether there exists a run where after t (given in unary)
time steps, a cell has the accepting state. k is the parameter.

– Chained Weighted CNF-Satisfiability [8]. We have n sets of Boolean
variables X1, . . . , Xn, each of size r, and a Boolean formula in Conjunctive
Normal Form F , and a parameter k. The question is to set of each set Xi

exactly k variables to true, and all others to false, such that the following
formula is satisfied:

∧1≤i<nF (Xi,Xi+1)

Several special cases are also shown to be XNLP-complete in [8]. The hardness
proof is of a similar vein as the Cooks proof of the NP-hardness of Satisfi-
ability [12]: the logic formula describes the working of the automaton.

– Chained Clique [8]. Given is a graph G = (V,E), where V is partitioned
into n subsets V1, . . . , Vn, and the parameter k ∈ N. Question is whether we
can choose from each set Vi a subset Si ⊆ Vi of k vertices, such that for each
pair of successive sets, Si ∪ Si+1 (1 ≤ i < n) forms a clique of size 2k.

– Accepting NNCC Machine [8]. The XNLP-completeness of the problem
whether the following non-deterministic machine has an accepting run has
been proven to be a very helpful tool to show several problems XNLP-hard.
The machine has k integer counters, which start at 0. At each time step,
all counters can be increased non-deterministically to an integer that is at
most n. There is a series of tests: each test looks at two counters, and has
two integers from [0, n]. If the first counter equals the first of these integers,
and the second counter equals the second integer, then the machine halts and
rejects. If all tests succeed, the machine accepts.

From the XNLP-hardness of Accepting NNCC Machine, we can (with one
intermediate step) obtain the XNLP-hardness of Bandwidth, but also XNLP-
hardness of Scheduling with Precedence Constraints, parameterized by
the number of machines and thickness. Other XNLP-complete problems include
Longest Common Subsequence [20], List Colouring with the pathwidth

From the W-hierarchy to XNLP 21

of the graph as parameter [8], and Independent Set and Dominating Set

on graphs of pathwidth k log n, where again k is the parameter.
XNLP-completeness has two interesting consequences. First, it implies hard-

ness for all classes W [i] for all i ∈ N. Interestingly, often the XNLP-hardness
proofs are easier than the earlier proofs of W [i]-hardness for all i. Second, a con-
jecture of Pilipczuk and Wrochna [32] for Longest Common Subsequence

implies the same conjecture for all XNLP-hard problems.

Conjecture 1 (Pilipczuk and Wrochna [32]). Suppose parameterized problem Q

is XNLP-hard. Then Q has no algorithm that runs in nf(k) time and f(k)nc

space, for a computable function f and constant c, with k the parameter, and n
the total input size.

XNLP is a subset of XP (instead of making non-deterministic guesses, we
tabulate all reachable states of the memory), but from Conjecture 1, we obtain
that it is unlikely that an XNLP-complete problem has an XP algorithm that
uses little space (‘fpt space’).

4.3 Other Classes with Logarithmic Space and Reconfiguration

Well known in classic complexity theory are the classes L and NL: problems solv-
able in logarithmic spacew with a deterministic, respectively non-deterministic
algorithm. An interesting class is SL (with the S an abbreviation of ‘symmetric’),
which allows to ‘reverse’ computations. Reingold [33] showed that L=SL, which
is used in a result discussed below.

The parameterized counterparts of L and NL are respectively XL (parameter-
ized problems solvable in f(k) log n space), and XNL (parameterized problems
solvable with a non-deterministic algorithm in f(k) log n space). See e.g., [11].

Recently, Bodlaender et al. [9] explored the complexity of Independent Set

and Dominating Set reconfiguration. Given are two sets S1 and S2, which
are both independent sets of G (or, respectively, both dominating sets). We
want to change S1 into S2 in a number of moves, where each move changes
one vertex of the set to another one, while each intermediate set still must be an
independent (or dominating) set. We look at the problem if such a move sequence
exists, or such a move sequence with t moves exists. The sizes |S1| = |S2| are
the parameter of the problem. The complexities of these questions depend on
whether t is not given, a second parameter1, given in unary, or given in binary.
Table 1 summarises the different results. The XL-completeness for the case where
there is no bound on the number of moves uses an interesting argument, with
the following intuition: when we can use arbitrary many moves, we can always
reverse any move. That corresponds (via the reductions) to a computation on a
symmetric Turing Machine, which yields XSL-completeness, where XSL is the
parameterized counterpart of SL. But, by Reingolds result [33], SL = L, which
implies XSL = XL, thus the problems without a bound on the number of moves
are XL-complete.
1 Formally, instead of giving a problem two parameters, we can take the sum of these

two values as parameter.

22 H. L. Bodlaender

Table 1. Complexity of reconfiguration problems, with set sizes as (one of the) param-
eter(s)

Nb of steps Independent Set Dominating Set References

parameter W [1]-complete W [2]-complete [9,30]

unary XNLP-complete XNLP-complete [8]

binary XNL-complete XNL-complete [9]

not bounded XL-complete XL-complete [9]

5 Other Classes of Hard Parameterized Problems

There are a several other important classes of parameterized problems, which
are assumed not to be fixed parameter tractable. The following brief overview
mentions just a few of these, and is far from complete.

The A-hierarchy. Flum and Grohe [25] introduced the A-hierarchy: parameter-
ized equivalences of the classes in the polynomial time hierarchy. The hierarchy
contains classes A[1], A[2], . . . While A[1] = W [1], classes higher in the hierar-
chy contain their W-counterparts as (likely proper) subsets. We will not give
the formal definitions here; intuitively, each level in the A-hierarchy adds one
alternation between universal and existential quantification.

One such alternation can be seen in the Clique Dominating Set problem.
Given is an undirected graph G = (V,E), and integers k and �, which both are
parameters of the problem. (Or, more precisely, we take k + � as parameter.)
The question is if there is a set S of k vertices that dominates all cliques with �
vertices. (I.e., for every clique C of size �, C contains a vertex that is in S or has
a neighbour in S.) Clique Dominating Set is an example of an A[2]-complete
problem [25, Theorem 8.20].

The AW-hierarchy. Alternation is also a key element in the classes defined in the
AW-hierarchy [1], see also [17, Chapter 14]. The classes can be defined with help
of weighted variants of Quantified Boolean Formulas. Several complete
problems for these classes are defined in terms of combinatorial games, where
the problem is whether there is a winning strategy for the first player in a given
position in at most k moves, where this number of moves k is taken as parameter.

Counting Problems. Let us now consider counting problems, i.e., we want to
determine the number of solutions to a problem. In classic complexity the-
ory, many complexity classes have counting variants, with #P (the class which
map the input to the number of accepting paths of a non-deterministic Turing
Machine) of central importance. Typical #P -complete problems are: given a
Boolean formula, how many satisfying truth assignments does it have; given a
graph, how many Hamiltonian circuits does it have? Flum and Grohe [24] intro-
duced parameterized classes for counting problems, including counting variants
of the classes in the W -hierarchy.

From the W-hierarchy to XNLP 23

An interesting example of a #W [1]-complete problem is that of counting the
number of paths of length k in a given graph G; k is again the parameter [24].
In contrast, deciding if there is at least one path of length k is fixed parameter
tractable. The difference between the complexity of deciding and counting can
here be explained by the fact that negative inputs (graphs that do not have a
path of length k) have a special structure (e.g., they have treewidth at most k),
and such structure can be exploited algorithmically. In contrast, when counting
we cannot make assumptions on the graph’s structure.

6 Conclusions

In the study of parameterized algorithms, many parameterized problems are
known to be hard for a complexity class that is assumed not to be a subset of
FPT, and thus, are believed not to be in FPT. For a subset of these problems,
completeness for a parameterized class is known. Still, there are many problems
where only hardness for some class has been proved, but membership in that
class is not known, and sometimes not expected.

Thus, the situation is much less clear than in classic NP-completeness the-
ory. There, for many problems, both NP-hardness and membership in NP is
known. The parameterized counterparts of those problems often reside in dif-
ferent classes, and their precise complexity in the hierarchies has often not yet
been established. To gain more understanding and give precise characterisations
of the parameterized complexity of well known combinatorial problems gives a
large number of intriguing open problems. The discussion on XNLP shows that
such results can have wider consequences, e.g., give more information on the use
of additional resources like memory by the algorithms.

References

1. Abrahamson, K.A., Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and
completeness IV: On completeness for W [P] and PSPACE analogues. Ann. Pure
Appl. Logic 73, 235–276 (1995)

2. Abrahamson, K.R., Ellis, J.A., Fellows, M.R., Mata, M.E.: On the complexity
of fixed-parameter problems. In: Proceedings of the 30th Annual Symposium on
Foundations of Computer Science, FOCS 1989, pp. 210–215 (1989)

3. Adachi, A., Iwata, S., Kasai, T.: Classes of pebble games and complete problems.
SIAM J. Comput. 8(4), 576–586 (1979)

4. Adachi, A., Iwata, S., Kasai, T.: Some combinatorial game problems require Ω(nk)
time. J. ACM 31(2), 361–376 (1984)

5. Bodlaender, H.L.: Parameterized complexity of Bandwidth of caterpillars and
Weighted Path Emulation. In: Kowalik, �L, Pilipczuk, M., Rz ↪ażewski, P. (eds.)
WG 2021. LNCS, vol. 12911, pp. 15–27. Springer, Cham (2021). https://doi.org/
10.1007/978-3-030-86838-3 2

6. Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems with-
out polynomial kernels. J. Comput. Syst. Sci. 75, 423–434 (2009)

https://doi.org/10.1007/978-3-030-86838-3_2
https://doi.org/10.1007/978-3-030-86838-3_2

24 H. L. Bodlaender

7. Bodlaender, H.L., Fellows, M.R., Hallett, M.: Beyond NP-completeness for prob-
lems of bounded width: Hardness for the W hierarchy. In: Proceedings of the 26th
Annual Symposium on Theory of Computing, STOC 1994, pp. 449–458. ACM
Press, New York (1994)

8. Bodlaender, H.L., Groenland, C., Nederlof, J., Swennenhuis, C.M.F.: Parameter-
ized problems complete for nondeterministic FPT time and logarithmic space.
arXiv abs/2105.14882 (2021). https://arxiv.org/abs/2105.14882. To appear in pro-
ceedings FOCS 2021

9. Bodlaender, H.L., Groenland, C., Swennenhuis, C.M.F.: Parameterized complexi-
ties of dominating and independent set reconfiguration. In: Golovach, P.A., Zehavi,
M. (eds.) 16th International Symposium on Parameterized and Exact Computa-
tion, IPEC 2021. LIPIcs, vol. 214, pp. 9:1–9:16. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik (2021). https://doi.org/10.4230/LIPIcs.IPEC.2021.9

10. Chen, J., Huang, X., Kanj, I.A., Xia, G.: Strong computational lower bounds via
parameterized complexity. J. Comput. Syst. Sci. 72, 1346–1367 (2006)

11. Chen, Y., Flum, J., Grohe, M.: Bounded nondeterminism and alternation in param-
eterized complexity theory. In: 18th Annual IEEE Conference on Computational
Complexity (Complexity 2003), Aarhus, Denmark, 7–10 July 2003, pp. 13–29.
IEEE Computer Society (2003). https://doi.org/10.1109/CCC.2003.1214407

12. Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of the
3rd Annual Symposium on Theory of Computing, STOC 1971, pp. 151–158. ACM,
New York (1971)

13. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21275-3

14. Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness III:
Some structural aspects of the W hierarchy. In: Ambos-Spies, K., Homer, S.,
Schöning, U. (eds.) Complexity Theory, pp. 191–226. Cambridge University Press,
Cambridge (1993)

15. Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness I:
Basic results. SIAM J. Comput. 24, 873–921 (1995)

16. Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness II:
On completeness for W [1]. Theoret. Comput. Sci. 141, 109–131 (1995)

17. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, New York
(1999). https://doi.org/10.1007/978-1-4612-0515-9

18. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. TCS,
Springer, London (2013). https://doi.org/10.1007/978-1-4471-5559-1

19. Dregi, M.S., Lokshtanov, D.: Parameterized complexity of bandwidth on trees.
In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014.
LNCS, vol. 8572, pp. 405–416. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-662-43948-7 34

20. Elberfeld, M., Stockhusen, C., Tantau, T.: On the space and circuit complexity of
parameterized problems: classes and completeness. Algorithmica 71(3), 661–701
(2014). https://doi.org/10.1007/s00453-014-9944-y

21. Fellows, M.R., Langston, M.A.: Nonconstructive advances in polynomial-time com-
plexity. Inf. Process. Lett. 26, 157–162 (1987)

22. Fellows, M.R., Langston, M.A.: Nonconstructive tools for proving polynomial-time
decidability. J. ACM 35, 727–739 (1988)

23. Fellows, M.R., Rosamond, F.A.: Collaborating with Hans: Some remaining wonder-
ments. In: Fomin, F.V., Kratsch, S., van Leeuwen, E.J. (eds.) Treewidth, Kernels,
and Algorithms. LNCS, vol. 12160, pp. 7–17. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-42071-0 2

https://arxiv.org/abs/2105.14882
https://doi.org/10.4230/LIPIcs.IPEC.2021.9
https://doi.org/10.1109/CCC.2003.1214407
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-1-4612-0515-9
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1007/978-3-662-43948-7_34
https://doi.org/10.1007/978-3-662-43948-7_34
https://doi.org/10.1007/s00453-014-9944-y
https://doi.org/10.1007/978-3-030-42071-0_2
https://doi.org/10.1007/978-3-030-42071-0_2

From the W-hierarchy to XNLP 25

24. Flum, J., Grohe, M.: The parameterized complexity of counting problems. SIAM
J. Comput. 33(4), 892–922 (2004). https://doi.org/10.1137/S0097539703427203

25. Flum, J., Grohe, M.: Parameterized Complexity Theory. TTCSAES, Springer, Hei-
delberg (2006). https://doi.org/10.1007/3-540-29953-X

26. Fomin, F., Loksthanov, D., Saurabh, S., Zehavi, M.: Kernelization - Theory of
Parameterized Preprocessing. Cambridge University Press, Cambridge (2019)

27. Garey, M.R., Johnson, D.S.: Computers and Intractability, A Guide to the Theory
of NP-Completeness. W.H. Freeman and Company, New York (1979)

28. Gurari, E.M., Sudborough, I.H.: Improved dynamic programming algorithms for
bandwidth minimization and the mincut linear arrangement problem. J. Algo-
rithms 5, 531–546 (1984)

29. Kawarabayashi, K., Kobayashi, Y., Reed, B.A.: The disjoint paths problem in
quadratic time. J. Comb. Theory Ser. B 102(2), 424–435 (2012). https://doi.org/
10.1016/j.jctb.2011.07.004

30. Mouawad, A.E., Nishimura, N., Raman, V., Simjour, N., Suzuki, A.: On the
parameterized complexity of reconfiguration problems. Algorithmica 78(1), 274–
297 (2016). https://doi.org/10.1007/s00453-016-0159-2

31. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series
in Mathematics and Its Applications, Oxford University Press, Oxford (2006)

32. Pilipczuk, M., Wrochna, M.: On space efficiency of algorithms working on struc-
tural decompositions of graphs. ACM Trans. Comput. Theory 9(4), 18:1-18:36
(2018). https://doi.org/10.1145/3154856

33. Reingold, O.: Undirected connectivity in log-space. J. ACM 55(4), 1–24 (2008)
34. Saxe, J.B.: Dynamic programming algorithms for recognizing small-bandwidth

graphs in polynomial time. SIAM J. Algebraic Discrete Methods 1, 363–369 (1980)

https://doi.org/10.1137/S0097539703427203
https://doi.org/10.1007/3-540-29953-X
https://doi.org/10.1016/j.jctb.2011.07.004
https://doi.org/10.1016/j.jctb.2011.07.004
https://doi.org/10.1007/s00453-016-0159-2
https://doi.org/10.1145/3154856

	From the W-hierarchy to XNLP
	1 Introduction
	2 Reductions
	3 The W-hierarchy
	4 Logarithmic Space
	4.1 The Story of Bandwidth
	4.2 XNLP-complete Problems
	4.3 Other Classes with Logarithmic Space and Reconfiguration

	5 Other Classes of Hard Parameterized Problems
	6 Conclusions
	References

