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Abstract. In this article, we introduce a logic for reasoning about prob-
ability of normative statements. We present its syntax and semantics,
describe the corresponding class of models, provide an axiomatization
for this logic and prove that the axiomatization is sound and complete.
We also prove that our logic is decidable.
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1 Introduction

The seminal work of von Wright from 1951 [14] initiated a systematic study
on formalization of normative reasoning in terms of deontic logic. The latter
is a branch of modal logics that deals with obligation, permission and related
normative concepts. A plethora of deontic logics have been developed for various
application domains like legal reasoning, argumentation theory and normative
multi-agent systems [1,7].

Some recent work also studied learning behavioral norms from data [11,13]. In
[11], the authors pointed out that human norms are context-specific and laced
with uncertainty, which poses challenges to their representation, learning and
communication. They gave an example of a learner that might conclude from
observations that talking is prohibited in a library setting, while another learner
might conclude the opposite when seeing people talking at the checkout counter.
They represented uncertainty about norms using deontic operators, equipped
with probabilistic boundaries that capture the subjective degree of certainty.

In this paper, we study uncertain norms form a logical point of view. We use
probabilistic logic [3–6,12] to represent uncertainty, and we present the proof-
theoretical and model-theoretical approach to a logic which allows reasoning
about uncertain normative statements. We take two well studied logics, monadic
deontic logic (MDL) [9] and probabilistic logic of Fagin, Halpern and Magido
(FHM) [4], as the starting points, and combine them in a rich formalism that
generalizes each of them. The resulting language makes it possible to adequately
model different degrees of belief in norms; for example, we can express statements
like “the probability that one is obliged to be quiet is at least 0.9”.
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The semantics for our logic consists of specific Kripke-like structures, where
each model contains a probability space whose sample space is the set of states,
and with each state carrying enough information to evaluate a deontic formula.
We consider so-called measurable models, which allow us to assign a probability
value to every deontic statement.

The main result of this article is a sound and complete axiomatization for
our logic. Like any other real-valued probabilistic logic, it is not compact, so any
finitary axiomatic system would fail to be strongly complete (“every consistent
set of formulas has a model”) [6]. We prove weak completeness (“every consistent
formula has a model”) combining and modifying completeness techniques for
MDL and FHM. We also show that our logic is decidable, combining the method
of filtration and a reduction to a system of inequalities.

The rest of the paper is organised as follows: In Sect. 2 the proposed syn-
tax and semantics of the logic will be presented together with other needed
definitions. In Sect. 3 the axiomatization of the logic is given, followed by the
soundness and completeness proof in Sect. 4. In Sect. 5 we show that our logic is
decidable. Lastly, in Sect. 6 a conclusion is given together with future research
topics.

2 Syntax and Semantics

In this section, we present the syntax and semantics of our probabilistic deontic
logic. This logic, that we call PDL, contains two types of formulas: standard
deontic formulas of MDS, and probabilistic formulas. Let Q denote the set of
rational numbers.

Definition 1 (Formula). Let P be a set of atomic propositions. The language L
of probabilistic monadic deontic logic is generated by the following two sentences
of BNF (Backus Naur Form):

[Ldeontic] φ ::= p | ¬φ | (φ ∧ φ) | Oφ p ∈ P

[Lprob−d] f ::= a1w(φ1) + · · · + anw(φn) ≥ α | ¬f | (f ∧ f) ai, α ∈ Q

The set of all formulas L is Ldeontic ∪ Lprob−d. We denote the elements of L
with θ and θ’, possibly with subscripts.

The construct Oφ is read as “It is obligatory that φ”, while w(φ) stands for
“probability of φ”. An expression of the form a1w(φ1) + · · · + anw(φn) is called
term. We denote terms with x and t, possibly with subscripts. The propositional
connectives, ∨, → and ↔, are introduced as abbreviations, in the usual way.
We abbreviate θ ∧ ¬θ with ⊥, and ¬⊥ with 
. We also use abbreviations to
define other types of inequalities; for example, w(φ) ≥ w(φ′) is an abbreviation
for w(φ) − w(φ′) ≥ 0, w(φ) = α for w(φ) ≥ α and −w(φ) ≥ −α, w(φ) < α for
¬w(φ) ≥ α.

Example 1. Following our informal example from the introduction about behav-
ioral norms in a library, the fact that a person has become fairly certain that it



618 V. de Wit et al.

is normal to be quiet might be expressed by the probabilistic statement “the prob-
ability that one is obliged to be quiet is at least 0.9”. This sentence could be
formalized using the introduced language as

w(Oq) ≥ 0.9.

Note that we do not allow mixing of the formulas from Ldeontic and Lprob−d.
For example, O(p ∨ q) ∧ w(Oq) ≥ 0.9 is not a formula of our language. Before
we introduce the semantics of PDL we will introduce Monadic Deontic Logic
models.

Definition 2 (Relational model). A relational model D is a tuple D =
(W,R, V ) where:

– W is a (non-empty) set of states (also called “possible worlds”); W is called
the universe of the model.

– R ⊆ W × W is a binary relation over W. It is understood as a relation of
deontic alternativeness: sRt (or, alternatively, (s, t) ∈ R ) says that t is an
ideal alternative to s, or that t is a “good” successor of s. The first one is
“good” in the sense that it complies with all the obligations true in the second
one. Furthermore, R is subject to the following constraint:

(∀s ∈ W )(∃t ∈ W )(sRt) (seriality)

This means that the model does not have a dead end, a state with no good
successor.

– V : P �→ 2W is a valuation function assigning to each atom p a set V (p) ⊆ W
(intuitively the set of states at which p is true.)

Next, we define the satisfiability of a formula in a model. This definition is
in accordance with standard satisfiability relation of MDL.

Definition 3 (Satisfaction in MDL). Let D = (W,R, V ) be a relational deon-
tic model, and let w ∈ W . We define the satisfiability of a deontic formula
φ ∈ Ldeontic in the state w, denoted by D,w |=MDL φ, recursively as follows:

– D,w |=MDL p iff ws ∈ Vs(p).
– D,w |=MDL ¬φ iff D, s �|=MDL φ.
– D,w |=MDL φ ∧ ψ iff D, s |=MDL φ and D, s |=MDL ψ.
– D,w |=MDL Oφ iff for all u ∈ Ws, if wRu then D,u |=MDL φ.

Now we introduce the semantics of PDL.

Definition 4 (Model). A probabilistic deontic model is a tuple M =
〈S,X , μ, τ〉, where

– S is a non-empty set of states
– X is a σ-algebra of subsets of S
– μ : X → [0, 1] is a probability measure, i.e.,
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• μ(X) ≥ 0 for all X ∈ X
• μ(S) = 1
• μ(

⋃∞
i=1 Xi) =

∑∞
i=1 μ(Xi), if the Xi’s are pairwise disjoint members of

X
– τ associates with each state s in S a tuple containing a monadic deontic model

and one of its worlds, i.e., τ(s) = (Ds, ws), where:
• Ds = (Ws, Rs, Vs) is a relational model of monadic deontic logic as defined

in Definition 3.
• ws ∈ Ws is a world ws in Ws of model Ds.

Let us illustrate this definition.

Example 1 (continued) Assume a finite set of atomic propositions {p, q}.
Let us consider the model M = 〈S,X , μ, τ〉 , where

– S = {s, s′, s′′, s′′′}
– X is the set of all subsets of S
– μ is characterized by: μ({s}) = 0.5, μ({s′}) = μ({s′′}) = 0.2, μ({s′′′}) = 0.1

(other values follow from the properties of probability measures)
– τ is a mapping which assigns to the state s, Ds = (Ws, Rs, Vs) and ws such

that
• Ws = {w1, w2, w3, w4}
• Rs = {(w1, w2), (w1, w3), (w2, w2), (w2, w3), (w3, w2), (w3, w3), (w4, w2),

(w4, w3), (w4, w4)}
• Vs(p) = {w1, w3}, Vs(q) = {w2, w3}
• ws = w1

Note that the domain of τ is always the whole set S, but in this example
we only explicitly specify τ(s) for illustration purposes.

This model is depicted in Fig. 1. The circle on the right contains the four states
of the model, which are measured by μ. Each of the states is equipped with a
standard pointed model of MDL. In this picture, only one of them is shown, the
one that corresponds to s. It is represented within the circle on the left. Note
that the arrows depict the “good” alternative relation R. If we assume that q
stands for “quiet”, like in the previous example, in all good successors of w1

the proposition q holds. Note that, according to Definition 3 , this means that
in w1 people are obliged to be quiet in the library.

For a model M = 〈S,X , μ, τ〉 and a formula φ ∈ Ldeontic, let ‖φ‖M denote
the set of states that satisfy φ, i.e., ‖φ‖M = {s ∈ S | Ds, ws |=MDL φ}. We
omit the subscript M from ‖φ‖M when it is clear from context. The following
definition introduces an important class of probabilistic deontic models, so-called
measurable models.

Definition 5 (Measurable model). A probabilistic deontic model is measur-
able if

‖φ‖M ∈ X

for every φ ∈ Ldeontic.
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Fig. 1. Model M = 〈S,X , μ, τ〉.

In this paper, we focus on measurable structures, and we prove completeness
and decidability results for this class of structures.

Definition 6 (Satisfaction). Let M = 〈S,X , μ, τ〉 be a measurable probabilis-
tic deontic model. We define the satisfiability relation |= recursively as follows:

• M |= φ iff for all s ∈ S, Ds, ws |=MDL φ
• M |= a1w(φ1) + · · · + akw(φk) ≥ α iff a1μ(‖φ1‖) + · · · + akμ(‖φk‖) ≥ α.
• M |= ¬f iff M �|= f
• M |= f ∧ g iff M |= f and M |= g.

Example 1 (continued) Continuing the previous example, it is now also pos-
sible to speak about the probability of the obligation to be quiet in a library.
First, according to Definition 3 it holds that Ds, ws |=MDL Oq. Furthermore,
assume that τ is defined in the way such that Ds′ , ws′ |=MDL Oq and
Ds′′ , ws′′ |=MDL Oq, but Ds′′′ , ws′′′ �|=MDL Oq. Then μ(‖Oq‖) = μ({s, s′, s′′}) =
0.5 + 0.2 + 0.2 = 0.9 . According to Definition 6, M |= w(Oq) ≥ 0.9.

Note that, according to Definition 6, a deontic formula is true in a model iff it
holds in every state of the model. This is a consequence of our design choice that
those formulas represent certain deontic knowledge, while probabilistic formulas
express uncertainty about norms. At the end of this section, we define some
standard semantical notions.

Definition 7 (Semantical consequence). Given a set Γ of formulas, a for-
mula θ is a semantical consequence of Γ (notation: Γ |= θ) whenever, all the
states of the model have, if M, s |= θ′ for all θ′ ∈ Γ , then M, s |= θ.

Definition 8 (Validity). A formula θ is valid (notations: |= θ) whenever for
M = 〈S,X , μ, τ〉 and every s ∈ S: M, s |= θ holds.
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3 Axiomatization

The following axiomatization contains 13 axioms and 3 inference rules. It com-
bines the axioms of proof system D of monadic deontic logic [9] with the axioms
of probabilistic logic. The axioms for reasoning about linear inequalities are taken
form [4].

The Axiomatic System: AXPDL

Tautologies and Modus Ponens
Taut. All instances of propositional tautologies.
MP. From θ and θ → θ′ infer θ′.

Reasoning with O:
O-K. O(φ → ψ) → (Oφ → Oψ)
O-D. Oφ → Pφ

O-Nec. From φ infer Oφ.

Reasoning About Linear Inequalities:
I1. x ≥ x (identity)
I2. (a1x1 + ... + akxk ≥ c) ↔ (a1x1 + ... + akxk + 0xk+1 ≥ c) (adding and

deleting 0 terms)
I3. (a1x1 + ... + akxk ≥ c) → (aj1xj1 + ... + ajk

xjk
≥ c), if j1, ..., jk is a

permutation of 1, ..., k (permutation)
I4. (a1x1 + ... + akxk ≥ c) ∧ (a′

1x1 + ... + a′
kxk ≥ c′) → ((a1 + a′

1)x1 + ... +
(ak + a′

k)xk ≥ (c + c′)) (addition of coefficients)
I5. (a1x1 + ... + akxk ≥ c) ↔ (da1x1 + ... + dakxk ≥ dc) if d > 0 (multipli-

cation of non-zero coefficients)
I6. (t ≥ c) ∨ (t ≤ c) if t is a term (dichotomy)
I7. (t ≥ c) → (t > d) if t is a term and c > d (monotonicity).

Reasoning About Probabilities:
W1. w(φ) ≥ 0 (nonnegativity).
W2. w(φ ∨ ψ) = w(φ) + w(ψ), if ¬(φ ∧ ψ) is an instance of a classical propo-

sitional tautology (finite additivity).
W3. w(
) = 1

P-Dis. From φ ↔ ψ infer w(φ) = w(ψ) (probabilistic distributivity).

The axiom Taut allows all Ldeontic-instances and Lprob−d-instances of propo-
sitional tautologies. For example, w(Oq) ≥ 0.9 ∨ ¬w(Oq) ≥ 0.9 is an instance of
Taut, but w(Oq) ≥ 0.9∨¬w(Oq) ≥ 1 is not. Note that Modus Ponens (MP) can
be applied to both types of formulas, but only if θ and θ′ are both from Ldeontic

or both from Lprob−d. O-Nec is a deontic variant of necessitation rule. P-Dis is
an inference rule which states that two equivalent deontic formulas must have
the same probability values.
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Definition 9 (Syntactical consequence). A derivation of θ is a finite
sequence θ1, . . . , θm of formulas such that θm = θ, and every θi is either an
instance of an axiom, or it is obtained by the application of an inference rule
to formulas in the sequence that appear before θi. If there is a derivation of θ,
we say that θ is a theorem and write � θ. We also say that θ is derivable from
a set of formulas Γ , and write Γ � θ, if there is a finite sequence θ1, . . . , θm of
formulas such that θm = θ, and every θi is either a theorem, a member of Γ , or
the result of an application of MP. or P-Nec. to formulas in the sequence that
appear before θi.

Note that this definition restricts the application of O-Nec. to theorems only.
This is a standard restriction for modal necessitations, which enables one to
prove Deduction theorem using induction on the length of the inference. Also,
note that only deontic formulas can participate in a proof of another deontic
formula, thus derivations of deontic formulas in our logic coincide with their
derivations in MDL.

Definition 10 (Consistency). A set Γ is consistent if Γ �� ⊥, and inconsistent
otherwise.

Now we prove some basic consequences of AXPDL. The first one is probabilis-
tic variant of necessitation. It captures the semantical property that a deontic
formula represents certain knowledge, and therefore it must have probability
value 1. The third part of the lemma shows that a form of additivity proposed
as an axiom in [4] is provable in AXPDL.

Lemma 1. The following rules are derivable from our axiomatization:

1. From φ infer w(φ) = 1
2. � w(⊥) = 0
3. � w(φ ∧ ψ) + w(φ ∧ ¬ψ) = w(φ).

Proof.

1. Let us assume that a formula φ is derived. Then, using propositional reasoning
(Taut and MP), one can infer φ ↔ 
. Consequently, w(φ) = w(
) follows
from the rule P-Dis. Since we have that w(
) = 1 (by W3), we can employ
the axioms for reasoning about inequalities to infer w(φ) = 1.

2. Then to show that w(⊥) = 0 using finite additivity (W2) w(
 ∨ ¬
) =
w(
) + w(¬
) = 1 and so w(¬
) = 1 − w(
). Since w(
) = 1 and ¬
 ↔ ⊥
we can derive w(⊥) = 0.

3. To derive additivity we begin with the propositional tautology, ¬((φ ∧ ψ) ∧
(φ∧¬ψ)) then the following equation is given by W2 w(φ∧ψ)+w(φ∧¬ψ) =
w((φ ∧ ψ) ∨ (φ ∧ ¬ψ)). The disjunction (φ ∧ ψ) ∨ (φ ∧ ¬ψ) can be rewritten
to, φ∧ (ψ ∨¬ψ) which is equivalent to φ. From φ ↔ (φ∧ψ)∨ (φ∧¬ψ), using
P-Dis, we obtain w(φ) = w(φ ∧ ψ) + w(φ ∧ ¬ψ).



A Probabilistic Deontic Logic 623

4 Soundness and Completeness

In this section, we prove that our logic is sound and complete with respect to
the class of measurable models, combining and adapting the approaches from
[2,4].

Theorem 1 (Soundness & Completeness). The axiom system AXPDL is
sound and complete with respect to the class of measurable probabilistic deontic
models. i.e., � θ iff |= θ.

Proof. The proof of soundness is straightforward. To prove completeness, we
need to show that every consistent formula θ is satisfied in a measurable model.
Since we have two types of formulas, we distinguish two cases.

If θ ∈ Ldeontic we write θ as φ. Since φ is consistent and monadic deontic
logic is complete [9], we know that there is a MDL model (W,R, V ) and w ∈ W
such that (W,R, V ), w |= φ. Then, for any probabilistic deontic model M with
only one state s and τ(s) = ((W,R, V ), w) we have M, s |= φ, and therefore
M |= φ (since s is the only state); so the formula is satisfiable.

When θ ∈ Lprob−d we write θ as f , and assuming consistency of, f we need
to prove that it is satisfiable. First notice that f can be equivalently rewritten
as a formula in disjunctive normal form,

f ↔ g1 ∨ · · · ∨ gn

this means that satisfiability of f can be proven by showing that one of the
disjuncts gi of the disjunctive normal form of f is satisfiable. Note that every
disjunct is of the form

gi =
r∧

j=1

(
∑

k

aj,kw(φj,k) ≥ cj) ∧
r+s∧

j=r+1

¬(
∑

k

aj,kw(φj,k) ≥ cj)

In order to show that gi is satisfiable we will substitute each weight term w(φj,k)
by a sum of weight terms that take as arguments formulas from the set Δ that will
be constructed below. For any formula θ, let us denote the set of subformulas
of θ by Sub(θ). Then, for considered, gi we introduce the set of all deontic
subformulas SubDL(gi) = Sub(gi) ∩ Ldeontic. We create the set Δ as the set of
all possible formulas that are conjunctions of formulas from SubDL(gi) ∪ {¬e |
e ∈ SubDL(gi)}, such that for every e either e or ¬e is taken as a conjunct (but
not both). Then we can prove the following two claims about the set Δ:

• The conjunction of any two different formulas δk and δl from Δ is inconsistent:
� ¬(δk∧δl). This is the case because for each pair of δ’s at least one subformula
e ∈ Sub(φ) such that δk ∧ δl � e ∧ ¬e and e ∧ ¬e � ⊥. If there is no such, e
then by construction δk = δl.

• The disjunction of all δ’s in Δ is a tautology: � ∨
δ∈Δ δ. Indeed, it is clear

from the way the set Δ is constructed, that the disjunction of all formulas is
an instance of a propositional tautology.
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As noted earlier, we will substitute each term of each weight formula of gi by a
sum of weight terms. This can be done by using the just introduced set Δ and
the set Φ, which we define as the set containing all deontic formulas φj,k that
occur in the weight terms of gi. In order to get all the relevant δ’s to represent
a weight term, we construct for each φ ∈ Φ the set Δφ = {δ ∈ Δ | δ � φ} which
contains all δ’s that imply φ. Then we can derive the following equivalence:

� φ ↔
∨

δ∈Δφ

δ.

From the rule P-Dis we obtain

� w(φ) = w(
∨

δ∈Δφ

δ).

Since any two elements of Δ are inconsistent, from W2 and axioms about inequal-
ities we obtain � w(

∨
δ∈Δφ

δ) =
∑

δ∈Δφ
w(δ). Consequently, we have

� w(φ) =
∑

δ∈Δφ

w(δ).

Note that some of the formulas δ’s might be inconsistent (for example, a
formula from Δ might be a conjunction in which both Op and F (p ∧ q) appear
as conjuncts). For an inconsistent formula δ, we have � δ ↔ ⊥ and, consequently
� w(δ) = 0, by the inference rule P-Dis. This can provably filter out the incon-
sistent δ’s from each weight formula, using the axioms about linear inequalities.
Thus, without any loss of generality, we can assume in the rest of the proof that
all the formulas from Δ are consistent1.

Lets us consider a new formula f ′, created by substituting each term of each
weight formula of gi:

f ′ =

⎛

⎝
r∧

j=1

(
∑

k

aj,k

∑

δ∈Δφj,k

w(δ) ≥ cj)

⎞

⎠ ∧
⎛

⎝
r+s∧

j=r+1

¬(
∑

k

aj,k

∑

δ∈Δφj,k

w(δ) ≥ cj)

⎞

⎠

Then we will construct f ′′ by adding to f ′: a non-negativity constraint and an
equality that binds the total probability weight of δ’s to 1. In other words, f ′′ is
the conjunction of the following formulas:

1 We might introduce Δc and Δc
φ as the sets of all consistent formulas from Δ and

Δφ, respectively, but since we will still have � w(φ) =
∑

δ∈Δc
φ

w(δ), we prefer not to

burden the notation with the superscripts in the rest of the proof, and we assume
that we do not have inconsistent formulas in Δ.
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∑

δ∈Δ

w(δ) = 1

∀δ ∈ Δ w(δ) ≥ 0

∀l ∈ {1, . . . , r}
∑

k

al,k

∑

δ∈Δφl,k

w(δ) ≥ cl

∀l ∈ {r + 1, . . . , r + s}
∑

k

al,k

∑

δ∈Δφl,k

w(δ) < cl

Since the weights can be attributed independently while respecting the system
of equations, the formula f ′′ is satisfiable if the following system of equations is
solvable. With I = {1, . . . , |Δ|}:

|Δ|∑

i=1

xi = 1

∀i ∈ I xi ≥ 0

∀l ∈ {1, . . . , r}
∑

k

al,k

|Δφl,k
|

∑

i=1

xi ≥ cl

∀l ∈ {r + 1, . . . , r + s}
∑

k

al,k

|Δφl,k
|

∑

i=1

xi < cl

Each δ can be identified as a state in the universe of the probability structure.
Since MDL is complete, each state in the probability structure corresponds with
a pointed deontic model’s state via the identification function τ . Furthermore,
w() abides to the rules of probability measures due to the axiom system. This
means that to prove satisfiability, only a probability measure should be found
that corresponds with the representation f ′. By adding the constraints to the
representation, we can find a probability measure by solving the system of linear
inequalities f ′′ using the axioms for reasoning with inequalities I1-I7. We took f
in the beginning of the proof to be a consistent formula and f is either satisfiable
or unsatisfiable. When the system can be shown to be satisfiable we have proven
completeness, satisfiability of f is proven when satisfiability of f ′′ is shown. This
is the case because if f ′′ is satisfiable then so is f ′ which means gi is satisfiable
and if gi is satisfiable then f is satisfiable. Assume f ′′ is unsatisfiable then ¬f ′′ is
provable from the axioms I1-I7. As just explained f ’s satisfiability is equivalent
to that of f ′′. Then ¬f is provable, which means that f is inconsistent. This is
a contradiction, and therefore we have to reject that f ′′ is unsatisfiable and to
conclude that f is satisfiable.
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5 Decidability

In this section, we prove that our logic is decidable. First, let us recall the
satisfiability problem: given a formula θ, we want to determine if there exists a
model M such that M |= θ.

Theorem 2 (Decidability). Satisfiability problem for PDL is decidable.

Proof. (Sketch). Since we have two types of formulas, we will consider two cases.
First, let us assume that θ ∈ Ldeontic. We start with the well-known result
that the problem of whether a formula from Ldeontic is satisfiable in a standard
monadic deontic model is decidable. It is sufficient to show that each θ ∈ Ldeontic

is satisfiable in a monadic deontic model iff it is satisfiable under our semantics.
First, if (W ′, R′, V ′), w′ |= θ for some deontic model (W ′, R′, V ′) and w′ ∈ W ′, let
us construct the model M = 〈S,X , μ, τ〉, with S = {s}, X = {∅, S}, μ(S) = 1
and τ(s) = ((W ′, R′, V ′), w′). Since (W ′, R′, V ′), w′ |= θ, then M, s |= θ. From
the fact that s is the unique state of M , we conclude that M |= θ. On the other
hand, if θ is not satisfiable in standard monadic deontic logic, then for every
M = 〈S,X , μ, τ〉 and s ∈ S we will have M, s �|= θ, so M �|= θ.

Now, let us consider the case θ ∈ Lprob−d. In the proof, we use the method of
filtration [2,8], and reduction to finite systems of inequalities. We only provide a
sketch of the proof, since we use similar ideas as in our completeness proof. We
will also use notation introduced in the proof of completeness. In the first part
of the proof, we show that a formula is satisfiable iff it is satisfiable in a model
with a finite number of (1) states and (2) worlds.

(1) First we show that if θ ∈ Lprob−d is satisfiable, then it is satisfiable
in a model with a finite set of states, whose size is at most 2|SubDL(θ)| (where
SubDL(θ) is the set of deontic subformulas of θ, as defined in the proof of The-
orem 1). Let M = 〈S,X , μ, τ〉 be a model such that M |= θ. Let us define by
∼ the equivalence relation over S × S in the following way: s ∼ s′ iff for every
φ ∈ SubDL(θ), M, s |= φ iff s′ |= φ. Then the corresponding quotient set S/∼ is
finite and |S/∼| ≤ 2|SubDL(θ)|. Note that every Ci belongs to X , since it corre-
sponds to a formula δi of Δ (from the proof of Theorem1), i.e., Ci = ‖δi‖. Next,
for every equivalence class, Ci we choose one element and denote it si. Then we
consider the model M ′ = 〈S′,X ′, μ′, τ ′〉, where:

• S′ = {si | Ci ∈ S/∼},
• X ′ is the power set of S′,
• μ′({si}) = μ(Ci) such that si ∈ Ci and for any X ⊆ S′, μ′(X) =∑

si∈X μ′({si}),
• τ ′(si) = τ(si).

Then it is straightforward to verify that M ′ |= θ. Moreover, note that, by defi-
nition of M ′, for every si ∈ S there is δi ∈ Δ such that M ′, si |= δi, and that for
every sj �= si we have M ′, sj �|= δi. We therefore say that δi is the characteristic
formula of si.
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(2) Even if S′ is finite, some sets of worlds attached to a state might be
infinite. Now we will modify τ ′, in order to ensure that every W (si) is finite, and
of the size which is bounded by a number that depends on the size of θ. In this
part of the proof we refer to the filtration method used to prove completeness
of MDL [2], which shows that if a deontic formula φ is satisfiable, that it is
satisfied in a world of a model D(ψ) = (W,R, V ) where the size of W is at
most exponential wrt. the size of the set of subformulas of φ. Then we can
replace τ ′ with a function τ ′′ which assigns to each si one such D(δi) and the
corresponding world, where δi is the characteristic formula of si. We also assume
that each V (si) is restricted to the propositional letters from SubDL(θ). Finally,
let M ′′ = 〈S′,X ′, μ′, τ ′′〉 It is easy to check that for every φ ∈ SubDL(θ) and
si ∈ S′, M ′, si |= φ iff M ′′, si |= φ. Therefore, M ′′ |= θ.

From the steps (1) and (2) it follows that in order to check if a formula
θ ∈ Lprob−d is satisfiable, it is enough to check if it is satisfied in a model
M = 〈S,X , μ, τ〉 in which S and each Ws (for every s ∈ S) are of finite size,
bounded from above by a fixed number depending on the size of |SubDL(θ)|.
Then there are finitely many options for the choice of S and τ (i.e., (Ds, ws),
for every s ∈ S), and our procedure can check in finite time whether there is
a probability measure μ for some of them, such that θ holds in the model. We
guess S and τ and check whether we can assign probability values to the states
from S, using translation to a system of linear inequalities, in the same way as we
have done in the proof of Theorem1. This finishes the proof, since the problem
of checking whether a linear system of inequalities has a solution is decidable.

6 Conclusion

In this article, we introduced the probabilistic deontic logic PDL, a logic in
which we can reason about the probability of deontic statements. We proposed
a language that extends both monadic deontic logic and probability logic from
[4]. We axiomatized that language and proved soundness and completeness with
respect to corresponding semantics. We also proved that our logic is decidable.

To the best of our knowledge, we are the first to propose a logic for reasoning
about probabilistic uncertainty about norms. It is worth mentioning that there is
a recent knowledge representation framework about probabilistic uncertainty in
deontic reasoning obtained by merging deontic argumentation and probabilistic
argumentation frameworks [10].

Our logic PDL used MDL as the underlying framework, we used this logic
simply because it is one of the most studied deontic logics. On the other hand,
MDL is also criticized because of some issues, like representation of contrary-to-
duty obligations. It is important to point out that the axiomatization technique
developed in this work can be also applied if we replace MDL with, for exam-
ple, dyadic deontic logic, simply by changing the set of deontic axioms and
the function τ in the definition of model, which would lead to a more expres-
sive framework for reasoning about uncertain norms. Another avenue for future
research is to extend the language by allowing conditional probabilities. In such



628 V. de Wit et al.

a logic, it would be possible to express that one uncertain norm becomes more
certain if another norm is accepted or learned.
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