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Abstract. This is an invitation to the research area of graph drawing. It
encompasses basic research such as graph theory, complexity theory, data
structures, and graph algorithms as well as applied research such as soft-
ware libraries, implementations, and applications. Application domains
include areas within computer science (e. g., information visualization,
software engineering, model-based design, automated cartography) as
well as outside (e. g., molecular biology and the social sciences). A selec-
tion of results demonstrates the influence of graph drawing on other areas
and vice versa.

Keywords: Graph drawing · Visualization · Complexity
Computational geometry · Software engineering

1 Introduction

The ultimate goal of graph drawing is to construct suitable visualizations of
graphs and networks. While important contributions date back much further,
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Fig. 1. (a) The graph K4 in three different styles: planar straight-line, planar with
circular arcs, and non-planar straight-line. (b) Graph with vertex and edge labels.

institutionalization began with an International Work Meeting on Graph Draw-
ing in 1992. The first published proceedings appeared as Lecture Notes in Com-
puter Science vol. 894 in 1994 and have appeared in this series ever since.1 From
the very beginning, the area has featured a unique combination of basic research
in, for instance, topological graph theory, complexity, data structures, computa-
tional geometry, and optimization, research in various application domains, and
practical research on implementations, tools, and usage.

We highlight ten characteristic topics of basic and applied research in graph
drawing to incentivize readers to learn more about the area. A comprehensive
overview is given in the Handbook of Graph Drawing and Visualization [80], and
some open problems have been compiled by Brandenburg et al. [16].

2 Basic Research

The most common visual representation of a graph is a two-dimensional draw-
ing in which points in the plane represent vertices and curves connecting them
represent edges.

2.1 Computational Geometry

When drawing a graph we need to give the vertices coordinates and the edges
shapes. Computational geometry is the field within algorithms research that
is concerned with coordinates and shapes. Most of the aesthetic criteria that
assess the quality of a drawing of a graph are geometric, and techniques from
computational geometry can be used to compute them.

We call a graph planar if it can be drawn in the plane without edge crossings.
Suppose we are given a planar straight-line drawing of a graph (see Fig. 1).
Its angular resolution is the smallest angle in the drawing over any two edges
incident to the same vertex. The graph resolution is the maximum ratio between
the longest edge length and the shortest distance between distinct, non-incident
features (two vertices, or a vertex and a non-incident edge). Both resolutions
can be computed in linear time.

1 See http://graphdrawing.org/ for a complete list.

http://graphdrawing.org/
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The area requirement of a graph is the size of the integer grid needed to
embed the graph so that all vertices lie on grid points. Commonly, the graph
is planar and a planar drawing on the grid is required. The algorithm of de
Fraysseix et al. [35] shows that any planar graph can be drawn planarly on the
2n− 4 by n− 2 grid (see Fig. 2(b)). This bound was improved by Schnyder [71],
who shows that an n − 2 by n − 2 grid suffices. It is also possible to use quality
measures on faces. Since the “best” shape of a face is convex, one may wonder
which planar graphs allow drawings where all faces are convex. Chrobak and
Kant [24] showed that every triconnected planar graph allows a drawing where
all bounded faces are convex. The vertices are chosen on an n− 2 by n− 2 grid.

The angular resolution of planar graph drawings can often be improved if
one is willing to use curved edges; angular resolution must now be defined using
tangents of curves at incident vertices. Lombardi drawings are plane drawings
where all edges are circular and the angular resolution at every vertex is per-
fect [30]. Not all planar graphs admit a Lombardi drawing. Other variants from
the straight-line edge style are edges with bends and thick edges. Especially the
former is studied extensively in graph drawing.

For non-planar graphs, intersection angles of edges are important for read-
able, aesthetic graph drawings. This observation has led to the introduction of
right-angle crossing drawings [29] and large angle crossing drawings [37] of non-
planar graphs. How different drawing styles and aesthetic measures relate was
investigated by Hoffmann et al. [44]. Figure 1(a) shows a K4 drawing in three
different styles, leading to a different optimal angular resolution in each style.

Often drawings also need labels, see Fig. 1(b). Automated label placement
has been studied extensively in various research fields. To compute placements,
text labels are usually represented by a rectangular bounding box. Labels should
be placed close to the features they refer to, and they should not intersect each
other, nor any other features. In this setting, label placement can be seen as an
optimization problem related to packing; for an overview of results, see [54].

2.2 Graph Theory: Canonical Orderings

One of the most intuitive ways to draw a planar graph by hand is to add elements
(vertices, edges, faces, etc.) of the graph in an incremental manner to an already
existing drawing. This drawing usually satisfies certain properties that serve as
an invariant during this process.

In 1988 de Fraysseix et al. [35] took this idea and introduced the so-called
canonical orderings for maximal planar graphs (graphs to which no edge can
be added without losing planarity). They used this order of the vertices in an
algorithm to draw every maximal planar graph in a planar straight-line style
on a grid of quadratic size (see Sect. 2.1 and Fig. 2). The canonical ordering as
described in [35] requires the graph to be maximal planar. In case the input does
not satisfy this constraint, one may augment it by simply triangulating it. This
step, however, is not advisable for certain applications. A more general variant
for triconnected planar graphs has been given by Kant [48]. His definition differs
from the original one in that it uses an ordered partition of the vertices instead
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Fig. 2. (a) Example for a canonical ordering of a maximal planar graph and (b) incre-
mental construction of a planar straight-line grid drawing using the algorithm in [35].

of a vertex ordering. A more detailed description of a linear-time algorithm to
obtain such an ordering is given by Badent et al. [5]. They also show that a
canonical ordering induces one in the dual of a triconnected planar graph.

Kant’s definition has found numerous applications in graph drawing.
Although the initial purpose was to draw planar graphs, it has been success-
fully applied to other graph-related problems. For example, Chiang et al. [23]
use it to encode planar graphs with as few bits as possible. See [5] for an extensive
list of applications.

Gronemann [39] suggested orderings for directed planar graphs based on st-
orderings. This allows one to use techniques for undirected graphs to construct
upward planar drawings (all arcs point upward). For undirected triconnected
non-planar graphs, Schmidt [70] showed how to efficiently obtain a Mondshein
sequence, a special non-separating ear decomposition similar to canonical order-
ings. With this result, Schmidt is able to improve the runtime to linear time for
several algorithms, e. g., for finding independent spanning trees in triconnected
graphs, which is the preprocessing step for querying internally disjoint paths.

2.3 Complexity: A Real Analogue of NP in Graph Drawing

In this section, we give some intuition for the fact that several problems in
graph drawing with a geometric flavor like the rectilinear crossing number are
computationally different from NP-complete problems like the crossing number.

The existential theory of the reals, ETR, is the set of all true, existential
statements over the real numbers, such as (∃x, y)[xy = 1 ∧ x2 + y2 = 1], stat-
ing that the hyperbola intersects the unit circle, or, equivalently, the set of real
satisfiable formulas like [xy = 1 ∧ x2 + y2 = 1]. ETR is very expressive, partic-
ularly for graph drawing problems involving straight lines, convexity, or metric
concepts. Take cr, the rectilinear crossing number: Deciding whether a graph
has a straight-line drawing with k crossings can be phrased in ETR. Since ETR
is decidable in polynomial space, we can compute cr, at least in principle. A
closer study reveals that many problems decidable via ETR are computationally
equivalent to it; this implies that solving them is likely hard, much harder than
NP-complete problems. Similarly to NP, we can introduce a complexity class
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∃R, the real satisfiability problem, as the set of problems which computation-
ally reduce to ETR. Returning to the cr-problem: Bienstock [9] showed that it is
equivalent to ETR, so ∃R-complete. Since ETR encodes NP-complete problems,
this also implies that computing cr is NP-hard.

While ETR, like satisfiability for NP, can serve as a starting point to show
∃R-completeness, there are problems closer to graph drawing that can fulfill this
role. The two most fundamental ones are stretchability of pseudoline arrange-
ments, deciding the question whether a pseudoline arrangement is isomorphic
to a straight-line arrangement, a result due to Mnëv, and its projective dual,
the realizability of a chirotope by a pointset. A promising third problem has
been added to the list recently, realizability of an allowable sequence [45]. These
three problems can serve as the starting point for reductions, like the Clique or
Independent set problem for NP.

Intersection graphs, such as string graphs (Jordan arcs), and interval graphs
(intervals on a line), can often be recognized in NP, but convexity seems to esca-
late the complexity to ∃R. We know that recognizing intersection graphs of line
segments (one of the oldest ∃R-results, due to Kratochv́ıl and Matoušek [53]),
rays, convex sets, disks and unit disks is ∃R-complete. There are further ∃R-
complete problems in simultaneous graph drawing, visibility graphs, and metric
problems such as unit distance and matchstick graphs, Delaunay triangulations,
and problems related to angles and slopes. See [53,59] for a survey.

We conclude with some candidates for ∃R-completeness: Does the rectilinear
crossing number problem, cr(G) ≤ k, remain ∃R-complete for fixed k? Is calcu-
lating the geometric thickness of a graph, or its maximum rectilinear crossing
number ∃R-complete? How hard is it to decide whether a graph has a straight-
line drawing in which certain edges have to be free of crossings? For puzzle fans:
How hard is it to tell whether a set of puzzle pieces can be placed into a given
frame without overlapping (see Nagata’s Arrow Puzzle)?

2.4 Data Structures: SPQR-Tree

Decomposition techniques often lead to efficient approaches for solving graph
problems. The idea of using a decomposition in triconnected components goes
back to MacLane (1937) and Tutte (1966) and has been used early in the graph
algorithm literature (e. g., Bienstock and Monma [10]), but the methods became
much easier using the data structure of SPQR-trees.

The data structure of SPQR-trees was suggested by Di Battista and Tamassia
[26] in the context of graph drawing to represent the triconnected decomposition
of a biconnected graph using series parts (S-nodes), parallel parts (P-nodes), and
triconnected parts (R-nodes). Q-nodes denote single edges. Every node comes
with a skeleton describing the whole graph with some parts contracted to an
edge. For example, the skeleton of an S-node is a cycle, the skeleton of a P-node
is a pair of vertices with some parallel edges, and the skeleton of an R-node is a
triconnected component. The data structure combines these nodes in form of a
tree (see Fig. 3). Since for planar graphs the skeletons are also planar, a combi-
natorial embedding of all the skeletons uniquely describes a planar embedding
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Fig. 3. (a) A biconnected graph and (b) its SPQR-tree with the skeletons (Q-nodes
skipped). The edges in the skeletons represent either an original edge (solid) or a larger
part of the graph (dashed, dotted).

of the whole graph and vice versa. Hence, SPQR-trees can be used to represent
the set of all planar embeddings of a biconnected graph. This data structure can
be computed in linear time and linear space [40].

SPQR-trees are applicable to problems that are easier to solve for tricon-
nected graphs than for non-triconnected ones. This is particularly true for prob-
lems in which combinatorial embeddings play a crucial role. Another example are
problems that can be solved in linear time for the class of series-parallel graphs.
This data structure also works for problems in which divide-and-conquer meth-
ods work well.

SPQR-trees have been used heavily within the graph drawing community,
e. g., to elegantly solve variations of planarity testing problems such as on-line,
cluster or upward planarity testing, and to efficiently compute layouts (e. g., bend
minimization and symmetric planar drawings). A survey on the SPQR tree data
structure and its applications can be found in [63].

Outside graph drawing, SPQR-trees have been used for many different graph
problems, e. g., for maintaining a minimum spanning tree and for solving tri-
angulation problems. In computer-aided design they are important for solving
layout decomposition problems in general multiple patterning lithography [87].
In business process management, the data structure has been used for develop-
ing process models and analyzing the control flow of business processes (e. g.,
[83]). SPQR-trees have also been used outside Computer Science: in electrical
engineering for the generation of wave digital structures from reference circuits
[34] and in theoretical physics for reducing Feynman integrals in perturbative
quantum field theory [58].

3 Applications

3.1 Information Visualization

Information visualization is the research field concerned with all aspects of cre-
ating interactive visuals for abstract data. Abstract data are any data with-
out inherent geometry: whether multivariate tabular data or—the chief con-
cern of this article—relational data, where objects (which may have their own
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Fig. 4. Investigations of confluent drawing by a graph drawing paper and later by an
information visualization paper. (a) Flat and outerplanar strict confluent drawings of
the same graph by Eppstein et al. [33]. (b) Bach et al. [3] apply confluent drawing to
a large authorship network.

attributes) are related to one another in various ways. The latter, of course,
are networks or graphs. Network visualization has always been a core topic of
information visualization. Papers on this topic presented at information visual-
ization forums routinely cite—and are heavily inspired by—material originally
presented at graph drawing forums, and vice-versa.

Speaking generally, the graph drawing community tends to be rigorous about
developing efficient and correct algorithms and the theory to support these.
In information visualization, the focus is more on applications and the human
factors or usability of the methods. Just one such example is the idea of confluent
drawings of graphs in which the edges are drawn in bundles to reduce clutter
but in such a way that their connectivity remains clear (see Fig. 4). Confluent
drawing was introduced in the graph drawing community first [28] primarily as
a theoretical topic. More recently, the practical applications of this idea have
been explored at InfoVis [3].

Another area where early work in graph drawing had significant impact upon
information visualisation is force-directed layout. Graph drawers were the first to
make this algorithm scale to large graphs with, for example, the Barnes-Hut cell
opening criteria used in physics particle simulations by Tunkelang [82] and the
first to make interactive, animated versions for online graph layout [31]. These
ideas were later chosen for the force-directed layout implementation in D3, one
of the most highly cited and influential InfoVis papers ever [15].
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It is also interesting to consider the graph drawing approach to tree compar-
ison, which has focused on crossing minimisation problems, e. g., Tanglegrams.
By contrast, an early information visualization approach focused on interaction,
e. g., Tree Juxtaposer [62]. Another major theme of tree visualization at InfoVis
has been treemaps [76]. This design, developed by InfoVis researchers, inspired
graph drawers to tackle the much harder problem of creating space-filling draw-
ings of directed acyclic graphs at Graph Drawing [81]. In summary (and in
keeping with the subject of trees), it is an extremely healthy cross-pollination
that occurs between these two communities, helping both to grow and prosper.

3.2 Software Engineering

The field of software engineering concerns all the phases of the lifecycle of a soft-
ware system: design, development, implementation, testing, and maintenance.
Each of these phases may involve a large amount of data, thus requiring the
use of visualization techniques to help software engineers in carrying out their
job. Since the relationships and the interplay between data, objects, procedures,
and architectural components of an architectural system are usually modeled as
graphs, special attention has been devoted to the study of algorithms and user
interfaces for the visualization of graphs in the scientific literature.

In the following we describe interconnections between software engineering
and graph drawing. Early works that used graph drawing techniques focused
on the automatic layout of Entity-Relationship diagrams [6] and data flow dia-
grams [7]. These papers are milestones since they are among the first applications
of graph drawing to computer-aided software engineering and they devise a new
strategy to incrementally build a graph layout. This strategy, called the topology-
shape-metrics (TSM) approach, has been formally defined and made popular by
a work of Tamassia [79] and it aims to compute a drawing of the graph in an
orthogonal style (vertices are drawn as points or rectangles and edges are drawn
as chains of horizontal and vertical segments).

The object-oriented programming paradigm became extremely popular in
the late’90s and motivated the introduction of the Unified Modeling Language
(UML), a universal formalism intended to visually describe the architecture and
the behavior of a software system at different levels of abstractions. In particular,
class diagrams are among the most adopted types of UML diagrams. They are
based on the use of graphs and are helpful in the design of a software architecture
in terms of its classes (vertices of the graph) and their relationships (edges of
the graph). These class diagrams required new graph drawing research. One of
the main challenges for automatic visualization of a class diagram is to clearly
show different types of relationships that such a diagram can have: some rela-
tionships (e. g., generalizations) correspond to oriented edges that describe the
hierarchical structure (inheritance) of the classes, while other types of relation-
ships correspond to non-oriented edges. Moreover, labels (both for the vertices
and for the edges) [13,50] and clustering information (to model containment
relations) [27,42] must be taken into account in the layout.
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Fig. 5. Two layouts of the same UML class diagram taken from [41]: (a) an industrial
layout; (b) a layout based on the extended TSM approach (OGDF).

Several techniques have been proposed in the graph drawing literature to
automatically visualize a class diagram. The layouts computed by the first com-
mercial tools were mainly based on the well-known layered approach of Sugiyama
et al. [78], without distinguishing between directed and undirected edges. Accord-
ing to this approach vertices are suitably distributed on different horizontal lay-
ers. Seemann [75] was the first to propose a modified version of the layered
approach, considering separately directed and undirected edges.

The approaches in [32,41] proposed new drawing algorithms that exploit and
extend the TSM approach in order to handle mixed graphs (i. e., graphs with
both directed and undirected edges), vertices of prescribed size, and clusters
of vertices. These algorithms produce significant improvements with respect to
the layered approach (see Fig. 5) and their implementations are integrated in
software libraries and systems, like OGDF and the yFiles library. Alternative
techniques have been described for dealing with mixed graphs [12,14], vertices
of prescribed size, and orthogonal drawings with prescribed clusters of vertices
(see [80]).

We finally mention that some tools for software documentation integrate
graph visualization facilities to automatically generate class diagrams of object-
oriented software from annotated source code. Among them, Doxygen2 is widely
used and adopts the layered drawing algorithm available in the GraphViz library.

3.3 Model-Based Design

Model-based design (MBD), also referred to as model-based development or
model-driven engineering, is a design methodology where some artefact, referred

2 http://www.stack.nl/∼dimitri/doxygen/.

http://www.stack.nl/~dimitri/doxygen/
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Fig. 6. An SCChart modeled with KIELER. The graphical view (center) is synthesized
automatically from the textual ABRO.sctx model (left). Layout directives (starting with
@) govern the filtering and drawing, e. g., region HandleA is collapsed. The view also
helps to navigate in the model; here, the user has clicked in region HandleB, which
selects the corresponding part in the text. The control panel (right) gives further options
on layout and filtering, concerning for example the shortening of labels.

to as system under development (SUD), is created based on some model(s) of it.
This model (or collection of models) is initially rather abstract, concentrating
on what the SUD is supposed to do, and only in later—possibly automated—
development stages it is specified how the SUD does what it does. The models
tend to use a graphical instead of a textual syntax; as Schätz et al. put it, “Intu-
itively, model-based development means to use diagrams instead of code” [69].
As argued in this section, automated graph drawing is not as systematically
employed in MBD as it could and should be.

It is common practice especially in the development of cyber-physical sys-
tems to start with a graphical model of the SUD and often also its environ-
ment, and synthesize (textual) code for generating software or hardware from
this model. There are numerous commercially successful tools that support this,
such as Matlab/Simulink (from Mathworks), LabVIEW (National Instruments),
ASCET (ETAS) or SCADE (Ansys/Esterel Technologies). The typical scenario
is that the modeler manually creates a drawing (or view) of the model, using an
initially empty drawing canvas and a palette from which graphical elements are
dragged and dropped onto the canvas. This can be very time consuming; Petre
quotes a developer: “I quite often spend an hour or two just moving boxes and
wires around, with no change in functionality, to make it that much more com-
prehensible when I come back to it” [67]. When creating or changing a model, an
estimated 30% of a user’s time is spent on manual layout adjustments accord-
ing to Klauske and Dziobek [51]. In particular programmers who are used to
powerful text editors and integrated development environments (IDEs) such as
Eclipse often find working with today’s graphical editors rather cumbersome.
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Ideally, one would like that modelers can focus their efforts on the models
they work with, and do not have to spend significant time on mechanical draw-
ing activities, just like today’s circuit developers leave the place-and-route step
typically to automation. This is also advocated in modeling pragmatics, which
concerns all practical aspects of handling a model in its design process [36].
The separation of model and view is in fact a classic design principle in soft-
ware development, known as model-view-controller pattern. Applied to MBD,
this means that customized views should be constructed automatically from a
model. This, however, requires automated graph drawing capabilities. One mod-
eling tool that follows this approach is KIELER, shown in Fig. 6, which uses the
Eclipse Layout Kernel3 (ELK), an open-source collection of numerous layout
algorithms implemented in Java. However, to adapt this approach into common
practice, there is a range of obstacles to overcome, ranging from fundamental dif-
ficulties and technical problems (such as properly dealing with comments [74])
to psychological issues, concerning various stakeholders in different communi-
ties. For example, todays modelers are just accustomed to creating the layout
manually, just like early circuit designers were used to do manual placement and
routing. Even though there seems to be a pretty clear case for the usage of graph
drawing techniques to improve modeler productivity, as argued above, there is
little pressure on the tool vendors to provide good solutions. Sometimes, how-
ever, there is no way around this; for example, when the visual syntax changes
significantly from one tool version to the next, old models must be migrated
automatically to the next version [68]. Also, while modelers are often unhappy
with automatic layout results applied to “their” finished models that they have
hand-crafted before, they seem much more open to automatic layout if it has
been applied from the very beginning. But still, mechanisms that let modelers
guide the layout and layout stability, meaning that small changes in the model
should not lead to abrupt changes in the overall drawing, are important issues
to be addressed for increasing the acceptance of automated graph drawing in
MBD practice.

3.4 Automated Cartography

Graph drawing and cartography both use a certain degree of abstraction when
visualizing data. The graph drawing perspective has hence been used to address
several questions from automated cartography. Consider, for example, an admin-
istrative map of the countries of Europe. Such a map can be viewed as a graph
in two ways: (1) the boundaries of the countries can be considered edges, and the
three-country points are the most prominent vertices, and (2) the adjacencies of
countries can be represented by a graph, dual to the first view. Also the infor-
mation shown on certain maps can be seen as graphs to be drawn. A prominent
example are the weighted trees of flow maps. Below we describe the main map
types that relate to graph drawing.

3 http://www.eclipse.org/elk.

http://www.eclipse.org/elk
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Fig. 7. (a) Rectangular cartogram of the 2008 US presidential election (from Buchin
et al. [21]. (b) Flow map showing migration from Colorado (from Verbeek et al. [84]).

Cartograms show values for regions by shrinking and expanding those regions,
so that the area of each region corresponds to the value represented, for example
total population. Necessarily, cartograms show distorted regions.

The first algorithmic study of rectangular cartograms, where all regions are
rectangles of specified sizes (Fig. 7(a)), is due to van Kreveld and Speckmann [55];
extensions and refinements were presented by Buchin et al. [21]. It is not always
possible to realize the same rectangle adjacencies as the corresponding region
adjacencies on a normal map. To overcome this, rectilinear cartograms were
introduced, where regions can have more than four corners. De Berg et al. [8]
showed that only constantly many corners per region are needed in rectilinear
cartograms. Alam et al. [1] showed that eight corners is always enough. In linear
cartograms, Euclidean distances between vertices represent values, such as travel
time. Vertices must be placed correspondingly and the map will be distorted
[11,47]. Alternatively, one can use distorted edges to represent travel time [19].

Flow maps show the movement of objects between geographic locations on a
map using thick arrows (Fig. 7(b)). Edge bundling is often used to avoid visual
clutter. Using a modification of Steiner trees, Buchin et al. [20] modelled this
problem and gave an approximation algorithm, since a general formulation is
NP-hard.

Schematic maps are commonly used for public transportation systems. Con-
nections between major stations are drawn with polygonal lines that are highly
abstracted: they have only a few segments with few orientations (horizontal,
vertical, or slope +1 or −1). Cabello et al. [22] compute an order of the connec-
tions suitable for incremental placement, leading to an O(n log n) time algorithm.
Neyer [64] views the problem as a line simplification problem and approximates
each connection with the minimum number of segments in the specified orien-
tations. Nöllenburg and Wolff [66] give an integer programming approach to the
problem, respecting multiple constraints. Brandes and Wagner [17] draw con-
nections between stations as circular arcs and address the visualization problem
as a graph layout problem.
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(a) manual layout [61] (b) density-adapted layout [65]

Fig. 8. Social networks of actors organized into (a) cottages (circles) and (b) dorms
(colors). Layout is (a) manual taking known groups into account and (b) with a graph-
drawing algorithm based on local density variation not knowing the clusters (inset
shows result of straightforward force-directed layout).

3.5 Social Sciences

Graph drawing is relevant to much of the social sciences but its most direct
association is with social structure and social relations. The analytic concept of
social networks has been linked so closely with its representation as a graph that
the use of related graph-theoretic techniques in any discipline is often considered
an application of social network analysis.

Social networks in the strict sense consist of actors and the social ties
that moderate their actions [43,85]. Variant types include affiliation networks
(depending on context, represented as hypergraphs or bipartite graphs with a
fixed bipartition), ego networks (represented with or without the defining focal
actor who is in relationship with everyone else, and with or without relationships
between the other actors), and longitudinal networks (given, for instance, as
cross-sectional panel data, interval-censored aggregations, or relational events).
Descriptive features include macro-level classifications such as being a core-
periphery or small-world type network as well as structural properties such as
cohesive groups, roles, and actor centralities. Statistical inference is often based
on particular families of models for which there is a long history [38].

It was realized early on that visualization is not only for communication but
that it can serve as a tool to explore the intricate and a-priori unknown patterns
of complex webs of relationships [18]. The first known matrix representation of
a graph of social relations goes back to the end of the 19th century [25] and
Moreno’s influential book [61] is full of hand-made graph drawings such as the
one in Fig. 8(a).

While graphs associated with social relations often exhibit certain tenden-
cies such as being sparse with one or more locally dense centers, low average
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distance, and a skewed degree distribution, there is no guaranteed restriction to
any particular class of graphs. Instead, layout problems are often associated with
an analytic focus. A rule of thumb for effective visualization of social networks
is that the aspect of interest defines layout constraints whereas the objective for
the remaining degrees of freedom is to maximize readability. In this way, social
networks provide a rich source of graph drawing problems, even if the resulting
problems have often been addressed without this particular application in mind.
Examples include (straight or radial) layered layout to depict actor centrality
and status, clustered layout for (nested or flat) communities, and preprocessing
techniques for skewed degree distributions.

Actual use of graph drawing methods is limited, though. A lack of graphi-
cal standards and, more importantly, widely known and easy-to-use dedicated
software tools hinders the routine practice of purposefully designed graphical
illustrations that are prepared with the help of graph drawing algorithms. While
the share of network visualization papers in the area of information visualization
is increasing, the development of dedicated layout algorithms is lagging behind.
Consequently, as in almost any applied area, the most widely used tools are rel-
atively standard implementations of force-directed layout algorithms. Given the
rich history of visualization in social network analysis, the variety of layout prob-
lems, and its increasing relevance due to the spread of online social networks,
there is a lot to be gained by developing – and applying – more sophisticated lay-
out algorithms. An example, a preprocessing technique to untangle small-world
networks common in social media [65], is given in Fig. 8(b). Other heavily under-
explored areas are network models, ensembles of networks, multilayer networks,
and sequences of relational events.

3.6 Molecular Biology

Molecular biology is a subfield of biology which studies structure and function
of cells at a molecular level. Cells are living objects composed of molecules such
as DNA, proteins, and metabolites, that interact with each other in different
ways. Molecules and their interactions play a central role, and structures based
on these elements are commonly referred to as biological networks. Examples
include gene regulatory and metabolic networks. In addition, there are further
graphs derived from those elements such as phylogenetic trees and correlation
networks. See [46] for an overview of networks in molecular biology.

These structures are often represented by multivariate networks which dif-
fer in both the semantics of vertices and edges as well as the data attached to
vertices and edges. Examples are undirected graphs (e. g., for protein interac-
tion networks), rooted trees (phylogenetic trees) and hyper-graphs (metabolic
networks), often containing additional attributes attached to vertices and edges.
Figure 9 shows some examples, Kohlbacher et al. present more information about
multivariate networks in the life sciences in [52].

While manual drawings of tree-like information such as the tree of life
appeared at least at the beginning of the 19th century [77], the earliest drawings
of cellular networks are most likely of metabolic (sub)pathways in the early 20th
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(a) Metabolic network
(hyper-graph) visualized
with an adapted layered
approach [72].

(b) Regulatory network
(directed graph) visu-
alized with a hive plot
layout [56].

(c) Signal transduction
network (directed graph)
visualized manually in the
SBGN AF standard [60].

Fig. 9. Some biological networks and related layout methods.

century, for example, the glucose fermentation pathway proposed by Wohl in
1907 [86]. A huge number of biological networks have been drawn manually, and
manual drawings are still common nowadays for illustrations in publications, in
electronic systems such as the well-known KEGG database and so on.

When graph drawing algorithms became available, they were first used to
compute visualizations for presentations (e. g., for networks derived from data-
bases as in [49]), later employed to support the discovery process such as to
investigate structure, connectivity, or hubs in such networks, and finally novel
layout algorithms were developed tailored to specific networks (e. g., see Fig. 9)
or—as generic algorithms—for different visualization tasks (e. g. [73]). Applica-
tions and specific adaptions of common graph drawing algorithms for the visu-
alization of biological networks are detailed in [4]. Examples for specific layout
methods motivated by biological questions or data characteristics are power-
graph layout, which reduces the network complexity by explicitly representing
re-occurring network motifs, and hive plot layout, which is a parallel coordinate
layout of a graph with radially arranged axes, see also Fig. 9.

Standardised representations, ontologies and taxonomies are common in bio-
logical sciences, an early example is Linnaeus’ taxonomy from 1735 [57]. Recent
developments also include graphical standards: SBGN (Systems Biology Graph-
ical Notation) covers the graphical representation of major networks and pro-
cesses in molecular biology. The specifications of the three SBGN languages not
only defines glyphs for vertices and edges, their syntax and semantics, but also
contain rules and recommendations for a good layout of these networks.

Graph drawing is well established in molecular biology as method to visualize
biological networks. Similar to other areas discussed earlier, molecular biology
is not only a field of science which uses and applies graph drawing algorithms,
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but also an interesting source of new problems in graph drawing. This field
offers a broad range of layout problems for multivariate graphs and, given the
increasing size, complexity and availability of the data, there is huge interest for
better visualization (layout) and exploration methods. Some open problems in
biological network visualization are presented by Albrecht et al. [2].
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