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Abstract 
This article introduces machine learning techniques to identify politically connected 
firms. By assembling information from publicly available sources and the Orbis 
company database, we constructed a novel firm population dataset from Czechia in 
which various forms of political connections can be determined. The data about 
firms’ connections are unique and comprehensive. They include political donations 
by the firm, having members of managerial boards who donated to a political party, 
and having members of boards who ran for political office. The results indicate that 
over 85% of firms with political connections can be accurately identified by the 
proposed algorithms. The model obtains this high accuracy by using only firm-level 
financial and industry indicators that are widely available in most countries. We 
propose that machine learning algorithms should be used by public institutions to 
identify politically connected firms with potentially large conflicts of interests, and 
we provide easy to implement R code to replicate our results. 
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Introduction 

In the heart of the second wave of the COVID-19 pandemic, on 26 November 2020, a 

controversial investigation was brought to light in a report published by the British National Audit 

Office (2020). The spending watchdog found that more than half of the public pandemic contracts 

(£10.5 billion) related to personal protective equipment such as masks and protective gloves for 

health care workers, were awarded without a competitive tender. Nearly a third of these suppliers 

had links to politicians or senior officials and were referred to a ‘high priority’ channel, which was 

10 times more likely to succeed in obtaining a contract than the regular competitive channel (Conn 

& Evans, 2020). Many of these suppliers had little or no experience in supplying personal 

protective equipment. For instance, a contract of £108 million was awarded to a chocolate 

wholesaler (Archer, 2020). In some cases, the paperwork stating why suppliers had been selected 

was missing and contracts were made only after the companies had already started the work (Pegg, 

Lawrence, & Conn, 2020).  

Scandals involving links between politicians and private-sector firms (political connections) are 

by no means isolated incidents and can be found in virtually all countries. For instance, following 

a leak from the Panamanian law firm, Mossack Fonseca, the ‘Panama Papers’ revealed that the 

firm created thousands of shell companies for hundreds of politicians and public officials 

throughout the world (Harding, 2016). Evidently, not all entities involved in such political 

connections scandals are necessarily wrongdoers, but these examples highlight the need for 

transparency regarding political connections. This is especially the case given that the number of 

people and firms is persistently increasing, whereas budgets for audits are either remaining stagnant 

or are dropping. The United States Internal Revenue Service audited merely 0.45% of personal 

income-tax returns in 2019, less than half of the audit rate in 2010 (Rubin, 2020). 
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In this article, we use supervised machine learning algorithms to predict political connections by 

constructing a novel firm population dataset from Czechia. Recently, machine learning algorithms 

have been found to improve predictions of many outcomes, such as poverty (Blumenstock, 2016; 

Jean, et al., 2016), teacher quality (Chalfin, et al., 2016), jail-or-release decisions (Kleinberg, 

Lakkaraju, Leskovec, Ludwig, & Mullainathan, 2018), Post Traumatic Stress Disorder (Abbasi, 

2019), and even mortality (Puterman, et al., 2020). Ranking among the most corrupt countries in 

Europe according to the Transparency International's Corruption Perception Index (Transparency 

International, 2019), Czechia is not a stranger to political connections scandals. On 4 June 2019 

for instance, Czechia witnessed its biggest political protest since the fall of communism after the 

European Commission confirmed that the Czech Prime Minister Andrej Babis had significant 

conflicts of interests related to his private businesses. Specifically, his businesses received almost 

20 million euros of EU agricultural subsidies while being Prime Minister (de Goeij & Santora, 

2019). A unique feature of Czechia is that information on political connections is publicly 

available, although scattered. Many other countries such as France, Portugal, Canada, and the 

United States have introduced a ban on corporate donations to political parties and information on 

firms’ ownership structure and management are not available.1 In Czechia, however, political 

donations are allowed, and firms’ ownership structure and management can be retrieved. By 

employing web scrapers and matching algorithms, we brought this information together, allowing 

us to observe political connections for the entire population of Czech firms. We consider firms as 

 
1 Although banning corporate donations may appear as an effective policy to curb political connection at first sight, 

firms can still obtain connections by having their top officers (CEO, president, chairperson) affiliated with politicians 

or by politicians having equity in the firm (Faccio, 2006). These political connections are often even more difficult to 

track than corporate donations, leading to even less transparency than before the ban. 
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politically connected when they either have donated to a political party, have members of 

managerial boards who donated to a political party, or have members of (supervisory) boards who 

ran for office in the parliament, the Senate, a regional council, or a municipal council.  

 Politically connected firms generate substantial economic and welfare costs for the society, 

reaching up to 1.9% of GDP every year (Khwaja & Mian, 2005). These costs include higher product 

prices, poorly executed public works, hiring of less competent individuals, erosion in employment 

standards, and an overall lack of efficiency (Cingano & Pinotti, 2013; Colonnelli, Prem, & Teso, 

2020; Fisman & Wang, 2015; Titl & Geys, 2019). Despite these negative implications of political 

connections, both firms and politicians have an incentive to become politically connected (Cingano 

& Pinotti, 2013; Faccio, 2006; Sukhtankar, 2012). Firms may benefit from politically channelled 

loans and contracts as well as regulatory benefits. On the other hand, politicians may garner votes 

and extract resources for political campaigns as long as the political connections remain 

unrecognized by the public. Given the large negative costs of political connections, it is critical to 

identify which firms are politically connected. 

Our paper is closely related to the recent literature on ‘prediction policy problems’ in general 

(Kleinberg, Ludwig, Mullainathan, & Obermeyer, 2015), and on ‘predictive policing’ in particular, 

the idea that criminal activities can be predicted and therefore prevented before they happen 

(Brayne, 2017; Meijer & Wessels, 2019). For instance, Wheeler and Steenbeek (2020) use machine 

learning algorithms to predict robberies in Dallas (US), whereas Kondo et al. (2019) use them to 

detect and forecast accounting fraud. These types of algorithms seem to be very effective in 

combatting crime. Mohler et al. (2015) found that a machine learning algorithm used in the United 

States and the United Kingdom predicted 1.4 to 2.2 times more crime compared to a dedicated 

crime analyst. Similarly, Mastrobuoni (2020) estimated that 8 percentage points more robberies 

were solved as a result of a predictive policing software used in Italy.  
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Machine learning algorithms have also been employed to predict corruption. In the absence of 

data on political connections, most studies were conducted at the aggregate level. Lima and Delen 

(2020) analyze cross-country data to predict and explain corruption across countries. Lopez-

Ituriaga and Sanz (2018) use information on criminal cases involving a politician or a public official 

to estimate corruption risk for Spanish provinces. At a more local level, de Blasio, D’Ignazio, and 

Letta (2020) and Ash, Gelletta, and Giommoni (2020) predict corruption crimes in Italian and 

Brazilian municipalities, respectively. Other studies have used more detailed, contract-level data, 

to detect corruption in public procurement in Colombia (Gallego, Rivero, & Martinez, 2021) and 

in Italy (Decarolis & Giorgiantonio, 2020). We build on this literature by employing machine 

learning algorithms at the level of actual political connections.  

Data 

Our data include all firms registered in Czechia in 2018. Data on political donations were partly 

published in written reports held in the Parliamentary Library of the Czech Republic. We manually 

transcribed these reports into Microsoft Excel files. Another proportion of political donations was 

available on the website of the Office for Economic Supervision of Political Parties and Political 

Movements.2 Using company identifiers, we merged these two sources of political donations 

together by matching all donations made by firms to political parties as well as the exact amounts. 

To obtain data on donating board members, we used a web scraper to download lists of board 

members of all Czech companies from the Czech company registry.3 We matched the lists of 

individual persons who donated with the lists of board members of all Czech companies based on 

full name, date of birth, place of residence and academic title of each individual. Finally, the data 

 
2 Accessible at https://www.udhpsh.cz/ 
3 Accessible at https://portal.justice.cz/Justice2/Uvod/uvod.aspx 
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on (supervisory) board members that ran for political offices was created by matching elections’ 

candidate lists4 and the lists of board members of all Czech companies mentioned above. Part of 

the data on political donations and partially also personal connections are now available on a 

website PolitickeFinance.cz maintained by Datlab Institute.5 The complete assembled political 

connections data will be made available upon request. 

The data on predictors were obtained from Orbis database collected by Bureau van Dijk. This 

database provides standardised annual accounts (consolidated and unconsolidated), financial ratios, 

sectoral activities, and ownership data. We use all suitable variables included in the Orbis database 

as predictors of political connections.6 According to the Czech law, all firms should submit their 

annual reports and yearly financial accounts to the company registry collected by Bureau van Dijk. 

Therefore, the Czech version of the dataset is much more complete than datasets from other 

countries covered by the database such as the United Kingdom or Germany. Moreover, merging 

these financial data with our self-compiled political connections data was straightforward by using 

company identifiers in both datasets. Lastly, we collected information about the value of public 

procurement contracts supplied by the firms and the value of subsidies from the European Union 

they received. This information is public in Czechia and was scraped from the official websites ran 

by the Ministry of Regional Development.7 The datasets were hand cleaned by a private company 

called Datlab, s.r.o. 

The final dataset includes 254,367 firms, with each record containing financial and industry 

information as well as whether the firm was politically connected in 2018. We define political 

 
4 Accessible at https://www.volby.cz/ 
5 Accessible at http://www.politickefinance.cz/ 
6 For instance, we do not use names of the auditors as they constitute categorical variables with too many unique 

values. 

7 Accessible at https://www.mmr.cz/cs/uvod and http://www.isvz.cz/ISVZ/Podpora/ISVZ.aspx. 
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connections as an indicator given value of 1 if the firm was politically connected and 0 otherwise. 

Firms are considered politically connected when they either have donated to a political party, have 

members of managerial boards who donated to a political party, or have members of (supervisory) 

boards who ran for office in the Czech parliament, the Senate, a regional council or a municipal 

council. Note that we do not observe, for instance, whether a firm is politically connected through 

a cousin or a best friend. We count 11,850 politically connected firms in 2018, comprising 4.65% 

of the overall sample. Descriptive statistics are presented in Table 1.  

 

TABLE 1: DESCRIPTIVE STATISTICS 
Predictor Variable Mean Std. Dev. Min. Max. 
Profit margin 0.7 16.5 -100 100 
Return on capital 1.8 36.8 -984 1,000 
Solvency ratio  20.6 37.7 -100 100 
Number of employees 12.0 93.3 0 10,000 
Number of director managers 1.5 1.1 0 55 
Number of subsidiaries 0.02 0.4 0 113 
Age (in years) 9.7 6.1 0 92 
Total assets (mil. EUR) 1.4 43.3 -18 16,806 
Operating revenue (mil. EUR) 1.6 28.2 -42 6,710 
Profit and loss (mil. EUR) 0.1 4.4 -283 1,717 
Profit before tax [thous. EUR] 64.4 5,146.0 -256,350 2,071,165 
Cash flow [thous. EUR] 95.5 3,302.6 -187,811 686,970 
Market capitalisation (mil. EUR) 0.1 36.3 0 17,336 
Number of recorded shareholders 0.4 0.6 0 40 
Shareholders’ funds (thous. EUR) 638.6 23,507.1 -440,914 6,706,487 
Financial expenses (thous. EUR) 73.2 4,594.2 -7,996 1,546,976 
Operat. profit and loss (thous. EUR) 64.0 4,723.4 -256,752 2,002,007 
Value of public procurement 37,424 3,592,569 0 1,244,676,100 
Value of EU subsidies 17,240 904,408 0 279,395,085 
Last year of submitted reports 1,953.1 328.9 0 2,018 
Based in Prague 0.3 0.5 0 1 
Sector (categorical)     
Politically connected 0.05 0.2 0 1 
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Methods 

To predict political connections, we start from a logistic regression, which is widely used to 

predict binary outcomes. Then, we employ four commonly used supervised machine learning 

techniques: ridge regression, Least Absolute Shrinkage and Selection Operator (LASSO), random 

forests, and random forests with boosting. All models have been performed using R version 3.6.3, 

and the script will be provided upon request. For each method, we divide the sample into a training 

set used to estimate the parameters of the models, and a test set in which we predict political 

connections using the models. This is because using the same sample to both estimate the model 

and predict political connections leads to a training error rate that may dramatically underestimate 

the true error rate once the model is estimated on a different sample. In comparison to the training 

error rate, the test error rate is a better approximation of the true error rate (James, Witten, Hastie, 

& Tibshirani, 2013). 

In our sample, only 4.65% of firms are politically connected. This is problematic because 95.35% 

of firms will be correctly identified when firms are always predicted not to be politically connected. 

To prevent the algorithms to achieve high accuracy by always predicting the most common group, 

we follow the literature on corruption prediction (de Blasio, D'Ignazio, & Letta, 2020) and use the 

Synthetic Minority Oversampling TEchnique (SMOTE) (Chawla, Bowyer, Hall, & Kegelmeyer, 

2002). This technique essentially randomly undersamples the majority class, i.e., not politically 

connected firms. Instead of estimating the models on all politically connected and not politically 

connected firms in the training set, we balance the number of politically connected and not 

politically connected firms by randomly taking a subset of the not politically connected firms. For 

instance, if our training set includes 5,000 politically connected firms, we randomly draw 5,000 

not politically connected firms to be used in the training set.  We perform SMOTE using the DMwR 

package in R. 



10 
 

Although randomly dividing the sample in a training and a test set leads to better predictions than 

solely using the training set, this random division can lead to a test error rate that can be highly 

variable depending on the observations that are included in the two sets. A commonly used 

approach to reduce this variability is the k-Fold Cross-Validation resampling method. This method 

randomly divides the set of observations into k non-overlapping groups (folds). For each group, the 

sample is divided into a training set and a test set and the classification error rate is calculated. The 

classification error rate is the ratio of the number of firms that were incorrectly classified as 

politically connected and not politically connected over the total number of firms in the test set. 

The mean classification error rate is then computed by averaging the k classification rates obtained 

from the different folds. In our application, we opted for the commonly used 10-Fold Cross 

Validation in which data are split into a 90% training set and a 10% test set for each fold. This 

choice was made for three reasons. First, 10-Fold Cross Validation is widely used in the literature 

which aids in reproducibility and comparison with other studies. Second, it is computationally 

efficient as it only estimates the models 10 times. Lastly, it is beneficial to keep the training set 

large as models tend to be more efficient in large samples, reducing the variance of the test error 

rate. We performed 10-Fold Cross Validation in R using the boot package. 

We compare methods based on their accuracy of prediction: the number of correctly classified 

firms divided by the total number of firms. Further, we also estimate the sensitivity and the 

specificity of each model. The sensitivity of a model is the number of correctly classified politically 

connected firms divided by the total number of correctly classified firms. Analogously, the 

specificity of a model is the number of correctly classified not politically connected firms divided 

by the total number of correctly classified firms. Calculating sensitivity and specificity of the 

models is useful because it is more costly to believe that politically connected firms are not 

politically connected than vice-a-versa from a policy perspective. 
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Logistic Regression 

We start with a classic logistic regression model used for binary outcomes. It can be formulated 

as follows: 

(1) log ( 𝑃𝑃(𝑌𝑌𝑖𝑖=1)
1−𝑃𝑃(𝑌𝑌𝑖𝑖=1)

) =  𝛽𝛽0 + 𝜹𝜹𝑿𝑿𝒊𝒊 

where 𝑌𝑌𝑖𝑖 is indicator given a value of 1 if firm 𝑖𝑖 is politically connected and 0 if firm 𝑖𝑖 is not 

politically connected and 𝑿𝑿𝒊𝒊 is a set of predictors. The left-hand side of Equation 1 specifies the 

log odds of being politically connected. We convert these log odds into probabilities ranging from 

0 to 1. As common in the literature on prediction, we define a firm to be politically connected if 

the probability of being politically connected exceeds 50%. This is a more conservative approach 

than the approach based on the Receiver Operating Characteristic (ROC) curve in which the 

researcher seeks a threshold to maximize the model performance. Nonetheless, we opted for the 

conventional 50% threshold because it is widely used, intuitive, and the model performs well 

regardless. Thus, our models estimate a lower bound and we use this conservative approach for all 

models that follow. We perform logistic regression using the glm package in R. 

Shrinkage Estimators 

It is unlikely that all the predictors used in the logistic regression in Equation 1 are useful in 

predicting political connections. Including irrelevant variables leads to unnecessary complexity, 

risk of overfitting, a higher variance in prediction and a larger test set error. For this purpose, we 

use two common shrinkage estimators: ridge regression and Least Absolute Shrinkage and 

Selection Operator (LASSO). In this approach, we fit a logistic regression that includes all 

predictors while shrinking (regularizing) some of the coefficients towards zero. This approach has 

been found to improve the fit by greatly reducing variance of predictions while slightly increasing 

the bias. 
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Ridge binomial regression (linear version introduced by Hoerl and Kennard (1970)) maximizes 

a penalized version of the log-likelihood. From the standard binomial log-likelihood, a shrinkage 

penalty of the following form 𝜆𝜆∑ |𝛽𝛽𝑗𝑗2|/2𝑝𝑝
𝑗𝑗=1  is subtracted (𝛽𝛽 here represents the regression 

coefficients). The penalty tends to shrink the coefficients towards zero. The tuning parameter 𝜆𝜆 sets 

the level of shrinkage. If 𝜆𝜆 is zero, the ridge regression resorts to a standard logistic regression. The 

higher the 𝜆𝜆, the more ridge regression coefficients will approach zero, but never reach zero. Ridge 

regression is very sensitive to the scaling of each predictor. Therefore, ridge regression is applied 

after standardizing the predictors. The standardization is done by default by the SuperLearner 

package. 

The potential disadvantage of ridge regression is that it does not exclude any of the coefficients. 

Although coefficients are shrunk towards zero, they never reach zero. LASSO (formalized by 

Tibshirani (1996)) overcomes this advantage by maximizing with the log-likelihood with the 

following shrinkage penalty 𝜆𝜆∑ |𝛽𝛽𝑗𝑗
𝑝𝑝
𝑗𝑗=1 |. With LASSO, coefficients can be exactly zero. Therefore, 

LASSO will select some of the variables and discard others. In contrast, ridge regression always 

includes all the variables in the model. Depending on whether all variables are relevant or not, one 

method may outperform the other. We performed both ridge regression and LASSO using the 

SL.glmnet function in the SuperLearner package in R. We used the default option of the package, 

which chooses the optimal tuning parameter 𝜆𝜆 that minimizes the classification error from 100 

different values of the parameter. 
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Tree-Based Methods 

The main disadvantage of logistic regression and shrinkage estimators is that interactions and 

nonlinearities (e.g., higher degree polynomials) need to be modelled explicitly. With many 

predictors, this process is cumbersome and largely arbitrary. By contrast, tree-based methods 

capture interactions and nonlinearities by construction (Basu, Kumbier, Brown, & Yu, 2018; 

Mullainathan & Spiess, 2017). The classification tree algorithm considers all possible splits of all 

predictors and chooses the one that minimizes classification error. The most predictive split (which 

reduces classification error the most) is placed on the top of the tree. Repeating this process from 

top to bottom results in the construction of a classification tree. Consider in Figure 4 a fictitious 

example in which we classify 100 firms as being politically connected or not connected using only 

three variables: the number of employees, the operational result, and registered capital. A relatively 

large firm (more than 10,000 employees), with a strong operational result (more than 150 million 

euros), and less than 1 billion euros in registered capital has a higher probability to be not connected 

(8/15). Therefore, this firm will be classified as not connected. 
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FIGURE 4: A FICTITIOUS EXAMPLE OF A CLASSIFICATION TREE FOR POLITICAL CONNECTIONS 
 

Note:  A relatively large firm (more than 10,000 employees), with a strong operational result (more than 150 million 

euros), and less than 1 billion euros in registered capital has a higher probability to be not connected (8/15) and will 

be classified as not connected. 

 

A limitation of classification trees is that they suffer from high variance. A small change in the 

training data can lead to a large change in the estimated tree. The accuracy of predictions can be 

improved when combining information from several classification trees into an ensemble method 

called “random forest”, pioneered by Ho (1995) and later Breiman (2001). In this algorithm, several 

random samples are drawn from the training set and a decision tree is grown on each sample 

(bagging). Moreover, a random subset of the predictors is chosen as possible split variables at each 

split. To aggregate trees, each tree is given one vote and firms are classified by a majority vote. We 

perform random forests using the SL.randomForest function in the SuperLearner package in R. In 

our case, we use the default options of the package: 1,000 trees are grown and the number of 

predictors used in each tree is set to the square root of the total number of predictors. 
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Another possible improvement to classification trees is boosting, proposed by Friedman (2001). 

Unlike a random forest that constructs trees independent of the other trees, the boosting algorithm 

operates iteratively and constructs trees sequentially by learning from the previously constructed 

trees. As each tree is constructed using information from previously constructed trees, smaller trees 

are typically sufficient. The boosting algorithm learns sequentially by first growing a classification 

tree and then reweighting the data for the next classification tree. Misclassified observations get 

more weight. We performed boosting using the SL.XGBoost function from the SuperLearner 

package in R. As the tuning parameters, we opted for the default values: the number of trees equals 

to 1,000, the maximum depth of a tree equals 4, and the minimum number of observations allowed 

per tree nodes equals 10. 

Results 

We predict political connections with logistic regression and four commonly used supervised 

machine learning techniques: ridge regression, Least Absolute Shrinkage and Selection Operator 

(LASSO), random forests and boosting. Figure 1 reports the prediction accuracy of different 

models on the test set, namely on a sample that the algorithm has not yet seen before. For instance, 

the figure shows that if 5,000 connected firms and 5,000 not connected firms are used to train the 

algorithm, boosting is 84.1% accurate in predicting which firms are politically connected on a 

subsample of the same size randomly drawn from the rest of the sample. 

Figure 1 shows that all five models are highly able to predict which firms are politically 

connected. It appears that random forests and boosting perform best, especially when the number 

of firms used to train the algorithm is large. Nonetheless, even with merely 200 firms, all algorithms 

predict political connections with about 75% accuracy, much higher than under random auditing. 

We further examine whether this high accuracy stems from the correct prediction of politically 
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connected or not politically connected firms. From a policy perspective, it is more costly to believe 

that politically connected firms are not politically connected than vice-a-versa. Figure 2 shows the 

true positive rate, namely the rate at which politically connected firms are correctly predicted 

(sensitivity). Figure 3 shows the true negative rate, the rate at which not politically connected firms 

are correctly predicted (specificity). Given that the true positive rate is mostly higher than the 

accuracy overall, it appears that the high accuracy mainly stems from correctly predicting 

politically connected firms. Especially boosting and random forests are better in predicting 

politically not connected firms, compared to the other methods. All five methods exhibit similar 

levels of accuracy with regard to predicting politically connected firms, although the variation in 

the accuracy levels appears higher. 
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FIGURE 1: ACCURACY OF PREDICTING POLITICAL CONNECTIONS USING MACHINE LEARNING 

 
Note:  The figure can be interpreted as follows: if 5,000 connected firms and 5,000 not connected firms are used to 

train the algorithm, boosting is 84.1% accurate in predicting which firms are politically connected on a subsample of 

the same size randomly drawn from the rest of the sample. The figure displays 95% confidence intervals. 
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FIGURE 2: SENSITIVITY OF PREDICTING POLITICAL CONNECTIONS USING MACHINE LEARNING 
 

Note:  The figure can be interpreted as follows: if 5,000 connected firms and 5,000 not connected firms are used to 

train the algorithm, boosting predicts 87.2% of politically connected firms correctly in a subsample of the same size 

randomly drawn from the rest of the sample. 
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FIGURE 3: SPECIFICITY OF PREDICTING POLITICAL CONNECTIONS USING MACHINE LEARNING 
 

Note:  The figure can be interpreted as follows: if 5,000 connected firms and 5,000 not connected firms are used to 

train the algorithm, boosting predicts 81% of not politically connected firms correctly in a subsample of the same size 

randomly drawn from the rest of the sample. 
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Discussion 

We used supervised machine learning algorithms to predict political connections by constructing 

a novel firm population dataset from Czechia. The models obtained high accuracy, higher than the 

conventional logistic regression, by using only firm-level financial and industry indicators that are 

widely available in most countries. These results suggest that machine learning algorithms could 

be used by public institutions to help identify firms whose political connections could represent 

major conflicts of interests. Firms identified by the algorithms as politically connected can be 

targeted for inspection. Thereby, we could avoid welfare losses coming with politically connected 

firms (reaching up to 1.9% of GDP every year according to Khwaja & Mian, 2005). These losses 

include higher product prices, poorly executed public works, hiring of less competent individuals, 

erosion in employment standards, and an overall lack of efficiency (Cingano & Pinotti, 2013; 

Colonnelli, Prem, & Teso, 2020; Fisman & Wang, 2015; Titl & Geys, 2019). In this respect, the 

Ukranian system ‘Dozorro’ can be used as an inspiration (Observatory of Public Sector Innovation, 

2016). This system employs machine learning algorithms in public procurement to detect tenders 

with a high level of corruption. Once the algorithm detects suspect tenders or purchases, they are 

reported to the authorities to be investigated. Given the high costs of political connections and the 

low share of firms that are randomly inspected, targeted audits based on machine learning 

algorithms could deter firms from malpractice as they would have a higher chance of being 

inspected than under random auditing. Nonetheless, we believe that targeted audits would be most 

effective if also some of the randomness in inspections were maintained. Over time, we expect 

firms to become familiar with machine learning algorithms and firms may improve their ability to 

fool the algorithm. Random audits would ensure that even the low-risk firms have some chance of 

being inspected. It is also useful to maintain some random auditing to persistently update the 

algorithm parameters for further targeted inspections (Ash, Galletta, & Giommoni, 2020). Further 
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studies should analyze the optimal ratio of targeted to random inspections and investigate whether 

targeted algorithmic inspections may have larger spillover effects on non-inspected firms than 

random inspections. 

Although machine learning algorithms appear to predict political connections with great 

accuracy, the algorithms are not always easily interpretable. In this article, we have used relatively 

simple machine learning algorithms and have refrained from using black-box models such as neural 

networks. These black-box algorithms store nonlinear relationships between variables in a 

nonobvious form (Murdoch, Singh, Kumbier, Abbasi-Asl, & Yu, 2019), but in return achieve an 

even greater predictive accuracy. It is therefore likely that even more politically connected firms 

could be predicted accurately if more complex algorithms were used at the expense of 

interpretability. Nonetheless, our results indicate that even relatively easily interpretable algorithms 

such as random forests can predict political connections with a high accuracy. 
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