
Computers & Geosciences 162 (2022) 105083

A
0

Contents lists available at ScienceDirect

Computers and Geosciences

journal homepage: www.elsevier.com/locate/cageo

Research paper

Scalability and composability of flow accumulation algorithms based on
asynchronous many-tasks
Kor de Jong a,b,∗, Debabrata Panja b, Derek Karssenberg a, Marc van Kreveld b

a Department of Physical Geography, Faculty of Geosciences, Utrecht University, Princetonlaan 8A, 3584 CB, Utrecht, The Netherlands
b Department of Information and Computing Sciences, Faculty of Science, Utrecht University, Princetonplein 5, 3584 CC, Utrecht, The Netherlands

A R T I C L E I N F O

Keywords:
Modelling framework
Flow accumulation
High-performance computing
Asynchronous many-tasks
HPX
LUE

A B S T R A C T

Models simulating the state of the biological and physical environment can be built using frameworks that
contain pre-developed data structures and operations. To achieve good model performance it is important
that individual modelling operations perform and scale well. Flow accumulation operations that support the
use of criteria for selecting how much material flows downstream are an important part in several Earth
surface simulation models. For these operations, no algorithms exist that perform, scale, and compose well.
The objective of this study is to develop these algorithms, and evaluate their performance, scalability, and
composability. We base our algorithms on the asynchronous many-task approach for parallel and concurrent
computations, which avoids the use of synchronization points and supports composability of modelling
operations. The relative strong and weak scaling efficiencies when scaling a flow accumulation operation
over six CPU cores in a NUMA node are 83% and 84% respectively. The relative strong and weak scaling
efficiencies when scaling a case-study model over four cluster nodes are 73% and 84%. Our algorithms are
composable: the latency of executing two flow accumulation operations combined is lower than the sum of
their individual latencies.
1. Introduction

The changing state of the biophysical environment through time and
space can be simulated using computer models. Modelling frameworks1

contain data structures and operations which can be used to develop
simulation models in less time, by model developers who do not
have to know about the details involved in implementing the data
structures and operations. Given the continuous increase in tempo-
ral and spatial extent and resolution of datasets, and the subsequent
increase of model complexity to incorporate more detailed environ-
mental process descriptions, it is important that modelling frameworks
support the development of models that perform and scale well over
additional hardware. For some modelling operations good performance
and scalability is easier to achieve than others. An important aspect
of a modelling operation that potentially limits its performance and
scalability when parallelized is the spatial dependency of output values
on input values. Parallelizing modelling operations generally involves
dividing the spatial domain into partitions, each of which is processed
by a separate worker, like an OS thread on a CPU core. In case of spatial
dependencies of output values on input values, data must be exchanged

∗ Corresponding author at: Department of Physical Geography, Faculty of Geosciences, Utrecht University, Princetonlaan 8A, 3584 CB, Utrecht, The Netherlands.
E-mail addresses: k.dejong1@uu.nl (K. de Jong), d.panja@uu.nl (D. Panja), d.karssenberg@uu.nl (D. Karssenberg), m.j.vankreveld@uu.nl (M. van Kreveld).

1 We use the term framework loosely, to mean software containing at least data types and algorithms, used for the development of individual models. This
includes the case of a software library implementing these, but excludes integration frameworks used for coupling models.

between workers. The performance and scalability of such an operation
depends on how well workers are able to cooperatively carry out the
total amount of work. Examples of modelling operations with spatial
dependencies of output values on input values are spreading operations
and flow routing operations (Burrough et al., 2015).

The current paper concerns routing of material over a D8 flow direc-
tion raster using flow accumulation operations. In a D8 flow direction
raster, each cell is assigned a direction of one of its 8 neighbours
to which it drains (O’Callaghan and Mark, 1984). This results in a
dense non-divergent directed acyclic graph of which the main branches
correspond with the hydrologic network of streams and rivers. Flow
accumulation operations are part of several Earth surface simulation
models, examples of which are LISFLOOD (Burek et al., 2013), used for
the European Flood Awareness System (EFAS), and the PCR-GLOBWB
global water balance model (Sutanudjaja et al., 2017).

Flow accumulation algorithms that can be found in the literature
solve the problem of transporting all material in downstream direction
(Ortega and Rueda, 2010; Sten et al., 2016; Barnes, 2017; Cordonnier
et al., 2019; Zhou et al., 2019; Kotyra et al., 2021), but sometimes flow
vailable online 18 March 2022
098-3004/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access a

https://doi.org/10.1016/j.cageo.2022.105083
Received 15 October 2021; Received in revised form 8 February 2022; Accepted 25
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

February 2022

http://www.elsevier.com/locate/cageo
http://www.elsevier.com/locate/cageo
mailto:k.dejong1@uu.nl
mailto:d.panja@uu.nl
mailto:d.karssenberg@uu.nl
mailto:m.j.vankreveld@uu.nl
https://doi.org/10.1016/j.cageo.2022.105083
https://doi.org/10.1016/j.cageo.2022.105083
http://creativecommons.org/licenses/by/4.0/

Computers and Geosciences 162 (2022) 105083K. de Jong et al.

2
c
p
a

Table 1
Examples of flow accumulation operations and criteria used for calculating the amount of outflow material o and residue
r per cell, given the flow directions d, total amount of inflow of material i, and either a fraction f or a threshold t. All
arguments are rasters.
Operation Outflow calculation

o = accu(d, i) The total amount of inflow material.
o, r = accu_fraction(d, i, f) A fraction of the amount of inflow material.
o, r = accu_threshold(d, i, t) The amount of inflow material exceeding a threshold.
o, r = accu_capacity(d, i, t) The amount of inflow material below a threshold.
o, r = accu_trigger(d, i, t) The total amount of inflow material, once a threshold is exceeded.
i
i
a
f

o
f
A
c
a
t

i
(
c
t
a
p
c
n
p
e
w

u
b
a
a
f
a
n
a
i

d
W
e
c
r

o
H

accumulation operations are required that use a criterion to split the
total amount of material entering a cell (inflow) into an amount that
is transported downstream (outflow) and an amount that remains in
the cell (residue, Table 1, (Karssenberg, 2006)). An example of such a
criterion is a threshold representing the minimum amount of material
that has to be received by a cell before excess material starts to be
transported downstream. Using this operation, henceforth referred to as
accu_threshold, the process of Hortonian overland flow (Hendriks,
010) can be simulated, for example. Examples of other processes that
an be simulated by these operations are loss of material while on trans-
ort (using accu_fraction), flow through a sewage system (using
ccu_capacity), and mass movements (using accu_trigger).

The various existing flow accumulation algorithms have different
computational properties. We focus on flow accumulation algorithms
that use CPU cores rather than GPU devices. Distributing work over
multiple GPUs in multiple cluster nodes complicates the algorithms
and makes the implementation less portable. In Zhou et al. (2019) a
review of serial algorithms is provided and a new algorithm is presented
that offers better performance than those reviewed. Although this
algorithm only considers the basic flow accumulation function, without
using a criterion, it can be extended to support the flow accumulation
operations that do use one. One limitation of the algorithm is that it is
not capable of using multiple CPU cores, which limits its applicability to
relatively small problems. In Kotyra et al. (2021) it has been concluded
that a parallel version of the algorithm by Zhou et al. (2019) performs
best compared to other parallel algorithms they tested; one limitation
of their algorithm is that is not capable of using multiple nodes in
a compute cluster. Barnes (2017) presents an approach for distribut-
ing flow accumulation computations over multiple processes. For this
algorithm to work, the spatial domain is partitioned into rectangular
partitions. Like in the case of the algorithm presented in Zhou et al.
(2019), this algorithm only considers flow accumulation without using
a criterion, but this algorithm cannot be easily extended to support the
other kinds of flow accumulation operations. The algorithm by Barnes
(2017) requires that there is a linear relation between the amount of
material entering a partition and the amount leaving it. This allows the
algorithm to calculate a final result efficiently, in a single concurrent
step per partition, without having to iterate over partitions containing
upstream parts of large scale streams to partitions containing down-
stream parts. Given our requirement of being able to use a criterion,
we cannot use the final steps of this algorithm. The criteria used by
accu_threshold, accu_capacity, and accu_trigger require
that the total amount of inflow of material in a cell is known, before
the amounts of residue and outflow of material from that cell can be
calculated.

The fact that, in the general case, flow accumulation results for cells
of streams that flow from spatial domain partition to domain partition
must be calculated in order, going from upstream to downstream
direction, implies that there is a temporal load imbalance between
partitions. The larger the flow direction raster and the more partitions
involved in calculating the flow accumulation result, the larger this
load imbalance can become. This is important when flow accumulation
is used in a calculation involving other operations as well, like in a
simulation model or a GIS workflow. Performance and scalability of
2

such calculations will be limited when subsequent calculations have to i
wait on the last partition of the flow accumulation operation to finish.
In case of such a synchronization point, workers like CPU cores or
even whole cluster nodes may be drained of useful work to do. Ideally,
partitions for which flow accumulation operation calculations have
finished should already participate in calculations of other operations.

We call a set of modelling operations composable when the time
t takes the set to finish executing is shorter than the sum of their
ndividual latencies. To the best of our knowledge no existing flow
ccumulation algorithm has been designed taking into account that the
low accumulation operation will be combined with other operations.

The problem we try to solve is the parallelization and distribution
f a set of flow accumulation algorithms, some of which use a criterion
or determining how much material flows downstream from each cell.
s an additional requirement, we want the resulting operations to be
omposable with other operations. Our objective, therefore, is to design
general scheme for flow accumulation algorithms that enables them

o perform well, scale well, and compose well with other operations.
To reach our objective, we make use of an approach for writ-

ng parallel and distributed software called asynchronous many-tasks
AMT), as implemented in the HPX C++ library for parallelism and
oncurrency (Kaiser et al., 2020). One advantage of using AMT is
hat it allows the software developer to define tasks, representing an
mount of work to be performed, to be asynchronously scheduled,
otentially allowing work from multiple operations to be scheduled
oncurrently and executed in parallel. We designed and expressed our
ew algorithms in terms of AMT concepts and the HPX API, added
rototype implementations to the LUE2 modelling framework (de Jong
t al., 2021), and performed experiments to assess their strong and
eak scalability, and their composability.

Our results show that our AMT-based algorithms are capable of
sing additional hardware efficiently, and perform well when com-
ined. The strong and weak scaling efficiencies when scaling a flow
ccumulation operation of six physical CPU cores in a NUMA node
re 83% and 84% respectively. When scaling a case-study model over
our cluster nodes containing 48 physical CPU cores each, the strong
nd weak scaling efficiencies are 73% and 84% respectively. Also, the
ew algorithms are composable: the latency of executing two flow
ccumulation operations combined is lower than the sum of their
ndividual latencies.

The organization of this paper is as follows. We start with an intro-
uction of AMT, HPX and the LUE modelling framework (Section 2).
e then describe our flow accumulation algorithms (Section 3), and the

xperiments we performed (Section 4). The results of the experiments
an be found in Section 5. We finish the paper with a discussion of the
esults and our conclusions (Section 6).

2 LUE stands for Life, the Universe and Everything, which is the title of one
f the books in Douglas Adams’ Hitchhiker’s Guide to the Galaxy ‘‘trilogy’’.
ere, it refers to the fact that in designing LUE we try to make it applicable

n as many contexts as possible.

Computers and Geosciences 162 (2022) 105083K. de Jong et al.
2. AMT, HPX, And the LUE modelling framework

We start with a brief introduction of some major aspects of AMT,
the HPX implementation thereof (Kaiser et al., 2020), and the use of
AMT and HPX in the LUE environmental modelling framework (de Jong
et al., 2021).

With the AMT programming model the software developer defines
relatively small tasks of work that need to be performed, and the
dependencies between them. Once tasks have been created, the AMT
runtime system is responsible for executing them in a correct order,
using the available workers (e.g. CPU cores). To increase the chance
that an AMT program performs and scales well, it should create enough
tasks that are ready to run to keep all workers busy. Tasks are therefore
spawned asynchronously, and they must have as few dependencies as
possible between them.

HPX is an implementation of the AMT programming model and
runtime. It is an open source software library written in portable
C++ 11/14/17/20 code. With HPX, every system, ranging from lap-
tops to compute clusters, is represented as a single abstract machine,
containing one or more localities. For our purposes, localities are equal
to operating system processes, so we will use the more familiar term
process. Each process exposes plain actions and component actions.
Plain actions are globally accessible free functions without state, and
component actions are globally accessible member functions of objects
with state. The software developer uses the HPX API to define these
actions. An HPX task is a lightweight HPX thread. A task can call an
action and can execute locally or remotely, in a different process. When
an HPX task is spawned asynchronously, a future object to the result is
returned immediately. This object represents a result that may not be
computed yet, and it allows one or more continuations to be attached,
which get called once the future they are attached to becomes ready.
Futures can be composed to represent relations between tasks. HPX
components are globally addressable (using an ID) instances of classes.
A component server is the actual instance, located in a process. A
component client is a lightweight object providing access to a possibly
remote server instance. It is semantically equal to a shared future
to the ID of the remote server instance. HPX channel components
allow asynchronous communication between different tasks in different
processes.

LUE is a modelling framework targeted at domain experts, like
hydrologists, soil scientists and biologists. The modelling operations
are inspired by map algebra (Tomlin, 1990). LUE currently contains
a set of local, focal, zonal, and global operations. In LUE models,
time is typically discretized in time steps, and space in raster cells.
For model developers LUE provides a Python language binding, which
allows them to use the common procedural programming paradigm
to implement models. Models run unchanged on laptops and compute
clusters. To the modeller, LUE models look similar to models created
with other map algebra implementations, like ArcGIS (Esri, 2021),
GDAL (GDAL/OGR contributors, 2021), GRASS (Neteler et al., 2012),
and PCRaster (van Deursen et al., 2019). The core data structure
used in the current LUE API is the partitioned array. A partitioned
array contains array partition clients referring to partition servers
containing a rectangular section of the overall array. In the imple-
mentation, LUE modelling operations attach continuations to array
partition clients. These continuations asynchronously spawn work and
immediately return new array partition clients, to be used as input
for other operations. Depending on the dependencies between the
array partition clients, tasks from multiple modelling operations can be
scheduled for execution at the same time, in parallel. LUE distributes
array partition servers, containing the array data, evenly over the
processes. Work generated by modelling operations translate input
partitions to output partitions, and execute in the same processes as the
partitions they operate on. In case of local and focal operations, an even
distribution of partitions over processes results in an even distribution
3

of computational load.
3. Flow accumulation

Our flow accumulation algorithms combine and extend the efficient
algorithm of Zhou et al. (2019) and the distributed algorithm of Barnes
(2017). In this section we describe our algorithms and show how we
applied AMT. We use the accu_threshold operation as an example.
The other flow accumulation algorithms use the same approach. A call
to this operation looks like this:

outflow, residue =
accu_threshold(flow_direction , material ,
threshold)

Like the flow direction, the material and threshold arguments vary
through space, and are represented by arrays.

3.1. Overview

Our algorithm works with partitioned arrays (Section 2). Cells in
a partitioned flow direction array can be classified according to their
location within the flow direction graph and within a partition (Figs. 1
and 2). Cells that only receive material from upstream cells that are
located in the same partition are called intra-partition stream cells.
Cells that receive material from at least one upstream cell that is located
in another partition are called inter-partition stream cells. A partition
output cell provides material for a cell in a neighbouring partition.

Per partition, flow accumulation calculations start with intra-
partition stream cells and continue with inter-partition stream cells.
Within the intra-partition stream cells, calculations start at ridge cells,
which do not receive input from another cell, and terminate at inter-
partition stream cells, sinks, or partition output cells. Within the
inter-partition stream cells, calculations start at partition input cells and
stop at sinks, or partition output cells.

A flow accumulation calculation for a cell starts with adding the
external material – passed in as an argument to the operation – to
the amount of inflow material that the cell received from upstream, if
any. Based on the threshold criterion also passed in, the total amount
of material in the cell is then split into an amount of residue and an
amount of outflow material.

In order to be able to visit all cells in the correct order, going
from upstream to downstream in the flow direction graph, we first
calculate the number of directly neighbouring cells that drain into each
cell. In Zhou et al. (2019) this is called the number of input drainage
paths (NIDP). Cells with an NIDP of zero do not receive material from
any neighbour. Most of these cells are ridge cells, but some may be
positioned at the border of the raster and part of a large scale stream
flowing into the area represented by the raster. For the purpose of our
algorithm, this latter kind of cells can be treated as ridge cells. Cells
with an NIDP of eight must be sink cells. Cells with an NIDP between
one and seven are junction cells, some of which may be sink cells –
surrounded by at least one no-data cell – but the majority will drain to
a downstream cell.

Given the NIDP values of each cell, per partition, ridge cells can be
found and used as starting points for flow accumulation calculations.
Once calculations for a ridge cell have finished and assuming it has a
downstream cell, the resulting outflow is added to the material of the
downstream cell and its NIDP value is decreased by one. If the updated
NIDP value of the downstream cell has become zero, the current cell
is the last cell draining into it. In that case, the flow accumulation
procedure is repeated for that cell. The procedure terminates when a
downstream cell is encountered which is either a junction cell with an
updated NIDP value that is larger than zero, a sink cell, or a partition
output cell. Once all ridge cells in a partition have been used as starting
points this way, flow accumulation calculations are finished for all

intra-partition stream cells. All material ‘produced’ by these cells has

Computers and Geosciences 162 (2022) 105083K. de Jong et al.
Fig. 1. Classification of cells in a single partition of a flow direction array. Partition output cells are marked with green ‘sockets’, directed at the relevant neighbouring partition,
and partition input cells are marked with orange sockets. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
Fig. 2. Flow directions reclassified according to the classes from Fig. 1, for a small area
of the MERIT Hydro dataset (Yamazaki et al., 2019). The map shows the borders of
four adjacent partitions. Most cells at the borders are partition output cells, producing
material to forward to matching partition input cells of a neighbouring partition.
Relatively few cells are part of an inter-partition stream; most are intra-partition stream
cells.

been ‘deposited’ in inter-partition stream cells, sink cells, and partition
output cells.

Next, for each partition, the input cells for which material is avail-
able in the corresponding partition output cells in the neighbouring
partition(s) are used as starting points for the same flow accumula-
tion procedure as used during the calculations for the intra-partition
stream cells. Once calculations for all input cells and the inter-partition
stream cells downstream of them have finished, the flow accumulation
calculations for the partition have finished.

Concluding, our algorithm performs these three steps for each par-
tition: (1) calculate the NIDP for each cell, (2) calculate the flow
accumulation results for the intra-partition stream cells, and (3) cal-
culate the flow accumulation results for the inter-partition stream
cells.

Compared to the algorithm by Zhou et al. (2019), we have split the
calculations in two steps: one to solve the flow accumulation for intra-
partition stream cells, and one for solving the flow accumulation for
inter-partition stream cells. This is necessary since we use a partitioned
array, and in general, partitions contain inter-partition stream cells
that can only be calculated once the flow accumulation calculations
for all upstream cells have finished. Note that in general, partitions
cannot be ordered according to their position along an inter-partition
stream. A large scale stream may visit the same partition multiple times
and multiple large scale streams may pass through the same partition
(Fig. 2).
4

Compared to the algorithm by Barnes (2017), we have changed the
procedure for calculating the results for the inter-partition stream cells.
As described in Section 1, this cannot be done in a single concurrent
step, but requires multiple steps, propagating material from partition
input cells and through inter-partition stream cells as the material
becomes available from upstream partition output cells.

3.2. Parallelization

A number of concurrent aspects can be identified in the above
procedure. First, the NIDP values can be calculated in parallel for each
partition. A small amount of information about which partition output
cells flows into which partition input cells must be communicated.
Second, the flow accumulation results for intra-partition stream cells
can be calculated in parallel for each partition. Information about
material reaching partition output cells must be communicated to allow
this material to be used as input for partition input cells in a subsequent
step. Third, propagating material from a partition input cell through a
partition can be done in parallel for each partition.

3.3. Application of AMT

The next list shows the steps of our flow accumulation algorithm in
terms of the AMT approach.

1. Create channels for exchanging information about partitions
between tasks. Each channel server instance is instantiated in
the process of the partition for which information is sent.

2. For each partition, asynchronously spawn a task to calculate the
results of the flow accumulation calculations. Each of the tasks
performs these steps:

(a) Asynchronously spawn a task that calculates the NIDP for
each cell. Use channels to send information about which
partition input cell in a neighbouring partition receives
material from this partition, to a task monitoring the
relevant channel for this neighbouring partition.

(b) Asynchronously spawn a task that calculates the flow ac-
cumulation results for all intra-partition stream cells. Use
channels to send information about material flowing into
a partition input cell in a neighbouring partition, to a task
monitoring the relevant channel for this neighbouring
partition.

(c) Asynchronously spawn a task that calculates the flow
accumulation results for all inter-partition stream cells.
Again, use channels to send information about material
flowing into a partition input cell in a neighbouring par-
tition, to a task monitoring the relevant channel for this
neighbouring partition.

Computers and Geosciences 162 (2022) 105083K. de Jong et al.

i
t
H
a
d
T
e

p
p
p
t
t
c
a
p
a
p

4

s
I
2
l
I
h
s
m
s
v
s

4

o
i
a
a
t
i

l

T
p
(
w
a

R

Table 2
Hardware and software platform of cluster nodes used
in experiments. All cluster nodes are interconnected with
InfiniBand.
CPUs 2 AMD EPYC 7451 (2 packages)
NUMA nodes 8 (4/package)
Cores 48 (6/NUMA node)
Clock frequency 2.3 GHz
L1d/L1i 32/64 KiB/core
L2 513 KiB/core
L3 8 192 KiB/3 cores
RAM 256 GiB (32 GiB/NUMA node)
OS CentOS 7
GNU GCC Version 10.3.0
HPX Version 1.7.1 (Kaiser et al., 2021)
MPI Open MPI version 4.0.5

3. Return partitioned arrays for outflow and residue. Note that
these arrays are returned before the flow accumulation calcu-
lations have finished. They may not even have started yet.

All tasks are spawned asynchronously and return futures to results
mmediately. Each next task depends on the results of the previous
ask(s) and will only be created and scheduled for execution by the
PX runtime after these results have become available. Within each
lgorithmic step, tasks performing work for a certain partition only
epend on tasks performing work for directly neighbouring partitions.
hese dependencies are represented by the channels which are used to
xchange information.

When calculating the results for the inter-partition stream cells in a
artition, work is only performed once material becomes available for a
artition input cell. Until that is the case, the task is automatically sus-
ended by the HPX runtime. It is important to note that the topology of
he flow direction graph is not explicitly used to order tasks according
o their relative position along the inter-partition streams. Once a task
alculating the flow accumulation results for a partition has received
nd propagated material for all its partition input cells, the work for the
artition is done. As soon as this happens, the corresponding outflow
nd residue result partition clients are marked as ready, and these
artitions can be used in subsequent modelling operations.

Additional details on our algorithms can be found in Appendix A.

. Experiments

We performed various experiments to characterize the performance,
calability and composability of our new flow accumulation algorithms.
n all experiments, we used the MERIT Hydro dataset (Yamazaki et al.,
019) for the African continent. This dataset has a 3 arc-second reso-
ution, which corresponds to almost 90 m resolution at the equator.
t contains 87 600 × 84 000 raster cells and represents a realistic
igh resolution dataset that can be used in global and continental
cale modelling studies. All experiments were performed on one or
ore equivalent cluster nodes (Table 2). Even though the latency of

imulation models is a combination of time spent on computing output
alues and on I/O, in our experiments we only considered the time
pent on the compute part.

.1. Algorithm

The algorithms described in Section 3 asynchronously spawn vari-
us kinds of tasks with dependencies between them. To gain insights
nto when these tasks get scheduled at runtime, we generated a trace for
single run of two flow accumulation operations, using the same script
s used in the composability experiment (Section 4.3). We performed
he experiment on the same dataset as used in the weak scaling exper-
ment over CPU cores of accu_threshold (Table 3) when using 6

CPU cores. This array has 30 000 × 30 000 cells and contains relatively
few no-data cells. The results of this experiment are given and analysed
5

in Section 5.1.
Table 3
The scalability experiments performed for two kinds of jobs: a single call to a flow
accumulation operation, and a model in which the flow accumulation operation is
combined with local operations. Two kinds of datasets are used: the original MERIT
Hydro dataset for the African continent (MH1) and a resampled version thereof, with a
twice as high resolution (MH2). Array sizes correspond to a subset of the dataset centred
around a cell in the middle of the continent (Fig. B.5). In case of weak scalability, the
array sizes shown are scaled with the number of workers.

Worker Dataset Array size

accu_ CPU core MH1 12 000 × 12 000
threshold NUMA node MH2 30 000 × 30 000
model CPU core MH1 4 000 × 4 000

NUMA node MH1 10 000 × 10 000
cluster node MH2 28 000 × 28 000

4.2. Performance and scalability

To put the results of the scalability experiments into perspective,
we compared the performance of our new operations with the per-
formance of similar operations from the PCRaster environmental mod-
elling framework (Karssenberg et al., 2010). We compared the latencies
of a single accu and a single accu_threshold call for the southern
half of the African continent (56 059 × 44 956 raster cells). The
experiments were performed on a single CPU core. All variables (inflow,
threshold, outflow, and residue) were represented by arrays containing
32 bit floating point elements.

We performed scalability experiments, on individual calls to a flow
accumulation operation, and on a case-study model in which a flow
accumulation operation was combined with several local operations,
with data dependencies between them. The relative fraction of local
operations versus flow accumulation operations used in the case-study
model is comparable to existing hydrological models in which flow
accumulation is used, like the PyCatch catchment model (Lana-Renault
and Karssenberg, 2013) and the PCR-GLOBWB global water balance
model (Sutanudjaja et al., 2017). In the case-study model a call to
accu_threshold is surrounded by 57 local operations. A feedback
variable is used to add a data dependency between operations from
consecutive time steps.

To characterize the ability of each computation to use additional
workers to perform work faster, we calculated the relative strong
scaling efficiencies (RSE𝑠𝑡𝑟𝑜𝑛𝑔). These are calculated by dividing the
atency 𝑇𝑆,1 on a single worker by the latency 𝑇𝑆,𝑃 on 𝑃 workers,

multiplied by 𝑃 , while the problem size is kept constant (Eq. (1)).
o characterize the ability of each model to use additional workers to
erform more work, we calculated the relative weak scaling efficiencies
RSE𝑤𝑒𝑎𝑘). These are calculated by dividing the latency 𝑇𝑊 ,1 on a single
orker by the latency 𝑇𝑊 ,𝑃 on 𝑃 workers, while the problem size scales
ccording to the number of workers (Eq. (2)).

SE𝑠𝑡𝑟𝑜𝑛𝑔 =
𝑇𝑆,1

𝑃 × 𝑇𝑆,𝑃
× 100% (1)

RSE𝑤𝑒𝑎𝑘 =
𝑇𝑊 ,1

𝑇𝑊 ,𝑃
× 100% (2)

To be able to use the differences between kinds of workers in the
interpretation of the results of the scalability results, we performed the
experiments over three kinds of workers: (1) the 6 CPU cores within a
single NUMA node, (2) the 8 NUMA nodes within a single cluster node,
and (3) 4 cluster nodes within a cluster partition. We used subsets of the
MERIT Africa dataset and a resampled version thereof in the scalability
experiments (Table 3, Appendix B). Since the size of the tasks depends
on the size of the array partitions, and not every task size results in good
performance (Section 2), before performing the scalability experiments

we first determined good partition sizes to use Appendix C.

Computers and Geosciences 162 (2022) 105083K. de Jong et al.

u
s
f
h
s
o
t

c
v

L

5

5

t
p
c
p
(
s

5

w
t

4.3. Composability

In order to characterize the composability of the flow accumulation
operations, we used a model containing two calls to a flow accumu-
lation operation (Listing 1). In an actual model, the first one could
simulate water transport, while the second one uses the outflow result
for simulating the transport of sediment. The reason we used two
calls to the same flow accumulation operation is that we relate the
differences in latencies between model runs to the total latency of the
model runs. Using two operations with very different latencies makes
the results more difficult to interpret. We compared the latencies of
executing the model with and without a synchronization point between
the operations. The synchronization point, represented by a call to
wait_all in Listing 1, prevents the execution of the second operation
ntil all output partitions of the first operation are ready. Without a
ynchronization point, the second operation is executed as soon as the
irst one has finished attaching continuations to its input partitions. The
ypothesis is that, in case of load imbalance, composable operations re-
ult in lower model latencies by preventing workers from being drained
f work. We performed the experiments on the same dataset as used in
he weak scaling experiment over NUMA nodes of accu_threshold

(Table 3) when using 8 NUMA nodes. This array has 85 000 × 85 000
ells and contains relatively few no-data cells. We executed each model
ariant 10 times and selected the smallest latencies.

isting 1: Model used in composability experiment.
Arguments to flow accumulation are ready
when operation is called
outflow, residue = accu_threshold(

flow_direction , material, threshold)

if synchronize:
wait_all([outflow, residue])

Use output of flow accumulation
outflow, residue = accu_threshold(

flow_direction , outflow, threshold)

wait_all([outflow, residue])

. Results

.1. Algorithm

The trace shows which flow accumulation tasks are executing over
ime (Fig. 3(a)). All the time different kinds of tasks are executing in
arallel. The kind of task spending the most time on the CPU cores
hanges over time. The sequence corresponds with the steps performed
er partition by our algorithms: NIDP, intra-partition, inter-partition
Section 3). Concurrent tasks, operating on different partitions, get
cheduled in parallel.

.2. Performance and scalability

Calculating a result for the southern half of the African continent
ith our new accu operation took 1.1 min while PCRaster’s version

ook 3.2 min. Our new accu_threshold operation took 1.4 min
while PCRaster’s version took 3.3 min.

Both the strong and weak scalability of accu_threshold over the
CPU cores within a NUMA node are higher than 80% (Table 4). When
scaling over the NUMA nodes within a cluster node, the algorithm has
more trouble of using additional workers effectively. Also, the pattern
of efficiencies over the number of workers becomes irregular (Fig. 4).
6

Additional experiments revealed that the procedure for distributing
Table 4
Relative strong and weak scaling efficiencies.

Worker RSE𝑠𝑡𝑟𝑜𝑛𝑔 RSE𝑤𝑒𝑎𝑘

accu_ CPU core 83% 84%
threshold NUMA node 69% 56%
model CPU core 52% 77%

NUMA node 48% 67%
cluster node 73% 84%

array partitions over processes contributes to this irregular pattern Ap-
pendix D. The speed-up when using 8 NUMA nodes compared to using 1
is about 5.5. In case of the case-study model, strong scaling efficiencies
are lower than weak scaling efficiencies. Given the latencies of the
model when using a whole cluster node, the scaling efficiencies are
high—around 80%. Additional cluster nodes can be used effectively.
In case of the strong scalability experiment for the case-study model,
we performed an additional experiment, to determine at how many
cluster nodes scalability stops and what the maximum associated speed-
up is. At 8 cluster nodes, the speed-up is almost 4 and does not increase
anymore Appendix E.

5.3. Composability

Running the model from Listing 1 without synchronization takes
less time than with synchronization (22s versus 25s). The difference is
relatively small, but in simulation models in which many operations are
used these small performance gains may become relevant. Also, even a
small load imbalance can cause workers to be drained of useful work
to do, decreasing the scalability.

The traces in Fig. 3 illustrate a result of a similar experiment, on
a smaller dataset run on the 6 cores within a single NUMA node (Sec-
tion 4.1). In case of no synchronization point between the operations,
even though there is a data dependency between the two operations,
tasks from the second call execute while those from the first operation
are still executing as well. This is especially apparent for the tasks
calculating NIDP values. Since these only depend on the flow direction
raster passed in, tasks created by both calls to accu_threshold can
be scheduled for execution immediately. In case of a synchronization
point between the operations, this does not happen. Only once all tasks
from the first call to accu_threshold are finished, can tasks from
the second call be scheduled for execution. This results in a larger
fraction of time that workers are drained of useful work to do, identified
by the arrows in Fig. 3, which results in longer model latencies.

6. Discussion

Our new algorithms support the use of various criteria to determine
how much of the total amount of material entering each cell remains in
that cell as residue and how much flows towards the downstream cell.
Compared to an existing implementation we compared the performance
with, the single core performance of our algorithms is better. Given
the scaling efficiencies of our new flow accumulation algorithms and
the case-study model, we conclude that in case a modeller needs to
decrease the latency of a model, or to use a model on a larger dataset,
additional hardware can be used effectively. The use of AMT in the
implementation of the algorithms supported the requirement that mod-
elling operations should be composable. We showed that concurrent
tasks from consecutive flow accumulation operations were scheduled
to run in parallel. This led to an improvement of the overall latency,

which is beneficial for the scalability of whole models.

Computers and Geosciences 162 (2022) 105083K. de Jong et al.
Fig. 3. Traces of flow accumulation tasks created by two calls to accu_threshold (Listing 1): one without a synchronization point (a) and one with a synchronization point
(b). Both traces show the last part of the full trace (≈17.5 s), excluding time spent on initializing the runtime and reading input data. The arrows identify the moments the CPU
cores start to be drained of useful work to do. Trace tasks are an artefact of generating the trace. HPX tasks are a detail of the runtime. The other kinds of tasks correspond with
the ones described in Section 3.3.
Fig. 4. Relative scaling efficiencies (RSE) of experiments performed for accu_threshold (a) and the case-study model (b, Table 3). For reference, efficiencies for linear scaling
(upper dashed line) and serial scaling (lower dashed line) are also shown.
6.1. Performance and scalability

We conclude that the single CPU core performance of the LUE
flow accumulation algorithms is good, albeit details in the function-
ality of different implementations might be different. The accu and
accu_threshold algorithms are more than twice as fast as the same
operations in PCRaster.

The variation in the scaling efficiencies when scaling
accu_threshold over NUMA nodes suggests that each time workers
7

are added something changes in the way the total amount of work
is performed. Additional experiments Appendix D showed that this
is not related to differences in the flow direction field used in the
experiments, but is – at least partly – related to how array partitions
are distributed over processes. Using a different procedure for this
resulted in a different pattern of scaling efficiencies over NUMA nodes.
When using all 8 NUMA nodes in a cluster node, in case of the strong
scalability experiment, using the Hilbert curve clearly outperformed
the linear mapping procedure, both in terms of the scaling efficiency

Computers and Geosciences 162 (2022) 105083K. de Jong et al.

d
t
t
p
p
c
t
N

v
t
i
i

6

a
a
o
a
a
a

6

a
o
t
r
o
e
d
e
t
O
r
d
I
A
l
s
a
p
s
s
m
t
p

t
s
e
w
a
i
o
h
A

f
i
b
M
m

D

c
i

A

F

(

C

C

/
m
c

c
L
p
a

a
c
G
r

A

p
a
i
l
t
f
t

and the absolute performance. In case of the larger problem solved by
the weak scalability experiment, the relative scaling efficiency and the
absolute performance are similar, but in favour of the linear mapping
procedure.

We did not see a similar variability in scaling efficiencies when
scaling accu_threshold over CPU cores. This is likely related to the
ifferences in latencies between the NUMA nodes. Different combina-
ions of NUMA nodes exchange data at different speeds, depending on
heir locations in the cluster nodes. In case of using the Hilbert curve
rocedure for mapping partitions to processes sometimes increases the
erformance and sometimes decreases the performance relative to what
an be expected given the performance on a single NUMA node. Using
he linear mapping procedure, the performance varies less per set of
UMA nodes.

In the scalability experiments of the case-study model, any irregular
ariability in performance over NUMA nodes is likely to be hidden by
he much larger number of tasks that are performed. As long as there
s enough useful work to do, the HPX runtime hides latencies involved
n communication between processes.

.2. Composability

The lack of unnecessary synchronization points within our flow
ccumulation algorithm results in a relatively large set of tasks that
re ready to execute. This limits the negative effect of load imbalance
n the overall latency, even when executing a single call to a flow
ccumulation operation. While a task managing a partition containing
downstream part of a large scale stream is waiting for material to

ccumulate, there are likely other tasks that can do something useful.

.3. Future work

Our results show that it is useful to apply the AMT approach to flow
ccumulation operations. Given this and our experiences with other
perations (de Jong et al., 2021), this suggests that it is useful to apply
he approach to other modelling operations as well. This can potentially
esult in a set with which model developers can build a wide range
f models that perform and scale well. To increase knowledge and
xperience when moving in this direction, in our view several aspects
eserve attention. Transporting material using flow accumulation op-
rations assumes that the duration of the simulated time step is longer
han the material requires to reach the simulated area’s outflow point.
ther useful operations exist that do not require this and model flow

outing in greater detail. Examples of these are the kinematic wave,
iffusion wave and dynamic wave operations (Te Chow et al., 1988).
t is unclear how to express these operations using the AMT approach.
lso, since these operations require more computations, the temporal

oad imbalance resulting from them will have a larger impact on the
calability than in the case of flow accumulation operations. To work
round this, a procedure may be required to redistribute partitions over
rocesses, based on load imbalance detected at runtime. Additionally,
imulation models often require a lot of I/O to read and write model
tate to datasets. Traditional serial I/O prevents the scalability of
odels. Using a parallel file system and parallel I/O allows the I/O

o be scalable, over I/O nodes. But it is unclear how to best integrate
arallel I/O with the AMT approach.

Finally, there are at least two opportunities for further improving
he performance of the existing modelling operations. First, as we
howed, the procedure for assigning partitions to processes is of influ-
nce on the performance and scalability of operations. Which procedure
orks best may depend on characteristics of the hardware, like the
ctual differences in latencies between NUMA nodes. Additionally,
t may depend on the input data. In the case of flow accumulation
perations, grouping partitions depending on their membership of a
ydrological catchment may be useful to improve its performance.

second opportunity to improve the performance of operations is
8

to integrate the use of GPGPU devices often available to the model
developer. It remains to be seen how to integrate them in a modelling
framework generating a different set of tasks for each model, and to
what extend this increases the performance of models.

CRediT authorship contribution statement

Kor de Jong: Conceptualization, Designed and implemented the
ramework, Writing - original draft. Debabrata Panja: Conceptual-
zation, Providing inputs for writing the manuscript. Derek Karssen-
erg: Conceptualization, Providing inputs for writing the manuscript.
arc van Kreveld: Conceptualization, Providing inputs for writing the
anuscript.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

cknowledgements

unding

This work was supported by the Research IT innovation programme
Utrecht University, The Netherlands).

The authors would like to thank Oliver Schmitz for creating the LUE
onda packages.

omputer code availability

The LUE scalable modelling framework is hosted on GitHub at https:
/github.com/computationalgeography/lue. The framework is imple-
ented by Kor de Jong (corresponding author) in C++ and the source

ode is freely available under the MIT open source license.
A document called README.md is included in the root of the source

ode repository detailing the instructions for building the software.
UE is portable software and has been successfully built on various
latforms (operating systems: Linux, macOS; compilers: Clang, GCC;
rchitecture: x86-64).

A project containing the version of LUE used in this work (de Jong
nd Schmitz, 2021), and containing additional information about the
ommands used for the described experiments can also be found on
itHub, at https://github.com/computationalgeography/paper_2021_

outing.

ppendix A. Algorithm details

All processes are worker processes that are involved in the com-
utations. Array partition server instances are evenly distributed over
ll processes and work associated with partitions is distributed accord-
ngly. Partitioned arrays, containing the partition client instances are
ocated in the root process, which is one of the worker processes. In
his process, all modelling operations are executed, which create work
or all worker processes to execute. In the case of accu_threshold,
he following steps are performed in this process:

1. Create an array with for each partition a communicator object,
containing two sets of at most eight channel objects. One set is
used to send information about which partition output cell flows
into which partition input cell in one of the eight neighbouring
partitions. The other set is used to receive this information about
the eight neighbouring partitions.

2. Create a similar communicator array, but with channels for
exchanging information about an amount of material a partition
input cell receives.

https://github.com/computationalgeography/lue
https://github.com/computationalgeography/lue
https://github.com/computationalgeography/lue
https://github.com/computationalgeography/paper_2021_routing
https://github.com/computationalgeography/paper_2021_routing
https://github.com/computationalgeography/paper_2021_routing

Computers and Geosciences 162 (2022) 105083K. de Jong et al.

w

c
r
o
p

3. For each partition:

(a) Asynchronously call a global action in the worker process
of the partition that will perform all required flow accu-
mulation calculations for that partition. Pass in the parti-
tion clients for flow direction, external inflow of material,
and the threshold, and a communicator for NIDP and one
for material. This call immediately returns partition client
instances for outflow and residue.

(b) Store returned partition client instances in their respec-
tive output partitioned arrays.

These are the main steps performed by the global action in the
orker process:

1. Once the flow direction partition is ready:

(a) Send locations of partition input cells in neighbouring
partitions that will receive material from the current par-
tition using the corresponding channel in the NIDP com-
municator. Per neighbouring partition direction (north,
north-east, east, south-east, south, south-west, west,
north-west), store the location of the partition output
cells.

(b) Asynchronously receive locations of partition input cells
that will receive material from neighbouring partitions.
Per neighbouring partition direction, store the location of
these partition input cells.

(c) Once the collections of partition input cells have been
received, calculate the NIDP for all cells in the partition.

2. Once the flow direction partition, external inflow material par-
tition, threshold partition, NIDP partition and collections of
partition output cells are ready:

(a) For each cell with an NIDP of zero:

i. Start the flow accumulation procedure until a junc-
tion cell, sink cell, or partition output cell is
reached.

ii. If a partition output cell is reached, send location
and outflow to the input cell in a neighbouring
partition using the associated channel in the mate-
rial communicator. If this was the last output cell
associated with the neighbouring partition, close
the channel.

(b) Immediately return futures to the outflow partition data,
residue partition data, and the updated NIDP counts

3. Once results of the intra-partition stream cell calculations are
ready:

(a) Asynchronously create tasks that will each monitor a
channel for incoming material sent from tasks handling
neighbouring partitions. Once material is received:

i. Start the flow accumulation procedure until a junc-
tion cell, sink cell, or partition output cell is
reached.

ii. If a partition output cell is reached, send location
and outflow to the input cell in a neighbouring par-
tition using the associated channel in the material
communicator.

iii. Stop when all partition input cells have received a
value.

Note that only the final step, when material for partition input
ells is received from tasks managing the eight neighbouring partitions,
equires the use of a mutex to serialize concurrent access to the NIDP,
utflow, and residue partitions. In the rest of the algorithm, these
9

artitions are only written to by a single task.
Table C.5
Partition sizes used in scaling experiments.

worker partition size (no. of cells)

accu_ CPU core 2 500 × 2 500 (6.25 × 106)
threshold NUMA node 2 500 × 2 500 (6.25 × 106)
model CPU core 1 500 × 1 500 (2.25 × 106)

NUMA node 1 500 × 1 500 (2.25 × 106)
cluster node 2 500 × 2 500 (6.25 × 106)

Appendix B. Data

When selecting the size of the dataset to use in scalability experi-
ments we took two factors into account. It had to be large enough to
result in latencies that hide normal fluctuations in latencies due to the
scheduling of the processes by the OS. But it had to be small enough to
fit in the memory of a single CPU worker, and to result in latencies
small enough to be feasible. Because of this, it was not possible to
perform scalability experiments over NUMA nodes and cluster nodes
for a single flow accumulation operation with the original MERIT Africa
dataset. This dataset does not contain a large enough subset without
a large number of no-data cells in them. We therefore resampled the
original dataset to double its resolution. This allowed us to perform
scalability experiments over NUMA nodes, but still not over cluster
nodes. We did perform scalability experiments over all kinds of workers
for the case-study model. Since this model contains more operations,
the latencies are higher, and the subset to use could be smaller. Fig. B.5
shows the bounding boxes used for the weak scalability experiments.

Appendix C. Partition size

Since tasks are created in continuations attached to array partitions,
the size of these partitions determines how many tasks will be created
during the execution of a computation. Small partitions result in many
tasks, increasing the chance that all workers always have enough work
to do, but also increasing the overheads of managing these tasks. Large
partitions result in few tasks, decreasing the task scheduling overheads,
but also decreasing the chance that workers will always have useful
work to do. For each combination of computation and a kind of worker
there is a range of good partition sizes for which the computation
performs best. Before each scalability experiment, we determined a
good partition size to use. For this we ran each computation on the
maximum number of workers used in the particular scaling experiment
with the maximum array size used in the weak scaling experiment. To
be able to determine the variability in the latencies, we performed each
partition size experiment 5 times.

The partition sizes we used in the scalability experiments are listed
in Table C.5 and based on the distribution of latencies over various
partition sizes (Fig. C.6). For appropriate partition sizes, associated with
small latencies, the variability in latencies is low. We therefore did not
run the strong and weak scalability experiments multiple times.

Appendix D. Irregular scaling efficiencies

The scalability experiments of the accu_threshold operation
over NUMA nodes resulted in an irregular pattern of scaling efficiencies
(Fig. 4). To gain insights into why the scaling efficiencies are irregular,
we performed two additional experiments. The first experiment is
targeted at determining to what extend the flow direction field used in
the experiment is responsible for the irregularity. In the case of a weak
scalability experiment, each time a worker is added, the data set used is
increased in size. If flow accumulation calculations perform particularly
well (or bad) on these newly added parts, then this will have an effect
on the efficiencies for these workers. To determine the influence of the
flow direction data on the pattern of scaling efficiencies, we performed

Computers and Geosciences 162 (2022) 105083K. de Jong et al.
Fig. B.5. Bounding boxes of arrays used for weak scalability experiments for accu_threshold (B.5(a)) and the case-study model (B.5(b)). In solid blue the 6 areas used for
scaling over the CPU cores within a NUMA node. In dashed red the 8 areas used for scaling over the NUMA nodes within a cluster node. In solid grey the 4 areas used for scaling
over the cluster nodes within a cluster partition. (Base map and data from OpenStreetMap and OpenStreetMap Foundation.). (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
Fig. C.6. For the scaling experiment for accu_threshold (C.6(a)) and the case-study model (C.6(b)), the latencies of running the experiment for a range of partition sizes
(number of cells) on the maximum number of workers and maximum array size. The actual latencies are different for the different kinds of workers. The 𝑦-axis starts at zero and
increases linearly.
the same strong and weak scalability experiments as presented in
Section 5.2, but for a different part of the African continent (centred
in the Sahara desert in Western Africa, instead of in Central Africa),
and compared the corresponding scaling efficiencies. The resulting
pattern of scaling efficiencies are comparable to each other (Fig. D.7),
suggesting that differences in flow direction fields are not responsible
for the irregular pattern.

The second experiment we performed is targeted at determining
whether the procedure for assigning array partitions to processes is
relevant for explaining the irregular pattern of scaling efficiencies.
When a partitioned array is created, its partitions are instantiated in
the different cooperating processes. Which one exactly depends on a
procedure for mapping 2D array partitions to a 1D array of process
IDs. LUE uses the Hilbert curve for this, but can also use an alternative,
like a linear mapping from 2D array partitions to 1D process IDs. An
advantage of using the Hilbert curve is that partitions representing
nearby areas in 2D space tend to be located in the same or a nearby
process (Gotsman and Lindenbaum, 1996). This reduces the latencies
involved when tasks managing neighbouring partitions need to commu-
nicate with each other, like in the case of flow accumulation. Again,
10
we performed the same strong and weak scalability experiments as
presented in Section 5.2, but now using a linear (row-major) mapping
from 2D array partitions to 1D process IDs instead of the Hilbert
curve. The resulting pattern of scaling efficiencies are different from
each other (Fig. D.8), suggesting that differences in the procedures for
mapping array partitions to NUMA nodes is (partly) responsible for the
irregular pattern.

To put the differences in scaling efficiencies into perspective we
looked at the absolute performance when using all 8 NUMA nodes in a
cluster node. When allocating partitions to processes using the Hilbert
curve, the calculations performed by the strong scalability experiment
were 27% faster (990 ms versus 1355 ms), whereas those performed
by the weak scalability experiment where 16% slower (9455 ms versus
8153 ms).

Appendix E. Maximum speed-up

As described in Appendix B, the number of workers over which
scalability experiments can be performed is limited by the availability

Computers and Geosciences 162 (2022) 105083K. de Jong et al.

f
e
e

f
e
e

K

K

K

K

L

N

O

O

S

Fig. D.7. Relative strong and weak scaling efficiencies (RSE) of experiments performed
or accu_threshold. The solid lines correspond with those from the original
xperiments shown in Fig. 4(a), and the dashed lines with results of the same
xperiments, but for a different flow direction field.

Fig. D.8. Relative strong and weak scaling efficiencies (RSE) of experiments performed
or accu_threshold. The solid lines correspond with those from the original
xperiments shown in Fig. 4(a), and the dashed lines with results of the same
xperiments, but using a different procedure for assigning partitions to processes.

Fig. E.9. Speed-ups for the strong scaling experiment performed for the case-study
model (Table 3). For reference, speed-ups for linear scaling (upper dashed line) and
serial scaling (lower dashed line) are also shown.

of a large flow direction data set without a lot of no-data cells. To
provide information to modellers who are interested in the maximum
speed-up that can be achieved, we performed the strong scalability
experiment for the case-study model for a larger number of cluster
nodes than discussed in Section 5.2. At 8 cluster nodes, the speed-up is
almost 4 and does not increase anymore (Fig. E.9). When using that
many nodes the amount of hardware is very large compared to the
problem size. At 8 cluster nodes, the number of CPU cores used is 384,
11

which is more than the number of array partitions per raster for which
tasks are being created (121). To still be able to provide all CPU cores
with enough work in such a situation, requires a lot of independent
tasks. At some point there are not enough of those anymore, and the
scalability stops.

References

Barnes, R., 2017. Parallel non-divergent flow accumulation for trillion cell digital
elevation models on desktops or clusters. Environ. Model. Softw. 92, 202–212.
http://dx.doi.org/10.1016/j.envsoft.2017.02.022.

Burek, P., van der Knijff, J., de Roo, A., 2013. LISFLOOD – Distributed water balance
and flood simulation model – Revised user manual. http://dx.doi.org/10.2788/
24982.

Burrough, P.A., McDonnell, R.A., Lloyd, C.D., 2015. Principles of Geographical
Information Systems, third ed. Oxford University Press.

Cordonnier, G., Bovy, B., Braun, J., 2019. A versatile, linear complexity algorithm
for flow routing in topographies with depressions. Earth Surf. Dyn. 7, 549–562.
http://dx.doi.org/10.5194/esurf-7-549-2019.

van Deursen, W., Wesseling, C., Karssenberg, D., de Jong, K., Schmitz, O.,
2019. The PCRaster environmental modelling framework. https://pcraster.
computationalgeography.org.

Esri, 2021. ArcGIS desktop. https://www.esri.com.
GDAL/OGR contributors, 2021. GDAL/OGR Geospatial Data Abstraction Software

Library. Open Source Geospatial Foundation, https://gdal.org.
Gotsman, C., Lindenbaum, M., 1996. On the metric properties of discrete space-

filling curves. IEEE Trans. Image Process. 5, 794–797. http://dx.doi.org/10.1109/
83.499920.

Hendriks, M., 2010. Physical Hydrology, first ed. Oxford University Press.
de Jong, K., Panja, D., van Kreveld, M., Karssenberg, D., 2021. An environmental

modelling framework based on asynchronous many-tasks: Scalability and usability.
Environ. Model. Softw. 139, 104998. http://dx.doi.org/10.1016/j.envsoft.2021.
104998.

de Jong, K., Schmitz, O., 2021. Computationalgeography/lue: LUE-0.3.0: Scientific
database and environmental modelling framework. http://dx.doi.org/10.5281/
zenodo.5535686.

Kaiser, H., Diehl, P., Lemoine, A.S., Lelbach, B.A., Amini, P., Bergé, A., Biddiscombe, J.,
Brandt, S.R., Gupta, N., Heller, T., Huck, K., Khatami, Z., Kheirkhahan, A.,
Reverdell, A., Shirzad, S., Simberg, M., Wagle, B., Wei, W., Zhang, T., 2020. HPX -
The C++ standard library for parallelism and concurrency. J. Open Source Softw.
5, 2352. http://dx.doi.org/10.21105/joss.02352.

aiser, H., Simberg, M., Lelbach, B.A., Heller, T., Bergé, A., Biddiscombe, J., R., A., Biki-
neev, A., Mercer, G., Schäfer, A., Huck, K., Lemoine, A.S., Kwon, T., Habraken, J.,
Nair, A., Anderson, M., Brandt, S.R., Copik, M., srinivasyadav18, Finomnis, Bour-
geois, D., Blank, D., Gonidelis, G., Gupta, N., rstobaugh, Jakobovits, S., Amatya, V.,
Viklund, L., Diehl, P., Khatami, Z., 2021. STEllAR-GROUP/hpx: HPX V1.7.1: The
C++ standards library for parallelism and concurrency. http://dx.doi.org/10.5281/
zenodo.5185328.

arssenberg, D., 2006. Upscaling of saturated conductivity for Hortonian runoff mod-
elling. Adv. Water Resour. 29, 735–759. http://dx.doi.org/10.1016/j.advwatres.
2005.06.012.

arssenberg, D., Schmitz, O., Salamon, P., de Jong, K., Bierkens, M.F.P., 2010. A
software framework for construction of process-based stochastic spatio-temporal
models and data assimilation. Environ. Model. Softw. 25, 489–502. http://dx.doi.
org/10.1016/j.envsoft.2009.10.004.

otyra, B., Chabudziński, Ł., Stpiczyński, P., 2021. High-performance parallel imple-
mentations of flow accumulation algorithms for multicore architectures. Comput.
Geosci. 151, 104741. http://dx.doi.org/10.1016/j.cageo.2021.104741.

ana-Renault, N., Karssenberg, D., 2013. PyCatch: Component based hydrological
catchment modelling. Cuad. Investig. Geogr. 39, 315–333. http://dx.doi.org/10.
18172/cig.1993.

eteler, M., Bowman, M.H., Landa, M., Metz, M., 2012. GRASS GIS: A multi-purpose
open source GIS. Environ. Model. Softw. 31, 124–130. http://dx.doi.org/10.1016/
j.envsoft.2011.11.014.

’Callaghan, J.F., Mark, D.M., 1984. The extraction of drainage networks from digital
elevation data. Comput. Vis. Graph. Image Process. 28, 323–344. http://dx.doi.org/
10.1016/s0734-189x(84)80011-0.

rtega, L., Rueda, A., 2010. Parallel drainage network computation on CUDA. Comput.
Geosci. 36, 171–178. http://dx.doi.org/10.1016/j.cageo.2009.07.005.

ten, J., Lilja, H., Hyväluoma, J., Westerholm, J., Aspnäs, M., 2016. Parallel flow
accumulation algorithms for graphical processing units with application to RUSLE

model. Comput. Geosci. 89, 88–95. http://dx.doi.org/10.1016/j.cageo.2016.01.006.

http://dx.doi.org/10.1016/j.envsoft.2017.02.022
http://dx.doi.org/10.2788/24982
http://dx.doi.org/10.2788/24982
http://dx.doi.org/10.2788/24982
http://refhub.elsevier.com/S0098-3004(22)00046-2/sb3
http://refhub.elsevier.com/S0098-3004(22)00046-2/sb3
http://refhub.elsevier.com/S0098-3004(22)00046-2/sb3
http://dx.doi.org/10.5194/esurf-7-549-2019
https://pcraster.computationalgeography.org
https://pcraster.computationalgeography.org
https://pcraster.computationalgeography.org
https://www.esri.com
https://gdal.org
http://dx.doi.org/10.1109/83.499920
http://dx.doi.org/10.1109/83.499920
http://dx.doi.org/10.1109/83.499920
http://refhub.elsevier.com/S0098-3004(22)00046-2/sb9
http://dx.doi.org/10.1016/j.envsoft.2021.104998
http://dx.doi.org/10.1016/j.envsoft.2021.104998
http://dx.doi.org/10.1016/j.envsoft.2021.104998
http://dx.doi.org/10.5281/zenodo.5535686
http://dx.doi.org/10.5281/zenodo.5535686
http://dx.doi.org/10.5281/zenodo.5535686
http://dx.doi.org/10.21105/joss.02352
http://dx.doi.org/10.5281/zenodo.5185328
http://dx.doi.org/10.5281/zenodo.5185328
http://dx.doi.org/10.5281/zenodo.5185328
http://dx.doi.org/10.1016/j.advwatres.2005.06.012
http://dx.doi.org/10.1016/j.advwatres.2005.06.012
http://dx.doi.org/10.1016/j.advwatres.2005.06.012
http://dx.doi.org/10.1016/j.envsoft.2009.10.004
http://dx.doi.org/10.1016/j.envsoft.2009.10.004
http://dx.doi.org/10.1016/j.envsoft.2009.10.004
http://dx.doi.org/10.1016/j.cageo.2021.104741
http://dx.doi.org/10.18172/cig.1993
http://dx.doi.org/10.18172/cig.1993
http://dx.doi.org/10.18172/cig.1993
http://dx.doi.org/10.1016/j.envsoft.2011.11.014
http://dx.doi.org/10.1016/j.envsoft.2011.11.014
http://dx.doi.org/10.1016/j.envsoft.2011.11.014
http://dx.doi.org/10.1016/s0734-189x(84)80011-0
http://dx.doi.org/10.1016/s0734-189x(84)80011-0
http://dx.doi.org/10.1016/s0734-189x(84)80011-0
http://dx.doi.org/10.1016/j.cageo.2009.07.005
http://dx.doi.org/10.1016/j.cageo.2016.01.006

Computers and Geosciences 162 (2022) 105083K. de Jong et al.
Sutanudjaja, E.H., van Beek, R., Wanders, N., Wada, Y., Bosmans, J.H.C., Drost, N.,
van der Ent, R.J., de Graaf, I.E.M., Hoch, J.M., de Jong, K., Karssenberg, D.,
López, P.L., Peßenteiner, S., Schmitz, O., Straatsma, M.W., Vannametee, E.,
Wisser, D., Bierkens, M.F.P., 2017. PCR-GLOBWB 2: A 5 arc-minute global hy-
drological and water resources model. Geosci. Model Dev. Discuss. 1–41. http:
//dx.doi.org/10.5194/gmd-2017-288.

Te Chow, V., Maidment, D.R., Mays, L.W., 1988. Applied Hydrology. In: Civil
Engineering, McGraw-Hill.
12
Tomlin, D., 1990. Geographic Information Systems and Cartographic Modeling, first ed.
Prentice-Hall.

Yamazaki, D., Ikeshima, D., Sosa, J., Bates, P.D., Allen, G.H., Pavelsky, T.M., 2019.
MERIT Hydro: A high-resolution global hydrography map based on latest to-
pography dataset. Water Resour. Res. 55, 5053–5073. http://dx.doi.org/10.1029/
2019wr024873.

Zhou, G., Wei, H., Fu, S., 2019. A fast and simple algorithm for calculating flow
accumulation matrices from raster digital elevation. Front. Earth Sci. 13, 317–326.
http://dx.doi.org/10.1007/s11707-018-0725-9.

http://dx.doi.org/10.5194/gmd-2017-288
http://dx.doi.org/10.5194/gmd-2017-288
http://dx.doi.org/10.5194/gmd-2017-288
http://refhub.elsevier.com/S0098-3004(22)00046-2/sb23
http://refhub.elsevier.com/S0098-3004(22)00046-2/sb23
http://refhub.elsevier.com/S0098-3004(22)00046-2/sb23
http://refhub.elsevier.com/S0098-3004(22)00046-2/sb24
http://refhub.elsevier.com/S0098-3004(22)00046-2/sb24
http://refhub.elsevier.com/S0098-3004(22)00046-2/sb24
http://dx.doi.org/10.1029/2019wr024873
http://dx.doi.org/10.1029/2019wr024873
http://dx.doi.org/10.1029/2019wr024873
http://dx.doi.org/10.1007/s11707-018-0725-9

	Scalability and composability of flow accumulation algorithms based on asynchronous many-tasks
	Introduction
	AMT, HPX, And the LUE modelling framework
	Flow accumulation
	Overview
	Parallelization
	Application of AMT

	Experiments
	Algorithm
	Performance and scalability
	Composability

	Results
	Algorithm
	Performance and scalability
	Composability

	Discussion
	Performance and scalability
	Composability
	Future work

	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Computer code availability

	Appendix A. Algorithm details
	Appendix B. Data
	Appendix C. Partition size
	Appendix D. Irregular scaling efficiencies
	Appendix E. Maximum speed-up
	References

