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� Four main parameters affecting the clogging process in a porous material were chosen; ionic strength, velocity, zeta potential, and particle diameter.
� Using Lattice Boltzmann simulations, it is possible to study the particles transfer through pores and throats. However, it is computationally very
expensive.

� A limited number of Lattice Boltzmann simulations were performed and then the results were used as feed to machine training.
� The training process yielded a well-trained code which is able to predict the clogging condition in a matter of few seconds.
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a b s t r a c t

Colloid transport through a porous medium changes geometrical and hydraulic properties of the pore
space. The impact of this effect depends on the colloid types and pore space surface properties which
determine the likelihood of pore clogging. Colloid attachment and subsequent detachment are key factors
in pore clogging. In this study, the impact of four major fluid and colloids properties on the pore surface
and hydraulic conductivity alteration during colloids transport were evaluated using machine learning.
These four parameters include solution ionic strength, zeta potential, colloid size and fluid flow velocity.
A combined lattice Boltzmann-smoothed profile method was used to simulate accurately coupled

mechanisms governing colloid transport to evaluate the impact of the four parameters on the resulting
pore space properties after colloid transport. The result of several simulations revealed significant
changes of pore surface coverage by the attached colloids, and conductivity, void fraction and coordina-
tion number of colloid agglomerates created during transport of individual colloids. Since the simulation
of the impact of combination of all possible sets of four parameters is very time consuming, an Artificial
Neural Network (ANN) was used as a prognostic method to use the results of several simulations to pre-
dict the behavior for a wide range of pore, colloidal and fluid properties. Reported results from a set of
162 simulation case studies for different possible combination of solution ionic strength, zeta potentials,
colloid size and flow velocity were selected as input parameters for the machine learning. Four output
parameters, namely, pore surface coverage, conductivity, void fraction and coordination number of the
colloidal particles were selected.
To lower the prediction error value, which is targeted to be lower than 10%, networks were trained 50

times using a MATLAB code, and in each training, after at most 10 epochs, networks were trained. A max-
imum relative error value of 8.95% was obtained, which is very well within the range of training quality
criteria. The results show that the ANN can profoundly predict the simulation outcomes for a wide range
of ionic strength (IS) and can be directly used to obtain the value of dependent variables through simple
calculations using network weights and transfer functions.
� 2022 The Authors. Published by Elsevier Ltd. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

Along with the liquid and gas phases moving through pores of a
porous medium solid particles can become mobile and transfer
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together with the flowing fluid. A well-known example of solid
particle transport in porous media is the spread of contamination
in soil. This constitutes a major branch of solid particle transport
in porous media.

Colloids are defined as small, suspended particles in a size range
of 1 nm to 10 lm and can belong to a wide range of materials such
as ink pigments, latex particles, viruses, fine soil grains etc. Trans-
port of these fine particles is important as they play an important
role in water management, geoscience studies, industrial processes
as well as medical sciences.

Several physical processes have influence on colloids transport
and separation. While they move through the pores of a porous
medium, depending on their size, their energy interaction with
solid surface of pores and throats, and retention at low velocity
regions.

Several researchers tried to study deeply the interaction of col-
loids and solid/water interface to reveal the parameters affecting
colloid deposition on the surface and clogging of the pores. Brad-
ford et al. (Bradford et al., 2007; Bradford et al., 2006) studied
the colloid-solid interaction in saturated condition. They explored
the coupled physical and chemical mechanisms of colloid straining
under unfavorable conditions. To represent colloids, they used
negatively charged Latex particles (1.1 – 3 mm) and sand grains
(150 – 360 mm). For fluid, they used solutions with ionic strength
of 6 – 106mM and flow velocity of 0.1 – 0.45 cmmin�1. They found
that by increasing the ionic strength, lowering flow rate and increas-
ing the colloid to grain size ration, deposition of colloid, as expected,
rises. In another work, Torkzaban et al. (Torkzaban et al., 2008) con-
ducted experimental and computational simulations to study the
influence of water saturation, ionic strength and grain size on trans-
port of Latex particles (diameter of about 1 mm) in packed column
type porous media. They used negatively charged hydrophilic col-
loids in a solutionwith a pHvalue of 10. Their experiments andmod-
eling showed that the colloids retention was mainly found under
low velocity regimes in saturated and unsaturated conditions. The
retention was enhanced by lower water content.

In industrial applications, the ink suspension used in pigmented
inkjet printers has ink pigments and latex particles inside. While
the ink pigments are a few nanometers in diameter the latex par-
ticles are much larger and are about 100 nm. The printing paper
can be both coated or uncoated. In both cases, all comprising layers
are porous; in case of coated paper, the size of pores starts from
20 nm up to 25 lm, while uncoated paper has larger pores from
1 to 25 lm (Aslannejad and Hassanizadeh, 2017; Aslannejad
et al., 2019; Aslannejad et al., 2017).

Buckley (Buckley, 2012) studied the creation and deposition of
asphaltene during oil transport. A long stainless-steel tube was
used as a capillary tube to investigate the separation of asphaltene
flocs from unstable oil. The results of such an experiment yielded
deposition rate of asphaltene under wellbore conditions. A. Lawal
et al. (Lawal et al., 2011) also performed a similar study to investi-
gate the permeability change of a porous media during asphaltene
deposition process. They developed a dynamic-filtration model. S.
Boek et al. (Boek et al., 2008; Boek et al., 2010; Li et al., 2017) con-
ducted a fundamental study on the aggregation and deposition of
colloidal asphaltene in reservoir rock. They used a stochastic rota-
tion dynamic (SRD) to perform the simulations. In addition to that,
they conducted experiments using glass capillary tubes to monitor
the dynamics of asphaltene precipitation and deposition. By com-
bination of the simulation and experiments, they could find out
the flow conditions associated with the asphaltene deposition
process.

Kermani et al. (Samari Kermani et al., 2020; Samari-Kermani
et al., 2021) used a lattice Boltzmann- smoothed profile method
to explore the coupled effects of ionic strength, zeta potential, col-
loid size and flow velocity on transport and retention of colloids in
2

porous media. The interactions among moving and attached parti-
cles were considered under both favorable and unfavorable condi-
tions. Their results showed an increase in aggregates connectivity
and surface coverage, but a decrease in pore void fraction and con-
ductivity as pore velocity decreased. In addition, a raise in ionic
strength caused a decrease in pore void fraction and conductivity
and an increase in colloids connectivity.

There are different simulation methods, like the one mentioned
above by Kermani et al., to obtain the fluid and colloid flow in por-
ous media and study the pore properties after colloid passage.
However, they are tending to take longer time or even fail in com-
plex cases. On the other hand, deep learning methods have been
introduced as a tool to use experimental results or those obtained
from simulations as training material and then to predict variables
of interest. The technique is based on training layers of a convolu-
tional neural network in order to find relationships among various
input and output data. Deep learning methods usually need a
benchmark dataset since they need a large amount of data and
their training quality should be evaluated quantitively. Application
of deep learning methods in fluid flow in porous media studies has
gained a great interest in recent years. Wu et al. (Wu et al., 2018)
introduced a framework to obtain permeability values out of
imaged porous media. They generated different porous media
geometries and run fluid dynamics simulation to calculate their
permeabilities. Then the simulation results were used to train a
convolutional neural network to predict permeability values for a
new and unique pores medium geometry without any need to
run the fluid dynamics simulation. They concluded that by doing
so, the computational time was reduced by several orders of mag-
nitude. Sudakov et al. (Sudakov et al., 2018) conducted a similar
study but by using pore network modeling as the simulation tool
to obtain permeability values. Digitized rock samples imaged using
X-ray microtomography were used as porous media. 3D images
and 2D slices were used as an input feature for the predictive
model. The pore network approach indeed used a simplified ver-
sion of the pore network to facilitate the fluid flow simulation.
Their results demonstrated the applicability of machine learning
tools to obtain the permeability of the media by using their tomog-
raphy images.

In a recent work, Kamrava et al. (Kamrava et al., 2020) studied
the relation between morphology of a porous medium and its per-
meability. They developed a new network which uses deep learn-
ing as a tool to link the permeability of the porous medium to its
morphology. Their network is a hybrid of a traditional artificial
neural network and deep learning algorithm. The input of their
model included 3D images of the medium, synthetic unconsoli-
dated porous media generated by a Boolean method and stochastic
realizations generated by image analysis and reconstruction. Their
trained network was able to predict accurately the permeability
value for a variety of porous media. Santos et al. (Santos et al.,
2020) moved one step further and used the 3D morphology of
the porous medium and generalized single phase flow of a fluid
through the material. They showed that a 3D convolutional neural
network is able to find a relationship between morphological fea-
tures and the steady state solution of Navier-Stokes equation in
laminar condition. Their trained model was able to extract spatial
relations between fluid flow and pore network characteristics of
the medium. They used four main geometric features of the porous
medium, namely, Euclidean distance, maximum inscribed sphere,
time of flight from left to right and from right to left. The second
category of input data to train the code was single phase fluid flow
simulation in the domain. The trained model was able to obtain
sufficient and accurate information about fluid flow in pores of
the domain in less than a second, which is several magnitudes fas-
ter than performing time-expensive numerical simulations. In
addition to that, even so the trained code used a simple synthetic
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geometry to be trained, the model was able to predict properly the
results for real samples like granular rocks and carbonates. In a
similar approach, Kamrava et al. (Kamrava et al., 2021) developed
and trained a machine learning method that takes the morphology
of a porous medium and predicts its flow properties such as pres-
sure and velocity in pores of the medium. They evaluated the per-
formance of the model on 200 membrane samples and porous
media. The results showed a very good agreement with direct
numerical simulation.

Another application of the machine learning approaches is to
predict the performance of a porous layer such as during nanofil-
tration. Hu et al. (Hu et al., 2021) developed such a predictive mod-
els using artificial intelligence algorithms. They carried out a
principal component analysis to find out the most important
parameters affecting the permeance and rejection of the medium.
They trained three artificial intelligence models, namely artificial
neural network, support vector machine and random forest. With
the trained models they were able to predict the permeance and
rejection with accuracy of 91 and 98%, respectively. They claimed
that the trained model is not only able to predict the performance
of a made filter but also can be used to design better membranes.

In this paper, we propose a novel approach based on using an
artificial neural network to predict the pore properties after pas-
sage of a colloid. As set of previously performed Lattice Boltzmann
simulations were used as input parameters to train the model. A
set of four main parameters affecting the colloid transport in the
pore media were selected; solution ionic strength, zeta potentials,
colloid size and flow velocity. The four input parameters were cho-
sen to provide a wide range which covers both the clogging and
not-clogging condition of the pore/throats. The results of the Lat-
tice - Boltzmann simulations were also divided into four main
parameters defining pore properties after colloid/fluid passage.
The output parameters are: pore surface coverage with attached
colloids, conductivity of the pore, void fraction and coordination
number of the colloid. After the training process, the trained model
was able to predict the set of four output parameters without any
need to run Lattice – Boltzmann simulations for a new case con-
sisting of a unique set of four input parameters. In other words,
the trained model was able to predict the pore properties, after col-
loid transport, in less than a second.
2. Methodology

2.1. Direct pore scale numerical simulation

In this paper, the generated results of Samari-Kermani were
used to train the artificial neural network. Here a brief explanation
of the numerical simulation is presented. More details can be
found in (Samari Kermani et al., 2020; Samari-Kermani et al.,
2021).

2.2. Geometry

The geometry is a single sinusoidal pore-throat to provide
converging–diverging streamlines to represent the pore structure
and the flow in porous media. A 400 � 100 rectangular grid is
used to define the domain. The pore is 200 mm long, and
50 mm wide at the inlet and the outlet which reduces to
20 mm at the throat, Fig. 1.

2.3. Fluid flow simulation and boundary conditions

The fluid flow is laminar and simulated using a D2Q9 (two-
dimensional lattice with nine directional flow vectors, eight repre-
senting the radial flow and one the null flow state) lattice Boltz-
3

mann model with BGK (Bhatnagar-Gross-Krook (BGK) collision)
approximation and an external force term (Lattice Boltzmann
Method And Its Application In Engineering - Zhaoli Guo, 2021;
Krüger et al., 2017). Equation (1) shows the discretized form of
Boltzmann equation that considers fluid particles as distribution
functions (f a) which stream along lattice links in a directions and
collide at lattice nodes (x) to relax toward their equilibrium values
(f eqa ). In this equation, c, t ,s, F , and

ea ¼
0;0ð Þ
1;0ð Þ; 0;1ð Þ; �1;0ð Þ; ð0;�1Þ
1;1ð Þ; �1;1ð Þ; �1;�1ð Þ; ð1;�1Þ

8><
>:

a ¼ 0
a ¼ 1;2;3;4
a ¼ 5;6;7;8

are lattice speed, time, dimensionless relaxation time ; external
body force and the discrete velocity vectors in the nine a directions
of the D2Q9 model, respectively.

f a xþ eaDt; t þ Dtð Þ � f a x; tð Þ ¼ �1
s

f a x; tð Þ � f eqa x; tð Þ� �
þ 3xaqea:F=c2 ð1Þ

The equilibrium distribution function in each direction is calcu-
lated by Equation (2):

f eqa ¼ xaq 1þ 3
ea:u
c2

þ 9
2

ea:uð Þ2
c4

� 3
2
u:u
c2

" #
ð2Þ

where xa ¼
4=9
1=9
1=36

8<
:

a ¼ 0
a ¼ 1;2;3;4
a ¼ 5;6;7;8

shows the weight coefficients. At each time step, distribution
functions are used to calculate macroscopic properties such as fluid

density, q x; tð Þ ¼ P8
a¼0f a x; tð Þ, and velocity,

u x; tð Þ ¼ 1
q x;tð Þ

P8
a¼0eaf a x; tð Þ.

Constant velocity inlet, constant pressure outlet (Zou and He,
1997), and no slip boundary conditions are implemented at the
inlet, outlet, and the curved pore-throat surfaces (Bouzidi et al.,
2001), respectively.

Solid particles simulation and the coupling between fluid and
solid phases:

Solid particles are simulated using the smoothed profile method
[SPM] which defines the fluid and solid domains at position � and

time t through a uðx; tÞ ¼ PNP
P¼1uPðx; tÞ function (Jafari et al., 2011).

Each of the NP particles inside the domain are represented by
uPðx; tÞ as shown in Equation (3). This function takes the value of
zero inside the fluid phase, takes the value of one inside the solid
particles, and smoothly changes from zero to one in the interface
thickness,n. In Equation (3), RP , and RP are each particle’s radius
and center position, respectively.

uPðx; tÞ ¼ sðRP � jx� RPðtÞjÞ ð3Þ

sðLPÞ ¼
0 LP < �n=2
1
2 ðsinðpLPn Þ þ 1 Þ jLPj � n=2
1 LP > n=2

8><
>:

The particles’ velocity field, uP x; tð Þ, is calculated by Equation
(4) where UCp , and xP are the respective translational and angular
velocity of each particle.

u x; tð ÞuP x; tð Þ ¼
XNP

P¼1
uP x; tð Þ UCp tð Þ þxP � x� RP tð Þf g� � ð4Þ

When the velocity field is known, hydrodynamic forces (FH
P ) and

torques (TH
P ) implemented on each particle from the fluid can be

obtained using Equations (5) and (6). In these equations, q shows
the density of each particle, and it is considered to account for
the mass of each particle.
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Fig. 1. Pore-throat geometry and boundary conditions.
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FH
P ¼

Z
8p
quðx; tÞðuðx; tÞ � upðx; tÞÞ d8p ð5Þ

TH
P ¼

Z
8p
ðx� RPÞ � quðx; tÞðuðx; tÞ � upðx; tÞÞ d8p ð6Þ

In SPM, the body force f H x; tð Þ ¼ �u x; tð Þ uP x; tð Þ � u x; tð Þð Þ,
resulting from the fluid–solid interactions, is inserted on each fluid
node covered by a solid particle. This force is then replaced by the
external force F in Equation (1) to account for the coupling
between fluid flow and particles transport. This way, not only the
effect of fluid flow on particles transport, but also the effect of par-
ticles on changing the flow streamlines is considered. More
detailed information about SPM and its implementation to study
particles transport can be found in (Samari Kermani et al., 2020;
Samari-Kermani et al., 2021).

2.4. Particle’s transport and behavior

To simulate particle transport, the Lagrangian method is
selected to track each particle’s motion. In addition to drag and lift
forces (FH) calculated by SPM, gravitational and buoyancy forces
(FG), DLVO (Derjaguin-Landau-Verwey-Overbeek) interactions
among particles (FDLVO

P�P ), and DLVO interactions between particles

and the pore surface (FDLVO
P�P ) are considered as well (Derjaguin

and Landau, 1993; Verwey, 1947). Knowing all the forces and tor-
ques (Tp), new translational and angular velocities of each particle
(UCp ;xp) together with its new position (RP) are obtained using
Equations 7–9. In these equations, MP and IP are each particle’s
mass and moment of inertia, respectively. The detailed information
of each force can be found in (Samari Kermani et al., 2020; Samari-
Kermani et al., 2021)

MP
dUCP

dt
¼ FH

P þ FG
P þ FDLVO

P�P þ FDLVO
P�S ð7Þ

IP : _xP ¼ TP ð8Þ

dRP

dt
¼ UCP ð9Þ

Initially, there is no particle inside the pore, and the flow is sim-
ulated to reach the steady state. While the flow is steady, particles
start to enter the pore at random heights. To be able to compare
the results, the particles injection rate for all particle sizes and flow
velocities is equal to 1188 mm2 of particle surface per injected solu-
tion pore volume (PV). For example, this value is equal to the injec-
tion rate of 15 particles of 10 mm per PV.

Four parameters, each with three different values are selected
to study particle behavior under various conditions. These param-
eters include particles diameter (dp = 3, 5, 10 mm), solution ionic
strength (IS = 0.001, 0.05, 0.3 M), pore zeta potential
(fS ¼ �17:5;�45:56;�60mV) and chosen particle zeta potential
4

(fP ¼ �17:5;�45:56;�60 mV), and mean flow velocity
(U = 1;5;10 m/day). In all the simulations, the flow is aminar, the
fluid is water with density of 1000 kg

m3 and the density of particles

is 1055 kg
m3. Combination of these parameters results in 81 simula-

tions for favorable deposition conditions (fPfS ¼ �1), and 81 simula-

tions for unfavorable deposition conditions (fPfS ¼ 1).

It is worth mentioning that under favorable conditions, deposi-
tion of particles on the pore surfaces assumed to be irreversible
and at the primary distance of the surface. However, under unfa-
vorable conditions, deposition is assumed to be reversible and at
the secondary minimum. Based on the forces and torques inserted
on each particle at each time step, the particle can remain immo-
bile at the point of secondary minimum, and so can attach tightly
to the surface, can roll over the surface toward the outlet, or can
detach from the surface to join the bulk flow (Samari Kermani
et al., 2020; Samari-Kermani et al., 2021). Additionally, in these
simulations, the suspension is not diluted; meaning that the parti-
cles can have secondary minimum interactions with each other to
make agglomerates which can significantly affect particles trans-
port and behavior.
2.5. Parameters studied in this paper

In this paper, average coordination number of particles is
selected to indicate aggregation possibility. This parameter shows
the average number of particles connected to each individual par-
ticle through secondary minimum interactions.

Dimensionless pore hydraulic conductivity shows how easy the
flow can move through the pore while single and aggregated par-
ticles are available in comparison with the initial situation when
there is no particle inside the domain.

Dimensionless surface coverage shows the fraction of the upper
and lower pore surfaces that are covered by deposited particles.
The covered area is calculated by projecting the particles diameter
on the sinusoidal surfaces.

Void fraction is a dimensionless parameter to show what frac-
tion of the pore space is occupied by deposited particles in compar-
ison with its initial value when there is no particle inside the pore.
To calculate this parameter, deposited particles are not only the
ones that are directly attached on the surface, but also the ones
that are connected to the surface through their neighboring parti-
cles in an agglomerate.

The present study uses the time-averaged values of the above
parameters obtained after injecting several pore volumes of the
suspension. In the cases with clogging condition, the reported val-
ues are the ones related to the clogging time, when the dimension-
less hydraulic conductivity reduces to nearly zero. Samples of the
graphs showing the time dependency of these parameters are
available in (Samari Kermani et al., 2020), and the obtained time-
averaged values can be found in (Samari-Kermani et al., 2021).
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2.6. Artificial neural network

Artificial Neural Network (ANN) is one of the well-known pre-
dictive methods used to find a solution when other statistical
methods are not applicable. The advantages of this tool are the
ability to learn from example datasets, fault tolerance, operation
in a real-time environment, and forecasting non-linear data; all
of them make this tool a widely used statistical approach. More-
over, ANN accurately fits in the nonlinear variable, which is an
advantage compared to multivariate linear analysis based on linear
variables (Stangierski et al., 2019).

An ANN is a functional imitation of the natural biological neu-
rons, each of which is its fundamental data processing element.
Like the biological neurons in the brain, it is made of simple but
highly interconnected processors, also called neurons. Fundamen-
tally, a biological neuron takes inputs from different sources, puts
them together, performs a nonlinear operation on the input data
and calculates the result. Weighted links are the source of neurons
connections and signals are passed from one neuron to another by
these connections. A number of input signals are received by each
neuron through its connections and transmitted through outgoing
neuron connections as output. The strength of each neuron input is
demonstrated by the weights and its adjustment recurrently, leads
to the neural network learning process (Urang et al., 2020).

In the feed-forward multi-layer neural network considered in
this paper (Fig. 2), the neurons are arranged in several layers: an
input layer containing one neuron for each independent variable
and taking the input data, one or more hidden layers where the
data are processed, and an output layer, containing one neuron
for each dependent variable producing a result.

Each neuron connects with every neuron in the next layer.
However, there are no connections among neurons in the same
layer. The ANN learning process is based on adjusting weighted
connections between neurons until the most efficient solution of
a problem has been obtained. Moreover, providing both an input
Fig. 2. A schematic diagram of a perceptron network (xi is input, yi is output. Wij is weigh
input transfer functions) (Artificial Neural Network Tutorial - Javatpoint n.d.). (For interp
web version of this article.)

5

and output in the network allows for calculation of an error based
on its target output and present output. This can be used for cor-
rections of the network by updating its weights and to achieve
optimal results (Stangierski et al., 2019).

2.7. Network design

The ANN was trained with a single hidden layer, and the trans-
fer function for the hidden layer was tangent sigmoid, while for the
output layer it was a pure linear function. The back propagation
algorithm was used, which has proven successful in a wide range
of applications (Carvalho et al., 2013). Ten neurons in the hidden
layer were found to be enough after preliminary training and test-
ing the ANN.

To compare the prediction ability of trained ANN two criteria of
Mean Square Error (MSE) and correlation coefficient (R) were
applied which are defined as flow:

MSE ¼
XN
1

Qsim � QANNð Þ2=N
" #

ð10Þ

R ¼
PN

1 Qsim � Q
�
sim

� �
QANN � Q

�
ANN

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

1
Qsim � Q

�
sim

� �2
QANN � Q

�
ANN

� �2
� �s ð11Þ

where N is number of samples, Qsim is Boltzmann simulation data
and QANN is ANN output. Furthermore, absolute value of relative
error E ¼ Qsim�QANN

Qsim
� 100 was used to find the most error produced

during each training. In this study four independent variables i.e.,
IS, U, Z, D and four dependent variables were considered i.e., CN,
COV, COND, and VOID.

Performing multi-input multi-output training showed that the
network would not yield a high R and a low E value and these
t. Yellow circles are transfer functions for hidden and output layers. Red squares are
retation of the references to colour in this figure legend, the reader is referred to the



Table 1
Training parameters of network for favorable condition.

Aggregate coordination number Surface coverage Conductance Void fraction

Low ionic strength: IS = 0.003
R 0.9996 0.9994 0.9997 0.9985
MSE 3.2918 � 10-5 2.4293 � 10-6 6.8408 � 10-5 1.5610 � 10-6

E 5.44 7.40 5.76 0.3043
Medium ionic strength: IS = 0.05
R 0.9995 0.9994 0.9996 0.9987
MSE 4.4687 � 10-4 5.0351 � 10-5 2.3114 � 10-5 2.0265 � 10-5

E 4.14 8.95 6.4340 1.98
High ionic strength: IS = 0.3
R 0.9994 0.9999 0.9987 0.9998
MSE 3.4145 � 10-4 2.9892 � 10-7 9.6165 � 10-7 5.1533 � 10-7

E 6.71 5.21 5.3427 0.4179
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results indicated that training was sufficient to correlate inputs
and output data. Therefore, we transformed the network architec-
ture to a multi-input and single-output form. This strategy helped
to improve the input–output correlation but still prediction quality
remained poor. Through examining each individual independent
variable, we found that IS had a strong nonlinear relationship with
outputs, and, therefore, had strong impact on preventing the ANN
from reaching the learning goal. As a solution, the IS, as an inde-
pendent variable, was categorized into 3 levels namely Low-
IS = 0.003, Medium-IS = 0.05, High-IS = 0.3. Via this modification
of the network, each output variable must divide according to IS
subsections and hence 12 networks needed to describe all input
output relationships and fittings (four dependent variables times
three IS subsections). With this classification of IS, the learning pro-
cess improved and the parameters R and MSE reached desired val-
ues as well.

For each dependent variable, 162 samples were available which
came from Boltzmann simulations. After initial trainings and
observing the results, it was found that 90%, 5% and 5% were suit-
able fractions for training, validation and test, respectively.
MATLAB software was used for performing network training and
due to short time required for training, Levenberg-Marquardt opti-
mization algorithm was selected for network training.
3. Results and discussion

For each IS level, the parameters R, MSE and E are presented in
Tables 1 and 2. To reach to a desired E value (to be less than 10%),
networks were trained by a MATLAB routine and in each training
after at most 10 epochs networks were trained.
3.1. Favorable condition

As given in Table 1, maximum relative error of 8.95% was
obtained for favorable condition dataset, which fulfilled the train-
ing goal. Correlation coefficients (R) of all ANNs were above 0.995
and this value for R ensured that network outputs would be close
enough to simulation data in the range of input and output data.
Regression plots are presented in appendix A for the ANN trained
in this step.

The results showed that the ANN can profoundly predict the
simulation data in a wide range of IS. In other words, the trained
model can be used directly to find the value of dependents values
by simple calculations through network weights and transfer
functions.
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3.2. Unfavorable condition

MATLAB code also was used to find the neural network correla-
tions for attachment under unfavorable condition. A maximum rel-
ative error of 9.3%, as given in Table 2, was calculated during the
training phase, which is very well in the range of accepted training
criteria. similar to the situation for training under favorable condi-
tions, correlation coefficients (R) of all ANNs were calculated and
were above 0.995, which means network outputs are sufficiently
close to simulation data in the range of input and output data. In
a\Appendix B, regression plots of the unfavorable condition train-
ing phase are illustrated. The obtained results clearly show that
ANN is able to satisfactorily predict the simulation results under
unfavorable adsorption condition.
4. Conclusion

A large amount of data from a previouswork on direct numerical
modeling of colloid adsorption was used to study the impact of col-
loids transport on geometrical and hydraulic properties of pore
structures. A constricted pore-throat geometry consisting of two
pores with a throat (which mimics the convergence and divergence
character of the flow field) was chosen together with a range of con-
ditions for the flowing fluid and colloids to simulate adsorptive col-
loid transport. As training feed, we have used results from 162
simulation cases (which were previously published by Samari-
Kermani (Samari Kermani et al., 2020), in which a combined lattice
Boltzmann-smoothed profilemethodwas employed to study differ-
ent possible conditions using for input parameters namely solution
ionic strength, zeta potential, colloid size and flow velocity. The
reported simulation results included hydrodynamic, gravity, buoy-
ancy, van derWaals and electrostatic forces to simulate their impact
on colloid transport and aggregation. The result of simulations was
interpreted to provide insight on several parameters including pore
surface coverage by colloids, change of pore void fraction, conduc-
tivity and the coordination number between individual colloids in
colloid aggregates to show the extent of connection between col-
loids. As these simulations was designed to not set any of the com-
mon assumptions (which neglect the effects of inter-particle
forces), the modeling was computationally very expensive. There-
fore, in this study, in order to find a practical solution and study
any kind of new condition similar to the 162 done cases, a machine
learning approach was employed. For training an artificial neural
network information 162 simulated cases were used as training
feed data. The network consisted of one single hidden layer and



Table 2
Training parameters of network for unfavorable condition.

Aggregate coordination number Surface coverage Conductance Void fraction

Low ionic strength: IS = 0.003

R 0.9991 0.9998 0.9982 0.9981
MSE 7.4166 � 10-5 3.1982 � 10-6 6.3285 � 10-6 5.1989 � 10-6

E 6.89 8.88 0.82 0.45
Medium-IS = 0.05
R 0.9998 0.9995 0.9995 0.9989
MSE 7.7409 � 10-5 6.5990 � 10-6 2.1806 � 10-5 4.8983 � 10-6

E 3.02 3.07 4.6076 1.09
High-IS = 0.3
R 0.9981 0.9988 0.9999 0.9988
MSE 8.0384 � 10-04 1.7859 � 10-5 1.7508 � 10-6 9.1441 � 10-6

E 6.42 9.28 3.83 1.93
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while the transfer function for hidden layerwas tangent sigmoid, for
the output layer it was chosen to be a pure linear function.

The network architecture had a multi-input and single-output
form. This architecture helped to make input–output correlation
improved but still it was away from the desired training goal. Dur-
ing the training process, we found that IS had a strong nonlinear
relationship with the outputs. This strong nonlinearity caused
training instability in the model. Therefore, the IS was divided to
three categories, namely, low, medium, and high IS. The training
then was conducted individually for three IS ranges divided into
these three groups.

For adsorption under favorable condition, a maximum relative
error of 8.95% was obtained for the training. Correlation coeffi-
cients (R) of all ANNs were above 0.995. This R value ensured that
network outputs can adequately mimic simulation data in the
range of input and output data. In case of adsorption under unfa-
vorable condition, a maximum relative error of 9.3% was obtained,
which was sufficient for the training purposes. The correlation
coefficients (R) of all ANNs were set above 0.995 by which network
outputs would be close enough to simulate data in the range of
input and output information. The resulted trained model was able
to accurately predict the involved pore properties due to transport
of adsorptive through the pore structure.

Finally, it should be noted that, the pore-throat geometry is con-
veniently but necessarily extremely simplified in this work, and
cannot account for naturally occurring discontinuities in surface
uniformity or geometry. Therefore, both the flow model, and the
arising neural network learning cannot cope precisely with more
highly anisotropic systems.
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Appendix A

See Figs. A1-A3.



Fig. A1. Regression plots at Low-IS.
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Fig. A2. Regression plots at Medium-IS.
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Fig. A3. Regression plots at High-IS.
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Appendix B

See Figs. B1-B3.
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Fig. B1. Regression plots at Low-IS.
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Fig. B2. Regression plots at Medium-IS.
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Fig. B3. Regression plots at High-IS.
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