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BACKGROUND:Mechanistic data is increasingly used in hazard identification of chemicals. However, the volume of data is large, challenging the effi-
cient identification and clustering of relevant data.
OBJECTIVES: We investigated whether evidence identification for hazard assessment can become more efficient and informed through an automated
approach that combines machine reading of publications with network visualization tools.
METHODS: We chose 13 chemicals that were evaluated by the International Agency for Research on Cancer (IARC)Monographs program incorporating
the key characteristics of carcinogens (KCCs) approach. Using established literature search terms for KCCs, we retrieved and analyzed literature using
Integrated Network and Dynamical Reasoning Assembler (INDRA). INDRA combines large-scale literature processing with pathway databases and
extracts relationships between biomolecules, bioprocesses, and chemicals into statements (e.g., “benzene activates DNAdamage”). These statements were
subsequently assembled into networks and compared with the KCC evaluation by the IARC, to evaluate the informativeness of our approach.
RESULTS: We found, in general, larger networks for those chemicals which the IARC has evaluated the evidence to be strong for KCC induction.
Larger networks were not directly linked to publication count, given that we retrieved small networks for several chemicals with little support for
KCC activation according to the IARC, despite the significant volume of literature for these specific chemicals. In addition, interpreting networks for
genotoxicity and DNA repair showed concordance with the IARC KCC evaluation.
DISCUSSION: Our method is an automated approach to condense mechanistic literature into searchable and interpretable networks based on an a priori
ontology. The approach is no replacement of expert evaluation but, instead, provides an informed structure for experts to quickly identify which state-
ments are made in which papers and how these could connect. We focused on the KCCs because these are supported by well-described search terms.
The method needs to be tested in other frameworks as well to demonstrate its generalizability. https://doi.org/10.1289/EHP9112

Introduction
Risk assessment of chemicals is commonly based on toxicologi-
cal or epidemiological studies. Mechanistic studies can be
used to complement animal or epidemiological data to inform
mechanisms of toxicity, dose–response assessment, and hazard
identification (National Academies of Sciences, Engineering, and
Medicine 2017). However, it is generally recognized that summa-
rizing mechanistic data is challenging, in part because of the large
diversity of study types and the high volume of available studies
(EFSA 2018). At present, there is still no generally accepted pro-
cedure to structure, analyze, and interpret mechanistic studies in
an efficient way (Guyton et al. 2018; Wikoff et al. 2019). Further,
the process of evaluating available mechanistic data, including
reading manuscripts and evaluating the associated data, is labor
intensive.

There is growing interest in using machine learning and other
approaches to reduce the human burden in screening studies for
relevance and to facilitate systematic review processes (Howard
et al. 2016). For example the “Sciome Workbench for Interactive

computer-Facilitated Text-mining” (SWIFT)-review tool has been
developed to identify and visualize whether the currently available
data for a chemical of interest is rich or poor. The Table Builder
and Health Assessment Workplace Collaborative (HAWC) are
tools meant to share results of systematic review searches and risk-
of-bias assessments and include possibilities for data analyses
(Shapiro et al. 2018). Other researchers have applied a bioinfor-
matics approach to structure and analyze mechanistic data.
Carvaillo et al. (2019), for example, combined text mining and sys-
tems biology by creating a tool, the adverse outcome pathway
(AOP)-helpFinder, that enriches AOPs. This tool could assist risk
assessors in identifying relevant associations between certain
chemicals of interest and AOP components. Guha et al. (2016)
combined information on chemical structurewith database integra-
tion and automated text mining and, as such, prioritized agents for
hazard identification.

Here, we propose an approach for identification and prioritiza-
tion of data and knowledge for use in hazard characterization of
chemicals that combines text mining with network visualization
tools. We apply our approach within the context of the International
Agency for Research on Cancer (IARC) Monographs program for
the evaluation of carcinogens, which evaluates mechanistic data
using a well-defined framework and ontology: the 10 key character-
istics of carcinogens (KCCs).

The KCCs have been recently identified in a series of IARC
workshops (Smith et al. 2016). The IARC has used mechanistic
data to strengthen conclusions on carcinogen classifications since
1991 (IARC 1992) but developed the 10 KCCs to create a more
systematic method for the evaluation of mechanistic data to sup-
port hazard assessment for carcinogens. The KCCs comprise the
properties of known human carcinogens (e.g., having genotoxic
or immunosuppressive properties) and data on these characteris-
tics can support the evidence of carcinogenicity (Smith et al.
2016). To retrieve information based on the KCCs from the sci-
entific literature, the IARC Monographs staff developed a work-
ing list of search terms for the KCCs (Guyton et al. 2018)
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(Table 1). In 2019, the Preamble to the IARC Monographs,
which outlines procedures on scientific review and evaluation
of carcinogenic hazards, was updated; the KCCs are now used
as the basis for the evaluation of mechanistic data (Samet et al.
2020; IARC 2019).

We explored the use of the Integrated Network and Dynamical
Reasoning Assembler (INDRA) (Gyori et al. 2017) coupled to the
Reach natural language processing system (Valenzuela-Escárcega
et al. 2018). INDRA aims to aggregate claims about causal bio-
logical and chemical mechanisms extracted by text-mining tools
into a mechanistic in silicomodel. The type of in silicomodel can
be defined a priori based on an evaluation framework. We
imported the results of the literature search based on the queries
by Guyton et al. (2018) into INDRA. INDRA retrieves so-called
causal assertions (i.e., statements in which an entity, such as a
small molecule or a protein, interacts with or regulates another
entity, such as a protein or biological process) from the literature
extracted by Reach and performs a series of assembly steps to
transform these relationships into networks. It needs to be men-
tioned that the term causal in the context of the computational
INDRA environment does not automatically imply biological or
toxicological causality but, rather, is related to the strength of a
computationally inferred value between entities [creating a belief
score (BS)].

Importantly, we do not present an approach for an automated
hazard characterization. We compared the obtained networks
with the IARC’s evaluation to assess the informativeness of our
approach to synthesize the available evidence into a predefined
ontology (i.e., KCCs) and to suggest prioritization of KCCs for
certain chemicals. We interpreted correspondence between the
expert evaluation and our automated approach for informed evi-
dence identification to indicate usefulness of our approach as a
first step in evidence synthesis.

Methods
Figure 1 displays a comparison between our approach (Figure 1A),
and the approach by the IARC (Figure 1B), together with a poten-
tial application of our approach to aid in identifying and prioritiz-
ing relevant information for full-text review of included studies.
We chose 13 chemicals that have been mechanistically evaluated
in IARC Monographs 112–125 and were classified in different
IARC carcinogen categories: benzene (1), pentachlorophenol (1),
dichlorodiphenyltrichloroethane (DDT; 2A), hydrazine (2A), dia-
zinon (2A), glyphosate (2A), malathion (2A), melamine (2B), par-
athion (2B), pyridine (2B), allyl chloride (3), b-picoline (3), and
coffee (3).

Compounds were selected if they fulfilled the criteria of being
evaluated by the IARC, that is, from Monograph 112 onward,
based on the potential for induction of the KCCs (see “IARC
evaluations for evidence of KC activation” in the Supplemental
Material), hereafter referred to as IARC evidence. After evalu-
ating the assembled data, the IARC classified the evidence on
the basis of collective expert judgment as strong, moderate,
weak, or no evidence. These classifications are based on various
criteria, as outlined in the IARC’s Instructions for Authors
(IARC 2017).

We started our approach with a literature search using the
PubMed database, based on the predefined query search terms for
the KCCs (Table 1; Guyton et al. 2018). Per query, the search
terms were combined with the chemical name(s), as referred to
by the IARC, contained within the article title and a date limita-
tion from 1 January 1900 to 1 March 2020 in the following for-
mat: “chemical name[Title] AND (Guyton search terms) AND
(1900/01/01[PDat]: 2020/03/01[PDat]).” Note that three chemi-
cals were evaluated later (allyl chloride, pentachlorophenol, and
b-picoline), hence the search term for these chemicals was
extended to October 2021. Each of these searches returned a list

Table 1. Ten key characteristics of carcinogens (KCCs) and corresponding search terms (taken from Guyton et al. 2018).

KCC Description (label)a Query Search termb

1 Is electrophilic or can be metabolically activated (electrophilic) 1 “pharmacokinetics”[MeSH Terms] OR “pharmacokinetics”[Subheading] OR
“absorption”[MeSH Terms] OR “distribution”[Title] OR “excretion”

2 Is genotoxic (genotoxic) 2 (“Mutation”[Mesh] OR “Cytogenetic Analysis”[Mesh] OR “Mutagens”[Mesh]
OR “Oncogenes”[Mesh] OR “Genetic Processes”[Mesh] OR “genomic
instability”[MesH] OR chromosom* OR clastogen* OR “genetic toxicol-
ogy” OR “strand break” OR “unscheduled DNA synthesis” OR “DNA dam-
age” OR “DNA adducts” OR “SCE” OR “chromatid” OR micronucle* OR
mutagen* OR “DNA repair” OR “UDS” OR “DNA fragmentation” OR
“DNA cleavage”)

3 Alters DNA repair or causes genomic instability (DNA repair)

4 Induces epigenetic alterations (epigenetics) 3 “rna”[MeSH] OR “epigenesis, genetic”[MesH] OR rna OR “rna,
messenger”[MeSH] OR “rna” OR “messenger rna” OR mrna OR
“histones”[MeSH] OR histones OR epigenetic OR miRNA OR methylation

5 Induces oxidative stress (oxidative stress) 4 “reactive oxygen species”[MeSH Terms] OR “reactive oxygen species”[All
Fields] OR “oxygen radicals”[All Fields] OR “oxidative stress”[MeSH
Terms] OR “oxidative”[All Fields] OR “oxidative stress”[All Fields] OR
“free radicals”[All Fields]

6 Induces chronic inflammation (inflammation) 5 inflamm* or immun* or chemokine or cytokine or leukocyte or white blood
cell7 Is immunosuppressive (immunosuppressive)

8 Modulates receptor-mediated effects (receptor-mediated) 6 “Hormones, Hormone Substitutes, and Hormone Antagonists”[Mesh] OR
“Endocrine Disruptors”[Mesh] OR “Thyroid Hormones”[Mesh] OR
“Estrogens”[Mesh] OR “Progesterone”[Mesh] OR “Receptors,
Estrogen”[Mesh] OR “Receptors, Androgen”[Mesh] OR “Receptors,
Progesterone”[Mesh] OR “Receptors, Thyroid Hormone”[Mesh] OR
“Receptors, Aryl Hydrocarbon”[Mesh] OR “Peroxisome Proliferator-
Activated Receptors”[Mesh] OR “constitutive androstane
receptor”[Supplementary Concept] OR “farnesoid X-activated
receptor”[Supplementary Concept] OR “liver X receptor”[Supplementary
Concept] OR “Retinoid X Receptors”[Mesh]

9 Causes immortalization (immortalization) 7 “Cell Transformation, Neoplastic”[Mesh] OR “Cell Proliferation”[Mesh] OR
apoptosis OR “necrosis”[MeSH] OR “DNA Replication”[Mesh] OR “Cell
Cycle”[Mesh] OR brdu OR thymidine OR angiogenesis

10 Alters cell proliferation, cell death or nutrient supply (cell
dynamics)

aIn parentheses, a label is provided for reference to the specific KCC in this paper.
bTruncated search terms are identified by an asterisk.
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of PubMed identifiers [IDs (PMIDs)], each corresponding to an
article. We used INDRA’s literature retrieval module to obtain
the full-text content or the abstract corresponding to each PMID
returned by these searches. When available, the full text was
retrieved from PubMed Central or Elsevier [an application pro-
gramming interface (API) key was used to get access to this con-
tent via the Elsevier Text and Data Mining API]. For PMIDs, for
which the full-text content was not available, the abstract was
retrieved.

The retrieved text content (for each of the chemicals: seven
lists of article texts based on seven searches, spanning the 10
different KCCs) were then processed with Reach, an open-
source natural language processing system for the biomedical
literature that is able to read and extract mechanistic descrip-
tions of biological processes from text (Valenzuela-Escárcega
et al. 2018). Reach is a type of event extraction system for
biology that can detect and normalize information about puta-
tive interactions among biological entities and processes
(Ananiadou et al. 2010). The system can recognize agents (e.g.,
proteins, bioprocesses, chemicals), link these to corresponding
identifiers in knowledge bases [including UniProt, InterPro,
Human Metabolome Database (HMDB), PubChem, and Gene
Ontology (GO)], and extract events or interactions (e.g., multi-
ple types of positive or negative regulation). To run Reach, we
used the reach module of INDRA (specifically, the process_text
and process_nxml_str functions), which provides a Python
interface to running the Reach system and processing its extrac-
tions into INDRA Statements (see Gyori 2017). INDRA
Statements represent a hypothetical, potentially causal influence
relation between two agents (e.g., a chemical and a bioprocess).
For example, for the sentence “Hydroquinone induces extensive
apoptosis in the cells”, the generated INDRA Statement reads
“Activation(hydroquinone(PUBCHEM:785), apoptotic process

(GO:0006915)),” which represents that hydroquinone (recog-
nized with the database identifier PUBCHEM:785) activates ap-
optosis (recognized with the database identifier GO:0006915).
(The assignment of database identifiers to entity texts is known
as named entity normalization or simply as grounding.)

We thus obtained a list of “raw” (i.e., unprocessed) INDRA
Statement objects gathered from Reach after extracting relations
from the content of each article’s text retrieved in the previous
step (Figure 2). Every raw statement contains a set of attributes
that includes all information necessary to identify the given puta-
tive mechanism and its participants being represented. Each state-
ment also has an evidence attribute that contains additional
provenance information and annotations, for instance, text con-
tent references (i.e., PMIDs), and the specific sentence from
which the statement was extracted, as well as, for instance,
whether the sentence was recognized as a hypothetical statement.
The evidence here and below is referred to as technical evidence
emerging from text mining, which is not automatically and
directly equal to biological/toxicological evidence in the context
of hazard assessment.

After obtaining all raw statements from the retrieved text of
each query, we applied several knowledge assembly steps using
the assemble_corpus module of INDRA, with the aim of filtering,
improving, deduplicating, and calculating BSs for the statements
before assembling them into a network.

This assembly process consists of the following steps:
1. Filtering out hypothetical statements with the function

filter_no_hypothesis(): The Reach system labels a state-
ment as hypothesis when the evidence text for that state-
ment contains one of the default words likely to belong to
a hypothesis (e.g., test, consider, predict, speculate, sug-
gest, theorize). This step removes all statements that have
been labeled as hypotheses.

Figure 1. Two different approaches to investigate and summarize mechanistic data: (A) the followed approach and (B) the IARC approach. Note: BS, belief
score; CX, a network exchange format; IARC, International Agency for Research on Cancer; INDRA, Integrated Network and Dynamical Reasoning
Assembler; KCCs, key characteristics of carcinogens; PMID, PubMed identifier.

Environmental Health Perspectives 037002-3 130(3) March 2022



2. Entity renormalization using the function map_grounding():
Entities from reading systems, such as Reach, are often
incorrectly normalized (i.e., an incorrect database ID is
assigned to them). INDRA integrates both expert-curated
maps to improve entity normalization and machine-learned
models [calling on the Python package Acromine-based
Disambiguation of Entities From Text context (Adeft)
(Steppi et al. 2020)] to choose between competing senses
of ambiguous acronyms (e.g., “IR” can refer to the insulin
receptor but also to ionizing radiation). INDRA also
standardizes IDs [e.g., when available, it provides equiv-
alent IDs for PubChem compounds in Chemical Entities
of Biological Interest (ChEBI), Chemical Abstracts
Service (CAS), ChEMBL and other databases)] and the
names of agents to their standard names [e.g., HUGO
Gene Nomenclature Committee (HGNC) gene symbols,
GO labels].

3. Filtering out agents without associated database identifiers
with the function filter_grounded_only().

4. Running preassembly with the function run_preassembly
(): In the last step of assembly, statements are deduplicated
(equivalent statements are merged into one statement) and
the associated evidence is gathered in an evidence list
(Figure 2). Subsequently, the BS are calculated by INDRA.
For each INDRA Statement, the BS is a numerical value
between 0 and 1, calculated as a function of the Statement’s
supporting evidence. The function that calculates BS starts
with empirical estimates of the prior random (r) and sys-
tematic error (s) rates of reading systems. In the present pa-
per Reach was used, and its default built-in values are

r=0:3 and s=0:05. Coming from a single source, the error
probability and BS are as follows:

error probability= re + s,
Belief Score=1− error probability,

with e being the number of pieces of evidence for that statement.
Thus, assuming an assembled statement has four pieces of evi-
dence, the BS would be 1− ð0:34 + 0:05Þ=0:94 (Figure 2).
Hence, the BS is based on the amount of evidence, that is, the more
evidence supporting the statement, the higher the BS (Figure 2).
These can be supportive, but do not directly refer to a “belief” by,
for example, toxicological experts in the cumulative scientific
community in the context of KCC hazard assessment.

To avoid counting repeated sentences from the same paper as
distinct appearances of the same assertion, we counted sentences
coming from the same paper as constituting only a single claim
for the purpose of BS calculation. However, if a single paper pro-
vided evidence for different KCCs, all these evidence were taken
into account. For each query, the number of PMIDs for which
INDRA Statements were obtained, was compared with the total
number of PMIDs retrieved (expressed as a percentage within
parentheses; Table 2).

All programming steps were executed in the environment
Spyder (version 3.3.6) and Python (version 3.7.4). The Python
script can be found at https://github.com/bernice493/INDRA_
hazard. All information related to INDRA was retrieved from
https://indra.readthedocs.io/en/latest/.

Once all the steps of this process were finished, the statements
were assembled into a network using INDRA’s assemblers.cx

Figure 2. Integrated Network and Dynamical Reasoning Assembler (INDRA) preassembly of statements and calculation of a belief score (BS). The default
preassembly function would count in this example five evidences (e), thus the BS would be 1− ðre + sÞ=+0:05= 0:95. The function that calculates BS starts
with empirical estimates of the prior random (r) and systematic error (s) rates of reading systems. In the present paper Reach was used, and its default built-in
values are r=0:3 and s=0:05. With the correction we applied (referred to as deduplication of statements), evidences 1, 2, and 3 are counted as one because they
were retrieved from the same paper, hence e=3, resulting in a BS of 0.92. Note: AIM2, absent in melanoma 2; Annexin-V-FLUOS, Annexin-V-fluorescence;
Casp1, Caspase 1; DSB, double strand breaks; H2AX, phosphorylated H2AX; r, empirical estimate of the prior random rate; and s, empirical estimate of the
systematic error rates; TET, ten-eleven-translocation.
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module. These networks were generated in CX format and visual-
ized in Cytoscape (version 3.7.2): a bio-informatics software plat-
form for visualizing molecular interaction networks (https://
cytoscape.org/) and publicly available via National Data
Exchange (Table S1). The resulting networks consist of nodes
(rectangles), which represent biological entities, and edges
(arrows between the nodes), which represent proposed biological
or chemical interactions/mechanisms between these entities.
Nodes are colored on the basis of the type of entity they repre-
sent: bioprocess (orange), chemicals (green), proteins (light
blue), protein family (dark blue), and others (being nodes not
classified into one of the before mentioned entities, gray). The
edges can indicate different events, that is, activation, inhibition,
complex formation, negative amount regulation, positive amount
regulation, and posttranslational modification, as implied by the
underlying INDRA Statements.

To reduce network complexity for further visual and statisti-
cal analysis (addressing sizes and support of the different net-
works), the following network filtering steps were taken: a) the
chemical of interest and its first neighbors (i.e., directly adjacent
nodes) were selected and retained, b) only the nodes connected
by edges with a BS≥0:86 (two or more pieces of evidence) were
retained (note that this is an arbitrary cut-off), and c) the nodes or
group of nodes not connected to the main network (containing
the chemical of interest as central node) were removed (see
“Filtering networks” in the Supplemental Material). We also fil-
tered the networks on the basis of the classes: bioprocesses and
other processes, for KCC 2 (genotoxic) and KCC 3 (DNA repair),
for example (see “Filtering networks” in the Supplemental
Material). This filtering helps to focus the attention on potentially
relevant biological processes that are possibly directly influenced
by the chemical in question.

After creating and filtering the networks, additional quantita-
tive descriptive network information was collected, including the
number of nodes and edges. This information represents numerical
values describing the network size. In addition, the sum of the BSs
(sBS) obtained from all statements within each of the networks
(seven networks per chemical, 10 chemicals) was calculated. This
provides information on the overall abundance of claims support-
ing the edges contained within the network. The Wilcoxon
rank test was used to compare the sBS metric with the IARC
Monographs working group (i.e., IARC evidence) classifications.

Aside from serving as input to the network analyses, all origi-
nal INDRA Statements are also collated in a list. After the assem-
bly step, the statements are saved in JavaScript Object Notation
(json) format. These files can be visualized with a json viewer.
We used Python json2table software because such information
can be retrieved on, for example, the PubMed ID and the original
sentence of the paper on which the evidence is based.

Results
The number of analyzed articles for each query, the percentage of
articles (i.e., PMIDs) for which INDRA Statements were produced
in relation to the retrieved articles, and the percentages of PMIDs
with open access, are displayed in Table 2. INDRA Statements
were extracted from ∼ 30% of all papers retrieved based on the
KCC input, indicating that a reasonable amount of input literature
contained information suited to automated processing.

From the INDRA Statements, 91 networks [i.e., seven net-
works (KCC 1, 2/3, 4, 5, 6/7, 8, and 9/10) for 13 compounds]
were created (Table 3). Table 3 provides a comparison between
the KCC network size (i.e., the number of nodes and edges) and
network support (i.e., sBS of the edges), and the actual evaluation
for KCC activation by the IARC (see “IARC evaluations for evi-
dence of KC activation” in the Supplemental Material).

A large network represents that there is (potentially) a richer
body ofmechanistic literature for that chemical discussed in the con-
text of that KCC. In general, higher sBS were observed for those
compounds for which the IARC has proposed strong evidence for
induction of KCCs (Figure 3). This is also corroborated by
Wilcoxon statistical analysis. Across all chemicals and KCCs,
INDRA-derived sBS tended to be significantly higher for KCCs for
which the IARChas classified theKCCevaluation as strong ormod-
erate evidence than for those for which the IARCevidencewas rated
“weak” or “no” [median ðinterquartile rangeÞ=3:5 ð13:7Þ vs. 0.9
(2.2); p=0:0003], but there was considerable overlap.

From Table 3, we did notice for a number of KCCs the evi-
dence was strong according to the IARC but that the networks
and the sBS were small. In those cases, the number of PMIDs
(Table 2) was also low. Conversely it does not appear that a
larger number of PMIDs, resulting from the KCCs and chemical-
specific queries, always results in larger networks, that is,
although benzene has the highest number of PMIDs (1,933) and
the largest networks, the networks for pyridine and coffee are
considerably smaller even though these compounds have the sec-
ond (1,820) and third (1,069) highest number of PMIDs, respec-
tively. Most compounds show a network for KCC 4 (epigenetic
alterations) although the IARC concluded for all compounds but
coffee that there was no sufficient evidence to evaluate the induc-
tion of this KCC (Table 3).

By using the filtering option on bioprocesses and other proc-
esses, we did not limit ourselves to the first neighbors of the com-
pound of interest, hence allowing us to investigate relations
between events, also further away from the compound of interest
(see “Filtering networks” in the Supplemental Material; Figure
S1). An example is given for benzene (Figure 4), where benzene
activates DNA damage, whereas DNA damage, in turn, can acti-
vate cell death. Further necrotic cell death is associatedwith activa-
tion of an inflammatory response. This relation (cell death
activates an inflammatory response) is also described in the AOP
wiki databases (ID 1776). In addition, the process of how the dis-
ruption of the cell cycle can lead to apoptotic processes (Figure 4)
is described in the AOPwiki databases (ID 1712).

Figures S2–S13 show the outcome of “Bioprocess and ‘other’
filtering” for each of the chemicals for KCC 2 (genotoxicity) and 3
(DNA repair) (originating from Query 2). We see that for all those
compounds (benzene, DDT, hydrazine, diazinon, glyphosate, mal-
athion, parathion, pentachlorophenol), for which the IARC eval-
uated the evidence to be moderate or strong for the activation of
this specific KCC, terms (both from “Bioprocesses” and “other”)
related to genotoxicity and DNA repair did appear in the networks.
The terms include, for example, DNA damage and (inhibition of)
DNA repair. Conversely, considering the chemicals for which the
IARC evaluated the evidence to be weak or absent (melamine, pyr-
idine, allyl chloride, b-picoline, and coffee), these two terms were
not observed in the networks for pyridine and coffee (nor for allyl
chloride and b-Picoline, for which no network could be created),
but only in the network for melamine.

Discussion
In this work, we investigated whether evidence identification for
chemical hazard assessment could be supported using an auto-
mated, computational approach. As an example, we explored the
use of this approach for identifying KCCs as used in the evaluation
of mechanistic evidence in the IARCMonograph program. Using
text mining and network analysis approaches (i.e., INDRA), we
found concordance between computationally inferred networks
strength (high BS) and the IARC KCC evaluations, especially for
those compounds for which the IARC has evaluated the evidence
to be strong for KCC induction. As such, our example application

Environmental Health Perspectives 037002-6 130(3) March 2022

https://cytoscape.org/
https://cytoscape.org/


suggests that compounds with larger networks and higher sBS
scores, could be prioritized for hazard identification, making the
process of evidence identification for hazard assessment more effi-
cient and transparent.

The output of our approach generates an inventory of avail-
able studies, as well as a categorization of data in the form of net-
works. These generated networks can further be filtered to
retrieve information on mechanisms of action by filtering only on
bioprocesses (Figure 4; Figures S2–12). This type of visualiza-
tion can be used as tool to assist in the interpretation of the litera-
ture for mechanistic evaluation of compounds within the KCC
framework (i.e., informed evidence identification).

Recently Barupal et al. (2021) published a study on prioritiz-
ing cancer hazard assessments for IARC Monographs using an
integrated approach of database fusion and text mining. The
authors also used the KCCs as input but, unlike the investigation
we conducted, Barupal et al. (2021) mainly looked at publication
count, as well as coverage across 34 different databases relevant
to cancer, for an agent. Our approach is different in that we are
not only identifying possibly relevant literature by the sheer
counting of numbers of publications per chemical (Table 2), but
that our approach also uses a systems biology–inspired text-
mining environment (i.e., INDRA) to extract data from the indi-
vidual articles and compile these data into potentially meaningful
biological networks, describing the possible relations between
biomolecules and chemicals, bioprocesses in the context of
KCCs (i.e., informed evidence identification). Thus, our work
expands beyond the evaluation of publication density or coverage
of toxicological content in databases. Importantly, we observed
that the number of publications derived from the KCC-specific
literature queries (which is driven by general scientific interest in

the chemical) proved not to be an accurate indication for potential
KCC activation, at least as inferred here from automated network
assembly.

Although promising, using our automated computational
approach has several limitations that should be kept in mind when
interpreting the results. Stringent filtering on BS, for example,
retaining only results with a BS≥0:86, can exclude relevant results
reported in a single study because only one single study could point
out a relevant result that now might be discarded. For example, if
we consider an unfiltered network for KCC 9, 10 for parathion
(KCC 9, 10–Query 7; Figure S13), we observe connections
between parathion and apoptotic process, as well as between para-
thion and cell population proliferation. Both statements have a BS
of 0.65, indicating that single studies contribute to these state-
ments. Both processes are linked to KCC 9 and 10 and, according
to the IARC, parathion indeed induces KCC 9 and 10; however,
this observation would have gone unnoticed upon more stringent
filtering. So, for smaller networks it might thus be worthwhile to
also investigate the larger, unfiltered networks. Conversely, our
network analysis does not distinguish between positive and nega-
tive regulation when filtering by BS, so it can occur that a network
is large but contains processes that are actually favorable, for
example, inhibition of DNA damage. The potential directionality
can be further investigated by displaying inhibition vs. activation
statements (an example is given for benzene in Figure S14). Last,
we applied a filtering step for hypothetical statements by excluding
statements that contain certain signaling words such as “suggest.”
However, using the word “suggest” is sometimes preferred, partic-
ularly in human studies, to avoid the use of causal language.
Hence, filtering statements with reference to “suggest” can poten-
tially exclude data from articles that use the wording “suggest”

Table 3. Network statistics for 13 chemicals in relation to IARC classifications.

Chemical
KCC 1

(electrophilic)

KCC 2 and 3
(genotoxic and
DNA repair)

KCC 4
(epigenetics)

KCC 5
(oxidative stress)

KCC 6 and 7
(inflammation and
immunosuppressive)

KCC 8
(receptor-
mediated)

KCC 9 and 10
(immortalization

and cell
dynamics)

Benzene (1), n=1,933 ***a *** ?a *** *** *** ***

16/19 (16.73)b 43/70 (62.25) 18/21 (18.38) 17/22 (19.75) 21/23 (20.31) 5/4 (3.50) 22/32 (28.83)
Penta-chloro-phenol (1),

n=427

*** *** ? *** **a *** ***

2/1 (0.86) 3/2 (1.51) 5/4 (2.81) 5/4 (3.44) 0 3/3 (1.95) 2/2 (1.51)
DDT (2a), n=788 ? ** ? *** *** *** **

4/3 (2.64) 8/7 (6.17) 13/12 (10.52) 11/12 (10.68) 5/6 (5.43) 16/18 (15.63) 7/7 (6.35)
Diazinon (2a), n=233 ? *** ? *** *a * *

0 3/2 (1.78) 2/1 (0.86) 12/13 (11.54) 3/2 (1.78) 2/1 (0.86) 3/2 (1.78)
Glyphosate (2a), n=506 * *** ? *** * * *

3/2 (1.72) 10/12 (10.68) 16/17 (15.14) 25/29 (26.01) 4/3 (2.66) 3/2 (1.78) 7/7 (6.11)
Hydrazine (2a), n=368 *** *** ? *** ? * ***

0 2/1 (0.92) 2/1 (0.86) 4/3 (2.64) 2/1 (0.86) 0 0
Malathion (2a), n=360 * *** ? *** *** *** ***

2/1 (0.86) 8/9 (7.91) 7/6 (5.22) 27/48 (43.05) 16/16 (14.00) 3/3 (2.64) 15/16 (14.11)
Melamine (2b), n=215 ? * ? ? *** ? ?

2/1 (0.86) 4/3 (2.58) 2/1 (0.92) 12/13 (11.70) 3/2 (1.78) 2/1 (0.86) 9/9 (8.04)
Parathion (2b), n=320 * ** ? * * * ***

11/12 (10.38) 0 0 3/2 (1.78) 0 6/8 (6.88) 0
Pyridine (2b), n=1,820 ? * ? * ** ? ?

0 3/2 (1.72) 5/5 (4.45) 0 0 3/2 (1.78) 2/1 (0.92)
Coffee (3), n=1,069 ? * * * * * *

2/1 (0.86) 0 2/1 (0.86) 7/8 (7.04) 12/13 (20.36) 3/6 (5.45) 0
Allyl chloride (3), n=16 *** ? ? ? ? ? *

0 0 0 0 0 0 0
b-Picoline (3), n=18 ? * ? ? ? ? ?

0 0 0 0 0 0 0

Note: DDT, dichlorodiphenyltrichloroethane; IARC, International Agency for Research on Cancer; KCCs, key characteristics of carcinogens.
aThe symbols refer to the IARC evaluation: ***, strong evidence that KCC is induced; **, moderate evidence for induction of KCC; *, no or weak evidence of the induction of KCC; ?,
no adequate data for an evaluation to be made. It regularly occurred that the IARC evaluations differed for the various KCCs, contained within one literature query. For example, for
KCC 2 the evidence could have been weak, whereas for KCC3 the evidence was strong. Because the two KCCs are combined, we chose to always use the stronger evidence (in this
example we marked the box “strong”). To view the full networks, see Table S1, where URLs for each chemical network are provided.
bThe numbers in each cell represent number of nodes/edges and sum of belief score (sBS) of the edges are within parentheses.
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avoiding the use of causal language, and bias toward articles that
inappropriately use causal language.

In other cases, the network showed potentially relevant findings,
however not specifically for the KCC for which the network
was originally created. An example is parathion, Query 1, which,
according to the generated network, can activate cell death, modify
testosterone, or inhibit acetylcholinesterase (Figure S15). Given that
KCC 1 is on electrophilicity, the findings from Figure S15 would,
for example,fit better under KCC10, which refers to cell death.

Furthermore, we have not evaluated the selected studies’ infor-
mativeness or study quality after the filtering steps. Relevant ques-
tions, such as whether the observed mechanisms can also operate
in humans, in vitro vs. in vivomodels, the quality of the studies, bi-
ological significance of mechanistic end points, whether evidence
is consistent within and among KCCs, for example, were not con-
sidered yet. Of course, this can be adopted in the process, that is, to
modify the initial PubMed query (e.g., select only human studies),
but this requires experts to stratify or limit the evidence base to a
priori domains or quality assessments.

The composition of the literature query as input, in our case, the
search terms by Guyton et al. (2018), is quite influential when
retrieving the PMIDs. This was most notable for KCC 4 (induces
epigenetic alterations). For many compounds (all but coffee) we see
that the IARC states that for this specific KCC there is not sufficient

data available for an evaluation. However, we regularly observe
large networks forKCC4 (Table 3; e.g., benzene, DDT).We discov-
ered that this may be due to the description of Guyton’s queries for
Query 3/KCC 4: the query includes the terms “rna” or “rna, messen-
ger” [because noncodingRNAs are recognized epigenetic alterations
(Chappell et al. 2016)]. However, this resulted, for our computa-
tional approach, mainly in the activation of events such as DNA
damage, DNA damage check, or cell survival. These statements do
not match examples of relevant evidence according to the IARC’s
instructions (IARC 2017), which, for KCC 4, should involve, for
example, terms associated with DNAmethylation or histone modifi-
cation. When we adjust the search term for this specific query by
leaving out the ‘rna’ term, we see that the adjusted networks are
much smaller, together with a reduction inBS (Figure S16).

We noticed that the percentage of PMIDs for which we
received INDRA Statements was moderate (Table 2). A search on
a number of PMIDs for which we retrieved no INDRA
Statements showed that some papers (mostly older ones) had no
abstract or the study was non-English. For our particular case
study, we retrieved full papers when open access and relied on
abstracts for others. We did this to make the methodology as open
as possible for use by scientists in the hazard assessment process,
and we conject that the most important results of a study would
be made available in the abstract and, as such, the impact of not

Figure 3. Relation of IARC evidence for key characteristics of carcinogens (KCCs) result vs. sum of the belief scores (sBS) from all filtered edges of a net-
work. Note: IARC, International Agency for Research on Cancer; DDT, dichlorodiphenyltrichloroethane; KCC1, electrophilic; KCC2, genotoxic; KCC3, DNA
repair; KCC4, epigenetics; KCC5, oxidative stress; KCC6, inflammation; KCC7, immunosuppressive; KCC8, receptor-mediated; KCC9, immortalization;
KCC10, cell dynamics; mod, moderate; NA, not applicable; n.i., not sufficient data available for evaluation.
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having full access to all papers might be limited. However, this
does illustrate that although we used the same search terms as the
IARC working group, the evidence base [i.e., the selected studies
to either generate networks (for our approach) or to evaluate the
evidence (for the IARC working group)] was not identical for
both approaches. We focused specifically on the IARC and the
KCCs because these provide well-defined search terms for identi-
fying literature but we recognize other institutes (e.g., National
Toxicology Program Report on Carcinogens, U.S. Environmental
Protection Agency) also include mechanistic data in their hazard
assessment on carcinogens, including adaptations of the KCC litera-
ture queries (NTP 2016).

Last, we did not manually annotate papers for which relations
are relevant and then check which of these the reading system (in
our case, Reach) can pick up. The closest relevant evaluation as
to the performance of Reach was done by Glava�ski and Velicki
(2021), who found a good accuracy of Reach but noted the
extraction performance could be improved.

Our approach does not claim to fully automate and replace
manual evaluation of mechanistic literature as is done in hazard
identification, such as the IARCMonographs program. Instead, it
could potentially be helpful in the prioritization of chemicals in
relation to KCCs for further review, that is, to identify and create
a network-based inventory of available studies, the content of
which is to be further evaluated by an expert committee. Even
though our findings are not directly generalizable outside the
IARC framework, there is no reason to assume that our approach
would not work well in other (noncancer) hazard identification

programs using a well-defined framework for the evaluation of
mechanistic data such as the KCCs. Future work should also
focus on strategies to qualitatively or quantitatively assess the
strength of the evidence that is provided in the mechanistic litera-
ture. This would require identifying those study characteristics
that are typically used by experts to define study quality and
developing approaches to systematically extract these from iden-
tified publications in an automated way.
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