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A B S T R A C T   

Opioid consumption, both legal and illicit, has risen precipitously in the U.S. over the past few decades, as has the 
number of deaths due to the use and misuse of opioids. Exposure to green spaces may help to alleviate the 
problematic levels of opioid use. Such exposure has been tied to health benefits relevant to opioid use. To explore 
the potential influence of green space on opioid-related health outcomes, we analyzed the association between 
tree canopy cover and mortality attributable to opioid use and abuse using 2008–2018 death rate data on a 
county level (n = 3087) across the contiguous U. S. We fitted spatial general additive model while controlling for 
socioeconomic factors, healthcare access measures, opioid prescription rates, and particulate air pollution. 
Contrary to expectations, canopy cover was positively associated with opioid mortality. A sensitivity analysis 
with forest land cover showed similar results while a sensitivity analysis with total greenness (NDVI) was 
nonsignificant. Stratified models by urbanicity level suggested suburban and rural counties drove the positive 
associations observed in the nationwide models. The findings for forest and canopy cover are unexpected, given 
the myriad health benefits of green spaces, yet might be explained by heavily forested areas (i.e., Appalachia) 
being home to injury-prone natural resource extraction employment sectors. The steady decline of these in
dustries has created poor socioeconomic conditions that exacerbate the already elevated risk of opioid use and 
misuse. Alternatively, the magnitude of the protective effects of greenspace on pain reduction are insufficient to 
counter opioid demand. Further research is warranted, especially in studies with individual-level data. Entities 
with responsibility or interest in reducing the incidence of deaths from opioids are cautioned that green spaces 
might not be a viable option for reducing opioid mortality.   

1. Introduction 

Mortality caused by opioids, substances based on opium with 
addictive properties, has risen substantially over the past two decades 
(Rudd et al., 2015), accounting for roughly 450,000 deaths in the United 
States (U.S.) (Wilson, 2020). A rise in opioid prescription rates has 
occurred simultaneously (Guy Jr et al., 2017). The misuse of opioids has 
become so widespread and damaging that it has spurred an “opioid 
epidemic” (Murthy, 2016). Policymakers and public health officials 
have pursued an array of solutions, including revised prescribing 
guidelines issued by the Centers for Disease Control and Prevention 
(CDC) (Dowell et al., 2016). Exposure to natural settings such as green 
spaces could act as part of the solution to the unnecessary deaths caused 

by opioid use and misuse. 
Living amidst or having regular contact with green spaces (e.g., 

forests, parks, and other places rich with plant life) has been linked to 
numerous beneficial health outcomes (James et al., 2015; 
Twohig-Bennett, Jones, 2018; Yang et al., 2021) and therefore might 
help to ameliorate the opioid crisis. Green space exposure may activate 
four pathways related to reducing opioid use, which may lead to lower 
occurrence of opioid-related death. 

First, green space exposurecan benefit physical health. Multiple 
studies have shown an increase in self-perceived general health among 
individuals living in greener areas (Maas et al., 2006; Astell-Burt & Feng, 
2019). Substantial reductions in several types of morbidity, including 
cardiovascular, musculoskeletal, respiratory, and neurological 
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conditionshave also been reported (Maas et al., 2009; Liu et al., 2022; 
Rojas-Rueda et al., 2019). For example, one cohort study in Ontario, 
Canada, found reduced odds of six mortality types, including respiratory 
and cardiovascular disease (Villeneuve et al., 2012). 

Second, nature exposure has also been linked to improved mental 
health status, both measured and self-reported. Higher self-reported 
mental health scores have been observed among those living in 
greener areas compared to those living in less green areas (Alcock et al., 
2014; Astell-Burt & Feng, 2019; Helbich et al., 2018; Van den Berg et al. 
2016). Lower incidence of anxiety disorders and depression have also 
been found in areas with more green space (Maas et al., 2009). The 
presence of general greenness and parks lessens stress in individuals via 
enhanced social support (Fan et al., 2011). 

Third, several studies have shown that exposure to natural settings 
may increase pain tolerance. Simultaneous exposure to views and 
sounds of nature provide distraction from pain and relaxation, which 
reduces reported pain in general hospital patients (Kline, 2009) and 
patients undergoing bone marrow procedures (Lechtzin et al., 2010). 
Subjects shown scenes of greenery have been found to have a higher 
pain detection threshold than those shown blank screens (Tse et al., 
2002). Green space exposure likely affects pain tolerance by acting 
through several key mechanisms, including exposure to beneficial 
airborne organic compounds and bolstering immune and neurological 
function via negative air ions (Stanhope et al., 2020) and by distracting 
the subject from painful stimuli (Tanja-Dijkstra et al., 2018; White et al., 
2018). 

Fourth, exposure to green spaces may help reduce the occurrence 
and severity of substance abuse by improving the ability to manage 
addictive tendencies. Patients in surgical recovery with views of natural 
settings had shorter postoperative hospital stays and required fewer 
analgesic pharmaceuticals than those with a non-natural view (Ulrich, 
1984). Knee and hip surgery patients living in greener settings took 
fewer opioids following surgery (Donovan et al., 2019). Greater access 
to and residential views of green space were associated with decreased 
intensity and frequency of addictive cravings (Martin et al., 2019). In
dividuals living in greener environments have demonstrated improved 
decision-making ability regarding their health, including general health 
and addiction decisions (Berry et al., 2020), smoking (Martin et al., 
2020; Wu, Chiou, 2019), and dietary choices (Kao et al., 2019). 

Numerous conditions, both physical and mental, have been identi
fied as predictors of opioid use and abuse (Katz et al., 2013; Mojtabai, 
2018). Individuals with higher sensitivity to pain were more likely to use 
and misuse opioids (Wachholtz et al., 2019; Zahari et al., 2016). Patients 
with opioid dependence displayed significantly worse self-control and 
impulsiveness than control subjects (Peters & Soyka, 2019). In turn, 
prescription and usage rates of opioids determine the number of deaths 
attributable to opioids (Dart et al., 2015). Opioid-related death rates 
closely follow the rise in the use of both prescription and illicit opioids 
from 2010 to 2015 in the U.S. (Rudd et al., 2016). 

A final reason to suspect a relationship between green spaces and 
opioid mortality is the strong and persistent association between green 
spaces and other mortality endpoints. The pooled risk of all-cause 
mortality was 4% lower per 0.1 increase in the amount of green space 
in a meta-analysis of nine cohort studies (Rojas-Rueda et al., 2019). In 
the lowest vs. highest green space category, a 4% reduction in cardio
vascular disease mortality risk and an 8% reduction in all-cause mor
tality has been observed (Gascon et al., 2016). A 31% and 16% reduction 
in the odds of all-cause mortality and cardiovascular disease mortality, 
respectively, were reported for the highest compared to the lowest green 
space group in another study (Twohig-Bennett and Jones, 2018). In a 
study of Canadian adults, the risk of all-cause mortality was 8% lower 
for a 0.1 increase in greenness (Crouse et al., 2017). A significant 
negative association was found between greenness distance and 
all-cause/cardiovascular disease mortality in Florida (Coutts et al., 
2010). The magnitude of the association between greenness and mor
tality across myriad of studies is large enough to potentially extend to 

other types of mortality, such as opioid overdoses. 
Thus far, no studies have examined the relationship between nature 

exposure and opioid-related mortality. A large amount of research has 
been conducted on the relationship between green spaces and many 
different types of mortality, as discussed above, but we know of no 
studies that have examined opioid mortality in the context of green 
space exposure. The current study aims to fill that gap - and respond to 
requests for research on greenspace exposure and the opioid crisis (Berry 
et al., 2021) - by assessing associations between tree canopy cover, forest 
land cover, and total vegetative greenness with opioid mortality out
comes on a county-level for the contiguous U.S. We hypothesize that the 
amount of green space is inversely associated with the number of 
opioid-related deaths. 

2. Methods 

2.1. Study Design 

We used an ecological, cross-sectional study design on a county level. 
In the U.S., counties are administrative and political units larger than 
towns and cities but smaller than states. The U.S. consists of 3141 
counties averaging about 105,000 people and 1200 square miles (U.S. 
Census, 2019).Counties are the smallest unit for which opioid-related 
mortality data exist. The number of counties for which opioid mortal
ity data were available to match with our study period was 2677. The 
464 counties had missing, unreliable, or otherwise incomplete opioid 
mortality data. 

2.2. Data 

Dependent Variable: Our dependent variable was annual opioid- 
related death count aggregated across 2008–2018. There are eleven 
mortality International Classification of Disease (ICD) codes relevant to 
opioid mortality from two code series: T40 and X40–44. The former 
contains deaths by poisonings (overdoses and underdoses) from natural 
and synthetic opioids, and the latter includes accidental poisonings by 
opioid substances. These eight specific mortality endpoints are repre
sentative of opioid-related behaviors. The ICD codes included are 
described in detail in Supplementary Table S1. Opioid mortality data 
were retrieved from the Center for Disease Control and Prevention’s 
(CDC) WONDER database (CDC, 2020a). The WONDER database is 
constructed with data reported to the CDC by the vital statistics divisions 
of county health departments and has been used earlier (Hampson, 
2016; Zhang et al., 2018). 

Green Space: The primary variable of interest is percent of county 
land that is tree canopy cover, population-weighted and buffered (1 
kilometer) by census tract, abbreviated to Canopy in the Results. Pop
ulation weighting gives higher weight to human population centers to 
reflect the amount of actual exposure (Heo & Bell, 2019). Expanding the 
area by adding a 1 km buffer around each tract captured a larger po
tential green area exposure, as individuals are rarely confined to their 
tract (Maas et al., 2006; Richardson et al., 2012; Su et al., 2019). Tree 
canopy data came from the National Land Cover Database (NLCD) 2011 
(Coulston et al., 2012). The NLCD has been deemed highly accurate in its 
designation of land covers by independent evaluation (Wickham et al., 
2017) and has been used previously (Nowak et al., 2014; Richardson 
et al., 2012; Tsai et al., 2018). 

2.3. Other Covariates 

We adjusted for a number of important socioeconomic factors that 
have been included in previous studies on opioid mortality (Grigoras 
et al., 2018; Katz et al., 2013), including the median age of county 
residents (abbreviated as Age in the Results), percentage of county 
residents that are female (Female), percentage of county residents that 
identify as Caucasian/White and non-Hispanic (White), percentage of 
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county residents with at least a bachelor’s degree (Education), per
centage of county residents living under the poverty line (Poverty), and 
median household income of county residents (Income) (United States 
Census Bureau, 2019). 

Our models were also adjusted for the share of the county’s work
force that was employed in manual labor positions (Manual): agricul
ture, fishing and hunting, forestry, and mining. The data for this variable 
were from the 2007–2011 four-year American Community Survey, 
provided by the Integrated Public Use Microdata Series (IPUMS) pro
gram (Ruggles et al., 2015). 

An area’s level of urbanization has been identified as a key deter
minant of opioid use, misuse, and mortality in several studies (Keyes 
et al., 2014; Kurani et al., 2020; Luu et al., 2019). Given this fact, we 
included the urban-rural classification scheme (Urban-rural) developed 
by the Centers for Disease Control and Prevention (CDC) (Ingram, 
2014). This scheme ranges from 1 (most urban) to 6 (most rural). The 
CDC developed this scheme to accurately capture the health profile and 
healthcare access infrastructure of America’s counties for the purpose of 
health and healthcare research. 

Healthcare access, such as the number of physicians and hospitals 
per resident, have been associated with opioid prescription rates and 
opioid mortality at the county level (Grigoras et al., 2018). To control for 
potential confounding, we included healthcare access for the county; the 
number of primary care physicians (Doctors), hospitals (Hospitals), and 
hospital beds (Beds) per 10,000 county residents extracted from the 
Area Health Resource Files provided by the United State Department of 
Health and Human Services (HRSA, 2018). 

Because opioid mortality rates are highly correlated with opioid 
prescription rates (Dart et al., 2015; Rudd et al., 2016), we control for 
the number of opioid prescriptions prescribed annually per 100 county 
residents (Rx). Opioid prescription rate data were obtained from the 
IQVIA Xponent System 2006–2018 data, provided by the CDC. 

Air pollution is a key determinant of premature mortality (Lelieveld 
et al., 2015), especially in the Medicare population (Di et al., 2017). 
Improved air quality is also one of the mechanisms by which green 
spaces are thought to affect human health or mediate other pathways 
(Heo & Bell, 2019; Kuo, 2015) as plants can remove pollutants from the 
air (Selmi et al., 2016). Therefore, we included the average annual 
concentration of fine particulate matter with diameters that were < 2.5 
micrometers (in micrograms per cubic meter of air) (PM2.5) obtained 
from the CDC WONDER database (CDC, 2020b). 

2.4. Statistical Analysis 

We calculated descriptive statistics to summarize the data. Next, to 
explore bivariate relationships between the variables, we computed 
bivariate Pearson correlations. Multicollinearity among the covariates 
was assessed with variance inflation factor (VIF) scores. A VIF score 
threshold of 5.0 was selected in compliance with Johnston et al. (2018). 

For the main analysis, we employed general additive models (GAM) 
(Wood, 2017) based on restricted maximum likelihood to assess the 
relationship between opioid-related death and green space. For our 
count data, the Poisson distribution was well suited, which assumed 
mean-variance equivalence. Due to significant overdispersion, violating 
a fundamental model assumption, we re-fitted the model as a negative 
binomial regression. Rather than including only the number of deaths, 
mortality rates were modeled via the inclusion of an offset term with the 
log of the county population. To mitigate the fact that adjacent counties 
are likely correlated with each other (Helbich et al., 2018), we included 
a Markov Random Field (MRF) to capture arising spatial correlations 
based on an adjacent neighborhood structure. We tested for residual 
independence by means of the Moran’s I statistics. Pseudo p-values were 
received from 999 Monte Carlo simulations against the null hypothesis 
of spatial independence. 

Our model building process comprised three models with increasing 
adjustment levels; Model 1 adjusted only for tree canopy cover and 

included a MRF smoother, Model 2 added socioeconomic variables, and 
Model 3 was fully adjusted with all variables. All statistical analyses 
were performed in the R software program, version 3.6.3 (R Core Team, 
2020). 

2.5. Stratified Analyses 

We performed stratified analyses to determine associations between 
tree canopy cover and opioid mortality in six levels of urbanicity. Pre
vious research on greenness and health outcomes that has conducted 
sub-analyses based on urbanicity has reported results that vary, often 
substantially, by level of urbanization (Becker, Browning, 2021; Maas 
et al., 2006; Mitchell & Popham, 2007; for review, see Browning et al., 
2022), as do the determinants of opioid mortality (Wilkes et al., 2021). 
To perform analyses within each strata, the dataset was divided into six 
samples according to CDC urban-rural scheme designation and GAM 
models were run on each of the strata. The Markov Random field spatial 
component was omitted in these analyses because of the separations 
between spatial units, which precluded the accurate and consistent 
construction of neighborhood weight matrices. 

2.6. Sensitivity Analyses 

We conducted three sensitivity analyses to confirm the robustness of 
our results from the fully adjusted model. First, we tested an additional 
greenness measure obtained from NLCD; forested land cover (Forest), 
which is defined by the NLCD as a 30 m cell that is at least 51% covered 
in trees (Model 3a). Although both canopy cover and forest land cover 
data measure trees, they do so with different methodologies; tree canopy 
cover is calculated using physical tree canopy inventories and aerial 
photography alongside remotely sensed data, whereas forest land cover 
is estimated entirely from remote sensing data (Coulston et al., 2012; 
Homer et al., 2015). Second, we substituted the Normalized Difference 
Vegetation Index (NDVI) for canopy cover (Model 3b). NDVI is a long
standing measure of vegetation density (Hartley et al., 2020; 
Rojas-Rueda et al., 2019; Zhan et al., 2020). NDVI data came from the 
Moderate Resolution Imaging Spectroradiometer (MODIS) satellite 
platform, provided by the Google Earth Engine (Gorelick et al., 2017). 
Third, in Model 3c, we suspected some geographic variation in the 
relationship between green spaces and opioid mortality. To explore this, 
we added an interaction term between tree canopy cover and ecological 
regions (“ecoregions”) as defined by the Level 1 Ecoregions developed 
by the Environmental Protection Agency (EPA) (Omernik & Griffith, 
2014). The interaction term was tested for significance through a like
lihood ratio test. If significant, data were split to calculate 
ecoregions-specific estimates. 

3. Results 

3.1. Descriptive Statistics and Bivariate Correlations 

Descriptive statistics for all variables are found in Table 1. Average 
opioid-related deaths across the years 2008–2018 in a county ranged 
from 0 to 6201 with a mean of 103.5 and standard deviation (SD) of 
306.5. 

Fig. 1 displays the complete bivariate correlation coefficients be
tween all variables. The correlation between death count and tree can
opy cover was -0.05 (p < 0.05). High death counts were concentrated in 
the central Appalachian region (Kentucky, Tennessee, North Carolina, 
Virginia, and West Virginia), New England (Connecticut, Rhode Island, 
New Hampshire, Vermont, and Maine), Florida, and the Southwest 
(Fig. 2). 

Fig. 3 displays tree canopy percentage by county. The areas of the 
country with the highest tree canopy coverage were Appalachia, the 
Southeast, Northeast, upper Midwest, and Pacific Northwest (Oregon 
and Washington). The minimum percent canopy cover in a county was 
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0 and the maximum was 84.1% with a mean of 27% and SD of 23.28%. 

3.2. Main analyses 

There was no multicollinearity among the covariates; no variable 
exceeded a VIF value of 5.0. Table 2 shows the results of the GAM re
gressions. The beta coefficient of the Canopy variable was negative 
(β = − 0.012) and statistically significant (p = 0.000) in Model 1. Model 
2 with socioeconomic covariates added showed a slightly positive 

(β = 0.01) and significant (p = 0.041) coefficient for Canopy. In Model 
3, Canopy was positively (β = 0.01) and significantly (p = 0.001) 
related to opioid mortality. All covariates’ coefficients were also statis
tically significant except for Income and PM2.5. The final model 
explained 62.8% of the deviance and had an adjusted R2 of 0.58. 
Regression residuals of Model 3 were well-behaved in terms of normality 
(Fig. S2 in the supplementary materials). This was also confirmed in the 
insignificant Moran’s I statistic (p = 0.600). 

3.3. Stratified Analyses across Urbanization Levels 

Model results varied by degree of urbanization (Table 3). The coef
ficient estimate of tree canopy cover was not statistically significant in 
level 1 (large central metro), 3 (medium metro), 4 (small metro), or 5 
(micropolitan). The coefficient was statistically significant in level 2 
(large fringe metro) and 6 (non-core rural), with a positive sign in both 
cases that was similar in magnitude to that of the model ran on the entire 
nation. 

3.4. Sensitivity Analysis 

Forest was also positively and statistically significantly related to 
opioid mortality in fully adjusted models (β = 0.01, p = 0.000) (Table 2, 
Model 3a). In contrast, NDVI was not associated with opioid mortality 
(p = 0.945) (Model 3b). We found no evidence that the association be
tween tree canopy cover and ecoregions varied spatially (Model 3c, 
Supplementary Table S2). The likelihood ratio test between Model 3 and 
Model 3c was nonsignificant (p = 0.34). 

4. Discussion 

4.1. Interpretation of Results 

We sought to discern if an association exists between the amount of 
green space in a U.S. county and the number of deaths attributable to 

Table 1 
Descriptive statistics of study variables.   

Min. Max. Range Median Mean SD 

Deaths (per 100,000 
residents)  

0.0  6201.0  6201.0  22.0  103.5  5.9 

Canopy (%)  0.0  84.1  84.1  21.0  27.0  0.4 
Age (years)  22.9  64.1  41.2  40.7  40.6  0.1 
Female (%)  27.7  57.4  29.8  50.5  50.1  0.0 
White (%)  10.0  98.9  88.9  86.9  80.3  0.3 
Black (%)  0.0  85.6  85.6  2.3  8.9  0.3 
Native (%)  0.0  83.5  83.5  0.5  1.9  0.1 
Asian (%)  0.0  33.3  33.3  0.6  1.3  0.0 
Hispanic (%)  0.2  96.5  96.3  3.6  8.7  0.3 
Education (%)  5.6  74.0  68.5  18.3  20.5  0.2 
Income (1000 USD)  20.7  122.9  102.2  45.1  46.9  0.235 
Doctors (per 10,000 

residents)  
0.0  175.8  175.8  6.7  9.2  0.2 

Hospitals (per 
10,000 residents)  

0.0  9.2  9.2  0.3  0.6  0.0 

Hospital Beds (per 
10,000 residents)  

0.0  758.5  758.5  21.2  31.9  44.6 

Urban-rural (scale 
1–6)  

1.0  6.0  5.0  5.0  4.6  0.0 

PM2.5 (µg/m3)  7.2  14.9  7.7  11.9  11.6  1.5 
Rx (per 10,000 

residents)  
1.1  583.8  582.7  85.9  91.9  47.0 

Poverty (%)  0.0  46.7  46.7  9.3  10.6  0.1 
Manual (%)  0.0  52.4  52.4  4.2  7.0  0.2  

Fig. 1. Bivariate correlation matrix graph. Blue cells indicate a positive correlation, red cells a negative correlation.  
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opioid use and misuse. Contrary to our hypothesis,we found significant 
positive associations between opioid-related mortality rates and two 
measures of green space (tree canopy cover and forested land cover). 
These findings are unexpected and do not align with the majority of 
other studies that have tied green space exposure to lower all-cause 
mortality rates (for review, see Rojas-Rueda et al., 2019; but for con
flicting evidence, see Coutts et al., 2017; Richardson et al., 2021). 
Neither do these findings align with a growing number of studies, 
including randomized control trials, assessing effects of brief exposures 
to nature and demand/use of painkillers (i.e., Donovan et al., 2019; 
Kline, 2009; Prabhu et al., 2020a, Prabhu et al., 2020b; Ulrich, 1984; 
Yeung et al., 2021). 

Berry et al. (2020) recently put forward strong rationale for green
space buffering against opioid use disorder as a consequence of pain 
reduction, mental and physical health, acute reductions in delay dis
counting, social connections, and reduced substance cravings. We hy
pothesized an inverse association between greenspace and 
opioid-related mortality for the same reasons as for opioid use disor
der, in addition to the strong evidence for greenspace protecting against 
premature death. Our study, though, was the first to empirically test the 
link between greenspace and opioid-related endpoints. 

The first potential explanation for our unexpected findings is that 
trees and opioid prescriptions are common in the same areas. Trees and 
opioid deaths also appear in the same areas, which is distinctly notice
able in Figs. 1 and 2. As prominent examples of these coincidental oc
currences, Appalachia and New England are heavily forested and have 
among the highest number of opioid deaths in the country. Large por
tions of Appalachia, most notably Kentucky, Tennessee, North Carolina, 

and West Virginia, have very high rates of opioid use and mortality due 
to a confluence of factors unique to the region, including high levels of 
poverty and unemployment, low health insurance coverage, and a high 
percentage of the population currently or formerly employed in manual 
labor, especially natural resource extraction sectors (i.e., lumber and 
mining) (Moody et al., 2017). These factors are likely caused in part by 
the high volume of timber and coal and little to no presence of other 
prominent economic sectors such as high-tech and other white-collar 
industries (Lobao et al., 2016). Appalachia also has a high burden of 
environmental hazards relative to the rest of the U.S. (Krometis et al., 
2017), which contribute to higher incidences of morbidity and 
mortality. 

The results of the stratified urbanization analysessuggest that rural 
areas (and to a lesser extant, small metro areas) were driving the 
nationwide results. These two urbanicity categories accounted for over 
half (1427 of 2677) of all counties in the dataset. That the positive as
sociation between canopy and opioid mortality results mostly from rural 
counties is not entirely surprising, since rural counties, especially those 
in Appalachia, have lower quality healthcare infrastructure, services, 
and access than do more urbanized and developed counties (Anderson 
et al., 2015) and worse health-related behavior (Matthews et al., 2017). 
Rural areas in Appalachia have also relied heavily on ecological 
degradation of forested lands for economic livelihoods through coal 
mining, forestry, and other forms of resource extraction (Small et al., 
2021; Wishart, 2014). Such employment opportunities have declined 
during the opioid crisis, yet these dangerous and labor-intensive jobs 
instigated the high demand for painkillers, while the declining economic 
conditions encouraged their ongoing use and abuse (Krometis et al., 

Fig. 2. County-level opioid-related mortality rate per 100,000 residents by quintile. Counties with missing data are denoted in grey.  
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2017; Monnat et al., 2019). We posit these conditions were partly the 
consequence of the existence of these heavily forested areas (and asso
ciated rich natural resources) in these rural U.S. counties. In conjunction 
with the lack of alternative forms of livelihood (i.e., white or blue col
lar), the employment opportunities afforded by green spaces in these 

areas may have explained why more canopy cover predicted more 
opioid deaths. 

A second possible reason for our unespected findings is that the 
beneficial effects of exposure to green spaces may not be strong enough 
to reduce the need or desire for opioids or the misuse of those 

Fig. 3. County-level percent of land cover that is tree canopy by quintile. Counties with missing data are denoted in grey.  

Table 2 
Fully adjusted geographic additive models (GAM) examining associations between tree canopy cover and opioid mortality in counties (N = 2677) across the conti
nental U.S.   

Model 1 
(unadjusted) 

Model 2 (adjusted for SES 
covariates) 

Model 3 (fully 
adjusted) 

Forest sensitivity analysis 
(Model 3a) 

NDVI sensitivity analysis (Model 
3b) 

Variable Beta p-value Beta p-value Beta p-value Beta p-value Beta p-value 
Canopy -0.012 0 0.01 0.041 0.01 0.001 0.01 0 -0.04 0.945 
Age   -0.07 0 -0.05 0 -0.06 0 -0.05 0.000 
Female   0.08 0 0.05 0.001 0.05 0.001 0.05 0.003 
White   0.01 0.002 0.01 0.004 0.01 0.011 0.01 0.001 
Income   0 0.023 0 0.578 0 0.687 0.00 0.458 
Education   -0.02 0.001 -0.02 0 -0.02 0 -0.02 0.001 
Poverty   -0.07 0 -0.05 0 -0.05 0 -0.04 0.000 
Manual   -0.09 0 -0.07 0 -0.07 0 -0.07 0.000 
UrbanRural   -0.13 0 -0.1 0 -0.1 0 -0.09 0.001 
Doctors     0.01 0.005 0.01 0.004 0.01 0.012 
Hospitals     -0.93 0 -0.95 0 -0.90 0.000 
Beds     0 0.003 0 0.002 0.00 0.007 
Rx     0.01 0 0.01 0 0.01 0.000 
PM2.5     0.14 0.057 0.13 0.066 0.13 0.082 
MRF smoother NA 0 NA 0 NA 0 NA 0 NA 0.000 
Adjusted R2 0.865 0.233 0.577 0.603 0.623 
Deviance explained 51.6% 60.4% 62.8% 62.8% 62.7% 
Moran’s I 0.05 0.001 0.006 0.3 -0.003 0.6 0 0.5 -0.001 0.5  
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substances. Emami et al. (2018) found only a 5% difference in pain in
tensity between nature and non-nature groups in an experiment with 
cancer patients. Patients reported an 18% reduction in the occurrence of 
moderate or severe pain while recovering from bone marrow biopsies 
and treatments in a natural setting (Lechtzin et al., 2010). Subjects 
recorded an average 20% reduction in pain threshold and pain tolerance 
when viewing a video of nature compared to those not viewing such 
videos (Tse et al., 2002). While these studies do find improvements in 
pain tolerance in natural versus control settings in the short-term, lasting 
improvements may be weaker and insufficient to translate to measur
ablely lower opioid use and mortality rates. The mechanisms through 
which green space exposure influences health, such as boosting mood 
(Ulrich, 1983; Ulrich et al., 1991), increasing physical activity (Hartig 
et al., 2014; Sugiyama et al., 2014), distracting from pain (Tanja-Dijk
stra et al., 2018; White et al., 2018), and improving cognitive function 
(Clatworthy, 2013; Kaplan & Kaplan, 2011), may simply not be potent 
enough to counteract the desire or need for opioids. 

The third potential explanation for our unexpected findings is that a 
generalized measure of trees was used. A high density of trees, which 
mainly exists in forest areas, may be less effective for promoting mental 
health than other types of green infrastructure. A recent meta-analysis 
found that the positive effects on anxiety, anger, and negative affect 
were greatest for low density forests (stand density < 500/ha), but such 
benefits became smaller or insignificant as tree density increased 
(Eunsoo Kim et al., 2021). Forests with low openness and ease of 
movement were also found to be less effective in promoting positive 
emotions (Staats et al., 1997), and could even induce stress and atten
tion fatigue (Gatersleben et al., 2013). Although trees often dominate 
the composition of green spaces and appear commonly in the greenness 
and health literature (Ulmer et al., 2016), they are not the only 
component of restorative natural landscapes. Bushes, shrubs, grasses, 
crops, flowering plants, and other smaller plants also exist and have on 
their own been tied to human health outcomes (Alcock et al., 2015; 
Becker et al., 2019; Tsai et al., 2018). Thus, it is entirely possible that one 
or more of these other types of vegetation could exert a positive influ
ence on opioid-related mortality. 

A final explanation for green spaces being related to increased opioid 
mortality is the possible existence of a genuinely detrimental effect of 
green spaces on mortality. A small number of studies have found either 
no association or a positive association between the amount of green 
space in an area and mortality rates. For example, no association was 
detected between all-cause mortality and green space in a study of 
Florida counties (Coutts et al., 2010). Furthermore, no association was 

found in U.S. cities between green spaces and heart disease, lung cancer, 
and diabetes mortality; only all-cause mortality was higher in cities with 
more green space (Richardson et al., 2012). While such findings are in 
the minority of studies on green spaces and mortality, they do suggest 
that green space exposure does not always relate to lower mortality 
rates. 

4.2. Strengths and Limitations 

This study holds multiple strengths. County-level analysis affords 
large study areas wherein hundreds of millions of Americans live. A 
wealth of data is available for a wide number of social, economic, 
healthcare, and environmental phenomena at the county level, which 
allowed us to control for crucial confounding factors. Counties are also 
often uniform in shape and size depending on what state they reside in 
and are linked contiguously to, affording ease of comparison and the 
ability to reliably control for spatial autocorrelation. 

Our study also has limitations. The ecological study design based on 
aggregated county data prevents conclusions to be drawn about smaller 
units (e.g., neighborhoods) or individuals. As inherent in every ecolog
ical analysis, our reported associations are possibly deceptive due to the 
presence of aggregation and zoning effects (i.e., modifiable areal unit 
problem) (Fotheringham & Wong, 1991). The cross-sectional nature of 
our study design might entail examining an anomalous year where one 
or more factors was an outlier compared to longer-term trends. The 
observed associations might also have been confounded by personal 
factors that we were unable to measure. One such personal factor is 
occupation; people with jobs in the physical labor sectors of the econ
omy are much more likely to begin and continue using opioids than 
those in white-collar occupations (Moody et al., 2017). However, we 
were unable to consider specific types of manual labor because 
county-level data only included total manual labor statistics. Other 
variables that could be relevant or were found to be important in other 
studies on opioid morbidity and mortality exist. For example, type of 
health insurance (Schoenfeld et al. 2019), transportation and commer
cial infrastructure (Chichester et al., 2020), hospital visit information 
(Wilkes et al., 2021), and employment in specific industries (Monnat 
et al., 2019) could have also confounded our results. However, we were 
unable to control for such factors due to our study design and timeframe. 
Although we centered the years of data for the dependent variable 
around the 2011 NLCD to best match our datasets, there was a 
discrepancy between the dependent (2008–2018) and independent 
(2011) variables; thus, we cannot exclude spatiotemporal contextual 

Table 3 
Fully adjusted geographic additive models (GAM) stratified by urbanicity examining associations between tree canopy cover and opioid mortality in counties across 
the continental U.S.   

Level 1: Large central 
metro 

Level 2: Large fringe 
metro 

Level 3: Medium 
metro 

Level 4: Small 
metro 

Level 5: 
Micropolitan 

Level 6: Non-core rural 
a  

Beta p-value Beta p-value Beta p-value Beta p-value Beta p-value Beta p-value 
Canopy 0.01 0.162 0.01 0.007 0.00 0.742 0.01 0.085 0.01 0.166 0.02 0.000 
Age 0.02 0.268 -0.05 0.000 0.02 0.135 0.00 0.809 0.02 0.352 -0.03 0.000 
Female -0.12 0.073 0.06 0.102 0.06 0.176 0.00 0.958 -0.03 0.531 0.06 0.000 
White 0.01 0.014 0.02 0.000 0.01 0.146 0.00 0.652 0.00 0.932 0.02 0.000 
Income 0.00 0.650 0.00 0.617 0.00 0.605 0.00 0.878 0.00 0.322 0.00 0.007 
Education -0.03 0.002 -0.02 0.025 -0.01 0.269 0.01 0.562 -0.01 0.292 -0.01 0.420 
Poverty 0.04 0.161 -0.01 0.437 -0.02 0.277 -0.02 0.362 -0.02 0.429 -0.03 0.000 
Manual -0.12 0.245 -0.10 0.000 -0.04 0.032 0.00 0.830 -0.04 0.008 -0.03 0.000 
Doctors 0.01 0.093 0.01 0.140 0.02 0.011 0.00 0.459 0.01 0.571 0.05 0.000 
Hospitals -0.39 0.743 -0.84 0.009 -1.41 0.000 -1.59 0.000 -0.66 0.018 -0.88 0.000 
Beds 0.01 0.033 0.01 0.000 0.00 0.379 0.00 0.815 0.00 0.342 0.00 0.096 
Rx 0.00 0.730 0.00 0.009 0.01 0.000 0.01 0.000 0.01 0.000 0.01 0.000 
PM 0.11 0.003 0.02 0.476 0.04 0.283 0.10 0.060 0.08 0.140 0.07 0.000 
Adjusted R2 0.716 0.711 0.685 0.451 0.166 0.038 
Deviance explained 69.2% 29.4% 21.9% 19.1% 12.0% 37.7% 
n 67 333 337 320 526 1094  

a The dispersion parameter theta in the negative binomial regression type of the GAM was manually set to a value (6) that enabled the model to properly fit the data 
in CDC Level 6. 

D.A. Becker et al.                                                                                                                                                                                                                               



Urban Forestry & Urban Greening 70 (2022) 127529

8

uncertainties originating from temporality ill-aligned environmental 
exposure assessments (Helbich, 2019). We also cannot exclude pre
dispositions toward greenness that may play a role in understanding 
relationships exposure and risk of opioid use and misuse. Last, tree 
canopy cover data from the NLCD is not without inaccuracy and dis
crepancies, especially when comparing urban and rural tree canopy 
densities (Nowak & Greenfield, 2012). 

4.3. Research and Policy Implications 

The creation and expansion of large forested areas may not be a 
viable option for reducing the frequency of opioid use, misuse, and 
overdose. However, our ecological study design is not able to speak to 
whether living amid or having regular exposure to forested areas plays a 
role in opioid use and mortality. Further research, such as studies on the 
mechanisms that tie green spaces to mortality; the use of time-series 
data; exploration of racial and economic disparities; and studies with 
individual-level data should be pursued to better understand how nature 
is related to opioid-related outcomes. The fact that poverty and 
healthcare access (doctors, hospitals, hospital beds, and pharmaceutical 
prescriptions) were significant in nationwide models indicates that 
economic and health infrastructure are crucial determinants of opioid- 
related outcomes and could also be of interest to public health re
searchers as well as policymakers and others tasked with slowing or 
reversing those events. 

5. Conclusion 

The extent and severity of the opioid epidemic has compelled health 
professionals and researchers to find ways to mitigate the need for and 
use of opioid substances. Because exposure to green spaces has been tied 
to numerous beneficial health outcomes relevant to opioid use, exposure 
might be expected to reduce the prevalence of opioid use and ultimately 
deaths. This study does not confirm this expectation. We found a sta
tistically significant and slightly positive association between the tree 
canopy cover and opioid mortality. No significant associations were 
observed for total vegetative cover and opioid mortatliy, however. Our 
study is the first to examine these relationships, and our findings were 
limited by greenspace expsoure estimates at the county level. Further 
research on this topic should be pursued using more powerful study 
designs and more granular data. 
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