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Abstract: Early detection of emerging carbapenem-resistant Enterobacteriaceae (CPE) in food-
producing animals is essential to control the spread of CPE. We assessed the risk of CPE introduction
from imported livestock, livestock feed, companion animals, hospital patients, and returning trav-
elers into livestock farms in The Netherlands, including (1) broiler, (2) broiler breeder, (3) fattening
pig, (4) breeding pig, (5) farrow-to-finish pig, and (6) veal calf farms. The expected annual number
of introductions was calculated from the number of farms exposed to each CPE source and the
probability that at least one animal in an exposed farm is colonized. The total number of farms with
CPE colonization was estimated to be the highest for fattening pig farms, whereas the probability of
introduction for an individual farm was the highest for broiler farms. Livestock feed and imported
livestock are the most likely sources of CPE introduction into Dutch livestock farms. Sensitivity anal-
ysis indicated that the number of fattening pig farms determined the number of high introductions in
fattening pigs from feed, and that uncertainty on CPE prevalence impacted the absolute risk estimate
for all farm types. The results of this study can be used to inform risk-based surveillance for CPE in
livestock farms.

Keywords: carbapenems; CPE; meat-producing animal; companion animal; travelers; feed; risk
assessment; introduction risk; stochastic risk model

1. Introduction

Antimicrobial-resistant (AMR) bacteria have been one of the greatest public health
challenges since the 1950s [1]. Increased use of broad-spectrum antibiotics has resulted in a
race between resistant bacteria and treatments. The lagging development of new antibiotics
and the speed at which resistance emerges are propelling the healthcare sector toward using
“drugs of last resort”, administered only after other antibiotics have failed. One antimicro-
bial class of last resort, carbapenems, represents extremely potent, broad-spectrum drugs
for treating serious infections, primarily from multidrug-resistant Enterobacteriaceae [2].
Enterobacteriaceae with carbapenem-resistant genes have a 50% mortality rate in humans
due to the absence of alternative antibiotic treatments [3]. Carbapenemase-producing
Enterobacteriaceae (CPE) have spread globally since early 2010 in hospital facilities and
have risen at an alarming rate in the human community [4,5].

CPE quickly disseminate resistant genes between bacteria through horizontal trans-
fer, specifically plasmid-mediated gene transfer [6]. A plasmid is a mobile circular DNA
carrying useful genes for adaptation and moving within and between species of bacteria.
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Inter-host transmission of resistant genes via plasmids enables the development of CPE
cases in humans, not from using antibiotics directly, but from interacting with environ-
ments and hosts colonized with CPE [7]. As an illustration, plasmid-mediated, extended-
spectrum β-lactamase-producing Escherichia coli (ESBL-EC) in the Dutch community is
partly attributable to ESBL-EC in food, the environment, and animals [8].

AMR has rapidly disseminated worldwide in the community and hospitals due to
excessive antibiotic usage, international travel, and global trade networks. The multiple
sources of the AMR pandemic have prompted the European Union (EU), since 2010, to
extend its surveillance of AMR to include food-producing animals. Cecal samples from
live fattening pigs, veal calves, and broilers are collected at slaughterhouses and tested
for resistant genes. Since 2016, this surveillance also includes CPE [9,10]. The current
compulsory and harmonized AMR surveillance carried out by all EU member states is
adequate to detect widespread AMR but will not quickly detect a newly emerging resistant
bacterium due to the limited sample sizes and sampling frequency. In the current EU
surveillance protocol, EU member states must annually collect a total of 170–300 samples,
depending on the states’ production volume, from each species of food-producing animal.
This sample size was set to detect CPE with 95% confidence, provided the prevalence is
at least 2%. However, because the sampling is conducted only once a year, CPE could
be widespread before they are detected. Enhancing EU surveillance to detect emerging
CPE is possible through an increased sampling frequency, increased sample sizes, and
risk-based surveillance.

This study aimed to inform risk-based surveillance for CPE E. coli (referred to as CPE in
the remainder of the text of this paper) by ranking the farm types according to the likelihood
of CPE introduction using a quantitative risk assessment model. We based our study on The
Netherlands, but it is scalable to the European Union. We included six farm types at risk of
CPE introduction: broiler farm, broiler breeder farm, fattening pig farm, breeding pig farm,
farrow-to-finish pig farm, and veal calf farm. The reason for this selection was that these
farm types are the ones most associated with AMR in The Netherlands [11]. Seven potential
sources of CPE relevant to the Dutch livestock sector were identified in the literature
review [7,12,13] Figure S1. These potential sources are hospital patients, returning travelers
from abroad, companion animals, wild animals, wastewater from hospitals, imported
livestock, and animal feed (Supplementary File S1). The results from expert elicitation
highlight returning travelers, wastewater from hospitals, and imported veal calves as the
most important sources of CPE introduction (Supplementary File S2).

2. Results

To estimate the risk of introduction, first, the number of farms exposed to CPE sources
(Section 2.1) and the probability of colonization after exposure (Section 2.2) were estimated.
These were combined into the risk of introduction by calculating the number of expected
introductions (Section 2.3). The sensitivity of model output to model input parameters was
determined by two methods of sensitivity analysis (Section 2.4). First, Spearman correlation
coefficients were used to identify important uncertain parameters. Second, one-at-a-time
sensitivity analysis was used to investigate the robustness of the ranking of risks to changes
in each of the input parameters. Finally, different scenarios with respect to contamination
of feed, restrictions on imports, and biosecurity were studied (Section 2.5).

2.1. Number of Farms Exposed to CPE

Based on our model calculations, fattening pig farms have the highest risk of CPE
exposure, with over 600 farms in The Netherlands being exposed to at least one CPE source
annually (Figure 1). The results indicate that 22% of the 2652 fattening pig farms and 12%
of the 4513 pig farms (all farm types) in The Netherlands would be exposed to CPE. The
numbers of broiler, breeding pig, and veal calf farms exposed to CPE is lower, though still
considerable, with more than 100 farms exposed annually. The risk of CPE exposure is the
lowest for broiler breeder farms with only 18 CPE expected exposures annually (Figure 1).
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The main sources of exposure are livestock feed, imported livestock, and returning travelers,
while the small number of farms exposed to companion animals (four) and hospitalized
patients is negligible (one).
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Figure 1. Baseline result: median (whisker: 5th and 95th percentiles) annual number of farms exposed
to (red) and colonized by (blue) CPE in each farm type from five sources (feed, imported livestock,
returning travelers, companion animals, and hospital patients). The color-coded numbers in the right
upper corner of each plot are the total number of farms exposed to CPE and the total number of farms
in which CPE has been introduced.

2.2. Probability of Colonization Given Exposure to CPE

This probability was not calculated for imported livestock, since introduction of a
colonized animal on the farm immediately results in colonization of the farm (where
colonization of a farm was defined as the presence of at least one colonized animal on the
farm). Livestock feed had the highest probability of colonization in the exposed farms
(Table 1). Farm workers and veterinarians posed a very low probability of colonization
to the exposed farms. The probability of colonization by exposure to companion animals
was not calculated for the baseline scenario because we assumed that companion animals
would not enter the barns, resulting in zero introduction to the small number of exposed
farms. In the farm type comparison, exposed broiler and broiler breeder farms had the
highest probability of colonization if exposed. The probability of colonization on a veal calf
farm exposed to contaminated feed was the lowest of all farm types. The probabilities of
colonization in veal calf and all three pig farm types exposed to CPE-colonized humans
were equivalent. The probability of colonization was the lowest in all three pig farm types
and veal calf fattening farms exposed to colonized returning veterinarians from overseas
travel and hospital.
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Table 1. Probability of at least one animal colonized on a farm given exposure of the farm to
CPE. The companion animal source resulted in zero probability, and there was no calculation for
imported livestock.

Farms at Risk Median Probability of at Least One Animal Being Colonized Given Exposure by a Specific CPE
Source (5th and 95th Percentiles)

Farm Types Feed
Farm Workers Returning from Travel and Hospital

Farm Workers Veterinarians

Broiler 1.00 (1.00, 1.00) 1 × 10−4 (1 × 10−5, 8 × 10−4) 2 × 10−6 (2 × 10−7, 2 × 10−5)
Broiler breeder 1.00 (1.00, 1.00) 1 × 10−4 (1 × 10−5, 8 × 10−4) 2 × 10−6 (2 × 10−7, 2 × 10−5)
Fattening pig 0.88 (0.22, 1.00) 2 × 10−7 (1 × 10−8, 5 × 10−6) 4 × 10−9 (2 × 10−10, 9 × 10−8)
Breeding pig 0.92 (0.26, 1.00) 2 × 10−7 (1 × 10−8, 5 × 10−6) 4 × 10−9 (2 × 10−10, 9 × 10−8)

Farrow-to-finish 0.92 (0.26, 1.00) 2 × 10−7 (1 × 10−8, 5 × 10−6) 4 × 10−9 (2 × 10−10, 9 × 10−8)
Veal calf 0.73 (0.15, 1.00) 2 × 10−7 (1 × 10−8, 5 × 10−6) 4 × 10−9 (2 × 10−10, 9 × 10−8)

2.3. Ranking the Risk of Introduction: Combining Exposure and Colonization

The estimated number of fattening pig farms with CPE introduction was the highest,
followed by broiler, fattening veal calf, and breeding pig farms (Figure 1). Farrow-to-finish
farms and broiler breeder farms ranked lowest in terms of numbers of introductions. Expo-
sure to contaminated feed was most likely to result in CPE introduction, with probabilities
of colonization varying between 73% and 100% (Table 1). Exposure to hospitalized farm
workers and returning travelers, on the contrary, was estimated to hardly ever result in
CPE introduction to the farm due to a very low probability of colonization in exposed
farms (Table 1). The expected annual number of CPE introductions to livestock farms in
The Netherlands due to returning travelers was 5 × 10−5, which equals an introduction
once every 20,000 years. For an individual farm, the estimated probability of colonization
was highest on broiler farms (0.23, Table 2). Probabilities of colonization in fattening pig
and farrow-to-finish farms were slightly lower (between 0.16 and 0.17). The probabilities of
colonization in other farm types were lower than 0.1.

Table 2. Expected number of farms exposed and colonized combined with the total number of farms
to calculate the probability of exposure and colonization for an individual farm of a specific type.

Broiler Fattening
Pig

Farrow-to-
Finish Veal Calf Broiler

Breeder
Breeding

Pig Total

Total number
of farms in The

Netherlands
524 2652 260 1298 255 1601 6590

Ex
pe

ct
ed

nu
m

be
r Farms exposed 126 612 73 113 22 145 1091

Farms
colonized 122 460 40 87 14 86 810

Pr
ob

ab
ili

ty
pe

r
in

di
vi

du
al

fa
rm

Exposure 0.24 0.23 0.28 0.09 0.09 0.09 0.17

Colonization 0.23 0.17 0.16 0.07 0.05 0.05 0.13

Pr
ob

ab
ili

ty
of

ex
po

su
re

du
e

to

Feed 0.229 0.228 0.196 0.059 0.051 0.067 0.148

Imported
livestock 0.004 3 × 10−4 0.002 0.025 0.004 0.001 0.007

Returning
traveler 0.008 0.006 0.040 0.006 0.015 0.069 0.143

Companion
animal 0.001 0.004 3 × 10−4 0.002 3 × 10−4 0.002 0.009

Hospital
patient 1.8 × 10−4 0.001 2 × 10−4 4 × 10−4 8 × 10−5 5 × 10−4 0.003
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2.4. Result from Sensitivity Analysis

First, the Spearman rank correlation, a non-parametric metric between −1 and 1, was
calculated for all input parameters with an uncertainty distribution to estimate the extent to
which these input parameters determined the model results for each source (Section 2.4.1).
Secondly, one-at-a-time (OAT) sensitivity analysis was performed (Section 2.4.2). In this
additional sensitivity analysis, the value of a single input parameter was either increased
or decreased. The outcome of each adjustment was compared to the baseline scenario to
investigate the impact of all input parameters on the estimated number of introductions.
OAT sensitivity analysis was performed separately for each source. Then, to evaluate if
changes in input parameters would affect the ranking of sources, we compared the results
of the OAT sensitivity analysis across sources (Section 2.4.3).

2.4.1. Result from Spearman Rank Correlation

Based on the model results, feed is indicated as the main contributor of CPE introduc-
tion for all livestock farm types (Table 2). The Spearman rank correlation for this source
revealed that the prevalence of CPE-colonized patients in Dutch hospitals (PCPENL), which
was combined with E. coli prevalence to infer the prevalence of CPE in feed (PCPE f eed),
50% infectious dose (ID50), and the average batch size of feed (Vbatch) are inputs that
are strongly correlated with the expected number of introductions from feed (Figure 2).
However, these parameters are not expected to affect the ranking of farm types for their
introduction risk because these inputs are identical for all farm types apart from 50%
infectious dose (ID50), which differs between farm types (Figure S3). CPE prevalence
in livestock i in country j (PCPEA) is highly correlated with the expected number of CPE
introductions from imported animals to all farm types. Though CPE prevalence in humans
(PCPENL and PCPE) is correlated with the number of introductions from both hospitalized
patients and returning travelers, the average number of farmers per farm (AVG f armers) and
the probability of admission to hospital during travel (Padmit) were more correlated with
pig and veal calf farm introductions than CPE prevalence in the returning traveler source.
Introductions from returning travelers and hospitalized patients were also correlated with
input parameters for probability of colonization given exposure such as infectious dose at
50% colonization (ID50) and proportion of CPE transferred from fomite to finger and vice
versa (CtranE and CtranA).

2.4.2. One-at-a-Time Sensitivity Analysis per Source

One-at-a-time sensitivity analysis of the input parameters for introduction by feed
unveiled two parameters that had a huge impact on the estimated number of introductions
in different farm types: the total number of animals in The Netherlands (Nanimal) and the
amount of feed consumed per animal per day (Ca) (Figure 3). The total number of farms
(N f arm ) was used twice in the model, i.e., to obtain the number of animals per farm and
the number of farms exposed, which compiled into a lower effect toward introductions
than the total number of animals in The Netherlands (Nanimal) and the amount of feed
consumed per animal per day (Ca). Parameters with the least impact on introduction
in all farm types were the number of bacteria in contaminated feed (EcoliconcF) and the
median infectious dose (ID50). These two parameters were involved in calculating the
probability of colonization in an exposed farm (Pcols), while other parameters were involved
in calculating the number of exposed farms (Ncols).
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Figure 2. Results of Spearman rank correlation for broiler farm, fattening pig farm, and veal calf farm.
Each row shows rank correlation of input parameters with the expected number of CPE colonizations
from feed, imported livestock, returning travelers, and hospitalized patients. Only input parameters
with a Spearman rank correlation coefficient >|0.1| are included in the plots. Spearman rank
correlation of companion animals is excluded from the figure because the introduction is zero.

Input values of three impactful parameters, namely, the total number of animals
(Nanimal), total number of local farms (N f arm), and grams of feed ingested per livestock per
day (Ca), in the baseline model were compared across all farm types (Supplementary File
S6). Fattening pig farms had the highest total number of farms (N f arm) but a moderate total
number of fattening pigs (Nanimal) and grams of feed ingested per fattening pig per day
(Ca) compared to other farm types. The high number of introductions to veal calf farms
arose from imported livestock. Two essential parameters that directly facilitate introduction
to fattening veal calf farms are CPE prevalence in the source country

(
PCPEA

)
and the

number of livestock i per shipment (Nsize) (Figure S2). When the number of livestock i per
shipment was enhanced two-fold, the number of farms exposed was also enhanced two-
fold (Supplementary File S8). It should be noted that the number of livestock per shipment
is directly correlated with the annual number of animals imported

(
Nimp

)
. However, a

two-fold increase in the CPE prevalence in livestock in source countries
(

PCPEA

)
increases

the number of introductions only slightly because of the very low prevalence estimates
based on the zero CPE cases in livestock (as reported by most source countries).
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Figure 3. One-at-a-time sensitivity analysis of the number of introductions from feed to six farm types
calculated in which one parameter either increases or decreases two-fold. Farm types are ordered
according to the highest to lowest number of introductions in the baseline model. Dotted blue line
indicates the estimated number of introductions in the baseline model. Only parameters that differed
between farm types are included in this figure.

Fattening pig farms and veal calf farms remained the highest in farm types with
introductions from livestock feed and imported livestock in the OAT sensitivity analysis.
None of the OAT analysis resulted in increased introduction from human sources. However,
one scenario of the OAT analysis indicated introduction to fattening pig farms from the
companion animal source.
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2.4.3. One-at-a-Time Sensitivity Analysis between Sources

To evaluate if changes in input parameters would affect the ranking of sources, we
performed a pairwise comparison of the results of the OAT sensitivity analysis of individual
sources (Table S6). For example, for the comparison of feed and imported livestock, we
compared 15 outcomes (7 parameters that were both increased and decreased, and the
baseline) of the feed source to 7 outcomes of the imported livestock source (3 parameters
that were both increased and decreased, and the baseline). This resulted in a total of
105 combinations of outcomes including 1 combination of baseline parameters for both
sources (Table S7). Of all the other 104 outcome combinations, we recorded if the ranking of
the sources was different from the comparison of the baseline parameters in both sources.
Feed consistently ranked as the source with the highest expected number of CPE introduc-
tions in all farm types, except for veal calf farms, when comparing sensitivity tests across
all sources (Supplementary File S9). Forty-four percent of the adjusted input parameters
resulted in a higher introduction from imported livestock to veal calf farms than feed. In the
baseline model, the colonization risk of imported livestock and feed for veal calf farms was
on the same order of magnitude, with the risk of feed being slightly higher, whereas for all
other farm types, the risk of imported livestock was very low compared to feed (Figure 1).
On the other hand, all sensitivity tests produced non-zero introduction from feed, while a
small proportion of sensitivity tests (19%) resulted in negligible introduction from imported
livestock to most farm types except fattening pig and veal calf farms. Imported livestock
always had a higher introduction risk than returning travelers, hospitalized patients, and
companion animals (Supplementary File S9: Tables S8 and S9).

2.5. Result from What-If Analysis

The effects of higher contamination levels in feed, less strict biosecurity at the farm
level, and a ban on livestock imports from countries sampling less than 100 animals for
CPE surveillance were explored by adjusting input parameters and evaluating the model
outcome (number of introductions) in what-if scenario analysis.

CPE was introduced into eight (one breeding, five fattening pig, and two veal calf)
additional farms when the number of E. coli contaminations increased to the maximum limit
for rejecting feed as given by GMP+. This addition is small compared to the 767 expected
introductions in the baseline model (Table 3). Interestingly, banning imports from coun-
tries with a low surveillance level (less than 100 animals sampled) reduced the risk of
introduction from imported livestock by 71%. Following a minor increase in introduction
from companion animals in a flexible biosecurity scenario, companion animals would be
reclassified from no risk to a low-risk source. Conversely, introduction from returning
travelers and hospitalized patients remained negligible when the number of bacteria on a
person’s palms increased four times due to non-compliance with hand hygiene protocols.

Table 3. What-if analysis related to probability of colonization in feed, restriction on import of animals
from countries with weak surveillance for CPE, and less strict biosecurity practice in local farms.

Scenario CPE Source Affected Parameter Changed

Baseline Number of
Introductions from

Affected Source
(95% Range)

Changed Number of
Introductions from

Affected Source
(95% Range)

Contamination of E. coli
in feed reaches

concentration of
maximum rejection

limit according
to GMP+

Feed EcoliconcF 767 (244, 1679) 775 (246, 1668)
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Table 3. Cont.

Scenario CPE Source Affected Parameter Changed

Baseline Number of
Introductions from

Affected Source
(95% Range)

Changed Number of
Introductions from

Affected Source
(95% Range)

The Netherlands only
allows import of

livestock from EU
member states that

sample ≥100 animals
in CPE surveillance

Imported livestock PCPEA 48 (4, 214) 14 (0, 58)

Lower biosecurity:
companion animals
have full access to
livestock areas in

broiler, pig, and veal
calf farms

Companion animals PbarnC 0 (0, 0) 2 (1, 7)

Lower biosecurity:
non-compliance with

hand hygiene

Travelers and
hospitalized patients Ecolihand

1 × 10−4

(9 × 10−6, 8 × 10−4)
4 × 10−3

(3 × 10−4, 3 × 10−2)

3. Discussion

This is the first risk assessment that quantifies the risk of CPE introduction into
livestock farms in The Netherlands. The results indicate that fattening pig farms ranked
the highest with respect to the expected annual number of CPE-colonized farms. However,
when considering the probability of CPE introduction per individual farm, broiler farms
have the highest introduction risk. Our model indicates that feed is a major potential source
of CPE introduction, but this risk estimate has a high uncertainty. Imported livestock
is indicated as an important CPE source specifically for veal calf farms. Other sources
(companion animals, hospital patients, and returning travelers) were assessed to be of
minor or negligible importance.

The number of exposed farms was most important in determining the introduction
risk expressed as the expected number of colonized farms for high-rank sources (feed and
imported livestock), due to the high probability of colonization upon exposure (Pcols) in
both sources (probability varying between 0.73 and 1 for feed (Table 1), probability of 1
for livestock imports). The probability of an individual farm exposed to CPE due to feed
was similar in broiler, fattening pig, and farrow-to-finish farms (Table 2). This probability
equaled the probability of receiving at least one CPE-contaminated batch of feed (PCPEbatch ).
Although broilers require much less feed per animal than pigs due to their relatively small
size, the number of broilers kept per farm is higher, resulting in a similar amount of feed
delivered to all farm types.

The overall probability of introduction for an individual farm resulting from all sources
was the highest in the broiler sector. If exposed to CPE, broilers have a higher probability of
colonization than pigs and veal calves due to the very low median infectious dose (ID50) in
broilers. This parameter mainly affected the colonization probabilities of farms exposed to
CPE-colonized humans because, for this source, the dose to which the animals are exposed
is low. With high exposure doses, as was the case with feed, the probabilities of colonization
are high, even when the ID50 is high. The total number of CPE introductions is thus mainly
determined by the total number of farms exposed to CPE given the high probability of
colonization upon exposure by the two major sources (0.73–1 probability). Consequently,
the effect of changing the probability of colonization is much smaller than that of changing
the number of exposed farms.

According to our model, thirteen percent of Dutch farms are estimated to be colonized
by CPE each year, mainly via feed, which is clearly an overestimation as such a percentage
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of farms being colonized would be detectable under the current national surveillance
protocol [14,15]. Still, an undetected CPE presence in Dutch livestock is possible, as the
current national surveillance protocol was designed to detect at least one colonized animal
with 95% certainty, provided the prevalence is 1% [14]. However, this surveillance protocol
does not take into account clustering of colonization at the farm level, which decreases the
sensitivity of the surveillance. Furthermore, introductions could have escaped detection
because most farms for meat production (broiler, fattening pig, and veal calf) apply an
all-in-all-out system that produces more than one batch of livestock annually, while the
national surveillance collects samples only once a year from a single animal per batch at
slaughter from part of the farms. Thus, for each farm unit, multiple samples distributed
over time are necessary to calculate an accurate prevalence [16].

In our calculation, a major source of CPE introduction is feed, although no carbapenemase-
producing bacteria have been found thus far in feed. The probability that batches are
CPE-contaminated and the concentration of CPE in contaminated batches were both in-
ferred from the CPE prevalence among humans, E. coli prevalence in feed, and the ratios
of CPE, ESBL, and other E. coli in water sources. Using these proxy measures introduces
uncertainty in the calculations. Multiple studies, however, indicated the presence of E. coli
in feed to be as prominent as Salmonella, which is a major hazard in animal feed [1,17–21].
Despite no CPE detection in livestock feed, a small percentage of E. coli from feed col-
lected in Portugal and the United States carried resistant genes against ampicillin and
cefotaxime [19,22,23]. It is, therefore, reasonable to assume that CPE contamination of
feed is possible. Although halving the CPE prevalence in feed lowered the risk of feed
considerably (Supplementary File S8; Figure S3), feed still remained an important source
of CPE introduction, still being higher than the risk of imported animals. It is therefore
recommended to investigate this source of CPE in more detail to either discard this source
as a risk or to enable mitigation strategies.

The probability of batches of feed contaminated with CPE (PCPE f eed), the number of
batches delivered to a farm each year (Nbatch), the median infectious dose (ID50), and the
concentration of CPE E. coli (cfu/g) in contaminated animal feed (CPEconcF) are four param-
eters worth further examination because they had a large impact on the introduction risk
and are surrounded by considerable uncertainty. Uncertainty in the probability of batches
of feed contaminated with CPE (PCPE f eed), and the concentration of CPE E. coli (cfu/g) in
contaminated animal feed were due to lack of data for CPE, and these parameters were
therefore inferred from the prevalence and concentration of E. coli in feed and other sources.
Equally, no data were available on the median infectious dose (ID50) for CPE in livestock,
and therefore estimates from studies on ESBL in broilers and pigs were used. Uncertainty
in the number of batches delivered to a farm each year (Nbatch) stems from generalizing
highly variable parameters into an average value. The impact of overestimating these
parameters was assessed in a sensitivity analysis, where the number of introductions from
feed was reduced by, at most, 47% (Tables S7–S9). Still, the 47% reduction in the number of
introductions from feed remains higher than other sources (Supplementary File S9).

Whereas most farm types have a low risk of introduction via routes other than feed,
veal calf farms have a high risk of introduction by imported animals. Farms received a
higher number of batches of imported veal calves than other animal types due to a high
number of imported animals and small batch sizes. Furthermore, the inferred CPE preva-
lence in veal calves in source countries (PCPEA) is higher than the estimated CPE prevalence
in pigs and broilers [9,24]. Eighteen EU member states did not collect any samples from
veal calves for CPE surveillance (Supplementary File S10; Figure S4). Therefore, the CPE
prevalence in veal calves in these member states was inferred from ESBL surveillance in
bovine meat (Supplementary File S3 & Table S2), resulting in a higher CPE prevalence in our
calculations for veal calves. Both countries from which a high number of veal calves are im-
ported (NA) and countries with a high inferred probability that imported veal calf batches
are colonized with CPE (PCPEA) (Supplementary File S9: Table S10) have a high risk of CPE
introduction. This outcome resembles a risk assessment by EFSA, which concluded that EU
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member states with higher volumes of livestock trading have a higher risk of disseminating
AMR-ESBL bacteria [2,25]. We believe that the high risk level expected for veal calves from
the model could be an overestimation given the lack of CPE detection in veal calves in
EU surveillance (EARS-net). The high prevalence estimates for source countries were thus
not based on reported detections but resulted from uncertainty due to low sample sizes.
However, CPE cases in cows were detected in European countries [26], and imported veal
calves were ranked first for risk of CPE in our expert elicitation (Supplementary File S2).
The scenario of reducing risk by only allowing countries that sample more than 100 animals
annually to export to The Netherlands was shown to be an effective mitigation strategy in
the what-if analysis. The expected number of introductions was reduced by 71%. It should,
however, be kept in mind that this strategy reduces the potential CPE introductions result-
ing from uncertainty in CPE prevalence in veal calves in source countries. Countries with
an effective surveillance program in calves that do find CPE in calves might, in reality, pose
a higher risk to the Dutch veal calf sector. A more reliable estimate of the CPE introduction
risk via imported livestock can be obtained via enacting EU-wide mandatory surveillance
with enough samples in all countries exporting veal calves to EU member states.

Humans were initially thought to be a high-risk source because of high numbers of
overseas travel and CPE presence in hospitals [4], but the risk of these sources was found
to be very low. In spite of a non-zero number of farms exposed to returning travelers
and hospitalized patients (the probability of exposure of an individual farm is as high
as for imported livestock (Table 2)), the extremely small calculated dose of CPE ingested
by livestock leads to a very low number of expected colonizations in the exposed farms
(Table 1). The prevalence of the clinically relevant CPE Klebsiella pneumoniae in humans is
slightly higher than CPE E. coli [10]. Only the latter was considered in this risk assessment.
Including CPE Klebsiella pneumoniae is, however, not expected to result in a change
in the ranking of sources given the huge difference in the estimated risk between feed
and imported livestock, on the one hand, and travelers and hospitalized patients, on the
other. Likewise, CPE introduction from the companion animal source was assessed to be
negligible because there is no exposure of farm animals to colonized companion animals if
strict biosecurity is applied. What-if analysis evaluated the effect of reduced biosecurity
in farms, where hand hygiene and exclusion of companion animals from the barns were
not complied with [27–31]. This scenario still resulted in a very low number of expected
introductions from human and companion animal sources. This is explained by the low
number of humans and companion animals attributed per farm and the very low probability
of colonization of the farm if exposed to CPE-colonized humans or companion animals.

The outcome of this introduction risk assessment was used to rank farm types and
sources of their CPE introduction risk. The results for the absolute numbers of exposures
and introductions have a large uncertainty and cannot be viewed as accurate quantitative
risk estimates. The results of the sensitivity analysis provide good indications of the
uncertain input parameters that have the largest impact on the model results. Parameters
with both a large uncertainty and a large impact are important knowledge gaps that can
be targeted in future studies. Despite these uncertainties, the ranking of farm types and
sources was robust and the outcome of this risk assessment can thus be used for targeted
CPE surveillance [32–34].

4. Materials and Methods

We quantitatively assessed the risk of CPE introduction to broiler, pig, and veal calf
farms from five potential CPE sources, i.e., imported livestock, livestock feed, companion
animals, hospital patients, and returning travelers, and ranked farm types by the expected
number of farms with CPE introduction and the probability of CPE introduction for an
individual farm. This quantitative risk assessment followed the guidelines for import
risk assessment provided by the World Organisation for Animal Health (OIE) [32,33] to
assess the risk of exposure of farms, and the guidelines for microbial risk assessment
provided by the Codex Alimentarius to assess the risk of infection upon exposure [35,36].
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We conducted sensitivity analysis to assess the effect of uncertainty surrounding important
input parameters toward the output and evaluated alternative biosecurity practices and
trade restrictions via scenarios analysis.

Despite being highlighted as an important potential CPE source, wastewater from
hospitals was excluded from the model because CPE will be effectively removed in the
wastewater treatment facilities. Additionally, although small traces of CPE could be present
in surface water due to overflow from rainfall, the vast majority of the meat-producing
animals of our concern (veal calf, fattening pig, breeding pig, broiler, and broiler breeder)
were raised in a closed system where they drink tap water. This water source undergoes
extensive purification, ensuring no traces of resistant bacteria such as CPE [37–39]. Wild
mammals and birds were also excluded from the model. Small mammals such as rodents
move locally and thus would not be exposed to CPE from outside The Netherlands. Inter-
actions between local target farms and wild birds are mostly prevented as livestock live in
closed barns.

4.1. Risk Model
4.1.1. Model Outline

CPE introduction was defined as the colonization of at least one animal with CPE
upon exposure of a farm to any of the sources included in the model. The risk of CPE
introduction was modeled with two submodels (Figure 4). The first submodel used scenario
tree modeling to estimate the number of farms exposed to CPE-colonized sources (Ncol).
The second submodel was a microbial risk assessment model to estimate the probability
that at least one animal will be colonized on an exposed farm (Pcol) given the dose to which
the animals on the farm are exposed (CPEing), using an exponential dose–response model.
The outputs of both submodels were combined to calculate the expected annual numbers
of farms on which CPE is introduced (Nintro). Parameters and values used in the model are
presented in Table 1.
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Figure 4. Outline of the risk model to estimate the introduction risk of CPE into Dutch livestock
farms from five sources: imported livestock, livestock feed, companion animals (cats and dogs),
hospital patients, and returning travelers. * Submodel II is not used for imported livestock because
the introduction of a colonized animal into a livestock farm automatically results in colonization of
the farm.

The annual expected number of CPE introductions via each source was calculated us-
ing multiple input parameters, some of which are uncertain. Parameters on CPE prevalence,
CPE concentration, number of animals in transport, and colonization duration were chosen
to be included with a distribution to account for uncertainty and variability. Less variable
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data, such as total numbers of farms and livestock in The Netherlands, were entered as
point estimates. The impact of these parameters on the model results was studied by a
sensitivity analysis where the input values were increased and decreased two-fold. We ran
10,000 iterations using Monte Carlo sampling in ModelRisk, an add-on for Microsoft Excel
version 1908® [40].

4.1.2. Submodel I: Scenario Tree Model

The exposure of the following six farm types: broilers, broiler breeders, fattening pigs,
breeding pigs, farrow-to-finish, and veal calves, to CPE from sources s (imported livestock
(A), livestock feed (F), companion animals (C), farm workers being hospitalized (H), and
farm workers traveling abroad (T)) was calculated by multiplying the number of farms
in contact with people or animals or receiving feed, Ns, or by the probability that these
persons or animals are colonized with CPE, or that the feed is contaminated with CPE,
PCPEs . Mixed species livestock farms were not considered in the risk assessment because
they represented a small proportion of local farms [41].

Ncols = Ns · PCPEs (1)

Imported Livestock

The number of farms exposed to CPE from imported animals, NcolA , was calculated by
multiplying the annual number of batches of animals imported from the source country—
among all EU member states in 2017—to six farm types (NA) by the probability that an
imported batch from the source country which is delivered to an individual farm type is
colonized with CPE (PCPEA).

We assumed that CPE colonization is maintained during transport and will reach local
farms without detection. Sustained CPE colonization in animals during transportation
between EU member states is likely within the maximum 24 h transport time [42], because
in livestock, ESBL colonization can be maintained for 30 to 180 days [43–46]. Within the
EU, antimicrobial testing in imported animals is not obligatory and not conducted [2]. The
probability of detecting a CPE-colonized animal is thus negligible and was not accounted
for in the calculations.

Livestock Feed

The number of farms exposed to CPE-colonized feed, NcolF , was calculated as the
product of the total number of six farm types in The Netherlands (N f arm) and the prob-
ability that an individual farm would receive at least one batch of feed contaminated
with CPE (PCPEbatch). PCPEbatch was calculated from the probability that a batch of feed is
contaminated with CPE (PCPE f eed) and the annual number of feed batches received by a
farm (Nbatch). The estimated value for PCPE f eed was used for all farm types because no data
were available to estimate PCPE f eed separately for each farm type.

PCPEbatch= 1 −
(

1 − PCPE f eed

)Nbatch
(2)

Companion Animals

The number of farms exposed to CPE-colonized companion animals (NcolC ) was de-
rived by multiplying the number of farms with companion animals (NC) by the probability
that companion animals in The Netherlands are colonized with CPE

(
PcCPENL

)
. The num-

ber of farms having companion animals (NC) was calculated from the total number of
farms (N f arm) multiplied by the probability of farms having a companion animal (Pf armC).

Farm Workers

CPE introduction from humans is possible when farm-related workers k (farmers,
veterinarians) acquire CPE during holidays outside The Netherlands or in local hospitals
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(Figure 5). Here, the number of farm workers acquiring CPE in hospital (NcolHk
) was

calculated by multiplying the number of farm workers hospitalized (NH) by the probabil-
ity that patients acquire CPE in Dutch hospitals (PCPE NL). The number of farm workers
hospitalized (NH) was estimated by multiplying the number of farm workers and veteri-
narians in The Netherlands (Nk) by the annual probability of hospital admission in the
general population (PadmitNL ).
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The number of farms exposed to CPE through infected farm workers returning from
travel abroad (NcolTk

) was calculated by multiplying the number of farm workers returning
from abroad (NTk ) by the probability of travelers acquiring CPE during travel. The proba-
bility of traveler-acquired CPE differed according to the 16 regions of destination based on
the United Nations geoscheme excluding The Netherlands [47] (Supplementary File S6),
and therefore calculations were performed for each region individually. The number of
farmers returning from each of these regions was estimated based on the probability of
Dutch travelers visiting each region (PT). Both the probability of acquiring CPE in the
hospital (PCPE) and the probability of acquiring CPE from the community (PcCPE) during
travel were considered in the model. The probability of hospital-acquired CPE during
holidays (PCPE) was multiplied by the probability of travelers being hospitalized (Padmit).
The probability of community-acquired CPE (PcCPE) was multiplied by the probability of
non-hospitalized travelers (1 − Padmit) (Figure 2). The estimated value for was used for all
regions because no data were available to estimate Padmit separately for each region.

4.1.3. Submodel II: Exposure Assessment

We estimated the numbers of farms where CPE was introduced by multiplying the
number of exposed farms (Ncols ) by the probability that at least one animal on an exposed
farm would become colonized (Pcols). The probability that at least one animal on an exposed
farm would become colonized was calculated with an exponential dose–response model
using the total number of CPE E. coli bacteria ingested by the animals on the farm (CPEings)
as the dose. The ingested dose (CPEings) was calculated separately for each farm type and
CPE source s, as described in Equations (3)–(5). These calculations were not performed for
the source imported livestock, since the introduction of a colonized animal into a livestock
farm directly results in a colonized farm.
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Animal Feed

The ingested dose of CPE from contaminated feed on a single farm
(
CPEingF

)
was

estimated as the product of the concentration of CPE E. coli (cfu/g) in contaminated
animal feed delivered to a farm (CPEconcF) and the average weight of one batch of feed in
grams (Vbatch).

CPEingF = CPEconcF · Vbatch (3)

Companion Animals

To estimate the total CPE deposited by companion animals in the farm environment,
we multiplied the concentration of CPE in companion animal feces (CPEgramC) (cfu/g) by
the average weight (grams) of feces defecated by a companion animal in each defecation
(W f ec), the daily defecation frequency of companion animals (NeliC ), the length of the
colonization period in companion animals in days (TCPEC ), and the proportion of time that
a companion animal is present in the barn (PbarnCi). The total CPE ingested by the farm
animals (CPEingC ) was subsequently calculated by multiplying the deposited CPE in the
farm environment by the proportion of excreted bacteria taken up by the livestock animals
from the farm environment (CtranA) (Table 1).

CPEingC = W f ec · NeliC · TCPEC · CPEgramC · PbarnC · CtranA (4)

Farm Workers

The number of CPE bacteria ingested by colonized farm workers
(
CPEingH

)
was

calculated in a similar manner to the ingested dose from companion animals
(
CPEingC

)
,

albeit with different inputs. The transmission event started after the colonized farm worker
(farmer or veterinarian) used the toilet for defecation. We assumed CPE contaminated their
hands after toilet usage and that not all would be removed by hand washing. Thus, CPEhand
was the number of CPE (cfu) remaining on a farm worker’s hands after hand washing. The
number of CPE deposited in the farm environment was then calculated by multiplying this
number by the daily defecating frequency of humans (NeliH ), the length of the colonization
period of CPE in humans in days (TCPEH ), the proportion of bacteria transferred from the
farm worker’s hand to the farm environment (CtranE ), and the proportion of the day that
a worker is in the barn (PbarnH). The last parameter is different between farm workers
and veterinarians, assuming that a farmer spends much more time in the barn of a single
farm than a vet. The total CPE ingested by the farm animals (CPEingH ) was subsequently
calculated by multiplying the deposited CPE in the farm environment by the proportion of
bacteria taken up by the livestock animals from the farm environment (CtranA).

CPEingH = CPEhand · NeliH · TCPEH · CtranE · PbarnH · CtranA (5)

4.1.4. Submodel II: Dose–Response Model

The probability that at least one animal at farm type i is colonized with CPE (Pcols)
is a function of the CPE ingested dose from a source s (CPEings) and the dose–response
parameter. The dose–response parameter gives the probability of a single CPE bacterium
colonizing an animal’s gut (P) and is calculated from the ID50 (the dose at which 50% of
the animals are expected to be colonized). An exponential dose–response model was used,
and P was calculated as ln2

ID50 . The probability that at least one animal is colonized with
CPE was then calculated as

Pcols = 1 − e−(P · CPEings ) (6)
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4.1.5. Risk Estimate Combining Submodel I and Submodel II

The expected number of introductions to each farm type from each source s (Nintros )
was calculated by multiplying the number of farms exposed to each source s (Ncols) by the
probability that at least one animal on an exposed farm is colonized (Pcols).

Nintros = Ncols · Pcols (7)

The absolute risk of CPE introduction into local Dutch farms was given as the expected
annual number of introductions per farm type (Nintro) from all CPE sources considered in
the model. The probability of CPE introduction for an individual farm was estimated by
dividing the number of expected introductions per farm type by the total number of farms
of this type in The Netherlands.

4.2. Input Parameters
4.2.1. Imported Livestock

Data on the number of livestock imported into The Netherlands from EU member
states (Nimp) were available for the period 2016 to 2020 and fluctuated slightly. Import data
for the year 2017 were used in the baseline model to be consistent with the data used for
the number of farms and veterinarians. The livestock import records were derived from
two publicly available sources, namely, Statistics Netherlands (CBS) and The Netherlands
Enterprise Agency (RVO) (Supplementary File S6 and Table 4) [48]. To estimate the number
of imported batches (NA), the annual number of imported animals was divided by the
average number of livestock per shipment (Nsize). In estimating the number of animal
batches delivered to each farm type annually (Nbatch), we assumed that all imported one-
day-old broilers would go to broiler farms, all imported parent broilers would go to broiler
breeder farms, all imported veal calves would go to veal calf farms, all imported piglets
would go to fattening pig farms, and all imported breeding pigs would go to breeding pig
farms and farrow-to-finish pig farms in a ratio of 2:1, representing the ratio of these farms
in The Netherlands.

The probability that imported animals from EU member states are colonized with CPE
(PCPEA ) was directly inferred from national surveillance data provided by the European
Antimicrobial Resistance Surveillance Network [9,24]. CPE surveillance in livestock con-
sisted of random sampling of fecal samples from live animals at slaughter, the results of
which were used as a proxy for herd prevalence in the risk model. Data on surveillance
in pigs and broilers were available for all EU member states, EFTA countries, and the
UK, whereas only 9 EU member states and 2 EFTA countries (Norway and Switzerland)
reported on CPE surveillance in calves. For countries that had no data on surveillance in
calves, the probability of CPE colonization was inferred from the surveillance in bovine
meat (Supplementary File S3, Supplementary Tables S1 and S2). The probability that im-
ported animals are colonized with CPE (PCPEA ) was estimated using a beta distribution
based on the number of animals sampled (n), the number of animals that tested positive (s),
and test sensitivity (se) (Table 4).

4.2.2. Animal Feed

The average number of batches of feed received by individual farms (Nbatch) was
calculated as

Nbatch =
na · ca · 365

Vbatch
(8)

where na is the average number of animals on a farm of type i, ca is the average consumption
of feed per day per animal on each farm type (in grams), and Vbatch is the average size of a
batch of feed delivered to a farm (in grams). The average number of animals on farm type i
(na) was calculated by dividing the total number of animals in The Netherlands present at
each farm type (Nanimal) by the total number of farms at each farm type in The Netherlands
(N f arm). The number of Dutch farms (N f arm) and livestock heads (Nanimal) was based on
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2017 data provided by Statistics Netherlands. Due to a lack of farm-specific data, Vbatch was
set equal for all farm types.

Since feed ingredients are heat-treated, CPE contamination was expected to result
from cross-contamination during processing and storage in a local feed mill. The proba-
bility of feed colonized with CPE was therefore based on Dutch data. As there is no CPE
surveillance conducted on animal feed at all, the probability of batches of feed contami-
nated with CPE (PCPE f eed) was inferred from the ratio between E. coli prevalence in feed
(Pec f eed ) and in humans (PecNL ) under the presumption that the ratio of E. coli in the two
aforementioned sources is the same as the CPE ratio (Equation (9)). Pec f eed was based on
the prevalence of compound feed for cattle contaminated with E. coli in the EU [23], and
PecNL was based on the prevalence of E. coli in Dutch residents reported in the national
surveillance of antimicrobial resistance [11]. No data were available for the CPE prevalence
in the Dutch community (PcCPENL ). However, we had data on CPE prevalence in Dutch
hospitals (PCPENL ). Therefore, PcCPENL was inferred from the ratio between ESBL E. coli
in the community and in clinical settings (Ccom: cli), under the presumption that the CPE
correlation between the community and the clinical setting is similar to the ESBL E. coli
correlation in European countries. The CPE prevalence in Dutch hospitals (PCPENL) was
therefore multiplied by the ratio of ESBL E. coli in the community versus ESBL in a clinical
setting, Ccom: cli. This ratio was estimated to be 0.79 based on the Pearson correlation be-
tween ESBL prevalence in the community and in the clinical setting in the EU, as observed
in five studies [49–53]. The derived value of PCPE f eed was used for all farm types owing to
the lack of data on E. coli in feed for other animal species.

PCPE f eed =
PcCPENL

PecNL

· Pec f eed (9)

No data were available on the concentration of CPE in feed if it was contaminated.
The concentration of CPE in feed (CPEconcF) was estimated by multiplying the strict con-
centrations of E. coli allowed (minimum rejection limit) in feed components (EcoliconcF)
as given by GMP+ [54] by the ratio of E. coli carrying CPE genes to non-resistant E. coli
(PCPE:EC), as observed in samples from 100 Dutch wastewater treatment facilities [37].

4.2.3. Companion Animals

The number of farms with a companion animal (NC) was calculated by multiplying
the total number of farms in The Netherlands (N f arm) by the proportion of farms with

companion animals
(

Pf armC

)
. No data were available on the proportion of farms with

companion animals in The Netherlands. Assuming that farmers’ behavior in The Nether-
lands does not greatly deviate from other Western regions, we used surveillance data of
farmers’ behavior in the United States of America to estimate Pf armC.

The probability of companion animals colonized with CPE in The Netherlands was
set equal to the CPE prevalence in the Dutch community (PcCPENL). Although some
information on numbers of colonized companion animals in The Netherlands was available
from the Monitoring of Antimicrobial Resistance and Antibiotic Usage in Animals in
The Netherlands report [55], these numbers were not considered representative as these
were cases from animals visiting a veterinary clinic only (Supplementary file S5). The
concentration of CPE (cfu/g) in feces (CPEgramC) was estimated from the concentration
of ESBL E. coli (cfu/g) in animal feces (ESBLgramFec) measured in an observational study
of healthy dogs in the United States [56] and the proportion of ESBL E. coli carrying CPE
genes (PCPE:ESBL) [37].

The frequency of defecating (NeliC) was based on a report from a commercial feed
company in the United Kingdom [57]. The weight (grams) of feces defecated by a com-
panion animal was based on a study in healthy medium-sized dogs in the United States
(W f ec) [58]. Time spent in the livestock area (PbarnC) was set to zero for all farm types in the
default calculations, assuming compliance with biosecurity protocols in The Netherlands.
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However, we explored non-zero PbarnC reflecting farms with a lower biosecurity standard
in a what-if analysis (Section 2.5 & Table 3). The proportions of CPE transfer from the
environment to animal (CtranA) were based on a study that measured the proportion of
Acinobacter transferred from fomite to finger [59]. The CPE colonization period in compan-
ion animals (TCPEC ) was set equal to the ESBL E. coli colonization period in healthy dogs in
The Netherlands [60].

4.2.4. Farm Workers

The total number of farms in The Netherlands (N f arm) was multiplied by the aver-
age number of employees per farm (Avg f armer) to parameterize the number of farmers
(N f armers). Each farm is typically visited by a single veterinarian, and therefore the number
of veterinarians (Nvet) in the model was set equal to the total number of farms in The
Netherlands (N f arm). The number of farm-related workers spending their holiday abroad
(NTk ) was calculated by multiplying the number of farm workers (N f armer) and veteri-
narians (Nvet) by the probability of farm workers and veterinarians traveling abroad for
their holidays (Pholiday). The probability of farmers taking a holiday abroad was derived
from an online survey among 300 Dutch farmers conducted by a farm-oriented magazine,
Boerderij (Farm) [61]. The probability of veterinarians taking a holiday abroad was based
on data from Statistics Netherlands [41] for the general Dutch population. The proportion
of Dutch travelers visiting each UN region (PT) was based on Statistics Netherlands data
from 2013, where the number of holidays to each region was divided by the total number
of holidays taken by Dutch citizens (Supplementary File S6). To estimate the probability
of hospital admission for farm workers (PadmitNL ), the number of Dutch inpatients in 2017
was divided by the total population of The Netherlands in 2017. The prevalence of CPE
in hospital

(
PCPENL

)
was based on data provided by EARS-Net [10]. The probability of

hospital admission during holidays outside of The Netherlands (Padmit) was derived from a
study among 2000 Dutch travelers. The probability of acquiring CPE during hospitalization
(PCPE) in non-European countries was parameterized from national surveillance on CPE
prevalence from multiple countries around the world reported in the WHO’s global report
of surveillance [62] and independent academic publications [63,64]. The probability of
non-hospitalized travelers acquiring CPE from the community in a foreign country (PcCPE)
was inferred by multiplying the hospital CPE prevalence (PCPE) by the ratio of ESBL in
the community versus ESBL in the clinical setting (Ccom: cli) (Supplementary File S4). The
number of CPE (cfu) remaining on a farm worker’s hands after hand washing (CPEhand)
was estimated from an observational study in Mexico among tomato farmers, in which the
number of E. coli on hands after toilet use followed by hand washing (Ecolihand) was mea-
sured. Ecolihand was multiplied by the probability of E. coli carrying CPE genes (PCPE:EC)
to calculate CPE (cfu) on farm workers’ hands. The number of defecations per day (NeliH )
was retrieved from an observational study of 2000 returning Dutch travelers (Arcilla et al.,
2016). Proportion of time spent in the livestock area (PbarnH) was estimated at eight hours
a day for farmers and one hour per week for veterinarians. The proportions of CPE transfer
from the hands to the environment (CtranE) were based on the same study used to estimate
the proportions of CPE transfer from the environment to the animal (CtranA) [59].

4.2.5. Dose–Response Parameter

The median infectious dose (ID50) was used to calculate the dose–response parameter
(P). The median infectious dose (ID50) was based on experimental studies for ESBL in
broilers and pigs. No data were available to estimate the ID50 for veal calves, and, therefore,
it was set equal to the median infectious dose of pigs.
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Table 4. Input parameters for the model to assess the risk of CPE introduction into Dutch
livestock farms.

Input * Description Value Distribution **
Value in

Sensitivity
Analysis

References

Nintro
Expected annual number of farms on

which CPE is introduced

Ncols

Number of farms exposed to
CPE-colonized sources s (imported

livestock (A), livestock feed (F),
companion animals (C), farm workers

being hospitalized (H), and farm workers
traveling abroad (T))

Ns

Number of farms in contact with people,
import animals, companion animals, and

livestock feed

PCPEs
Probability of sources exposed to farm
are colonized/contaminated with CPE

PCPEbatch

Probability that an individual farm
receives at least one batch of feed

contaminated with CPE

Nbatch
Annual number of feed batches received

by a farm

PCPE f eed

Probability that a batch of feed is
contaminated with CPE

NC
Number of farms with

companion animals

NH
Number of farm workers/vets

hospitalized

NTk
Number of farm workers/vets returning

from abroad

CPEings

Total number of CPE E. coli bacteria
ingested by the animals on an

exposed farm

CPEconcF
Total number of CPE E. coli (cfu/g) in

contaminated animal feed

CPEgramC
Total number of CPE E. coli (cfu/g) in

companion animal feces

CPEhand

Total number of CPE E. coli (cfu)
remaining on a farm worker’s hands

after hand washing

P Probability of a single CPE bacterium
colonizing an animal’s gut

Nimp

Annual number of imported broilers,
parent broilers, piglets, breeding pigs,

and veal calves from EU member states j
to farm type i in The Netherlands

Supplementary File S7 Yes [41,48]

se CPE surveillance sensitivity 0.85 Yes [14]

PCPEA
PCPENL

CPE prevalence in livestock i in country j
CPE prevalence in hospitalized patients

in The Netherlands

Beta (α/se, β) (values of
beta distribution in EFSA

reference)
Beta (8/se, 6676)

Yes [9,10,24]

PCPE
CPE prevalence in hospital patients in

region m

Beta (α/se, β) (values of
beta distribution are in

Table S5)
Yes [63–83]

Ccom: cli
Ratio of ESBL in the community versus

ESBL in a clinical setting 0.79 N Table S3

Pec f eed
Prevalence of E. coli-contaminated feed

in compound cattle feed Beta (59, 46) Yes [23]
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Table 4. Cont.

Input * Description Value Distribution ** Value in Sensitivity
Analysis References

PecNL Prevalence of E. coli in Dutch residents Beta (159,620, 280,677) Yes [55]

Nsize: broiler
Nsize: piglet

Nsize: breeding pig
Nsize: veal calf

Number of livestock i per shipment

Pert (45,00,47,000, 55,000)
Pert (100, 260,300)

Pert (65, 80, 95)
Pert (30, 150, 200)

Yes [29]

N f armandNanimal
Total number of farm types i and total

number of animals i in The Netherlands Table S5 Yes [41]

NK
Total number of farm workers and
veterinarians in The Netherlands Table S5 Yes [41]

ca
The average grams of feed consumed by

livestock i per day Table S5 Yes [84–86]

Vbatch

The average grams of feed delivered to a
farm derived from the volume of a

standard transport truck

Pert (3 × 106, 16 × 106,
3 × 107)

Yes [29]

EcoliconcF : broiler
EcoliconcF: fattening pig
EcoliconcF : breeding pig

EcoliconcF : veal calf

Concentrations of E. coli in feed
components following minimum
rejection limit by GMP+ (cfu/g)

11.8
11.8
14.3
7.3

Yes [54]

Ecolihand

The amount of E. coli remaining on a
farm worker’s hands after toilet use and

subsequent hand washing (cfu)
Log-normal (63, 5.02) Yes [28]

ESBLgramFec (cfu/g) Number of E. coli (cfu) in a gram of
healthy companion animal’s feces Normal (70, 35) Yes [87]

PCPE:EC
PCPE:ESBL

Proportion of E. coli carrying CPE genes
and proportion of ESBL E. coli carrying

CPE genes

0.00004
0.00424 N [37]

ID50: broiler
ID50: pig and veal calf

Infectious dose of ESBL E. coli at which,
on average, 50% of livestock species i are

colonized (cfu)

Log-normal (5, 5)
Log-normal (4695, 9187) Yes [56,88,89]

Pf armC

Proportion of farms that have companion
animals Beta (298, 148) Yes [56]

W f ec (grams) Grams of feces defecated by a companion
animal in one defecation Normal (70, 35) Yes [58]

NeliC
NeliH

The average number of defecations by
companion animals and humans per day

Pert (1, 2, 5)
Uniform (1,3) Yes [57] Assumption

TCPEC
TCPEH

Colonization duration of CPE in
companion animals and humans (days)

Pert (0, 120, 180)
Pert (1, 30, 365) Yes [60,90]

PbarnC
PbarnH : farm worker
PbarnH : veterinarian

Proportion of day a companion animal,
farm worker, and veterinarian spent in

the barns

0
0.33

0.005
Yes Assumption

CtranA
CtranE

Proportion of Acinobacter transferred
from fomite to finger (A) and from finger

to fomite (E)

Log-normal (0.24, 0.14)
Log-normal (0.06, 0.06) Yes [59]

PT
The probability of Dutch travelers
visiting 16 world regions in 2013 Table S5 Yes [41]

Pholiday: broiler and pig
farm worker

Pholiday: veal calf
farm worker

Pholiday: veterinarian

Probability of farm worker on farm i
taking holiday abroad annually

0.53
0.33
0.64

Yes [41,61,91]

Avg f armers
The average number of farm workers in

all farm types Pert (1, 2, 4) Yes Assumption
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Table 4. Cont.

Input * Description Value Distribution ** Value in Sensitivity
Analysis References

Padmit
Padmit NL

Probability of hospital admission while
traveling overseas and in

The Netherlands

0.04
0.054 Yes [41,90,92]

Footnotes: * Type of farm is indicated by subscript i and source country by j. ** Parameters for input distributions
given in brackets: beta (α,β), where α equals the number of positives plus one, and β the number of negatives
plus one; log-normal (mean, SD); normal (mean, SD); pert (minimum, most likely, maximum); uniform (minimum,
maximum). Parameters with an empty Value Distribution are parameters calculated from the raw input.

4.3. Sensitivity Analysis
4.3.1. Spearman Rank Correlation on Baseline Simulations

Sensitivity analysis was applied to the risk model to assess the impact of uncertain
and highly variable input parameters that were inputted as probability distributions on the
estimated number of CPE introductions (Nintros). Spearman rank correlation was used to
analyze the impact of these input parameters. Only input parameters with a correlation
coefficient >|0.1| with Nintros were included in the result.

4.3.2. One-at-a-Time Sensitivity Analysis

In an additional one-at-a-time (OAT) sensitivity analysis, the most input parameters
(non-inferred) (Table 4) were either decreased or increased by 50%. The result of each
input adjustment was compared to the baseline result to determine which parameter had
the most effect on the expected number of colonized farms. Results were calculated per
CPE source (imported livestock, livestock feed, companion animals, hospital patients, and
returning travelers). To analyze the effect of changes in input parameters on the ranking of
sources for the expected number of farms with CPE introduction, outcomes of each input
adjustment were compared to the outcomes of all other input adjustments, including the
baseline model, and the frequency of changes in the ranking were counted.

4.4. What-If Analysis

Three what-if scenarios were analyzed for their impact on the estimated number of
CPE introductions (Nintros). The first scenario simulated the effect of less sanitary mea-
sures in livestock feed production by increasing the bacteria number in feed (EcoliconcF) to
the maximum limit for rejecting feed according to GMP+. The second scenario modeled
the effect of banning livestock importation from EU member states with insufficient CPE
surveillance. In the calculations for this scenario, livestock imports from countries that sam-
pled less than 100 animals for CPE surveillance were excluded from the model calculations.
The third scenario evaluated weak compliance with biosecurity protocols on farms. This
affected both the risk of introduction from humans and companion animals. The lower
biosecurity was mimicked by assuming farm workers did not wash their hands after toilet
use, resulting in a higher number of CPE on their hands, and by adjusting the proportion
of time a companion animal was present in the animal area PbarnC. This parameter was set
to 0.1 in broiler and pig farms and 0.3 in veal calf farms. All other input parameters were
kept at their baseline values in the what-if scenarios.

5. Conclusions

Feed and imported livestock are expected to pose the highest risk of CPE introduction
to pig, broiler, and veal calf farms. Our risk assessment shows that CPE surveillance should
focus on broiler and fattening pig farms, given the highest probability of introduction
per farm and the highest total number of introductions, respectively. Our model clearly
indicates that we currently do not have sufficient information on the CPE presence in
sources, i.e., CPE prevalence in humans, animals, and feed, and the CPE concentration in
feed, and that this information is essential for the reliability of this risk estimate and for
effective risk mitigation. Therefore, the calculated numbers of exposure and introduction
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cannot be considered as accurate quantitative estimates of the risk. The ranking of farm
types for the total number of introductions in each farm type and for the probability of
introduction in individual farm types is, however, robust despite the huge uncertainties
in input parameters. More surveillance of CPE prevalence in feed and imported animals,
especially veal calves, is essential to improve the certainty of the risk assessment. Banning
livestock importation from countries that put little effort into CPE surveillance could reduce
the risk from imported livestock.
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