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1. Introduction

The symmetric group Sn acts on the set Cn
k of subsets of k elements of a set of n elements. This defines 

a representation, known as a subset representation. Subset representations are related to Young tableaux 
with 2 rows. We consider the universal intertwining matrix B(n−k,k) for a subset representation and use 
Schur’s Lemma and Young’s rule to show that the eigenvalues are Z-linear in the natural parameters of the 
intertwining matrix (Proposition 1). Next we compute the eigenvalues (Theorem 1).

In the terminology that is customary in algebraic combinatorics, what we are doing is recomputing the 
“eigenmatrix P of a Johnson scheme”. This eigenmatrix was determined much earlier by Delsarte [1], but 
his answer is different and does not help us with determining the signature in the last section. (Note that 
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Fig. 1. B3,3 and B4,4; coloured by bp.

[1] is a publication of Philips Research. Around this time Philips was developing the compact disc. Error 
correcting codes are crucial for compact discs.)

In the last section Theorem 1 is applied to justify the evaluation in [6] of the Eisenbud-Levine-
Khimshiashvili (ELK) signature formula for the gradient index at a degenerate star. For this we also need 
the package MultiSum [7], in order to perform a summation of complicated hypergeometric terms.

2. Subset representations, intertwiners, Young’s rule

2.1. The question

Let n be a positive integer and 0 ≤ k ≤ �n/2�. Consider combinations Cn
k of k elements (unordered) 

out of a set of n elements. Take an arbitrary tuple of complex numbers b0, · · · , bk. We constitute a matrix 
B = B(n−k,k), where the rows and columns are indexed (in lexicographic order) by elements of Cn

k . The 
matrix elements of B are defined as follows: If 〈σ, τ〉 denotes the entry with row index σ and column index 
τ , then

〈σ, τ〉 = bp if σ ∩ τ has p elements (0 ≤ p ≤ k).

We want to compute the eigenvectors and eigenvalues of B. (Fig. 1.) The result is needed in [6, §3] for the 
computation of a ‘gradient index’.

2.2. Intertwining

The symmetric group Sn acts on Cn
k and thus defines a permutation representation known as M (n−k,k)

(see for instance [3, p. 86]). In Prasad [4, §2.5] the representation is called a subset representation C[Xk], 
where Xk is our Cn

k .
A linear map N : M (n−k,k) → M (n−k,k) is called intertwining if gN = Ng for all g ∈ Sn. The next result 

shows that B is the ‘universal intertwining matrix’.

Lemma 1. Let N ∈ HomC(M (n−k,k), M (n−k,k)). Use the standard basis of M (n−k,k) to view N as a matrix. 
Then N is intertwining if and only if the matrix elements Nσ1,τ1 and Nσ2,τ2 are equal as soon as σ1 ∩ τ1
and σ1 ∩ τ1 have the same cardinality.

Proof. This is easy and essentially Theorem 2.51 in Prasad [4]. �
2.3. Specht modules

With n, k as above, let ν be the two-part partition (n − k, k) of n. We define Tk to be the maximal 
standard tableau [3, pp. 84–85] of shape ν. That is, one puts 1 through n − k in the first row, in that order, 
and similarly n − k + 1 through n in the second row. One could call its numbering lexicographic. See Fig. 2
for examples.
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Fig. 2. T1, T2, T3 if n = 6.

Recall that the row subgroup R(Tk) of Tk is the subgroup of Sn which consists of those permutations 
that permute the entries of each row among themselves. Similarly the column subgroup C(Tk) of Tk is 
the subgroup of Sn which consists of those permutations that permute the entries of each column among 
themselves. One now puts

ak =
∑

p∈R(Tk)

p , bk =
∑

q∈C(Tk)

sgn(q)q , ck = bkak ,

where the product and sums are taken in the group ring C[Sn]. The ck are known as Young symmetrizers.
The Specht module Sν may now be defined as the image of the endomorphism of C[Sn] that is right 
multiplication by ck [3, p. 119]. The Specht module Sν is an irreducible Sn module of dimension

fν = n!(n− 2k + 1)
k!(n− k + 1)! =

(
n
k

)
−

(
n

k−1
)

[4, Exercise 2.5.4], [3, p. 88]. The Sν for distinct ν’s are non-isomorphic.

Proposition 1 (Young’s rule). [3, p. 92], [4, Thm. 3.3.1, Exercise 3.3.5]. Let 0 ≤ m ≤ �n/2�. Then

M (n−m,m) ∼=
m⊕

k=0

S(n−k,k). �

3. Schur’s lemma and eigenvalues

3.1. Diagonalizing

Let 0 ≤ m ≤ �n/2�. Choose a basis d = d1, · · · , d(n
m) of M (n−m,m) which is the union of bases of the 

m + 1 irreducible submodules. Then the basis d diagonalizes all intertwining maps M (n−m,m) → M (n−m,m)

simultaneously, by Schur’s Lemma. In particular, B(n−m,m) transforms to a diagonal matrix D with linear 
combinations of the bi on the diagonal. As recalled after Lemma 5 below, the di may be chosen in the 
Q-span of the standard basis. Then B(n−m,m) actually transforms to a diagonal matrix D with Q-linear 
combinations of the bi on the diagonal. If one specializes bi = 1 and puts the other bj equal to zero, then the 
eigenvalues become algebraic integers because they are roots of the characteristic polynomial of a matrix 
with integer entries. We have proved:

Proposition 2. The matrix B(n−m,m) has the properties:

• The eigenspaces are independent of a (generic) choice of b0, · · · bm,
• The eigenvalues are Z-linear combinations of b0, · · · bm. �

3.2. Mapping Specht modules to a subset representation

Let Ω be the last element of Cn
m, that is, Ω = �n − m + 1, n�, the set of integers in [n −m + 1, n]. We 

define an Sn-linear map π : C[Sn] → M (n−m,m) by

π(p) = p(Ω).
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Fig. 3. Positions of V and W in Young diagram of shape (n − k, k).

Our strategy is now as follows. We know already the eigenspaces of B = B(n−m,m) and want to compute 
eigenvalues. Below we take the eigenvector π(ck) and compare it with its image Bπ(ck). It is sufficient to 
consider only one of the coordinates, in fact the Ω coordinate will do. We will also refer to the Ω coordinate 
as the last coordinate.

Note that ck is a double sum of signed products ±qp. We first look at the effect of π on each term.

Let 0 ≤ k ≤ m. We will focus on the sets Ω ∩ π(qp), where p ∈ R(Tk), q ∈ C(Tk). Notice that p, q permute 
the elements of �1, n�, not the boxes in a tableau. Nevertheless a diagram-figure makes it easier to follow the 
actions of p and q. See Fig. 3. We write Ω = Ω1∪Ω2, where Ω1 = �n −m +1, n −k� and Ω2 = �n −k+1, n�.

We put

V = { i | q(i) �= i ≤ k } and (1)

W = { i ∈ Ω | p(i) /∈ Ω ∪ V } ⊆ Ω1. (2)

Notice that sgn(q) = (−1)#V , where #X denotes the cardinality of a set X.

Lemma 2. With these q, p, V , W , the cardinality of Ω ∩ π(qp) equals m − #V − #W . �
Lemma 3. Given V ⊆ �1, k�, there is a unique q ∈ C(Tk) such that equation (1) holds. �
Lemma 4. Given V ⊆ �1, k�, W ⊆ Ω1, there are

(
n−m− #V

#W

)
(#W )!

(
m− k + #V

m− k − #W

)
(m− k − #W )!k!(n−m)!

elements p in R(Tk) such that equation (2) holds.

Proof. There are 
(
n−m−#V

#W

)
(#W )! possibilities for the restriction of p to W . There are 

(
m−k+#V
m−k−#W

)
(m −k−

#W )! possibilities for the restriction of p to { i ∈ Ω1\W }. Given both restrictions of p there are still k!
possibilities for the restriction to Ω2 and then (n −m)! possibilities for the restriction to the remainder. �
Lemma 5. The last coordinate of π(ck) is (m − k)!k!(n −m)!.

Proof. We must take V and W empty. �
In particular, the last coordinate of π(ck) is nonzero. This means that π maps S(n−k,k) isomorphically 

into M (n−m,m). By Schur’s Lemma π(ck) is an eigenvector of our universal intertwining matrix B(n−m,m). 
Notice that the Sn orbits of the π(ck), k = 0, · · · , m, together span all of M (n−m,m), because M (n−m,m)

is the sum of the images of the S(n−k,k) (Proposition 1). So we may assume our diagonalizing basis d
is contained in the union of these orbits. Then the di are Q-linear combinations of the standard ba-
sis.
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Lemma 6. The last coordinate of B(n−m,m)π(ck) is

k∑
v=0

m−k∑
w=0

(−1)v
(
k

v

)(
m− k

w

)(
n−m− v

w

)
w!

(
m− k + v

m− k − w

)
(m− k − w)!k!(n−m)!bm−v−w.

Proof. Multiply the last row of the matrix B(n−m,m) by π(ck). The result is the sum over all choices of 
V ⊆ �1, k�, W ⊆ Ω1, where v = #V and w = #W . �
Theorem 1. The eigenvalue associated with the eigenvector π(ck) of Bn−m,m is

λk =
k∑

j=0

m−k∑
p=0

(−1)k−j

(
k

j

)(
m− j

p

)(
n−m− k + j

m− k − p

)
bj+p

and its multiplicity is f (n−k,k) = n!(n−2k+1)
k!(n−k+1)! .

Proof. Divide the last coordinate of B(n−m,m)π(ck) by the last coordinate of π(ck). Then rewrite, using the 
substitutions v �→ k − j, w �→ m − k − p. �
Example 1. B3,3 has eigenvalues:

• b0 + 9b1 + 9b2 + b3 with multiplicity 1,
• −b0 − 3b1 + 3b2 + b3 with multiplicity 5,
• b0 − b1 − b2 + b3 with multiplicity 9,
• −b0 + 3b1 − 3b2 + b3 with multiplicity 5.

3.3. Eberlein polynomials

The Eberlein polynomial Ek is defined [1, (4.33)] as

Ek(u) =
k∑

j=0
(−1)k−j

(
m− j

k − j

)(
m− u

j

)(
n−m + j − u

j

)
,

where 0 ≤ k ≤ m ≤ �n/2� as above. It is of degree k in the variable u(n + 1 − u).
There are several more descriptions of Ek in [2]. By comparing Theorem 1 with [1, Thm 4.6] we now get:

Corollary 1. With k, m, n as above, one has

Et(k) =
k∑

j=0
(−1)k−j

(
k

j

)(
m− j

m− t− j

)(
n−m− k + j

n−m− t

)

for 0 ≤ t ≤ m.

Proof. By [1, Thm 4.6] one may view Et(k) as the coefficient of bm−t in λk of our Theorem 1. �
3.4. The Eisenbud-Levine-Khimshiashvili index computation

We now turn to the problem that motivated the present work.
Recall that (−1)!! = 0!! = 1 and n!! = n((n − 2)!!) for n ≥ 1.
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Proposition 3. ([6, Prop. 4]) Substitute

bi = (−1)i (2m− 2i− 1)!!(2i)!!
(2m− 1)!!

into Bm,m. The eigenvalues are

λk = (−1)m 2m + 1
2m− 2k + 1

for 0 ≤ k ≤ m, with multiplicity f (2m−k,k) = (2m)!(2m−2k+1)
k!(2m−k+1)! .

Proof. Plugging these values of bi into the formula in Theorem 1, one ends up with a multisum with a com-
plicated hypergeometric summand. We need to evaluate this multisum. Numerical experiments suggested 
the answer. We now use the computer algebra package Multisum [7] that aims to give hints for proving a 
guessed answer. The appendix to [6] gives further details. Or see the Mathematica notebook that we attach 
to the arXiv-version of this paper. The book [5] describes some computer algebra in the background. �
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