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Abstract: Recently, bioinspired cell-derived nanovesicles (CDNs) have gained much interest in the
field of nanomedicine due to the preservation of biomolecular structure characteristics derived from
their parent cells, which impart CDNs with unique properties in terms of binding and uptake by
target cells and intrinsic biological activities. Although the production of CDNs can be easily and
reproducibly achieved with any kind of cell culture, application of CDNs for therapeutic purposes
has been greatly hampered by their physical and chemical instability during long-term storage in
aqueous dispersion. In the present study, we conceived a lyophilization approach that would preserve
critical characteristics regarding stability (vesicles’ size and protein content), structural integrity,
and biological activity of CDNs for enabling long-term storage in freeze-dried form. Compared to
the lyoprotectant sucrose, trehalose-lyoprotected CDNs showed significantly higher glass transition
temperature and lower residual moisture content. As assessed by ATR-FTIR and far-UV circular
dichroism, lyophilization in the presence of the lyoprotectant effectively maintained the secondary
structure of cellular proteins. After reconstitution, lyoprotected CDNs were efficiently associated
with HeLa cells, CT26 cells, and bone marrow-derived macrophages at a rate comparable to the
freshly prepared CDNs. In vivo, both lyoprotected and freshly prepared CDNs, for the first time
ever reported, targeted the injured heart, and exerted intrinsic cardioprotective effects within 24 h,
attributable to the antioxidant capacity of CDNs in a myocardial ischemia/reperfusion injury animal
model. Taken together, these results pave the way for further development of CDNs as cell-based
therapeutics stabilized by lyophilization that enabled long-term storage while preserving their
activity.

Keywords: cell-derived nanovesicles; exosome mimetics; bionanotechnology; lyophilization; tre-
halose; cardioprotection
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1. Introduction

In the field of nanomedicine, nanovesicles derived from cells of various origin have
been explored for their potential as drug delivery systems [1,2], diagnostic probes [3],
and cell-based therapeutics (i.e., with intrinsic pharmacological effects) [4–7]. The advan-
tages of these naturally occurring vesicles (e.g., extracellular vesicles like exosomes) over
their conventional counterparts (e.g., liposomes) include a lowered immunogenicity and
innate targeting abilities, enabling them to be recognized and efficiently internalized by
target cells [8–10].

Cell-derived nanovesicles (CDNs) represent a new class of cell-based vesicles obtained
from subjecting cells to high shear forces using extrusion through sequential filter mem-
branes of various sizes [11]. CDNs are lipid bilayer vesicles smaller than 200 nm in size,
and possess—at least partly—the biological identity of the parent cells, i.e., they contain
cell membrane proteins and lipids, metabolic enzymes, mRNA, and miRNA molecules
originating from their parent cells [11,12]. One major advantage of the use of CDNs as
compared to naturally secreted exosomes is a much higher production yield (in terms of
protein content) and shorter processing time [11,13]. CDNs can be prepared from any type
of cell using simple, scalable, and cost-effective production processes [11,13].

Despite the remarkable potential of CDNs as “exosome mimetics” in biomedical
research, translation into clinical practice is still far away. From the pharmaceutical stand-
point, the main drawbacks include limited physical stability (occurrence of denaturation,
aggregation, and/or fusion) and chemical degradation (occurrence of hydrolysis, deami-
dation, and/or lipid oxidation) during long-term storage in the hydrated state (i.e., as an
aqueous dispersion). In addition, there is still very limited knowledge of the in vivo fate of
these nanovesicles upon administration as well as the factors which determine their biolog-
ical behavior. Following the recommendations of the International Society for Extracellular
Vesicles (ISEV) [14], cell-derived vesicles, including CDNs, must be stored at −80 ◦C to
prevent the just-mentioned instability problems.

Nevertheless, Lorincz et al. reported that vesicle number and antibacterial activity of
extracellular vesicles derived from human neutrophilic granulocytes significantly decreased
during 28 days of storage at −80 ◦C [15]. Likewise, Maroto et al. reported substantial
changes in the morphology of exosomes after 4 days of storage at −80 ◦C [16]. These studies
clearly indicate that there is a compelling need to optimize the storage conditions for
extracellular vesicles, including CDNs.

Lyophilization is an attractive approach to preserve the integrity of complex biological
structures during long-term storage [17]. A phase transition of water from the frozen
solid into the gaseous phase is achieved by evacuation of the drying chamber at reduced
temperature. The primary drying or sublimation step is followed by secondary drying
at elevated temperatures to support the desorption of water from the material surface.
Thereby, residual moisture is reduced to 0.05 g water per g of dry powder sample [18].
Lyophilization has been extensively used to preserve the stability of nanosized conventional
drug carriers including liposomes [19–21], lipid-based nanoparticles [22,23], and albumin-
based nanoparticles [24]. This process has also been successfully employed to preserve the
structure of biological materials such as DNA [18], RNA [17], and plasma [25].

However, what remains to be elucidated is whether lyophilization affects either the
structural and/or functional properties of nanovesicles, as lyophilization is known to be ac-
companied by substantial mechanical stress during the freezing and drying processes [20],
resulting in drastic changes in sample hydration level and pressure conditions [18]. Non-
reducing disaccharides such as sucrose and trehalose have been extensively used to protect
various biomolecules against the stresses generated during lyophilization via vitrification
and/or water replacement hypotheses [26–28]. Hence, we hypothesized that lyophiliza-
tion of CDNs in the presence of lyoprotectants such as non-reducing disaccharides could
enhance the stability of CDNs by preserving their biomolecules, vesicular structure, and bi-
ological activity.
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Therefore, the aim of this study was to assess the effect of the lyophilization process
on the biomolecular structure properties of CDNs, as well as on their morphology and
biological activity. Towards this goal, CDNs were produced from U937 monocytic cells
as the CDNs from these immune cells were reported to have intrinsic targeting capability
towards inflammation [29–31]. Moreover, U937 monocytic cell-derived exosomes were
reported to carry several antioxidant enzymes (AOEs, namely SOD1, SOD2, catalase,
GSTK1, and PRDX6) inherited from parent cells [12]. This suggests that CDNs from
U937 monocytic cells should possess similar intrinsic activity (i.e., antioxidant capacity).
By comprehensive in vitro and in vivo assays, we demonstrated that the biomolecular
structures, intrinsic targeting capability, and biological activities of CDNs have been well
preserved by lyophilization in the presence of an optimal concentration of trehalose.

2. Materials and Methods
2.1. Cells and Materials

U937 monocytic cells and CT26 mouse carcinoma cells were cultured in Roswell Park
Memorial Institute (RPMI) 1640 medium supplemented with 10% fetal bovine serum (FBS).
HeLa cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM) supplemented
with 10% FBS. Bone marrow-derived macrophages (BMDM) were obtained as previously
described [32]. In brief, collected mouse bone marrow was filtered through a 0.45 µm
filter and cultured in BMDM medium (80% DMEM and 20% FBS) supplemented with
30% L929 condition medium for 7 days to obtain BMDM. Spin cups pre-fitted with a
10-µm membrane filter were purchased from ThermoScientific, and 8 µm polycarbonate
membrane was purchased from Merck Millipore, Singapore. Sephadex G-50 size exclusion
gel, sucrose (molecular biology grade, ≥99.5% purity) and D-(+)-trehalose dihydrate
(bioreagent grade, ≥99.0% purity) were purchased from Sigma–Aldrich, Singapore.

2.2. Production of CDNs from U937 Cells

CDNs were produced through a cell shearing approach using a spin cup as described
by Goh et al. [11]. Briefly, 2 × 107/mL U937 cells in 1× phosphate-buffered saline (PBS)
were transferred to a spin cup pre-fitted with a 10-µm membrane filter and centrifuged
twice at 14,000× g for 10 min at 4 ◦C. The flow-through was then transferred to another
spin cup fitted with an 8-µm polycarbonate membrane and centrifuged twice at 14,000× g
for 10 min at 4 ◦C. The CDNs dispersions were purified through Sephadex G-50 column
equilibrated with PBS, whereby fractions third and fourth (containing 500 µL each) were
collected and used for further experiments.

2.3. Characterization of CDNs

The hydrodynamic diameter and zeta potential of the CDNs were measured using
the dynamic light scattering (DLS) technique and by determining the electrophoretic
mobility, respectively (Malvern, Nano Series, Nano-ZS90). Concentrations of CDNs were
determined using nanoparticle tracking analysis (Nanosight, NS300, Malvern instruments)
at a wavelength of 405 nm. Protein concentration (expressed in µg/mL) was measured
using bicinchoninic acid (BCA) assay (PierceTM BCA protein assay kit, ThermoScientific) in
accordance with the supplier’s protocol, using bovine serum albumin (BSA) as a standard.

2.4. Lyophilization of CDNs

Sucrose or trehalose was added as lyoprotectant to the freshly prepared CDNs at
varying sugar-to-protein ratios, with or without polysorbate 80, into 2-mL lyophilization
vials. The concentrations of lyoprotectant and the ratios are summarized in Table 1. Samples
were frozen at −80 ◦C for 8 h and were lyophilized using a bench-top manifold freeze dryer
(FreeZone, Labconco) for 48 h at the vacuum pressure less than 0.1 mbar and condenser
temperature below −50 ◦C. No secondary drying was performed. Lyophilized CDNs were
reconstituted to their original volume with milli-Q water followed by gentle swirling for a
few seconds before use.
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Table 1. Effect of lyoprotectant type and amount on physicochemical properties of CDNs after lyophilization. Hydrodynamic
diameter, zeta potential, and protein concentration of lyophilized CDNs were determined after reconstitution. Results
shown are mean ± SD of three independent experiments. a p < 0.001, b p < 0.01, c p < 0.001 compared with fresh CDNs
before lyophilization.

Lyophilization Conditions for CDNs Hydrodynamic
Diameter (nm)

Zeta Potential
(mV)

Protein Concentration
(µg/mL)

% Protein
Loss

CDNs before lyophilization 124.80 ± 8.43 −7.04 ± 0.8 538.92 ± 6.12 —-

Non-lyoprotected CDNs (W) 394.93 ± 30.92 a −8.45 ± 2.5 460.03 ± 4.49 c 14.6

Sucrose:CDNs protein (weight) (100:1) 330.27 ± 27.27 a −8.28 ± 1.5 503.37 ± 6.32 c 7.7

Sucrose:CDNs protein:polysorbate 80
(50:1:0.2) 212.93 ± 24.60 a −6.67 ± 1.2 510.34 ± 10.69 c 5.6

Sucrose:CDNs protein:polysorbate 80
(100:1:0.2) (S1) 147.77 ± 10.14 −7.86 ± 2.9 518.55 ± 2.94 b 4.0

Sucrose:CDNs protein:polysorbate 80
(200:1:0.2) 252.83 ± 5.93 a −9.36 ± 1.7 494.85 ± 2.80 c 8.5

Trehalose:CDNs protein (100:1) 316.10 ± 11.12 a −7.82 ± 1.6 508.92 ± 7.40 c 6.0

Trehalose:CDNs protein:polysorbate 80
(50:1:0.2) 220.80 ± 13.52 a −7.04 ± 2.1 507.70 ± 2.26 c 6.5

Trehalose:CDNs protein:polysorbate 80
(100:1:0.2) (T1) 143.9 ± 5.39 −8.25 ± 2.0 528.45 ± 3.18 2.0

Trehalose:CDNs protein:polysorbate 80
(200:1:0.2) 226.10 ± 9.01 a −6.68 ± 2.2 506.73 ± 3.53 c 6.1

Heated CDNs (H) 680.43 ± 35.66 a −10.9 ±2.3 371.77 ± 3.87 c 36.5

2.5. Residual Moisture Content Determination

Residual moisture content was determined by the gravimetric method on a dry weight
basis (g H2O per g of dry weight), by comparing with the initial sample weight (IW;
g measured immediately after lyophilization) with dry weight (DW; g measured after
heating in an oven at 80 ◦C for 12 h) [18]. Residual moisture content was determined using
the following equation:

Residual moisture content (g H2O per g of dry weight) = (IW − DW)/Dry powder

2.6. Determination of Glass Transition Temperature

To determine the glass transition temperature (Tg), 5–10 mg of lyophilized CDNs was
placed into a 40-µL aluminum pan, sealed hermetically, and placed into the sample holding
chamber of the differential scanning calorimetry (DSC) instrument (Mettler Toledo DSC
1 STARe system) supplied with nitrogen flow at 50 mL/min. Simultaneously, an empty
pan was used as a reference sample. The sample was firstly heated up from −20 to 120 ◦C
to obtain a uniform sample and then cooled back to −20 ◦C. Tg was determined from the
second heating scan from −20 to 150 ◦C, using a rate of 10 ◦C/min. A DSC thermogram
between heat flow (w/g) vs. temperature (◦C) was plotted and Tg was determined at the
point of intersection by drawing the tangent line to the thermogram.

2.7. ATR-FTIR Spectroscopy

Fresh CDNs, as well as lyophilized samples (with and without lyoprotectant), were pre-
pared and reconstituted with D2O to avoid the interference from -OH peak and phosphate
peak from the buffer. Then the 10-µL sample was placed in a sample holder of attenuated
total reflection Fourier transform (ATR-FTIR) spectrometer (Perkin Elmer, Spectrum 100)
and scanned between 4000 to 650 cm−1 with 13 smoothing factors; spectra were averaged
over 8 scans. A background scan of the clean sample holder was automatically subtracted,
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and the resulting spectra were analyzed using the spectrum software. The overall simi-
larity between two spectra in terms of correlation coefficient (r) was calculated using the
following equation [33]:

r =
ΣXiYi√
ΣX2

i ΣY2
i

where Xi and Yi represent the spectral absorbance values of the reference (fresh CDNs)
and sample (lyophilized CDNs) spectra at frequency position i. For identical spectra, the
r value is 1.0.

2.8. Far-UV CD Spectra Analysis

Secondary structure conformation and protein content associated with CDNs and
lyophilized samples with and without lyoprotectant were determined using far-ultraviolet
circular dichroism (Far-UV CD) spectrometry. Then 180 µL of the sample was probed
using a quartz cell of 1 mm path-length in the CD spectrophotometer (Jasco J-1100 CD
spectrometer) in the range of 190–260 nm. Detection was performed using detector PM-
539 at a data interval of 0.1 nm, with a scanning speed of 100 nm/min at 20 ◦C. Spectra
were collected from an average of 3 scans. A blank run of PBS was performed before
sample analysis.

2.9. Cellular Association Study

All the samples used for cellular association and confocal microscopy analysis were
labeled with Cyanine3 N-hydroxysuccinimide (Cy3-NHS) monoester as per the supplier’s
recommendations. Lyophilized CDNs (S1, T1, and W) were labeled after redispersion in
milli-q water, which maintained the same salt properties and pH of the PBS buffer before
lyophilization. Labeled samples, which had a size of about 200 nm and a zeta potential
of −7.37 mV, were dialyzed twice in dialysis cups (10 K MWCO; ThermoFisher Scientific)
overnight in PBS.

For in vitro cellular uptake, 2.5 × 105 HeLa or CT26 cells per well were seeded in
6-well plates, or 1 × 106 BMDM per well were seeded in 12-well plates, incubated at 37 ◦C,
5% CO2. After 24 h, cells were treated with Cy3-labeled samples for 1 and 4 h. Then,
cells were trypsinized and centrifuged at 450× g for 10 min. Cells were re-suspended in
500 µL PBS for analysis by BD LSR Fortessa flow cytometer at PE channel. Non-treated
cells were used as control. In total, 10,000 events were analyzed, and data were processed
using Flowjo software (Version 10.6, Ashland, Oregon, USA).

2.10. Confocal Microscopy

For confocal microscopy, 2.5 × 105 HeLa cells were grown in a glass-bottom Petri
dish in 2 mL of DMEM supplemented with 10% FBS for 24 h at 37 ◦C, 5% CO2. Then,
cells were treated with Cy3-labeled samples for 6 h. Washed cells were stained with
Hoechst 33,342 dye for 25 min to visualize nuclei and with CellMask deep red for 10 min
to visualize the cell membrane. Imaging was performed using a laser scanning confocal
microscope (FluoView, FV1000 Olympus) and images were processed using FluoView
FV10ASW Version 4.2a software.

2.11. Measurement of Antioxidant Capacity

The total antioxidant capacity of CDNs, as well as lyophilized samples, was measured
by total antioxidant capacity (TAC) colorimetric assay kit (BioVision, Inc., Milpitas, CA,
USA) using Trolox as a reference standard, in accordance with the manufacturer’s protocol.
Antioxidant enzymes (AOEs) superoxide dismutase (SOD), glutathione S-transferase (GST),
and catalase present in the CDNs, as well as lyophilized samples, were measured using the
assay kit (ab65354, ab65326, ab83464, respectively) as per the manufacturer’s protocol.
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2.12. Long-Term Stability Study

Long-term stability of lyophilized CDNs was investigated in relation to the tem-
perature of storage. CDNs normalized to a protein concentration of 530 µg/mL were
lyophilized with sucrose (S1) or trehalose (T1), flushed with nitrogen gas, and kept for
stability studies at 4 or 25 ◦C. Storage temperature was determined based on Tg values.
At different time intervals (3 and 6 months), an aliquot was reconstituted and dispersed
gently by swirling. The hydrodynamic diameter, protein concentrations, and total antiox-
idant capacity of CDNs were measured and the cellular uptake by HeLa and CT26 cells
were analyzed by flow cytometry.

2.13. Evaluation of Cardioprotective Effect of CDNs

The cardioprotective effect of CDNs, as well as lyophilized CDNs in the presence of
trehalose (T1), was examined in a mouse model of myocardial ischemia/reperfusion (I/R)
injury as described previously [34,35]. In brief, male C57BL/6 mice (25–30 g) were subjected
to left descending coronary artery ligation with 8–0 suture (Ethilon) for 30 min followed
by removal of the ligature to allow myocardial reperfusion. CDNs or T1 (normalized to
40 µg of protein/100 µL) per mouse were injected intravenously 5 min before reperfusion,
while 100 µL saline was injected to the control mice. After 24 h of reperfusion, mice were
terminated and the heart tissue was used for 2,3,5-triphenyltetrazolium chloride (TTC)
staining to determine the infarct area (IA) as a percentage of area at risk (AAR). All surgical
procedures were approved by the National University Singapore Institutional Animal Care
and Use Committee (IACUC) (approved protocol number R18-1452) and conformed to the
guidelines on the care and use of animals for scientific purposes (NACLAR, Singapore,
2004) and the Guide for the Care and Use of Laboratory Animals published by the US
National Institutes of Health (NIIH Publication, 8th Edition, 2011).

2.14. Statistical Analysis

Statistical analyses were performed using GraphPad PRISM 5 (version 5.01). Compar-
isons between multiple samples were performed by one-way ANOVA using Bonferroni
post hoc test, where p < 0.05 was considered significant.

3. Results and Discussion
3.1. Preparation and Characterization of CDNs

The method for preparing CDNs from U937 monocytic cells is presented in Scheme 1.
The vesicles exhibited a mean size of approximately 124.8 ± 8.4 nm (Table 1), displaying a
spherical structure as indicated by the transmission electron micrographs (Supplementary
Figure S1A). CDNs had a zeta potential of around −7 mV, the protein concentration of
~538 µg/mL, and concentration of ~3 × 1010 vesicles per mL. In our previous study,
we demonstrated that CDNs mimicked exosomes derived from U937 cells in size, shape,
and lipid composition, and expressed key marker exosomal proteins such as CD9, Alix,
and TSG 101 [11]. This similarity with exosomes would suggest that functional aspects,
such as specific binding and cellular uptake by target cells, are also preserved. This paper
aimed to assess whether lyophilization is possible without impairing these structural and
functional features.

3.2. Impact of Lyoprotectant on the Lyophilization of CDNs

To maintain vesicle structure and integrity of membrane proteins of CDNs as prop-
erties that enable recognition and subsequent internalization of CDNs by target cells, tre-
halose or sucrose were added as lyoprotectants during the lyophilization process. The cru-
cial role of lyoprotectants for the stabilization of CDNs during the lyophilization process
was confirmed by an increase in the hydrodynamic diameter in absence of either of the two
disaccharides (from 124.8 ± 8.4 to 394.9 ± 30.9 nm; p < 0.001). During the freeze-drying
process, sugars provide a matrix that inhibits molecular motions and stabilizes molecular
structures by replacing the solvent molecules as binding partners.
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Scheme 1. Schematic depiction of CDN production. U937 cells were passed twice through a spin cup fitted with 10-
and 8-µm polycarbonate membranes by microcentrifugation (14,000× g) and CDNs were purified using size-exclusion
chromatography. CDNs were subsequently lyophilized in the presence of various lyoprotectants to result in a uniform
cake/powder.

Non-reducing disaccharides have been reported to be suitable excipients [18,20,28].
The matrix effect, or vitrification, is based on the ability of the lyoprotectant (mainly sugar)
to form an amorphous, highly viscous glassy matrix in which particulate structures are
embedded (Supplementary Figure S2). It results in a significant reduction in degradation
reaction kinetics [36]. On the other hand, the replacement of bound water molecules was
expected to lead to a thermodynamic stabilization of for example the CDNs’ membrane pro-
teins due to the interaction of hydroxyl groups of the sugars with proteins and phospholipid
headgroups. By replacing hydrogen bonds between water molecules and proteins, as well
as between water molecules and phospholipid headgroups [20,28], the proteins’ native con-
formation can potentially be preserved during lyophilization (Supplementary Figure S3).

Without the lyoprotectant, proteins and other CDN components likely aggregate
during lyophilization, as suggested by the increased size in our experiment. In addition,
the total protein amount was significantly reduced (by 14.6%; p < 0.001) upon lyophilization
when compared to the freshly prepared CDNs (Table 1). This indicates that the shear forces
applied during lyophilization can induce a partial degradation of the proteins present in
the CDNs. Even though degraded proteins might still provide a signal at the BCA protein
quantification assay (thus suggesting an underestimation of the actual protein degradation),
the heated samples were also associated with a change in proteins’ secondary structure.
Noteworthy, a loss of protein activity is known to occur and has been extensively reported
when samples were lyophilized in absence of a lyoprotectant [37–40].

Upon reconstitution, non-lyoprotected CDNs were not completely re-dispersible in
milli-Q water and exhibited visible aggregation. These results suggest that the lyophiliza-
tion process without lyoprotectant leads to considerable damage to the CDNs.

Upon addition of the non-reducing disaccharides sucrose or trehalose, aqueous dis-
persions of CDNs were lyophilized over 48 h at a lyoprotectant-to-CDNs’ protein ratio of
100:1 (w/w). Reconstituted CDNs, lyophilized either with sucrose or trehalose, however,
showed a significant (p < 0.001) increase in the hydrodynamic diameter and a significant
reduction in protein concentration as compared to CDNs before lyophilization (p < 0.001)
(Table 1). These changes indicate that the lyoprotectants alone could not prevent vesicles
from aggregation or fusion through the freezing and drying steps of the lyophilization.

It has been reported that non-ionic surfactants (e.g., polysorbate 80 or polysorbate 20)
in the presence of lyoprotectant can preserve the biological activity of protein-based ther-
apeutics [41] and can also provide steric stabilization to nanoparticles [42,43]. Therefore,
in this study, the non-reducing disaccharides sucrose or trehalose were added in combina-
tion with polysorbate 80. Interestingly, even at a very low concentration (0.01% w/v) of
polysorbate 80 added, CDNs could maintain the hydrodynamic diameter below 200 nm



Pharmaceutics 2021, 13, 1052 8 of 19

(Table 1). This may be due to the protecting effects of non-ionic surfactants such as polysor-
bate 80 against interfacial stresses that induced aggregation of CDNs during lyophilization.
Moreover, binding of the hydrophobic segment of polysorbate 80 to the hydrophobic
region of CDNs’ proteins may prevent protein self-association during lyophilization and
storage [44,45]. Another potential mechanism is that polysorbate 80 preferentially coats
exposed hydrophobic segments and thereby prevents the proteins from unfolding at the
surface, thus maintaining their functional properties [44]. To discern the protective contri-
bution of polysorbate 80 from one of the lyoprotectant disaccharides, we further assessed
the effect of polysorbate 80 on the lyophilization of CDNs in the absence of lyoprotec-
tant. We observed that the mean hydrodynamic diameter of CDNs increased significantly
(334 ± 11.1 nm) and that the protein content was reduced by 15.9%, clearly indicating
that the combination of lyoprotectant and non-ionic surfactant is essential to achieve the
observed protective effects during lyophilization.

3.3. Impact of Lyoprotectant Concentration on the Lyophilization of CDNs

As a next step, we investigated the influence of lyoprotectant concentrations at three
different lyoprotectant/CDNs’ protein ratios (50:1, 100:1, and 200:1) in the presence of
polysorbate 80 (0.01% w/v) (Table 1). Compared to the freshly prepared CDNs (before
lyophilization), both sucrose and trehalose in the previously used ratio of 100:1:0.2 (lyopro-
tectant:CDNs protein:polysorbate 80) preserved the stability of CDNs, as evidenced by
comparable hydrodynamic diameter and zeta potential. After lowering the concentration
of each lyoprotectant (lyoprotectant:CDNs protein:polysorbate 80 ratio being 50:1:0.2),
the protective effect on the size was strongly reduced (Table 1). It could be inferred that
those lower concentrations of the lyoprotectant are not sufficient to protect the vesicles and
proteins from destabilization during the freeze-drying. The higher concentration of lyopro-
tectant tested (lyoprotectant:CDNs protein:polysorbate 80 ratio 200:1:0.2) also yielded a
lower degree of lyoprotection (Table 1). This phenomenon could be due to the creation of
enhanced transmembrane osmotic stress known to occur at high concentrations of sugars,
and consequently aggregation of nanovesicles. These findings suggest that too low and
too high concentrations of sugars could diminish the degree of lyoprotection. Among the
factors responsible for vesicle agglomeration upon reconstitution, the surface charge is also
considered one of the prime contributors; hence, the zeta potential was measured before
and after lyophilization of CDNs. As expected, in view of the type of lyoprotectant and
non-ionic surfactant used, we did not observe any significant change in surface charge of
the CDNs after lyophilization (Table 1).

Based on these findings, we considered the ratio 100:1:0.2 of lyoprotectant (sucrose or
trehalose):CDNs’ protein:polysorbate 80 as optimal for lyophilization of CDNs. These for-
mulations were indicated as “sucrose-lyoprotected CDNs” (S1) and “trehalose-lyoprotected”
CDNs (T1), respectively, while CDNs lyophilized without lyoprotectant were referred to as
“non-lyoprotected CDNs” (W) (Table 1).

Moreover, to better understand the effect of mechanical stress on the biomolecular
structure and biological activities of CDNs, a heat-denatured sample (negative control)
was prepared by heating CDNs at 90 ºC for 30 min. This sample was indicated as “heated
CDNs” (H). As a result of heating, the mean hydrodynamic diameter and protein concen-
tration were observed to be around 680 nm and 371.77 µg/mL, respectively, indicating a
significant (p < 0.001) increment in size and reduction in protein concentration (by 36.5%)
after the heating process (Table 1, H). This heated dispersion was used as a control to assess
whether the observed lyophilization-induced changes regarding vesicle size and decrease
in protein content of CDNs are associated with lower cellular interaction and compromised
biological activity.

Under transmission electron microscopy, CDNs lyophilized in the presence of lyopro-
tectant and polysorbate 80 appeared as well-preserved, spherical nanovesicles, suggesting
that the morphology remained unaffected by the process (Supplementary Figure S1A).
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In addition, through field emission scanning electron microscopy, images of the same CDN
samples showed an amorphous and porous cake (Supplementary Figure S1B).

Noteworthy, we did not observe any significant change in the concentration of CDNs
(i.e., number of vesicles per mL) induced by lyophilization for sucrose-lyoprotected CDNs
(S1) and trehalose-lyoprotected CDNs (T1) samples in comparison with fresh samples, indi-
cating that CDNs’ integrity was maintained through the process (Supplementary Figure S4).

3.4. Residual Moisture Content and Glass Transition Temperature (Tg) of Lyophilized CDNs

Low residual moisture content is highly desirable for lyophilized products. Wa-
ter molecules can act as a plasticizer and decrease the Tg of the lyophilized product.
In addition, high residual moisture accelerates microbial growth and promotes the agglom-
eration of particles, and increases chemical molecular instability due to deamidation and
oxidation reactions during the time of storage [28].

The non-lyoprotected freeze-dried CDN powder (W) was characterized by a higher
residual moisture content (0.1 ± 0.025 g H2O per g of dry powder) as compared to sucrose-
lyoprotected CDNs (S1) (0.04 ± 0.015 g H2O per g dry powder) and trehalose-lyoprotected
CDNs (T1) (0.02 ± 0.003 g H2O per g dry powder) (Figure 1A). Residual moisture con-
tent in the sucrose- and trehalose-lyoprotected CDNs was within an acceptable range for
lyophilized biological products, i.e., less than 0.05 g H2O per g dry power [18]. We spec-
ulate that non-lyoprotected CDNs powders hold more water molecules in between de-
natured proteins, resulting in higher residual moisture content. Sucrose-lyoprotected
CDNs (S1) showed higher residual moisture content than trehalose-lyoprotected CDNs
(T1) (Figure 1A), possibly due to the higher hygroscopic nature of sucrose as compared to
trehalose [20]. Similar observations were reported for lyophilization of liposomes using
sucrose and trehalose as lyoprotectants [20].

Besides residual moisture content, Tg is also considered as one of the most important
parameters in determining the storage stability of lyophilized biological products [18].
In lyophilized products with storage temperature exceeding the Tg value, a second-order
transition can occur from a rigid solid state to a viscoelastic rubbery state, usually leading to
the collapse of the product [46]. It has been reported that the Tg value inversely correlates
with the residual moisture content [18]. Accordingly, while sucrose-lyoprotected CDNs
(S1) showed higher residual moisture than trehalose-lyoprotected CDNs (T1), T1 showed
higher Tg than S1 (Figure 1C). Given the limitations of this gravimetric analysis, future
studies will include a Karl–Fisher method to confirm the residual moisture. Nonetheless,
as determined by DSC, Tg of the lyophilized CDNs had distinct signals in the sucrose-
lyoprotected CDN (S1) and trehalose-lyoprotected CDN powders (T1), while no signal
was detectable in the non-lyoprotected CDN powder (W) (Figure 1B, C). As we observed
a higher Tg value for trehalose-lyoprotected CDNs (T1, 44.42 ± 2.48 ºC) as compared to
sucrose-lyoprotected CDNs (S1, 22.42 ± 3.69 ºC), we can expect that CDNs lyophilized with
trehalose show better storage stability than those lyophilized with sucrose. Taken together,
the demonstrated low residual moisture content and sufficiently high Tg values point
to the formation of an amorphous glassy matrix (as a confirmation of the vitrification
hypothesis, Supplementary Figure S2) during lyophilization of CDNs occurring with
both lyoprotectants. These findings represent favorable formulation attributes, potentially
enabling the long-term solid-state storage of the lyophilized products below their Tg values.

3.5. Protein Content and Secondary Structure

ATR-FTIR analysis was employed to determine the overall secondary structure of the
proteins present in both freshly prepared CDNs and lyophilized CDNs. This method was
reported for the characterization of multiple proteins in cell membranes [18]. Figure 2A
shows the amide-I and amide-II bands at 1635 and 1530 cm−1, respectively. Amide-I
and amide-II are two major absorbance bands of proteins in the infrared region: amide-I
is mainly associated with C=O stretching vibration and is directly associated with the
backbone conformation of proteins, whereas amide-II results from N-H bending vibration
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and from C-N stretching vibration [33]. Heated (H) and non-lyoprotected (W) CDNs
showed a significant reduction in the absorbance profiles in FTIR spectra as compared with
freshly prepared CDNs, sucrose-lyoprotected CDNs (S1), and trehalose-lyoprotected CDNs
(T1), pointing to denaturation of the proteins present in these CDN. Sucrose-lyoprotected
CDNs and trehalose-lyoprotected CDNs showed no sign of denaturation at amide-I and
amide-II spectral region, indicating the protective nature of sugars during lyophilization
of CDNs.
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lyophilization by gravimetric analysis. (B) Glass transition temperature (Tg) of lyophilized CDNs with sucrose (S1) or
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To reveal more clearly eventual differences among different samples, a correlation
coefficient (r) was calculated and compared with CDNs (Figure 2B). The correlation coeffi-
cient of freshly prepared CDNs was retained to be 1 and, once lyoprotected with sucrose
(S1) and trehalose (T1), the r-value was still optimal (r = 0.992 and 0.995, respectively),
suggesting that FTIR spectra of S1 and T1 highly correlated with FTIR spectra of fresh
CDNs. On the other hand, the r values for non-lyoprotected CDNs (W) and heated CDNs
(H) were determined to be 0.814 and 0.782, respectively. This indicates that the surface
membrane proteins of the CDNs were at least partially denatured during lyophilization
without lyoprotectant (W) and during heating (H). Our results are in agreement with the
study reported by Zhang et al. on lyophilization of mammalian cells using trehalose as a
lyoprotectant [18].
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from three independent experiments (n = 3).

We also determined the proteins’ secondary structure and contents of freshly prepared
as well as lyophilized CDNs using a Far-UV CD spectrophotometer. The results from
far-UV CD analysis strongly corroborate the data from ATR-FTIR spectroscopy. Sucrose-
lyoprotected CDNs and trehalose-lyoprotected CDNs showed similar CD intensity when
compared with freshly prepared CDNs. However, heated CDNs and non-lyoprotected
CDNs showed significantly lower CD intensity as compared with CDNs and lyoprotected
samples, suggesting that the proteins of CDNs were at least partly denatured during heat-
ing and lyophilization without lyoprotectant (Supplementary Figure S5). Both the FTIR
and CD findings prove that lyoprotectants could protect the overall secondary structure
of the proteins. CDNs are derived from cells and are expected to retain their cell mem-
brane topology during lyophilization to preserve their structure and biological activity.
The structural perturbations induced by heat denaturation and lyophilization without
lyoprotectants may alter these key features of CDNs. Taken together, our results indicate
that sucrose- and trehalose-lyoprotected CDNs likely have similar structural and biological
activity characteristics such as fresh CDNs.

3.6. Cellular Association Study

The intrinsic targeting capability of U937 monocytic cells towards inflammatory and
tumor sites has been well documented [2,29,31]. This phenomenon seems attributable to
certain proteins present on the surface of U937 cells, which act as recognition sites between
these U937 immune cells and inflamed/cancerous tissue [47]. Accordingly, we previously
reported that CDNs derived from U937 cells were preferentially associated with cancer
cells (HeLa) over healthy cells (HEK 293) in a co-culture model [30]. In another study
by Jang et al., the cellular association of U937-derived CDNs with human umbilical vein
endothelial cells was markedly reduced when “counter receptors” present on the surface
of CDNs were removed via trypsinization [2]. The group of Krishnamurthy et al. showed
that the cellular association of PLGA nanoparticles with MCF-7 breast cancer cells was
enhanced by coating them with U937 monocytic cell membranes [31]. These findings point
to the intrinsic targeting ability of U397-CDNs by virtue of inherited membranes from their
parent U937 monocytic cells [31].

In this study, we demonstrated that CDNs were taken up intracellularly and were
not simply confined/adsorbed onto the cellular plasma membranes through confocal
laser scanning microscopy analysis (Supplementary Figure S6), which was performed on
fluorescently labeled U937 cell-derived CDNs, sucrose-lyoprotected CDNs (S1), trehalose-
lyoprotected CDNs (T1), non-lyoprotected CDNs (W), and heat-denatured CDNs (H)
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incubated with cells at different time points. The purpose of this experiment was to assess
the impact of the lyophilization process on the cellular association of CDNs mediated by
their surface proteins. Towards this purpose, HeLa and CT26 cells were selected because
the intrinsic targeting capability of CDNs derived from U937 monocytic cells to these cancer
cells has been demonstrated and compared with conventional nanovesicular systems such
as liposomes [29]. Moreover, BMDM was selected to assess the cellular association of
CDNs with primary immune cells as an additional control for non-cancerous and non-
immortalized cell lines.

As a confirmation of these results, cellular association of Cy3-labeled CDNs [11] by
flow cytometry showed the increment in the number of Cy3-positive cells over time in all
tested cell lines, indicating a time-dependent association of CDNs with cells (Figure 3).
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independent experiments).

In the case of HeLa cells, we observed a 2.6- and 2.9-fold higher association of fresh
CDNs when compared with non-lyoprotected CDNs (W) and heated CDNs (H), respec-
tively, after 1 h incubation. Similar results were obtained after 4 h incubation, with 1.8-fold
and 3.3-fold higher association of fresh CDNs as compared to non-lyoprotected CDNs (W)
and heated CDNs (H), respectively. In contrast, no significant change was shown for the
cellular association of sucrose-lyoprotected CDNs (S1) and trehalose-lyoprotected CDNs
(T1) compared with fresh CDNs at both time points.

In the case of CT26 cells, after 1 h incubation, we did not observe much difference
in the profile between the various CDN types, whereas after 4 h incubation fresh CDNs
showed 2.2- and 1.7-fold higher association than non-lyoprotected CDNs (W) and heated
CDNs (H), respectively, and no significant difference with sucrose-lyoprotected CDNs (S1)
and trehalose-lyoprotected CDNs (T1).
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In the case of BMDM cells, we observed a 3.5- and 9.8-fold higher association of
fresh CDNs when compared with non-lyoprotected CDNs (W) and heated CDNs (H),
respectively, after 1 h incubation. Similarly, 2.1- and 2.7-fold higher association of fresh
CDNs were observed as compared with non-lyoprotected CDNs (W) and heated CDNs
(H), respectively, after 4 h of incubation. In line with the cancer cells results, no significant
change was shown for sucrose-lyoprotected CDNs (S1) and trehalose-lyoprotected CDNs
(T1) compared with fresh CDNs at 1 h incubation. However, remarkably, we observed
a higher association of only the trehalose-lyoprotected CDNs (T1) by BMDM after 4 h
incubation compared to fresh CDNs. One possible explanation for the latter finding is that
trehalose binds to the C-type lectin (Mincle) receptor expressed on BMDM cells and that
may have stimulated cellular uptake [48,49]. Nonetheless, the results obtained with the
BMDM cells also confirm that lyophilization with a suitable lyoprotectant can preserve the
interaction of CDNs with target cells.

3.7. Antioxidant Capacity

As U937 monocytic cell-derived exosomes were reported to carry several antioxidant
enzymes (AOEs, namely SOD1, SOD2, catalase, GSTK1, and PRDX6) inherited from
parent cells [12], we examined if lyophilization affected the antioxidant capacity of CDNs
due to the presence of those antioxidant enzymes derived from U937 cells. Figure 4A
shows that lyophilization of CDNs in the presence of sucrose (S1) and trehalose (T1) well
preserved the total antioxidant capacity of the CDNs when compared with fresh CDNs
(p > 0.05). Lyophilization of CDNs without lyoprotectant (W) and heat-denatured CDNs
(H), however, showed a significant reduction (p < 0.001) of the total antioxidant capacity as
compared with fresh CDNs. AOEs (SOD, GST, and catalase) of the CDNs were preserved
during lyophilization in the presence of lyoprotectant sucrose (S1) and trehalose (T1).
As expected, the SOD activity was significantly (p < 0.001) reduced in heat-denatured
CDNs (H) compared with fresh CDNs (Figure 4B). SOD, GST, and catalase activity were
significantly reduced in case of non-lyoprotected CDNs (W) and heat-denatured CDNs (H)
(Figure 4C,D), with the exception of SOD activity in the case of non-lyoprotected CDNs
(W). Heat denaturation treatment of CDNs (H) exerted a more pronounced detrimental
effect on the antioxidant capacity. These results show that the stress generated during
lyophilization does not necessarily compromise the activity of the antioxidant enzymes
when a proper lyoprotectant is used, combined with polysorbate 80.

3.8. Long-Term Stability of Lyophilized CDNs

Sucrose- and trehalose-lyophilized CDNs were evaluated for their long-term stability
regarding changes in size, total protein content, and total antioxidant capacity at two
different storage temperatures, i.e., 4 and 25 ◦C. Based on their Tg, sucrose-lyoprotected
CDNs were stored at 4 ◦C (S1, Tg 22 ◦C) while trehalose-lyoprotected CDNs were stored at
4 and 25 ◦C (T1, Tg 44 ◦C), for 3 and 6 months. The changes in hydrodynamic diameter,
total protein contents, and total antioxidant capacity of CDNs were insignificant over a
period of 6 months as presented in Figure 5A,B. Moreover, upon reconstitution, the freeze-
dried preparations stored for 6 months exhibited a comparable cellular association profile
in HeLa and CT26 cell cultures than freshly prepared CDNs (Figure 5C). This indicates that
an effective stabilization of the surface was achieved and maintained for at least 6 months.
Taken together, these results provide considerable evidence that our CDNs lyophilized
in the presence of lyoprotectants (sucrose or trehalose) and polysorbate 80 can be stored
over a long time in a dried state without losing vesicle structure and membrane topology.
Furthermore, our results suggest that a cold chain storage condition is not required for
trehalose-lyoprotected CDNs (T1). Our lyophilization protocol may be applied to other
cell-derived vesicles to achieve long-term storage in dry powder form at room temperature.

Based on the Tg value and long-term stability study outcome (at 25 ◦C), trehalose-
lyoprotected CDNs (T1) were considered for further in vivo studies.
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3.9. Preservation of Cardioprotective Effect of CDNs after Lyophilization

Ischemia/reperfusion (I/R) injury, observed during revascularization treatment of
acute myocardial infarction, is defined as an acute interruption in blood flow with sub-
sequent restoration of perfusion, leading to cell death and functional damage of the car-
diomyocytes in that infarcted myocardium [50]. Currently, exosomes of various cell origins
have shown cardioprotective effects against I/R injury [34,51,52]. Given that U937 mono-
cytic CDNs mimic U937-derived exosomes regarding proteins, lipids, and enzymes [11],
we hypothesized that U937 monocytic CDNs, similarly to exosomes, could display car-
dioprotective effects. To test this hypothesis, for the first time reported, we examined if
intravenously administered freshly prepared CDNs could decrease the tissue necrotic area
within the infarcted myocardium, i.e., infarct size as indicated in Figure 6A, in a mouse
model of myocardial I/R injury. As shown in Figure 6B, freshly prepared CDNs from
U937 monocytic cells showed a significant reduction (p < 0.05) in myocardial infarct size
(22.94 ± 2.91%) within 24 h after administration of CDNs, as evidenced by the smaller
percentage of infarct area with respect to the area at risk in CDNs-treated heart than that in
saline control heart (35.29 ± 3.07%). Interestingly, lyophilized CDNs with trehalose (T1)
and polysorbate 80 reduced the infarct size (21.94 ± 4.90%) to the same extent as freshly
prepared CDNs. These results suggest that CDNs, similar to exosomes [34], could exert
cardioprotective effects and that lyophilization of CDNs with trehalose did not compromise
this therapeutic activity.
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Figure 6. Cardioprotective effect of CDNs and trehalose-lyoprotected CDNs (T1). CDNs or saline
were injected to the mice via tail vein 5 min before reperfusion and the infarct size was measured 24 h
after reperfusion. (A) Representative images indicating IA and AAR for saline control, fresh CDNs,
and trehalose-lyoprotected CDN (T1)-treated mice after TTC staining. (B) Infarct size was expressed
as IA/AAR (%). Data represent mean ± SEM, n = 8–10 mice per group, * p < 0.05 compared with
saline control. IA, infarcted area, dead heart tissue in pale; AAR, area at risk, the heart tissue not
stained in blue.
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4. Conclusions

In conclusion, lyoprotectants sucrose and trehalose, in combination with polysor-
bate 80, preserved the physicochemical properties, surface proteins, vesicular integrity,
and biological activities of CDNs regarding cellular interaction during lyophilization.
We have developed an optimal lyoprotectant formulation for lyophilization of CDNs with a
ratio 100:1:0.2 of trehalose:CDNs protein:polysorbate 80. Lyophilized CDNs with trehalose
can be conveniently stored at room temperature for a long period of time (>6 months),
easily reconstituted, and used whenever desired.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/pharmaceutics13071052/s1, Figure S1. Microscopic analysis of CDNs. (A) TEM images of
CDNs before lyophilization (top left), sucrose-lyoprotected CDNs (S1) and trehalose-lyoprotected
CDNs (T1), respectively. Scale bar 100 nm. (B) FESEM images of sucrose-lyoprotected CDNs (S1),
trehalose-lyoprotected CDNs (T1) and non-lyoprotected CDNs (W), scale bar 1 µm. Figure S2.
Schematic representation of vitrification hypothesis during lyophilization, in which protein is em-
bedded into lyoprotectant resulting in the formation of an amorphous highly viscous glassy matrix
characterized by a specific glass transition temperature (Tg). Figure S3. Schematic representation
of water replacement hypothesis during lyophilization and rehydration of CDNs. (A) During hy-
drated state, lipid bilayers of the CDNs are loosely packed due to presence of the embedded water
molecules in the bilayers. (B) Lyophilization without lyoprotectant, where lipid bilayers display
packing defects during freezing and drying. (C) Upon rehydration, bilayers become leaky and
membrane proteins present in the surface are degraded. (D) Lyophilization with lyoprotectant,
in which the water molecules are eventually replaced with lyoprotectant molecules that reduce the
van der Waals interactions between the lipid bilayers in the dry state and maintain the lipid bilayer
packing intact. (E) Upon rehydration, bilayers packing is well protected as well as surface membrane
proteins. Figure S4. Concentration of nanovesicles in freshly prepared CDNs, lyophilized CDNs with
sucrose (S1) and trehalose (T1), lyophilized CDNs without lyoprotectant (W) and heat-denatured
CDNs (H) measured via nanoparticle tracking analysis (NTA). Data represent mean ± SD, n = 3.
Figure S5. Characterization of secondary structure and composition of proteins in CDNs. (A) Far-UV
CD spectral analysis of freshly prepared CDNs, lyophilized CDNs with sucrose (S1) and trehalose
(T1), lyophilized CDNs without lyoprotectant (W) and heat-denatured CDNs (H) within 190–260 nm
wavelength. (B) Quantification of different sec-ondary structures of proteins measured by far-UV
CD spectral analysis. Data represent mean value ± SD determined from three independent experi-
ments (n = 3). Figure S6. Cellular uptake analysed by confocal microscopy. Cy3 labelled samples of
freshly prepared CDNs, lyophilized CDNs with sucrose (S1) and trehalose (T1), lyophilized CDNs
without lyoprotectant (W) and heat-denatured CDNs (H) were incubated with HeLa cells for 6 hours.
Nuclei and cell membrane of HeLa cells were stained with Hoechst 33342 dye and Cellmask green,
respectively. Scale bars represent 20 µm.
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