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ABSTRACT

We study SL(3, R) deformations of a type IIB background based on D5 branes that is

conjectured to be dual to N = 1 SYM. We argue that this deformation of the geometry

correspond to turning on a dipole deformation in the field theory on the D5 branes. We give

evidence that this deformation only affects the KK-sector of the dual field theory and helps

decoupling the KK dynamics from the pure gauge dynamics. Similar deformations of the

geometry that is dual to N = 2 SYM are studied. Finally, we also study a deformation that

leaves us with a possible candidate for a dual to N = 0 YM theory.
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1 Introduction

The AdS/CFT conjecture [1] [2] [3] is one of the most powerful analytic tools for studying

strong coupling effects in gauge theories. There are many examples that go beyond the

initially conjectured duality. First steps in generalizing the original duality to non-conformal

examples were taken in [4]. Later, very interesting developments led to the construction of

the gauge-string duality in phenomenologically more relevant theories i.e. minimally or non-

supersymmetric gauge theories [5]. New geometries that realize various different aspects of

gauge theories allowed us to deepen our knowledge on the duality.

Conceptually, the most clear set up for less symmetric theories is obtained by breaking the

conformality and partial supersymmetry by deforming N = 4 SYM with relevant operators

or VEV’s. The models put forward by Polchinski and Strassler [6] and Klebanov and Strassler

[7] belong to this class. Many authors have contributed to the understanding of this class

of set-ups. The review [8] provides a nice summary of the procedure to compute correlation

functions and various observables.

On the other hand, a different set of models, that are less conventional regarding the UV

completion of the field theory have been developed. The idea here is to start from a set of

Dp-branes (usually with p > 3), that wrap a q-dimensional compact manifold in a way such

that two conditions are satisfied: One imposes that the low energy description of the system

is (p − q) dimensional, that is, the size of the q-manifold is small and is not observable at

low energies. Secondly, it gives technical control over the theory to require that a minimal

amount of SUSY is preserved. For example, the resolution of the the Einstein eqs. is eased.

It turns out that, in this second class of phenomenologically interesting dualities, the UV

completion of the field theory is a higher dimensional field theory.

There are several models that belong to this latter class, and in this paper we are interested

in those that are dual to N = 1 and N = 2 SYM. The model dual to N = 1 SYM [9] builds

on a geometry that was originally found in 4-d gauged supergravity in [10]. The model that
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is dual to N = 2 SYM was later found in [11]. It must be noted that all of the models in this

category are afflicted by the following problem: they are not dual to “pure” field theory of

interest, but instead, the field theory degrees of freedom are entangled with the KK modes

on the q-manifold in a way that depends on the energy scale of the field theory. The KK

modes enter the theory at an energy scale which is inversely proportional to the size of the

q-manifold and the main problem is that this size is comparable to the scale that one wants

to study non-perturbative phenomena such as confinement, spontaneous breaking of chiral

symmetry, etc. Nevertheless, this limitation can be seen as an artifact of the supergravity

approximation and will hopefully be avoided once the formulations of the string sigma model

on these RR backgrounds becomes available. Many articles have studied different aspects of

these models. Instead of revisiting the main results here, we refer the interested reader to

the review articles [13].

Very recently, an interesting development took place by the paper of Lunin and Malda-

cena [14]. The authors considered a general background of IIB SG 1 that possess two shift

isometries, hence includes a torus as a part of the geometry. This U(1) × U(1) isometry

allows one to generate new SG solutions by performing an SL(2, R) transformation on the

τ parameter of the torus:

τ = B12 + i
√

det[g], (1.1)

where the real and imaginary parts are the component of the NS two-form along the torus

and the volume of the torus respectively. This transformation combined with the usual

SL(2, R) symmetry of the IIB theory (that acts on the axion and dilaton) closes onto a

larger group SL(3, R). A two-parameter subgroup of this general symmetry is singled out

by the requirement of regularity in the transformed solutions. This specific subgroup is

referred to as the β-transformation. A natural question from the point of view of the gauge-

gravity duality concerns the dual of the β transformations on the field theory side. In

other words, if we consider a geometry that is associated to a known field theory, what

deformation in the field theory does the transformed solution produce? The answer to this

question that was proposed by Lunin and Maldacena [14] is quite interesting: Associated

with the U(1)×U(1) isometry of the geometry, there are two separate shift transformations

that act on the component fields of the field theory. If we denote the charges of two canonical

fields φ1 and φ2 in the field theory as q1i and q
2
i under these transformations, then, the effect

of the β-transformation in the dual field theory can be viewed as modifying the product of

fields in the Lagrangian according to the following rule:

φ1(x)φ2(x) → φ1(x) ∗ φ2(x) = eiπβ det(qj
i
)φ1(x)φ2(x), (1.2)

Therefore this deformation is very much in the spirit of non-commutative deformations of

field theories [15].

1See [14] for discussion also in cases of IIA and 11D SG.
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The reason behind this result lies in the consideration of associated D-brane picture. One

considers the geometry produced by a number of D-branes. Then the general idea in [14] is

that, depending on the different locations of the torus in the full geometry, one introduces

various different type of β-deformations on the gauge theory that lives on the D-branes. For

example, the choice of the torus in the directions transverse to the D-branes yields a defor-

mation where the two symmetry transformations in (1.2) are two global U(1) symmetries

of the field theory. Lunin and Maldacena gave a specific Leigh-Strassler deformation [16]

of N = 4 SYM as an example of this case. On the other hand, when the torus is along

the D-brane coordinates then the associated deformation of the field theory is precisely the

standard non-commutative deformation of the field theory along the torus directions. In this

case, the two charges in (1.2) are the momenta qix,y = pix,y of φi along the torus. Finally,

another interesting case that we have more to say in this paper is the case where one of the

torus directions is along the branes and the other along one of the transverse directions. In

this case the β-transformation of the original geometry corresponds to the so-called “dipole

deformation” of the field theory [17].

1.1 General idea of this paper

In this work, we consider the N = 1 and N = 2 geometries of [9] and [11] and study

the effects of various β-deformations. From the general arguments of [14] that we repeated

above, we expect that, if one considers a toroidal isometry that is transverse to the field

theory directions, and one makes the β-deformation along these directions, this will modify

only the fields that are charged under these transverse directions. In other words, in the field

theory dual to this particular β-transformed theory, the dynamics of the KK-modes will be

modified, whereas the gauge theory dynamics—that we are ultimately interested in—will

not be affected. Then, one may ask, whether or not the change that one produces in the

KK-sector of the field theory cures the problem of entanglement of these unwanted modes

with the “pure” gauge theory dynamics. In this paper we present evidence that the answer

is in the affirmative. We present our discussion mainly for the case of N = 1 theory, but the

same considerations apply in the case of N = 2.

Specifically, we consider the geometry that is presented in [9] and apply a real β trans-

formation that also keeps the supersymmetry of the theory intact. Then we repeat the

computations of the VEV of Wilson loops, θYM and βYM -function of the theory from the

deformed geometry. We show that these results are independent of the deformation param-

eter. The case of imaginary β deformation is also interesting in that it changes these results,

however we show that in that case the dual geometry is singular, hence the gravity computa-

tions of the field theory quantites cannot be trusted. In order to investigate whether the real

β transformation affects the KK sector of the theory, we compute the masses of a particular

kind of KK modes in the deformed geometry. This computation is done both as a dipole
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field theory computation and as a supergravity computation. As a field theory calculation

it is easy to show that the particular dipole deformations that we consider when reduced to

4D yield shifts in the KK masses. In the supergravity side, we compute the volume of S3 in

the deformed solution and show that indeed the volume becomes smaller as one turns on β.

Therefore these KK-modes indeed begin to decouple from the pure gauge theory dynamics

when one turns on the deformation parameter. We also consider the pp-wave limits of our

deformed geometries with the same goal in mind. Namely, to analyze the effects of deforma-

tion on the dynamics of the KK-sector. The analysis results in a β correction to the original

pp-wave that was obtained from the original geometry of [9]. Therefore the pp-wave analysis

also confirms the claim that the dynamics of the KK-modes are modified in a non-trivial

way. Similar observations hold for the case of β-deformed N = 2 geometry.

We also consider another interesting geometry that is obtained from the singular “UV”

solution that was found in [9]. The singular solutions dual to minimally supersymmetric

gauge theories are interesting in their own right. Indeed, historically first the singular dual

geometries have been found [12][9] and then the resolution of the singularities have been

discovered [7][9]. The singular solutions generally believed to encode information on the UV

behavior of N = 1 SYM. The singular solution in [9] preserves an additional U(1) symmetry

that is associated with the chiral R-symmetry of the N = 1 SYM in the UV. It is sometimes

denoted as the ψ isometry of the solution. We consider choosing the torus such that one

leg is along the direction of ψ. Then we perform the β transformation to generate new

solutions. As this SL(3, R) transformation does not commute with the R-symmetry the

resulting theory is non-supersymmetric. Therefore by this method, we generate a geometry

that would-be a candidate for a dual of non-supersymmetric pure YM, once the singularity at

r = 0 is resolved. We also observe that in the case of β-transforming along the R-symmetry

direction both the real and imaginary parts of the transformation is allowed: One does

not generate any irregularities that were present in the previous case of supersymmetry

preserving transformation. This may rise some hope that in a particular regime of the

relatively larger parameter space of the theory (now consists of both real and the imaginary

parts of β) one may be able to find a resolution to the singularity at the origin. We leave

this question for future work.

In the next section, we move on to a presentation of the β deformations of [14]. Rather

than repeating the discussion in [14], we introduce the basic idea and the technical aspects of

the method in a simple “warm-up” example: the flat D5 geometry. We stress the discussion

of the irregularities associated with the imaginary β transformations.

Section three reviews the dual of N = 1. We review the geometry and present a detailed

discussion of the mixing between the KK and pure gauge dynamics in the original theory.

Specifically, we review the “twisting” procedure and we make a comparison of confinement

and KK scales. In this section we also present our field theory argument for the change in

the masses of the KK modes. We show that the dipole deformation of the 6D field theory
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when reduced to 4D indeed realizes the idea of improving the KK entanglement problem.

In section 4, we present the β-transformation of the non-singular solution where the β

transformation is chosen in such a way to preserve supersymmetry. In this section, we also

obtain and discuss the aforementioned non-supersymmetric solution that explicitly breaks

the ψ-isometry of singular N = 1 solution.

The main results of our work are presented in section 5, that is devoted to the discussion

of the β deformation of the non-singular N = 1 geometry. There we introduce the trans-

formed solution and discuss its properties. Finally we compute the field theory observables

of interest. In particular, we show that the expectation value of the Wilson loop, θYM and

the beta function βYM are independent of the deformation parameter and we present the

change in the mass of the KK-modes on S3; we also study domain walls and their tensions.

Section 6 discusses pp-wave limits of some of our solutions. We first make some general

observations about how to perform the pp-wave limits in general β-deformed geometries.

In particular we argue that β should be scaled to zero along with R → ∞. This fact

was already observed in [14]. 2 Then we apply this general method of taking the pp-

waves to three geometries in the following order: The flat β-transformed D5 geometry, the

transformed geometry obtained from the singular geometry of D5 wrapped on S2 and finally

the non-singular β deformed N = 1 geometry.

Section 7 includes our results for the deformations of the N = 2 geometry. We give a

summary and discuss various open directions in our work in the final section 8. Various

appendices contain the details of our computations.

Here is a brief summary of the very recent literature on the subject. After the paper [14]

presented the idea described above, together with some checks, Ref. [18] studied the pro-

posal from the view point of comparing semi-classical strings moving in these backgrounds

with anomalous dimensions of gauge theory operators. Also aspects of integrability of the

spin chain system that is associated with the Leigh-Strassler deformation are studied. Ref.

[19], presented a nice way of understanding (the bosonic NS part of) the SL(3, R) trans-

formations in terms of T dualities; also made a connection with Lax pairs and found new

non-supersymmetric deformations.

A final note on the notation: As we discuss in the next section, we will mainly be concerned

with the real β transformations in this paper —unless specified otherwise— because of the

concerns about irregularity of the imaginary β transformations. These specific real trans-

formations were denoted as γ-transformations in [14]. Therefore the term γ-transformation

will be used instead of β in what follows.

2Note a misprint in [14]: β goes to zero instead of ∞.
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2 Warm-up: Transformations of the Flat D5 Brane So-

lution

In this section, we outline the solution generating technique in a simple warm-up example.

This allows us to introduce the basic idea and the necessary notation that will be used in

the following sections. More importantly, the examples we discuss here shall serve as an

illustration of when and how the SL(3, R) transformations lead to irregular solutions. The

criteria for regularity of the transformation was outlined in [14] and a specific transformation

of the NS5 (or D5) brane was mentioned as an example of irregular behavior. Here, we discuss

this point in detail.

2.1 The flat D5 brane

Let us consider N D5 branes in flat 10D space-time. The solution in the string frame is,

ds2 = eφ
[

dx21,5 + α′gsN(dr2 +
1

4

3
∑

i=1

w2
i )

]

, F(3) =
α′N

4
ω1∧w2∧w3, e

φ =
α′gs(2π)

3

2√
N

er. (2.3)

We define the su(2) left-invariant one forms as,

w1 = cosψdθ̃ + sinψ sin θ̃dϕ̃ ,

w2 = − sinψdθ̃ + cosψ sin θ̃dϕ̃ ,

w3 = dψ + cos θ̃dϕ̃ . (2.4)

Ranges of the three angles are 0 ≤ ϕ̃ < 2π, 0 ≤ θ̃ ≤ π and 0 ≤ ψ < 4π.

One easily sees that this solution includes a torus that is parametrized by ψ and ϕ̃ as part

of its isometries. In order to perform the SL(3, R) transformation that was specified in [14],

one writes (2.3) in the form that separates the torus part from the 8D part that is transverse

to the torus. The 8D part is left invariant (up to an overall factor) under the transformation.

We shall use the notation introduced in [14] in order to avoid confusion (see our Appendix

A for a summary). The D5 metric, (2.3) can be written as,

ds2 =
F√
∆

(Dϕ1 − CDϕ2)
2 + F

√
∆(Dϕ2)

2 + gµνdx
µdxν . (2.5)

In this particular case, the torus is given by,

Dϕ1 = dψ +A(1), Dϕ2 = dϕ̃+A(2). (2.6)
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The connection one-forms, A(1) and A(2) that are required to put a generic metric in the

above form, vanish in this simple case:

A(1) = A(2) = 0. (2.7)

The 8D part of the metric in (2.3) is,

gµνdx
µdxν = dx21,5 +N(dr2 +

1

4
dθ̃2). (2.8)

We introduced the following metric functions,

F =
α′gsN

4
eφ sin θ̃, ∆ = sin2 θ̃, C = − cos θ̃. (2.9)

Similarly, one separates the torus and the transverse part in the RR two form in a generic

way as follows [14] and Appendix A:

C2 = C12Dϕ1 ∧Dϕ2 + C(1) ∧Dϕ1 + C(2) ∧Dϕ2 −
1

2
(A(a) ∧ C(a) − c̃). (2.10)

C(1) and C(2) are one-forms and c̃ is a two-form on the 8D transverse part. In this particular

example, one can take the RR form as follows:

C2 =
α′N

4
ψw1 ∧ w2. (2.11)

Then, various objects that appear in the general formula (2.10) become,

C(2) =
α′N

4
ψ sin θ̃dθ̃, C12 = C(1) = c̃ = 0. (2.12)

2.2 The General Transformation

Now, we consider the transformation of a general solution of IIB SG under the following

two-parameter subgroup of SL(3, R) 3:

Λ =







1 γ 0
0 1 0
0 σ 1







In the next subsection, we work out the details of the transformation in the simple example

of (2.3).

3This specific subgroup - actually a larger one which also includes the ordinary SL(2, R) of IIB in part
- was specified in [14] as a necessary condition for the regularity of the transformed geometry. Although
necessary, it is not sufficient for the regularity, as we discuss further below.
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Consider a general solution to IIB Supergravity. Various components of the RR two-form,

NSNS two-form, the four-form and the A-vectors that are defined in (2.5) are grouped into

the following combinations that transform as vectors under SL(3, R) ([14] and Appendix A):

V (i)
µ = (−ǫijB(j)

µ , A(i)
µ , ǫ

ijC(j)
µ ),

Wµν = (c̃µν , d̃µν , b̃µν). (2.13)

Here B(1), B(2), b̃ and d̃ are components of the NS form and the four-form that follows

from the separation of the torus and the transverse part in complete analogy with (2.10)[14].

Their explicit transformation under (2.2) is given as,

(V (i))′ = (−ǫijB(j), A(i) + γǫijB(j) − σǫijC(j), ǫijC(j))

W ′ = (c̃ + γd̃, d̃, b̃+ σd̃) (2.14)

Transformation of various scalar fields that we defined above is obtained as follows (see

our Appendix A for a summary of these results). One constructs a 3 × 3 matrix, gT , from

the scalar F , the dilaton, and the torus components of the RR and NS forms, C12 and B12.

The components of the initial gT are 4,

gT1,1 = (eφF )−1/3, gT2,2 = e−φ/3F 2/3, gT3,2 = −C12(F )
−1/3e2/3φ, gT3,3 = e2/3φ(F )−1/3 (2.15)

and all of the other components are zero.

Now, a few words about how to obtain the transformed matrix: The object that transforms

as a matrix under SL(3, R) is the following one:

M = ggT , M → ΛMΛT . (2.16)

Thus, one can read off the transformation of gT as,

gT → ηTgTΛT , (2.17)

where η is an SO(3) matrix that can be parametrized by three Euler angles. These angles

are determined by demanding that the transformed gT has the specific structure given in

[14], namely its (1, 3), (2, 1) and (2, 3) components vanish. We obtain the new values for

F, eφ, C12, χ, B12 as,

F ′ = FG
√
H, eφ

′

= eφH
√
G, B′

12 = γF 2G, χ′ = γ
J

H
, C ′

12 = −JG (2.18)

where we defined,

H = (1− C12σ)
2 + F 2σ2e−2φ,

G = ((1− C12σ)
2 + F 2σ2e−2φ + γ2F 2)−1, (2.19)

J = σF 2e−2φ − C12(1− C12σ).
4Here, we consider the special case of B12 = 0. The most general case is further discussed in the Appendix

A.
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Using these transformation properties one obtains the new metric as follows:

ds2 =
F ′

√
D

(Dϕ′
1 − CDϕ′

2)
2
+ F ′

√
D(Dϕ′

2)
2 + Ustgµνdx

µdxν . (2.20)

Here Dϕ′
i include the transformed A forms, i.e.Dϕ′

i = dϕi + A′(i). The volume ratio that

appears in front of the 8D transverse part is,

Ust =
e

2

3
(φ′−φ)

(F
′

F
)
1

3

= H
1

2 . (2.21)

where we used (2.18) in the last line. The expression for H in (2.19) tells us the important

fact that the 8D volume ratio is different than 1 only for non-zero σ transformations. In

particular an arbitrary γ transformation (with σ = 0), leaves the 8D volume invariant:

Ust(σ = 0) = 1. (2.22)

To extract useful information about the field theory that is dual to the transformed ge-

ometry, one often needs the analogous expression in the Einstein frame. Making a Weyl

transformation to the Einstein frame, one obtains the following volume ratio of the 8D part

in the Einstein frame:

UE = e−
1

2
(φ′−φ)Ust = G− 1

4 . (2.23)

This ratio is generally different than one for any transformation.

2.3 Regularity of Transformed D5

Now, let us apply this procedure to the particular solution given in (2.9) and (2.12). From

(2.14) we read off the new values of the A forms, and the vector components of the RR form

as,

A(1)′ = −σC(2) = −σα
′N

4
ψ sin θ̃dθ̃, (2.24)

C(2)′ = C(2) = −α
′N

4
ψ sin θ̃dθ̃, A(2)′ = C(1)′ = 0

Various scalar fields in the new solution are obtained from (2.18). The new metric is,

using (2.24) in (2.20),

ds2 =
F ′

√
∆

(

dψ − σ
α′N

4
ψ sin θ̃dθ̃ + cos θ̃dϕ̃2

)2

+ F ′
√
∆dϕ̃2 + Ustgµνdx

µdxν . (2.25)

The particular appearance of ψ above makes the transformed metric irregular. This is

because, ψ originally was defined as a periodic variable with period 4π. However the trans-

formed metric is no longer periodic in ψ. One can easily track the origin of this irregularity:
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It is coming from the contribution of the σ transformation to the A one-forms in (2.24). In

this case where the torus is chosen in the directions transverse to the D5 brane, the RR two

form has the particular form in (2.12) with a bare dependence on ψ and this bare depen-

dence directly carries on to the metric under the σ transformation. Notice that this irregular

behavior does not happen for a one parameter γ-transformation where one sets σ = 0. In

that case one obtains a new regular solution to IIB SG! (or at least one in which we do not

generate new singularities).

One may wonder if this irregularity is due to our particular choice of (2.11): C2 is defined

only up to a gauge transformation and one can try to use a gauge-equivalent expression

where ψ does not appear in this form. For example a gauge equivalent choice of C2 is given

by,

C2 =
α′N

4
dψ ∧ w3 =

α′N

4
cos θ̃dψ ∧ dϕ̃. (2.26)

Comparison with the general expression, (2.10) shows that,

C12 =
α′N

4
cos θ̃, (2.27)

and the rest of the components in (2.10) vanish. In particular, the vector C(1) vanish and

one does not generate any irregular behavior in the metric, as in (2.25).

However, as described in [14], for the regularity of the full solution, one should also make

sure that the RR two-form in the original solution go to the same integer at various poten-

tially dangerous points where the volume of the torus shrinks to zero size.5 One sees from

(2.3) that these singular points where the volume of the ψ-ϕ̃ torus shrinks to zero are given

by θ̃ = 0 and π. Equation, (2.27) tells us that at these points, C2 goes over to −N and +N ,

respectively. As θ̃ is a periodic variable with period π, a discrete jump of 2N in the flux as

one completes the period is unacceptable and generates an infinite field strength. Thus we

conclude that, in case where the torus is chosen in the transverse directions to the D5 brane,

σ transformation is sick, independently of the gauge choice for C2. This does not happen for

the γ transformation. With a completely analogous argument, one shows that 6 the reverse

phenomena happens in case of the NS5 brane solution. In that case there is a non-trivial B2

form and this time the γ transformation exhibits the same irregular behavior, whereas the

σ transformation is free of irregularity.

Finally, let us recall that the Ricci scalar of the original flat D5 brane (2.3) geometry is

bounded for large values of the radial coordinate, where the dilaton becomes large. The

divergence in the dilaton indicates the need to passing to an S-dual description that is

5In [14], this argument was made for B2 under the γ transformation. Same argument applies to C2 in
the case of σ transformation.

6One can use the formulae given in the previous subsection to work this case out. Our formula (2.18) is
applicable only to the case B12 = 0 (but we wrote general formulas in Appendix A) and one can choose a
gauge in the NS5 solution such that this happens.
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given in terms of NS5 branes. At small values of the radial coordinate, the Ricci scalar

diverges instead, thus indicating that we are in the regime where the 6D SYM theory is

the weakly coupled description of the system. In the case of the transformed metric (2.20)

things are more interesting. One can check that, for large values of the radial coordinate,

the transformed dilaton in (2.18) does not diverge (except for the values θ = 0, θ = π) and

the Ricci scalar has an expression that depends on the transformation parameter,

Reff ≈ e−r
(−384 + 26η2γ2e2r − η2γ4e4r + η2γ2 cos(2θ)e2r(54 + e2rγ2)

η2(16 + γ2e2r sin2 θ)

)

, η =
√

g2YMN(2π)−3,

(2.28)

where η =
√

g2YMN(2π)−3. So, if we fix θ as nπ, for large values of the radial coordinate,

we should pass to a dual description. In this case, doing a T-duality seems appropriate.

On the other hand, for values of the angle θ different from nπ we see that the Ricci scalar

(which is non-zero) and the dilaton are bounded for large values of the radial coordinates,

in contrast with the usual D5 case. For this case, it does not seem necessary to pass to a

NS5 description.

For values of the radial coordinate near negative infinity, the Ricci scalar diverges and the

good description is in terms of a 6D gauge theory. The main point of the discussion above

is the fact that the transformed system has in principle a more complicated ‘phase space’

than the original flat D5-branes [4].

2.4 The Gauge Theory

Let us briefly comment on the gauge theory dual of the transformed D5 background. First,

let us recall that the gauge theory on flat D5 branes is a 6D maximally supersymmetric

Yang-Mills theory. The bosonic part of the Lagrangian can be obtained by reducing ten-

dimensional SYM on a four-torus. Schematically, it is given as

S = Tr
∫

d6x
(

F 2
µν + (DµΦ)

2 + V ([Φ,Φ])
)

(2.29)

According to the prescription of [14] the new background in (2.20) is dual to (2.29) but

with the potential replaced by a γ deformed one obtained by replacing the products of fields

in V [. . .] by the deformed product of (1.2). We would like to remark that as the torus

of transformation that is formed by ψ and ϕ̃ is transverse to the D5 branes this will only

introduce some phases in the scalar potential.

One should also note that as the transformation that we perform mixes angles that cor-

respond to the SU(2)L × SU(2)R R-symmetry of the 6D SYM theory, this transformation

will break supersymmetry. We shall not dwell on this issue for this warm-up exercise but it

is discussed in more detail for the model of our interest in the next section.
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2.5 Dual of the Dipole Theory

We would like to end this warm-up section by a discussion of the dipole theories that shall

interest us in the following sections. Our main interest in these exotic quantum theories lies

in the fact that the transformations studied in this section when applied to a supergravity

dual to N = 1 SYM leads to a dipole theory for the KK section of the field theory. This is

discussed in section 3.2 in detail. For the literature on the dipole theories, see [17]. Here we

only summarize some features that will interest us.

A dipole theory is a field theory where the locality is lost due to the fact that some of the

fields come equipped with a “dipolar moment” Lµ such that the product of fields (Φ1,Φ2)

with moments ~L1, ~L2 is given by

Φ1(x)Φ2(x) = Φ1(x− L2/2)Φ2(x+ L1/2) (2.30)

The non-locality of the interaction is manifest. Also, the presence of dipole moments break

Lorentz invariance. We are interested in the particular case where all of the dipole moments

point in the same direction.

If we have a field theory with many fields Φi, each one of them with a global conserved

charge qi, we can pick an arbitrary vector Lµ and the dipole moment of each field is taken

as qiLµ. More generally, if for each field Φi in a collection of n fields, there exist a set of

conserved charges qi1, ...q
i
k, then one can pick an n × k matrix (that we call S) and assign

each field a dipole moment of the form ~L = S~q. In this general case the arbitrary choice of

S, breaks the Lorentz invariance.

The way to construct the dipole Lagrangian is clearly explained in [17]. Basically, the idea

follows the approach of [15], only that in this case, we allow for a non-constant NS field, in

addition to the RR forms. Briefly, the proposal is that, any term in the original Lagrangian

that is of the following form,

Lint = Φ1(x)....Φn(x) (2.31)

is replaced (in momentum space) by

L′
int = e

∑n

i<j
piLjΦ1(x)....Φn(x) (2.32)

If we follow the proposal of Lunin and Maldacena [14] that was reviewed above, this is

equivalent to performing an SL(3, R) transformation on a torus that has one direction on

the brane and one external to the brane.

To improve and clarify this discussion, let us now construct the background dual to a

dipole 6D field theory. Once again, we do not worry about preservation of supersymmetry

in this section. If one performs the γ transformation on the torus with one direction along

the D5 brane and one transverse to it, one produces a background dual to a six dimensional

dipole theory as described above. Obviously the Lorentz invariance SO(1, 5) is explicitly
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broken by the choice of one coordinate along the brane. The background dual to this field

theory is given by

ds2 =
F ′

√
∆
(dψ + cos θdϕ)2 + F ′

√
∆dz2 + Ust

(

dx21,4 +

α′gsN(dr2 +
1

4
(dθ2 + sin θ2dϕ2))

)

(2.33)

where we labeled by z, ψ the directions of the two torus. Following the notation in eq.(2.5),

the functions are defined as

F 2 =
α′gsNe

2φ

4
, ∆ =

4

α′gsN
. F ′ =

F

1 + γ2F 2
, A(1) = cos θdϕ,A2 = C i = C = 0 (2.34)

and Ust is given by (2.21). There is also a dilaton and NS and RR forms that transform

according to eq.(2.18). The original RR two form only has the following component,

c̃ = 2ψα′N sin θdθ ∧ dϕ (2.35)

and it transforms as we indicated in (2.14).

Let us briefly comment on the geometry (2.33). The transformed dilaton is bounded above

for large values of the radial coordinate (and for any values of the angles) unlike the case of

the flat D5 brane analyzed in the previous subsection. The effective curvature is given by,

R ≈ 2e−r
(−96 + 8η2γ2e2r + η4γ4e4r

η2(4 + γ2e2r)2

)

, η =
√

g2YMN(2π)−3. (2.36)

Again, we find no problem for the large-r regime, neither for the Ricci scalar, nor for the

dilaton. It is peculiar that it is possible to find a value of the radial coordinate where the

Ricci scalar vanishes.

3 N = 1 SYM and the KK-Mixing Problem

3.1 Review of the Geometry Dual to N = 1 SYM

We work with the model presented in [9] (the solution was first found in a 4d context in [10])

and described and studied in more detail in [22]. Let us briefly describe the main points of

this supergravity dual to N = 1 SYM and its UV completion.

Suppose that we start with N D5 branes. The field theory that lives on them is 6D SYM

with 16 supercharges. Then, suppose that we wrap two directions of the D5 branes on a

curved two manifold that can be chosen as a sphere. In order to preserve SUSY a twisting

procedure has to be implemented and actually, there are two ways of doing it. The one we
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will be interested in this section, deals with a twisting that preserves four supercharges. In

this case the two-cycle mentioned above lives inside a CY3 fold. On the other hand, if the

twist that preserves eight supercharges is performed, the two cycle lives inside a CY2-fold

[11]. This second case will be analyzed in section 7. We note that this supergravity solution

is dual to a four dimensional field theory, only for low energies (small values of the radial

coordinate). Indeed, at high energies, the modes of the gauge theory begins to fluctuate also

on the two-cycle and as the energy is increased further, the theory first becomes N = 1 SYM

in six dimensions and then, blowing-up of the dilaton forces one to S-dualize. Therefore the

UV completion of the model is given by the little string theory.

The supergravity solution that interests us in this section, preserves four supercharges and

has the topology R1,3 × R × S2 × S3. There is a fibration of the two spheres in such a way

that that N = 1 supersymmetry is preserved. By going near r = 0 it can be seen that the

topology is R1,6 ×S3. The full solution and Killing spinors are written in detail in [22]. The

metric in the Einstein frame reads,

ds210 = α′gsNe
φ
2

[ 1

α′gsN
dx21,3 + e2h ( dθ2 + sin2 θdϕ2 ) + dr2 +

1

4
(wi −Ai)2

]

, (3.37)

where φ is the dilaton. The angles θ ∈ [0, π] and ϕ ∈ [0, 2π) parametrize a two-sphere. This

sphere is fibered in the ten dimensional metric by the one-forms Ai (i = 1, 2, 3). Their are

given in terms of a function a(r) and the angles (θ, ϕ) as follows:

A1 = −a(r)dθ , A2 = a(r) sin θdϕ , A3 = − cos θdϕ . (3.38)

The wi one-forms are defined in (2.4).

The geometry in (3.37) preserves supersymmetry when the functions a(r), h(r) and the

dilaton φ are:

a(r) =
2r

sinh 2r
,

e2h = r coth 2r − r2

sinh2 2r
− 1

4
,

e−2φ = e−2φ0
2eh

sinh 2r
, (3.39)

where φ0 is the value of the dilaton at r = 0. Near the origin r = 0 the function e2h behaves

as e2h ∼ r2 and the metric is non-singular. The solution of the type IIB supergravity includes

a RR three-form F(3) that is given by

1

α′N
F(3) = −1

4
(w1 −A1 ) ∧ (w2 −A2 ) ∧ (w3 − A3 ) +

1

4

∑

a

F a ∧ (wa − Aa ) , (3.40)
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where F a is the field strength of the su(2) gauge field Aa, defined as:

F a = dAa +
1

2
ǫabcA

b ∧Ac . (3.41)

Different components of F a read,

F 1 = −a′ dr ∧ dθ , F 2 = a′ sin θdr ∧ dϕ , F 3 = ( 1− a2 ) sin θdθ ∧ dϕ , (3.42)

where the prime denotes derivative with respect to r. Since dF(3) = 0, one can represent F(3)

in terms of a two-form potential C(2) as F(3) = dC(2). Actually, it is not difficult to verify

that C(2) can be taken as:

C(2)

α′N
=

1

4

[

ψ ( sin θdθ ∧ dϕ − sin θ̃dθ̃ ∧ dϕ̃ ) − cos θ cos θ̃dϕ ∧ dϕ̃ −

−a ( dθ ∧ w1 − sin θdϕ ∧ w2 )
]

. (3.43)

The equation of motion of F(3) in the Einstein frame is d
(

eφ ∗F(3)

)

= 0, where ∗ denotes

Hodge duality. Let us stress that the configuration presented above is non-singular. Finally,

let us mention that the BPS equations also admit a solution in which the function a(r)

vanishes, i.e. in which the one-form Ai has only one non-vanishing component, namely A3.

We will refer to this solution as the abelian N = 1 background. Its explicit form can easily

be obtained by taking the r → ∞ limit of the functions given in eq. (3.39). Notice that,

indeed a(r) → 0 as r → ∞ in eq. (3.39). Neglecting exponentially suppressed terms, one

obtains

e2h = r − 1

4
, (a = 0) , (3.44)

while φ can be obtained from the last equation in (3.39). The metric of the abelian back-

ground is singular at r = 1/4 (the position of the singularity can be moved to r = 0 by

a redefinition of the radial coordinate). This IR singularity of the abelian background is

removed in the non-abelian metric by switching on the A1, A2 components of the one-form

(3.38).

3.2 Dual Field Theory and the Dipole Deformation of the KK

Sector

Let us first summarize some aspects of the field theory that is dual to the geometry above.

In [9] this solution was argued to be dual to N = 1 SYM.

The 4D field theory is obtained by reduction of N D5 branes on S2 with a twist that we

explain below. Therefore, as the energy scale of the 4D field theory becomes comparable to

the inverse volume of S2, the KK modes begin to enter the spectrum.

16



To analyze the spectrum in more detail, we briefly review the twisting procedure. In order

to have a supersymmetric theory on a curved manifold like the S2 here, one needs globally

defined spinors. A way to achieve this was introduced in [24]. In our case the argument

goes as follows. As D5 branes wrap the two sphere, the Lorentz symmetry along the branes

decompose as SO(1, 3)×SO(2). There is also an SU(2)L×SU(2)R symmetry that rotates the

transverse coordinates. This symmetry corresponds to the R-symmetry of the supercharges

on the field theory of D5 branes. One can properly define N = 1 supersymmetry on the

curved space that is obtained by wrapping the D5 branes on the two-cycle, by identifying a

U(1) subgroup of either SU(2)L or SU(2)R R-symmetry with the SO(2) of the two-sphere.7

To fix the notation, let us choose the U(1) in SU(2)L. Having done the identification with

SO(2) of the sphere, we denote this twisted U(1) as U(1)T .

After this twisting procedure is performed, the fields in the theory are labeled by the

quantum numbers of SO(1, 3)× U(1)T × SU(2)R. The bosonic fields are,

Aaµ = (4, 0, 1), Φa = (1,±, 1), ξa = (1,±, 2). (3.45)

Respectively they are the gluon, two massive scalars that are coming from the reduction of

the original 6D gauge field on S2, (explicitly from the Aϕ and Aθ components) and finally

four other massive scalars (that originally represented the positions of the D5 branes in the

transverse R4). As a general rule, all the fields that transform under U(1)T—the second

entry in the above charge designation—are massive. For the fermions one has,

λa = (2, 0, 1), (2̄, 0, 1), Ψa = (2,++, 1), (2̄,−−, 1), ψa = (2,+, 2), (2̄,−, 2). (3.46)

These fields are the gluino plus some massive fermions whose U(1)T quantum number is

non-zero. The KK modes in the 4D theory are obtained by the harmonic decomposition

of the massive modes, Φ, ξ,Ψ and ψ that are shown above. Their mass is of the order of

M2
KK = (V olS2)−1 ∝ 1

gsα′N
. A very important point to notice here is that these KK modes

are charged under U(1)T × U(1)R where the second U(1) is a subgroup of the SU(2)R that

is left untouched in the twisting procedure. On the other hand, the pure gauge fields gluon

and the gluino are not charged under either of the U(1)’s.

The dynamics of these KK modes mixes with the dynamics of confinement in this model

because the strong coupling scale of the theory is of the order of the KK mass. One way

to evade the mixing problem would be to work instead with the full string solution, namely

the world-sheet sigma model on this background (or in the S-dual NS5 background) which

would give us control over the duality to all orders in α′, hence we would be able to decouple

the dynamics of KK-modes from the gauge dynamics. This direction is unfortunately not

yet available.

The dynamics of these KK modes have not been studied in much detail in the literature.

In [20] a very interesting object—the annulon—was introduced. It is composed out of a
7The choice of a diagonal U(1) inside SU(2)L × SU(2)R leads to an N = 2 field theory instead, see [11].
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condensate of many KK modes. More interesting studies on the annulons in this and related

models—some being non-supersymmetric—are in [21].

We would like to argue in this paper that the proposal of Lunin and Maldacena [14] opens

a new path to approach the KK mixing problem in a controlled way. Let us consider the

torus of the β transformations as U(1)T × U(1)R—that is in fact the only torus in the non-

singular solution (3.37) and it is given by shifts along ϕ and ϕ̃. Then the proposal of LM

implies that,

The β deformation of (3.37) generates a dipole deformation in the dual field the theory,

but only in the KK sector that is the only sector which is charged under U(1)T × U(1)R.

We propose that the deformation does not affect the 4D field theory modes namely the

gluon and the gluino, encouraged by the fact that they are not charged under this symmetry,

as explicitly shown in (3.45) and (3.46).

Let us sketch the general features of this dipole field theory and then present an explicit

argument showing an example of how the dynamics of the KK sector of the theory is affected

under the dipole deformation. In particular, we would like to show that the masses of the

KK modes are shifted under the dipole deformation.

One can schematically write a Lagrangian for these fields as follows:

L = −Tr[1
4
F 2
µν+iλDλ−(DµΦi)

2−(Dµξk)
2+Ψ(iD−M)Ψ+M2

KK(ξ
2
k+Φ2

i )+V [ξ,Φ,Ψ]] (3.47)

The potential typically contains the scalar potential for the bosons, Yukawa type interactions

and more. This expression is schematic because of (at least) two reasons. First of all, the

potential presumably contains very complicated interactions involving the KK and massless

fields. Secondly, there is mixing between the infinite tower of spherical harmonics that are

obtained by reduction on S2 and S3. (We were being schematic in the definitions of (3.45)

and (3.46). For example a precise designation for Φ should involve the spherical harmonic

quantum numbers (l, m) on S2.)

Let us now discuss the effect of the β deformation in more detail. The U(1)T corresponds

to shift isometries along ϕ and U(1)R corresponds to shift along ϕ̃ in (3.37). From the D5

brane point of view, the former is a dipole charge and the latter is a global phase on the 6D

fields. Here we only focus on the γ transformation because as we discussed in the previous

section, only the real part of the β deformation gives rise to a regular dual geometry. In

this case, the prescription of Lunin and Maldacena [14] tells us to deform the product of two

fields in the superpotential as follows:

X [~x6]Y [~x6] → eiγ(Q̂X L̂Y −Q̂Y L̂X)X [~x6]Y [~x6], (3.48)

where X and Y are either of the fields that appear in (3.47) and Q and L denotes the charges

of the indicated fields under U(1)R and U(1)T respectively. Note that the action of L̂ on a

field that is charged under U(1)T is a dipole deformation.
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As a simple exercise, let us investigate the implications of the γ deformation in (3.48) for

the masses of the KKmodes. Mass terms in (3.47) are coming from the quadratic terms in the

superpotential. Let us consider the following term in original (undeformed) superpotential,

W ∼MKK Φ+
0 [~x6] ξ

+
+ [~x6] + · · · (3.49)

Here we take two fields of the types in (3.45) with the denoted charges under U(1)T and

U(1)R: Φ has charge +1 under U(1)T and uncharged under U(1)R. ξ carries +1 under both.

Under the deformation (3.48) this term becomes,

W → Wγ ∼MKK e
iγ(Q̂ΦL̂ξ−Q̂ξL̂Φ) Φ+

0 [~x6] ξ
+
+ [~x6] =MKK e

−iγR3R2L̂Φ Φ+
0 [~x6] ξ

+
+ [~x6]

≈ MKK Φ+
0 [~x6] (1 + γ (R2R3) ∂ϕ) ξ

+
+ [~x6]. (3.50)

In the last step in (3.50) we used the fact that the dipole generator L̂ corresponds to shifts

in ϕ

Here R2 and R3 are length scales that are associated with the two-cycle and the three-

cycle in the geometry. 8 In general these length scales depend on the radial coordinate

r, hence the charges Q and L will depend on the energy scale of the field theory. In the

far IR region—that we are ultimately interested in—they are both proportional to
√
α′gsN .

Indeed, we support this claim by our supergravity computations in section 5.3.

Now, consider the spherical decomposition of ξ++ on S2:

ξ++ [~x6] =
∑

l,m

ξ++ [~x4]Yl,m[θ, ϕ]. (3.51)

The spherical harmonics satisfy 9,

− i∂ϕYl,m(θ, ϕ) = mYl,m(θ, ϕ). (3.52)

Then, consider a specific KK mode of ξ++ with the quantum numbers l, m in eq.(3.50).

Expanding (3.50) for small γ and using (3.52) we get the following particular term in the

deformed superpotential,

Wγ ∼MKKΦ
+
0 [~x6]ξ

+
+ [~x4; l, m](1 + iγR2R3m). (3.53)

There is a mass term in the scalar potential of the theory that derives from

∣

∣

∣

∣

∂Wγ

∂Φ+
0

∣

∣

∣

∣

2

8Note that γ has dimensions of α′−1 therefore in order to make the exponential dimensionless the charges
Q and L should have dimensions of length.

9for a detailed study of the KK modes spectrum see [25]
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and gives the following mass for this specific KK mode:

(Mγ
KK)

2 =
(

1 + (γR2R3m)2
)

M2
KK . (3.54)

Of course, our computation should be viewed as schematic because in order to obtain the

true mass eigenstates one should diagonalize the mass matrix on infinite dimensional space

of KK harmonics. Nevertheless, it is enough to support our main claim that the dipole

deformation of the N = 1 theory changes the dynamics of the KK modes in a very specific

and controlled way. It is also enough to show that the change in the masses of the KK

modes are always in the positive direction, they increase. We shall verify the mass shift in

(3.54) by explicitly computing the volumes of the two and three cycles in the IR geometry

in section 5.3. There we obtain analytical expressions—as functions of γ— for volume ratios

of deformed over undeformed theories for the S2 and S3 cycles. It is encouraging to see

that the mass ratio is greater than one. This fact is quite tempting to believe that the β

deformation of [9] is a positive step in curing the main problem associated with this model

and similar ones, namely mixing with the KK modes. Our computations therefore suggest

that for large values of γ, one may be able to decouple the KK modes from the IR dynamics;

but the value of γ is to be restricted from above by the condition of small Ricci scalar that is

necessary for the validity of supergravity approximation. Therefore we seem to have a finite

window for the γ parameter where we can make an improvement of the model by pushing

the KK modes up.

Taking very large values of γ might conflict with having a bounded Ricci scalar to stay in

the Supergravity approximation.

Another encouraging fact is directly seen when one considers applying the deformation in

(3.48) in case either of X or Y is the vector multiplet. As the vector multiplet is uncharged

under either of the Q or L we see that the γ transformation of the the N = 1 theory indeed

does not affect the pure gauge dynamics. It acts on the gauge and KK sectors of the theory

(but it may translate into the massless sector through interaction terms). Motivated by the

mass calculation that we presented above, one can consider more elaborate computations

regarding the interaction terms in the potential in (3.47). An interesting question to ask is

how is the IR theory “renormalized” under the γ transformations.

4 Deformations of the Singular N = 1 Theory

4.1 The Singular Solution a(r)=0

In order to apply the SL(2, R) transformation we shall put the metric in (3.37) in the form

explained in [14] (See also Appendix A in this paper). Like before, we will stick with the

definitions given in this paper to avoid confusion. It is very useful to first consider the

transformation of the simpler but singular case of a(r) = 0. This provides us with some
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intuition and physical insight. The metric of eq.(3.37), written in string frame, in the case

a(r) set to zero reads as follows:

ds2 = F

(

1√
∆
(dϕ− Cdϕ̃+A(1) − CA(2))2 +

√
∆(dϕ̃+A(2))2

)

+
e2/3φ

F 1/3
gµνdx

µdxν (4.55)

where we write the eight dimensional part of the metric that is transverse to the torus as,

gµνdx
µdxν = e−2/3φF 1/3[Ddψ2 + eφ(dx21,3 + gsNα

′(e2hdθ2 + dr2 +
1

4
dθ̃2))], (4.56)

we have defined the following vectors,

A(1) = αdψ, A(2) = βdψ, (4.57)

and the functions F,D,∆, C, α, β that appear above are:

F =
α′gsNe

φ

4
(4e2h sin2 θ + cos2 θ sin2 θ̃)

1

2 , ∆ =
4e2h sin2 θ + sin2 θ̃ cos2 θ

(4e2h sin2 θ + cos2 θ)2
,

C = − cos θ cos θ̃

4e2h sin2 θ + cos2 θ
,D =

α′gsNe
2h+φ sin2 θ sin2 θ̃

4e2h sin2 θ + sin2 θ̃ cos2 θ
,

α =
cos θ sin2 θ̃

cos2 θ sin2 θ̃ + 4e2h sin2 θ
, β =

4e2h sin2 θcosθ̃

4e2h sin2 θ + cos2 θ sin2 θ̃
(4.58)

The RR two form given in (3.43) for a(r) = 0 can be written as,

C2 = C12(dϕ+A(1)) ∧ (dϕ̃+A(2)) + C(1)
µ (dϕ+A(1)) ∧ dxµ + C(2)

µ (dϕ̃+A(2)) ∧ dxµ

−1

2
(A(a)

µ C(a)
ν − c̃µν)dx

µ ∧ dxν . (4.59)

Here various components and one-forms read as follows:

C12 = −1

4
cos θ cos θ̃, C(1) = −C12βdψ − ψ

4
sin θdθ, C(2) = C12αdψ +

ψ

4
sin θ̃dθ̃,

c̃2 =
ψ

4
(α sin θdψ ∧ dθ̃ + β sin θ̃dθ̃ ∧ dψ) (4.60)

Like in the previous section, various components of the two-form and the A-vectors above

are grouped in combinations that transform under SL(2, R) as vectors:

V (i)
µ = (−ǫijB(j)

µ , A(i)
µ , ǫ

ijC(j)
µ ) = (0, A(i)

µ , ǫ
ijC(j)

µ ), Wµν = (c̃µν , d̃µν , b̃µν) = (c̃µν , 0, 0) (4.61)

that transform explicitly as,

(V (i))′ = (−ǫijB(j), A(i) + γǫijB(j) − σǫijC(j), ǫijC(j)) W ′ = (c̃+ γd̃, d̃, b̃+ σd̃)(4.62)
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We will concentrate on the γ-transformation. In this case, the vectors and tensors in (2.14)

transform as (V (i))′ = (0, A(i), ǫijC(j)), W ′ = (c̃, 0, 0). Notice that due to the transforma-

tions above, the differentials Dϕ,Dϕ̃ do not change under SL(3, R). Following what we

explained in the previous section, we can transform the functions appearing in (4.55). We

obtain the new values for F, eφ, C12, χ, B12 as given by eq.(2.18). For the D5 branes, the

γ-transformation leads to nonsingular spaces according to the discussion of the previous sec-

tion, we will concentrate in the following on transformations that have σ = 0. Then the new

fields become,

F ′ =
F

(F 2γ2 + 1)
, B′

12 =
F 2γ

(F 2γ2 + 1)
, e2φ

′

=
e2φ

(F 2γ2 + 1)
, χ′ = γC12, C

′
12 =

C12

(F 2γ2 + 1)
.

(4.63)

Putting all of the things together, we can get the new configuration, that consists in this

case of metric, dilaton, axion, RR and NS two forms and four form. The new metric, in

string frame is given by,

ds2 =
F ′

√
∆
(Dϕ− CDϕ̃)2 + F ′

√
∆(Dϕ̃)2 + (

e2φ
′

F ′
e−2φF )1/3[Ddψ2 +

eφ(dx21,3 + α′gsN(e2hdθ2 + dr2 +
1

4
dθ̃2))] (4.64)

the NS gauge field is Bϕ,ϕ̃ = B′
12Dϕ

′ ∧Dϕ̃′, with B′
12 given in (4.63). The new dilaton and

axion are e2φ
′

= e2φ

(1+γ2F 2)
, χ′ = −γ

4
cos θ cos θ̃, the new RR two-form,

C(2)′ = C ′
12Dϕ ∧Dϕ̃− C(1) ∧Dϕ− C(2) ∧Dϕ̃− 1

2
(A(1) ∧ C(1) + A(2) ∧ C(2) − c̃), (4.65)

with C ′
12 given in (4.63). Finally, the RR four form is given by

(C4)
′ = −1

2
B′

12(c̃− (A(1) ∧ C(1) + A(2) ∧ C(2))) ∧Dϕ ∧Dϕ̃. (4.66)

For completeness, let us write here the expressions for the gauge field strengths H ′
3, F

′
3, F

′
5

H ′
3 = dB′

12 ∧ (dϕ ∧ dϕ̃+ αdψ ∧ dϕ̃+ βdϕ ∧ dψ) +B′
12(dϕ̃ ∧ dα+ dβ ∧ dϕ) ∧ dψ (4.67)

F ′
3 = dC2 − χ′H ′

3 =

1

4
dψ ∧ (sin θdθ ∧ dϕ− sin θ̃dθ̃ ∧ dϕ̃) + dϕ ∧ dϕ̃ ∧

( 1

1 + γ2F 2
dC12 + C12d(

1− γ2F 2

1 + γ2F 2
)
)

+

(−αdϕ̃+ βdϕ) ∧ dψ ∧ γ2F 2

1 + γ2F 2
dC12 (4.68)

and the RR four form that reads

− 2C ′
4 = B′

12(c̃−A(i) ∧ C(i)) ∧Dϕ ∧Dϕ̃ (4.69)
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and finally

F ′
5 = dC ′

4 − C ′
2 ∧H ′

3 (4.70)

What can we learn from this transformed background? One first thing that comes to mind

is related to chiral symmetry breaking. Indeed, as shown in [26], it is enough to work with

the singular background and the respective RR fields to see explicitly the phenomena of χSB

as a Higgs mechanism for a gauge field used to gauge the isometry corresponding to chiral

symmetry (translations in the angle ψ in this case). It should be interesting to do again

this computation in this transformed background. The new ingredients to take into account

are the new NS and RR fields as shown above. We believe that the anomaly will be the

same because, as an anomaly, it can only be affected by the mass less fields. In our case,

the transformed background only takes into account changes in the dynamics of the massive

KK modes. It should be interesting to see this argument working explicitly.

4.2 Transformations in the R-symmetry Directions

In the previous section, we performed rotations that commuted with the R symmetry of

the field theory. Indeed, the R-symmetry of N=1 SYM is represented in the background

studied in in the previous subsection by changes in the angle ψ. The rotations done above,

preserve SUSY, since they do not involve the angle ψ. In this section, we will concentrate

on rotations taking the torus, to be composed of ψ, ϕ̃; this will break SUSY. Notice that in

this case, the dual field theory to the transformed solution will not be a dipole theory, but

a theory where phases has been added to the interaction terms. Also, notice that we can do

this in the singular solution only, because in the desingularized solution, we do not have the

invariance ψ → ψ + ǫ.

So, to remind the reader, let us write explicitly the 10 metric (3.37) in the singular case

(string frame is used)

ds210 = α′gsNe
φ
[ 1

α′gsN
dx21,3 + e2h ( dθ2 + sin2 θdϕ2 ) + dr2 +

1

4
(dθ̃2 + sin2 θ̃dϕ̃2 + (dψ + cos θdϕ+ cos θ̃dϕ̃)2)

]

, (4.71)

We notice that this metric is already written in the form that we want it. Indeed, comparing

we can see that

F =
α′gsN

4
eφ sin θ̃, ∆ = sin2 θ̃, Dϕ1 = Dψ = dψ+cos θdϕ, Dϕ2 = Dϕ̃ = dϕ̃, C = − cos θ̃.

(4.72)

and

gµνdx
µdxν = e−2φ/3F 1/3[α′gsNe

φ(
1

α′gsN
dx21,3 + e2h ( dθ2+sin2 θdϕ2 ) + dr2 +

dθ̃2

4
)] (4.73)
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After doing some computations, see Appendix D, we can see that the transformed string

metric reads,

(ds2string)
′ = e2(φ

′−φ)/3(
F

F ′
)1/3α′gsNe

φ
[ 1

α′gsN
dx21,3 + e2h ( dθ2 + sin2 θdϕ2 ) + dr2

+
1

4
dθ̃2

]

+ (F ′
√
∆(Dϕ̃)2 +

F ′

√
∆
(Dψ + cos θ̃Dϕ̃)2) (4.74)

The new RR and NS fields are explicitly written in the Appendix D. The reader can check

that there is no five form generated. Indeed, there is no C4 generated by the SL(3,R) rotation

and besides the term C2 ∧H3 does not contribute.

This new solution is expected to be non-SUSY, and an occasional resolution of the sin-

gularity at r = 0 could give a dual to YM theory. One might think about, for example, a

resolution by turning on a black hole, dual to YM at finite temperature. This should be very

interesting to solve.

Like in the examples of the D5 brane, doing this transformation is changing quantities like

for example the Ricci scalar, but the place where α′Reff diverges (r → 0 with a divergence

of the form α′Reff ≈ r−7/4) are the same before and after the transformation. The divergent

structure does not seem to become worst by the effect of the gamma transformation.

4.3 The General β Transformation

Transformations of the singular solution i.e.(3.37) for a = 0 where the torus is chosen

transverse to the D5 brane have the interesting property of being regular both for real and

imaginary parts of β. Therefore it is tempting to perform the general β = γ + iσ trans-

formation. Here we, show the regularity of the general transformed solution explicitly, by

presenting the resulting geometry.

The only new feature that one introduces to the results of section 4.2 is that, turning on

σ changes the connections A(i) according to (2.14). The transformed connections are:

A(1)′ = A(1) = cos θ̃dϕ, A(2)′ = A(2) + σC(1) =
α′N

4
σ cos θϕ, (4.75)

Details are given in Appendix D. Using (2.18), we find the the string frame metric as,

ds2string = Ustα
′gsNe

φ
[ 1

α′gsN
dx21,3 + e2h( dθ2 + sin2 θdϕ2) + dr2 +

1

4
dθ̃2

]

(4.76)

+F ′
√
∆(dϕ̃+ σ

α′N

4
cos θdϕ)2 +

F ′

√
∆
(dψ + cos θdϕ+ cos θ̃dϕ̃+ σ

α′N

4
cos θ̃ cos θdϕ)2)

(4.77)

Here the new metric functions are given by (2.18) and (2.21) and they generally depend on

both γ and σ. Eqs. (2.18) also determine how the RR two-form and the dilaton transforms

and shows the new fields that are generated by the general transformation.
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It should be interesting to study the fate of the symmetry ψ → ψ + ǫ after this transfor-

mation. This symmetry, in the case of N = 1 SYM was associated with chiral rotations [26].

In this case, our theory does not have massless fermions. So, the symmetry corresponds to

some kind of flavor symmetry within the KK sector. It should be interesting to see if this

symmetry gets by the broken and the way studied in [26].

Now that we gained some insight with this type of configurations, let us study the U(1)×
U(1) transformation in the case of the non-singular background.

5 Deformation of the Non-singular N = 1 Theory

Now, let us discuss the non-singular case, a(r) 6= 0. The type of problems we have in

mind that might be tackled, are related to previous computations of non-perturbative field

theory aspects from a supergravity perspective. Indeed, in some cases, it was not clear if

the result of this computation was afflicted by the presence of the massive KK modes. So,

finding the transformed background and re-doing the computations with it, might help us

improve this situation, since as we remarked above, both backgrounds do differ in the fact

that their dual theories have different dynamics for the KK modes, results that depend on

the transformation parameter γ will indicate the presence of effects of the KK modes.

We first write the full metric in (3.37) in the following appropriate form for the SL(3, R)

rotation in which the torus and the transverse parts have been separated as follows:

ds2string = eφ[dx21,3 + α′gsNdr
2] +D1dψ

2 +D2dθ
2 +D3dθ̃

2 + E1dθdθ̃ +

E2dθdψ + E3dθ̃dψ +
F√
∆
[dϕ+ (α1 − Cβ1)dθ + (α2 − Cβ2)dθ̃ + (α3 − Cβ3)dψ − Cdϕ̃]2 +

F
√
∆(dϕ̃+ β1dθ + β2dθ̃ + β3dψ)

2 (5.78)

To simplify the notation let us define,

f = 4e2h sin2 θ + cos2 θ + a2 sin2 θ, g = a sin θ sin θ̃ cosψ − cos θ cos θ̃. (5.79)

Then, various functions in (5.78) are given as,

F =
α′gsNe

φ

4

√

f − g2, ∆ =
f − g2

f 2
, C =

g

f
,

β1 =
f

f − g2
a sinψ sin θ̃, β2 =

g

f − g2
a sinψ sin θ, β3 =

f cos θ̃ + g cos θ

f − g2

α1 =
a sin θ̃ sinψg

f − g2
, α2 =

a sin θ sinψ

f − g2
, α3 =

cos θ + g cos θ̃

f − g2
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D1 =
α′gsNe

φ

4(f − g2)
(f sin2 θ̃ − g2 − cos2 θ − 2g cos θ cos θ̃),

D2 =
α′gsNe

φ

4
(a2 + 4e2h − f

f − g2
a2 sin2 ψ sin2 θ̃) (5.80)

D3 =
α′gsNe

φ

4
(1− a2 sin2 θ sin2 ψ

f − g2
), E1 =

a

2
α′gsNe

φ(cosψ − g

f − g2
a sin2 ψ sin θ sin θ̃)

E2 = −α
′gsNe

φa

2

sinψ sin θ̃(f cos θ̃ + g cos θ)

f − g2
, E3 = −α

′gsNe
φ

2

a sin θ sinψ

f − g2
(cos θ + g cos θ̃).

Now, let us focus on the RR two form. Like before, it is useful to define four one forms as

A(i), C(i), i = 1, 2

A(1) = α1dθ + α2dθ̃ + α3dψ, A(2) = β1dθ + β1dθ̃ + β3dψ, (5.81)

and

C(1) = C
(1)
θ dθ + C

(1)

θ̃
dθ̃ + C

(1)
ψ dψ, C(2) = C

(2)
θ dθ + C

(2)

θ̃
dθ̃ + C

(2)
ψ dψ, (5.82)

and the two form c̃µνdx
µ ∧ dxν , with components c̃θθ̃, c̃θ̃ψ, and all others being zero. In order

to reproduce the RR two-form potential given in (3.43) in the following form,

C(2) = C12Dϕ ∧Dϕ̃− C(1) ∧Dϕ− C(2) ∧Dϕ̃− 1

2
(A(1) ∧ C(1) + A(2) ∧ C(2) − c̃); (5.83)

the quantities defined above are determined as,

C12 =
1

4
(a(r) sin θ sin θ̃ cosψ − cos θ cos θ̃),

C(1) = (−ψ
4
sin θ − C12β1)dθ − (

1

4
a(r) sin θ sinψ + C12β2)dθ̃ − β3C12dψ,

C(2) = (
1

4
a(r) sin θ̃ sinψ + C12α1)dθ + (

ψ

4
sin θ̃ − C12α2)dθ̃ + α3C12dψ,

c̃ = c̃θθ̃dθ ∧ dθ̃ + c̃θψdθ ∧ dψ + c̃θ̃ψdθ̃ ∧ dψ (5.84)

with

c̃θθ̃ = α1α2 + β1β2 + C12(α1β2 − α1β2)−
1

4
ψ sin θ̃β1 +

1

4
a sin θ sinψα1

−1

4
a cosψ +

1

4
aβ2 sinψ sin θ̃,

c̃θψ = α1α3 + β1β3 − C12(α1β3 − α3β1)−
1

4
ψ sin θα3 +

1

4
a sinψ sin θ̃β3,

c̃θ̃ψ = α2α3 + β2β3 − C12(α2β3 − α3β2) +
1

4
ψ sin θ̃β3 −

1

4
a sinψ sin θα3. (5.85)

One can check that in the limit a(r) → 0 one recovers the result in (4.55).
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So, after the SL(3, R) rotation we obtain a metric that reads

(ds2string)
′ = (

e2(φ
′−φ)F

F ′
)1/3

(

eφ[dx21,3 + α′gsNdr
2] +D1dψ

2 +D2dθ
2 +D3dθ̃

2 + E1dθdθ̃ +

E2dθdψ + E3dθ̃dψ
)

+
F ′

√
∆
[dϕ+ (α1 − Cβ1)dθ + (α2 − Cβ2)dθ̃ + (α3 − Cβ3)dψ − Cdϕ̃]2

+F ′
√
∆(dϕ̃+ β1dθ + β2dθ̃ + β3dψ)

2 (5.86)

The RR and NS fields will transform according to the rules discussed in previous sections.

Notice that as happened before, the γ transformation leaves the one forms A(i), C(i) invari-

ant. This is a good point to notice that the torus given by the cycle of constant θ, θ̃, ψ, r, x,

has volume VT2 = F ′ = F
1+γ2F 2 after the transformation and that only vanished if F vanishes

or becomes infinite. So, if the original geometry is nonsingular, the transformed one also

is. In the points where the volume of the torus shrinks, it happens that it does in a way

B′
12 = Re[τ ] → 0 when

√
g′ = Im[τ ] → 0, thus the metric satisfies the criteria in [14] for

nonsingularities.

5.1 Confinement

The first check that this new solution should pass is the confinement. As clearly explained for

example in [27], the expectation value of the Wilson loop can be computed by calculating the

Nambu-Goto action for a string that is connected to a probe brane at infinity and explores

the IR region (r=0) of the background. The criteria for confinement is that if the following

combination (that can be intuitively associated with the tension of the confining string)

Ts =
√
gttgxx

∣

∣

∣

∣

r=0
(5.87)

is non-vanishing then there is linear confinement. The “QCD string” tension, Ts defined

above, is non vanishing. In the original background, the value of Ts = eφ(0). After the

transformation, we can see that the string tension is given by

T ′
s =

√

g′ttg′xx = Ust
√
gttgxx = Ts (5.88)

where Ust is defined in (2.21). We note that the tension would change if we perform a σ-

transformation. It should be interesting to understand the effects of the sigma transformation

in more detail, since they seem to alter important aspects of the gauge theory.

5.2 The Beta Function

Let us compute the beta function, following the lines of [28], [29]. We first revise their steps

and add some comments that might make the derivation more clear. In order to compute
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beta functions, one needs to define a SUSY cycle where to wrap a D5 brane at finite distance

from the origin. It was found in [22] that such cycle exists for an infinite value of the radial

constant. The cycle is given by the following identifications 10

θ = θ̃, ϕ = 2π − ϕ̃, ψ = π, 3π (5.89)

Notice that, since this is a calibrated (SUSY) cycle for large values of the radial coordinate, we

should be considering the “abelian version” (a(r) = 0) of the background. We proceed with

the full nonsingular solution, but one should keep in mind that this is a good approximation

only for r → ∞. Then, one needs to introduce a relation between the radial coordinate

r, and the energy scale of the theory. We will take the following relation [30], [28], that

identifies the gaugino condensate with the function a(r).

a(r) =
Λ3

µ3
= 〈λλ〉 (5.90)

This relation has an intuitive explanation since the gaugino condensate, like the turning-

on of the function a(r) are phenomena that occur in the IR, that is at small values of

the energy/radial coordinate. This identification (5.90), is indeed the reason for doing the

calculation in the non-singular background, even when the cycle we use is supersymmetric

only for large values of r.

Using (5.89) one defines the coupling constant as

1

g2YM
=

1

(2π)2gsα′

∫ 2π

0
dϕ

∫ π

0
dθe−φ(gxx)2

√

detG6. (5.91)

This gives,
π2

4g2YMN
= (4e2h + (a(r)2 − 1)2) (5.92)

Therefore on obtains the beta function as

β =
dgYM

dlog(µ/Λ)
= −g

3
YMN

8π2

d( π
4g2N

)

dr
(
d(−1/3Log(µ/Λ))

dr
)−1. (5.93)

Expanding the result for large values of the radial coordinate and using an expansion for

large r of (5.92) one gets,

β = −3g3YMN

8π

1

(1− g2
YM

N

8π
)

(5.94)

If one keeps higher orders in the r expansion, one gets extra terms that in [28] were attributed

to fractional instantons.

10notice that also the cycle θ = π − θ̃, ϕ = ϕ̃, ψ = 0, 2π is SUSY at large values of r
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The reader may wonder what is the origin of these extra effects. On one hand, one might

think that they are a pure N = 1 SYM effects. Or might argue that they are an effects due

to the KK modes of the field theory to which this supergravity solution is dual. Apart from

these two possibilities, one can think that they are spurious effects coming from the fact that

for small values of r in the expansion of the quantities above, the supersymmetry is broken,

since the cycle (5.89) is no longer SUSY.

In order to discard some of these alternatives, we compute the beta function in the γ

deformed non-singular background. If these extra terms that seem to modify the original

NSVZ result are effects of the KK modes, then by our general philosophy in this paper, the

beta function should be different in the deformed theory.

Let us take the same cycle in the transformed solution (5.86) 11 The relevant six dimen-

sional part of the metric is

(ds26D)
′ = [eφ(dx21,3 + gsNα

′dr2) + (D2 +D3 + E1)dθ
2] +

F ′

√
∆
((1 + C)dϕ+ (α2 − Cβ2)dθ)

2 + F ′
√
∆)(−dϕ+ (β1 + β2)dθ)

2 (5.95)

We note that at the special cycle the metric components reduce to the original undeformed

components except than the change from F to F ′. This gives a factor of F ′/F which exactly

cancels out the change in the dilaton in (5.91). So, computing the determinant and defining

the coupling as before,

1

g2YM
=

1

(2π)2gsα′

∫ 2π

0
dϕ

∫ π

0
dθe−φ

′

(g′xx)2
√

detG6. (5.96)

Using the fact that

eφ−φ
′

= (1 + γ2F 2)1/2 (5.97)

the coupling reads
π2

4g2YMN
= [4e2h + (a2 − 1)2]. (5.98)

This is precisely the same as (5.92). Then, one repeats the procedure in eq. (5.93) [28], [29]

and obtains the same result for the beta function in the deformed theory.

One can repeat the same computation for the theta parameter of Yang-Mills. The essen-

tials of the computation do not change. θYM is the same as in the undeformed theory.

We learn that the computation for beta function seems robust under the deformations.

Indeed, the beta function is a field theory result, that should be independent of the KK

modes dynamics. So, this transformed solution that only changes the KK sector of the dual

field theory, does not produce any effect in the result (5.93). On the other hand, the fact

11We believe that by general properties of the γ transformation this cycle is also supersymmetric in the
deformed geometry. It should be interesting to verify this by an explicit BPS calculation.
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that we got the same result is perhaps indicating that the result should only be taken to

first order in the large r expansion thus implying that there are no “fractional instanton”

corrections. Or may be, the “fractional instantons” are a genuine field theory effects; but

the result of these computations above, make sure that the KK modes have no relation to

them whatsoever. Finally, we note that it should of course be of great interest to find the

SUSY cycle that computes the beta function in the IR.

5.3 KK Modes and the Domain Wall Tension

There are two types of KK modes, those that are proportional to the volume of an S2 in

the geometry and those that are proportional to the volume of a three cycle, the first type

are the ‘gauge’ KK modes. On the other hand, the volume of the non-vanishing three cycle

at the IR (at r = 0) is inversely related to the masses of the “geometric” KK modes in the

theory. Therefore it is very interesting to see whether or not these volumes are changed by

the transformation. If the volume decreases under the transformation, it would be a non-

trivial improvement of the model as the undesired KK degrees of freedom would have better

decoupling. Let us start with the ‘geometric’ KK modes. The three cycle in the original

theory is given by,

θ = ϕ = r = ~x = 0. (5.99)

In the original metric (3.37), this volume is, (in the string frame),

V = 2π2(α′gsNe
φ(0))

3

2 . (5.100)

Now, we consider the same cycle in the transformed geometry (5.86). Using eqs. (5.81) the

reader can see that one obtains

V ol(S3′) = π2(α′gsNe
φ0)3/2

∫ π

0
dθ̃

sin θ̃

1 + µ2 sin2 θ̃

= π2(α′gsNe
φ0)3/2(

2arctanh(µ/
√
1 + µ2)

µ
√
1 + µ2

)

∝ π2(α′gsNe
φ0)3/2(2− 4

3
µ2 + ..),

where 16µ2 = γ2(α′gsNe
φ0)2. It is useful to consider the ratio,

(

M ′
KK

MKK

)2

=

(

V olS3

V olS3′

)2/3

=

(

µ
√
1 + µ2

2arctanh[µ/
√
1 + µ2]

)2/3

. (5.101)

So, we see that the mass of these ‘geometric’ KK modes indeed increase improving the

decoupling between the KK and the pure SYM sector.
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Now, let us analyze the mass of the ‘gauge’ KK modes, that are inversely proportional to

the volume of some S2 defined in the geometry. Let us define the two cycle as,

θ̃ = ϕ̃ = ψ = x = r = 0, (θ, ϕ) (5.102)

Computing the line element of this two cycle one gets (once again, we concentrate on the γ

transformation)

ds2 = (D2 + β2
1F

′
√
∆)dθ2 +

F ′

√
∆
dϕ2 (5.103)

so, the volume of this two cycle near r = 0 is

V ol(S2′) =
πα′gsNe

φ0

2

∫ π

0

dθ
√

1 + 1
16
(γα′gsNeφ0 sin θ)2

→

V ol(S2′) ≈ πα′gsNe
φ0

2
(1− γ2α′(gsN)2e2φ0

64
) (5.104)

again, it is convenient to present the quotient,

(
m′
kk

mkk
)2 = (

∫ π

0

dθ
√

1 + 1
16
(γα′gsNeφ0 sin θ)2

)−1 ≈ 1 +
1

16
(γα′gsNe

φ0)2 (5.105)

So, we see that the mass of the ‘gauge’ KK modes also increases when this transformation

is performed. We would like to stress again that under the σ transformation, the volumes

above indeed change. However, as the σ transformation produces irregularities, the role of

the σ modification of the original model is unclear 12

Another interesting quantity to compute is the tension of a Domain Wall. A domain wall

is thought as a D5 brane that wraps the three cycle (5.99) and extends in (2 + 1) directions

of spacetime. The way of computing the tension of this wall is by computing the coefficient

in front of the Born-Infeld action for a D5 as indicated above.

Swall =
∫

d3x(
∫

dΩ3e
−φ′
√

detG6) + CS (5.106)

from the term in parentheses we read the tension of the domain wall, to be

Twall =
∫ 4π

0

∫ 2π

0

∫ π

0
dθ̃dϕ̃dψe−φ

′+2φ(e2(φ
′−φ) F

F ′
α′gsN)1/2

F

(1 + γ2F 2)

∣

∣

∣

∣

r=0
(5.107)

Using (5.97) we see that the result changes and the chane is explicitly given as,

T ′

T
=

1

2
+

1

π
arctan(

4e−φ0

γα′gsN
). (5.108)

12We are grateful to Juan Maldacena for suggesting that redefinitions of the periodicities of the original
cycles may improve the situation.
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One should perhaps interpret this as an effect of the KK modes in field theory observables

because the cycle we are choosing (5.99) is not the appropriate one for computing domain

walls. This point deserves more study.

In this line, it would be nice to analyze what happens to the computation of baryonic

strings as D3 branes wrapping the previous 3 cycle done in the paper [31].

The result of the last two subsections is basically that under the γ transformations many

field theory aspects of N=1 SYM are not changed when computed from the transformed

background, while the KK modes change their masses. This, on one hand is reassuring of

the conjectured duality, because as we stressed many times, the transformed background

only differs in the dynamics of the KK modes. It is of interest to see an example where

some changes in the dynamics are indeed expected to happen. This example is provided by

pp-waves. The objects called annulons and studied in [20], [21] are constructed to be heavy

composites of many KK modes (this composite is called ‘hadron’ in the papers mentioned

above). These objects are studied in a plane wave approximations of the geometry. So, in

order to see real changes in dynamics of KK modes, in the next section,we will study these

composites in the transformed backgrounds.

6 PP-waves of the Transformed Solutions

PP-wave limits of various transformed solutions are quite interesting. The first example of

this kind was discussed by Lunin and Maldacena [14] where they considered a particular

PP-wave limit of the β transformed AdS5 × S5 geometry; it is quite amusing to observe

that with different arguments and objectives Niarchos and Prezas found the same plane

wave some years ago [23]. In most cases, one can indeed obtain PP-waves that lead to

quantizable string actions. Here, we would like to first make some observations about the

general properties that are satisfied by the PP-waves of the transformed geometries. Then,

we exemplify these properties by studying two simple cases, those of flat the D5 brane and

singular D5 wrapped on S2. Finally we discuss the PP-wave associated to the transformed

non-singular geometry that we obtained in section 4.2.

We restrict our attention to the pp-wave limits that are obtained by the scaling of the

same coordinates, before and after the transformation. The motivation for this is to study

the effects of the SL(3, R) transformation to the pp-wave limits. In general one may also ask

whether or not the transformed geometry admits interesting pp-wave limits other than the

pp-waves of the original geometry. A separate issue is to apply the SL(3, R) transformation

to the pp-wave itself and seek for new quantizable geometries. We note that generally the

pp-wave limit does not commute with the SL(3, R) transformation. We do not investigate

these interesting issues further in this paper.
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6.1 General Properties

For all of the geometries that we consider, the original metric is proportional to eφ (in the

string frame) and the metric before the SL(3, R) transformation can generally be written in

the following form:

ds2 =
F√
∆

(Dϕ1 − CDϕ2)
2 + F

√
∆(Dϕ′

2)
2 + eφ

(

−dt2 + d~x2 + p(r)dr2 + q(r)dΩ2
)

(6.109)

where r is a radial coordinate p and q are some given functions and Ω is a compact space.

It is important to notice that, the function F is proportional to eφ. We allow for singular

geometries, because it is well-known that singularities are usually smoothed out in the pp-

wave limit.

Suppose that the radial coordinate runs from r0 to infinity. We define eφ(r0) = R2. A

general class of pp-waves are obtained by scaling some of the coordinates as follows:

r → r0 +
r

R
, ~x→ ~x

R
, φi →

φi
R
, R → ∞,

where φi are some angular coordinates on Ω or the along torus.

Since F ∼ eφ, one observes that, in this limit

F ∼ R2f [
r

R
,
φi
R
, · · ·]

where f [. . .] is a function of the indicated variables. We assume that this function behaves

like O(1) or O(R−1). Therefore the function F blows up in the limit as F ∼ R2 or F ∼ R.

Also, in many cases,
√
∆ ∼ O(1) or O(R−1) in this limit. Thus, we have,

F ∼ Rt, t ∈ {1, 2},
√
∆ ∼ R−p, p ∈ {0, 1}. (6.110)

Now, consider applying the same pp-wave limit to the geometry after the transforma-

tion, i.e. to the new geometry that is given by (2.20). We limit our attention only to γ

transformations for simplicity. In this case, Ust = 1 and F in (6.109) is replaced by,

F ′ =
F

1 + γ2F 2
.

From the above scaling behaviour of the function F , we see that the torus in the transformed

geometry shrinks to zero size, hence yields a singular pp-wave limit unless one also scales γ

appropriately. Consider the following scaling:

γRs = γ̃ = const., s > 0

If in addition to regularity of the limit, one asks for a linear pp-wave that has the potential

of being quantizable, one would also like the denominator in F ′ be expanded in powers of γ̃.
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Then, a glance at (6.109) and (6.110) leads us to consider the following, most appropriate

scaling:

s =
1

2
(3t+ p). (6.111)

Let us denote the pp-wave limit of the original geometry by ds2pp and the same limit after

the SL(3, R) transformation by ds
′2
pp. Then, if we fix s as above, in the R → ∞ limit we

obtain the following general result:

ds
′2
pp = ds2pp − γ̃2ds2pp−torus. (6.112)

Here the second term is the pp-wave limit of only the torus part of the geometry. There is

no guarantee that (6.111) will allow for a linear pp-wave, however this is —in some sense—

the best one can do in order to avoid non-linearity in the pp-wave. In addition—as we

assume that the original metric has a nice, linear pp-wave limit—we are able to isolate the

non-linearity –if any– in the second term in (6.112).

6.2 PP-wave of the Transformed Flat D5

Let us consider the flat D5 geometry, (2.3), as our first example. A smooth linear pp-wave

limit can be obtained by performing the following coordinate transformations, (we define

η2 = α′gsN

r → r0 +
r

R
, ~x5 →

~x5
R
, θ̃ =

θ̃

R
(6.113)

We also define

dt = dx+ +
dx−

L2
, dψ + dϕ̃ =

2

η
(dx+ − dx−

L2
), eφ(r0) = R2. (6.114)

The limit R → ∞ yields the following geometry,

ds2pp1 = −4dx+dx− + d~x25 + η2dr2 +
η2

4
(dθ̃2 + θ̃2dϕ̃2)− η2

4
θ̃2dx+dϕ̃. (6.115)

Now let us consider applying the same pp-wave limit, (6.113), to the case of the trans-

formed D5 brane that we discussed in section 3.3. We have the geometry, given by (2.24)

and (2.25). We consider the regular case, i.e. σ = 0. In this case we see from (2.9) that

F → η2

4
Rθ̃,

√
∆ =

θ̃

R
. (6.116)

Therefore t = p = 1 in (6.110). From (6.111) we see that the appropriate scaling of γ as

s = 2 i.e. γ̃ = γR2 = fixed. Then from (6.112) one obtains the pp-wave that results from

the transformed D5 solution as follows:

ds
′2
pp1 = ds2pp1 − γ̃2(

η2

4
)3θ̃2dx+2, (6.117)
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where ds2pp1 is given in (6.115). We see that the SL(3, R) transformation produced a simple

γ- correction in the original pp-wave geometry. This fact was observed in [14] in case of the

deformed AdS5×S5. The string theory is quadratic and easily quantizable and one observes

that the bosonic θ̃ field receives a correction to its mass that is proportional to γ̃2.

6.3 PP-wave of the Transformed D5 on S2

Let us now apply our general discussion to a slightly more complicated example: The singular

geometry of D5 brane wrapping an S2. The metric is,

ds2 = eφ
[

dx21,3+η
2
(

dr2+r(dθ2+sin2 θdϕ2)+
1

4
(dθ̃2+sin2 θ̃dϕ̃2+(dψ+cos θdϕ+cos θ̃dϕ̃)2)

)]

(6.118)

This geometry is supplied with a dilaton e2φ = e2φ0+2r
√
r

and an RR three form. We take a

similar geodesic as the one above (6.113):

r → r0+
r

R
, θ → θ

R
, θ̃ → θ̃

R
, ~x3 →

~x3
R
, dt = dx+ +

dx−

R2
, dψ+ dϕ+ dϕ̃ =

2

η
(dx+ − dx−

R2
)

(6.119)

where R is again defined by eφ(r0) = R2. The following linear pp-wave geometry follows from

the R → ∞ limit:

ds2pp2 = −4dx+dx− + d~x23 + η2dr2 + η2r0(dθ
2+ θ2dϕ2) +

η2

4
(dθ̃2 + θ̃2dϕ̃2)− (θ2dϕ+ θ̃2dϕ̃)dx+

(6.120)

Now we consider the γ transformation where we take the same torus as is section 5.2. F

and
√
∆ behaves exactly the same as in (6.116). Therefore, we also fix s = 2 and we get the

following new pp-wave from (6.112) by focusing on the same geodesic as in (6.119):

ds
′2
pp2 = ds2pp2 − γ̃2(

η2

4
)3θ̃2dx+2 (6.121)

where ds2pp2 is given in (6.120).

6.4 PP-wave Limit of the Transformed Non-singular Solution

We finally consider the physically most interesting case of the transformed non-singular

solution. It has proved somewhat tricky to obtain a regular pp-wave limit of this solution

even before the SL(3, R) transformation. This limit is discussed in [20]. Here we first review

the argument of [20] and we revise it slightly so that it can be applied also for the case of γ

deformed non-singular background.

In order to explore the gauge dynamics at IR one is interested in a geodesic near r = 0.

With this purpose in mind, the authors of [20] considered the non-singular N = 1 geometry
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in (3.37) and picked up a null geodesic that is on the S3 at the origin. It is tricky to find the

suitable coordinates for this geodesic essentially because of the following fact: the one-forms

wi of (2.4) that involve the angular coordinates of S3 are fibered by the S2 coordinates and

this fibration is given by the connection one form Ai. As one scales r → r/R and the angles

on S3 by φi → φ/R together, one does not obtain a metric that is suitable for the pp-wave

limit. This is because the the one-forms are O(1) near r ∼ 0 (the function a(r) approaches

to 1 as r → 0). Therefore this part of the metric blows up as R → ∞.

This only indicates that one should use a better set of coordinates that is more suitable for

the pp-wave limit of this geometry. [20] solved this problem as follows. The geometry when

Scherk-Schwarz reduced on the S3 produces an SU(2) gauged supergravity in 7D [10]. On

the other hand it is well-known that the gauge field A—that was the cause of the problem

that we mentioned above— is pure gauge at the origin, up to O(r2) corrections:

A = −idhh−1 +O(r2), h = e−iσ
1 θ
2 e−iσ

3 ϕ
2 . (6.122)

Here, we defined A = Ai σ
i

2
. Therefore [20] simply gauged the O(1) part of A away by the

following gauge transformation,

A→ h1Ah+ ih−1dh, (6.123)

and then took the appropriate pp-wave limit as

r → r

R
, θ̃ → θ̃

R
, ~x3 =

~x3
R
, dt = dx+ +

dx−

R2
, dψ + dϕ̃ =

2

η
(dx+ − dx−

R2
). (6.124)

This limit produces the linear, quantizable pp-wave that is given in [20]. Here, we would

like to consider the same pp-wave limit that is given in (6.124) in the case of the γ deformed

solution (5.86). As the S3 of the undeformed solution is distorted by the γ transformation,

one cannot simply make a “gauge transformation” in A. Below, we explain the appropriate

way to put the metric in a suitable form.

The gauge transformation (6.123) is nothing else but a coordinate transformation on the

angular variables θ̃, ϕ̃, ψ from the 10D point of view. Explicitly, it is equivalent to changing

the coordinates as,

w → hw h−1 − idh h−1, (6.125)

where we defined w = wi σ
i

2
. Noting that the one-forms, (2.4) on the SU(2) group manifold

are given as follows,

w = −idg g−1, g = eiσ
3 ψ

2 eiσ
1 θ̃
2 eiσ

3 ϕ̃
2

one sees that the transformation in (6.125) is equivalent to

g → h g. (6.126)
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where h is given in (6.122). We give the explicit form of this coordinate transformation

in Appendix E. Now we apply this coordinate transformation to the γ deformed metric in

(5.86). Using the explicit expressions in Appendix E one can work out the full coordinate

transformation of (5.86). However, it is sufficient for us to observe the following. At the end

of section 6.1 we argued that, if one knows the pp-wave limit in the undeformed solution one

can obtain the new pp-wave of the deformed solution from (6.112). Having performed the

coordinate transformation (6.126), we put the first term in (6.112) in the appropriate form

to perform the pp-wave limit in (6.124). Therefore the limit of this part will be explicitly

given as the pp-wave in [20], that is

ds2 = −2dx+dx− − 1

gsNα′
(
1

9
~u2 + ~v2)(dx+)2 + d ~x3

2 + dz2 + d~u2 + d~v2 (6.127)

Here u and v are two-planes and z is a line. There is also an expression for the three form.

The second part in (6.112), then produces some non-linear corrections to this pp-wave that

is proportional to γ̃. In order to obtain a meaningful limit we found that the scaling should

be defined as follows:

γR4 = γ̃ = const.

We explicitly see that the γ deformation produces a non-linear correction to the pp-wave

of the original solution and this deformation should be dual to the complicated dynamics

that affects the KK-sector of the N = 1 theory.

7 Deformations of the N = 2 Theory

With the fields (Aaµ, φ
a, ψa) mentioned in section 2, one can perform a different twisting

from the one explained there. One can choose the second U(1) to twist, inside the diagonal

combination of the SU(2)′s. That is U(1)D inside diag(SU(2)L×SU(2)R). If this is done, we
can see that the massless spectrum can be put in correspondence with a vector multiplet of

N = 2 in d=(3+1). The corresponding solution, preserves eight supercharges as was found

in [11]

ds2 = eφ
(

dx21,3 +
z

λ

(

dθ̃2 + sin2 θ̃dϕ̃2
)

)

+
e−φ

λ

(

dρ2 + ρ2dϕ2
2

)

(7.128)

+
e−φ

λz

(

dσ̃2 + σ̃2
(

dϕ1 + cos θ̃dϕ̃
)2
)

, (7.129)

where λ = (gsNα
′)−1. The dilaton is,

e2φ = e2z
(

1− sin2 θ
1 + ce−2z

2z

)

. (7.130)

37



Here z and θ are given in terms of the radial functions that appear in (7.128) as

ρ = sin θez, σ̃ =
√
z cos θez−x (7.131)

and x is the following radial function:

e−2x = 1− 1 + ce−2z

2z
. (7.132)

c is an integration constant. The RR two-form field reads,

C(2) = gsNα
′ϕ2d

(

ξ(dϕ1 + cos θ̃dϕ̃)
)

, (7.133)

where

ξ = (1 + e2x cot2 θ)−1. (7.134)

It is well-known that the R-symmetry of the theory is dual to the isometry along the ϕ2

direction. This chiral symmetry is anomalous because of the ϕ2 dependence of C(2).

7.1 Transformation along a non-R-symmetry Direction

We shall first discuss the simpler case of SL(2, R) transformations along the torus that is

composed of ϕ1 and ϕ̃. The metric is already in the desired form given in eq. (4.55)

ds2 = F

(

1√
∆
(dϕ1 − Cdϕ̃+A(1) − CA(2))2 +

√
∆(dϕ̃+A(2))2

)

+ gµνdx
µdxν (7.135)

with,

F =
σ̃ sin θ̃

λ
, ∆ =

e2φz2 sin2 θ̃

σ̃2
, C = − cos θ̃, A(1) = A(2) = 0 (7.136)

and

gµνdx
µdxν = eφ(dx21.3 +

z

λ
dθ̃2) +

e−φ

λz
dσ̃2 +

e−φ

λ
(dρ2 + ρ2dϕ2

2). (7.137)

The RR two from is put in the following form:

C2 = C12(dϕ1 +A(1)) ∧ (dϕ̃+A(2)) + C(1)
µ (dϕ1 +A(1)) ∧ dxµ + C(2)

µ (dϕ̃+A(2)) ∧ dxµ

−1

2
(A(a)

µ C(a)
ν − c̃µν)dx

µ ∧ dxν . (7.138)

Comparison of (7.133) with (7.138) yields the following components of the RR two-form:

C12 = 0, C(1)
ρ = −ϕ2

λ

∂ξ

∂ρ
, C

(1)
σ̃ = −ϕ2

λ

∂ξ

∂σ̃
,

C(2)
ρ = −ϕ2

λ

∂ξ

∂ρ
cos θ̃, C

(2)
σ̃ = −ϕ2

λ

∂ξ

∂σ̃
cos θ̃, C

(2)

θ̃
=
ϕ2

λ
ξ sin θ̃, c̃µν = 0. (7.139)
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The transformation yields the following results.

A′(1) = −σ̃C(2), A′(2) = σ̃C(1), C ′(1) = C(1), C ′(2) = C(2), c̃′µν = 0. (7.140)

New metric functions are given by the general formula, eq. (2.18) with C12 = 0. In the

simpler case of σ = 0 transformation one obtains,

C ′
12 = 0, F ′ =

F

1 + γ2F 2
, B′

12 =
γF 2

1 + γ2F 2
, e2φ

′

=
e2φ

1 + γ2F 2
, χ′ = 0. (7.141)

Now, let us see whether or not the gravity dual computations of the β-function and the

chiral anomaly are affected by the SL(2, R) transformation. We shall consider the general

transformation that depends on both σ and γ in what follows. Gravity duals of the theta

angle and the YM coupling constant can be obtained by placing a probe D5-brane on the

supersymmetric cycle σ̃ = 0 in the geometry [28]. From the DBI action on the probe

brane one can read off the information after reducing on the S2. Essentially, the coupling

constant is determined by the volume of S2 that the D5 branes wrap and the theta angle is

determined by the flux of the RR form on this sphere. One gets the following results (before

the transformation):

1

g2
=

1

2(2π)3gsα′

∫ 2π

0
dϕ̃

∫ π

0
dθ̃e−φV ol(S2) =

N

4π2
log ρ. (7.142)

θYM =
1

2πgsα′

∫ 2π

0
dϕ̃
∫ π

0
dθ̃C

(2)

θ̃ϕ̃
= −2Nϕ2. (7.143)

We consider the transformed solution determined by the transformation rules in (2.18)

and (7.140). One obtains the following result for the coupling constant:

1

g′2
=

1

2(2π)3gsα′

∫ 2π

0
dϕ̃

∫ π

0
dθ̃e−φ

′

V ol(S2)′ =
1

2(2π)3gsα′

∫ 2π

0
dϕ̃
∫ π

0
dθ̃H− 1

2 e−φV ol(S2).

(7.144)

Here V ol(S2)′ denotes the volume of S2 in the transformed geometry and the function H is

given by,

H = 1 + σ2 σ̃
2

λ
sin2 θ̃e−2φ. (7.145)

However one should remember to place the probe brane on the supersymmetric cycle. From

the general transformation rules under SL(2, R) it is not hard to see that σ̃ = 0 maps to σ̃ = 0

hence we have the same supersymmetric cycle. On this cycle one learns from (7.145) that

H = 1. Therefore we refer that the coupling function is unaffected by the transformation.

For the theta angle, one has the following new expression:

θ′YM =
1

2πgsα′

∫ 2π

0
dϕ̃
∫ π

0
dθ̃C(2)′

θ̃ϕ̃ =
1

2πgsα′

∫ 2π

0
dϕ̃
∫ π

0
dθ̃(1− JGσ)C

(2)

θ̃ϕ̃
. (7.146)
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From (2.19) we see that J = 0 at the supersymmetric cycle σ̃ = 0 (Remember that when

C12 = 0). Therefore we learn that θYM is also unaffected by the transformation. This result

is indeed expected because the particular SL(3, R) transformation that we make here is not

breaking the supersymmetry. Then, this result can be viewed as a consistency check for the

whole setup.

7.2 Transformation along the R-symmetry Directions

Now, let us work out a more complicated case of the transformation involving the torus

on the ϕ2 and ϕ̃ angles. As ϕ2 was identified with the R-symmery we expect that this

transformation breaks supersymmetry. We rewrite the metric again in the form (4.55) that

makes the torus explicit.

ds2 = F

(

1√
∆
(dϕ2 − Cd ˜̃ϕ+A(1) − CA(2))2 +

√
∆(dϕ̃+A(2))2

)

+
e2/3φ

F 1/3
gµνdx

µdxν (7.147)

with,

gµνdx
µdxν = e−2φ/3F 1/3

(

eφ(dx21.3 +
z

λ
dθ̃2) +

e−φ

λz
dσ̃2 +

e−φ

λ
dρ2 +Ddϕ2

1

)

. (7.148)

Various functions that appear in the metric is determined as,

F√
∆

= e−φ
σ̃2

λ
, F

√
∆ = eφ sin2 θ̃

z

λ
+ e−φ cos2 θ̃

σ̃2

zλ
,

D = e−φ
σ̃2

zλ
− F

√
∆A(2)

ϕ1

2
, A(2) = e−ϕ

σ̃2

zλ

cos θ̃

F
√
∆
dϕ1, (7.149)

A(1) = C = 0. (7.150)

The RR two-form is written,

C2 = C12(dϕ2 +A(1)) ∧ (dϕ̃+A(2)) + C(1)
µ (dϕ2 +A(1)) ∧ dxµ + C(2)

µ (dϕ̃+A(2)) ∧ dxµ

−1

2
(A(a)

µ C(a)
ν − c̃µν)dx

µ ∧ dxν . (7.151)

Comparison of (7.133) with (7.151) yields the following components of the RR two-form:

C12 = 0, C(1)
µ = 0, C(2)

ρ = −ϕ2

λ

∂ξ

∂ρ
cos θ̃,

C
(2)
σ̃ = −ϕ2

λ

∂ξ

∂σ̃
cos θ̃, C

(2)

θ̃
=
ϕ2

λ
ξ sin θ̃, c̃µν = 0, c̃ϕ1σ̃ =

ϕ2

λ

∂ξ

∂σ̃
(
1

2
cos θ̃ − 1),

c̃ϕ1ρ =
ϕ2

λ

∂ξ

∂ρ
(
1

2
cos θ̃ − 1), c̃ϕ1θ̃

= −ϕ2

λ
ξ sin θ̃.
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The transformation yields the following results.

A′(1) = −σ̃C(2), A′(2) = A(2), C ′(1) = 0, C ′(2) = C(2), c̃′µν = c̃µν . (7.152)

New metric functions are given by the general formula, eq. (2.18) with C12 = 0.

For the new coupling constant and the new theta angle it is not hard to see that one

would get exactly the same results had one allowed to put the probe brane at the would-be

susy cycle σ̃ = 0. However as the transformation breaks supersymmetry, σ̃ = 0 is not a

supersymmetric cycle anymore. Therefore one does not trust the computations of the beta

function and the theta angle in this deformed solution. It will be interesting to study these

issues further.

8 Summary and Conclusions

In this paper we studied in detail the proposal of Lunin and Maldacena[14], that is to

interpret particular SL(3, R) transformations of supergravity backgrounds as duals to field

theories where the product between fields have been modified in a particular way.

We considered the quantum theories that correspond to the β deformations of D5 branes

and analyzed the regularity of the transformed configuration.

More importantly, we applied this to models that are argued to be dual to the strong

coupling regime of N = 1, 2 SYM. In this case, β transformations affect the so called KK

modes of the theory, that can be thought as ‘contaminating’ the pure SYM theory in the

supergravity approximation. We argued by a simple dipole field theory computation that

the γ deformations increase the mass of the KK modes. However they do not directly

affect the pure gauge dynamics. We confirmed these expectations from the supergravity side

by computing some field theory observables in the transformed supergravity backgrounds.

When these quantities were purely of field theory origin, no modifications were observed,

thus providing a check for the original proposal. We also showed that, as a consequence of

the transformations, there is an increase in the mass of the KK modes, hence the decoupling

is improved. We would also like to stress here the fact that in these transformed geometries,

the dilaton does not blow at infinity. This fact was already observed in the non-commutative

case and here we extend it for all β deformations.

We have studied pp-waves of the configurations that are mentioned above. In this case,

these pp waves are dual to some condensates of KK modes called annulons. We have studied

changes in the dynamics of these annulons.

As a check of consistency, we also computed the dual to N = 1 non-commutative SYM

with the methods explained here and obtained the solution previously studied by [33]. This

is in Appendix B.

Let us now comment on possible further work. It should be interesting to study the
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physical effects of these transformations on observables of the field theory. For example,

by considering Wilson loops that wrap the transformed directions one could get some infor-

mation that depends on the deformation parameters. Also, the study of strings rotating in

the internal space could yield additional information. Another field theory quantity that is

interesting to study, and that is not expected to change, is the law obeyed by the tensions

of confining strings. These models usually obey a sine law behaviour [32].

We did not check explicitly the SUSY of the deformed backgrounds, but we expect that,

unless where we indicated, the same spinors will be preserved. In this line, it should be

interesting to study the SUSY holomorphic two cycles to place probe D5 branes in the

deformed geometry. This is interesting for the quenched SQCD and meson dynamics as

studied in [22]. It is possible that some of the holomorphic two cycles found in [22] do

indeed change. These changes should be reflected in the dynamics and spectrum of mesons.

It will also be interesting to study the glueballs of the transformed models. Indeed,

since one of the problems of studying glueballs from a supergravity perspective is that we

cannot disentangle those glueballs that belong to the original field theory from those that are

coming from KK modes, the study of this spectrum for the transformed models is interesting

because in the comparison we might be able to identify what belongs to the field theory we

are interested in and what is an artifact of the supergravity approximation. In this line, one

can study the possibility of finding massless glueballs, following what is done in [36]. In this

case, the asymptotic behavior of the dilaton in the transformed solution is different, thus it

might be possible to find a massless glueball. However, this should be analyzed in detail. A

study of the transformed family of metrics developed in [37] may also be interesting.

We also note that a more detailed study of the annulons in these confining models is

required. The annulons are precisely made of the part of the spectrum that is modified by

the SL(3, R) transformations.

It should also be of interest to study the G2 holonomy manifolds in M theory. These

backgrounds can be thought of as coming from D6 branes wrapping a three manifold inside

a CY 3−fold. There are at least three U(1)’s that can be identified (see [34], for a summary

on these geometries and the explicit expression of the U(1)’s of interest). It should also be

of interest to study different geometries, like the ones found by Pando-Zayas and Tseytlin

[35]. As well as other geometries in massive IIA; for example the duals of CFT’s in five and

three dimensions that are constructed in [38] also present all the necessary characteristics

for the SL(3, R) transformations to be applied. Computing observables in these transformed

geometries could be a way of understanding better the dual field theories.

To end this paper, we want to stress that the differences and similarities between the

original confining model and the transformed one leads us, by comparison, to a better un-

derstanding of the Physics underlying these models.

42



9 Acknowledgments

We would like to thank Changhyun Ahn, Dan Freedman, Joanna Karczmarek, Ingo Kirsch,

Martin Kruczenski, Juan Martin Maldacena, Angel Paredes-Galan, Leo Pando-Zayas, Martin

Schvellinger, Alfonso Ramallo for discussion, comments and correspondence that helped

improving the presentation of this work. This work was supported in part by funds provided

by the U.S.Department of Energy (DoE) under cooperative research agreement DF-FC02-

94ER408818. Carlos Nunez is a Pappalardo Fellow.

A Appendix: Solution Generating Technique

In this appendix we summarize the technique which was used to generate supergravity solu-

tions presented in the paper [14].

Let us write the most general configuration in IIB as

ds2IIB = F

[

1√
∆
(Dϕ1 − C(Dϕ2))2 +

√
∆(Dϕ2)

2

]

+
e2φ/3

F 1/3
gµνdx

µdxν ,

B = B12(Dϕ
1) ∧ (Dϕ2) +

{

B1µ(Dϕ
1) +B2µ(Dϕ

2)
}

∧ dxµ

−1

2
Amµ Bmνdx

µ ∧ dxν + 1

2
b̃µνdx

µ ∧ dxν

e2Φ = e2φ, C(0) = χ

C(2) = C12(Dϕ
1) ∧ (Dϕ2) +

{

C1µ(Dϕ
1) + C2µ(Dϕ

2)
}

∧ dxµ

−1

2
Amµ Cmνdx

µ ∧ dxν + 1

2
c̃µνdx

µ ∧ dxν

C(4) = −1

2
(d̃µν +B12c̃µν − ǫmnBmµCnν − B12A

m
µ Cmν)dx

µdxνDϕ1Dϕ2

+
1

6
(Cµνλ + 3(b̃µν + A1

µB1ν − A2
µB2ν)C1λ)dx

µdxνdxλDϕ1 + (A.1)

+dµ1µ2µ3µ4dx
µ1dxµ2dxµ3dxµ4 + d̂µ1µ2µ3dx

µ1dxµ2dxµ3Dϕ2

where as defined in the main text of this paper

Dϕ2 = dϕ2 + A2, Dϕ1 = dϕ1 + A1 (A.2)

We have three objects which transform as vectors (see also (2.13)-(2.14) in the main text):

V (1)
µ =







−B2µ

A1
µ

C2µ





 , V (2)
µ =







B1µ

A2
µ

−C1µ





 : V (i)
µ → (ΛT )−1V (i)

µ ; (A.3)

Wµν =







c̃µν
d̃µν
b̃µν





→ ΛWµν (A.4)
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and one matrix

M = ggT , gT =







e−φ/3F−1/3 0 0
0 e−φ/3F 2/3 0
0 0 e2φ/3F−1/3













1 B12 0
0 1 0
χ −C12 + χB12 1





 (A.5)

which transforms as

M → λMΛT (A.6)

The scalars ∆, C as well as the three form Cµνλ stay invariant under these SL(3, R) trans-

formations. Finally, let us write the elements of the transformed matrix (gT )′ for the most

general transformation, with parameters (σ, γ) nonzero and find the expression for the trans-

formed fields B′
12, C

′
12, χ

′, eφ
′

, F ′

gT11 =
e−φ/3κ

µ
, gT12 =

e5/3φ

µκ
(B12 + γB2

12 − B12C12σ + F 2(γ − χσ)), gT2,2 =
(e2φF 2)1/3

κ
,

gT32 =
e−φ/3

µ
(B12χe

2φ + C2
12σe

2φ +B2
12σ(1 + χ2e2φ) + F 2σ − C12e

2φ(1 + 2B12χσ))

gT31 =
e−φ/3

µ
(−C12γe

2φ + C2
12γσe

2φ + B12χ
2e2φσ(1 +B12γ) + σ(B12 +

B2
12γ + F 2γ)− χe2φ(−1 + C12σ +B12γ(2C12σ − 1)))

gT3,3 = (
e−φ

F
)1/3

√

(B2
12 + F 2)σ2 + e2φ(1− C12σ +B12χσ)2,

µ = F 1/3
√

(B2
12 + F 2)σ2 + e2φ(1− C12σ +B12σχ)2

κ2 = F 2σ2 + e2φ( (B12γ)
2 − 2B12γ(C12σ − 1) + (C12σ − 1)2 + F 2(γ − σχ)2) (A.7)

all the other components are zero. 13 The transformed fields are

B′
12 =

gT12
gT11

, eφ
′

=
gT33
gT11

, χ′ = (
gT22g

T
11

gT33
)1/3gT31

C ′
12 = χ′B′

12 − gT32g
T
22g

T
11 (A.8)

Some colleagues might find useful the complete expression of the transformed fields in the

most general situation, with C12, B12, χ, φ turned on, that can be obtained from the previous

eq.(A.8)

B Appendix : The Non-Commutative N = 1 SYM So-

lution

We might try the methods developed in the the core of the paper, to make a transformation

on the directions where the gauge theory lives. Let us pick these two U(1)′s to be the ones
13We thank Changhyun Ahn for pointing out typos in a previous version of this appendix
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labeled by the compactified coordinates x1, x2. the reader can check that in this case, the

original configuration can be written as

ds210 = F (
(Dx1 − CDx2)

2

√
∆

+
√
∆Dx22) + (

e2/3φ

F
)(e−2/3φF )α′gsNe

φ
[ 1

α′gsN
dx21,1 +

e2h ( dθ2 + sin2 θdϕ2 ) + dr2 +
1

4
(wi − Ai)2

]

, (B.1)

With F = eφ, ∆ = 1, C = 0,A(i) = 0, and with our eight dimensional metric given by

gµνdx
µdxν = (e−2/3φF )α′gsNe

φ
[ 1

α′gsN
dx21,1 + e2h ( dθ2+sin2 θdϕ2 ) + dr2 +

1

4
(wi−Ai)2

]

,

(B.2)

and the RR two form

C(2) =
1

4

[

ψ ( sin θdθ ∧ dϕ − sin θ̃dθ̃ ∧ dϕ̃ ) − cos θ cos θ̃dϕ ∧ dϕ̃ −

−a ( dθ ∧ w1 − sin θdϕ ∧ w2 )
]

= c̃µνdx
µ ∧ dxν (B.3)

and the rest of the fields

A(i) = C(i) = C12 = B12 = B(i) = b̃ = d̃ = 0 (B.4)

so, upon performing the transformation in the two torus (x1, x2), we get a new metric

ds210 = F ′(dx21 + dx22) + (
e2/3φ

′

F ′
)(e−2/3φF )α′gsNe

φ
[ 1

α′gsN
dx21,1 +

e2h ( dθ2 + sin2 θdϕ2 ) + dr2 +
1

4
(wi − Ai)2

]

, (B.5)

with F ′ and the new matter fields given in (2.18).

So, we can see that doing the rotation in this case, has generated a NS two form, via the

term B′
12, and a new C ′

12 (for nonzero σ!). If we concentrate on the σ = 0 transformation,

we see that we have to add to the metric in (B.5) the NS two form and the RR four forms

B′
2 = B′

12dx
1 ∧ dx2, C ′

2 = c̃, 2C4 = −B′
12c̃ ∧ dx1 ∧ dx2, eφ

′

=
eφ

1 + γ2e2φ
(B.6)

this is precisely the configuration found by Mateos, Pons and Talavera in [33]. It is quite a

nice check of the method and also a check of the way in which we are thinking about this

transformed configurations. Indeed, the authors in [33] have checked that many observables

do not change compared to the commutative background.
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C Appendix: The Non-Commutative KK theory

In this appendix, we will write the expression for the metric in the case in which we pick

up the two torus to be in one of the directions of the field theory (that we label by z) and

the angle in the two sphere, labeled before as ϕ, notice that this gives a NC six dimensional

field theory for the KK modes. We could also choose the second angle to be ϕ̃ and in this

case, like in previous sections the background would have been dual to a dipole for the KK

field theory.

The metric reads

ds2string = eφ[dx21,2 + α′gsNdr
2] +Gdψ2 +Ddθ2 + Edθ̃2 +Hdθdθ̃ ++Kdθdψ + Pdθ̃dψ +

Ndϕ̃2 +Qdθ̃dϕ̃+Rdψdϕ̃+ Sdθdϕ̃+
F√
∆
[dϕ+ Cdz + α1dθ + α2dθ̃ + α3dψ + α4dϕ̃]

2 +

F
√
∆dz2 (C.1)

with

F 2 =
e2φ

∆
=
α′gsNe

2φ

4
(cos2 θ + (4e2h + a2) sin2 θ), α1 = K = C = 0, H =

α′gsNe
2φ

2
cosψ

D =
α′gsNe

2φ

4
(cos2 θ + (4e2h + a2) sin2 θ), S =

α′gsNe
2φ

2
a sinψ sin θ̃,

E =
α′gsNe

φ

4
(
cos2 θ + (4e2h + a2 cos2 ψ) sin2 θ

cos2 θ + (4e2h + a2) sin2 θ
), G =

α′gsNe
φ

4
(

(4e2h + a2) sin2 θ

cos2 θ + (4e2h + a2) sin2 θ
),

N =
α′gsNe

φ

4

4e2h sin2 θ + 2a cosψ cos θ sin θ cos θ̃ sin θ̃ + cos2 θ sin2 θ̃ + a2 sin2 θ(1− sin2 θ̃ cos2 ψ)

cos2 θ + (4e2h + a2) sin2 θ
,

Q =
α′gsNe

φ

2
sinψ sin θ(

a cosψ sin θ sin θ̃ − cos θ cos θ̃

cos2 θ + (4e2h + a2) sin2 θ
),

R =
α′gsNe

φ

2
sin θ(

a cosψ cos θ sin θ̃ + sin θ cos θ̃(4e2h + a2)

cos2 θ + (4e2h + a2) sin2 θ
),

α2 =
a sinψ sin θ

cos2 θ + (4e2h + a2) sin2 θ
, α3 =

cos θ

cos2 θ + (4e2h + a2) sin2 θ
,

α4 =
cos θ cos θ̃ − a cosψ sin θ sin θ̃

cos2 θ + (4e2h + a2) sin2 θ
, (C.2)

the gauge and tensor fields, following the notation adopted in the main text are given by

A(1) = α2dθ̃ + α3dψ + α4dϕ̃, A(1) = 0,

C(1) =
a

4
sin θω2 −

ψ

4
sin θdθ − 1

4
cos θ cos θ̃dϕ̃, C(2) = 0

c̃ = C(1) ∧A(1) − 1

4
(ψ sin θ̃dθ̃ ∧ dϕ̃+ adθ ∧ ω1), C12 = 0. (C.3)
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the laws of transformation are those in (2.13)-(2.20) and the reader can easily obtain the

background corresponding to this NC KK fields theory.

D Appendix: Details on Rotations in R-symmetry Di-

rection

Here we give details of the computations of section 4.2. Components of the RR two-form

and the gauge connections are,

C12 = −cos θ̃

4
, C(1) =

cos θ

4
dϕ, A(1) = cos θdϕ, C(2) = A(2) = c̃2 = 0 (D.1)

The RR gauge two form can be written as

C2 =
1

4
[dψ∧(cos θdϕ−cos θ̃dϕ̃)−cos θ cos θ̃dϕ∧dϕ̃] = C12Dψ∧Dϕ̃−C(1)∧Dψ− 1

2
A(1)∧C(1).

(D.2)

After the transformation we will have a metric that reads as in (4.74). For completeness let

us write the transformed vielbein in Einstein frame defined by

exi = Udxi, er = ηUdr, eθ = ηUehdθ,

eϕ = ηUeh sin θdϕ, eθ̃ =
η

2
Udθ̃, eϕ̃ = e−φ

′/4

√

F ′
√
∆dϕ̃,

eψ = e−φ
′/4

√

F ′
√
∆
(dψ + cos θdϕ+ cos θ̃dϕ̃) (D.3)

where η =
√
gsNα′ and we have defined, U = e(φ

′+2φ)/12( F
F ′
)1/6 while the matter fields

transform according to the rules in (2.18). When NS flux is absent, the γ transformation

never changes the connection one-forms (C one-forms do not change for any transformation):

(C(1))′ = C(1) =
cos θ

4
dϕ, (A(1))′ = A(1) = cos θdϕ. (D.4)

So, the transformed RR field is

(C2)
′ =

cos θ

4
dψ ∧ dϕ+ C ′

12[dψ + cos θdϕ] ∧ dϕ̃, C ′
12 =

C12

(F 2γ2 + 1)
, (D.5)

and the new NS 2 form becomes

(B2,NS)
′ = B′

12[dψ + cos θdϕ] ∧ dϕ̃, B′
12 =

F 2γ

F 2γ2 + 1
(D.6)
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The new dilaton and the axion fields are, e2φ
′

= e2φ

F 2γ2+1
, χ′ = γC12. Let us also present the

RR field strength,

H ′
3 = dB2 =

e−2h+φ′/4

η2U2

√

F ′
√
∆
B′

12e
ϕ ∧ eθ ∧ eϕ̃ + eφ

′/2

ηF ′U
(∂rB

′
12e

r + 2∂θ̃B
′
12e

θ̃) ∧ eψ ∧ eϕ̃ (D.7)

F ′
3 = dC ′

2 − χ′H ′
3 =

e−2h+φ′/4

η2U2

√

F ′
√
∆
(C ′

12 +
cos θ̃

4
− χ′B′

12)e
ϕ ∧ eθ ∧ eϕ̃ + e−2h+φ′/4

4η2U2
√

F ′

√
∆

eθ ∧ eϕ ∧ eψ

+
eφ

′/2

F ′ηU
([∂rC

′
12 − χ∂rB

′
12]e

r + 2[∂θ̃C
′
12 − χ∂θ̃B

′
12]e

θ̃) ∧ eψ ∧ eϕ̃. (D.8)

E Appendix: Explicit Form of the coordinate trans-

formation in Section 6.4

Defining the new coordinates as θ̄, ψ̄, ϕ̄, one shows that (6.126) is given by:

cos θ̄ = cos θ̃ cos θ − sin τ sin θ̃ cos(ψ + ϕ),

cot ψ̄ = cos θ cos(ψ + ϕ), (F.1)

cos ϕ̄ sin θ̄ = cosϕ̃ sin θ̃ cos θ + sin θ cos θ̃ cos ϕ̃ cos(ψ + ϕ)− sin θ sin ϕ̃ sin(ψ + ϕ).(F.2)
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