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The thermodynamics of 5D dilaton gravity duals to confining gauge theories is analyzed. We show that

they exhibit a first order Hawking-Page type phase transition. In the explicit background of improved

holographic QCD of [U. Gursoy and E. Kiritsis, J. High Energy Phys. 02 (2008) 032] [U. Gursoy, E.

Kiritsis, and F. Nitti, J. High Energy Phys. 02 (2008) 019], we find Tc ¼ 235 MeV. The temperature

dependence of various thermodynamic quantities such as the pressure, entropy, and speed of sound is

calculated. The results are in agreement with the corresponding lattice data.
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Large-Nc techniques have provided a promising ap-
proach to the strongly coupled physics of QCD, based on
an effective string theory description of glue. This route
took an interesting twist in 1997 with the advent of the
Maldacena conjecture [1], with the unexpected result that
the string theory must live in more than four dimensions. In
particular there is one extra direction, known as the holo-
graphic dimension, that plays the role of (renormalization
group) energy scale of the strongly coupled gauge theory.

Since [1] there has been a flurry of attempts to devise
such correspondences for gauge theories with less super-
symmetry with the obvious final goal: QCD. A phenome-
nological approach was in the meantime developed and is
now known as AdS/QCD. The original idea was formu-
lated in [2] and it was successfully applied to the meson
sector in [3]. The bulk gravitational background consists of
a slice of AdS5, and a constant dilaton. There is a UV and
an IR cutoff. The confining IR physics is imposed by
boundary conditions at the IR boundary. This approach,
although crude, has been partly successful in studying
meson physics, despite the fact that the dynamics driving
chiral symmetry breaking must be imposed by hand via IR
boundary conditions. Its shortcomings however include a
glueball spectrum that does not fit well the lattice data, the
fact that magnetic quarks are confined instead of screened,
and asymptotic Regge trajectories for glueballs and me-
sons are quadratic instead of linear. The thermodynamics
of this model have been analyzed in [4] where it was shown
that the system exhibits a first order deconfinement phase
transition.

Improved holographic QCD.—In [5] an improved model
for QCD was proposed. It reunited inputs from both gauge
theory and string theory while keeping the simplicity of a
two-derivative action. It could describe both the region of
asymptotic freedom as well as the strong IR dynamics of
QCD.

The basic fields that are nontrivial in the vacuum solu-
tion and describe the pure gauge dynamics, are the 5D
metric g��, a scalar � (the dilaton) that controls the

’t Hooft coupling �t of QCD, and an axion a, that is dual

to the QCD � angle. Quarks can be added to the pure gauge
theory by adding D4 � �D4 brane pairs in the background
gauge theory solution. TheD4 � �D4 tachyon condensation
then induces chiral symmetry breaking, [5,6].
The action for the 5D Einstein-dilaton theory reads
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where MP is the Planck mass. The second term in the
action is the Gibbons-Hawking with K being the extrinsic
curvature on the boundary.
The only nontrivial input in the two-derivative action (1)

is the dilaton potential Vð�Þ, where � ¼ e� is identified
with the ’t Hooft coupling of the gauge theory. The poten-
tial is directly related to the gauge theory�-function once a
holographic definition of energy is chosen. Although the
shape of Vð�Þ is not fixed without knowledge of the exact
gauge theory �-function, its UVand IR asymptotics can be
determined.
In the UV, the input comes from perturbative QCD. We

demand asymptotic freedom with logarithmic running.
This implies, in particular, that the asymptotic UV geome-
try is that of AdS5 with logarithmic corrections. It requires
a (weak-coupling) expansion of Vð�Þ of the form Vð�Þ ¼
12=‘2ð1þ v1�þ v2�

2 þ � � �Þ.
Demanding confinement of the color charges restricts

the large-� asymptotics of Vð�Þ. In [5] we focused on

potentials such that, as � ! 1, Vð�Þ � �4=3ðlog�Þð��1Þ=�
where � is a positive parameter. The IR asymptotics of the
solution in the Einstein frame are

ds20 ! e�Cðr=‘Þ�ðdr2 þ dx24Þ;
�0 ! e3C=2ðr=‘Þ�

�
r

‘

�ð3=4Þð��1Þ
;

(2)

where the constant C is related to �QCD. Confinement

requires � � 1. The parameter � characterizes the large
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excitation asymptotics of the glueball spectrum, m2
n �

n2ð��1Þ=�. For linear confinement, we choose � ¼ 2.
As discussed in [5], once the dilaton potential is fixed,

the solutions of the model are parametrized by a single
scale� that plays the role of�QCD. The AdS length ‘ is not
a physical parameter but only a choice of scale: only �‘
enters into physical observables. A specific choice for Vð�Þ
was made in [5] with the appropriate asymptotic proper-
ties. The scale � was fixed by matching to the lattice data
for the first 0þþ glueball mass. Once � is fixed, all other
interesting scales, like the fundamental string scale ‘s and
the effective QCD string tension � are also fixed.

The deconfinement transition.—At finite temperature
there exist two distinct types of solutions to the action
(1) with AdS asymptotics: (i) The thermal graviton gas,
obtained by compactifying the Euclidean time in the zero
temperature solution with �� �þ 1=T : ds2 ¼ b20ðrÞ�
ðdr2 þ d�2 þ dx23Þ, � ¼ �0ðrÞ. This solution exists for all

T � 0 and it corresponds to the confined phase, if the
gauge theory at zero T confines. (ii) The black-hole (BH)
solutions (in Euclidean time) of the form

ds2 ¼ b2ðrÞ
�
dr2

fðrÞ þ fðrÞd�2 þ dx23

�
; � ¼ �ðrÞ; (3)

with fð0Þ ¼ 1. There exists a singularity in the interior at
r ¼ 1 that is now hidden by a regular horizon at r ¼ rh
where f vanishes. Such solutions correspond to a decon-
fined phase.

As we discuss below, in confining theories the BHs exist
only above a certain minimum temperature, T > Tmin.

The thermal gas as well as BH solution has two parame-
ters: T and �. Near the horizon, f ! fhðrh � rÞ with
4	T ¼ fh. From Einstein’s equations, [7]:

4	T ¼ b�3ðrhÞ
�Z rh

0

du

bðuÞ3
��1

: (4)

In the large-Nc limit, the physics is dominated by the
saddle point with minimum free energy. For a given tem-
perature we must therefore compare the free energies of
solutions (i) and (ii)

We introduce a cutoff boundary at r=‘ ¼ 
 in order to
regulate the infinite volume. The difference of the two
scale factors is given near the boundary as

bð
Þ � b0ð
Þ ¼ CðTÞ
3 þ � � � : (5)

By the standard rules of AdS/CFTwe can relate CðTÞ to the
difference of VEVs of the gluon condensate: CðTÞ /
hTrF2iT � hTrF2i0.

The free energy difference is given by

F
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PN
2
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‘

� TS

4M3
PN

2
cV3

; (6)

where, in the last equality, we used the fact that the entropy

is given by the area of the horizon. It is clear that the
existence of a nontrivial deconfinement phase transition
is driven by a nonzero value for the thermal gluon conden-
sate CðTÞ.
For a general potential we can prove the following state-

ments, that only require the validity of the laws of black-
hole thermodynamics: (i. There exists a phase transition at
finite T, if and only if the zero-T theory confines. (ii) This
transition is of the first order for all of the confining
geometries, with a single exception described in (iii):
(iii) In the limit confining geometry b0ðrÞ ! expð�CrÞ
(as r ! 1), the phase transition is of the second order
and happens at T ¼ 3C=4	. (iv). All of the nonconfining
geometries at zero T are always in the black-hole phase at
finite T. They exhibit a second order phase transition at
T ¼ 0þ.
We now sketch a heuristic argument, limited to asymp-

totics of the type (2). A general, coordinate independent
proof valid for all confining geometries will appear in [7].
The existence of a minimum black-hole temperature

Tmin in confining theories follows from the small and large
rh behavior of the geometries. On one hand, the black-hole
approaches an AdS-Schwarzschild geometry near the
boundary, which obeys T ¼ 1=	rh. On the other hand,
as the horizon approaches the deep interior, i.e. rh ! 1,
the mass of the black hole vanishes and the black-hole
solution approaches the zero-T geometry in this limit. This
implies that F vanishes in this limit. Using the large rh
limit in (4), we find the following asymptotics for T:

T ! 3C�

4	
r��1
h ; rh ! 1; T ! 1

	rh
; rh ! 0:

(7)

The large rh behavior in Eq. (7) is valid under the
assumption that the zero-T solution, with IR asymptotics
(2), can be continuously deformed into a black hole with
arbitrarily small mass and arbitrarily large value of rh. This
assumption indeed holds, as we will show elsewhere [7] for
a more general class of confining backgrounds.
Equation (7) shows that for � � 1, that there exists a

minimum temperature Tmin > 0 above which the black-
hole solutions exist. Here, for simplicity, we assume a
single extremum of the function TðrhÞ. We illustrate the
function TðrhÞ schematically in Fig. 1. The simple convex
shapes in (a) are due to our assumption of a single mini-
mum. In general the function TðrhÞ may exhibit multiple
extrema. Our demonstration here can be generalized to
these cases [7]. In the confining geometries �> 1, for a
given T > Tmin, there exist a big and a small black-hole
solution. The big BH has positive specific heat hence it is
thermodynamically stable, whereas the small BH is un-
stable. In the borderline confining geometry� ¼ 1, there is
a single BH solution.
Existence of a critical temperature Tc � Tmin for � � 1

follows from the physical requirement of positive entropy.
From the first law of thermodynamics, it follows that
dF =drh ¼ �SdT=drh. Since S > 0 for any physical sys-
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tem, extrema of F ðrhÞ coincide with the extrema of TðrhÞ.
Using also the fact that F ðrhÞ ! �1 for rh ! 0 and
F ðrhÞ ! 0 near rh ! 1, we arrive at conclusion
(ii) described above: There is a first order transition for
all of the confining geometries (this becomes second order
for the borderline case � ¼ 1).

The small rh asymptotics also allows us to fix the value
of the Planck mass in (1). This geometry corresponds to an
ideal gas of gluons with a free energy density (We use
lowercase letters for the densities of the corresponding
functions) f ! ð	2=45ÞN2

cT
4. As the geometry becomes

AdS, Eq. (6) implies that: f ! 	4ðMP‘Þ3N2
cT

4. We con-

clude thatMP‘ ¼ ð45	2Þ�ð1=3Þ. Using the value of ‘ in [5],
we obtain MP � 2:3 GeV.

Numerical results.—Here we present a numerical study
of the relevant thermodynamic quantities in the theory
advocated in [5] with the choice � ¼ 2 in (2). Our general
analysis shows that this theory has black-hole solutions
above a temperature Tmin and exhibits a first order phase
transition at some Tc > Tmin.

To analyze the behavior of the theory at finite tempera-
ture, we have solved numerically Einstein’s equations for
the metric and dilaton. The integration constants were fixed
as explained earlier. We find a minimum temperature for
the existence of black-hole solutions, Tmin ¼ 210 MeV.

The resulting free energy as a function of the tempera-
ture is shown in Fig. 2, which clearly shows the existence
of a minimum temperature, and a first order phase transi-
tion at T ¼ Tc, where F ðTcÞ ¼ 0. For T < Tc, the thermal
gas dominates, and the system is in the confined phase. For
T > Tc, the (large) black-hole dominates, corresponding to
a deconfined phase. The entire small black-hole branch is
always thermodynamically disfavored.
The value we obtain for the critical temperature, Tc ¼

235� 15 MeV, is close to the value obtained for large-N
Yang-Mills [8], which with our normalization of the light-
est glueball would be 260� 11 MeV (combining the re-
sults in [8,9]).
From the free energy we can determine all other quan-

tities by thermodynamic identities:

p¼�F =V3; s¼4	M3
PN

2
cb

3
TðrhÞ; 
¼pþTs: (8)

Next, we present some of the thermodynamic quantities
that are compared with the lattice results.
Latent heat.—The latent heat per unit volume is defined

as the jump in the energy at the phase transition, Lh ¼
Tc�sðTcÞ, and it is expected to scale as N2

c in the large Nc

limit [8]. From Eq. (8) we note that this expectation is
reproduced in our theory. Quantitatively, we find

L1=4
h =Tc ’ 0:65

ffiffiffiffiffiffi
Nc

p
. This is to be compared with the value

0.77 reported in [8].
Equation of state and the interaction measure.—A use-

ful indication about the thermodynamics of a system is
given by the relations between the quantities 
=T4,
3ðp=T4Þ, 3=4ðs=T3Þ. In Fig. 3(a) we compare our results
for these quantities with the corresponding lattice results,
reported in [10] (for Nc ¼ 3). In the low temperature
phase, the thermodynamic functions vanish to the leading
order in N2

c and the jump in 
 and s at Tc reflects the first
order phase transition.
The interaction measure, ð
� 3pÞ=T4, is plotted in

Fig. 3(b) b, together with the lattice result from [10].
From Eq. (6), 
� 3p / CðTÞ, consistent with our interpre-
tation of CðTÞ as the gluon condensate.
Speed of sound.—This quantity is defined as c2s ¼

ð@p=@
ÞS ¼ s=cv. It is expected to be small at the phase
transition, and to reach the conformal value c2s ¼ 1=3 at
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FIG. 2 (color online). Black-hole free energy.
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FIG. 1 (color online). Schematic behavior of temperature (a)
and free energy density (b) as a function of rh, for the infinite-r
geometries of the type (2), for different values of �.
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high temperatures. In Fig. 4 we compare our results with
the lattice data, finding good agreement.

Shear viscosity.—In agreement with the general results
of [11], the ratio between shear viscosity and entropy
density is �=s ¼ ð4	Þ�1.

Discussion.—The model presented here describes well
the basic features of large-Nc Yang-Mills at finite tempera-
ture: It exhibits a first order deconfining phase transition,
and the temperature dependence of the pressure, entropy,
energy density, interaction measure and speed of sound in
the high temperature phase behave similarly to the corre-
sponding lattice results. Without adding any extra parame-
ter, one obtains a value for the critical temperature 10% off
the lattice value.

On the other hand, the model can be improved in many
ways. The latent heat Lh=T

4
c is 40% off the lattice value.

Also, our comparison shows that [see, e.g., Fig. 3(a)]
approach to the free field limit at high T is slower than
the lattice data. This may be traced back to the relative
smallness of the latent heat in our potential. Although the
UVand the IR asymptotics of the dilaton potential are fixed
by general requirements from the field theory, the inter-
mediate region is free to modify. The reason is that the low-
level glueball spectrum and the thermodynamics near the
phase transition are not controlled by the same regions of

the potential. With a suitable deformation one hopes to
obtain better agreement with the lattice data. In particular,
it is possible to obtain a fit to quantities in Figs. 3 and 4,
well within the errors of the lattice data in a temperature
range Tc < T < 5Tc [7]. Retrofitting the potential is an
interesting challenge that we plan to address in [7].
We thank K. Rajagopal and M. Teper for useful discus-

sions. This work was supported by European Union grants
MEIF-CT-2006-039962 and -039369 INFN and ICTP
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Note added.—Recently, we became aware of Ref. [12],

which discusses related issues in a similar setup.
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FIG. 3 (color online). (a) Dimensionless thermodynamic func-
tions and (b) interaction measure. The dashed curves correspond
to the lattice data of [10].
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